xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_label.c (revision 4558d122136f151d62acbbc02ddb42df89a5ef66)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Virtual Device Labels
27  * ---------------------
28  *
29  * The vdev label serves several distinct purposes:
30  *
31  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
32  *	   identity within the pool.
33  *
34  * 	2. Verify that all the devices given in a configuration are present
35  *         within the pool.
36  *
37  * 	3. Determine the uberblock for the pool.
38  *
39  * 	4. In case of an import operation, determine the configuration of the
40  *         toplevel vdev of which it is a part.
41  *
42  * 	5. If an import operation cannot find all the devices in the pool,
43  *         provide enough information to the administrator to determine which
44  *         devices are missing.
45  *
46  * It is important to note that while the kernel is responsible for writing the
47  * label, it only consumes the information in the first three cases.  The
48  * latter information is only consumed in userland when determining the
49  * configuration to import a pool.
50  *
51  *
52  * Label Organization
53  * ------------------
54  *
55  * Before describing the contents of the label, it's important to understand how
56  * the labels are written and updated with respect to the uberblock.
57  *
58  * When the pool configuration is altered, either because it was newly created
59  * or a device was added, we want to update all the labels such that we can deal
60  * with fatal failure at any point.  To this end, each disk has two labels which
61  * are updated before and after the uberblock is synced.  Assuming we have
62  * labels and an uberblock with the following transaction groups:
63  *
64  *              L1          UB          L2
65  *           +------+    +------+    +------+
66  *           |      |    |      |    |      |
67  *           | t10  |    | t10  |    | t10  |
68  *           |      |    |      |    |      |
69  *           +------+    +------+    +------+
70  *
71  * In this stable state, the labels and the uberblock were all updated within
72  * the same transaction group (10).  Each label is mirrored and checksummed, so
73  * that we can detect when we fail partway through writing the label.
74  *
75  * In order to identify which labels are valid, the labels are written in the
76  * following manner:
77  *
78  * 	1. For each vdev, update 'L1' to the new label
79  * 	2. Update the uberblock
80  * 	3. For each vdev, update 'L2' to the new label
81  *
82  * Given arbitrary failure, we can determine the correct label to use based on
83  * the transaction group.  If we fail after updating L1 but before updating the
84  * UB, we will notice that L1's transaction group is greater than the uberblock,
85  * so L2 must be valid.  If we fail after writing the uberblock but before
86  * writing L2, we will notice that L2's transaction group is less than L1, and
87  * therefore L1 is valid.
88  *
89  * Another added complexity is that not every label is updated when the config
90  * is synced.  If we add a single device, we do not want to have to re-write
91  * every label for every device in the pool.  This means that both L1 and L2 may
92  * be older than the pool uberblock, because the necessary information is stored
93  * on another vdev.
94  *
95  *
96  * On-disk Format
97  * --------------
98  *
99  * The vdev label consists of two distinct parts, and is wrapped within the
100  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
101  * VTOC disk labels, but is otherwise ignored.
102  *
103  * The first half of the label is a packed nvlist which contains pool wide
104  * properties, per-vdev properties, and configuration information.  It is
105  * described in more detail below.
106  *
107  * The latter half of the label consists of a redundant array of uberblocks.
108  * These uberblocks are updated whenever a transaction group is committed,
109  * or when the configuration is updated.  When a pool is loaded, we scan each
110  * vdev for the 'best' uberblock.
111  *
112  *
113  * Configuration Information
114  * -------------------------
115  *
116  * The nvlist describing the pool and vdev contains the following elements:
117  *
118  * 	version		ZFS on-disk version
119  * 	name		Pool name
120  * 	state		Pool state
121  * 	txg		Transaction group in which this label was written
122  * 	pool_guid	Unique identifier for this pool
123  * 	vdev_tree	An nvlist describing vdev tree.
124  *
125  * Each leaf device label also contains the following:
126  *
127  * 	top_guid	Unique ID for top-level vdev in which this is contained
128  * 	guid		Unique ID for the leaf vdev
129  *
130  * The 'vs' configuration follows the format described in 'spa_config.c'.
131  */
132 
133 #include <sys/zfs_context.h>
134 #include <sys/spa.h>
135 #include <sys/spa_impl.h>
136 #include <sys/dmu.h>
137 #include <sys/zap.h>
138 #include <sys/vdev.h>
139 #include <sys/vdev_impl.h>
140 #include <sys/uberblock_impl.h>
141 #include <sys/metaslab.h>
142 #include <sys/zio.h>
143 #include <sys/dsl_scan.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     vdev_config_flag_t flags)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_fru != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 		    vd->vdev_fru) == 0);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity <= 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 		    (vd->vdev_nparity <= 3 &&
252 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253 
254 		/*
255 		 * Note that we'll add the nparity tag even on storage pools
256 		 * that only support a single parity device -- older software
257 		 * will just ignore it.
258 		 */
259 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260 		    vd->vdev_nparity) == 0);
261 	}
262 
263 	if (vd->vdev_wholedisk != -1ULL)
264 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265 		    vd->vdev_wholedisk) == 0);
266 
267 	if (vd->vdev_not_present)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269 
270 	if (vd->vdev_isspare)
271 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272 
273 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
274 	    vd == vd->vdev_top) {
275 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
276 		    vd->vdev_ms_array) == 0);
277 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
278 		    vd->vdev_ms_shift) == 0);
279 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
280 		    vd->vdev_ashift) == 0);
281 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
282 		    vd->vdev_asize) == 0);
283 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
284 		    vd->vdev_islog) == 0);
285 		if (vd->vdev_removing)
286 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
287 			    vd->vdev_removing) == 0);
288 	}
289 
290 	if (vd->vdev_dtl_smo.smo_object != 0)
291 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
292 		    vd->vdev_dtl_smo.smo_object) == 0);
293 
294 	if (vd->vdev_crtxg)
295 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
296 		    vd->vdev_crtxg) == 0);
297 
298 	if (getstats) {
299 		vdev_stat_t vs;
300 		pool_scan_stat_t ps;
301 
302 		vdev_get_stats(vd, &vs);
303 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
304 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
305 
306 		/* provide either current or previous scan information */
307 		if (spa_scan_get_stats(spa, &ps) == 0) {
308 			VERIFY(nvlist_add_uint64_array(nv,
309 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
310 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
311 			    == 0);
312 		}
313 	}
314 
315 	if (!vd->vdev_ops->vdev_op_leaf) {
316 		nvlist_t **child;
317 		int c, idx;
318 
319 		ASSERT(!vd->vdev_ishole);
320 
321 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
322 		    KM_SLEEP);
323 
324 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
325 			vdev_t *cvd = vd->vdev_child[c];
326 
327 			/*
328 			 * If we're generating an nvlist of removing
329 			 * vdevs then skip over any device which is
330 			 * not being removed.
331 			 */
332 			if ((flags & VDEV_CONFIG_REMOVING) &&
333 			    !cvd->vdev_removing)
334 				continue;
335 
336 			child[idx++] = vdev_config_generate(spa, cvd,
337 			    getstats, flags);
338 		}
339 
340 		if (idx) {
341 			VERIFY(nvlist_add_nvlist_array(nv,
342 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
343 		}
344 
345 		for (c = 0; c < idx; c++)
346 			nvlist_free(child[c]);
347 
348 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
349 
350 	} else {
351 		const char *aux = NULL;
352 
353 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
354 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
355 			    B_TRUE) == 0);
356 		if (vd->vdev_faulted)
357 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
358 			    B_TRUE) == 0);
359 		if (vd->vdev_degraded)
360 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
361 			    B_TRUE) == 0);
362 		if (vd->vdev_removed)
363 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
364 			    B_TRUE) == 0);
365 		if (vd->vdev_unspare)
366 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
367 			    B_TRUE) == 0);
368 		if (vd->vdev_ishole)
369 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
370 			    B_TRUE) == 0);
371 
372 		switch (vd->vdev_stat.vs_aux) {
373 		case VDEV_AUX_ERR_EXCEEDED:
374 			aux = "err_exceeded";
375 			break;
376 
377 		case VDEV_AUX_EXTERNAL:
378 			aux = "external";
379 			break;
380 		}
381 
382 		if (aux != NULL)
383 			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
384 			    aux) == 0);
385 
386 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
387 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
388 			    vd->vdev_orig_guid) == 0);
389 		}
390 	}
391 
392 	return (nv);
393 }
394 
395 /*
396  * Generate a view of the top-level vdevs.  If we currently have holes
397  * in the namespace, then generate an array which contains a list of holey
398  * vdevs.  Additionally, add the number of top-level children that currently
399  * exist.
400  */
401 void
402 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
403 {
404 	vdev_t *rvd = spa->spa_root_vdev;
405 	uint64_t *array;
406 	uint_t c, idx;
407 
408 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
409 
410 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
411 		vdev_t *tvd = rvd->vdev_child[c];
412 
413 		if (tvd->vdev_ishole)
414 			array[idx++] = c;
415 	}
416 
417 	if (idx) {
418 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
419 		    array, idx) == 0);
420 	}
421 
422 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
423 	    rvd->vdev_children) == 0);
424 
425 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
426 }
427 
428 nvlist_t *
429 vdev_label_read_config(vdev_t *vd)
430 {
431 	spa_t *spa = vd->vdev_spa;
432 	nvlist_t *config = NULL;
433 	vdev_phys_t *vp;
434 	zio_t *zio;
435 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
436 	    ZIO_FLAG_SPECULATIVE;
437 
438 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
439 
440 	if (!vdev_readable(vd))
441 		return (NULL);
442 
443 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
444 
445 retry:
446 	for (int l = 0; l < VDEV_LABELS; l++) {
447 
448 		zio = zio_root(spa, NULL, NULL, flags);
449 
450 		vdev_label_read(zio, vd, l, vp,
451 		    offsetof(vdev_label_t, vl_vdev_phys),
452 		    sizeof (vdev_phys_t), NULL, NULL, flags);
453 
454 		if (zio_wait(zio) == 0 &&
455 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
456 		    &config, 0) == 0)
457 			break;
458 
459 		if (config != NULL) {
460 			nvlist_free(config);
461 			config = NULL;
462 		}
463 	}
464 
465 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
466 		flags |= ZIO_FLAG_TRYHARD;
467 		goto retry;
468 	}
469 
470 	zio_buf_free(vp, sizeof (vdev_phys_t));
471 
472 	return (config);
473 }
474 
475 /*
476  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
477  * in with the device guid if this spare is active elsewhere on the system.
478  */
479 static boolean_t
480 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
481     uint64_t *spare_guid, uint64_t *l2cache_guid)
482 {
483 	spa_t *spa = vd->vdev_spa;
484 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
485 	uint64_t vdtxg = 0;
486 	nvlist_t *label;
487 
488 	if (spare_guid)
489 		*spare_guid = 0ULL;
490 	if (l2cache_guid)
491 		*l2cache_guid = 0ULL;
492 
493 	/*
494 	 * Read the label, if any, and perform some basic sanity checks.
495 	 */
496 	if ((label = vdev_label_read_config(vd)) == NULL)
497 		return (B_FALSE);
498 
499 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
500 	    &vdtxg);
501 
502 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
503 	    &state) != 0 ||
504 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
505 	    &device_guid) != 0) {
506 		nvlist_free(label);
507 		return (B_FALSE);
508 	}
509 
510 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
511 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
512 	    &pool_guid) != 0 ||
513 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
514 	    &txg) != 0)) {
515 		nvlist_free(label);
516 		return (B_FALSE);
517 	}
518 
519 	nvlist_free(label);
520 
521 	/*
522 	 * Check to see if this device indeed belongs to the pool it claims to
523 	 * be a part of.  The only way this is allowed is if the device is a hot
524 	 * spare (which we check for later on).
525 	 */
526 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
527 	    !spa_guid_exists(pool_guid, device_guid) &&
528 	    !spa_spare_exists(device_guid, NULL, NULL) &&
529 	    !spa_l2cache_exists(device_guid, NULL))
530 		return (B_FALSE);
531 
532 	/*
533 	 * If the transaction group is zero, then this an initialized (but
534 	 * unused) label.  This is only an error if the create transaction
535 	 * on-disk is the same as the one we're using now, in which case the
536 	 * user has attempted to add the same vdev multiple times in the same
537 	 * transaction.
538 	 */
539 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
540 	    txg == 0 && vdtxg == crtxg)
541 		return (B_TRUE);
542 
543 	/*
544 	 * Check to see if this is a spare device.  We do an explicit check for
545 	 * spa_has_spare() here because it may be on our pending list of spares
546 	 * to add.  We also check if it is an l2cache device.
547 	 */
548 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
549 	    spa_has_spare(spa, device_guid)) {
550 		if (spare_guid)
551 			*spare_guid = device_guid;
552 
553 		switch (reason) {
554 		case VDEV_LABEL_CREATE:
555 		case VDEV_LABEL_L2CACHE:
556 			return (B_TRUE);
557 
558 		case VDEV_LABEL_REPLACE:
559 			return (!spa_has_spare(spa, device_guid) ||
560 			    spare_pool != 0ULL);
561 
562 		case VDEV_LABEL_SPARE:
563 			return (spa_has_spare(spa, device_guid));
564 		}
565 	}
566 
567 	/*
568 	 * Check to see if this is an l2cache device.
569 	 */
570 	if (spa_l2cache_exists(device_guid, NULL))
571 		return (B_TRUE);
572 
573 	/*
574 	 * If the device is marked ACTIVE, then this device is in use by another
575 	 * pool on the system.
576 	 */
577 	return (state == POOL_STATE_ACTIVE);
578 }
579 
580 /*
581  * Initialize a vdev label.  We check to make sure each leaf device is not in
582  * use, and writable.  We put down an initial label which we will later
583  * overwrite with a complete label.  Note that it's important to do this
584  * sequentially, not in parallel, so that we catch cases of multiple use of the
585  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
586  * itself.
587  */
588 int
589 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
590 {
591 	spa_t *spa = vd->vdev_spa;
592 	nvlist_t *label;
593 	vdev_phys_t *vp;
594 	char *pad2;
595 	uberblock_t *ub;
596 	zio_t *zio;
597 	char *buf;
598 	size_t buflen;
599 	int error;
600 	uint64_t spare_guid, l2cache_guid;
601 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
602 
603 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
604 
605 	for (int c = 0; c < vd->vdev_children; c++)
606 		if ((error = vdev_label_init(vd->vdev_child[c],
607 		    crtxg, reason)) != 0)
608 			return (error);
609 
610 	/* Track the creation time for this vdev */
611 	vd->vdev_crtxg = crtxg;
612 
613 	if (!vd->vdev_ops->vdev_op_leaf)
614 		return (0);
615 
616 	/*
617 	 * Dead vdevs cannot be initialized.
618 	 */
619 	if (vdev_is_dead(vd))
620 		return (EIO);
621 
622 	/*
623 	 * Determine if the vdev is in use.
624 	 */
625 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
626 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
627 		return (EBUSY);
628 
629 	/*
630 	 * If this is a request to add or replace a spare or l2cache device
631 	 * that is in use elsewhere on the system, then we must update the
632 	 * guid (which was initialized to a random value) to reflect the
633 	 * actual GUID (which is shared between multiple pools).
634 	 */
635 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
636 	    spare_guid != 0ULL) {
637 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
638 
639 		vd->vdev_guid += guid_delta;
640 
641 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
642 			pvd->vdev_guid_sum += guid_delta;
643 
644 		/*
645 		 * If this is a replacement, then we want to fallthrough to the
646 		 * rest of the code.  If we're adding a spare, then it's already
647 		 * labeled appropriately and we can just return.
648 		 */
649 		if (reason == VDEV_LABEL_SPARE)
650 			return (0);
651 		ASSERT(reason == VDEV_LABEL_REPLACE ||
652 		    reason == VDEV_LABEL_SPLIT);
653 	}
654 
655 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
656 	    l2cache_guid != 0ULL) {
657 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
658 
659 		vd->vdev_guid += guid_delta;
660 
661 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
662 			pvd->vdev_guid_sum += guid_delta;
663 
664 		/*
665 		 * If this is a replacement, then we want to fallthrough to the
666 		 * rest of the code.  If we're adding an l2cache, then it's
667 		 * already labeled appropriately and we can just return.
668 		 */
669 		if (reason == VDEV_LABEL_L2CACHE)
670 			return (0);
671 		ASSERT(reason == VDEV_LABEL_REPLACE);
672 	}
673 
674 	/*
675 	 * Initialize its label.
676 	 */
677 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
678 	bzero(vp, sizeof (vdev_phys_t));
679 
680 	/*
681 	 * Generate a label describing the pool and our top-level vdev.
682 	 * We mark it as being from txg 0 to indicate that it's not
683 	 * really part of an active pool just yet.  The labels will
684 	 * be written again with a meaningful txg by spa_sync().
685 	 */
686 	if (reason == VDEV_LABEL_SPARE ||
687 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
688 		/*
689 		 * For inactive hot spares, we generate a special label that
690 		 * identifies as a mutually shared hot spare.  We write the
691 		 * label if we are adding a hot spare, or if we are removing an
692 		 * active hot spare (in which case we want to revert the
693 		 * labels).
694 		 */
695 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
696 
697 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
698 		    spa_version(spa)) == 0);
699 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
700 		    POOL_STATE_SPARE) == 0);
701 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
702 		    vd->vdev_guid) == 0);
703 	} else if (reason == VDEV_LABEL_L2CACHE ||
704 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
705 		/*
706 		 * For level 2 ARC devices, add a special label.
707 		 */
708 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
709 
710 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
711 		    spa_version(spa)) == 0);
712 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
713 		    POOL_STATE_L2CACHE) == 0);
714 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
715 		    vd->vdev_guid) == 0);
716 	} else {
717 		uint64_t txg = 0ULL;
718 
719 		if (reason == VDEV_LABEL_SPLIT)
720 			txg = spa->spa_uberblock.ub_txg;
721 		label = spa_config_generate(spa, vd, txg, B_FALSE);
722 
723 		/*
724 		 * Add our creation time.  This allows us to detect multiple
725 		 * vdev uses as described above, and automatically expires if we
726 		 * fail.
727 		 */
728 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
729 		    crtxg) == 0);
730 	}
731 
732 	buf = vp->vp_nvlist;
733 	buflen = sizeof (vp->vp_nvlist);
734 
735 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
736 	if (error != 0) {
737 		nvlist_free(label);
738 		zio_buf_free(vp, sizeof (vdev_phys_t));
739 		/* EFAULT means nvlist_pack ran out of room */
740 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
741 	}
742 
743 	/*
744 	 * Initialize uberblock template.
745 	 */
746 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
747 	bzero(ub, VDEV_UBERBLOCK_RING);
748 	*ub = spa->spa_uberblock;
749 	ub->ub_txg = 0;
750 
751 	/* Initialize the 2nd padding area. */
752 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
753 	bzero(pad2, VDEV_PAD_SIZE);
754 
755 	/*
756 	 * Write everything in parallel.
757 	 */
758 retry:
759 	zio = zio_root(spa, NULL, NULL, flags);
760 
761 	for (int l = 0; l < VDEV_LABELS; l++) {
762 
763 		vdev_label_write(zio, vd, l, vp,
764 		    offsetof(vdev_label_t, vl_vdev_phys),
765 		    sizeof (vdev_phys_t), NULL, NULL, flags);
766 
767 		/*
768 		 * Skip the 1st padding area.
769 		 * Zero out the 2nd padding area where it might have
770 		 * left over data from previous filesystem format.
771 		 */
772 		vdev_label_write(zio, vd, l, pad2,
773 		    offsetof(vdev_label_t, vl_pad2),
774 		    VDEV_PAD_SIZE, NULL, NULL, flags);
775 
776 		vdev_label_write(zio, vd, l, ub,
777 		    offsetof(vdev_label_t, vl_uberblock),
778 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
779 	}
780 
781 	error = zio_wait(zio);
782 
783 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
784 		flags |= ZIO_FLAG_TRYHARD;
785 		goto retry;
786 	}
787 
788 	nvlist_free(label);
789 	zio_buf_free(pad2, VDEV_PAD_SIZE);
790 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
791 	zio_buf_free(vp, sizeof (vdev_phys_t));
792 
793 	/*
794 	 * If this vdev hasn't been previously identified as a spare, then we
795 	 * mark it as such only if a) we are labeling it as a spare, or b) it
796 	 * exists as a spare elsewhere in the system.  Do the same for
797 	 * level 2 ARC devices.
798 	 */
799 	if (error == 0 && !vd->vdev_isspare &&
800 	    (reason == VDEV_LABEL_SPARE ||
801 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
802 		spa_spare_add(vd);
803 
804 	if (error == 0 && !vd->vdev_isl2cache &&
805 	    (reason == VDEV_LABEL_L2CACHE ||
806 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
807 		spa_l2cache_add(vd);
808 
809 	return (error);
810 }
811 
812 /*
813  * ==========================================================================
814  * uberblock load/sync
815  * ==========================================================================
816  */
817 
818 /*
819  * Consider the following situation: txg is safely synced to disk.  We've
820  * written the first uberblock for txg + 1, and then we lose power.  When we
821  * come back up, we fail to see the uberblock for txg + 1 because, say,
822  * it was on a mirrored device and the replica to which we wrote txg + 1
823  * is now offline.  If we then make some changes and sync txg + 1, and then
824  * the missing replica comes back, then for a new seconds we'll have two
825  * conflicting uberblocks on disk with the same txg.  The solution is simple:
826  * among uberblocks with equal txg, choose the one with the latest timestamp.
827  */
828 static int
829 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
830 {
831 	if (ub1->ub_txg < ub2->ub_txg)
832 		return (-1);
833 	if (ub1->ub_txg > ub2->ub_txg)
834 		return (1);
835 
836 	if (ub1->ub_timestamp < ub2->ub_timestamp)
837 		return (-1);
838 	if (ub1->ub_timestamp > ub2->ub_timestamp)
839 		return (1);
840 
841 	return (0);
842 }
843 
844 static void
845 vdev_uberblock_load_done(zio_t *zio)
846 {
847 	spa_t *spa = zio->io_spa;
848 	zio_t *rio = zio->io_private;
849 	uberblock_t *ub = zio->io_data;
850 	uberblock_t *ubbest = rio->io_private;
851 
852 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
853 
854 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
855 		mutex_enter(&rio->io_lock);
856 		if (ub->ub_txg <= spa->spa_load_max_txg &&
857 		    vdev_uberblock_compare(ub, ubbest) > 0)
858 			*ubbest = *ub;
859 		mutex_exit(&rio->io_lock);
860 	}
861 
862 	zio_buf_free(zio->io_data, zio->io_size);
863 }
864 
865 void
866 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
867 {
868 	spa_t *spa = vd->vdev_spa;
869 	vdev_t *rvd = spa->spa_root_vdev;
870 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
871 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
872 
873 	if (vd == rvd) {
874 		ASSERT(zio == NULL);
875 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
876 		zio = zio_root(spa, NULL, ubbest, flags);
877 		bzero(ubbest, sizeof (uberblock_t));
878 	}
879 
880 	ASSERT(zio != NULL);
881 
882 	for (int c = 0; c < vd->vdev_children; c++)
883 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
884 
885 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
886 		for (int l = 0; l < VDEV_LABELS; l++) {
887 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
888 				vdev_label_read(zio, vd, l,
889 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
890 				    VDEV_UBERBLOCK_OFFSET(vd, n),
891 				    VDEV_UBERBLOCK_SIZE(vd),
892 				    vdev_uberblock_load_done, zio, flags);
893 			}
894 		}
895 	}
896 
897 	if (vd == rvd) {
898 		(void) zio_wait(zio);
899 		spa_config_exit(spa, SCL_ALL, FTAG);
900 	}
901 }
902 
903 /*
904  * On success, increment root zio's count of good writes.
905  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
906  */
907 static void
908 vdev_uberblock_sync_done(zio_t *zio)
909 {
910 	uint64_t *good_writes = zio->io_private;
911 
912 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
913 		atomic_add_64(good_writes, 1);
914 }
915 
916 /*
917  * Write the uberblock to all labels of all leaves of the specified vdev.
918  */
919 static void
920 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
921 {
922 	uberblock_t *ubbuf;
923 	int n;
924 
925 	for (int c = 0; c < vd->vdev_children; c++)
926 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
927 
928 	if (!vd->vdev_ops->vdev_op_leaf)
929 		return;
930 
931 	if (!vdev_writeable(vd))
932 		return;
933 
934 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
935 
936 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
937 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
938 	*ubbuf = *ub;
939 
940 	for (int l = 0; l < VDEV_LABELS; l++)
941 		vdev_label_write(zio, vd, l, ubbuf,
942 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
943 		    vdev_uberblock_sync_done, zio->io_private,
944 		    flags | ZIO_FLAG_DONT_PROPAGATE);
945 
946 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
947 }
948 
949 int
950 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
951 {
952 	spa_t *spa = svd[0]->vdev_spa;
953 	zio_t *zio;
954 	uint64_t good_writes = 0;
955 
956 	zio = zio_root(spa, NULL, &good_writes, flags);
957 
958 	for (int v = 0; v < svdcount; v++)
959 		vdev_uberblock_sync(zio, ub, svd[v], flags);
960 
961 	(void) zio_wait(zio);
962 
963 	/*
964 	 * Flush the uberblocks to disk.  This ensures that the odd labels
965 	 * are no longer needed (because the new uberblocks and the even
966 	 * labels are safely on disk), so it is safe to overwrite them.
967 	 */
968 	zio = zio_root(spa, NULL, NULL, flags);
969 
970 	for (int v = 0; v < svdcount; v++)
971 		zio_flush(zio, svd[v]);
972 
973 	(void) zio_wait(zio);
974 
975 	return (good_writes >= 1 ? 0 : EIO);
976 }
977 
978 /*
979  * On success, increment the count of good writes for our top-level vdev.
980  */
981 static void
982 vdev_label_sync_done(zio_t *zio)
983 {
984 	uint64_t *good_writes = zio->io_private;
985 
986 	if (zio->io_error == 0)
987 		atomic_add_64(good_writes, 1);
988 }
989 
990 /*
991  * If there weren't enough good writes, indicate failure to the parent.
992  */
993 static void
994 vdev_label_sync_top_done(zio_t *zio)
995 {
996 	uint64_t *good_writes = zio->io_private;
997 
998 	if (*good_writes == 0)
999 		zio->io_error = EIO;
1000 
1001 	kmem_free(good_writes, sizeof (uint64_t));
1002 }
1003 
1004 /*
1005  * We ignore errors for log and cache devices, simply free the private data.
1006  */
1007 static void
1008 vdev_label_sync_ignore_done(zio_t *zio)
1009 {
1010 	kmem_free(zio->io_private, sizeof (uint64_t));
1011 }
1012 
1013 /*
1014  * Write all even or odd labels to all leaves of the specified vdev.
1015  */
1016 static void
1017 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1018 {
1019 	nvlist_t *label;
1020 	vdev_phys_t *vp;
1021 	char *buf;
1022 	size_t buflen;
1023 
1024 	for (int c = 0; c < vd->vdev_children; c++)
1025 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1026 
1027 	if (!vd->vdev_ops->vdev_op_leaf)
1028 		return;
1029 
1030 	if (!vdev_writeable(vd))
1031 		return;
1032 
1033 	/*
1034 	 * Generate a label describing the top-level config to which we belong.
1035 	 */
1036 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1037 
1038 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1039 	bzero(vp, sizeof (vdev_phys_t));
1040 
1041 	buf = vp->vp_nvlist;
1042 	buflen = sizeof (vp->vp_nvlist);
1043 
1044 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1045 		for (; l < VDEV_LABELS; l += 2) {
1046 			vdev_label_write(zio, vd, l, vp,
1047 			    offsetof(vdev_label_t, vl_vdev_phys),
1048 			    sizeof (vdev_phys_t),
1049 			    vdev_label_sync_done, zio->io_private,
1050 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1051 		}
1052 	}
1053 
1054 	zio_buf_free(vp, sizeof (vdev_phys_t));
1055 	nvlist_free(label);
1056 }
1057 
1058 int
1059 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1060 {
1061 	list_t *dl = &spa->spa_config_dirty_list;
1062 	vdev_t *vd;
1063 	zio_t *zio;
1064 	int error;
1065 
1066 	/*
1067 	 * Write the new labels to disk.
1068 	 */
1069 	zio = zio_root(spa, NULL, NULL, flags);
1070 
1071 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1072 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1073 		    KM_SLEEP);
1074 
1075 		ASSERT(!vd->vdev_ishole);
1076 
1077 		zio_t *vio = zio_null(zio, spa, NULL,
1078 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1079 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1080 		    good_writes, flags);
1081 		vdev_label_sync(vio, vd, l, txg, flags);
1082 		zio_nowait(vio);
1083 	}
1084 
1085 	error = zio_wait(zio);
1086 
1087 	/*
1088 	 * Flush the new labels to disk.
1089 	 */
1090 	zio = zio_root(spa, NULL, NULL, flags);
1091 
1092 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1093 		zio_flush(zio, vd);
1094 
1095 	(void) zio_wait(zio);
1096 
1097 	return (error);
1098 }
1099 
1100 /*
1101  * Sync the uberblock and any changes to the vdev configuration.
1102  *
1103  * The order of operations is carefully crafted to ensure that
1104  * if the system panics or loses power at any time, the state on disk
1105  * is still transactionally consistent.  The in-line comments below
1106  * describe the failure semantics at each stage.
1107  *
1108  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1109  * at any time, you can just call it again, and it will resume its work.
1110  */
1111 int
1112 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1113 {
1114 	spa_t *spa = svd[0]->vdev_spa;
1115 	uberblock_t *ub = &spa->spa_uberblock;
1116 	vdev_t *vd;
1117 	zio_t *zio;
1118 	int error;
1119 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1120 
1121 	/*
1122 	 * Normally, we don't want to try too hard to write every label and
1123 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1124 	 * sync process to block while we retry.  But if we can't write a
1125 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1126 	 * bailing out and declaring the pool faulted.
1127 	 */
1128 	if (tryhard)
1129 		flags |= ZIO_FLAG_TRYHARD;
1130 
1131 	ASSERT(ub->ub_txg <= txg);
1132 
1133 	/*
1134 	 * If this isn't a resync due to I/O errors,
1135 	 * and nothing changed in this transaction group,
1136 	 * and the vdev configuration hasn't changed,
1137 	 * then there's nothing to do.
1138 	 */
1139 	if (ub->ub_txg < txg &&
1140 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1141 	    list_is_empty(&spa->spa_config_dirty_list))
1142 		return (0);
1143 
1144 	if (txg > spa_freeze_txg(spa))
1145 		return (0);
1146 
1147 	ASSERT(txg <= spa->spa_final_txg);
1148 
1149 	/*
1150 	 * Flush the write cache of every disk that's been written to
1151 	 * in this transaction group.  This ensures that all blocks
1152 	 * written in this txg will be committed to stable storage
1153 	 * before any uberblock that references them.
1154 	 */
1155 	zio = zio_root(spa, NULL, NULL, flags);
1156 
1157 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1158 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1159 		zio_flush(zio, vd);
1160 
1161 	(void) zio_wait(zio);
1162 
1163 	/*
1164 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1165 	 * system dies in the middle of this process, that's OK: all of the
1166 	 * even labels that made it to disk will be newer than any uberblock,
1167 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1168 	 * which have not yet been touched, will still be valid.  We flush
1169 	 * the new labels to disk to ensure that all even-label updates
1170 	 * are committed to stable storage before the uberblock update.
1171 	 */
1172 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1173 		return (error);
1174 
1175 	/*
1176 	 * Sync the uberblocks to all vdevs in svd[].
1177 	 * If the system dies in the middle of this step, there are two cases
1178 	 * to consider, and the on-disk state is consistent either way:
1179 	 *
1180 	 * (1)	If none of the new uberblocks made it to disk, then the
1181 	 *	previous uberblock will be the newest, and the odd labels
1182 	 *	(which had not yet been touched) will be valid with respect
1183 	 *	to that uberblock.
1184 	 *
1185 	 * (2)	If one or more new uberblocks made it to disk, then they
1186 	 *	will be the newest, and the even labels (which had all
1187 	 *	been successfully committed) will be valid with respect
1188 	 *	to the new uberblocks.
1189 	 */
1190 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1191 		return (error);
1192 
1193 	/*
1194 	 * Sync out odd labels for every dirty vdev.  If the system dies
1195 	 * in the middle of this process, the even labels and the new
1196 	 * uberblocks will suffice to open the pool.  The next time
1197 	 * the pool is opened, the first thing we'll do -- before any
1198 	 * user data is modified -- is mark every vdev dirty so that
1199 	 * all labels will be brought up to date.  We flush the new labels
1200 	 * to disk to ensure that all odd-label updates are committed to
1201 	 * stable storage before the next transaction group begins.
1202 	 */
1203 	return (vdev_label_sync_list(spa, 1, txg, flags));
1204 }
1205