xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_label.c (revision 441d80aa4f613b6298fc8bd3151f4be02dbf84fc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transacation groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
156 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
157 }
158 
159 static void
160 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
161 	uint64_t size, zio_done_func_t *done, void *private)
162 {
163 	ASSERT(vd->vdev_children == 0);
164 
165 	zio_nowait(zio_read_phys(zio, vd,
166 	    vdev_label_offset(vd->vdev_psize, l, offset),
167 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
168 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_SPECULATIVE |
169 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY));
170 }
171 
172 static void
173 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
174 	uint64_t size, zio_done_func_t *done, void *private)
175 {
176 	ASSERT(vd->vdev_children == 0);
177 
178 	zio_nowait(zio_write_phys(zio, vd,
179 	    vdev_label_offset(vd->vdev_psize, l, offset),
180 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
181 	    ZIO_PRIORITY_SYNC_WRITE,
182 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY));
183 }
184 
185 /*
186  * Generate the nvlist representing this vdev's config.
187  */
188 nvlist_t *
189 vdev_config_generate(vdev_t *vd, int getstats)
190 {
191 	nvlist_t *nv = NULL;
192 
193 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0);
194 
195 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
196 	    vd->vdev_ops->vdev_op_type) == 0);
197 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0);
198 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
199 
200 	if (vd->vdev_path != NULL)
201 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
202 		    vd->vdev_path) == 0);
203 
204 	if (vd->vdev_devid != NULL)
205 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
206 		    vd->vdev_devid) == 0);
207 
208 	if (vd->vdev_wholedisk != -1ULL)
209 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
210 		    vd->vdev_wholedisk) == 0);
211 
212 	if (vd == vd->vdev_top) {
213 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
214 		    vd->vdev_ms_array) == 0);
215 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
216 		    vd->vdev_ms_shift) == 0);
217 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
218 		    vd->vdev_ashift) == 0);
219 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
220 		    vd->vdev_asize) == 0);
221 	}
222 
223 	if (vd->vdev_dtl.smo_object != 0)
224 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
225 		    vd->vdev_dtl.smo_object) == 0);
226 
227 	if (getstats) {
228 		vdev_stat_t vs;
229 		vdev_get_stats(vd, &vs);
230 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
231 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
232 	}
233 
234 	if (!vd->vdev_ops->vdev_op_leaf) {
235 		nvlist_t **child;
236 		int c;
237 
238 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
239 		    KM_SLEEP);
240 
241 		for (c = 0; c < vd->vdev_children; c++)
242 			child[c] = vdev_config_generate(vd->vdev_child[c],
243 			    getstats);
244 
245 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
246 		    child, vd->vdev_children) == 0);
247 
248 		for (c = 0; c < vd->vdev_children; c++)
249 			nvlist_free(child[c]);
250 
251 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
252 
253 	} else {
254 		if (!vd->vdev_tmpoffline) {
255 		    if (vd->vdev_offline)
256 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
257 				B_TRUE) == 0);
258 		    else
259 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
260 				DATA_TYPE_UINT64);
261 		}
262 	}
263 
264 	return (nv);
265 }
266 
267 nvlist_t *
268 vdev_label_read_config(vdev_t *vd)
269 {
270 	nvlist_t *config = NULL;
271 	vdev_phys_t *vp;
272 	uint64_t version;
273 	zio_t *zio;
274 	int l;
275 
276 	if (vdev_is_dead(vd))
277 		return (NULL);
278 
279 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
280 
281 	for (l = 0; l < VDEV_LABELS; l++) {
282 
283 		zio = zio_root(vd->vdev_spa, NULL, NULL,
284 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD);
285 
286 		vdev_label_read(zio, vd, l, vp,
287 		    offsetof(vdev_label_t, vl_vdev_phys),
288 		    sizeof (vdev_phys_t), NULL, NULL);
289 
290 		if (zio_wait(zio) == 0 &&
291 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
292 		    &config, 0) == 0 &&
293 		    nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
294 		    &version) == 0 &&
295 		    version == UBERBLOCK_VERSION)
296 			break;
297 
298 		if (config != NULL) {
299 			nvlist_free(config);
300 			config = NULL;
301 		}
302 	}
303 
304 	zio_buf_free(vp, sizeof (vdev_phys_t));
305 
306 	return (config);
307 }
308 
309 int
310 vdev_label_init(vdev_t *vd, uint64_t crtxg)
311 {
312 	spa_t *spa = vd->vdev_spa;
313 	nvlist_t *label;
314 	vdev_phys_t *vp;
315 	vdev_boot_header_t *vb;
316 	uberblock_phys_t *ubphys;
317 	zio_t *zio;
318 	int l, c, n;
319 	char *buf;
320 	size_t buflen;
321 	int error;
322 
323 	for (c = 0; c < vd->vdev_children; c++)
324 		if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0)
325 			return (error);
326 
327 	if (!vd->vdev_ops->vdev_op_leaf)
328 		return (0);
329 
330 	/*
331 	 * Make sure each leaf device is writable, and zero its initial content.
332 	 * Along the way, also make sure that no leaf is already in use.
333 	 * Note that it's important to do this sequentially, not in parallel,
334 	 * so that we catch cases of multiple use of the same leaf vdev in
335 	 * the vdev we're creating -- e.g. mirroring a disk with itself.
336 	 */
337 	if (vdev_is_dead(vd))
338 		return (EIO);
339 
340 	/*
341 	 * Check whether this device is already in use.
342 	 * Ignore the check if crtxg == 0, which we use for device removal.
343 	 */
344 	if (crtxg != 0 && (label = vdev_label_read_config(vd)) != NULL) {
345 		uint64_t version, state, pool_guid, device_guid, txg;
346 		uint64_t mycrtxg = 0;
347 
348 		(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
349 		    &mycrtxg);
350 
351 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION,
352 		    &version) == 0 && version == UBERBLOCK_VERSION &&
353 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
354 		    &state) == 0 && state == POOL_STATE_ACTIVE &&
355 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
356 		    &pool_guid) == 0 &&
357 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
358 		    &device_guid) == 0 &&
359 		    spa_guid_exists(pool_guid, device_guid) &&
360 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
361 		    &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) {
362 			dprintf("vdev %s in use, pool_state %d\n",
363 			    vdev_description(vd), state);
364 			nvlist_free(label);
365 			return (EBUSY);
366 		}
367 		nvlist_free(label);
368 	}
369 
370 	/*
371 	 * The device isn't in use, so initialize its label.
372 	 */
373 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
374 	bzero(vp, sizeof (vdev_phys_t));
375 
376 	/*
377 	 * Generate a label describing the pool and our top-level vdev.
378 	 * We mark it as being from txg 0 to indicate that it's not
379 	 * really part of an active pool just yet.  The labels will
380 	 * be written again with a meaningful txg by spa_sync().
381 	 */
382 	label = spa_config_generate(spa, vd, 0ULL, 0);
383 
384 	/*
385 	 * Add our creation time.  This allows us to detect multiple vdev
386 	 * uses as described above, and automatically expires if we fail.
387 	 */
388 	VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0);
389 
390 	buf = vp->vp_nvlist;
391 	buflen = sizeof (vp->vp_nvlist);
392 
393 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) != 0) {
394 		nvlist_free(label);
395 		zio_buf_free(vp, sizeof (vdev_phys_t));
396 		return (EINVAL);
397 	}
398 
399 	/*
400 	 * Initialize boot block header.
401 	 */
402 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
403 	bzero(vb, sizeof (vdev_boot_header_t));
404 	vb->vb_magic = VDEV_BOOT_MAGIC;
405 	vb->vb_version = VDEV_BOOT_VERSION;
406 	vb->vb_offset = VDEV_BOOT_OFFSET;
407 	vb->vb_size = VDEV_BOOT_SIZE;
408 
409 	/*
410 	 * Initialize uberblock template.
411 	 */
412 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
413 	bzero(ubphys, sizeof (uberblock_phys_t));
414 	ubphys->ubp_uberblock = spa->spa_uberblock;
415 	ubphys->ubp_uberblock.ub_txg = 0;
416 
417 	/*
418 	 * Write everything in parallel.
419 	 */
420 	zio = zio_root(spa, NULL, NULL,
421 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
422 
423 	for (l = 0; l < VDEV_LABELS; l++) {
424 
425 		vdev_label_write(zio, vd, l, vp,
426 		    offsetof(vdev_label_t, vl_vdev_phys),
427 		    sizeof (vdev_phys_t), NULL, NULL);
428 
429 		vdev_label_write(zio, vd, l, vb,
430 		    offsetof(vdev_label_t, vl_boot_header),
431 		    sizeof (vdev_boot_header_t), NULL, NULL);
432 
433 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
434 
435 			vdev_label_write(zio, vd, l, ubphys,
436 			    offsetof(vdev_label_t, vl_uberblock[n]),
437 			    sizeof (uberblock_phys_t), NULL, NULL);
438 
439 		}
440 	}
441 
442 	error = zio_wait(zio);
443 
444 	nvlist_free(label);
445 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
446 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
447 	zio_buf_free(vp, sizeof (vdev_phys_t));
448 
449 	return (error);
450 }
451 
452 /*
453  * ==========================================================================
454  * uberblock load/sync
455  * ==========================================================================
456  */
457 
458 /*
459  * Consider the following situation: txg is safely synced to disk.  We've
460  * written the first uberblock for txg + 1, and then we lose power.  When we
461  * come back up, we fail to see the uberblock for txg + 1 because, say,
462  * it was on a mirrored device and the replica to which we wrote txg + 1
463  * is now offline.  If we then make some changes and sync txg + 1, and then
464  * the missing replica comes back, then for a new seconds we'll have two
465  * conflicting uberblocks on disk with the same txg.  The solution is simple:
466  * among uberblocks with equal txg, choose the one with the latest timestamp.
467  */
468 static int
469 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
470 {
471 	if (ub1->ub_txg < ub2->ub_txg)
472 		return (-1);
473 	if (ub1->ub_txg > ub2->ub_txg)
474 		return (1);
475 
476 	if (ub1->ub_timestamp < ub2->ub_timestamp)
477 		return (-1);
478 	if (ub1->ub_timestamp > ub2->ub_timestamp)
479 		return (1);
480 
481 	return (0);
482 }
483 
484 static void
485 vdev_uberblock_load_done(zio_t *zio)
486 {
487 	uberblock_phys_t *ubphys = zio->io_data;
488 	uberblock_t *ub = &ubphys->ubp_uberblock;
489 	uberblock_t *ubbest = zio->io_private;
490 	spa_t *spa = zio->io_spa;
491 
492 	ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t));
493 
494 	if (uberblock_verify(ub) == 0) {
495 		mutex_enter(&spa->spa_uberblock_lock);
496 		if (vdev_uberblock_compare(ub, ubbest) > 0)
497 			*ubbest = *ub;
498 		mutex_exit(&spa->spa_uberblock_lock);
499 	}
500 
501 	zio_buf_free(zio->io_data, zio->io_size);
502 }
503 
504 void
505 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
506 {
507 	int l, c, n;
508 
509 	for (c = 0; c < vd->vdev_children; c++)
510 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
511 
512 	if (!vd->vdev_ops->vdev_op_leaf)
513 		return;
514 
515 	if (vdev_is_dead(vd))
516 		return;
517 
518 	for (l = 0; l < VDEV_LABELS; l++) {
519 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
520 			vdev_label_read(zio, vd, l,
521 			    zio_buf_alloc(sizeof (uberblock_phys_t)),
522 			    offsetof(vdev_label_t, vl_uberblock[n]),
523 			    sizeof (uberblock_phys_t),
524 			    vdev_uberblock_load_done, ubbest);
525 		}
526 	}
527 }
528 
529 /*
530  * Write the uberblock to both labels of all leaves of the specified vdev.
531  */
532 static void
533 vdev_uberblock_sync_done(zio_t *zio)
534 {
535 	uint64_t *good_writes = zio->io_root->io_private;
536 
537 	if (zio->io_error == 0)
538 		atomic_add_64(good_writes, 1);
539 }
540 
541 static void
542 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd,
543 	uint64_t txg)
544 {
545 	int l, c, n;
546 
547 	for (c = 0; c < vd->vdev_children; c++)
548 		vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg);
549 
550 	if (!vd->vdev_ops->vdev_op_leaf)
551 		return;
552 
553 	if (vdev_is_dead(vd))
554 		return;
555 
556 	n = txg & (VDEV_UBERBLOCKS - 1);
557 
558 	ASSERT(ubphys->ubp_uberblock.ub_txg == txg);
559 
560 	for (l = 0; l < VDEV_LABELS; l++)
561 		vdev_label_write(zio, vd, l, ubphys,
562 		    offsetof(vdev_label_t, vl_uberblock[n]),
563 		    sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL);
564 
565 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
566 }
567 
568 static int
569 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg)
570 {
571 	uberblock_phys_t *ubphys;
572 	uint64_t *good_writes;
573 	zio_t *zio;
574 	int error;
575 
576 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
577 	bzero(ubphys, sizeof (uberblock_phys_t));
578 	ubphys->ubp_uberblock = *ub;
579 
580 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
581 
582 	zio = zio_root(spa, NULL, good_writes,
583 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
584 
585 	vdev_uberblock_sync(zio, ubphys, uvd, txg);
586 
587 	error = zio_wait(zio);
588 
589 	if (error && *good_writes != 0) {
590 		dprintf("partial success: good_writes = %llu\n", *good_writes);
591 		error = 0;
592 	}
593 
594 	/*
595 	 * It's possible to have no good writes and no error if every vdev is in
596 	 * the CANT_OPEN state.
597 	 */
598 	if (*good_writes == 0 && error == 0)
599 		error = EIO;
600 
601 	kmem_free(good_writes, sizeof (uint64_t));
602 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
603 
604 	return (error);
605 }
606 
607 /*
608  * Sync out an individual vdev.
609  */
610 static void
611 vdev_sync_label_done(zio_t *zio)
612 {
613 	uint64_t *good_writes = zio->io_root->io_private;
614 
615 	if (zio->io_error == 0)
616 		atomic_add_64(good_writes, 1);
617 }
618 
619 static void
620 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
621 {
622 	nvlist_t *label;
623 	vdev_phys_t *vp;
624 	char *buf;
625 	size_t buflen;
626 	int c;
627 
628 	for (c = 0; c < vd->vdev_children; c++)
629 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
630 
631 	if (!vd->vdev_ops->vdev_op_leaf)
632 		return;
633 
634 	if (vdev_is_dead(vd))
635 		return;
636 
637 	/*
638 	 * Generate a label describing the top-level config to which we belong.
639 	 */
640 	label = spa_config_generate(vd->vdev_spa, vd, txg, 0);
641 
642 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
643 	bzero(vp, sizeof (vdev_phys_t));
644 
645 	buf = vp->vp_nvlist;
646 	buflen = sizeof (vp->vp_nvlist);
647 
648 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) == 0)
649 		vdev_label_write(zio, vd, l, vp,
650 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
651 		    vdev_sync_label_done, NULL);
652 
653 	zio_buf_free(vp, sizeof (vdev_phys_t));
654 	nvlist_free(label);
655 
656 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
657 }
658 
659 static int
660 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
661 {
662 	uint64_t *good_writes;
663 	zio_t *zio;
664 	int error;
665 
666 	ASSERT(vd == vd->vdev_top);
667 
668 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
669 
670 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
671 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
672 
673 	/*
674 	 * Recursively kick off writes to all labels.
675 	 */
676 	vdev_sync_label(zio, vd, l, txg);
677 
678 	error = zio_wait(zio);
679 
680 	if (error && *good_writes != 0) {
681 		dprintf("partial success: good_writes = %llu\n", *good_writes);
682 		error = 0;
683 	}
684 
685 	if (*good_writes == 0 && error == 0)
686 		error = ENODEV;
687 
688 	kmem_free(good_writes, sizeof (uint64_t));
689 
690 	return (error);
691 }
692 
693 /*
694  * Sync the entire vdev configuration.
695  *
696  * The order of operations is carefully crafted to ensure that
697  * if the system panics or loses power at any time, the state on disk
698  * is still transactionally consistent.  The in-line comments below
699  * describe the failure semantics at each stage.
700  *
701  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
702  * at any time, you can just call it again, and it will resume its work.
703  */
704 int
705 spa_sync_labels(spa_t *spa, uint64_t txg)
706 {
707 	uberblock_t *ub = &spa->spa_uberblock;
708 	vdev_t *rvd = spa->spa_root_vdev;
709 	vdev_t *vd, *uvd;
710 	zio_t *zio;
711 	int c, l, error;
712 
713 	ASSERT(ub->ub_txg <= txg);
714 
715 	/*
716 	 * If this isn't a resync due to I/O errors, and nothing changed
717 	 * in this transaction group, and the vdev configuration hasn't changed,
718 	 * and this isn't an explicit sync-all, then there's nothing to do.
719 	 */
720 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
721 	    list_is_empty(&spa->spa_dirty_list)) {
722 		dprintf("nothing to sync in %s in txg %llu\n",
723 		    spa_name(spa), txg);
724 		return (0);
725 	}
726 
727 	if (txg > spa_freeze_txg(spa))
728 		return (0);
729 
730 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
731 
732 	/*
733 	 * Flush the write cache of every disk that's been written to
734 	 * in this transaction group.  This ensures that all blocks
735 	 * written in this txg will be committed to stable storage
736 	 * before any uberblock that references them.
737 	 */
738 	zio = zio_root(spa, NULL, NULL,
739 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
740 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
741 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
742 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
743 		    NULL, NULL, ZIO_PRIORITY_NOW,
744 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
745 	}
746 	(void) zio_wait(zio);
747 
748 	/*
749 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
750 	 * system dies in the middle of this process, that's OK: all of the
751 	 * even labels that made it to disk will be newer than any uberblock,
752 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
753 	 * which have not yet been touched, will still be valid.
754 	 */
755 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
756 	    vd = list_next(&spa->spa_dirty_list, vd)) {
757 		for (l = 0; l < VDEV_LABELS; l++) {
758 			if (l & 1)
759 				continue;
760 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
761 				return (error);
762 		}
763 	}
764 
765 	/*
766 	 * Flush the new labels to disk.  This ensures that all even-label
767 	 * updates are committed to stable storage before the uberblock update.
768 	 */
769 	zio = zio_root(spa, NULL, NULL,
770 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
771 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
772 	    vd = list_next(&spa->spa_dirty_list, vd)) {
773 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
774 		    NULL, NULL, ZIO_PRIORITY_NOW,
775 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
776 	}
777 	(void) zio_wait(zio);
778 
779 	/*
780 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
781 	 * Otherwise, pick one top-level vdev at random.
782 	 */
783 	if (!list_is_empty(&spa->spa_dirty_list))
784 		uvd = rvd;
785 	else
786 		uvd = rvd->vdev_child[spa_get_random(rvd->vdev_children)];
787 
788 	/*
789 	 * Sync the uberblocks.  If the system dies in the middle of this
790 	 * step, there are two cases to consider, and the on-disk state
791 	 * is consistent either way:
792 	 *
793 	 * (1)	If none of the new uberblocks made it to disk, then the
794 	 *	previous uberblock will be the newest, and the odd labels
795 	 *	(which had not yet been touched) will be valid with respect
796 	 *	to that uberblock.
797 	 *
798 	 * (2)	If one or more new uberblocks made it to disk, then they
799 	 *	will be the newest, and the even labels (which had all
800 	 *	been successfully committed) will be valid with respect
801 	 *	to the new uberblocks.
802 	 */
803 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
804 		return (error);
805 
806 	/*
807 	 * Flush the uberblocks to disk.  This ensures that the odd labels
808 	 * are no longer needed (because the new uberblocks and the even
809 	 * labels are safely on disk), so it is safe to overwrite them.
810 	 */
811 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
812 	    NULL, NULL, ZIO_PRIORITY_NOW,
813 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
814 
815 	/*
816 	 * Sync out odd labels for every dirty vdev.  If the system dies
817 	 * in the middle of this process, the even labels and the new
818 	 * uberblocks will suffice to open the pool.  The next time
819 	 * the pool is opened, the first thing we'll do -- before any
820 	 * user data is modified -- is mark every vdev dirty so that
821 	 * all labels will be brought up to date.
822 	 */
823 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
824 	    vd = list_next(&spa->spa_dirty_list, vd)) {
825 		for (l = 0; l < VDEV_LABELS; l++) {
826 			if ((l & 1) == 0)
827 				continue;
828 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
829 				return (error);
830 		}
831 	}
832 
833 	/*
834 	 * Flush the new labels to disk.  This ensures that all odd-label
835 	 * updates are committed to stable storage before the next
836 	 * transaction group begins.
837 	 */
838 	zio = zio_root(spa, NULL, NULL,
839 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
840 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
841 	    vd = list_next(&spa->spa_dirty_list, vd)) {
842 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
843 		    NULL, NULL, ZIO_PRIORITY_NOW,
844 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
845 	}
846 	(void) zio_wait(zio);
847 
848 	/*
849 	 * Clear the dirty list.
850 	 */
851 	while (!list_is_empty(&spa->spa_dirty_list))
852 		vdev_config_clean(list_head(&spa->spa_dirty_list));
853 
854 #ifdef DEBUG
855 	for (c = 0; c < rvd->vdev_children; c++) {
856 		ASSERT(rvd->vdev_child[c]->vdev_is_dirty == 0);
857 	}
858 #endif
859 
860 	return (0);
861 }
862