xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_label.c (revision 41efec2219526a9b3ecce26f97aba761ef1e1d0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	ASSERT(offset < sizeof (vdev_label_t));
156 
157 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
158 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
159 }
160 
161 static void
162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
163 	uint64_t size, zio_done_func_t *done, void *private)
164 {
165 	ASSERT(vd->vdev_children == 0);
166 
167 	zio_nowait(zio_read_phys(zio, vd,
168 	    vdev_label_offset(vd->vdev_psize, l, offset),
169 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
170 	    ZIO_PRIORITY_SYNC_READ,
171 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
172 }
173 
174 static void
175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
176 	uint64_t size, zio_done_func_t *done, void *private)
177 {
178 	ASSERT(vd->vdev_children == 0);
179 
180 	zio_nowait(zio_write_phys(zio, vd,
181 	    vdev_label_offset(vd->vdev_psize, l, offset),
182 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
183 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
184 }
185 
186 /*
187  * Generate the nvlist representing this vdev's config.
188  */
189 nvlist_t *
190 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
191     boolean_t isspare)
192 {
193 	nvlist_t *nv = NULL;
194 
195 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196 
197 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
198 	    vd->vdev_ops->vdev_op_type) == 0);
199 	if (!isspare)
200 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
201 		    == 0);
202 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
203 
204 	if (vd->vdev_path != NULL)
205 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
206 		    vd->vdev_path) == 0);
207 
208 	if (vd->vdev_devid != NULL)
209 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
210 		    vd->vdev_devid) == 0);
211 
212 	if (vd->vdev_physpath != NULL)
213 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
214 		    vd->vdev_physpath) == 0);
215 
216 	if (vd->vdev_nparity != 0) {
217 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
218 		    VDEV_TYPE_RAIDZ) == 0);
219 
220 		/*
221 		 * Make sure someone hasn't managed to sneak a fancy new vdev
222 		 * into a crufty old storage pool.
223 		 */
224 		ASSERT(vd->vdev_nparity == 1 ||
225 		    (vd->vdev_nparity == 2 &&
226 		    spa_version(spa) >= ZFS_VERSION_RAID6));
227 
228 		/*
229 		 * Note that we'll add the nparity tag even on storage pools
230 		 * that only support a single parity device -- older software
231 		 * will just ignore it.
232 		 */
233 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
234 		    vd->vdev_nparity) == 0);
235 	}
236 
237 	if (vd->vdev_wholedisk != -1ULL)
238 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
239 		    vd->vdev_wholedisk) == 0);
240 
241 	if (vd->vdev_not_present)
242 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
243 
244 	if (vd->vdev_isspare)
245 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
246 
247 	if (!isspare && vd == vd->vdev_top) {
248 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
249 		    vd->vdev_ms_array) == 0);
250 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
251 		    vd->vdev_ms_shift) == 0);
252 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
253 		    vd->vdev_ashift) == 0);
254 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
255 		    vd->vdev_asize) == 0);
256 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
257 		    vd->vdev_islog) == 0);
258 	}
259 
260 	if (vd->vdev_dtl.smo_object != 0)
261 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
262 		    vd->vdev_dtl.smo_object) == 0);
263 
264 	if (getstats) {
265 		vdev_stat_t vs;
266 		vdev_get_stats(vd, &vs);
267 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
268 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
269 	}
270 
271 	if (!vd->vdev_ops->vdev_op_leaf) {
272 		nvlist_t **child;
273 		int c;
274 
275 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
276 		    KM_SLEEP);
277 
278 		for (c = 0; c < vd->vdev_children; c++)
279 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
280 			    getstats, isspare);
281 
282 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
283 		    child, vd->vdev_children) == 0);
284 
285 		for (c = 0; c < vd->vdev_children; c++)
286 			nvlist_free(child[c]);
287 
288 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
289 
290 	} else {
291 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
292 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
293 			    B_TRUE) == 0);
294 		if (vd->vdev_faulted)
295 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
296 			    B_TRUE) == 0);
297 		if (vd->vdev_degraded)
298 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
299 			    B_TRUE) == 0);
300 		if (vd->vdev_removed)
301 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
302 			    B_TRUE) == 0);
303 		if (vd->vdev_unspare)
304 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
305 			    B_TRUE) == 0);
306 	}
307 
308 	return (nv);
309 }
310 
311 nvlist_t *
312 vdev_label_read_config(vdev_t *vd)
313 {
314 	spa_t *spa = vd->vdev_spa;
315 	nvlist_t *config = NULL;
316 	vdev_phys_t *vp;
317 	zio_t *zio;
318 	int l;
319 
320 	ASSERT(spa_config_held(spa, RW_READER));
321 
322 	if (vdev_is_dead(vd))
323 		return (NULL);
324 
325 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
326 
327 	for (l = 0; l < VDEV_LABELS; l++) {
328 
329 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
330 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
331 
332 		vdev_label_read(zio, vd, l, vp,
333 		    offsetof(vdev_label_t, vl_vdev_phys),
334 		    sizeof (vdev_phys_t), NULL, NULL);
335 
336 		if (zio_wait(zio) == 0 &&
337 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
338 		    &config, 0) == 0)
339 			break;
340 
341 		if (config != NULL) {
342 			nvlist_free(config);
343 			config = NULL;
344 		}
345 	}
346 
347 	zio_buf_free(vp, sizeof (vdev_phys_t));
348 
349 	return (config);
350 }
351 
352 /*
353  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
354  * in with the device guid if this spare is active elsewhere on the system.
355  */
356 static boolean_t
357 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
358     uint64_t *spare_guid)
359 {
360 	spa_t *spa = vd->vdev_spa;
361 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
362 	uint64_t vdtxg = 0;
363 	nvlist_t *label;
364 
365 	if (spare_guid)
366 		*spare_guid = 0ULL;
367 
368 	/*
369 	 * Read the label, if any, and perform some basic sanity checks.
370 	 */
371 	if ((label = vdev_label_read_config(vd)) == NULL)
372 		return (B_FALSE);
373 
374 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
375 	    &vdtxg);
376 
377 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
378 	    &state) != 0 ||
379 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
380 	    &device_guid) != 0) {
381 		nvlist_free(label);
382 		return (B_FALSE);
383 	}
384 
385 	if (state != POOL_STATE_SPARE &&
386 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
387 	    &pool_guid) != 0 ||
388 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
389 	    &txg) != 0)) {
390 		nvlist_free(label);
391 		return (B_FALSE);
392 	}
393 
394 	nvlist_free(label);
395 
396 	/*
397 	 * Check to see if this device indeed belongs to the pool it claims to
398 	 * be a part of.  The only way this is allowed is if the device is a hot
399 	 * spare (which we check for later on).
400 	 */
401 	if (state != POOL_STATE_SPARE &&
402 	    !spa_guid_exists(pool_guid, device_guid) &&
403 	    !spa_spare_exists(device_guid, NULL))
404 		return (B_FALSE);
405 
406 	/*
407 	 * If the transaction group is zero, then this an initialized (but
408 	 * unused) label.  This is only an error if the create transaction
409 	 * on-disk is the same as the one we're using now, in which case the
410 	 * user has attempted to add the same vdev multiple times in the same
411 	 * transaction.
412 	 */
413 	if (state != POOL_STATE_SPARE && txg == 0 && vdtxg == crtxg)
414 		return (B_TRUE);
415 
416 	/*
417 	 * Check to see if this is a spare device.  We do an explicit check for
418 	 * spa_has_spare() here because it may be on our pending list of spares
419 	 * to add.
420 	 */
421 	if (spa_spare_exists(device_guid, &spare_pool) ||
422 	    spa_has_spare(spa, device_guid)) {
423 		if (spare_guid)
424 			*spare_guid = device_guid;
425 
426 		switch (reason) {
427 		case VDEV_LABEL_CREATE:
428 			return (B_TRUE);
429 
430 		case VDEV_LABEL_REPLACE:
431 			return (!spa_has_spare(spa, device_guid) ||
432 			    spare_pool != 0ULL);
433 
434 		case VDEV_LABEL_SPARE:
435 			return (spa_has_spare(spa, device_guid));
436 		}
437 	}
438 
439 	/*
440 	 * If the device is marked ACTIVE, then this device is in use by another
441 	 * pool on the system.
442 	 */
443 	return (state == POOL_STATE_ACTIVE);
444 }
445 
446 /*
447  * Initialize a vdev label.  We check to make sure each leaf device is not in
448  * use, and writable.  We put down an initial label which we will later
449  * overwrite with a complete label.  Note that it's important to do this
450  * sequentially, not in parallel, so that we catch cases of multiple use of the
451  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
452  * itself.
453  */
454 int
455 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
456 {
457 	spa_t *spa = vd->vdev_spa;
458 	nvlist_t *label;
459 	vdev_phys_t *vp;
460 	vdev_boot_header_t *vb;
461 	uberblock_t *ub;
462 	zio_t *zio;
463 	int l, c, n;
464 	char *buf;
465 	size_t buflen;
466 	int error;
467 	uint64_t spare_guid;
468 
469 	ASSERT(spa_config_held(spa, RW_WRITER));
470 
471 	for (c = 0; c < vd->vdev_children; c++)
472 		if ((error = vdev_label_init(vd->vdev_child[c],
473 		    crtxg, reason)) != 0)
474 			return (error);
475 
476 	if (!vd->vdev_ops->vdev_op_leaf)
477 		return (0);
478 
479 	/*
480 	 * Dead vdevs cannot be initialized.
481 	 */
482 	if (vdev_is_dead(vd))
483 		return (EIO);
484 
485 	/*
486 	 * Determine if the vdev is in use.
487 	 */
488 	if (reason != VDEV_LABEL_REMOVE &&
489 	    vdev_inuse(vd, crtxg, reason, &spare_guid))
490 		return (EBUSY);
491 
492 	ASSERT(reason != VDEV_LABEL_REMOVE ||
493 	    vdev_inuse(vd, crtxg, reason, NULL));
494 
495 	/*
496 	 * If this is a request to add or replace a spare that is in use
497 	 * elsewhere on the system, then we must update the guid (which was
498 	 * initialized to a random value) to reflect the actual GUID (which is
499 	 * shared between multiple pools).
500 	 */
501 	if (reason != VDEV_LABEL_REMOVE && spare_guid != 0ULL) {
502 		vdev_t *pvd = vd->vdev_parent;
503 
504 		for (; pvd != NULL; pvd = pvd->vdev_parent) {
505 			pvd->vdev_guid_sum -= vd->vdev_guid;
506 			pvd->vdev_guid_sum += spare_guid;
507 		}
508 
509 		vd->vdev_guid = vd->vdev_guid_sum = spare_guid;
510 
511 		/*
512 		 * If this is a replacement, then we want to fallthrough to the
513 		 * rest of the code.  If we're adding a spare, then it's already
514 		 * labeled appropriately and we can just return.
515 		 */
516 		if (reason == VDEV_LABEL_SPARE)
517 			return (0);
518 		ASSERT(reason == VDEV_LABEL_REPLACE);
519 	}
520 
521 	/*
522 	 * Initialize its label.
523 	 */
524 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
525 	bzero(vp, sizeof (vdev_phys_t));
526 
527 	/*
528 	 * Generate a label describing the pool and our top-level vdev.
529 	 * We mark it as being from txg 0 to indicate that it's not
530 	 * really part of an active pool just yet.  The labels will
531 	 * be written again with a meaningful txg by spa_sync().
532 	 */
533 	if (reason == VDEV_LABEL_SPARE ||
534 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
535 		/*
536 		 * For inactive hot spares, we generate a special label that
537 		 * identifies as a mutually shared hot spare.  We write the
538 		 * label if we are adding a hot spare, or if we are removing an
539 		 * active hot spare (in which case we want to revert the
540 		 * labels).
541 		 */
542 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
543 
544 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
545 		    spa_version(spa)) == 0);
546 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
547 		    POOL_STATE_SPARE) == 0);
548 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
549 		    vd->vdev_guid) == 0);
550 	} else {
551 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
552 
553 		/*
554 		 * Add our creation time.  This allows us to detect multiple
555 		 * vdev uses as described above, and automatically expires if we
556 		 * fail.
557 		 */
558 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
559 		    crtxg) == 0);
560 	}
561 
562 	buf = vp->vp_nvlist;
563 	buflen = sizeof (vp->vp_nvlist);
564 
565 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
566 	if (error != 0) {
567 		nvlist_free(label);
568 		zio_buf_free(vp, sizeof (vdev_phys_t));
569 		/* EFAULT means nvlist_pack ran out of room */
570 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
571 	}
572 
573 	/*
574 	 * Initialize boot block header.
575 	 */
576 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
577 	bzero(vb, sizeof (vdev_boot_header_t));
578 	vb->vb_magic = VDEV_BOOT_MAGIC;
579 	vb->vb_version = VDEV_BOOT_VERSION;
580 	vb->vb_offset = VDEV_BOOT_OFFSET;
581 	vb->vb_size = VDEV_BOOT_SIZE;
582 
583 	/*
584 	 * Initialize uberblock template.
585 	 */
586 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
587 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
588 	*ub = spa->spa_uberblock;
589 	ub->ub_txg = 0;
590 
591 	/*
592 	 * Write everything in parallel.
593 	 */
594 	zio = zio_root(spa, NULL, NULL,
595 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
596 
597 	for (l = 0; l < VDEV_LABELS; l++) {
598 
599 		vdev_label_write(zio, vd, l, vp,
600 		    offsetof(vdev_label_t, vl_vdev_phys),
601 		    sizeof (vdev_phys_t), NULL, NULL);
602 
603 		vdev_label_write(zio, vd, l, vb,
604 		    offsetof(vdev_label_t, vl_boot_header),
605 		    sizeof (vdev_boot_header_t), NULL, NULL);
606 
607 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
608 			vdev_label_write(zio, vd, l, ub,
609 			    VDEV_UBERBLOCK_OFFSET(vd, n),
610 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL);
611 		}
612 	}
613 
614 	error = zio_wait(zio);
615 
616 	nvlist_free(label);
617 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
618 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
619 	zio_buf_free(vp, sizeof (vdev_phys_t));
620 
621 	/*
622 	 * If this vdev hasn't been previously identified as a spare, then we
623 	 * mark it as such only if a) we are labeling it as a spare, or b) it
624 	 * exists as a spare elsewhere in the system.
625 	 */
626 	if (error == 0 && !vd->vdev_isspare &&
627 	    (reason == VDEV_LABEL_SPARE ||
628 	    spa_spare_exists(vd->vdev_guid, NULL)))
629 		spa_spare_add(vd);
630 
631 	return (error);
632 }
633 
634 /*
635  * ==========================================================================
636  * uberblock load/sync
637  * ==========================================================================
638  */
639 
640 /*
641  * Consider the following situation: txg is safely synced to disk.  We've
642  * written the first uberblock for txg + 1, and then we lose power.  When we
643  * come back up, we fail to see the uberblock for txg + 1 because, say,
644  * it was on a mirrored device and the replica to which we wrote txg + 1
645  * is now offline.  If we then make some changes and sync txg + 1, and then
646  * the missing replica comes back, then for a new seconds we'll have two
647  * conflicting uberblocks on disk with the same txg.  The solution is simple:
648  * among uberblocks with equal txg, choose the one with the latest timestamp.
649  */
650 static int
651 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
652 {
653 	if (ub1->ub_txg < ub2->ub_txg)
654 		return (-1);
655 	if (ub1->ub_txg > ub2->ub_txg)
656 		return (1);
657 
658 	if (ub1->ub_timestamp < ub2->ub_timestamp)
659 		return (-1);
660 	if (ub1->ub_timestamp > ub2->ub_timestamp)
661 		return (1);
662 
663 	return (0);
664 }
665 
666 static void
667 vdev_uberblock_load_done(zio_t *zio)
668 {
669 	uberblock_t *ub = zio->io_data;
670 	uberblock_t *ubbest = zio->io_private;
671 	spa_t *spa = zio->io_spa;
672 
673 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
674 
675 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
676 		mutex_enter(&spa->spa_uberblock_lock);
677 		if (vdev_uberblock_compare(ub, ubbest) > 0)
678 			*ubbest = *ub;
679 		mutex_exit(&spa->spa_uberblock_lock);
680 	}
681 
682 	zio_buf_free(zio->io_data, zio->io_size);
683 }
684 
685 void
686 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
687 {
688 	int l, c, n;
689 
690 	for (c = 0; c < vd->vdev_children; c++)
691 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
692 
693 	if (!vd->vdev_ops->vdev_op_leaf)
694 		return;
695 
696 	if (vdev_is_dead(vd))
697 		return;
698 
699 	for (l = 0; l < VDEV_LABELS; l++) {
700 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
701 			vdev_label_read(zio, vd, l,
702 			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
703 			    VDEV_UBERBLOCK_OFFSET(vd, n),
704 			    VDEV_UBERBLOCK_SIZE(vd),
705 			    vdev_uberblock_load_done, ubbest);
706 		}
707 	}
708 }
709 
710 /*
711  * Write the uberblock to both labels of all leaves of the specified vdev.
712  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
713  */
714 static void
715 vdev_uberblock_sync_done(zio_t *zio)
716 {
717 	uint64_t *good_writes = zio->io_root->io_private;
718 
719 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
720 		atomic_add_64(good_writes, 1);
721 }
722 
723 static void
724 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg)
725 {
726 	int l, c, n;
727 
728 	for (c = 0; c < vd->vdev_children; c++)
729 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg);
730 
731 	if (!vd->vdev_ops->vdev_op_leaf)
732 		return;
733 
734 	if (vdev_is_dead(vd))
735 		return;
736 
737 	n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
738 
739 	ASSERT(ub->ub_txg == txg);
740 
741 	for (l = 0; l < VDEV_LABELS; l++)
742 		vdev_label_write(zio, vd, l, ub,
743 		    VDEV_UBERBLOCK_OFFSET(vd, n),
744 		    VDEV_UBERBLOCK_SIZE(vd),
745 		    vdev_uberblock_sync_done, NULL);
746 
747 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
748 }
749 
750 static int
751 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg)
752 {
753 	uberblock_t *ubbuf;
754 	size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE;
755 	uint64_t *good_writes;
756 	zio_t *zio;
757 	int error;
758 
759 	ubbuf = zio_buf_alloc(size);
760 	bzero(ubbuf, size);
761 	*ubbuf = *ub;
762 
763 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
764 
765 	zio = zio_root(spa, NULL, good_writes,
766 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
767 
768 	vdev_uberblock_sync(zio, ubbuf, vd, txg);
769 
770 	error = zio_wait(zio);
771 
772 	if (error && *good_writes != 0) {
773 		dprintf("partial success: good_writes = %llu\n", *good_writes);
774 		error = 0;
775 	}
776 
777 	/*
778 	 * It's possible to have no good writes and no error if every vdev is in
779 	 * the CANT_OPEN state.
780 	 */
781 	if (*good_writes == 0 && error == 0)
782 		error = EIO;
783 
784 	kmem_free(good_writes, sizeof (uint64_t));
785 	zio_buf_free(ubbuf, size);
786 
787 	return (error);
788 }
789 
790 /*
791  * Sync out an individual vdev.
792  */
793 static void
794 vdev_sync_label_done(zio_t *zio)
795 {
796 	uint64_t *good_writes = zio->io_root->io_private;
797 
798 	if (zio->io_error == 0)
799 		atomic_add_64(good_writes, 1);
800 }
801 
802 static void
803 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
804 {
805 	nvlist_t *label;
806 	vdev_phys_t *vp;
807 	char *buf;
808 	size_t buflen;
809 	int c;
810 
811 	for (c = 0; c < vd->vdev_children; c++)
812 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
813 
814 	if (!vd->vdev_ops->vdev_op_leaf)
815 		return;
816 
817 	if (vdev_is_dead(vd))
818 		return;
819 
820 	/*
821 	 * Generate a label describing the top-level config to which we belong.
822 	 */
823 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
824 
825 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
826 	bzero(vp, sizeof (vdev_phys_t));
827 
828 	buf = vp->vp_nvlist;
829 	buflen = sizeof (vp->vp_nvlist);
830 
831 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
832 		vdev_label_write(zio, vd, l, vp,
833 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
834 		    vdev_sync_label_done, NULL);
835 
836 	zio_buf_free(vp, sizeof (vdev_phys_t));
837 	nvlist_free(label);
838 
839 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
840 }
841 
842 static int
843 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
844 {
845 	uint64_t *good_writes;
846 	zio_t *zio;
847 	int error;
848 
849 	ASSERT(vd == vd->vdev_top);
850 
851 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
852 
853 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
854 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
855 
856 	/*
857 	 * Recursively kick off writes to all labels.
858 	 */
859 	vdev_sync_label(zio, vd, l, txg);
860 
861 	error = zio_wait(zio);
862 
863 	if (error && *good_writes != 0) {
864 		dprintf("partial success: good_writes = %llu\n", *good_writes);
865 		error = 0;
866 	}
867 
868 	if (*good_writes == 0 && error == 0)
869 		error = ENODEV;
870 
871 	/*
872 	 * Failure to write a label can be fatal for a
873 	 * top level vdev. We don't want this for slogs
874 	 * as we use the main pool if they go away.
875 	 */
876 	if (vd->vdev_islog)
877 		error = 0;
878 
879 	kmem_free(good_writes, sizeof (uint64_t));
880 
881 	return (error);
882 }
883 
884 /*
885  * Sync the entire vdev configuration.
886  *
887  * The order of operations is carefully crafted to ensure that
888  * if the system panics or loses power at any time, the state on disk
889  * is still transactionally consistent.  The in-line comments below
890  * describe the failure semantics at each stage.
891  *
892  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
893  * at any time, you can just call it again, and it will resume its work.
894  */
895 int
896 vdev_config_sync(vdev_t *uvd, uint64_t txg)
897 {
898 	spa_t *spa = uvd->vdev_spa;
899 	uberblock_t *ub = &spa->spa_uberblock;
900 	vdev_t *rvd = spa->spa_root_vdev;
901 	vdev_t *vd;
902 	zio_t *zio;
903 	int l, error;
904 
905 	ASSERT(ub->ub_txg <= txg);
906 
907 	/*
908 	 * If this isn't a resync due to I/O errors, and nothing changed
909 	 * in this transaction group, and the vdev configuration hasn't changed,
910 	 * then there's nothing to do.
911 	 */
912 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
913 	    list_is_empty(&spa->spa_dirty_list)) {
914 		dprintf("nothing to sync in %s in txg %llu\n",
915 		    spa_name(spa), txg);
916 		return (0);
917 	}
918 
919 	if (txg > spa_freeze_txg(spa))
920 		return (0);
921 
922 	ASSERT(txg <= spa->spa_final_txg);
923 
924 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
925 
926 	/*
927 	 * Flush the write cache of every disk that's been written to
928 	 * in this transaction group.  This ensures that all blocks
929 	 * written in this txg will be committed to stable storage
930 	 * before any uberblock that references them.
931 	 */
932 	zio = zio_root(spa, NULL, NULL,
933 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
934 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
935 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
936 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
937 		    NULL, NULL, ZIO_PRIORITY_NOW,
938 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
939 	}
940 	(void) zio_wait(zio);
941 
942 	/*
943 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
944 	 * system dies in the middle of this process, that's OK: all of the
945 	 * even labels that made it to disk will be newer than any uberblock,
946 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
947 	 * which have not yet been touched, will still be valid.
948 	 */
949 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
950 	    vd = list_next(&spa->spa_dirty_list, vd)) {
951 		for (l = 0; l < VDEV_LABELS; l++) {
952 			if (l & 1)
953 				continue;
954 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
955 				return (error);
956 		}
957 	}
958 
959 	/*
960 	 * Flush the new labels to disk.  This ensures that all even-label
961 	 * updates are committed to stable storage before the uberblock update.
962 	 */
963 	zio = zio_root(spa, NULL, NULL,
964 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
965 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
966 	    vd = list_next(&spa->spa_dirty_list, vd)) {
967 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
968 		    NULL, NULL, ZIO_PRIORITY_NOW,
969 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
970 	}
971 	(void) zio_wait(zio);
972 
973 	/*
974 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
975 	 * If the system dies in the middle of this step, there are two cases
976 	 * to consider, and the on-disk state is consistent either way:
977 	 *
978 	 * (1)	If none of the new uberblocks made it to disk, then the
979 	 *	previous uberblock will be the newest, and the odd labels
980 	 *	(which had not yet been touched) will be valid with respect
981 	 *	to that uberblock.
982 	 *
983 	 * (2)	If one or more new uberblocks made it to disk, then they
984 	 *	will be the newest, and the even labels (which had all
985 	 *	been successfully committed) will be valid with respect
986 	 *	to the new uberblocks.
987 	 */
988 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
989 		return (error);
990 
991 	/*
992 	 * Flush the uberblocks to disk.  This ensures that the odd labels
993 	 * are no longer needed (because the new uberblocks and the even
994 	 * labels are safely on disk), so it is safe to overwrite them.
995 	 */
996 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
997 	    NULL, NULL, ZIO_PRIORITY_NOW,
998 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
999 
1000 	/*
1001 	 * Sync out odd labels for every dirty vdev.  If the system dies
1002 	 * in the middle of this process, the even labels and the new
1003 	 * uberblocks will suffice to open the pool.  The next time
1004 	 * the pool is opened, the first thing we'll do -- before any
1005 	 * user data is modified -- is mark every vdev dirty so that
1006 	 * all labels will be brought up to date.
1007 	 */
1008 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
1009 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1010 		for (l = 0; l < VDEV_LABELS; l++) {
1011 			if ((l & 1) == 0)
1012 				continue;
1013 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
1014 				return (error);
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * Flush the new labels to disk.  This ensures that all odd-label
1020 	 * updates are committed to stable storage before the next
1021 	 * transaction group begins.
1022 	 */
1023 	zio = zio_root(spa, NULL, NULL,
1024 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
1025 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
1026 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1027 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
1028 		    NULL, NULL, ZIO_PRIORITY_NOW,
1029 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
1030 	}
1031 	(void) zio_wait(zio);
1032 
1033 	return (0);
1034 }
1035