1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Virtual Device Labels 29 * --------------------- 30 * 31 * The vdev label serves several distinct purposes: 32 * 33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 34 * identity within the pool. 35 * 36 * 2. Verify that all the devices given in a configuration are present 37 * within the pool. 38 * 39 * 3. Determine the uberblock for the pool. 40 * 41 * 4. In case of an import operation, determine the configuration of the 42 * toplevel vdev of which it is a part. 43 * 44 * 5. If an import operation cannot find all the devices in the pool, 45 * provide enough information to the administrator to determine which 46 * devices are missing. 47 * 48 * It is important to note that while the kernel is responsible for writing the 49 * label, it only consumes the information in the first three cases. The 50 * latter information is only consumed in userland when determining the 51 * configuration to import a pool. 52 * 53 * 54 * Label Organization 55 * ------------------ 56 * 57 * Before describing the contents of the label, it's important to understand how 58 * the labels are written and updated with respect to the uberblock. 59 * 60 * When the pool configuration is altered, either because it was newly created 61 * or a device was added, we want to update all the labels such that we can deal 62 * with fatal failure at any point. To this end, each disk has two labels which 63 * are updated before and after the uberblock is synced. Assuming we have 64 * labels and an uberblock with the following transaction groups: 65 * 66 * L1 UB L2 67 * +------+ +------+ +------+ 68 * | | | | | | 69 * | t10 | | t10 | | t10 | 70 * | | | | | | 71 * +------+ +------+ +------+ 72 * 73 * In this stable state, the labels and the uberblock were all updated within 74 * the same transaction group (10). Each label is mirrored and checksummed, so 75 * that we can detect when we fail partway through writing the label. 76 * 77 * In order to identify which labels are valid, the labels are written in the 78 * following manner: 79 * 80 * 1. For each vdev, update 'L1' to the new label 81 * 2. Update the uberblock 82 * 3. For each vdev, update 'L2' to the new label 83 * 84 * Given arbitrary failure, we can determine the correct label to use based on 85 * the transaction group. If we fail after updating L1 but before updating the 86 * UB, we will notice that L1's transaction group is greater than the uberblock, 87 * so L2 must be valid. If we fail after writing the uberblock but before 88 * writing L2, we will notice that L2's transaction group is less than L1, and 89 * therefore L1 is valid. 90 * 91 * Another added complexity is that not every label is updated when the config 92 * is synced. If we add a single device, we do not want to have to re-write 93 * every label for every device in the pool. This means that both L1 and L2 may 94 * be older than the pool uberblock, because the necessary information is stored 95 * on another vdev. 96 * 97 * 98 * On-disk Format 99 * -------------- 100 * 101 * The vdev label consists of two distinct parts, and is wrapped within the 102 * vdev_label_t structure. The label includes 8k of padding to permit legacy 103 * VTOC disk labels, but is otherwise ignored. 104 * 105 * The first half of the label is a packed nvlist which contains pool wide 106 * properties, per-vdev properties, and configuration information. It is 107 * described in more detail below. 108 * 109 * The latter half of the label consists of a redundant array of uberblocks. 110 * These uberblocks are updated whenever a transaction group is committed, 111 * or when the configuration is updated. When a pool is loaded, we scan each 112 * vdev for the 'best' uberblock. 113 * 114 * 115 * Configuration Information 116 * ------------------------- 117 * 118 * The nvlist describing the pool and vdev contains the following elements: 119 * 120 * version ZFS on-disk version 121 * name Pool name 122 * state Pool state 123 * txg Transaction group in which this label was written 124 * pool_guid Unique identifier for this pool 125 * vdev_tree An nvlist describing vdev tree. 126 * features_for_read 127 * An nvlist of the features necessary for reading the MOS. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/dsl_scan.h> 148 #include <sys/fs/zfs.h> 149 150 /* 151 * Basic routines to read and write from a vdev label. 152 * Used throughout the rest of this file. 153 */ 154 uint64_t 155 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 156 { 157 ASSERT(offset < sizeof (vdev_label_t)); 158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 159 160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 162 } 163 164 /* 165 * Returns back the vdev label associated with the passed in offset. 166 */ 167 int 168 vdev_label_number(uint64_t psize, uint64_t offset) 169 { 170 int l; 171 172 if (offset >= psize - VDEV_LABEL_END_SIZE) { 173 offset -= psize - VDEV_LABEL_END_SIZE; 174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 175 } 176 l = offset / sizeof (vdev_label_t); 177 return (l < VDEV_LABELS ? l : -1); 178 } 179 180 static void 181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 182 uint64_t size, zio_done_func_t *done, void *private, int flags) 183 { 184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 185 SCL_STATE_ALL); 186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 187 188 zio_nowait(zio_read_phys(zio, vd, 189 vdev_label_offset(vd->vdev_psize, l, offset), 190 size, buf, ZIO_CHECKSUM_LABEL, done, private, 191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 192 } 193 194 static void 195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 196 uint64_t size, zio_done_func_t *done, void *private, int flags) 197 { 198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 200 (SCL_CONFIG | SCL_STATE) && 201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 203 204 zio_nowait(zio_write_phys(zio, vd, 205 vdev_label_offset(vd->vdev_psize, l, offset), 206 size, buf, ZIO_CHECKSUM_LABEL, done, private, 207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 208 } 209 210 /* 211 * Generate the nvlist representing this vdev's config. 212 */ 213 nvlist_t * 214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 215 vdev_config_flag_t flags) 216 { 217 nvlist_t *nv = NULL; 218 219 nv = fnvlist_alloc(); 220 221 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 222 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 223 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 225 226 if (vd->vdev_path != NULL) 227 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 228 229 if (vd->vdev_devid != NULL) 230 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 231 232 if (vd->vdev_physpath != NULL) 233 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath); 235 236 if (vd->vdev_fru != NULL) 237 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 238 239 if (vd->vdev_nparity != 0) { 240 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 241 VDEV_TYPE_RAIDZ) == 0); 242 243 /* 244 * Make sure someone hasn't managed to sneak a fancy new vdev 245 * into a crufty old storage pool. 246 */ 247 ASSERT(vd->vdev_nparity == 1 || 248 (vd->vdev_nparity <= 2 && 249 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 250 (vd->vdev_nparity <= 3 && 251 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 252 253 /* 254 * Note that we'll add the nparity tag even on storage pools 255 * that only support a single parity device -- older software 256 * will just ignore it. 257 */ 258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk); 264 265 if (vd->vdev_not_present) 266 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 267 268 if (vd->vdev_isspare) 269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 270 271 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 272 vd == vd->vdev_top) { 273 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 274 vd->vdev_ms_array); 275 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 276 vd->vdev_ms_shift); 277 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize); 280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 281 if (vd->vdev_removing) 282 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 283 vd->vdev_removing); 284 } 285 286 if (vd->vdev_dtl_sm != NULL) { 287 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 288 space_map_object(vd->vdev_dtl_sm)); 289 } 290 291 if (vd->vdev_crtxg) 292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 293 294 if (getstats) { 295 vdev_stat_t vs; 296 pool_scan_stat_t ps; 297 298 vdev_get_stats(vd, &vs); 299 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 300 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 301 302 /* provide either current or previous scan information */ 303 if (spa_scan_get_stats(spa, &ps) == 0) { 304 fnvlist_add_uint64_array(nv, 305 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 306 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 307 } 308 } 309 310 if (!vd->vdev_ops->vdev_op_leaf) { 311 nvlist_t **child; 312 int c, idx; 313 314 ASSERT(!vd->vdev_ishole); 315 316 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 317 KM_SLEEP); 318 319 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 320 vdev_t *cvd = vd->vdev_child[c]; 321 322 /* 323 * If we're generating an nvlist of removing 324 * vdevs then skip over any device which is 325 * not being removed. 326 */ 327 if ((flags & VDEV_CONFIG_REMOVING) && 328 !cvd->vdev_removing) 329 continue; 330 331 child[idx++] = vdev_config_generate(spa, cvd, 332 getstats, flags); 333 } 334 335 if (idx) { 336 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 337 child, idx); 338 } 339 340 for (c = 0; c < idx; c++) 341 nvlist_free(child[c]); 342 343 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 344 345 } else { 346 const char *aux = NULL; 347 348 if (vd->vdev_offline && !vd->vdev_tmpoffline) 349 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 350 if (vd->vdev_resilver_txg != 0) 351 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 352 vd->vdev_resilver_txg); 353 if (vd->vdev_faulted) 354 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 355 if (vd->vdev_degraded) 356 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 357 if (vd->vdev_removed) 358 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 359 if (vd->vdev_unspare) 360 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 361 if (vd->vdev_ishole) 362 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 363 364 switch (vd->vdev_stat.vs_aux) { 365 case VDEV_AUX_ERR_EXCEEDED: 366 aux = "err_exceeded"; 367 break; 368 369 case VDEV_AUX_EXTERNAL: 370 aux = "external"; 371 break; 372 } 373 374 if (aux != NULL) 375 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 376 377 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 378 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 379 vd->vdev_orig_guid); 380 } 381 } 382 383 return (nv); 384 } 385 386 /* 387 * Generate a view of the top-level vdevs. If we currently have holes 388 * in the namespace, then generate an array which contains a list of holey 389 * vdevs. Additionally, add the number of top-level children that currently 390 * exist. 391 */ 392 void 393 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 394 { 395 vdev_t *rvd = spa->spa_root_vdev; 396 uint64_t *array; 397 uint_t c, idx; 398 399 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 400 401 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 402 vdev_t *tvd = rvd->vdev_child[c]; 403 404 if (tvd->vdev_ishole) 405 array[idx++] = c; 406 } 407 408 if (idx) { 409 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 410 array, idx) == 0); 411 } 412 413 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 414 rvd->vdev_children) == 0); 415 416 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 417 } 418 419 /* 420 * Returns the configuration from the label of the given vdev. For vdevs 421 * which don't have a txg value stored on their label (i.e. spares/cache) 422 * or have not been completely initialized (txg = 0) just return 423 * the configuration from the first valid label we find. Otherwise, 424 * find the most up-to-date label that does not exceed the specified 425 * 'txg' value. 426 */ 427 nvlist_t * 428 vdev_label_read_config(vdev_t *vd, uint64_t txg) 429 { 430 spa_t *spa = vd->vdev_spa; 431 nvlist_t *config = NULL; 432 vdev_phys_t *vp; 433 zio_t *zio; 434 uint64_t best_txg = 0; 435 int error = 0; 436 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 437 ZIO_FLAG_SPECULATIVE; 438 439 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 440 441 if (!vdev_readable(vd)) 442 return (NULL); 443 444 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 445 446 retry: 447 for (int l = 0; l < VDEV_LABELS; l++) { 448 nvlist_t *label = NULL; 449 450 zio = zio_root(spa, NULL, NULL, flags); 451 452 vdev_label_read(zio, vd, l, vp, 453 offsetof(vdev_label_t, vl_vdev_phys), 454 sizeof (vdev_phys_t), NULL, NULL, flags); 455 456 if (zio_wait(zio) == 0 && 457 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 458 &label, 0) == 0) { 459 uint64_t label_txg = 0; 460 461 /* 462 * Auxiliary vdevs won't have txg values in their 463 * labels and newly added vdevs may not have been 464 * completely initialized so just return the 465 * configuration from the first valid label we 466 * encounter. 467 */ 468 error = nvlist_lookup_uint64(label, 469 ZPOOL_CONFIG_POOL_TXG, &label_txg); 470 if ((error || label_txg == 0) && !config) { 471 config = label; 472 break; 473 } else if (label_txg <= txg && label_txg > best_txg) { 474 best_txg = label_txg; 475 nvlist_free(config); 476 config = fnvlist_dup(label); 477 } 478 } 479 480 if (label != NULL) { 481 nvlist_free(label); 482 label = NULL; 483 } 484 } 485 486 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 487 flags |= ZIO_FLAG_TRYHARD; 488 goto retry; 489 } 490 491 zio_buf_free(vp, sizeof (vdev_phys_t)); 492 493 return (config); 494 } 495 496 /* 497 * Determine if a device is in use. The 'spare_guid' parameter will be filled 498 * in with the device guid if this spare is active elsewhere on the system. 499 */ 500 static boolean_t 501 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 502 uint64_t *spare_guid, uint64_t *l2cache_guid) 503 { 504 spa_t *spa = vd->vdev_spa; 505 uint64_t state, pool_guid, device_guid, txg, spare_pool; 506 uint64_t vdtxg = 0; 507 nvlist_t *label; 508 509 if (spare_guid) 510 *spare_guid = 0ULL; 511 if (l2cache_guid) 512 *l2cache_guid = 0ULL; 513 514 /* 515 * Read the label, if any, and perform some basic sanity checks. 516 */ 517 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 518 return (B_FALSE); 519 520 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 521 &vdtxg); 522 523 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 524 &state) != 0 || 525 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 526 &device_guid) != 0) { 527 nvlist_free(label); 528 return (B_FALSE); 529 } 530 531 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 532 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 533 &pool_guid) != 0 || 534 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 535 &txg) != 0)) { 536 nvlist_free(label); 537 return (B_FALSE); 538 } 539 540 nvlist_free(label); 541 542 /* 543 * Check to see if this device indeed belongs to the pool it claims to 544 * be a part of. The only way this is allowed is if the device is a hot 545 * spare (which we check for later on). 546 */ 547 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 548 !spa_guid_exists(pool_guid, device_guid) && 549 !spa_spare_exists(device_guid, NULL, NULL) && 550 !spa_l2cache_exists(device_guid, NULL)) 551 return (B_FALSE); 552 553 /* 554 * If the transaction group is zero, then this an initialized (but 555 * unused) label. This is only an error if the create transaction 556 * on-disk is the same as the one we're using now, in which case the 557 * user has attempted to add the same vdev multiple times in the same 558 * transaction. 559 */ 560 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 561 txg == 0 && vdtxg == crtxg) 562 return (B_TRUE); 563 564 /* 565 * Check to see if this is a spare device. We do an explicit check for 566 * spa_has_spare() here because it may be on our pending list of spares 567 * to add. We also check if it is an l2cache device. 568 */ 569 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 570 spa_has_spare(spa, device_guid)) { 571 if (spare_guid) 572 *spare_guid = device_guid; 573 574 switch (reason) { 575 case VDEV_LABEL_CREATE: 576 case VDEV_LABEL_L2CACHE: 577 return (B_TRUE); 578 579 case VDEV_LABEL_REPLACE: 580 return (!spa_has_spare(spa, device_guid) || 581 spare_pool != 0ULL); 582 583 case VDEV_LABEL_SPARE: 584 return (spa_has_spare(spa, device_guid)); 585 } 586 } 587 588 /* 589 * Check to see if this is an l2cache device. 590 */ 591 if (spa_l2cache_exists(device_guid, NULL)) 592 return (B_TRUE); 593 594 /* 595 * We can't rely on a pool's state if it's been imported 596 * read-only. Instead we look to see if the pools is marked 597 * read-only in the namespace and set the state to active. 598 */ 599 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 600 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 601 spa_mode(spa) == FREAD) 602 state = POOL_STATE_ACTIVE; 603 604 /* 605 * If the device is marked ACTIVE, then this device is in use by another 606 * pool on the system. 607 */ 608 return (state == POOL_STATE_ACTIVE); 609 } 610 611 /* 612 * Initialize a vdev label. We check to make sure each leaf device is not in 613 * use, and writable. We put down an initial label which we will later 614 * overwrite with a complete label. Note that it's important to do this 615 * sequentially, not in parallel, so that we catch cases of multiple use of the 616 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 617 * itself. 618 */ 619 int 620 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 621 { 622 spa_t *spa = vd->vdev_spa; 623 nvlist_t *label; 624 vdev_phys_t *vp; 625 char *pad2; 626 uberblock_t *ub; 627 zio_t *zio; 628 char *buf; 629 size_t buflen; 630 int error; 631 uint64_t spare_guid, l2cache_guid; 632 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 633 634 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 635 636 for (int c = 0; c < vd->vdev_children; c++) 637 if ((error = vdev_label_init(vd->vdev_child[c], 638 crtxg, reason)) != 0) 639 return (error); 640 641 /* Track the creation time for this vdev */ 642 vd->vdev_crtxg = crtxg; 643 644 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 645 return (0); 646 647 /* 648 * Dead vdevs cannot be initialized. 649 */ 650 if (vdev_is_dead(vd)) 651 return (SET_ERROR(EIO)); 652 653 /* 654 * Determine if the vdev is in use. 655 */ 656 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 657 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 658 return (SET_ERROR(EBUSY)); 659 660 /* 661 * If this is a request to add or replace a spare or l2cache device 662 * that is in use elsewhere on the system, then we must update the 663 * guid (which was initialized to a random value) to reflect the 664 * actual GUID (which is shared between multiple pools). 665 */ 666 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 667 spare_guid != 0ULL) { 668 uint64_t guid_delta = spare_guid - vd->vdev_guid; 669 670 vd->vdev_guid += guid_delta; 671 672 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 673 pvd->vdev_guid_sum += guid_delta; 674 675 /* 676 * If this is a replacement, then we want to fallthrough to the 677 * rest of the code. If we're adding a spare, then it's already 678 * labeled appropriately and we can just return. 679 */ 680 if (reason == VDEV_LABEL_SPARE) 681 return (0); 682 ASSERT(reason == VDEV_LABEL_REPLACE || 683 reason == VDEV_LABEL_SPLIT); 684 } 685 686 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 687 l2cache_guid != 0ULL) { 688 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 689 690 vd->vdev_guid += guid_delta; 691 692 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 693 pvd->vdev_guid_sum += guid_delta; 694 695 /* 696 * If this is a replacement, then we want to fallthrough to the 697 * rest of the code. If we're adding an l2cache, then it's 698 * already labeled appropriately and we can just return. 699 */ 700 if (reason == VDEV_LABEL_L2CACHE) 701 return (0); 702 ASSERT(reason == VDEV_LABEL_REPLACE); 703 } 704 705 /* 706 * Initialize its label. 707 */ 708 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 709 bzero(vp, sizeof (vdev_phys_t)); 710 711 /* 712 * Generate a label describing the pool and our top-level vdev. 713 * We mark it as being from txg 0 to indicate that it's not 714 * really part of an active pool just yet. The labels will 715 * be written again with a meaningful txg by spa_sync(). 716 */ 717 if (reason == VDEV_LABEL_SPARE || 718 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 719 /* 720 * For inactive hot spares, we generate a special label that 721 * identifies as a mutually shared hot spare. We write the 722 * label if we are adding a hot spare, or if we are removing an 723 * active hot spare (in which case we want to revert the 724 * labels). 725 */ 726 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 727 728 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 729 spa_version(spa)) == 0); 730 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 731 POOL_STATE_SPARE) == 0); 732 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 733 vd->vdev_guid) == 0); 734 } else if (reason == VDEV_LABEL_L2CACHE || 735 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 736 /* 737 * For level 2 ARC devices, add a special label. 738 */ 739 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 740 741 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 742 spa_version(spa)) == 0); 743 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 744 POOL_STATE_L2CACHE) == 0); 745 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 746 vd->vdev_guid) == 0); 747 } else { 748 uint64_t txg = 0ULL; 749 750 if (reason == VDEV_LABEL_SPLIT) 751 txg = spa->spa_uberblock.ub_txg; 752 label = spa_config_generate(spa, vd, txg, B_FALSE); 753 754 /* 755 * Add our creation time. This allows us to detect multiple 756 * vdev uses as described above, and automatically expires if we 757 * fail. 758 */ 759 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 760 crtxg) == 0); 761 } 762 763 buf = vp->vp_nvlist; 764 buflen = sizeof (vp->vp_nvlist); 765 766 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 767 if (error != 0) { 768 nvlist_free(label); 769 zio_buf_free(vp, sizeof (vdev_phys_t)); 770 /* EFAULT means nvlist_pack ran out of room */ 771 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 772 } 773 774 /* 775 * Initialize uberblock template. 776 */ 777 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 778 bzero(ub, VDEV_UBERBLOCK_RING); 779 *ub = spa->spa_uberblock; 780 ub->ub_txg = 0; 781 782 /* Initialize the 2nd padding area. */ 783 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 784 bzero(pad2, VDEV_PAD_SIZE); 785 786 /* 787 * Write everything in parallel. 788 */ 789 retry: 790 zio = zio_root(spa, NULL, NULL, flags); 791 792 for (int l = 0; l < VDEV_LABELS; l++) { 793 794 vdev_label_write(zio, vd, l, vp, 795 offsetof(vdev_label_t, vl_vdev_phys), 796 sizeof (vdev_phys_t), NULL, NULL, flags); 797 798 /* 799 * Skip the 1st padding area. 800 * Zero out the 2nd padding area where it might have 801 * left over data from previous filesystem format. 802 */ 803 vdev_label_write(zio, vd, l, pad2, 804 offsetof(vdev_label_t, vl_pad2), 805 VDEV_PAD_SIZE, NULL, NULL, flags); 806 807 vdev_label_write(zio, vd, l, ub, 808 offsetof(vdev_label_t, vl_uberblock), 809 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 810 } 811 812 error = zio_wait(zio); 813 814 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 815 flags |= ZIO_FLAG_TRYHARD; 816 goto retry; 817 } 818 819 nvlist_free(label); 820 zio_buf_free(pad2, VDEV_PAD_SIZE); 821 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 822 zio_buf_free(vp, sizeof (vdev_phys_t)); 823 824 /* 825 * If this vdev hasn't been previously identified as a spare, then we 826 * mark it as such only if a) we are labeling it as a spare, or b) it 827 * exists as a spare elsewhere in the system. Do the same for 828 * level 2 ARC devices. 829 */ 830 if (error == 0 && !vd->vdev_isspare && 831 (reason == VDEV_LABEL_SPARE || 832 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 833 spa_spare_add(vd); 834 835 if (error == 0 && !vd->vdev_isl2cache && 836 (reason == VDEV_LABEL_L2CACHE || 837 spa_l2cache_exists(vd->vdev_guid, NULL))) 838 spa_l2cache_add(vd); 839 840 return (error); 841 } 842 843 /* 844 * ========================================================================== 845 * uberblock load/sync 846 * ========================================================================== 847 */ 848 849 /* 850 * Consider the following situation: txg is safely synced to disk. We've 851 * written the first uberblock for txg + 1, and then we lose power. When we 852 * come back up, we fail to see the uberblock for txg + 1 because, say, 853 * it was on a mirrored device and the replica to which we wrote txg + 1 854 * is now offline. If we then make some changes and sync txg + 1, and then 855 * the missing replica comes back, then for a few seconds we'll have two 856 * conflicting uberblocks on disk with the same txg. The solution is simple: 857 * among uberblocks with equal txg, choose the one with the latest timestamp. 858 */ 859 static int 860 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 861 { 862 if (ub1->ub_txg < ub2->ub_txg) 863 return (-1); 864 if (ub1->ub_txg > ub2->ub_txg) 865 return (1); 866 867 if (ub1->ub_timestamp < ub2->ub_timestamp) 868 return (-1); 869 if (ub1->ub_timestamp > ub2->ub_timestamp) 870 return (1); 871 872 return (0); 873 } 874 875 struct ubl_cbdata { 876 uberblock_t *ubl_ubbest; /* Best uberblock */ 877 vdev_t *ubl_vd; /* vdev associated with the above */ 878 }; 879 880 static void 881 vdev_uberblock_load_done(zio_t *zio) 882 { 883 vdev_t *vd = zio->io_vd; 884 spa_t *spa = zio->io_spa; 885 zio_t *rio = zio->io_private; 886 uberblock_t *ub = zio->io_data; 887 struct ubl_cbdata *cbp = rio->io_private; 888 889 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 890 891 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 892 mutex_enter(&rio->io_lock); 893 if (ub->ub_txg <= spa->spa_load_max_txg && 894 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 895 /* 896 * Keep track of the vdev in which this uberblock 897 * was found. We will use this information later 898 * to obtain the config nvlist associated with 899 * this uberblock. 900 */ 901 *cbp->ubl_ubbest = *ub; 902 cbp->ubl_vd = vd; 903 } 904 mutex_exit(&rio->io_lock); 905 } 906 907 zio_buf_free(zio->io_data, zio->io_size); 908 } 909 910 static void 911 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 912 struct ubl_cbdata *cbp) 913 { 914 for (int c = 0; c < vd->vdev_children; c++) 915 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 916 917 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 918 for (int l = 0; l < VDEV_LABELS; l++) { 919 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 920 vdev_label_read(zio, vd, l, 921 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 922 VDEV_UBERBLOCK_OFFSET(vd, n), 923 VDEV_UBERBLOCK_SIZE(vd), 924 vdev_uberblock_load_done, zio, flags); 925 } 926 } 927 } 928 } 929 930 /* 931 * Reads the 'best' uberblock from disk along with its associated 932 * configuration. First, we read the uberblock array of each label of each 933 * vdev, keeping track of the uberblock with the highest txg in each array. 934 * Then, we read the configuration from the same vdev as the best uberblock. 935 */ 936 void 937 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 938 { 939 zio_t *zio; 940 spa_t *spa = rvd->vdev_spa; 941 struct ubl_cbdata cb; 942 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 943 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 944 945 ASSERT(ub); 946 ASSERT(config); 947 948 bzero(ub, sizeof (uberblock_t)); 949 *config = NULL; 950 951 cb.ubl_ubbest = ub; 952 cb.ubl_vd = NULL; 953 954 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 955 zio = zio_root(spa, NULL, &cb, flags); 956 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 957 (void) zio_wait(zio); 958 959 /* 960 * It's possible that the best uberblock was discovered on a label 961 * that has a configuration which was written in a future txg. 962 * Search all labels on this vdev to find the configuration that 963 * matches the txg for our uberblock. 964 */ 965 if (cb.ubl_vd != NULL) 966 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 967 spa_config_exit(spa, SCL_ALL, FTAG); 968 } 969 970 /* 971 * On success, increment root zio's count of good writes. 972 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 973 */ 974 static void 975 vdev_uberblock_sync_done(zio_t *zio) 976 { 977 uint64_t *good_writes = zio->io_private; 978 979 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 980 atomic_inc_64(good_writes); 981 } 982 983 /* 984 * Write the uberblock to all labels of all leaves of the specified vdev. 985 */ 986 static void 987 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 988 { 989 uberblock_t *ubbuf; 990 int n; 991 992 for (int c = 0; c < vd->vdev_children; c++) 993 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 994 995 if (!vd->vdev_ops->vdev_op_leaf) 996 return; 997 998 if (!vdev_writeable(vd)) 999 return; 1000 1001 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1002 1003 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1004 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1005 *ubbuf = *ub; 1006 1007 for (int l = 0; l < VDEV_LABELS; l++) 1008 vdev_label_write(zio, vd, l, ubbuf, 1009 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1010 vdev_uberblock_sync_done, zio->io_private, 1011 flags | ZIO_FLAG_DONT_PROPAGATE); 1012 1013 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1014 } 1015 1016 /* Sync the uberblocks to all vdevs in svd[] */ 1017 int 1018 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1019 { 1020 spa_t *spa = svd[0]->vdev_spa; 1021 zio_t *zio; 1022 uint64_t good_writes = 0; 1023 1024 zio = zio_root(spa, NULL, &good_writes, flags); 1025 1026 for (int v = 0; v < svdcount; v++) 1027 vdev_uberblock_sync(zio, ub, svd[v], flags); 1028 1029 (void) zio_wait(zio); 1030 1031 /* 1032 * Flush the uberblocks to disk. This ensures that the odd labels 1033 * are no longer needed (because the new uberblocks and the even 1034 * labels are safely on disk), so it is safe to overwrite them. 1035 */ 1036 zio = zio_root(spa, NULL, NULL, flags); 1037 1038 for (int v = 0; v < svdcount; v++) 1039 zio_flush(zio, svd[v]); 1040 1041 (void) zio_wait(zio); 1042 1043 return (good_writes >= 1 ? 0 : EIO); 1044 } 1045 1046 /* 1047 * On success, increment the count of good writes for our top-level vdev. 1048 */ 1049 static void 1050 vdev_label_sync_done(zio_t *zio) 1051 { 1052 uint64_t *good_writes = zio->io_private; 1053 1054 if (zio->io_error == 0) 1055 atomic_inc_64(good_writes); 1056 } 1057 1058 /* 1059 * If there weren't enough good writes, indicate failure to the parent. 1060 */ 1061 static void 1062 vdev_label_sync_top_done(zio_t *zio) 1063 { 1064 uint64_t *good_writes = zio->io_private; 1065 1066 if (*good_writes == 0) 1067 zio->io_error = SET_ERROR(EIO); 1068 1069 kmem_free(good_writes, sizeof (uint64_t)); 1070 } 1071 1072 /* 1073 * We ignore errors for log and cache devices, simply free the private data. 1074 */ 1075 static void 1076 vdev_label_sync_ignore_done(zio_t *zio) 1077 { 1078 kmem_free(zio->io_private, sizeof (uint64_t)); 1079 } 1080 1081 /* 1082 * Write all even or odd labels to all leaves of the specified vdev. 1083 */ 1084 static void 1085 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1086 { 1087 nvlist_t *label; 1088 vdev_phys_t *vp; 1089 char *buf; 1090 size_t buflen; 1091 1092 for (int c = 0; c < vd->vdev_children; c++) 1093 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1094 1095 if (!vd->vdev_ops->vdev_op_leaf) 1096 return; 1097 1098 if (!vdev_writeable(vd)) 1099 return; 1100 1101 /* 1102 * Generate a label describing the top-level config to which we belong. 1103 */ 1104 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1105 1106 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1107 bzero(vp, sizeof (vdev_phys_t)); 1108 1109 buf = vp->vp_nvlist; 1110 buflen = sizeof (vp->vp_nvlist); 1111 1112 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1113 for (; l < VDEV_LABELS; l += 2) { 1114 vdev_label_write(zio, vd, l, vp, 1115 offsetof(vdev_label_t, vl_vdev_phys), 1116 sizeof (vdev_phys_t), 1117 vdev_label_sync_done, zio->io_private, 1118 flags | ZIO_FLAG_DONT_PROPAGATE); 1119 } 1120 } 1121 1122 zio_buf_free(vp, sizeof (vdev_phys_t)); 1123 nvlist_free(label); 1124 } 1125 1126 int 1127 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1128 { 1129 list_t *dl = &spa->spa_config_dirty_list; 1130 vdev_t *vd; 1131 zio_t *zio; 1132 int error; 1133 1134 /* 1135 * Write the new labels to disk. 1136 */ 1137 zio = zio_root(spa, NULL, NULL, flags); 1138 1139 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1140 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1141 KM_SLEEP); 1142 1143 ASSERT(!vd->vdev_ishole); 1144 1145 zio_t *vio = zio_null(zio, spa, NULL, 1146 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1147 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1148 good_writes, flags); 1149 vdev_label_sync(vio, vd, l, txg, flags); 1150 zio_nowait(vio); 1151 } 1152 1153 error = zio_wait(zio); 1154 1155 /* 1156 * Flush the new labels to disk. 1157 */ 1158 zio = zio_root(spa, NULL, NULL, flags); 1159 1160 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1161 zio_flush(zio, vd); 1162 1163 (void) zio_wait(zio); 1164 1165 return (error); 1166 } 1167 1168 /* 1169 * Sync the uberblock and any changes to the vdev configuration. 1170 * 1171 * The order of operations is carefully crafted to ensure that 1172 * if the system panics or loses power at any time, the state on disk 1173 * is still transactionally consistent. The in-line comments below 1174 * describe the failure semantics at each stage. 1175 * 1176 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1177 * at any time, you can just call it again, and it will resume its work. 1178 */ 1179 int 1180 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1181 { 1182 spa_t *spa = svd[0]->vdev_spa; 1183 uberblock_t *ub = &spa->spa_uberblock; 1184 vdev_t *vd; 1185 zio_t *zio; 1186 int error = 0; 1187 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1188 1189 retry: 1190 /* 1191 * Normally, we don't want to try too hard to write every label and 1192 * uberblock. If there is a flaky disk, we don't want the rest of the 1193 * sync process to block while we retry. But if we can't write a 1194 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1195 * bailing out and declaring the pool faulted. 1196 */ 1197 if (error != 0) { 1198 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1199 return (error); 1200 flags |= ZIO_FLAG_TRYHARD; 1201 } 1202 1203 ASSERT(ub->ub_txg <= txg); 1204 1205 /* 1206 * If this isn't a resync due to I/O errors, 1207 * and nothing changed in this transaction group, 1208 * and the vdev configuration hasn't changed, 1209 * then there's nothing to do. 1210 */ 1211 if (ub->ub_txg < txg && 1212 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1213 list_is_empty(&spa->spa_config_dirty_list)) 1214 return (0); 1215 1216 if (txg > spa_freeze_txg(spa)) 1217 return (0); 1218 1219 ASSERT(txg <= spa->spa_final_txg); 1220 1221 /* 1222 * Flush the write cache of every disk that's been written to 1223 * in this transaction group. This ensures that all blocks 1224 * written in this txg will be committed to stable storage 1225 * before any uberblock that references them. 1226 */ 1227 zio = zio_root(spa, NULL, NULL, flags); 1228 1229 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1230 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1231 zio_flush(zio, vd); 1232 1233 (void) zio_wait(zio); 1234 1235 /* 1236 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1237 * system dies in the middle of this process, that's OK: all of the 1238 * even labels that made it to disk will be newer than any uberblock, 1239 * and will therefore be considered invalid. The odd labels (L1, L3), 1240 * which have not yet been touched, will still be valid. We flush 1241 * the new labels to disk to ensure that all even-label updates 1242 * are committed to stable storage before the uberblock update. 1243 */ 1244 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1245 goto retry; 1246 1247 /* 1248 * Sync the uberblocks to all vdevs in svd[]. 1249 * If the system dies in the middle of this step, there are two cases 1250 * to consider, and the on-disk state is consistent either way: 1251 * 1252 * (1) If none of the new uberblocks made it to disk, then the 1253 * previous uberblock will be the newest, and the odd labels 1254 * (which had not yet been touched) will be valid with respect 1255 * to that uberblock. 1256 * 1257 * (2) If one or more new uberblocks made it to disk, then they 1258 * will be the newest, and the even labels (which had all 1259 * been successfully committed) will be valid with respect 1260 * to the new uberblocks. 1261 */ 1262 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1263 goto retry; 1264 1265 /* 1266 * Sync out odd labels for every dirty vdev. If the system dies 1267 * in the middle of this process, the even labels and the new 1268 * uberblocks will suffice to open the pool. The next time 1269 * the pool is opened, the first thing we'll do -- before any 1270 * user data is modified -- is mark every vdev dirty so that 1271 * all labels will be brought up to date. We flush the new labels 1272 * to disk to ensure that all odd-label updates are committed to 1273 * stable storage before the next transaction group begins. 1274 */ 1275 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) 1276 goto retry; 1277 1278 return (0); 1279 } 1280