xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_disk.c (revision e1dd0a2f3a26050d1f183c1cafae42c4e3a0b57e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/refcount.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/zio.h>
35 #include <sys/sunldi.h>
36 
37 /*
38  * Virtual device vector for disks.
39  */
40 
41 extern ldi_ident_t zfs_li;
42 
43 typedef struct vdev_disk_buf {
44 	buf_t	vdb_buf;
45 	zio_t	*vdb_io;
46 } vdev_disk_buf_t;
47 
48 static int
49 vdev_disk_open_common(vdev_t *vd)
50 {
51 	vdev_disk_t *dvd;
52 	dev_t dev;
53 	int error;
54 
55 	/*
56 	 * We must have a pathname, and it must be absolute.
57 	 */
58 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
59 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
60 		return (EINVAL);
61 	}
62 
63 	dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
64 
65 	/*
66 	 * When opening a disk device, we want to preserve the user's original
67 	 * intent.  We always want to open the device by the path the user gave
68 	 * us, even if it is one of multiple paths to the save device.  But we
69 	 * also want to be able to survive disks being removed/recabled.
70 	 * Therefore the sequence of opening devices is:
71 	 *
72 	 * 1. Try opening the device by path.  For legacy pools without the
73 	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
74 	 *
75 	 * 2. If the devid of the device matches the stored value, return
76 	 *    success.
77 	 *
78 	 * 3. Otherwise, the device may have moved.  Try opening the device
79 	 *    by the devid instead.
80 	 *
81 	 * If the vdev is part of the root pool, we avoid opening it by path.
82 	 * We do this because there is no /dev path available early in boot,
83 	 * and if we try to open the device by path at a later point, we can
84 	 * deadlock when devfsadm attempts to open the underlying backing store
85 	 * file.
86 	 */
87 	if (vd->vdev_devid != NULL) {
88 		if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
89 		    &dvd->vd_minor) != 0) {
90 			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
91 			return (EINVAL);
92 		}
93 	}
94 
95 	error = EINVAL;		/* presume failure */
96 
97 	if (vd->vdev_path != NULL && !spa_is_root(vd->vdev_spa)) {
98 		ddi_devid_t devid;
99 
100 		if (vd->vdev_wholedisk == -1ULL) {
101 			size_t len = strlen(vd->vdev_path) + 3;
102 			char *buf = kmem_alloc(len, KM_SLEEP);
103 			ldi_handle_t lh;
104 
105 			(void) snprintf(buf, len, "%ss0", vd->vdev_path);
106 
107 			if (ldi_open_by_name(buf, spa_mode, kcred,
108 			    &lh, zfs_li) == 0) {
109 				spa_strfree(vd->vdev_path);
110 				vd->vdev_path = buf;
111 				vd->vdev_wholedisk = 1ULL;
112 				(void) ldi_close(lh, spa_mode, kcred);
113 			} else {
114 				kmem_free(buf, len);
115 			}
116 		}
117 
118 		error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
119 		    &dvd->vd_lh, zfs_li);
120 
121 		/*
122 		 * Compare the devid to the stored value.
123 		 */
124 		if (error == 0 && vd->vdev_devid != NULL &&
125 		    ldi_get_devid(dvd->vd_lh, &devid) == 0) {
126 			if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
127 				error = EINVAL;
128 				(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
129 				dvd->vd_lh = NULL;
130 			}
131 			ddi_devid_free(devid);
132 		}
133 
134 		/*
135 		 * If we succeeded in opening the device, but 'vdev_wholedisk'
136 		 * is not yet set, then this must be a slice.
137 		 */
138 		if (error == 0 && vd->vdev_wholedisk == -1ULL)
139 			vd->vdev_wholedisk = 0;
140 	}
141 
142 	/*
143 	 * If we were unable to open by path, or the devid check fails, open by
144 	 * devid instead.
145 	 */
146 	if (error != 0 && vd->vdev_devid != NULL)
147 		error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
148 		    spa_mode, kcred, &dvd->vd_lh, zfs_li);
149 
150 	/*
151 	 * If all else fails, then try opening by physical path (if available)
152 	 * or the logical path (if we failed due to the devid check).  While not
153 	 * as reliable as the devid, this will give us something, and the higher
154 	 * level vdev validation will prevent us from opening the wrong device.
155 	 */
156 	if (error) {
157 		if (vd->vdev_physpath != NULL &&
158 		    (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV)
159 			error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode,
160 			    kcred, &dvd->vd_lh, zfs_li);
161 
162 		/*
163 		 * Note that we don't support the legacy auto-wholedisk support
164 		 * as above.  This hasn't been used in a very long time and we
165 		 * don't need to propagate its oddities to this edge condition.
166 		 */
167 		if (error && vd->vdev_path != NULL &&
168 		    !spa_is_root(vd->vdev_spa))
169 			error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
170 			    &dvd->vd_lh, zfs_li);
171 	}
172 
173 	if (error)
174 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
175 
176 	return (error);
177 }
178 
179 static int
180 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
181 {
182 	vdev_disk_t *dvd;
183 	struct dk_minfo dkm;
184 	int error;
185 	dev_t dev;
186 	int otyp;
187 
188 	error = vdev_disk_open_common(vd);
189 	if (error)
190 		return (error);
191 
192 	dvd = vd->vdev_tsd;
193 	/*
194 	 * Once a device is opened, verify that the physical device path (if
195 	 * available) is up to date.
196 	 */
197 	if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
198 	    ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
199 		char *physpath, *minorname;
200 
201 		physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
202 		minorname = NULL;
203 		if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
204 		    ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
205 		    (vd->vdev_physpath == NULL ||
206 		    strcmp(vd->vdev_physpath, physpath) != 0)) {
207 			if (vd->vdev_physpath)
208 				spa_strfree(vd->vdev_physpath);
209 			(void) strlcat(physpath, ":", MAXPATHLEN);
210 			(void) strlcat(physpath, minorname, MAXPATHLEN);
211 			vd->vdev_physpath = spa_strdup(physpath);
212 		}
213 		if (minorname)
214 			kmem_free(minorname, strlen(minorname) + 1);
215 		kmem_free(physpath, MAXPATHLEN);
216 	}
217 
218 	/*
219 	 * Determine the actual size of the device.
220 	 */
221 	if (ldi_get_size(dvd->vd_lh, psize) != 0) {
222 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
223 		return (EINVAL);
224 	}
225 
226 	/*
227 	 * If we own the whole disk, try to enable disk write caching.
228 	 * We ignore errors because it's OK if we can't do it.
229 	 */
230 	if (vd->vdev_wholedisk == 1) {
231 		int wce = 1;
232 		(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
233 		    FKIOCTL, kcred, NULL);
234 	}
235 
236 	/*
237 	 * Determine the device's minimum transfer size.
238 	 * If the ioctl isn't supported, assume DEV_BSIZE.
239 	 */
240 	if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm,
241 	    FKIOCTL, kcred, NULL) != 0)
242 		dkm.dki_lbsize = DEV_BSIZE;
243 
244 	*ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1;
245 
246 	/*
247 	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
248 	 * try again.
249 	 */
250 	vd->vdev_nowritecache = B_FALSE;
251 
252 	return (0);
253 }
254 
255 static void
256 vdev_disk_close(vdev_t *vd)
257 {
258 	vdev_disk_t *dvd = vd->vdev_tsd;
259 
260 	if (dvd == NULL)
261 		return;
262 
263 	if (dvd->vd_minor != NULL)
264 		ddi_devid_str_free(dvd->vd_minor);
265 
266 	if (dvd->vd_devid != NULL)
267 		ddi_devid_free(dvd->vd_devid);
268 
269 	if (dvd->vd_lh != NULL)
270 		(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
271 
272 	kmem_free(dvd, sizeof (vdev_disk_t));
273 	vd->vdev_tsd = NULL;
274 }
275 
276 int
277 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size,
278     uint64_t offset, int flags)
279 {
280 	buf_t *bp;
281 	int error = 0;
282 
283 	if (vd_lh == NULL)
284 		return (EINVAL);
285 
286 	ASSERT(flags & B_READ || flags & B_WRITE);
287 
288 	bp = getrbuf(KM_SLEEP);
289 	bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
290 	bp->b_bcount = size;
291 	bp->b_un.b_addr = (void *)data;
292 	bp->b_lblkno = lbtodb(offset);
293 	bp->b_bufsize = size;
294 
295 	error = ldi_strategy(vd_lh, bp);
296 	ASSERT(error == 0);
297 	if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
298 		error = EIO;
299 	freerbuf(bp);
300 
301 	return (error);
302 }
303 
304 static int
305 vdev_disk_probe_io(vdev_t *vd, caddr_t data, size_t size, uint64_t offset,
306     int flags)
307 {
308 	int error = 0;
309 	vdev_disk_t *dvd = vd ? vd->vdev_tsd : NULL;
310 
311 	if (vd == NULL || dvd == NULL || dvd->vd_lh == NULL)
312 		return (EINVAL);
313 
314 	error = vdev_disk_physio(dvd->vd_lh, data, size, offset, flags);
315 
316 	if (zio_injection_enabled && error == 0)
317 		error = zio_handle_device_injection(vd, EIO);
318 
319 	return (error);
320 }
321 
322 /*
323  * Determine if the underlying device is accessible by reading and writing
324  * to a known location. We must be able to do this during syncing context
325  * and thus we cannot set the vdev state directly.
326  */
327 static int
328 vdev_disk_probe(vdev_t *vd)
329 {
330 	uint64_t offset;
331 	vdev_t *nvd;
332 	int l, error = 0, retries = 0;
333 	char *vl_pad;
334 
335 	if (vd == NULL)
336 		return (EINVAL);
337 
338 	/* Hijack the current vdev */
339 	nvd = vd;
340 
341 	/*
342 	 * Pick a random label to rewrite.
343 	 */
344 	l = spa_get_random(VDEV_LABELS);
345 	ASSERT(l < VDEV_LABELS);
346 
347 	offset = vdev_label_offset(vd->vdev_psize, l,
348 	    offsetof(vdev_label_t, vl_pad));
349 
350 	vl_pad = kmem_alloc(VDEV_SKIP_SIZE, KM_SLEEP);
351 
352 	/*
353 	 * Try to read and write to a special location on the
354 	 * label. We use the existing vdev initially and only
355 	 * try to create and reopen it if we encounter a failure.
356 	 */
357 	while ((error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
358 	    offset, B_READ)) != 0 && retries == 0) {
359 
360 		nvd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
361 		if (vd->vdev_path)
362 			nvd->vdev_path = spa_strdup(vd->vdev_path);
363 		if (vd->vdev_physpath)
364 			nvd->vdev_physpath = spa_strdup(vd->vdev_physpath);
365 		if (vd->vdev_devid)
366 			nvd->vdev_devid = spa_strdup(vd->vdev_devid);
367 		nvd->vdev_wholedisk = vd->vdev_wholedisk;
368 		nvd->vdev_guid = vd->vdev_guid;
369 		nvd->vdev_spa = vd->vdev_spa;
370 		retries++;
371 
372 		error = vdev_disk_open_common(nvd);
373 		if (error)
374 			break;
375 	}
376 
377 	if (!error) {
378 		error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
379 		    offset, B_WRITE);
380 	}
381 
382 	/* Clean up if we allocated a new vdev */
383 	if (retries) {
384 		vdev_disk_close(nvd);
385 		if (nvd->vdev_path)
386 			spa_strfree(nvd->vdev_path);
387 		if (nvd->vdev_physpath)
388 			spa_strfree(nvd->vdev_physpath);
389 		if (nvd->vdev_devid)
390 			spa_strfree(nvd->vdev_devid);
391 		kmem_free(nvd, sizeof (vdev_t));
392 	}
393 	kmem_free(vl_pad, VDEV_SKIP_SIZE);
394 
395 	/* Reset the failing flag */
396 	if (!error)
397 		vd->vdev_is_failing = B_FALSE;
398 
399 	return (error);
400 }
401 
402 static void
403 vdev_disk_io_intr(buf_t *bp)
404 {
405 	vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp;
406 	zio_t *zio = vdb->vdb_io;
407 
408 	if ((zio->io_error = geterror(bp)) == 0 && bp->b_resid != 0)
409 		zio->io_error = EIO;
410 
411 	kmem_free(vdb, sizeof (vdev_disk_buf_t));
412 
413 	zio_interrupt(zio);
414 }
415 
416 static void
417 vdev_disk_ioctl_done(void *zio_arg, int error)
418 {
419 	zio_t *zio = zio_arg;
420 
421 	zio->io_error = error;
422 
423 	zio_interrupt(zio);
424 }
425 
426 static int
427 vdev_disk_io_start(zio_t *zio)
428 {
429 	vdev_t *vd = zio->io_vd;
430 	vdev_disk_t *dvd = vd->vdev_tsd;
431 	vdev_disk_buf_t *vdb;
432 	buf_t *bp;
433 	int flags, error;
434 
435 	if (zio->io_type == ZIO_TYPE_IOCTL) {
436 		zio_vdev_io_bypass(zio);
437 
438 		/* XXPOLICY */
439 		if (!vdev_readable(vd)) {
440 			zio->io_error = ENXIO;
441 			return (ZIO_PIPELINE_CONTINUE);
442 		}
443 
444 		switch (zio->io_cmd) {
445 
446 		case DKIOCFLUSHWRITECACHE:
447 
448 			if (zfs_nocacheflush)
449 				break;
450 
451 			if (vd->vdev_nowritecache) {
452 				zio->io_error = ENOTSUP;
453 				break;
454 			}
455 
456 			zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done;
457 			zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE;
458 			zio->io_dk_callback.dkc_cookie = zio;
459 
460 			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
461 			    (uintptr_t)&zio->io_dk_callback,
462 			    FKIOCTL, kcred, NULL);
463 
464 			if (error == 0) {
465 				/*
466 				 * The ioctl will be done asychronously,
467 				 * and will call vdev_disk_ioctl_done()
468 				 * upon completion.
469 				 */
470 				return (ZIO_PIPELINE_STOP);
471 			}
472 
473 			if (error == ENOTSUP || error == ENOTTY) {
474 				/*
475 				 * If we get ENOTSUP or ENOTTY, we know that
476 				 * no future attempts will ever succeed.
477 				 * In this case we set a persistent bit so
478 				 * that we don't bother with the ioctl in the
479 				 * future.
480 				 */
481 				vd->vdev_nowritecache = B_TRUE;
482 			}
483 			zio->io_error = error;
484 
485 			break;
486 
487 		default:
488 			zio->io_error = ENOTSUP;
489 		}
490 
491 		return (ZIO_PIPELINE_CONTINUE);
492 	}
493 
494 	if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
495 		return (ZIO_PIPELINE_STOP);
496 
497 	if ((zio = vdev_queue_io(zio)) == NULL)
498 		return (ZIO_PIPELINE_STOP);
499 
500 	if (zio->io_type == ZIO_TYPE_WRITE)
501 		error = vdev_writeable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
502 	else
503 		error = vdev_readable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
504 	error = (vd->vdev_remove_wanted || vd->vdev_is_failing) ? ENXIO : error;
505 
506 	if (error) {
507 		zio->io_error = error;
508 		zio_interrupt(zio);
509 		return (ZIO_PIPELINE_STOP);
510 	}
511 
512 	flags = (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
513 	flags |= B_BUSY | B_NOCACHE;
514 	if (zio->io_flags & ZIO_FLAG_FAILFAST)
515 		flags |= B_FAILFAST;
516 
517 	vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP);
518 
519 	vdb->vdb_io = zio;
520 	bp = &vdb->vdb_buf;
521 
522 	bioinit(bp);
523 	bp->b_flags = flags;
524 	bp->b_bcount = zio->io_size;
525 	bp->b_un.b_addr = zio->io_data;
526 	bp->b_lblkno = lbtodb(zio->io_offset);
527 	bp->b_bufsize = zio->io_size;
528 	bp->b_iodone = (int (*)())vdev_disk_io_intr;
529 
530 	error = ldi_strategy(dvd->vd_lh, bp);
531 	/* ldi_strategy() will return non-zero only on programming errors */
532 	ASSERT(error == 0);
533 
534 	return (ZIO_PIPELINE_STOP);
535 }
536 
537 static int
538 vdev_disk_io_done(zio_t *zio)
539 {
540 	vdev_queue_io_done(zio);
541 
542 	if (zio->io_type == ZIO_TYPE_WRITE)
543 		vdev_cache_write(zio);
544 
545 	if (zio_injection_enabled && zio->io_error == 0)
546 		zio->io_error = zio_handle_device_injection(zio->io_vd, EIO);
547 
548 	/*
549 	 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
550 	 * the device has been removed.  If this is the case, then we trigger an
551 	 * asynchronous removal of the device. Otherwise, probe the device and
552 	 * make sure it's still accessible.
553 	 */
554 	if (zio->io_error == EIO) {
555 		vdev_t *vd = zio->io_vd;
556 		vdev_disk_t *dvd = vd->vdev_tsd;
557 		int state;
558 
559 		state = DKIO_NONE;
560 		if (dvd && ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
561 		    FKIOCTL, kcred, NULL) == 0 &&
562 		    state != DKIO_INSERTED) {
563 			vd->vdev_remove_wanted = B_TRUE;
564 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
565 		} else if (vdev_probe(vd) != 0) {
566 			ASSERT(vd->vdev_ops->vdev_op_leaf);
567 			vd->vdev_is_failing = B_TRUE;
568 		}
569 	}
570 
571 	if (zio_injection_enabled && zio->io_error == 0)
572 		zio->io_error = zio_handle_label_injection(zio, EIO);
573 
574 	return (ZIO_PIPELINE_CONTINUE);
575 }
576 
577 vdev_ops_t vdev_disk_ops = {
578 	vdev_disk_open,
579 	vdev_disk_close,
580 	vdev_disk_probe,
581 	vdev_default_asize,
582 	vdev_disk_io_start,
583 	vdev_disk_io_done,
584 	NULL,
585 	VDEV_TYPE_DISK,		/* name of this vdev type */
586 	B_TRUE			/* leaf vdev */
587 };
588 
589 /*
590  * Given the root disk device pathname, read the label from the device,
591  * and construct a configuration nvlist.
592  */
593 nvlist_t *
594 vdev_disk_read_rootlabel(char *devpath)
595 {
596 	nvlist_t *config = NULL;
597 	ldi_handle_t vd_lh;
598 	vdev_label_t *label;
599 	uint64_t s, size;
600 	int l;
601 
602 	/*
603 	 * Read the device label and build the nvlist.
604 	 */
605 	if (ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, zfs_li))
606 		return (NULL);
607 
608 	if (ldi_get_size(vd_lh, &s)) {
609 		(void) ldi_close(vd_lh, FREAD, kcred);
610 		return (NULL);
611 	}
612 
613 	size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
614 	label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
615 
616 	for (l = 0; l < VDEV_LABELS; l++) {
617 		uint64_t offset, state, txg = 0;
618 
619 		/* read vdev label */
620 		offset = vdev_label_offset(size, l, 0);
621 		if (vdev_disk_physio(vd_lh, (caddr_t)label,
622 		    VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE +
623 		    VDEV_PHYS_SIZE, offset, B_READ) != 0)
624 			continue;
625 
626 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
627 		    sizeof (label->vl_vdev_phys.vp_nvlist), &config, 0) != 0) {
628 			config = NULL;
629 			continue;
630 		}
631 
632 		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
633 		    &state) != 0 || state >= POOL_STATE_DESTROYED) {
634 			nvlist_free(config);
635 			config = NULL;
636 			continue;
637 		}
638 
639 		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
640 		    &txg) != 0 || txg == 0) {
641 			nvlist_free(config);
642 			config = NULL;
643 			continue;
644 		}
645 
646 		break;
647 	}
648 
649 	kmem_free(label, sizeof (vdev_label_t));
650 	(void) ldi_close(vd_lh, FREAD, kcred);
651 
652 	return (config);
653 }
654