xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev_cache.c (revision 1de7ff79aa681dad1598edaf52be6493d01ff971)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 
34 /*
35  * Virtual device read-ahead caching.
36  *
37  * This file implements a simple LRU read-ahead cache.  When the DMU reads
38  * a given block, it will often want other, nearby blocks soon thereafter.
39  * We take advantage of this by reading a larger disk region and caching
40  * the result.  In the best case, this can turn 256 back-to-back 512-byte
41  * reads into a single 128k read followed by 255 cache hits; this reduces
42  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
43  * read into a 128k read, which doesn't affect latency all that much but is
44  * terribly wasteful of bandwidth.  A more intelligent version of the cache
45  * could keep track of access patterns and not do read-ahead unless it sees
46  * at least two temporally close I/Os to the same region.  It could also
47  * take advantage of semantic information about the I/O.  And it could use
48  * something faster than an AVL tree; that was chosen solely for convenience.
49  *
50  * There are five cache operations: allocate, fill, read, write, evict.
51  *
52  * (1) Allocate.  This reserves a cache entry for the specified region.
53  *     We separate the allocate and fill operations so that multiple threads
54  *     don't generate I/O for the same cache miss.
55  *
56  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
57  *     places the data in the previously allocated cache entry.
58  *
59  * (3) Read.  Read data from the cache.
60  *
61  * (4) Write.  Update cache contents after write completion.
62  *
63  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
64  *     if the total cache size exceeds vc_size.
65  */
66 
67 static int
68 vdev_cache_offset_compare(const void *a1, const void *a2)
69 {
70 	const vdev_cache_entry_t *ve1 = a1;
71 	const vdev_cache_entry_t *ve2 = a2;
72 
73 	if (ve1->ve_offset < ve2->ve_offset)
74 		return (-1);
75 	if (ve1->ve_offset > ve2->ve_offset)
76 		return (1);
77 	return (0);
78 }
79 
80 static int
81 vdev_cache_lastused_compare(const void *a1, const void *a2)
82 {
83 	const vdev_cache_entry_t *ve1 = a1;
84 	const vdev_cache_entry_t *ve2 = a2;
85 
86 	if (ve1->ve_lastused < ve2->ve_lastused)
87 		return (-1);
88 	if (ve1->ve_lastused > ve2->ve_lastused)
89 		return (1);
90 
91 	/*
92 	 * Among equally old entries, sort by offset to ensure uniqueness.
93 	 */
94 	return (vdev_cache_offset_compare(a1, a2));
95 }
96 
97 /*
98  * Evict the specified entry from the cache.
99  */
100 static void
101 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
102 {
103 	ASSERT(MUTEX_HELD(&vc->vc_lock));
104 	ASSERT(ve->ve_fill_io == NULL);
105 	ASSERT(ve->ve_data != NULL);
106 
107 	dprintf("evicting %p, off %llx, LRU %llu, age %lu, hits %u, stale %u\n",
108 	    vc, ve->ve_offset, ve->ve_lastused, lbolt - ve->ve_lastused,
109 	    ve->ve_hits, ve->ve_missed_update);
110 
111 	avl_remove(&vc->vc_lastused_tree, ve);
112 	avl_remove(&vc->vc_offset_tree, ve);
113 	zio_buf_free(ve->ve_data, vc->vc_blocksize);
114 	kmem_free(ve, sizeof (vdev_cache_entry_t));
115 }
116 
117 /*
118  * Allocate an entry in the cache.  At the point we don't have the data,
119  * we're just creating a placeholder so that multiple threads don't all
120  * go off and read the same blocks.
121  */
122 static vdev_cache_entry_t *
123 vdev_cache_allocate(zio_t *zio)
124 {
125 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
126 	uint64_t offset = P2ALIGN(zio->io_offset, vc->vc_blocksize);
127 	vdev_cache_entry_t *ve;
128 
129 	ASSERT(MUTEX_HELD(&vc->vc_lock));
130 
131 	if (vc->vc_size == 0)
132 		return (NULL);
133 
134 	/*
135 	 * If adding a new entry would exceed the cache size,
136 	 * evict the oldest entry (LRU).
137 	 */
138 	if ((avl_numnodes(&vc->vc_lastused_tree) << vc->vc_bshift) >
139 	    vc->vc_size) {
140 		ve = avl_first(&vc->vc_lastused_tree);
141 		if (ve->ve_fill_io != NULL) {
142 			dprintf("can't evict in %p, still filling\n", vc);
143 			return (NULL);
144 		}
145 		ASSERT(ve->ve_hits != 0);
146 		vdev_cache_evict(vc, ve);
147 	}
148 
149 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
150 	ve->ve_offset = offset;
151 	ve->ve_lastused = lbolt;
152 	ve->ve_data = zio_buf_alloc(vc->vc_blocksize);
153 
154 	avl_add(&vc->vc_offset_tree, ve);
155 	avl_add(&vc->vc_lastused_tree, ve);
156 
157 	return (ve);
158 }
159 
160 static void
161 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
162 {
163 	uint64_t cache_phase = P2PHASE(zio->io_offset, vc->vc_blocksize);
164 
165 	ASSERT(MUTEX_HELD(&vc->vc_lock));
166 	ASSERT(ve->ve_fill_io == NULL);
167 
168 	if (ve->ve_lastused != lbolt) {
169 		avl_remove(&vc->vc_lastused_tree, ve);
170 		ve->ve_lastused = lbolt;
171 		avl_add(&vc->vc_lastused_tree, ve);
172 	}
173 
174 	ve->ve_hits++;
175 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
176 }
177 
178 /*
179  * Fill a previously allocated cache entry with data.
180  */
181 static void
182 vdev_cache_fill(zio_t *zio)
183 {
184 	vdev_t *vd = zio->io_vd;
185 	vdev_cache_t *vc = &vd->vdev_cache;
186 	vdev_cache_entry_t *ve = zio->io_private;
187 	zio_t *dio;
188 
189 	ASSERT(zio->io_size == vc->vc_blocksize);
190 
191 	/*
192 	 * Add data to the cache.
193 	 */
194 	mutex_enter(&vc->vc_lock);
195 
196 	ASSERT(ve->ve_fill_io == zio);
197 	ASSERT(ve->ve_offset == zio->io_offset);
198 	ASSERT(ve->ve_data == zio->io_data);
199 
200 	ve->ve_fill_io = NULL;
201 
202 	/*
203 	 * Even if this cache line was invalidated by a missed write update,
204 	 * any reads that were queued up before the missed update are still
205 	 * valid, so we can satisfy them from this line before we evict it.
206 	 */
207 	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
208 		vdev_cache_hit(vc, ve, dio);
209 
210 	if (zio->io_error || ve->ve_missed_update)
211 		vdev_cache_evict(vc, ve);
212 
213 	mutex_exit(&vc->vc_lock);
214 
215 	while ((dio = zio->io_delegate_list) != NULL) {
216 		zio->io_delegate_list = dio->io_delegate_next;
217 		dio->io_delegate_next = NULL;
218 		dio->io_error = zio->io_error;
219 		zio_next_stage(dio);
220 	}
221 }
222 
223 /*
224  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
225  */
226 int
227 vdev_cache_read(zio_t *zio)
228 {
229 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
230 	vdev_cache_entry_t *ve, ve_search;
231 	uint64_t cache_offset = P2ALIGN(zio->io_offset, vc->vc_blocksize);
232 	uint64_t cache_phase = P2PHASE(zio->io_offset, vc->vc_blocksize);
233 	zio_t *fio;
234 
235 	ASSERT(zio->io_type == ZIO_TYPE_READ);
236 
237 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
238 		return (EINVAL);
239 
240 	if (zio->io_size > vc->vc_max)
241 		return (EOVERFLOW);
242 
243 	/*
244 	 * If the I/O straddles two or more cache blocks, don't cache it.
245 	 */
246 	if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1,
247 	    vc->vc_blocksize))
248 		return (EXDEV);
249 
250 	ASSERT(cache_phase + zio->io_size <= vc->vc_blocksize);
251 
252 	mutex_enter(&vc->vc_lock);
253 
254 	ve_search.ve_offset = cache_offset;
255 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
256 
257 	if (ve != NULL) {
258 		if (ve->ve_missed_update) {
259 			mutex_exit(&vc->vc_lock);
260 			return (ESTALE);
261 		}
262 
263 		if ((fio = ve->ve_fill_io) != NULL) {
264 			zio->io_delegate_next = fio->io_delegate_list;
265 			fio->io_delegate_list = zio;
266 			zio_vdev_io_bypass(zio);
267 			mutex_exit(&vc->vc_lock);
268 			return (0);
269 		}
270 
271 		vdev_cache_hit(vc, ve, zio);
272 		zio_vdev_io_bypass(zio);
273 
274 		mutex_exit(&vc->vc_lock);
275 		zio_next_stage(zio);
276 		return (0);
277 	}
278 
279 	ve = vdev_cache_allocate(zio);
280 
281 	if (ve == NULL) {
282 		mutex_exit(&vc->vc_lock);
283 		return (ENOMEM);
284 	}
285 
286 	fio = zio_vdev_child_io(zio, NULL, zio->io_vd, cache_offset,
287 	    ve->ve_data, vc->vc_blocksize, ZIO_TYPE_READ,
288 	    ZIO_PRIORITY_CACHE_FILL,
289 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
290 	    vdev_cache_fill, ve);
291 
292 	ve->ve_fill_io = fio;
293 	fio->io_delegate_list = zio;
294 	zio_vdev_io_bypass(zio);
295 
296 	mutex_exit(&vc->vc_lock);
297 	zio_nowait(fio);
298 
299 	return (0);
300 }
301 
302 /*
303  * Update cache contents upon write completion.
304  */
305 void
306 vdev_cache_write(zio_t *zio)
307 {
308 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
309 	vdev_cache_entry_t *ve, ve_search;
310 	uint64_t io_start = zio->io_offset;
311 	uint64_t io_end = io_start + zio->io_size;
312 	uint64_t min_offset = P2ALIGN(io_start, vc->vc_blocksize);
313 	uint64_t max_offset = P2ROUNDUP(io_end, vc->vc_blocksize);
314 	avl_index_t where;
315 
316 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
317 
318 	mutex_enter(&vc->vc_lock);
319 
320 	ve_search.ve_offset = min_offset;
321 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
322 
323 	if (ve == NULL)
324 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
325 
326 	while (ve != NULL && ve->ve_offset < max_offset) {
327 		uint64_t start = MAX(ve->ve_offset, io_start);
328 		uint64_t end = MIN(ve->ve_offset + vc->vc_blocksize, io_end);
329 
330 		if (ve->ve_fill_io != NULL) {
331 			ve->ve_missed_update = 1;
332 		} else {
333 			bcopy((char *)zio->io_data + start - io_start,
334 			    ve->ve_data + start - ve->ve_offset, end - start);
335 		}
336 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
337 	}
338 	mutex_exit(&vc->vc_lock);
339 }
340 
341 void
342 vdev_cache_init(vdev_t *vd)
343 {
344 	vdev_cache_t *vc = &vd->vdev_cache;
345 
346 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
347 
348 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
349 	    sizeof (vdev_cache_entry_t),
350 	    offsetof(struct vdev_cache_entry, ve_offset_node));
351 
352 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
353 	    sizeof (vdev_cache_entry_t),
354 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
355 
356 	vc->vc_blocksize = 1ULL << vc->vc_bshift;
357 }
358 
359 void
360 vdev_cache_fini(vdev_t *vd)
361 {
362 	vdev_cache_t *vc = &vd->vdev_cache;
363 	vdev_cache_entry_t *ve;
364 
365 	mutex_enter(&vc->vc_lock);
366 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
367 		vdev_cache_evict(vc, ve);
368 	mutex_exit(&vc->vc_lock);
369 
370 	avl_destroy(&vc->vc_offset_tree);
371 	avl_destroy(&vc->vc_lastused_tree);
372 
373 	mutex_destroy(&vc->vc_lock);
374 }
375