1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/arc.h> 43 #include <sys/zil.h> 44 #include <sys/dsl_scan.h> 45 46 /* 47 * Virtual device management. 48 */ 49 50 static vdev_ops_t *vdev_ops_table[] = { 51 &vdev_root_ops, 52 &vdev_raidz_ops, 53 &vdev_mirror_ops, 54 &vdev_replacing_ops, 55 &vdev_spare_ops, 56 &vdev_disk_ops, 57 &vdev_file_ops, 58 &vdev_missing_ops, 59 &vdev_hole_ops, 60 NULL 61 }; 62 63 /* maximum scrub/resilver I/O queue per leaf vdev */ 64 int zfs_scrub_limit = 10; 65 66 /* 67 * Given a vdev type, return the appropriate ops vector. 68 */ 69 static vdev_ops_t * 70 vdev_getops(const char *type) 71 { 72 vdev_ops_t *ops, **opspp; 73 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 75 if (strcmp(ops->vdev_op_type, type) == 0) 76 break; 77 78 return (ops); 79 } 80 81 /* 82 * Default asize function: return the MAX of psize with the asize of 83 * all children. This is what's used by anything other than RAID-Z. 84 */ 85 uint64_t 86 vdev_default_asize(vdev_t *vd, uint64_t psize) 87 { 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 89 uint64_t csize; 90 91 for (int c = 0; c < vd->vdev_children; c++) { 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 93 asize = MAX(asize, csize); 94 } 95 96 return (asize); 97 } 98 99 /* 100 * Get the minimum allocatable size. We define the allocatable size as 101 * the vdev's asize rounded to the nearest metaslab. This allows us to 102 * replace or attach devices which don't have the same physical size but 103 * can still satisfy the same number of allocations. 104 */ 105 uint64_t 106 vdev_get_min_asize(vdev_t *vd) 107 { 108 vdev_t *pvd = vd->vdev_parent; 109 110 /* 111 * If our parent is NULL (inactive spare or cache) or is the root, 112 * just return our own asize. 113 */ 114 if (pvd == NULL) 115 return (vd->vdev_asize); 116 117 /* 118 * The top-level vdev just returns the allocatable size rounded 119 * to the nearest metaslab. 120 */ 121 if (vd == vd->vdev_top) 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 123 124 /* 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 126 * so each child must provide at least 1/Nth of its asize. 127 */ 128 if (pvd->vdev_ops == &vdev_raidz_ops) 129 return (pvd->vdev_min_asize / pvd->vdev_children); 130 131 return (pvd->vdev_min_asize); 132 } 133 134 void 135 vdev_set_min_asize(vdev_t *vd) 136 { 137 vd->vdev_min_asize = vdev_get_min_asize(vd); 138 139 for (int c = 0; c < vd->vdev_children; c++) 140 vdev_set_min_asize(vd->vdev_child[c]); 141 } 142 143 vdev_t * 144 vdev_lookup_top(spa_t *spa, uint64_t vdev) 145 { 146 vdev_t *rvd = spa->spa_root_vdev; 147 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 149 150 if (vdev < rvd->vdev_children) { 151 ASSERT(rvd->vdev_child[vdev] != NULL); 152 return (rvd->vdev_child[vdev]); 153 } 154 155 return (NULL); 156 } 157 158 vdev_t * 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 160 { 161 vdev_t *mvd; 162 163 if (vd->vdev_guid == guid) 164 return (vd); 165 166 for (int c = 0; c < vd->vdev_children; c++) 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 168 NULL) 169 return (mvd); 170 171 return (NULL); 172 } 173 174 void 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 176 { 177 size_t oldsize, newsize; 178 uint64_t id = cvd->vdev_id; 179 vdev_t **newchild; 180 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 182 ASSERT(cvd->vdev_parent == NULL); 183 184 cvd->vdev_parent = pvd; 185 186 if (pvd == NULL) 187 return; 188 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 190 191 oldsize = pvd->vdev_children * sizeof (vdev_t *); 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 193 newsize = pvd->vdev_children * sizeof (vdev_t *); 194 195 newchild = kmem_zalloc(newsize, KM_SLEEP); 196 if (pvd->vdev_child != NULL) { 197 bcopy(pvd->vdev_child, newchild, oldsize); 198 kmem_free(pvd->vdev_child, oldsize); 199 } 200 201 pvd->vdev_child = newchild; 202 pvd->vdev_child[id] = cvd; 203 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 206 207 /* 208 * Walk up all ancestors to update guid sum. 209 */ 210 for (; pvd != NULL; pvd = pvd->vdev_parent) 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 } 247 248 /* 249 * Remove any holes in the child array. 250 */ 251 void 252 vdev_compact_children(vdev_t *pvd) 253 { 254 vdev_t **newchild, *cvd; 255 int oldc = pvd->vdev_children; 256 int newc; 257 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 259 260 for (int c = newc = 0; c < oldc; c++) 261 if (pvd->vdev_child[c]) 262 newc++; 263 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 265 266 for (int c = newc = 0; c < oldc; c++) { 267 if ((cvd = pvd->vdev_child[c]) != NULL) { 268 newchild[newc] = cvd; 269 cvd->vdev_id = newc++; 270 } 271 } 272 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 274 pvd->vdev_child = newchild; 275 pvd->vdev_children = newc; 276 } 277 278 /* 279 * Allocate and minimally initialize a vdev_t. 280 */ 281 vdev_t * 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 283 { 284 vdev_t *vd; 285 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 287 288 if (spa->spa_root_vdev == NULL) { 289 ASSERT(ops == &vdev_root_ops); 290 spa->spa_root_vdev = vd; 291 spa->spa_load_guid = spa_generate_guid(NULL); 292 } 293 294 if (guid == 0 && ops != &vdev_hole_ops) { 295 if (spa->spa_root_vdev == vd) { 296 /* 297 * The root vdev's guid will also be the pool guid, 298 * which must be unique among all pools. 299 */ 300 guid = spa_generate_guid(NULL); 301 } else { 302 /* 303 * Any other vdev's guid must be unique within the pool. 304 */ 305 guid = spa_generate_guid(spa); 306 } 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 308 } 309 310 vd->vdev_spa = spa; 311 vd->vdev_id = id; 312 vd->vdev_guid = guid; 313 vd->vdev_guid_sum = guid; 314 vd->vdev_ops = ops; 315 vd->vdev_state = VDEV_STATE_CLOSED; 316 vd->vdev_ishole = (ops == &vdev_hole_ops); 317 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 321 for (int t = 0; t < DTL_TYPES; t++) { 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 323 &vd->vdev_dtl_lock); 324 } 325 txg_list_create(&vd->vdev_ms_list, 326 offsetof(struct metaslab, ms_txg_node)); 327 txg_list_create(&vd->vdev_dtl_list, 328 offsetof(struct vdev, vdev_dtl_node)); 329 vd->vdev_stat.vs_timestamp = gethrtime(); 330 vdev_queue_init(vd); 331 vdev_cache_init(vd); 332 333 return (vd); 334 } 335 336 /* 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are 338 * creating a new vdev or loading an existing one - the behavior is slightly 339 * different for each case. 340 */ 341 int 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 343 int alloctype) 344 { 345 vdev_ops_t *ops; 346 char *type; 347 uint64_t guid = 0, islog, nparity; 348 vdev_t *vd; 349 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 351 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 353 return (SET_ERROR(EINVAL)); 354 355 if ((ops = vdev_getops(type)) == NULL) 356 return (SET_ERROR(EINVAL)); 357 358 /* 359 * If this is a load, get the vdev guid from the nvlist. 360 * Otherwise, vdev_alloc_common() will generate one for us. 361 */ 362 if (alloctype == VDEV_ALLOC_LOAD) { 363 uint64_t label_id; 364 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 366 label_id != id) 367 return (SET_ERROR(EINVAL)); 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (SET_ERROR(EINVAL)); 371 } else if (alloctype == VDEV_ALLOC_SPARE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (SET_ERROR(EINVAL)); 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (SET_ERROR(EINVAL)); 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (SET_ERROR(EINVAL)); 380 } 381 382 /* 383 * The first allocated vdev must be of type 'root'. 384 */ 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 386 return (SET_ERROR(EINVAL)); 387 388 /* 389 * Determine whether we're a log vdev. 390 */ 391 islog = 0; 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 394 return (SET_ERROR(ENOTSUP)); 395 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 397 return (SET_ERROR(ENOTSUP)); 398 399 /* 400 * Set the nparity property for RAID-Z vdevs. 401 */ 402 nparity = -1ULL; 403 if (ops == &vdev_raidz_ops) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 405 &nparity) == 0) { 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 407 return (SET_ERROR(EINVAL)); 408 /* 409 * Previous versions could only support 1 or 2 parity 410 * device. 411 */ 412 if (nparity > 1 && 413 spa_version(spa) < SPA_VERSION_RAIDZ2) 414 return (SET_ERROR(ENOTSUP)); 415 if (nparity > 2 && 416 spa_version(spa) < SPA_VERSION_RAIDZ3) 417 return (SET_ERROR(ENOTSUP)); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 424 return (SET_ERROR(EINVAL)); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * Retrieve the vdev creation time. 472 */ 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 474 &vd->vdev_crtxg); 475 476 /* 477 * If we're a top-level vdev, try to load the allocation parameters. 478 */ 479 if (parent && !parent->vdev_parent && 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 482 &vd->vdev_ms_array); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 484 &vd->vdev_ms_shift); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 486 &vd->vdev_asize); 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 488 &vd->vdev_removing); 489 } 490 491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 492 ASSERT(alloctype == VDEV_ALLOC_LOAD || 493 alloctype == VDEV_ALLOC_ADD || 494 alloctype == VDEV_ALLOC_SPLIT || 495 alloctype == VDEV_ALLOC_ROOTPOOL); 496 vd->vdev_mg = metaslab_group_create(islog ? 497 spa_log_class(spa) : spa_normal_class(spa), vd); 498 } 499 500 /* 501 * If we're a leaf vdev, try to load the DTL object and other state. 502 */ 503 if (vd->vdev_ops->vdev_op_leaf && 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 505 alloctype == VDEV_ALLOC_ROOTPOOL)) { 506 if (alloctype == VDEV_ALLOC_LOAD) { 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 508 &vd->vdev_dtl_smo.smo_object); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 510 &vd->vdev_unspare); 511 } 512 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 514 uint64_t spare = 0; 515 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 517 &spare) == 0 && spare) 518 spa_spare_add(vd); 519 } 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 522 &vd->vdev_offline); 523 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, 525 &vd->vdev_resilvering); 526 527 /* 528 * When importing a pool, we want to ignore the persistent fault 529 * state, as the diagnosis made on another system may not be 530 * valid in the current context. Local vdevs will 531 * remain in the faulted state. 532 */ 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 535 &vd->vdev_faulted); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 537 &vd->vdev_degraded); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 539 &vd->vdev_removed); 540 541 if (vd->vdev_faulted || vd->vdev_degraded) { 542 char *aux; 543 544 vd->vdev_label_aux = 545 VDEV_AUX_ERR_EXCEEDED; 546 if (nvlist_lookup_string(nv, 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 548 strcmp(aux, "external") == 0) 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 550 } 551 } 552 } 553 554 /* 555 * Add ourselves to the parent's list of children. 556 */ 557 vdev_add_child(parent, vd); 558 559 *vdp = vd; 560 561 return (0); 562 } 563 564 void 565 vdev_free(vdev_t *vd) 566 { 567 spa_t *spa = vd->vdev_spa; 568 569 /* 570 * vdev_free() implies closing the vdev first. This is simpler than 571 * trying to ensure complicated semantics for all callers. 572 */ 573 vdev_close(vd); 574 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 577 578 /* 579 * Free all children. 580 */ 581 for (int c = 0; c < vd->vdev_children; c++) 582 vdev_free(vd->vdev_child[c]); 583 584 ASSERT(vd->vdev_child == NULL); 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 586 587 /* 588 * Discard allocation state. 589 */ 590 if (vd->vdev_mg != NULL) { 591 vdev_metaslab_fini(vd); 592 metaslab_group_destroy(vd->vdev_mg); 593 } 594 595 ASSERT0(vd->vdev_stat.vs_space); 596 ASSERT0(vd->vdev_stat.vs_dspace); 597 ASSERT0(vd->vdev_stat.vs_alloc); 598 599 /* 600 * Remove this vdev from its parent's child list. 601 */ 602 vdev_remove_child(vd->vdev_parent, vd); 603 604 ASSERT(vd->vdev_parent == NULL); 605 606 /* 607 * Clean up vdev structure. 608 */ 609 vdev_queue_fini(vd); 610 vdev_cache_fini(vd); 611 612 if (vd->vdev_path) 613 spa_strfree(vd->vdev_path); 614 if (vd->vdev_devid) 615 spa_strfree(vd->vdev_devid); 616 if (vd->vdev_physpath) 617 spa_strfree(vd->vdev_physpath); 618 if (vd->vdev_fru) 619 spa_strfree(vd->vdev_fru); 620 621 if (vd->vdev_isspare) 622 spa_spare_remove(vd); 623 if (vd->vdev_isl2cache) 624 spa_l2cache_remove(vd); 625 626 txg_list_destroy(&vd->vdev_ms_list); 627 txg_list_destroy(&vd->vdev_dtl_list); 628 629 mutex_enter(&vd->vdev_dtl_lock); 630 for (int t = 0; t < DTL_TYPES; t++) { 631 space_map_unload(&vd->vdev_dtl[t]); 632 space_map_destroy(&vd->vdev_dtl[t]); 633 } 634 mutex_exit(&vd->vdev_dtl_lock); 635 636 mutex_destroy(&vd->vdev_dtl_lock); 637 mutex_destroy(&vd->vdev_stat_lock); 638 mutex_destroy(&vd->vdev_probe_lock); 639 640 if (vd == spa->spa_root_vdev) 641 spa->spa_root_vdev = NULL; 642 643 kmem_free(vd, sizeof (vdev_t)); 644 } 645 646 /* 647 * Transfer top-level vdev state from svd to tvd. 648 */ 649 static void 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 651 { 652 spa_t *spa = svd->vdev_spa; 653 metaslab_t *msp; 654 vdev_t *vd; 655 int t; 656 657 ASSERT(tvd == tvd->vdev_top); 658 659 tvd->vdev_ms_array = svd->vdev_ms_array; 660 tvd->vdev_ms_shift = svd->vdev_ms_shift; 661 tvd->vdev_ms_count = svd->vdev_ms_count; 662 663 svd->vdev_ms_array = 0; 664 svd->vdev_ms_shift = 0; 665 svd->vdev_ms_count = 0; 666 667 if (tvd->vdev_mg) 668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 669 tvd->vdev_mg = svd->vdev_mg; 670 tvd->vdev_ms = svd->vdev_ms; 671 672 svd->vdev_mg = NULL; 673 svd->vdev_ms = NULL; 674 675 if (tvd->vdev_mg != NULL) 676 tvd->vdev_mg->mg_vd = tvd; 677 678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 681 682 svd->vdev_stat.vs_alloc = 0; 683 svd->vdev_stat.vs_space = 0; 684 svd->vdev_stat.vs_dspace = 0; 685 686 for (t = 0; t < TXG_SIZE; t++) { 687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 693 } 694 695 if (list_link_active(&svd->vdev_config_dirty_node)) { 696 vdev_config_clean(svd); 697 vdev_config_dirty(tvd); 698 } 699 700 if (list_link_active(&svd->vdev_state_dirty_node)) { 701 vdev_state_clean(svd); 702 vdev_state_dirty(tvd); 703 } 704 705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 706 svd->vdev_deflate_ratio = 0; 707 708 tvd->vdev_islog = svd->vdev_islog; 709 svd->vdev_islog = 0; 710 } 711 712 static void 713 vdev_top_update(vdev_t *tvd, vdev_t *vd) 714 { 715 if (vd == NULL) 716 return; 717 718 vd->vdev_top = tvd; 719 720 for (int c = 0; c < vd->vdev_children; c++) 721 vdev_top_update(tvd, vd->vdev_child[c]); 722 } 723 724 /* 725 * Add a mirror/replacing vdev above an existing vdev. 726 */ 727 vdev_t * 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 729 { 730 spa_t *spa = cvd->vdev_spa; 731 vdev_t *pvd = cvd->vdev_parent; 732 vdev_t *mvd; 733 734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 735 736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 737 738 mvd->vdev_asize = cvd->vdev_asize; 739 mvd->vdev_min_asize = cvd->vdev_min_asize; 740 mvd->vdev_max_asize = cvd->vdev_max_asize; 741 mvd->vdev_ashift = cvd->vdev_ashift; 742 mvd->vdev_state = cvd->vdev_state; 743 mvd->vdev_crtxg = cvd->vdev_crtxg; 744 745 vdev_remove_child(pvd, cvd); 746 vdev_add_child(pvd, mvd); 747 cvd->vdev_id = mvd->vdev_children; 748 vdev_add_child(mvd, cvd); 749 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 750 751 if (mvd == mvd->vdev_top) 752 vdev_top_transfer(cvd, mvd); 753 754 return (mvd); 755 } 756 757 /* 758 * Remove a 1-way mirror/replacing vdev from the tree. 759 */ 760 void 761 vdev_remove_parent(vdev_t *cvd) 762 { 763 vdev_t *mvd = cvd->vdev_parent; 764 vdev_t *pvd = mvd->vdev_parent; 765 766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 767 768 ASSERT(mvd->vdev_children == 1); 769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 770 mvd->vdev_ops == &vdev_replacing_ops || 771 mvd->vdev_ops == &vdev_spare_ops); 772 cvd->vdev_ashift = mvd->vdev_ashift; 773 774 vdev_remove_child(mvd, cvd); 775 vdev_remove_child(pvd, mvd); 776 777 /* 778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 779 * Otherwise, we could have detached an offline device, and when we 780 * go to import the pool we'll think we have two top-level vdevs, 781 * instead of a different version of the same top-level vdev. 782 */ 783 if (mvd->vdev_top == mvd) { 784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 785 cvd->vdev_orig_guid = cvd->vdev_guid; 786 cvd->vdev_guid += guid_delta; 787 cvd->vdev_guid_sum += guid_delta; 788 } 789 cvd->vdev_id = mvd->vdev_id; 790 vdev_add_child(pvd, cvd); 791 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 792 793 if (cvd == cvd->vdev_top) 794 vdev_top_transfer(mvd, cvd); 795 796 ASSERT(mvd->vdev_children == 0); 797 vdev_free(mvd); 798 } 799 800 int 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 802 { 803 spa_t *spa = vd->vdev_spa; 804 objset_t *mos = spa->spa_meta_objset; 805 uint64_t m; 806 uint64_t oldc = vd->vdev_ms_count; 807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 808 metaslab_t **mspp; 809 int error; 810 811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 812 813 /* 814 * This vdev is not being allocated from yet or is a hole. 815 */ 816 if (vd->vdev_ms_shift == 0) 817 return (0); 818 819 ASSERT(!vd->vdev_ishole); 820 821 /* 822 * Compute the raidz-deflation ratio. Note, we hard-code 823 * in 128k (1 << 17) because it is the current "typical" blocksize. 824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 825 * or we will inconsistently account for existing bp's. 826 */ 827 vd->vdev_deflate_ratio = (1 << 17) / 828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 829 830 ASSERT(oldc <= newc); 831 832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 833 834 if (oldc != 0) { 835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 837 } 838 839 vd->vdev_ms = mspp; 840 vd->vdev_ms_count = newc; 841 842 for (m = oldc; m < newc; m++) { 843 space_map_obj_t smo = { 0, 0, 0 }; 844 if (txg == 0) { 845 uint64_t object = 0; 846 error = dmu_read(mos, vd->vdev_ms_array, 847 m * sizeof (uint64_t), sizeof (uint64_t), &object, 848 DMU_READ_PREFETCH); 849 if (error) 850 return (error); 851 if (object != 0) { 852 dmu_buf_t *db; 853 error = dmu_bonus_hold(mos, object, FTAG, &db); 854 if (error) 855 return (error); 856 ASSERT3U(db->db_size, >=, sizeof (smo)); 857 bcopy(db->db_data, &smo, sizeof (smo)); 858 ASSERT3U(smo.smo_object, ==, object); 859 dmu_buf_rele(db, FTAG); 860 } 861 } 862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 864 } 865 866 if (txg == 0) 867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 868 869 /* 870 * If the vdev is being removed we don't activate 871 * the metaslabs since we want to ensure that no new 872 * allocations are performed on this device. 873 */ 874 if (oldc == 0 && !vd->vdev_removing) 875 metaslab_group_activate(vd->vdev_mg); 876 877 if (txg == 0) 878 spa_config_exit(spa, SCL_ALLOC, FTAG); 879 880 return (0); 881 } 882 883 void 884 vdev_metaslab_fini(vdev_t *vd) 885 { 886 uint64_t m; 887 uint64_t count = vd->vdev_ms_count; 888 889 if (vd->vdev_ms != NULL) { 890 metaslab_group_passivate(vd->vdev_mg); 891 for (m = 0; m < count; m++) 892 if (vd->vdev_ms[m] != NULL) 893 metaslab_fini(vd->vdev_ms[m]); 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 895 vd->vdev_ms = NULL; 896 } 897 } 898 899 typedef struct vdev_probe_stats { 900 boolean_t vps_readable; 901 boolean_t vps_writeable; 902 int vps_flags; 903 } vdev_probe_stats_t; 904 905 static void 906 vdev_probe_done(zio_t *zio) 907 { 908 spa_t *spa = zio->io_spa; 909 vdev_t *vd = zio->io_vd; 910 vdev_probe_stats_t *vps = zio->io_private; 911 912 ASSERT(vd->vdev_probe_zio != NULL); 913 914 if (zio->io_type == ZIO_TYPE_READ) { 915 if (zio->io_error == 0) 916 vps->vps_readable = 1; 917 if (zio->io_error == 0 && spa_writeable(spa)) { 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 919 zio->io_offset, zio->io_size, zio->io_data, 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 922 } else { 923 zio_buf_free(zio->io_data, zio->io_size); 924 } 925 } else if (zio->io_type == ZIO_TYPE_WRITE) { 926 if (zio->io_error == 0) 927 vps->vps_writeable = 1; 928 zio_buf_free(zio->io_data, zio->io_size); 929 } else if (zio->io_type == ZIO_TYPE_NULL) { 930 zio_t *pio; 931 932 vd->vdev_cant_read |= !vps->vps_readable; 933 vd->vdev_cant_write |= !vps->vps_writeable; 934 935 if (vdev_readable(vd) && 936 (vdev_writeable(vd) || !spa_writeable(spa))) { 937 zio->io_error = 0; 938 } else { 939 ASSERT(zio->io_error != 0); 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 941 spa, vd, NULL, 0, 0); 942 zio->io_error = SET_ERROR(ENXIO); 943 } 944 945 mutex_enter(&vd->vdev_probe_lock); 946 ASSERT(vd->vdev_probe_zio == zio); 947 vd->vdev_probe_zio = NULL; 948 mutex_exit(&vd->vdev_probe_lock); 949 950 while ((pio = zio_walk_parents(zio)) != NULL) 951 if (!vdev_accessible(vd, pio)) 952 pio->io_error = SET_ERROR(ENXIO); 953 954 kmem_free(vps, sizeof (*vps)); 955 } 956 } 957 958 /* 959 * Determine whether this device is accessible by reading and writing 960 * to several known locations: the pad regions of each vdev label 961 * but the first (which we leave alone in case it contains a VTOC). 962 */ 963 zio_t * 964 vdev_probe(vdev_t *vd, zio_t *zio) 965 { 966 spa_t *spa = vd->vdev_spa; 967 vdev_probe_stats_t *vps = NULL; 968 zio_t *pio; 969 970 ASSERT(vd->vdev_ops->vdev_op_leaf); 971 972 /* 973 * Don't probe the probe. 974 */ 975 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 976 return (NULL); 977 978 /* 979 * To prevent 'probe storms' when a device fails, we create 980 * just one probe i/o at a time. All zios that want to probe 981 * this vdev will become parents of the probe io. 982 */ 983 mutex_enter(&vd->vdev_probe_lock); 984 985 if ((pio = vd->vdev_probe_zio) == NULL) { 986 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 987 988 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 989 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 990 ZIO_FLAG_TRYHARD; 991 992 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 993 /* 994 * vdev_cant_read and vdev_cant_write can only 995 * transition from TRUE to FALSE when we have the 996 * SCL_ZIO lock as writer; otherwise they can only 997 * transition from FALSE to TRUE. This ensures that 998 * any zio looking at these values can assume that 999 * failures persist for the life of the I/O. That's 1000 * important because when a device has intermittent 1001 * connectivity problems, we want to ensure that 1002 * they're ascribed to the device (ENXIO) and not 1003 * the zio (EIO). 1004 * 1005 * Since we hold SCL_ZIO as writer here, clear both 1006 * values so the probe can reevaluate from first 1007 * principles. 1008 */ 1009 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1010 vd->vdev_cant_read = B_FALSE; 1011 vd->vdev_cant_write = B_FALSE; 1012 } 1013 1014 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1015 vdev_probe_done, vps, 1016 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1017 1018 /* 1019 * We can't change the vdev state in this context, so we 1020 * kick off an async task to do it on our behalf. 1021 */ 1022 if (zio != NULL) { 1023 vd->vdev_probe_wanted = B_TRUE; 1024 spa_async_request(spa, SPA_ASYNC_PROBE); 1025 } 1026 } 1027 1028 if (zio != NULL) 1029 zio_add_child(zio, pio); 1030 1031 mutex_exit(&vd->vdev_probe_lock); 1032 1033 if (vps == NULL) { 1034 ASSERT(zio != NULL); 1035 return (NULL); 1036 } 1037 1038 for (int l = 1; l < VDEV_LABELS; l++) { 1039 zio_nowait(zio_read_phys(pio, vd, 1040 vdev_label_offset(vd->vdev_psize, l, 1041 offsetof(vdev_label_t, vl_pad2)), 1042 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1043 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1044 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1045 } 1046 1047 if (zio == NULL) 1048 return (pio); 1049 1050 zio_nowait(pio); 1051 return (NULL); 1052 } 1053 1054 static void 1055 vdev_open_child(void *arg) 1056 { 1057 vdev_t *vd = arg; 1058 1059 vd->vdev_open_thread = curthread; 1060 vd->vdev_open_error = vdev_open(vd); 1061 vd->vdev_open_thread = NULL; 1062 } 1063 1064 boolean_t 1065 vdev_uses_zvols(vdev_t *vd) 1066 { 1067 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1068 strlen(ZVOL_DIR)) == 0) 1069 return (B_TRUE); 1070 for (int c = 0; c < vd->vdev_children; c++) 1071 if (vdev_uses_zvols(vd->vdev_child[c])) 1072 return (B_TRUE); 1073 return (B_FALSE); 1074 } 1075 1076 void 1077 vdev_open_children(vdev_t *vd) 1078 { 1079 taskq_t *tq; 1080 int children = vd->vdev_children; 1081 1082 /* 1083 * in order to handle pools on top of zvols, do the opens 1084 * in a single thread so that the same thread holds the 1085 * spa_namespace_lock 1086 */ 1087 if (vdev_uses_zvols(vd)) { 1088 for (int c = 0; c < children; c++) 1089 vd->vdev_child[c]->vdev_open_error = 1090 vdev_open(vd->vdev_child[c]); 1091 return; 1092 } 1093 tq = taskq_create("vdev_open", children, minclsyspri, 1094 children, children, TASKQ_PREPOPULATE); 1095 1096 for (int c = 0; c < children; c++) 1097 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1098 TQ_SLEEP) != NULL); 1099 1100 taskq_destroy(tq); 1101 } 1102 1103 /* 1104 * Prepare a virtual device for access. 1105 */ 1106 int 1107 vdev_open(vdev_t *vd) 1108 { 1109 spa_t *spa = vd->vdev_spa; 1110 int error; 1111 uint64_t osize = 0; 1112 uint64_t max_osize = 0; 1113 uint64_t asize, max_asize, psize; 1114 uint64_t ashift = 0; 1115 1116 ASSERT(vd->vdev_open_thread == curthread || 1117 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1118 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1119 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1120 vd->vdev_state == VDEV_STATE_OFFLINE); 1121 1122 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1123 vd->vdev_cant_read = B_FALSE; 1124 vd->vdev_cant_write = B_FALSE; 1125 vd->vdev_min_asize = vdev_get_min_asize(vd); 1126 1127 /* 1128 * If this vdev is not removed, check its fault status. If it's 1129 * faulted, bail out of the open. 1130 */ 1131 if (!vd->vdev_removed && vd->vdev_faulted) { 1132 ASSERT(vd->vdev_children == 0); 1133 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1134 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1135 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1136 vd->vdev_label_aux); 1137 return (SET_ERROR(ENXIO)); 1138 } else if (vd->vdev_offline) { 1139 ASSERT(vd->vdev_children == 0); 1140 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1141 return (SET_ERROR(ENXIO)); 1142 } 1143 1144 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1145 1146 /* 1147 * Reset the vdev_reopening flag so that we actually close 1148 * the vdev on error. 1149 */ 1150 vd->vdev_reopening = B_FALSE; 1151 if (zio_injection_enabled && error == 0) 1152 error = zio_handle_device_injection(vd, NULL, ENXIO); 1153 1154 if (error) { 1155 if (vd->vdev_removed && 1156 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1157 vd->vdev_removed = B_FALSE; 1158 1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1160 vd->vdev_stat.vs_aux); 1161 return (error); 1162 } 1163 1164 vd->vdev_removed = B_FALSE; 1165 1166 /* 1167 * Recheck the faulted flag now that we have confirmed that 1168 * the vdev is accessible. If we're faulted, bail. 1169 */ 1170 if (vd->vdev_faulted) { 1171 ASSERT(vd->vdev_children == 0); 1172 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1173 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1175 vd->vdev_label_aux); 1176 return (SET_ERROR(ENXIO)); 1177 } 1178 1179 if (vd->vdev_degraded) { 1180 ASSERT(vd->vdev_children == 0); 1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1182 VDEV_AUX_ERR_EXCEEDED); 1183 } else { 1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1185 } 1186 1187 /* 1188 * For hole or missing vdevs we just return success. 1189 */ 1190 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1191 return (0); 1192 1193 for (int c = 0; c < vd->vdev_children; c++) { 1194 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1196 VDEV_AUX_NONE); 1197 break; 1198 } 1199 } 1200 1201 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1202 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1203 1204 if (vd->vdev_children == 0) { 1205 if (osize < SPA_MINDEVSIZE) { 1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1207 VDEV_AUX_TOO_SMALL); 1208 return (SET_ERROR(EOVERFLOW)); 1209 } 1210 psize = osize; 1211 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1212 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1213 VDEV_LABEL_END_SIZE); 1214 } else { 1215 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1216 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1218 VDEV_AUX_TOO_SMALL); 1219 return (SET_ERROR(EOVERFLOW)); 1220 } 1221 psize = 0; 1222 asize = osize; 1223 max_asize = max_osize; 1224 } 1225 1226 vd->vdev_psize = psize; 1227 1228 /* 1229 * Make sure the allocatable size hasn't shrunk. 1230 */ 1231 if (asize < vd->vdev_min_asize) { 1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1233 VDEV_AUX_BAD_LABEL); 1234 return (SET_ERROR(EINVAL)); 1235 } 1236 1237 if (vd->vdev_asize == 0) { 1238 /* 1239 * This is the first-ever open, so use the computed values. 1240 * For testing purposes, a higher ashift can be requested. 1241 */ 1242 vd->vdev_asize = asize; 1243 vd->vdev_max_asize = max_asize; 1244 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1245 } else { 1246 /* 1247 * Detect if the alignment requirement has increased. 1248 * We don't want to make the pool unavailable, just 1249 * issue a warning instead. 1250 */ 1251 if (ashift > vd->vdev_top->vdev_ashift && 1252 vd->vdev_ops->vdev_op_leaf) { 1253 cmn_err(CE_WARN, 1254 "Disk, '%s', has a block alignment that is " 1255 "larger than the pool's alignment\n", 1256 vd->vdev_path); 1257 } 1258 vd->vdev_max_asize = max_asize; 1259 } 1260 1261 /* 1262 * If all children are healthy and the asize has increased, 1263 * then we've experienced dynamic LUN growth. If automatic 1264 * expansion is enabled then use the additional space. 1265 */ 1266 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1267 (vd->vdev_expanding || spa->spa_autoexpand)) 1268 vd->vdev_asize = asize; 1269 1270 vdev_set_min_asize(vd); 1271 1272 /* 1273 * Ensure we can issue some IO before declaring the 1274 * vdev open for business. 1275 */ 1276 if (vd->vdev_ops->vdev_op_leaf && 1277 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1279 VDEV_AUX_ERR_EXCEEDED); 1280 return (error); 1281 } 1282 1283 /* 1284 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1285 * resilver. But don't do this if we are doing a reopen for a scrub, 1286 * since this would just restart the scrub we are already doing. 1287 */ 1288 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1289 vdev_resilver_needed(vd, NULL, NULL)) 1290 spa_async_request(spa, SPA_ASYNC_RESILVER); 1291 1292 return (0); 1293 } 1294 1295 /* 1296 * Called once the vdevs are all opened, this routine validates the label 1297 * contents. This needs to be done before vdev_load() so that we don't 1298 * inadvertently do repair I/Os to the wrong device. 1299 * 1300 * If 'strict' is false ignore the spa guid check. This is necessary because 1301 * if the machine crashed during a re-guid the new guid might have been written 1302 * to all of the vdev labels, but not the cached config. The strict check 1303 * will be performed when the pool is opened again using the mos config. 1304 * 1305 * This function will only return failure if one of the vdevs indicates that it 1306 * has since been destroyed or exported. This is only possible if 1307 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1308 * will be updated but the function will return 0. 1309 */ 1310 int 1311 vdev_validate(vdev_t *vd, boolean_t strict) 1312 { 1313 spa_t *spa = vd->vdev_spa; 1314 nvlist_t *label; 1315 uint64_t guid = 0, top_guid; 1316 uint64_t state; 1317 1318 for (int c = 0; c < vd->vdev_children; c++) 1319 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1320 return (SET_ERROR(EBADF)); 1321 1322 /* 1323 * If the device has already failed, or was marked offline, don't do 1324 * any further validation. Otherwise, label I/O will fail and we will 1325 * overwrite the previous state. 1326 */ 1327 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1328 uint64_t aux_guid = 0; 1329 nvlist_t *nvl; 1330 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1331 spa_last_synced_txg(spa) : -1ULL; 1332 1333 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1334 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1335 VDEV_AUX_BAD_LABEL); 1336 return (0); 1337 } 1338 1339 /* 1340 * Determine if this vdev has been split off into another 1341 * pool. If so, then refuse to open it. 1342 */ 1343 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1344 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1345 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1346 VDEV_AUX_SPLIT_POOL); 1347 nvlist_free(label); 1348 return (0); 1349 } 1350 1351 if (strict && (nvlist_lookup_uint64(label, 1352 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1353 guid != spa_guid(spa))) { 1354 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1355 VDEV_AUX_CORRUPT_DATA); 1356 nvlist_free(label); 1357 return (0); 1358 } 1359 1360 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1361 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1362 &aux_guid) != 0) 1363 aux_guid = 0; 1364 1365 /* 1366 * If this vdev just became a top-level vdev because its 1367 * sibling was detached, it will have adopted the parent's 1368 * vdev guid -- but the label may or may not be on disk yet. 1369 * Fortunately, either version of the label will have the 1370 * same top guid, so if we're a top-level vdev, we can 1371 * safely compare to that instead. 1372 * 1373 * If we split this vdev off instead, then we also check the 1374 * original pool's guid. We don't want to consider the vdev 1375 * corrupt if it is partway through a split operation. 1376 */ 1377 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1378 &guid) != 0 || 1379 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1380 &top_guid) != 0 || 1381 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1382 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1384 VDEV_AUX_CORRUPT_DATA); 1385 nvlist_free(label); 1386 return (0); 1387 } 1388 1389 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1390 &state) != 0) { 1391 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1392 VDEV_AUX_CORRUPT_DATA); 1393 nvlist_free(label); 1394 return (0); 1395 } 1396 1397 nvlist_free(label); 1398 1399 /* 1400 * If this is a verbatim import, no need to check the 1401 * state of the pool. 1402 */ 1403 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1404 spa_load_state(spa) == SPA_LOAD_OPEN && 1405 state != POOL_STATE_ACTIVE) 1406 return (SET_ERROR(EBADF)); 1407 1408 /* 1409 * If we were able to open and validate a vdev that was 1410 * previously marked permanently unavailable, clear that state 1411 * now. 1412 */ 1413 if (vd->vdev_not_present) 1414 vd->vdev_not_present = 0; 1415 } 1416 1417 return (0); 1418 } 1419 1420 /* 1421 * Close a virtual device. 1422 */ 1423 void 1424 vdev_close(vdev_t *vd) 1425 { 1426 spa_t *spa = vd->vdev_spa; 1427 vdev_t *pvd = vd->vdev_parent; 1428 1429 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1430 1431 /* 1432 * If our parent is reopening, then we are as well, unless we are 1433 * going offline. 1434 */ 1435 if (pvd != NULL && pvd->vdev_reopening) 1436 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1437 1438 vd->vdev_ops->vdev_op_close(vd); 1439 1440 vdev_cache_purge(vd); 1441 1442 /* 1443 * We record the previous state before we close it, so that if we are 1444 * doing a reopen(), we don't generate FMA ereports if we notice that 1445 * it's still faulted. 1446 */ 1447 vd->vdev_prevstate = vd->vdev_state; 1448 1449 if (vd->vdev_offline) 1450 vd->vdev_state = VDEV_STATE_OFFLINE; 1451 else 1452 vd->vdev_state = VDEV_STATE_CLOSED; 1453 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1454 } 1455 1456 void 1457 vdev_hold(vdev_t *vd) 1458 { 1459 spa_t *spa = vd->vdev_spa; 1460 1461 ASSERT(spa_is_root(spa)); 1462 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1463 return; 1464 1465 for (int c = 0; c < vd->vdev_children; c++) 1466 vdev_hold(vd->vdev_child[c]); 1467 1468 if (vd->vdev_ops->vdev_op_leaf) 1469 vd->vdev_ops->vdev_op_hold(vd); 1470 } 1471 1472 void 1473 vdev_rele(vdev_t *vd) 1474 { 1475 spa_t *spa = vd->vdev_spa; 1476 1477 ASSERT(spa_is_root(spa)); 1478 for (int c = 0; c < vd->vdev_children; c++) 1479 vdev_rele(vd->vdev_child[c]); 1480 1481 if (vd->vdev_ops->vdev_op_leaf) 1482 vd->vdev_ops->vdev_op_rele(vd); 1483 } 1484 1485 /* 1486 * Reopen all interior vdevs and any unopened leaves. We don't actually 1487 * reopen leaf vdevs which had previously been opened as they might deadlock 1488 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1489 * If the leaf has never been opened then open it, as usual. 1490 */ 1491 void 1492 vdev_reopen(vdev_t *vd) 1493 { 1494 spa_t *spa = vd->vdev_spa; 1495 1496 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1497 1498 /* set the reopening flag unless we're taking the vdev offline */ 1499 vd->vdev_reopening = !vd->vdev_offline; 1500 vdev_close(vd); 1501 (void) vdev_open(vd); 1502 1503 /* 1504 * Call vdev_validate() here to make sure we have the same device. 1505 * Otherwise, a device with an invalid label could be successfully 1506 * opened in response to vdev_reopen(). 1507 */ 1508 if (vd->vdev_aux) { 1509 (void) vdev_validate_aux(vd); 1510 if (vdev_readable(vd) && vdev_writeable(vd) && 1511 vd->vdev_aux == &spa->spa_l2cache && 1512 !l2arc_vdev_present(vd)) 1513 l2arc_add_vdev(spa, vd); 1514 } else { 1515 (void) vdev_validate(vd, B_TRUE); 1516 } 1517 1518 /* 1519 * Reassess parent vdev's health. 1520 */ 1521 vdev_propagate_state(vd); 1522 } 1523 1524 int 1525 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1526 { 1527 int error; 1528 1529 /* 1530 * Normally, partial opens (e.g. of a mirror) are allowed. 1531 * For a create, however, we want to fail the request if 1532 * there are any components we can't open. 1533 */ 1534 error = vdev_open(vd); 1535 1536 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1537 vdev_close(vd); 1538 return (error ? error : ENXIO); 1539 } 1540 1541 /* 1542 * Recursively initialize all labels. 1543 */ 1544 if ((error = vdev_label_init(vd, txg, isreplacing ? 1545 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1546 vdev_close(vd); 1547 return (error); 1548 } 1549 1550 return (0); 1551 } 1552 1553 void 1554 vdev_metaslab_set_size(vdev_t *vd) 1555 { 1556 /* 1557 * Aim for roughly 200 metaslabs per vdev. 1558 */ 1559 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1560 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1561 } 1562 1563 void 1564 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1565 { 1566 ASSERT(vd == vd->vdev_top); 1567 ASSERT(!vd->vdev_ishole); 1568 ASSERT(ISP2(flags)); 1569 ASSERT(spa_writeable(vd->vdev_spa)); 1570 1571 if (flags & VDD_METASLAB) 1572 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1573 1574 if (flags & VDD_DTL) 1575 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1576 1577 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1578 } 1579 1580 /* 1581 * DTLs. 1582 * 1583 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1584 * the vdev has less than perfect replication. There are four kinds of DTL: 1585 * 1586 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1587 * 1588 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1589 * 1590 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1591 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1592 * txgs that was scrubbed. 1593 * 1594 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1595 * persistent errors or just some device being offline. 1596 * Unlike the other three, the DTL_OUTAGE map is not generally 1597 * maintained; it's only computed when needed, typically to 1598 * determine whether a device can be detached. 1599 * 1600 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1601 * either has the data or it doesn't. 1602 * 1603 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1604 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1605 * if any child is less than fully replicated, then so is its parent. 1606 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1607 * comprising only those txgs which appear in 'maxfaults' or more children; 1608 * those are the txgs we don't have enough replication to read. For example, 1609 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1610 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1611 * two child DTL_MISSING maps. 1612 * 1613 * It should be clear from the above that to compute the DTLs and outage maps 1614 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1615 * Therefore, that is all we keep on disk. When loading the pool, or after 1616 * a configuration change, we generate all other DTLs from first principles. 1617 */ 1618 void 1619 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1620 { 1621 space_map_t *sm = &vd->vdev_dtl[t]; 1622 1623 ASSERT(t < DTL_TYPES); 1624 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1625 ASSERT(spa_writeable(vd->vdev_spa)); 1626 1627 mutex_enter(sm->sm_lock); 1628 if (!space_map_contains(sm, txg, size)) 1629 space_map_add(sm, txg, size); 1630 mutex_exit(sm->sm_lock); 1631 } 1632 1633 boolean_t 1634 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1635 { 1636 space_map_t *sm = &vd->vdev_dtl[t]; 1637 boolean_t dirty = B_FALSE; 1638 1639 ASSERT(t < DTL_TYPES); 1640 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1641 1642 mutex_enter(sm->sm_lock); 1643 if (sm->sm_space != 0) 1644 dirty = space_map_contains(sm, txg, size); 1645 mutex_exit(sm->sm_lock); 1646 1647 return (dirty); 1648 } 1649 1650 boolean_t 1651 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1652 { 1653 space_map_t *sm = &vd->vdev_dtl[t]; 1654 boolean_t empty; 1655 1656 mutex_enter(sm->sm_lock); 1657 empty = (sm->sm_space == 0); 1658 mutex_exit(sm->sm_lock); 1659 1660 return (empty); 1661 } 1662 1663 /* 1664 * Reassess DTLs after a config change or scrub completion. 1665 */ 1666 void 1667 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1668 { 1669 spa_t *spa = vd->vdev_spa; 1670 avl_tree_t reftree; 1671 int minref; 1672 1673 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1674 1675 for (int c = 0; c < vd->vdev_children; c++) 1676 vdev_dtl_reassess(vd->vdev_child[c], txg, 1677 scrub_txg, scrub_done); 1678 1679 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1680 return; 1681 1682 if (vd->vdev_ops->vdev_op_leaf) { 1683 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1684 1685 mutex_enter(&vd->vdev_dtl_lock); 1686 if (scrub_txg != 0 && 1687 (spa->spa_scrub_started || 1688 (scn && scn->scn_phys.scn_errors == 0))) { 1689 /* 1690 * We completed a scrub up to scrub_txg. If we 1691 * did it without rebooting, then the scrub dtl 1692 * will be valid, so excise the old region and 1693 * fold in the scrub dtl. Otherwise, leave the 1694 * dtl as-is if there was an error. 1695 * 1696 * There's little trick here: to excise the beginning 1697 * of the DTL_MISSING map, we put it into a reference 1698 * tree and then add a segment with refcnt -1 that 1699 * covers the range [0, scrub_txg). This means 1700 * that each txg in that range has refcnt -1 or 0. 1701 * We then add DTL_SCRUB with a refcnt of 2, so that 1702 * entries in the range [0, scrub_txg) will have a 1703 * positive refcnt -- either 1 or 2. We then convert 1704 * the reference tree into the new DTL_MISSING map. 1705 */ 1706 space_map_ref_create(&reftree); 1707 space_map_ref_add_map(&reftree, 1708 &vd->vdev_dtl[DTL_MISSING], 1); 1709 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1710 space_map_ref_add_map(&reftree, 1711 &vd->vdev_dtl[DTL_SCRUB], 2); 1712 space_map_ref_generate_map(&reftree, 1713 &vd->vdev_dtl[DTL_MISSING], 1); 1714 space_map_ref_destroy(&reftree); 1715 } 1716 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1717 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1718 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1719 if (scrub_done) 1720 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1721 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1722 if (!vdev_readable(vd)) 1723 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1724 else 1725 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1726 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1727 mutex_exit(&vd->vdev_dtl_lock); 1728 1729 if (txg != 0) 1730 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1731 return; 1732 } 1733 1734 mutex_enter(&vd->vdev_dtl_lock); 1735 for (int t = 0; t < DTL_TYPES; t++) { 1736 /* account for child's outage in parent's missing map */ 1737 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1738 if (t == DTL_SCRUB) 1739 continue; /* leaf vdevs only */ 1740 if (t == DTL_PARTIAL) 1741 minref = 1; /* i.e. non-zero */ 1742 else if (vd->vdev_nparity != 0) 1743 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1744 else 1745 minref = vd->vdev_children; /* any kind of mirror */ 1746 space_map_ref_create(&reftree); 1747 for (int c = 0; c < vd->vdev_children; c++) { 1748 vdev_t *cvd = vd->vdev_child[c]; 1749 mutex_enter(&cvd->vdev_dtl_lock); 1750 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1751 mutex_exit(&cvd->vdev_dtl_lock); 1752 } 1753 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1754 space_map_ref_destroy(&reftree); 1755 } 1756 mutex_exit(&vd->vdev_dtl_lock); 1757 } 1758 1759 static int 1760 vdev_dtl_load(vdev_t *vd) 1761 { 1762 spa_t *spa = vd->vdev_spa; 1763 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1764 objset_t *mos = spa->spa_meta_objset; 1765 dmu_buf_t *db; 1766 int error; 1767 1768 ASSERT(vd->vdev_children == 0); 1769 1770 if (smo->smo_object == 0) 1771 return (0); 1772 1773 ASSERT(!vd->vdev_ishole); 1774 1775 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1776 return (error); 1777 1778 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1779 bcopy(db->db_data, smo, sizeof (*smo)); 1780 dmu_buf_rele(db, FTAG); 1781 1782 mutex_enter(&vd->vdev_dtl_lock); 1783 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1784 NULL, SM_ALLOC, smo, mos); 1785 mutex_exit(&vd->vdev_dtl_lock); 1786 1787 return (error); 1788 } 1789 1790 void 1791 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1792 { 1793 spa_t *spa = vd->vdev_spa; 1794 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1795 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1796 objset_t *mos = spa->spa_meta_objset; 1797 space_map_t smsync; 1798 kmutex_t smlock; 1799 dmu_buf_t *db; 1800 dmu_tx_t *tx; 1801 1802 ASSERT(!vd->vdev_ishole); 1803 1804 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1805 1806 if (vd->vdev_detached) { 1807 if (smo->smo_object != 0) { 1808 int err = dmu_object_free(mos, smo->smo_object, tx); 1809 ASSERT0(err); 1810 smo->smo_object = 0; 1811 } 1812 dmu_tx_commit(tx); 1813 return; 1814 } 1815 1816 if (smo->smo_object == 0) { 1817 ASSERT(smo->smo_objsize == 0); 1818 ASSERT(smo->smo_alloc == 0); 1819 smo->smo_object = dmu_object_alloc(mos, 1820 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1821 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1822 ASSERT(smo->smo_object != 0); 1823 vdev_config_dirty(vd->vdev_top); 1824 } 1825 1826 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1827 1828 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1829 &smlock); 1830 1831 mutex_enter(&smlock); 1832 1833 mutex_enter(&vd->vdev_dtl_lock); 1834 space_map_walk(sm, space_map_add, &smsync); 1835 mutex_exit(&vd->vdev_dtl_lock); 1836 1837 space_map_truncate(smo, mos, tx); 1838 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1839 space_map_vacate(&smsync, NULL, NULL); 1840 1841 space_map_destroy(&smsync); 1842 1843 mutex_exit(&smlock); 1844 mutex_destroy(&smlock); 1845 1846 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1847 dmu_buf_will_dirty(db, tx); 1848 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1849 bcopy(smo, db->db_data, sizeof (*smo)); 1850 dmu_buf_rele(db, FTAG); 1851 1852 dmu_tx_commit(tx); 1853 } 1854 1855 /* 1856 * Determine whether the specified vdev can be offlined/detached/removed 1857 * without losing data. 1858 */ 1859 boolean_t 1860 vdev_dtl_required(vdev_t *vd) 1861 { 1862 spa_t *spa = vd->vdev_spa; 1863 vdev_t *tvd = vd->vdev_top; 1864 uint8_t cant_read = vd->vdev_cant_read; 1865 boolean_t required; 1866 1867 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1868 1869 if (vd == spa->spa_root_vdev || vd == tvd) 1870 return (B_TRUE); 1871 1872 /* 1873 * Temporarily mark the device as unreadable, and then determine 1874 * whether this results in any DTL outages in the top-level vdev. 1875 * If not, we can safely offline/detach/remove the device. 1876 */ 1877 vd->vdev_cant_read = B_TRUE; 1878 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1879 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1880 vd->vdev_cant_read = cant_read; 1881 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1882 1883 if (!required && zio_injection_enabled) 1884 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1885 1886 return (required); 1887 } 1888 1889 /* 1890 * Determine if resilver is needed, and if so the txg range. 1891 */ 1892 boolean_t 1893 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1894 { 1895 boolean_t needed = B_FALSE; 1896 uint64_t thismin = UINT64_MAX; 1897 uint64_t thismax = 0; 1898 1899 if (vd->vdev_children == 0) { 1900 mutex_enter(&vd->vdev_dtl_lock); 1901 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1902 vdev_writeable(vd)) { 1903 space_seg_t *ss; 1904 1905 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1906 thismin = ss->ss_start - 1; 1907 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1908 thismax = ss->ss_end; 1909 needed = B_TRUE; 1910 } 1911 mutex_exit(&vd->vdev_dtl_lock); 1912 } else { 1913 for (int c = 0; c < vd->vdev_children; c++) { 1914 vdev_t *cvd = vd->vdev_child[c]; 1915 uint64_t cmin, cmax; 1916 1917 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1918 thismin = MIN(thismin, cmin); 1919 thismax = MAX(thismax, cmax); 1920 needed = B_TRUE; 1921 } 1922 } 1923 } 1924 1925 if (needed && minp) { 1926 *minp = thismin; 1927 *maxp = thismax; 1928 } 1929 return (needed); 1930 } 1931 1932 void 1933 vdev_load(vdev_t *vd) 1934 { 1935 /* 1936 * Recursively load all children. 1937 */ 1938 for (int c = 0; c < vd->vdev_children; c++) 1939 vdev_load(vd->vdev_child[c]); 1940 1941 /* 1942 * If this is a top-level vdev, initialize its metaslabs. 1943 */ 1944 if (vd == vd->vdev_top && !vd->vdev_ishole && 1945 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1946 vdev_metaslab_init(vd, 0) != 0)) 1947 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1948 VDEV_AUX_CORRUPT_DATA); 1949 1950 /* 1951 * If this is a leaf vdev, load its DTL. 1952 */ 1953 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1954 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1955 VDEV_AUX_CORRUPT_DATA); 1956 } 1957 1958 /* 1959 * The special vdev case is used for hot spares and l2cache devices. Its 1960 * sole purpose it to set the vdev state for the associated vdev. To do this, 1961 * we make sure that we can open the underlying device, then try to read the 1962 * label, and make sure that the label is sane and that it hasn't been 1963 * repurposed to another pool. 1964 */ 1965 int 1966 vdev_validate_aux(vdev_t *vd) 1967 { 1968 nvlist_t *label; 1969 uint64_t guid, version; 1970 uint64_t state; 1971 1972 if (!vdev_readable(vd)) 1973 return (0); 1974 1975 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 1976 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1977 VDEV_AUX_CORRUPT_DATA); 1978 return (-1); 1979 } 1980 1981 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1982 !SPA_VERSION_IS_SUPPORTED(version) || 1983 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1984 guid != vd->vdev_guid || 1985 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1986 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1987 VDEV_AUX_CORRUPT_DATA); 1988 nvlist_free(label); 1989 return (-1); 1990 } 1991 1992 /* 1993 * We don't actually check the pool state here. If it's in fact in 1994 * use by another pool, we update this fact on the fly when requested. 1995 */ 1996 nvlist_free(label); 1997 return (0); 1998 } 1999 2000 void 2001 vdev_remove(vdev_t *vd, uint64_t txg) 2002 { 2003 spa_t *spa = vd->vdev_spa; 2004 objset_t *mos = spa->spa_meta_objset; 2005 dmu_tx_t *tx; 2006 2007 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2008 2009 if (vd->vdev_dtl_smo.smo_object) { 2010 ASSERT0(vd->vdev_dtl_smo.smo_alloc); 2011 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 2012 vd->vdev_dtl_smo.smo_object = 0; 2013 } 2014 2015 if (vd->vdev_ms != NULL) { 2016 for (int m = 0; m < vd->vdev_ms_count; m++) { 2017 metaslab_t *msp = vd->vdev_ms[m]; 2018 2019 if (msp == NULL || msp->ms_smo.smo_object == 0) 2020 continue; 2021 2022 ASSERT0(msp->ms_smo.smo_alloc); 2023 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 2024 msp->ms_smo.smo_object = 0; 2025 } 2026 } 2027 2028 if (vd->vdev_ms_array) { 2029 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2030 vd->vdev_ms_array = 0; 2031 vd->vdev_ms_shift = 0; 2032 } 2033 dmu_tx_commit(tx); 2034 } 2035 2036 void 2037 vdev_sync_done(vdev_t *vd, uint64_t txg) 2038 { 2039 metaslab_t *msp; 2040 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2041 2042 ASSERT(!vd->vdev_ishole); 2043 2044 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2045 metaslab_sync_done(msp, txg); 2046 2047 if (reassess) 2048 metaslab_sync_reassess(vd->vdev_mg); 2049 } 2050 2051 void 2052 vdev_sync(vdev_t *vd, uint64_t txg) 2053 { 2054 spa_t *spa = vd->vdev_spa; 2055 vdev_t *lvd; 2056 metaslab_t *msp; 2057 dmu_tx_t *tx; 2058 2059 ASSERT(!vd->vdev_ishole); 2060 2061 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2062 ASSERT(vd == vd->vdev_top); 2063 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2064 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2065 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2066 ASSERT(vd->vdev_ms_array != 0); 2067 vdev_config_dirty(vd); 2068 dmu_tx_commit(tx); 2069 } 2070 2071 /* 2072 * Remove the metadata associated with this vdev once it's empty. 2073 */ 2074 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2075 vdev_remove(vd, txg); 2076 2077 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2078 metaslab_sync(msp, txg); 2079 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2080 } 2081 2082 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2083 vdev_dtl_sync(lvd, txg); 2084 2085 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2086 } 2087 2088 uint64_t 2089 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2090 { 2091 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2092 } 2093 2094 /* 2095 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2096 * not be opened, and no I/O is attempted. 2097 */ 2098 int 2099 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2100 { 2101 vdev_t *vd, *tvd; 2102 2103 spa_vdev_state_enter(spa, SCL_NONE); 2104 2105 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2106 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2107 2108 if (!vd->vdev_ops->vdev_op_leaf) 2109 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2110 2111 tvd = vd->vdev_top; 2112 2113 /* 2114 * We don't directly use the aux state here, but if we do a 2115 * vdev_reopen(), we need this value to be present to remember why we 2116 * were faulted. 2117 */ 2118 vd->vdev_label_aux = aux; 2119 2120 /* 2121 * Faulted state takes precedence over degraded. 2122 */ 2123 vd->vdev_delayed_close = B_FALSE; 2124 vd->vdev_faulted = 1ULL; 2125 vd->vdev_degraded = 0ULL; 2126 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2127 2128 /* 2129 * If this device has the only valid copy of the data, then 2130 * back off and simply mark the vdev as degraded instead. 2131 */ 2132 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2133 vd->vdev_degraded = 1ULL; 2134 vd->vdev_faulted = 0ULL; 2135 2136 /* 2137 * If we reopen the device and it's not dead, only then do we 2138 * mark it degraded. 2139 */ 2140 vdev_reopen(tvd); 2141 2142 if (vdev_readable(vd)) 2143 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2144 } 2145 2146 return (spa_vdev_state_exit(spa, vd, 0)); 2147 } 2148 2149 /* 2150 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2151 * user that something is wrong. The vdev continues to operate as normal as far 2152 * as I/O is concerned. 2153 */ 2154 int 2155 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2156 { 2157 vdev_t *vd; 2158 2159 spa_vdev_state_enter(spa, SCL_NONE); 2160 2161 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2162 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2163 2164 if (!vd->vdev_ops->vdev_op_leaf) 2165 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2166 2167 /* 2168 * If the vdev is already faulted, then don't do anything. 2169 */ 2170 if (vd->vdev_faulted || vd->vdev_degraded) 2171 return (spa_vdev_state_exit(spa, NULL, 0)); 2172 2173 vd->vdev_degraded = 1ULL; 2174 if (!vdev_is_dead(vd)) 2175 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2176 aux); 2177 2178 return (spa_vdev_state_exit(spa, vd, 0)); 2179 } 2180 2181 /* 2182 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2183 * any attached spare device should be detached when the device finishes 2184 * resilvering. Second, the online should be treated like a 'test' online case, 2185 * so no FMA events are generated if the device fails to open. 2186 */ 2187 int 2188 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2189 { 2190 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2191 2192 spa_vdev_state_enter(spa, SCL_NONE); 2193 2194 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2195 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2196 2197 if (!vd->vdev_ops->vdev_op_leaf) 2198 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2199 2200 tvd = vd->vdev_top; 2201 vd->vdev_offline = B_FALSE; 2202 vd->vdev_tmpoffline = B_FALSE; 2203 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2204 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2205 2206 /* XXX - L2ARC 1.0 does not support expansion */ 2207 if (!vd->vdev_aux) { 2208 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2209 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2210 } 2211 2212 vdev_reopen(tvd); 2213 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2214 2215 if (!vd->vdev_aux) { 2216 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2217 pvd->vdev_expanding = B_FALSE; 2218 } 2219 2220 if (newstate) 2221 *newstate = vd->vdev_state; 2222 if ((flags & ZFS_ONLINE_UNSPARE) && 2223 !vdev_is_dead(vd) && vd->vdev_parent && 2224 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2225 vd->vdev_parent->vdev_child[0] == vd) 2226 vd->vdev_unspare = B_TRUE; 2227 2228 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2229 2230 /* XXX - L2ARC 1.0 does not support expansion */ 2231 if (vd->vdev_aux) 2232 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2233 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2234 } 2235 return (spa_vdev_state_exit(spa, vd, 0)); 2236 } 2237 2238 static int 2239 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2240 { 2241 vdev_t *vd, *tvd; 2242 int error = 0; 2243 uint64_t generation; 2244 metaslab_group_t *mg; 2245 2246 top: 2247 spa_vdev_state_enter(spa, SCL_ALLOC); 2248 2249 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2250 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2251 2252 if (!vd->vdev_ops->vdev_op_leaf) 2253 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2254 2255 tvd = vd->vdev_top; 2256 mg = tvd->vdev_mg; 2257 generation = spa->spa_config_generation + 1; 2258 2259 /* 2260 * If the device isn't already offline, try to offline it. 2261 */ 2262 if (!vd->vdev_offline) { 2263 /* 2264 * If this device has the only valid copy of some data, 2265 * don't allow it to be offlined. Log devices are always 2266 * expendable. 2267 */ 2268 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2269 vdev_dtl_required(vd)) 2270 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2271 2272 /* 2273 * If the top-level is a slog and it has had allocations 2274 * then proceed. We check that the vdev's metaslab group 2275 * is not NULL since it's possible that we may have just 2276 * added this vdev but not yet initialized its metaslabs. 2277 */ 2278 if (tvd->vdev_islog && mg != NULL) { 2279 /* 2280 * Prevent any future allocations. 2281 */ 2282 metaslab_group_passivate(mg); 2283 (void) spa_vdev_state_exit(spa, vd, 0); 2284 2285 error = spa_offline_log(spa); 2286 2287 spa_vdev_state_enter(spa, SCL_ALLOC); 2288 2289 /* 2290 * Check to see if the config has changed. 2291 */ 2292 if (error || generation != spa->spa_config_generation) { 2293 metaslab_group_activate(mg); 2294 if (error) 2295 return (spa_vdev_state_exit(spa, 2296 vd, error)); 2297 (void) spa_vdev_state_exit(spa, vd, 0); 2298 goto top; 2299 } 2300 ASSERT0(tvd->vdev_stat.vs_alloc); 2301 } 2302 2303 /* 2304 * Offline this device and reopen its top-level vdev. 2305 * If the top-level vdev is a log device then just offline 2306 * it. Otherwise, if this action results in the top-level 2307 * vdev becoming unusable, undo it and fail the request. 2308 */ 2309 vd->vdev_offline = B_TRUE; 2310 vdev_reopen(tvd); 2311 2312 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2313 vdev_is_dead(tvd)) { 2314 vd->vdev_offline = B_FALSE; 2315 vdev_reopen(tvd); 2316 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2317 } 2318 2319 /* 2320 * Add the device back into the metaslab rotor so that 2321 * once we online the device it's open for business. 2322 */ 2323 if (tvd->vdev_islog && mg != NULL) 2324 metaslab_group_activate(mg); 2325 } 2326 2327 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2328 2329 return (spa_vdev_state_exit(spa, vd, 0)); 2330 } 2331 2332 int 2333 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2334 { 2335 int error; 2336 2337 mutex_enter(&spa->spa_vdev_top_lock); 2338 error = vdev_offline_locked(spa, guid, flags); 2339 mutex_exit(&spa->spa_vdev_top_lock); 2340 2341 return (error); 2342 } 2343 2344 /* 2345 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2346 * vdev_offline(), we assume the spa config is locked. We also clear all 2347 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2348 */ 2349 void 2350 vdev_clear(spa_t *spa, vdev_t *vd) 2351 { 2352 vdev_t *rvd = spa->spa_root_vdev; 2353 2354 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2355 2356 if (vd == NULL) 2357 vd = rvd; 2358 2359 vd->vdev_stat.vs_read_errors = 0; 2360 vd->vdev_stat.vs_write_errors = 0; 2361 vd->vdev_stat.vs_checksum_errors = 0; 2362 2363 for (int c = 0; c < vd->vdev_children; c++) 2364 vdev_clear(spa, vd->vdev_child[c]); 2365 2366 /* 2367 * If we're in the FAULTED state or have experienced failed I/O, then 2368 * clear the persistent state and attempt to reopen the device. We 2369 * also mark the vdev config dirty, so that the new faulted state is 2370 * written out to disk. 2371 */ 2372 if (vd->vdev_faulted || vd->vdev_degraded || 2373 !vdev_readable(vd) || !vdev_writeable(vd)) { 2374 2375 /* 2376 * When reopening in reponse to a clear event, it may be due to 2377 * a fmadm repair request. In this case, if the device is 2378 * still broken, we want to still post the ereport again. 2379 */ 2380 vd->vdev_forcefault = B_TRUE; 2381 2382 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2383 vd->vdev_cant_read = B_FALSE; 2384 vd->vdev_cant_write = B_FALSE; 2385 2386 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2387 2388 vd->vdev_forcefault = B_FALSE; 2389 2390 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2391 vdev_state_dirty(vd->vdev_top); 2392 2393 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2394 spa_async_request(spa, SPA_ASYNC_RESILVER); 2395 2396 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2397 } 2398 2399 /* 2400 * When clearing a FMA-diagnosed fault, we always want to 2401 * unspare the device, as we assume that the original spare was 2402 * done in response to the FMA fault. 2403 */ 2404 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2405 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2406 vd->vdev_parent->vdev_child[0] == vd) 2407 vd->vdev_unspare = B_TRUE; 2408 } 2409 2410 boolean_t 2411 vdev_is_dead(vdev_t *vd) 2412 { 2413 /* 2414 * Holes and missing devices are always considered "dead". 2415 * This simplifies the code since we don't have to check for 2416 * these types of devices in the various code paths. 2417 * Instead we rely on the fact that we skip over dead devices 2418 * before issuing I/O to them. 2419 */ 2420 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2421 vd->vdev_ops == &vdev_missing_ops); 2422 } 2423 2424 boolean_t 2425 vdev_readable(vdev_t *vd) 2426 { 2427 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2428 } 2429 2430 boolean_t 2431 vdev_writeable(vdev_t *vd) 2432 { 2433 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2434 } 2435 2436 boolean_t 2437 vdev_allocatable(vdev_t *vd) 2438 { 2439 uint64_t state = vd->vdev_state; 2440 2441 /* 2442 * We currently allow allocations from vdevs which may be in the 2443 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2444 * fails to reopen then we'll catch it later when we're holding 2445 * the proper locks. Note that we have to get the vdev state 2446 * in a local variable because although it changes atomically, 2447 * we're asking two separate questions about it. 2448 */ 2449 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2450 !vd->vdev_cant_write && !vd->vdev_ishole); 2451 } 2452 2453 boolean_t 2454 vdev_accessible(vdev_t *vd, zio_t *zio) 2455 { 2456 ASSERT(zio->io_vd == vd); 2457 2458 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2459 return (B_FALSE); 2460 2461 if (zio->io_type == ZIO_TYPE_READ) 2462 return (!vd->vdev_cant_read); 2463 2464 if (zio->io_type == ZIO_TYPE_WRITE) 2465 return (!vd->vdev_cant_write); 2466 2467 return (B_TRUE); 2468 } 2469 2470 /* 2471 * Get statistics for the given vdev. 2472 */ 2473 void 2474 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2475 { 2476 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2477 2478 mutex_enter(&vd->vdev_stat_lock); 2479 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2480 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2481 vs->vs_state = vd->vdev_state; 2482 vs->vs_rsize = vdev_get_min_asize(vd); 2483 if (vd->vdev_ops->vdev_op_leaf) 2484 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2485 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2486 mutex_exit(&vd->vdev_stat_lock); 2487 2488 /* 2489 * If we're getting stats on the root vdev, aggregate the I/O counts 2490 * over all top-level vdevs (i.e. the direct children of the root). 2491 */ 2492 if (vd == rvd) { 2493 for (int c = 0; c < rvd->vdev_children; c++) { 2494 vdev_t *cvd = rvd->vdev_child[c]; 2495 vdev_stat_t *cvs = &cvd->vdev_stat; 2496 2497 mutex_enter(&vd->vdev_stat_lock); 2498 for (int t = 0; t < ZIO_TYPES; t++) { 2499 vs->vs_ops[t] += cvs->vs_ops[t]; 2500 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2501 } 2502 cvs->vs_scan_removing = cvd->vdev_removing; 2503 mutex_exit(&vd->vdev_stat_lock); 2504 } 2505 } 2506 } 2507 2508 void 2509 vdev_clear_stats(vdev_t *vd) 2510 { 2511 mutex_enter(&vd->vdev_stat_lock); 2512 vd->vdev_stat.vs_space = 0; 2513 vd->vdev_stat.vs_dspace = 0; 2514 vd->vdev_stat.vs_alloc = 0; 2515 mutex_exit(&vd->vdev_stat_lock); 2516 } 2517 2518 void 2519 vdev_scan_stat_init(vdev_t *vd) 2520 { 2521 vdev_stat_t *vs = &vd->vdev_stat; 2522 2523 for (int c = 0; c < vd->vdev_children; c++) 2524 vdev_scan_stat_init(vd->vdev_child[c]); 2525 2526 mutex_enter(&vd->vdev_stat_lock); 2527 vs->vs_scan_processed = 0; 2528 mutex_exit(&vd->vdev_stat_lock); 2529 } 2530 2531 void 2532 vdev_stat_update(zio_t *zio, uint64_t psize) 2533 { 2534 spa_t *spa = zio->io_spa; 2535 vdev_t *rvd = spa->spa_root_vdev; 2536 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2537 vdev_t *pvd; 2538 uint64_t txg = zio->io_txg; 2539 vdev_stat_t *vs = &vd->vdev_stat; 2540 zio_type_t type = zio->io_type; 2541 int flags = zio->io_flags; 2542 2543 /* 2544 * If this i/o is a gang leader, it didn't do any actual work. 2545 */ 2546 if (zio->io_gang_tree) 2547 return; 2548 2549 if (zio->io_error == 0) { 2550 /* 2551 * If this is a root i/o, don't count it -- we've already 2552 * counted the top-level vdevs, and vdev_get_stats() will 2553 * aggregate them when asked. This reduces contention on 2554 * the root vdev_stat_lock and implicitly handles blocks 2555 * that compress away to holes, for which there is no i/o. 2556 * (Holes never create vdev children, so all the counters 2557 * remain zero, which is what we want.) 2558 * 2559 * Note: this only applies to successful i/o (io_error == 0) 2560 * because unlike i/o counts, errors are not additive. 2561 * When reading a ditto block, for example, failure of 2562 * one top-level vdev does not imply a root-level error. 2563 */ 2564 if (vd == rvd) 2565 return; 2566 2567 ASSERT(vd == zio->io_vd); 2568 2569 if (flags & ZIO_FLAG_IO_BYPASS) 2570 return; 2571 2572 mutex_enter(&vd->vdev_stat_lock); 2573 2574 if (flags & ZIO_FLAG_IO_REPAIR) { 2575 if (flags & ZIO_FLAG_SCAN_THREAD) { 2576 dsl_scan_phys_t *scn_phys = 2577 &spa->spa_dsl_pool->dp_scan->scn_phys; 2578 uint64_t *processed = &scn_phys->scn_processed; 2579 2580 /* XXX cleanup? */ 2581 if (vd->vdev_ops->vdev_op_leaf) 2582 atomic_add_64(processed, psize); 2583 vs->vs_scan_processed += psize; 2584 } 2585 2586 if (flags & ZIO_FLAG_SELF_HEAL) 2587 vs->vs_self_healed += psize; 2588 } 2589 2590 vs->vs_ops[type]++; 2591 vs->vs_bytes[type] += psize; 2592 2593 mutex_exit(&vd->vdev_stat_lock); 2594 return; 2595 } 2596 2597 if (flags & ZIO_FLAG_SPECULATIVE) 2598 return; 2599 2600 /* 2601 * If this is an I/O error that is going to be retried, then ignore the 2602 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2603 * hard errors, when in reality they can happen for any number of 2604 * innocuous reasons (bus resets, MPxIO link failure, etc). 2605 */ 2606 if (zio->io_error == EIO && 2607 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2608 return; 2609 2610 /* 2611 * Intent logs writes won't propagate their error to the root 2612 * I/O so don't mark these types of failures as pool-level 2613 * errors. 2614 */ 2615 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2616 return; 2617 2618 mutex_enter(&vd->vdev_stat_lock); 2619 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2620 if (zio->io_error == ECKSUM) 2621 vs->vs_checksum_errors++; 2622 else 2623 vs->vs_read_errors++; 2624 } 2625 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2626 vs->vs_write_errors++; 2627 mutex_exit(&vd->vdev_stat_lock); 2628 2629 if (type == ZIO_TYPE_WRITE && txg != 0 && 2630 (!(flags & ZIO_FLAG_IO_REPAIR) || 2631 (flags & ZIO_FLAG_SCAN_THREAD) || 2632 spa->spa_claiming)) { 2633 /* 2634 * This is either a normal write (not a repair), or it's 2635 * a repair induced by the scrub thread, or it's a repair 2636 * made by zil_claim() during spa_load() in the first txg. 2637 * In the normal case, we commit the DTL change in the same 2638 * txg as the block was born. In the scrub-induced repair 2639 * case, we know that scrubs run in first-pass syncing context, 2640 * so we commit the DTL change in spa_syncing_txg(spa). 2641 * In the zil_claim() case, we commit in spa_first_txg(spa). 2642 * 2643 * We currently do not make DTL entries for failed spontaneous 2644 * self-healing writes triggered by normal (non-scrubbing) 2645 * reads, because we have no transactional context in which to 2646 * do so -- and it's not clear that it'd be desirable anyway. 2647 */ 2648 if (vd->vdev_ops->vdev_op_leaf) { 2649 uint64_t commit_txg = txg; 2650 if (flags & ZIO_FLAG_SCAN_THREAD) { 2651 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2652 ASSERT(spa_sync_pass(spa) == 1); 2653 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2654 commit_txg = spa_syncing_txg(spa); 2655 } else if (spa->spa_claiming) { 2656 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2657 commit_txg = spa_first_txg(spa); 2658 } 2659 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2660 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2661 return; 2662 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2663 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2664 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2665 } 2666 if (vd != rvd) 2667 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2668 } 2669 } 2670 2671 /* 2672 * Update the in-core space usage stats for this vdev, its metaslab class, 2673 * and the root vdev. 2674 */ 2675 void 2676 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2677 int64_t space_delta) 2678 { 2679 int64_t dspace_delta = space_delta; 2680 spa_t *spa = vd->vdev_spa; 2681 vdev_t *rvd = spa->spa_root_vdev; 2682 metaslab_group_t *mg = vd->vdev_mg; 2683 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2684 2685 ASSERT(vd == vd->vdev_top); 2686 2687 /* 2688 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2689 * factor. We must calculate this here and not at the root vdev 2690 * because the root vdev's psize-to-asize is simply the max of its 2691 * childrens', thus not accurate enough for us. 2692 */ 2693 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2694 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2695 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2696 vd->vdev_deflate_ratio; 2697 2698 mutex_enter(&vd->vdev_stat_lock); 2699 vd->vdev_stat.vs_alloc += alloc_delta; 2700 vd->vdev_stat.vs_space += space_delta; 2701 vd->vdev_stat.vs_dspace += dspace_delta; 2702 mutex_exit(&vd->vdev_stat_lock); 2703 2704 if (mc == spa_normal_class(spa)) { 2705 mutex_enter(&rvd->vdev_stat_lock); 2706 rvd->vdev_stat.vs_alloc += alloc_delta; 2707 rvd->vdev_stat.vs_space += space_delta; 2708 rvd->vdev_stat.vs_dspace += dspace_delta; 2709 mutex_exit(&rvd->vdev_stat_lock); 2710 } 2711 2712 if (mc != NULL) { 2713 ASSERT(rvd == vd->vdev_parent); 2714 ASSERT(vd->vdev_ms_count != 0); 2715 2716 metaslab_class_space_update(mc, 2717 alloc_delta, defer_delta, space_delta, dspace_delta); 2718 } 2719 } 2720 2721 /* 2722 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2723 * so that it will be written out next time the vdev configuration is synced. 2724 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2725 */ 2726 void 2727 vdev_config_dirty(vdev_t *vd) 2728 { 2729 spa_t *spa = vd->vdev_spa; 2730 vdev_t *rvd = spa->spa_root_vdev; 2731 int c; 2732 2733 ASSERT(spa_writeable(spa)); 2734 2735 /* 2736 * If this is an aux vdev (as with l2cache and spare devices), then we 2737 * update the vdev config manually and set the sync flag. 2738 */ 2739 if (vd->vdev_aux != NULL) { 2740 spa_aux_vdev_t *sav = vd->vdev_aux; 2741 nvlist_t **aux; 2742 uint_t naux; 2743 2744 for (c = 0; c < sav->sav_count; c++) { 2745 if (sav->sav_vdevs[c] == vd) 2746 break; 2747 } 2748 2749 if (c == sav->sav_count) { 2750 /* 2751 * We're being removed. There's nothing more to do. 2752 */ 2753 ASSERT(sav->sav_sync == B_TRUE); 2754 return; 2755 } 2756 2757 sav->sav_sync = B_TRUE; 2758 2759 if (nvlist_lookup_nvlist_array(sav->sav_config, 2760 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2761 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2762 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2763 } 2764 2765 ASSERT(c < naux); 2766 2767 /* 2768 * Setting the nvlist in the middle if the array is a little 2769 * sketchy, but it will work. 2770 */ 2771 nvlist_free(aux[c]); 2772 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2773 2774 return; 2775 } 2776 2777 /* 2778 * The dirty list is protected by the SCL_CONFIG lock. The caller 2779 * must either hold SCL_CONFIG as writer, or must be the sync thread 2780 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2781 * so this is sufficient to ensure mutual exclusion. 2782 */ 2783 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2784 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2785 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2786 2787 if (vd == rvd) { 2788 for (c = 0; c < rvd->vdev_children; c++) 2789 vdev_config_dirty(rvd->vdev_child[c]); 2790 } else { 2791 ASSERT(vd == vd->vdev_top); 2792 2793 if (!list_link_active(&vd->vdev_config_dirty_node) && 2794 !vd->vdev_ishole) 2795 list_insert_head(&spa->spa_config_dirty_list, vd); 2796 } 2797 } 2798 2799 void 2800 vdev_config_clean(vdev_t *vd) 2801 { 2802 spa_t *spa = vd->vdev_spa; 2803 2804 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2805 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2806 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2807 2808 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2809 list_remove(&spa->spa_config_dirty_list, vd); 2810 } 2811 2812 /* 2813 * Mark a top-level vdev's state as dirty, so that the next pass of 2814 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2815 * the state changes from larger config changes because they require 2816 * much less locking, and are often needed for administrative actions. 2817 */ 2818 void 2819 vdev_state_dirty(vdev_t *vd) 2820 { 2821 spa_t *spa = vd->vdev_spa; 2822 2823 ASSERT(spa_writeable(spa)); 2824 ASSERT(vd == vd->vdev_top); 2825 2826 /* 2827 * The state list is protected by the SCL_STATE lock. The caller 2828 * must either hold SCL_STATE as writer, or must be the sync thread 2829 * (which holds SCL_STATE as reader). There's only one sync thread, 2830 * so this is sufficient to ensure mutual exclusion. 2831 */ 2832 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2833 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2834 spa_config_held(spa, SCL_STATE, RW_READER))); 2835 2836 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2837 list_insert_head(&spa->spa_state_dirty_list, vd); 2838 } 2839 2840 void 2841 vdev_state_clean(vdev_t *vd) 2842 { 2843 spa_t *spa = vd->vdev_spa; 2844 2845 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2846 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2847 spa_config_held(spa, SCL_STATE, RW_READER))); 2848 2849 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2850 list_remove(&spa->spa_state_dirty_list, vd); 2851 } 2852 2853 /* 2854 * Propagate vdev state up from children to parent. 2855 */ 2856 void 2857 vdev_propagate_state(vdev_t *vd) 2858 { 2859 spa_t *spa = vd->vdev_spa; 2860 vdev_t *rvd = spa->spa_root_vdev; 2861 int degraded = 0, faulted = 0; 2862 int corrupted = 0; 2863 vdev_t *child; 2864 2865 if (vd->vdev_children > 0) { 2866 for (int c = 0; c < vd->vdev_children; c++) { 2867 child = vd->vdev_child[c]; 2868 2869 /* 2870 * Don't factor holes into the decision. 2871 */ 2872 if (child->vdev_ishole) 2873 continue; 2874 2875 if (!vdev_readable(child) || 2876 (!vdev_writeable(child) && spa_writeable(spa))) { 2877 /* 2878 * Root special: if there is a top-level log 2879 * device, treat the root vdev as if it were 2880 * degraded. 2881 */ 2882 if (child->vdev_islog && vd == rvd) 2883 degraded++; 2884 else 2885 faulted++; 2886 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2887 degraded++; 2888 } 2889 2890 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2891 corrupted++; 2892 } 2893 2894 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2895 2896 /* 2897 * Root special: if there is a top-level vdev that cannot be 2898 * opened due to corrupted metadata, then propagate the root 2899 * vdev's aux state as 'corrupt' rather than 'insufficient 2900 * replicas'. 2901 */ 2902 if (corrupted && vd == rvd && 2903 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2904 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2905 VDEV_AUX_CORRUPT_DATA); 2906 } 2907 2908 if (vd->vdev_parent) 2909 vdev_propagate_state(vd->vdev_parent); 2910 } 2911 2912 /* 2913 * Set a vdev's state. If this is during an open, we don't update the parent 2914 * state, because we're in the process of opening children depth-first. 2915 * Otherwise, we propagate the change to the parent. 2916 * 2917 * If this routine places a device in a faulted state, an appropriate ereport is 2918 * generated. 2919 */ 2920 void 2921 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2922 { 2923 uint64_t save_state; 2924 spa_t *spa = vd->vdev_spa; 2925 2926 if (state == vd->vdev_state) { 2927 vd->vdev_stat.vs_aux = aux; 2928 return; 2929 } 2930 2931 save_state = vd->vdev_state; 2932 2933 vd->vdev_state = state; 2934 vd->vdev_stat.vs_aux = aux; 2935 2936 /* 2937 * If we are setting the vdev state to anything but an open state, then 2938 * always close the underlying device unless the device has requested 2939 * a delayed close (i.e. we're about to remove or fault the device). 2940 * Otherwise, we keep accessible but invalid devices open forever. 2941 * We don't call vdev_close() itself, because that implies some extra 2942 * checks (offline, etc) that we don't want here. This is limited to 2943 * leaf devices, because otherwise closing the device will affect other 2944 * children. 2945 */ 2946 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2947 vd->vdev_ops->vdev_op_leaf) 2948 vd->vdev_ops->vdev_op_close(vd); 2949 2950 /* 2951 * If we have brought this vdev back into service, we need 2952 * to notify fmd so that it can gracefully repair any outstanding 2953 * cases due to a missing device. We do this in all cases, even those 2954 * that probably don't correlate to a repaired fault. This is sure to 2955 * catch all cases, and we let the zfs-retire agent sort it out. If 2956 * this is a transient state it's OK, as the retire agent will 2957 * double-check the state of the vdev before repairing it. 2958 */ 2959 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2960 vd->vdev_prevstate != state) 2961 zfs_post_state_change(spa, vd); 2962 2963 if (vd->vdev_removed && 2964 state == VDEV_STATE_CANT_OPEN && 2965 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2966 /* 2967 * If the previous state is set to VDEV_STATE_REMOVED, then this 2968 * device was previously marked removed and someone attempted to 2969 * reopen it. If this failed due to a nonexistent device, then 2970 * keep the device in the REMOVED state. We also let this be if 2971 * it is one of our special test online cases, which is only 2972 * attempting to online the device and shouldn't generate an FMA 2973 * fault. 2974 */ 2975 vd->vdev_state = VDEV_STATE_REMOVED; 2976 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2977 } else if (state == VDEV_STATE_REMOVED) { 2978 vd->vdev_removed = B_TRUE; 2979 } else if (state == VDEV_STATE_CANT_OPEN) { 2980 /* 2981 * If we fail to open a vdev during an import or recovery, we 2982 * mark it as "not available", which signifies that it was 2983 * never there to begin with. Failure to open such a device 2984 * is not considered an error. 2985 */ 2986 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 2987 spa_load_state(spa) == SPA_LOAD_RECOVER) && 2988 vd->vdev_ops->vdev_op_leaf) 2989 vd->vdev_not_present = 1; 2990 2991 /* 2992 * Post the appropriate ereport. If the 'prevstate' field is 2993 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2994 * that this is part of a vdev_reopen(). In this case, we don't 2995 * want to post the ereport if the device was already in the 2996 * CANT_OPEN state beforehand. 2997 * 2998 * If the 'checkremove' flag is set, then this is an attempt to 2999 * online the device in response to an insertion event. If we 3000 * hit this case, then we have detected an insertion event for a 3001 * faulted or offline device that wasn't in the removed state. 3002 * In this scenario, we don't post an ereport because we are 3003 * about to replace the device, or attempt an online with 3004 * vdev_forcefault, which will generate the fault for us. 3005 */ 3006 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3007 !vd->vdev_not_present && !vd->vdev_checkremove && 3008 vd != spa->spa_root_vdev) { 3009 const char *class; 3010 3011 switch (aux) { 3012 case VDEV_AUX_OPEN_FAILED: 3013 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3014 break; 3015 case VDEV_AUX_CORRUPT_DATA: 3016 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3017 break; 3018 case VDEV_AUX_NO_REPLICAS: 3019 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3020 break; 3021 case VDEV_AUX_BAD_GUID_SUM: 3022 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3023 break; 3024 case VDEV_AUX_TOO_SMALL: 3025 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3026 break; 3027 case VDEV_AUX_BAD_LABEL: 3028 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3029 break; 3030 default: 3031 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3032 } 3033 3034 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3035 } 3036 3037 /* Erase any notion of persistent removed state */ 3038 vd->vdev_removed = B_FALSE; 3039 } else { 3040 vd->vdev_removed = B_FALSE; 3041 } 3042 3043 if (!isopen && vd->vdev_parent) 3044 vdev_propagate_state(vd->vdev_parent); 3045 } 3046 3047 /* 3048 * Check the vdev configuration to ensure that it's capable of supporting 3049 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3050 * In addition, only a single top-level vdev is allowed and none of the leaves 3051 * can be wholedisks. 3052 */ 3053 boolean_t 3054 vdev_is_bootable(vdev_t *vd) 3055 { 3056 if (!vd->vdev_ops->vdev_op_leaf) { 3057 char *vdev_type = vd->vdev_ops->vdev_op_type; 3058 3059 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3060 vd->vdev_children > 1) { 3061 return (B_FALSE); 3062 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3063 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3064 return (B_FALSE); 3065 } 3066 } else if (vd->vdev_wholedisk == 1) { 3067 return (B_FALSE); 3068 } 3069 3070 for (int c = 0; c < vd->vdev_children; c++) { 3071 if (!vdev_is_bootable(vd->vdev_child[c])) 3072 return (B_FALSE); 3073 } 3074 return (B_TRUE); 3075 } 3076 3077 /* 3078 * Load the state from the original vdev tree (ovd) which 3079 * we've retrieved from the MOS config object. If the original 3080 * vdev was offline or faulted then we transfer that state to the 3081 * device in the current vdev tree (nvd). 3082 */ 3083 void 3084 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3085 { 3086 spa_t *spa = nvd->vdev_spa; 3087 3088 ASSERT(nvd->vdev_top->vdev_islog); 3089 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3090 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3091 3092 for (int c = 0; c < nvd->vdev_children; c++) 3093 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3094 3095 if (nvd->vdev_ops->vdev_op_leaf) { 3096 /* 3097 * Restore the persistent vdev state 3098 */ 3099 nvd->vdev_offline = ovd->vdev_offline; 3100 nvd->vdev_faulted = ovd->vdev_faulted; 3101 nvd->vdev_degraded = ovd->vdev_degraded; 3102 nvd->vdev_removed = ovd->vdev_removed; 3103 } 3104 } 3105 3106 /* 3107 * Determine if a log device has valid content. If the vdev was 3108 * removed or faulted in the MOS config then we know that 3109 * the content on the log device has already been written to the pool. 3110 */ 3111 boolean_t 3112 vdev_log_state_valid(vdev_t *vd) 3113 { 3114 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3115 !vd->vdev_removed) 3116 return (B_TRUE); 3117 3118 for (int c = 0; c < vd->vdev_children; c++) 3119 if (vdev_log_state_valid(vd->vdev_child[c])) 3120 return (B_TRUE); 3121 3122 return (B_FALSE); 3123 } 3124 3125 /* 3126 * Expand a vdev if possible. 3127 */ 3128 void 3129 vdev_expand(vdev_t *vd, uint64_t txg) 3130 { 3131 ASSERT(vd->vdev_top == vd); 3132 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3133 3134 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3135 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3136 vdev_config_dirty(vd); 3137 } 3138 } 3139 3140 /* 3141 * Split a vdev. 3142 */ 3143 void 3144 vdev_split(vdev_t *vd) 3145 { 3146 vdev_t *cvd, *pvd = vd->vdev_parent; 3147 3148 vdev_remove_child(pvd, vd); 3149 vdev_compact_children(pvd); 3150 3151 cvd = pvd->vdev_child[0]; 3152 if (pvd->vdev_children == 1) { 3153 vdev_remove_parent(cvd); 3154 cvd->vdev_splitting = B_TRUE; 3155 } 3156 vdev_propagate_state(cvd); 3157 } 3158 3159 void 3160 vdev_deadman(vdev_t *vd) 3161 { 3162 for (int c = 0; c < vd->vdev_children; c++) { 3163 vdev_t *cvd = vd->vdev_child[c]; 3164 3165 vdev_deadman(cvd); 3166 } 3167 3168 if (vd->vdev_ops->vdev_op_leaf) { 3169 vdev_queue_t *vq = &vd->vdev_queue; 3170 3171 mutex_enter(&vq->vq_lock); 3172 if (avl_numnodes(&vq->vq_pending_tree) > 0) { 3173 spa_t *spa = vd->vdev_spa; 3174 zio_t *fio; 3175 uint64_t delta; 3176 3177 /* 3178 * Look at the head of all the pending queues, 3179 * if any I/O has been outstanding for longer than 3180 * the spa_deadman_synctime we panic the system. 3181 */ 3182 fio = avl_first(&vq->vq_pending_tree); 3183 delta = gethrtime() - fio->io_timestamp; 3184 if (delta > spa_deadman_synctime(spa)) { 3185 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3186 "delta %lluns, last io %lluns", 3187 fio->io_timestamp, delta, 3188 vq->vq_io_complete_ts); 3189 fm_panic("I/O to pool '%s' appears to be " 3190 "hung.", spa_name(spa)); 3191 } 3192 } 3193 mutex_exit(&vq->vq_lock); 3194 } 3195 } 3196