1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_spare_ops, 53 &vdev_disk_ops, 54 &vdev_file_ops, 55 &vdev_missing_ops, 56 NULL 57 }; 58 59 /* maximum scrub/resilver I/O queue per leaf vdev */ 60 int zfs_scrub_limit = 10; 61 62 /* 63 * Given a vdev type, return the appropriate ops vector. 64 */ 65 static vdev_ops_t * 66 vdev_getops(const char *type) 67 { 68 vdev_ops_t *ops, **opspp; 69 70 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 71 if (strcmp(ops->vdev_op_type, type) == 0) 72 break; 73 74 return (ops); 75 } 76 77 /* 78 * Default asize function: return the MAX of psize with the asize of 79 * all children. This is what's used by anything other than RAID-Z. 80 */ 81 uint64_t 82 vdev_default_asize(vdev_t *vd, uint64_t psize) 83 { 84 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 85 uint64_t csize; 86 uint64_t c; 87 88 for (c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the replaceable or attachable device size. 98 * If the parent is a mirror or raidz, the replaceable size is the minimum 99 * psize of all its children. For the rest, just return our own psize. 100 * 101 * e.g. 102 * psize rsize 103 * root - - 104 * mirror/raidz - - 105 * disk1 20g 20g 106 * disk2 40g 20g 107 * disk3 80g 80g 108 */ 109 uint64_t 110 vdev_get_rsize(vdev_t *vd) 111 { 112 vdev_t *pvd, *cvd; 113 uint64_t c, rsize; 114 115 pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL or the root, just return our own psize. 119 */ 120 if (pvd == NULL || pvd->vdev_parent == NULL) 121 return (vd->vdev_psize); 122 123 rsize = 0; 124 125 for (c = 0; c < pvd->vdev_children; c++) { 126 cvd = pvd->vdev_child[c]; 127 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 128 } 129 130 return (rsize); 131 } 132 133 vdev_t * 134 vdev_lookup_top(spa_t *spa, uint64_t vdev) 135 { 136 vdev_t *rvd = spa->spa_root_vdev; 137 138 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 139 140 if (vdev < rvd->vdev_children) { 141 ASSERT(rvd->vdev_child[vdev] != NULL); 142 return (rvd->vdev_child[vdev]); 143 } 144 145 return (NULL); 146 } 147 148 vdev_t * 149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 150 { 151 int c; 152 vdev_t *mvd; 153 154 if (vd->vdev_guid == guid) 155 return (vd); 156 157 for (c = 0; c < vd->vdev_children; c++) 158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 159 NULL) 160 return (mvd); 161 162 return (NULL); 163 } 164 165 void 166 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 167 { 168 size_t oldsize, newsize; 169 uint64_t id = cvd->vdev_id; 170 vdev_t **newchild; 171 172 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 173 ASSERT(cvd->vdev_parent == NULL); 174 175 cvd->vdev_parent = pvd; 176 177 if (pvd == NULL) 178 return; 179 180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 181 182 oldsize = pvd->vdev_children * sizeof (vdev_t *); 183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 184 newsize = pvd->vdev_children * sizeof (vdev_t *); 185 186 newchild = kmem_zalloc(newsize, KM_SLEEP); 187 if (pvd->vdev_child != NULL) { 188 bcopy(pvd->vdev_child, newchild, oldsize); 189 kmem_free(pvd->vdev_child, oldsize); 190 } 191 192 pvd->vdev_child = newchild; 193 pvd->vdev_child[id] = cvd; 194 195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 197 198 /* 199 * Walk up all ancestors to update guid sum. 200 */ 201 for (; pvd != NULL; pvd = pvd->vdev_parent) 202 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 203 204 if (cvd->vdev_ops->vdev_op_leaf) 205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 241 if (cvd->vdev_ops->vdev_op_leaf) 242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 243 } 244 245 /* 246 * Remove any holes in the child array. 247 */ 248 void 249 vdev_compact_children(vdev_t *pvd) 250 { 251 vdev_t **newchild, *cvd; 252 int oldc = pvd->vdev_children; 253 int newc, c; 254 255 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 256 257 for (c = newc = 0; c < oldc; c++) 258 if (pvd->vdev_child[c]) 259 newc++; 260 261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 262 263 for (c = newc = 0; c < oldc; c++) { 264 if ((cvd = pvd->vdev_child[c]) != NULL) { 265 newchild[newc] = cvd; 266 cvd->vdev_id = newc++; 267 } 268 } 269 270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 271 pvd->vdev_child = newchild; 272 pvd->vdev_children = newc; 273 } 274 275 /* 276 * Allocate and minimally initialize a vdev_t. 277 */ 278 static vdev_t * 279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 280 { 281 vdev_t *vd; 282 283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 284 285 if (spa->spa_root_vdev == NULL) { 286 ASSERT(ops == &vdev_root_ops); 287 spa->spa_root_vdev = vd; 288 } 289 290 if (guid == 0) { 291 if (spa->spa_root_vdev == vd) { 292 /* 293 * The root vdev's guid will also be the pool guid, 294 * which must be unique among all pools. 295 */ 296 while (guid == 0 || spa_guid_exists(guid, 0)) 297 guid = spa_get_random(-1ULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 while (guid == 0 || 303 spa_guid_exists(spa_guid(spa), guid)) 304 guid = spa_get_random(-1ULL); 305 } 306 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 307 } 308 309 vd->vdev_spa = spa; 310 vd->vdev_id = id; 311 vd->vdev_guid = guid; 312 vd->vdev_guid_sum = guid; 313 vd->vdev_ops = ops; 314 vd->vdev_state = VDEV_STATE_CLOSED; 315 316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 318 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 319 for (int t = 0; t < DTL_TYPES; t++) { 320 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 321 &vd->vdev_dtl_lock); 322 } 323 txg_list_create(&vd->vdev_ms_list, 324 offsetof(struct metaslab, ms_txg_node)); 325 txg_list_create(&vd->vdev_dtl_list, 326 offsetof(struct vdev, vdev_dtl_node)); 327 vd->vdev_stat.vs_timestamp = gethrtime(); 328 vdev_queue_init(vd); 329 vdev_cache_init(vd); 330 331 return (vd); 332 } 333 334 /* 335 * Allocate a new vdev. The 'alloctype' is used to control whether we are 336 * creating a new vdev or loading an existing one - the behavior is slightly 337 * different for each case. 338 */ 339 int 340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 341 int alloctype) 342 { 343 vdev_ops_t *ops; 344 char *type; 345 uint64_t guid = 0, islog, nparity; 346 vdev_t *vd; 347 348 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 349 350 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 351 return (EINVAL); 352 353 if ((ops = vdev_getops(type)) == NULL) 354 return (EINVAL); 355 356 /* 357 * If this is a load, get the vdev guid from the nvlist. 358 * Otherwise, vdev_alloc_common() will generate one for us. 359 */ 360 if (alloctype == VDEV_ALLOC_LOAD) { 361 uint64_t label_id; 362 363 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 364 label_id != id) 365 return (EINVAL); 366 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 368 return (EINVAL); 369 } else if (alloctype == VDEV_ALLOC_SPARE) { 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (EINVAL); 372 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } 376 377 /* 378 * The first allocated vdev must be of type 'root'. 379 */ 380 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 381 return (EINVAL); 382 383 /* 384 * Determine whether we're a log vdev. 385 */ 386 islog = 0; 387 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 388 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 389 return (ENOTSUP); 390 391 /* 392 * Set the nparity property for RAID-Z vdevs. 393 */ 394 nparity = -1ULL; 395 if (ops == &vdev_raidz_ops) { 396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 397 &nparity) == 0) { 398 /* 399 * Currently, we can only support 2 parity devices. 400 */ 401 if (nparity == 0 || nparity > 2) 402 return (EINVAL); 403 /* 404 * Older versions can only support 1 parity device. 405 */ 406 if (nparity == 2 && 407 spa_version(spa) < SPA_VERSION_RAID6) 408 return (ENOTSUP); 409 } else { 410 /* 411 * We require the parity to be specified for SPAs that 412 * support multiple parity levels. 413 */ 414 if (spa_version(spa) >= SPA_VERSION_RAID6) 415 return (EINVAL); 416 /* 417 * Otherwise, we default to 1 parity device for RAID-Z. 418 */ 419 nparity = 1; 420 } 421 } else { 422 nparity = 0; 423 } 424 ASSERT(nparity != -1ULL); 425 426 vd = vdev_alloc_common(spa, id, guid, ops); 427 428 vd->vdev_islog = islog; 429 vd->vdev_nparity = nparity; 430 431 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 432 vd->vdev_path = spa_strdup(vd->vdev_path); 433 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 434 vd->vdev_devid = spa_strdup(vd->vdev_devid); 435 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 436 &vd->vdev_physpath) == 0) 437 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 438 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 439 vd->vdev_fru = spa_strdup(vd->vdev_fru); 440 441 /* 442 * Set the whole_disk property. If it's not specified, leave the value 443 * as -1. 444 */ 445 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 446 &vd->vdev_wholedisk) != 0) 447 vd->vdev_wholedisk = -1ULL; 448 449 /* 450 * Look for the 'not present' flag. This will only be set if the device 451 * was not present at the time of import. 452 */ 453 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 454 &vd->vdev_not_present); 455 456 /* 457 * Get the alignment requirement. 458 */ 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 460 461 /* 462 * If we're a top-level vdev, try to load the allocation parameters. 463 */ 464 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 466 &vd->vdev_ms_array); 467 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 468 &vd->vdev_ms_shift); 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 470 &vd->vdev_asize); 471 } 472 473 /* 474 * If we're a leaf vdev, try to load the DTL object and other state. 475 */ 476 if (vd->vdev_ops->vdev_op_leaf && 477 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { 478 if (alloctype == VDEV_ALLOC_LOAD) { 479 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 480 &vd->vdev_dtl_smo.smo_object); 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 482 &vd->vdev_unspare); 483 } 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 485 &vd->vdev_offline); 486 487 /* 488 * When importing a pool, we want to ignore the persistent fault 489 * state, as the diagnosis made on another system may not be 490 * valid in the current context. 491 */ 492 if (spa->spa_load_state == SPA_LOAD_OPEN) { 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 494 &vd->vdev_faulted); 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 496 &vd->vdev_degraded); 497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 498 &vd->vdev_removed); 499 } 500 } 501 502 /* 503 * Add ourselves to the parent's list of children. 504 */ 505 vdev_add_child(parent, vd); 506 507 *vdp = vd; 508 509 return (0); 510 } 511 512 void 513 vdev_free(vdev_t *vd) 514 { 515 int c; 516 spa_t *spa = vd->vdev_spa; 517 518 /* 519 * vdev_free() implies closing the vdev first. This is simpler than 520 * trying to ensure complicated semantics for all callers. 521 */ 522 vdev_close(vd); 523 524 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 525 526 /* 527 * Free all children. 528 */ 529 for (c = 0; c < vd->vdev_children; c++) 530 vdev_free(vd->vdev_child[c]); 531 532 ASSERT(vd->vdev_child == NULL); 533 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 534 535 /* 536 * Discard allocation state. 537 */ 538 if (vd == vd->vdev_top) 539 vdev_metaslab_fini(vd); 540 541 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 542 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 543 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 544 545 /* 546 * Remove this vdev from its parent's child list. 547 */ 548 vdev_remove_child(vd->vdev_parent, vd); 549 550 ASSERT(vd->vdev_parent == NULL); 551 552 /* 553 * Clean up vdev structure. 554 */ 555 vdev_queue_fini(vd); 556 vdev_cache_fini(vd); 557 558 if (vd->vdev_path) 559 spa_strfree(vd->vdev_path); 560 if (vd->vdev_devid) 561 spa_strfree(vd->vdev_devid); 562 if (vd->vdev_physpath) 563 spa_strfree(vd->vdev_physpath); 564 if (vd->vdev_fru) 565 spa_strfree(vd->vdev_fru); 566 567 if (vd->vdev_isspare) 568 spa_spare_remove(vd); 569 if (vd->vdev_isl2cache) 570 spa_l2cache_remove(vd); 571 572 txg_list_destroy(&vd->vdev_ms_list); 573 txg_list_destroy(&vd->vdev_dtl_list); 574 575 mutex_enter(&vd->vdev_dtl_lock); 576 for (int t = 0; t < DTL_TYPES; t++) { 577 space_map_unload(&vd->vdev_dtl[t]); 578 space_map_destroy(&vd->vdev_dtl[t]); 579 } 580 mutex_exit(&vd->vdev_dtl_lock); 581 582 mutex_destroy(&vd->vdev_dtl_lock); 583 mutex_destroy(&vd->vdev_stat_lock); 584 mutex_destroy(&vd->vdev_probe_lock); 585 586 if (vd == spa->spa_root_vdev) 587 spa->spa_root_vdev = NULL; 588 589 kmem_free(vd, sizeof (vdev_t)); 590 } 591 592 /* 593 * Transfer top-level vdev state from svd to tvd. 594 */ 595 static void 596 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 597 { 598 spa_t *spa = svd->vdev_spa; 599 metaslab_t *msp; 600 vdev_t *vd; 601 int t; 602 603 ASSERT(tvd == tvd->vdev_top); 604 605 tvd->vdev_ms_array = svd->vdev_ms_array; 606 tvd->vdev_ms_shift = svd->vdev_ms_shift; 607 tvd->vdev_ms_count = svd->vdev_ms_count; 608 609 svd->vdev_ms_array = 0; 610 svd->vdev_ms_shift = 0; 611 svd->vdev_ms_count = 0; 612 613 tvd->vdev_mg = svd->vdev_mg; 614 tvd->vdev_ms = svd->vdev_ms; 615 616 svd->vdev_mg = NULL; 617 svd->vdev_ms = NULL; 618 619 if (tvd->vdev_mg != NULL) 620 tvd->vdev_mg->mg_vd = tvd; 621 622 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 623 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 624 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 625 626 svd->vdev_stat.vs_alloc = 0; 627 svd->vdev_stat.vs_space = 0; 628 svd->vdev_stat.vs_dspace = 0; 629 630 for (t = 0; t < TXG_SIZE; t++) { 631 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 632 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 633 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 634 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 635 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 636 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 637 } 638 639 if (list_link_active(&svd->vdev_config_dirty_node)) { 640 vdev_config_clean(svd); 641 vdev_config_dirty(tvd); 642 } 643 644 if (list_link_active(&svd->vdev_state_dirty_node)) { 645 vdev_state_clean(svd); 646 vdev_state_dirty(tvd); 647 } 648 649 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 650 svd->vdev_deflate_ratio = 0; 651 652 tvd->vdev_islog = svd->vdev_islog; 653 svd->vdev_islog = 0; 654 } 655 656 static void 657 vdev_top_update(vdev_t *tvd, vdev_t *vd) 658 { 659 int c; 660 661 if (vd == NULL) 662 return; 663 664 vd->vdev_top = tvd; 665 666 for (c = 0; c < vd->vdev_children; c++) 667 vdev_top_update(tvd, vd->vdev_child[c]); 668 } 669 670 /* 671 * Add a mirror/replacing vdev above an existing vdev. 672 */ 673 vdev_t * 674 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 675 { 676 spa_t *spa = cvd->vdev_spa; 677 vdev_t *pvd = cvd->vdev_parent; 678 vdev_t *mvd; 679 680 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 681 682 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 683 684 mvd->vdev_asize = cvd->vdev_asize; 685 mvd->vdev_ashift = cvd->vdev_ashift; 686 mvd->vdev_state = cvd->vdev_state; 687 688 vdev_remove_child(pvd, cvd); 689 vdev_add_child(pvd, mvd); 690 cvd->vdev_id = mvd->vdev_children; 691 vdev_add_child(mvd, cvd); 692 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 693 694 if (mvd == mvd->vdev_top) 695 vdev_top_transfer(cvd, mvd); 696 697 return (mvd); 698 } 699 700 /* 701 * Remove a 1-way mirror/replacing vdev from the tree. 702 */ 703 void 704 vdev_remove_parent(vdev_t *cvd) 705 { 706 vdev_t *mvd = cvd->vdev_parent; 707 vdev_t *pvd = mvd->vdev_parent; 708 709 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 710 711 ASSERT(mvd->vdev_children == 1); 712 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 713 mvd->vdev_ops == &vdev_replacing_ops || 714 mvd->vdev_ops == &vdev_spare_ops); 715 cvd->vdev_ashift = mvd->vdev_ashift; 716 717 vdev_remove_child(mvd, cvd); 718 vdev_remove_child(pvd, mvd); 719 720 /* 721 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 722 * Otherwise, we could have detached an offline device, and when we 723 * go to import the pool we'll think we have two top-level vdevs, 724 * instead of a different version of the same top-level vdev. 725 */ 726 if (mvd->vdev_top == mvd) { 727 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 728 cvd->vdev_guid += guid_delta; 729 cvd->vdev_guid_sum += guid_delta; 730 } 731 cvd->vdev_id = mvd->vdev_id; 732 vdev_add_child(pvd, cvd); 733 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 734 735 if (cvd == cvd->vdev_top) 736 vdev_top_transfer(mvd, cvd); 737 738 ASSERT(mvd->vdev_children == 0); 739 vdev_free(mvd); 740 } 741 742 int 743 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 744 { 745 spa_t *spa = vd->vdev_spa; 746 objset_t *mos = spa->spa_meta_objset; 747 metaslab_class_t *mc; 748 uint64_t m; 749 uint64_t oldc = vd->vdev_ms_count; 750 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 751 metaslab_t **mspp; 752 int error; 753 754 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 755 return (0); 756 757 ASSERT(oldc <= newc); 758 759 if (vd->vdev_islog) 760 mc = spa->spa_log_class; 761 else 762 mc = spa->spa_normal_class; 763 764 if (vd->vdev_mg == NULL) 765 vd->vdev_mg = metaslab_group_create(mc, vd); 766 767 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 768 769 if (oldc != 0) { 770 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 771 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 772 } 773 774 vd->vdev_ms = mspp; 775 vd->vdev_ms_count = newc; 776 777 for (m = oldc; m < newc; m++) { 778 space_map_obj_t smo = { 0, 0, 0 }; 779 if (txg == 0) { 780 uint64_t object = 0; 781 error = dmu_read(mos, vd->vdev_ms_array, 782 m * sizeof (uint64_t), sizeof (uint64_t), &object, 783 DMU_READ_PREFETCH); 784 if (error) 785 return (error); 786 if (object != 0) { 787 dmu_buf_t *db; 788 error = dmu_bonus_hold(mos, object, FTAG, &db); 789 if (error) 790 return (error); 791 ASSERT3U(db->db_size, >=, sizeof (smo)); 792 bcopy(db->db_data, &smo, sizeof (smo)); 793 ASSERT3U(smo.smo_object, ==, object); 794 dmu_buf_rele(db, FTAG); 795 } 796 } 797 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 798 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 799 } 800 801 return (0); 802 } 803 804 void 805 vdev_metaslab_fini(vdev_t *vd) 806 { 807 uint64_t m; 808 uint64_t count = vd->vdev_ms_count; 809 810 if (vd->vdev_ms != NULL) { 811 for (m = 0; m < count; m++) 812 if (vd->vdev_ms[m] != NULL) 813 metaslab_fini(vd->vdev_ms[m]); 814 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 815 vd->vdev_ms = NULL; 816 } 817 } 818 819 typedef struct vdev_probe_stats { 820 boolean_t vps_readable; 821 boolean_t vps_writeable; 822 int vps_flags; 823 } vdev_probe_stats_t; 824 825 static void 826 vdev_probe_done(zio_t *zio) 827 { 828 spa_t *spa = zio->io_spa; 829 vdev_t *vd = zio->io_vd; 830 vdev_probe_stats_t *vps = zio->io_private; 831 832 ASSERT(vd->vdev_probe_zio != NULL); 833 834 if (zio->io_type == ZIO_TYPE_READ) { 835 if (zio->io_error == 0) 836 vps->vps_readable = 1; 837 if (zio->io_error == 0 && spa_writeable(spa)) { 838 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 839 zio->io_offset, zio->io_size, zio->io_data, 840 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 841 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 842 } else { 843 zio_buf_free(zio->io_data, zio->io_size); 844 } 845 } else if (zio->io_type == ZIO_TYPE_WRITE) { 846 if (zio->io_error == 0) 847 vps->vps_writeable = 1; 848 zio_buf_free(zio->io_data, zio->io_size); 849 } else if (zio->io_type == ZIO_TYPE_NULL) { 850 zio_t *pio; 851 852 vd->vdev_cant_read |= !vps->vps_readable; 853 vd->vdev_cant_write |= !vps->vps_writeable; 854 855 if (vdev_readable(vd) && 856 (vdev_writeable(vd) || !spa_writeable(spa))) { 857 zio->io_error = 0; 858 } else { 859 ASSERT(zio->io_error != 0); 860 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 861 spa, vd, NULL, 0, 0); 862 zio->io_error = ENXIO; 863 } 864 865 mutex_enter(&vd->vdev_probe_lock); 866 ASSERT(vd->vdev_probe_zio == zio); 867 vd->vdev_probe_zio = NULL; 868 mutex_exit(&vd->vdev_probe_lock); 869 870 while ((pio = zio_walk_parents(zio)) != NULL) 871 if (!vdev_accessible(vd, pio)) 872 pio->io_error = ENXIO; 873 874 kmem_free(vps, sizeof (*vps)); 875 } 876 } 877 878 /* 879 * Determine whether this device is accessible by reading and writing 880 * to several known locations: the pad regions of each vdev label 881 * but the first (which we leave alone in case it contains a VTOC). 882 */ 883 zio_t * 884 vdev_probe(vdev_t *vd, zio_t *zio) 885 { 886 spa_t *spa = vd->vdev_spa; 887 vdev_probe_stats_t *vps = NULL; 888 zio_t *pio; 889 890 ASSERT(vd->vdev_ops->vdev_op_leaf); 891 892 /* 893 * Don't probe the probe. 894 */ 895 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 896 return (NULL); 897 898 /* 899 * To prevent 'probe storms' when a device fails, we create 900 * just one probe i/o at a time. All zios that want to probe 901 * this vdev will become parents of the probe io. 902 */ 903 mutex_enter(&vd->vdev_probe_lock); 904 905 if ((pio = vd->vdev_probe_zio) == NULL) { 906 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 907 908 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 909 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 910 ZIO_FLAG_DONT_RETRY; 911 912 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 913 /* 914 * vdev_cant_read and vdev_cant_write can only 915 * transition from TRUE to FALSE when we have the 916 * SCL_ZIO lock as writer; otherwise they can only 917 * transition from FALSE to TRUE. This ensures that 918 * any zio looking at these values can assume that 919 * failures persist for the life of the I/O. That's 920 * important because when a device has intermittent 921 * connectivity problems, we want to ensure that 922 * they're ascribed to the device (ENXIO) and not 923 * the zio (EIO). 924 * 925 * Since we hold SCL_ZIO as writer here, clear both 926 * values so the probe can reevaluate from first 927 * principles. 928 */ 929 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 930 vd->vdev_cant_read = B_FALSE; 931 vd->vdev_cant_write = B_FALSE; 932 } 933 934 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 935 vdev_probe_done, vps, 936 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 937 938 if (zio != NULL) { 939 vd->vdev_probe_wanted = B_TRUE; 940 spa_async_request(spa, SPA_ASYNC_PROBE); 941 } 942 } 943 944 if (zio != NULL) 945 zio_add_child(zio, pio); 946 947 mutex_exit(&vd->vdev_probe_lock); 948 949 if (vps == NULL) { 950 ASSERT(zio != NULL); 951 return (NULL); 952 } 953 954 for (int l = 1; l < VDEV_LABELS; l++) { 955 zio_nowait(zio_read_phys(pio, vd, 956 vdev_label_offset(vd->vdev_psize, l, 957 offsetof(vdev_label_t, vl_pad2)), 958 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 959 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 960 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 961 } 962 963 if (zio == NULL) 964 return (pio); 965 966 zio_nowait(pio); 967 return (NULL); 968 } 969 970 /* 971 * Prepare a virtual device for access. 972 */ 973 int 974 vdev_open(vdev_t *vd) 975 { 976 spa_t *spa = vd->vdev_spa; 977 int error; 978 int c; 979 uint64_t osize = 0; 980 uint64_t asize, psize; 981 uint64_t ashift = 0; 982 983 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 984 985 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 986 vd->vdev_state == VDEV_STATE_CANT_OPEN || 987 vd->vdev_state == VDEV_STATE_OFFLINE); 988 989 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 990 991 if (!vd->vdev_removed && vd->vdev_faulted) { 992 ASSERT(vd->vdev_children == 0); 993 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 994 VDEV_AUX_ERR_EXCEEDED); 995 return (ENXIO); 996 } else if (vd->vdev_offline) { 997 ASSERT(vd->vdev_children == 0); 998 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 999 return (ENXIO); 1000 } 1001 1002 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1003 1004 if (zio_injection_enabled && error == 0) 1005 error = zio_handle_device_injection(vd, ENXIO); 1006 1007 if (error) { 1008 if (vd->vdev_removed && 1009 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1010 vd->vdev_removed = B_FALSE; 1011 1012 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1013 vd->vdev_stat.vs_aux); 1014 return (error); 1015 } 1016 1017 vd->vdev_removed = B_FALSE; 1018 1019 if (vd->vdev_degraded) { 1020 ASSERT(vd->vdev_children == 0); 1021 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1022 VDEV_AUX_ERR_EXCEEDED); 1023 } else { 1024 vd->vdev_state = VDEV_STATE_HEALTHY; 1025 } 1026 1027 for (c = 0; c < vd->vdev_children; c++) 1028 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1029 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1030 VDEV_AUX_NONE); 1031 break; 1032 } 1033 1034 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1035 1036 if (vd->vdev_children == 0) { 1037 if (osize < SPA_MINDEVSIZE) { 1038 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1039 VDEV_AUX_TOO_SMALL); 1040 return (EOVERFLOW); 1041 } 1042 psize = osize; 1043 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1044 } else { 1045 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1046 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1047 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1048 VDEV_AUX_TOO_SMALL); 1049 return (EOVERFLOW); 1050 } 1051 psize = 0; 1052 asize = osize; 1053 } 1054 1055 vd->vdev_psize = psize; 1056 1057 if (vd->vdev_asize == 0) { 1058 /* 1059 * This is the first-ever open, so use the computed values. 1060 * For testing purposes, a higher ashift can be requested. 1061 */ 1062 vd->vdev_asize = asize; 1063 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1064 } else { 1065 /* 1066 * Make sure the alignment requirement hasn't increased. 1067 */ 1068 if (ashift > vd->vdev_top->vdev_ashift) { 1069 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1070 VDEV_AUX_BAD_LABEL); 1071 return (EINVAL); 1072 } 1073 1074 /* 1075 * Make sure the device hasn't shrunk. 1076 */ 1077 if (asize < vd->vdev_asize) { 1078 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1079 VDEV_AUX_BAD_LABEL); 1080 return (EINVAL); 1081 } 1082 1083 /* 1084 * If all children are healthy and the asize has increased, 1085 * then we've experienced dynamic LUN growth. 1086 */ 1087 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1088 asize > vd->vdev_asize) { 1089 vd->vdev_asize = asize; 1090 } 1091 } 1092 1093 /* 1094 * Ensure we can issue some IO before declaring the 1095 * vdev open for business. 1096 */ 1097 if (vd->vdev_ops->vdev_op_leaf && 1098 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1099 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1100 VDEV_AUX_IO_FAILURE); 1101 return (error); 1102 } 1103 1104 /* 1105 * If this is a top-level vdev, compute the raidz-deflation 1106 * ratio. Note, we hard-code in 128k (1<<17) because it is the 1107 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 1108 * changes, this algorithm must never change, or we will 1109 * inconsistently account for existing bp's. 1110 */ 1111 if (vd->vdev_top == vd) { 1112 vd->vdev_deflate_ratio = (1<<17) / 1113 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 1114 } 1115 1116 /* 1117 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1118 * resilver. But don't do this if we are doing a reopen for a scrub, 1119 * since this would just restart the scrub we are already doing. 1120 */ 1121 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1122 vdev_resilver_needed(vd, NULL, NULL)) 1123 spa_async_request(spa, SPA_ASYNC_RESILVER); 1124 1125 return (0); 1126 } 1127 1128 /* 1129 * Called once the vdevs are all opened, this routine validates the label 1130 * contents. This needs to be done before vdev_load() so that we don't 1131 * inadvertently do repair I/Os to the wrong device. 1132 * 1133 * This function will only return failure if one of the vdevs indicates that it 1134 * has since been destroyed or exported. This is only possible if 1135 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1136 * will be updated but the function will return 0. 1137 */ 1138 int 1139 vdev_validate(vdev_t *vd) 1140 { 1141 spa_t *spa = vd->vdev_spa; 1142 int c; 1143 nvlist_t *label; 1144 uint64_t guid, top_guid; 1145 uint64_t state; 1146 1147 for (c = 0; c < vd->vdev_children; c++) 1148 if (vdev_validate(vd->vdev_child[c]) != 0) 1149 return (EBADF); 1150 1151 /* 1152 * If the device has already failed, or was marked offline, don't do 1153 * any further validation. Otherwise, label I/O will fail and we will 1154 * overwrite the previous state. 1155 */ 1156 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1157 1158 if ((label = vdev_label_read_config(vd)) == NULL) { 1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1160 VDEV_AUX_BAD_LABEL); 1161 return (0); 1162 } 1163 1164 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1165 &guid) != 0 || guid != spa_guid(spa)) { 1166 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1167 VDEV_AUX_CORRUPT_DATA); 1168 nvlist_free(label); 1169 return (0); 1170 } 1171 1172 /* 1173 * If this vdev just became a top-level vdev because its 1174 * sibling was detached, it will have adopted the parent's 1175 * vdev guid -- but the label may or may not be on disk yet. 1176 * Fortunately, either version of the label will have the 1177 * same top guid, so if we're a top-level vdev, we can 1178 * safely compare to that instead. 1179 */ 1180 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1181 &guid) != 0 || 1182 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1183 &top_guid) != 0 || 1184 (vd->vdev_guid != guid && 1185 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1186 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1187 VDEV_AUX_CORRUPT_DATA); 1188 nvlist_free(label); 1189 return (0); 1190 } 1191 1192 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1193 &state) != 0) { 1194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1195 VDEV_AUX_CORRUPT_DATA); 1196 nvlist_free(label); 1197 return (0); 1198 } 1199 1200 nvlist_free(label); 1201 1202 if (spa->spa_load_state == SPA_LOAD_OPEN && 1203 state != POOL_STATE_ACTIVE) 1204 return (EBADF); 1205 1206 /* 1207 * If we were able to open and validate a vdev that was 1208 * previously marked permanently unavailable, clear that state 1209 * now. 1210 */ 1211 if (vd->vdev_not_present) 1212 vd->vdev_not_present = 0; 1213 } 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * Close a virtual device. 1220 */ 1221 void 1222 vdev_close(vdev_t *vd) 1223 { 1224 spa_t *spa = vd->vdev_spa; 1225 1226 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1227 1228 vd->vdev_ops->vdev_op_close(vd); 1229 1230 vdev_cache_purge(vd); 1231 1232 /* 1233 * We record the previous state before we close it, so that if we are 1234 * doing a reopen(), we don't generate FMA ereports if we notice that 1235 * it's still faulted. 1236 */ 1237 vd->vdev_prevstate = vd->vdev_state; 1238 1239 if (vd->vdev_offline) 1240 vd->vdev_state = VDEV_STATE_OFFLINE; 1241 else 1242 vd->vdev_state = VDEV_STATE_CLOSED; 1243 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1244 } 1245 1246 void 1247 vdev_reopen(vdev_t *vd) 1248 { 1249 spa_t *spa = vd->vdev_spa; 1250 1251 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1252 1253 vdev_close(vd); 1254 (void) vdev_open(vd); 1255 1256 /* 1257 * Call vdev_validate() here to make sure we have the same device. 1258 * Otherwise, a device with an invalid label could be successfully 1259 * opened in response to vdev_reopen(). 1260 */ 1261 if (vd->vdev_aux) { 1262 (void) vdev_validate_aux(vd); 1263 if (vdev_readable(vd) && vdev_writeable(vd) && 1264 vd->vdev_aux == &spa->spa_l2cache && 1265 !l2arc_vdev_present(vd)) { 1266 uint64_t size = vdev_get_rsize(vd); 1267 l2arc_add_vdev(spa, vd, 1268 VDEV_LABEL_START_SIZE, 1269 size - VDEV_LABEL_START_SIZE); 1270 } 1271 } else { 1272 (void) vdev_validate(vd); 1273 } 1274 1275 /* 1276 * Reassess parent vdev's health. 1277 */ 1278 vdev_propagate_state(vd); 1279 } 1280 1281 int 1282 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1283 { 1284 int error; 1285 1286 /* 1287 * Normally, partial opens (e.g. of a mirror) are allowed. 1288 * For a create, however, we want to fail the request if 1289 * there are any components we can't open. 1290 */ 1291 error = vdev_open(vd); 1292 1293 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1294 vdev_close(vd); 1295 return (error ? error : ENXIO); 1296 } 1297 1298 /* 1299 * Recursively initialize all labels. 1300 */ 1301 if ((error = vdev_label_init(vd, txg, isreplacing ? 1302 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1303 vdev_close(vd); 1304 return (error); 1305 } 1306 1307 return (0); 1308 } 1309 1310 /* 1311 * The is the latter half of vdev_create(). It is distinct because it 1312 * involves initiating transactions in order to do metaslab creation. 1313 * For creation, we want to try to create all vdevs at once and then undo it 1314 * if anything fails; this is much harder if we have pending transactions. 1315 */ 1316 void 1317 vdev_init(vdev_t *vd, uint64_t txg) 1318 { 1319 /* 1320 * Aim for roughly 200 metaslabs per vdev. 1321 */ 1322 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1323 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1324 1325 /* 1326 * Initialize the vdev's metaslabs. This can't fail because 1327 * there's nothing to read when creating all new metaslabs. 1328 */ 1329 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1330 } 1331 1332 void 1333 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1334 { 1335 ASSERT(vd == vd->vdev_top); 1336 ASSERT(ISP2(flags)); 1337 1338 if (flags & VDD_METASLAB) 1339 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1340 1341 if (flags & VDD_DTL) 1342 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1343 1344 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1345 } 1346 1347 /* 1348 * DTLs. 1349 * 1350 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1351 * the vdev has less than perfect replication. There are three kinds of DTL: 1352 * 1353 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1354 * 1355 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1356 * 1357 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1358 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1359 * txgs that was scrubbed. 1360 * 1361 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1362 * persistent errors or just some device being offline. 1363 * Unlike the other three, the DTL_OUTAGE map is not generally 1364 * maintained; it's only computed when needed, typically to 1365 * determine whether a device can be detached. 1366 * 1367 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1368 * either has the data or it doesn't. 1369 * 1370 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1371 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1372 * if any child is less than fully replicated, then so is its parent. 1373 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1374 * comprising only those txgs which appear in 'maxfaults' or more children; 1375 * those are the txgs we don't have enough replication to read. For example, 1376 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1377 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1378 * two child DTL_MISSING maps. 1379 * 1380 * It should be clear from the above that to compute the DTLs and outage maps 1381 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1382 * Therefore, that is all we keep on disk. When loading the pool, or after 1383 * a configuration change, we generate all other DTLs from first principles. 1384 */ 1385 void 1386 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1387 { 1388 space_map_t *sm = &vd->vdev_dtl[t]; 1389 1390 ASSERT(t < DTL_TYPES); 1391 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1392 1393 mutex_enter(sm->sm_lock); 1394 if (!space_map_contains(sm, txg, size)) 1395 space_map_add(sm, txg, size); 1396 mutex_exit(sm->sm_lock); 1397 } 1398 1399 boolean_t 1400 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1401 { 1402 space_map_t *sm = &vd->vdev_dtl[t]; 1403 boolean_t dirty = B_FALSE; 1404 1405 ASSERT(t < DTL_TYPES); 1406 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1407 1408 mutex_enter(sm->sm_lock); 1409 if (sm->sm_space != 0) 1410 dirty = space_map_contains(sm, txg, size); 1411 mutex_exit(sm->sm_lock); 1412 1413 return (dirty); 1414 } 1415 1416 boolean_t 1417 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1418 { 1419 space_map_t *sm = &vd->vdev_dtl[t]; 1420 boolean_t empty; 1421 1422 mutex_enter(sm->sm_lock); 1423 empty = (sm->sm_space == 0); 1424 mutex_exit(sm->sm_lock); 1425 1426 return (empty); 1427 } 1428 1429 /* 1430 * Reassess DTLs after a config change or scrub completion. 1431 */ 1432 void 1433 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1434 { 1435 spa_t *spa = vd->vdev_spa; 1436 avl_tree_t reftree; 1437 int minref; 1438 1439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1440 1441 for (int c = 0; c < vd->vdev_children; c++) 1442 vdev_dtl_reassess(vd->vdev_child[c], txg, 1443 scrub_txg, scrub_done); 1444 1445 if (vd == spa->spa_root_vdev) 1446 return; 1447 1448 if (vd->vdev_ops->vdev_op_leaf) { 1449 mutex_enter(&vd->vdev_dtl_lock); 1450 if (scrub_txg != 0 && 1451 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1452 /* XXX should check scrub_done? */ 1453 /* 1454 * We completed a scrub up to scrub_txg. If we 1455 * did it without rebooting, then the scrub dtl 1456 * will be valid, so excise the old region and 1457 * fold in the scrub dtl. Otherwise, leave the 1458 * dtl as-is if there was an error. 1459 * 1460 * There's little trick here: to excise the beginning 1461 * of the DTL_MISSING map, we put it into a reference 1462 * tree and then add a segment with refcnt -1 that 1463 * covers the range [0, scrub_txg). This means 1464 * that each txg in that range has refcnt -1 or 0. 1465 * We then add DTL_SCRUB with a refcnt of 2, so that 1466 * entries in the range [0, scrub_txg) will have a 1467 * positive refcnt -- either 1 or 2. We then convert 1468 * the reference tree into the new DTL_MISSING map. 1469 */ 1470 space_map_ref_create(&reftree); 1471 space_map_ref_add_map(&reftree, 1472 &vd->vdev_dtl[DTL_MISSING], 1); 1473 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1474 space_map_ref_add_map(&reftree, 1475 &vd->vdev_dtl[DTL_SCRUB], 2); 1476 space_map_ref_generate_map(&reftree, 1477 &vd->vdev_dtl[DTL_MISSING], 1); 1478 space_map_ref_destroy(&reftree); 1479 } 1480 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1481 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1482 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1483 if (scrub_done) 1484 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1485 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1486 if (!vdev_readable(vd)) 1487 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1488 else 1489 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1490 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1491 mutex_exit(&vd->vdev_dtl_lock); 1492 1493 if (txg != 0) 1494 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1495 return; 1496 } 1497 1498 mutex_enter(&vd->vdev_dtl_lock); 1499 for (int t = 0; t < DTL_TYPES; t++) { 1500 if (t == DTL_SCRUB) 1501 continue; /* leaf vdevs only */ 1502 if (t == DTL_PARTIAL) 1503 minref = 1; /* i.e. non-zero */ 1504 else if (vd->vdev_nparity != 0) 1505 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1506 else 1507 minref = vd->vdev_children; /* any kind of mirror */ 1508 space_map_ref_create(&reftree); 1509 for (int c = 0; c < vd->vdev_children; c++) { 1510 vdev_t *cvd = vd->vdev_child[c]; 1511 mutex_enter(&cvd->vdev_dtl_lock); 1512 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1513 mutex_exit(&cvd->vdev_dtl_lock); 1514 } 1515 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1516 space_map_ref_destroy(&reftree); 1517 } 1518 mutex_exit(&vd->vdev_dtl_lock); 1519 } 1520 1521 static int 1522 vdev_dtl_load(vdev_t *vd) 1523 { 1524 spa_t *spa = vd->vdev_spa; 1525 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1526 objset_t *mos = spa->spa_meta_objset; 1527 dmu_buf_t *db; 1528 int error; 1529 1530 ASSERT(vd->vdev_children == 0); 1531 1532 if (smo->smo_object == 0) 1533 return (0); 1534 1535 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1536 return (error); 1537 1538 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1539 bcopy(db->db_data, smo, sizeof (*smo)); 1540 dmu_buf_rele(db, FTAG); 1541 1542 mutex_enter(&vd->vdev_dtl_lock); 1543 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1544 NULL, SM_ALLOC, smo, mos); 1545 mutex_exit(&vd->vdev_dtl_lock); 1546 1547 return (error); 1548 } 1549 1550 void 1551 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1552 { 1553 spa_t *spa = vd->vdev_spa; 1554 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1555 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1556 objset_t *mos = spa->spa_meta_objset; 1557 space_map_t smsync; 1558 kmutex_t smlock; 1559 dmu_buf_t *db; 1560 dmu_tx_t *tx; 1561 1562 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1563 1564 if (vd->vdev_detached) { 1565 if (smo->smo_object != 0) { 1566 int err = dmu_object_free(mos, smo->smo_object, tx); 1567 ASSERT3U(err, ==, 0); 1568 smo->smo_object = 0; 1569 } 1570 dmu_tx_commit(tx); 1571 return; 1572 } 1573 1574 if (smo->smo_object == 0) { 1575 ASSERT(smo->smo_objsize == 0); 1576 ASSERT(smo->smo_alloc == 0); 1577 smo->smo_object = dmu_object_alloc(mos, 1578 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1579 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1580 ASSERT(smo->smo_object != 0); 1581 vdev_config_dirty(vd->vdev_top); 1582 } 1583 1584 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1585 1586 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1587 &smlock); 1588 1589 mutex_enter(&smlock); 1590 1591 mutex_enter(&vd->vdev_dtl_lock); 1592 space_map_walk(sm, space_map_add, &smsync); 1593 mutex_exit(&vd->vdev_dtl_lock); 1594 1595 space_map_truncate(smo, mos, tx); 1596 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1597 1598 space_map_destroy(&smsync); 1599 1600 mutex_exit(&smlock); 1601 mutex_destroy(&smlock); 1602 1603 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1604 dmu_buf_will_dirty(db, tx); 1605 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1606 bcopy(smo, db->db_data, sizeof (*smo)); 1607 dmu_buf_rele(db, FTAG); 1608 1609 dmu_tx_commit(tx); 1610 } 1611 1612 /* 1613 * Determine whether the specified vdev can be offlined/detached/removed 1614 * without losing data. 1615 */ 1616 boolean_t 1617 vdev_dtl_required(vdev_t *vd) 1618 { 1619 spa_t *spa = vd->vdev_spa; 1620 vdev_t *tvd = vd->vdev_top; 1621 uint8_t cant_read = vd->vdev_cant_read; 1622 boolean_t required; 1623 1624 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1625 1626 if (vd == spa->spa_root_vdev || vd == tvd) 1627 return (B_TRUE); 1628 1629 /* 1630 * Temporarily mark the device as unreadable, and then determine 1631 * whether this results in any DTL outages in the top-level vdev. 1632 * If not, we can safely offline/detach/remove the device. 1633 */ 1634 vd->vdev_cant_read = B_TRUE; 1635 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1636 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1637 vd->vdev_cant_read = cant_read; 1638 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1639 1640 return (required); 1641 } 1642 1643 /* 1644 * Determine if resilver is needed, and if so the txg range. 1645 */ 1646 boolean_t 1647 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1648 { 1649 boolean_t needed = B_FALSE; 1650 uint64_t thismin = UINT64_MAX; 1651 uint64_t thismax = 0; 1652 1653 if (vd->vdev_children == 0) { 1654 mutex_enter(&vd->vdev_dtl_lock); 1655 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1656 vdev_writeable(vd)) { 1657 space_seg_t *ss; 1658 1659 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1660 thismin = ss->ss_start - 1; 1661 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1662 thismax = ss->ss_end; 1663 needed = B_TRUE; 1664 } 1665 mutex_exit(&vd->vdev_dtl_lock); 1666 } else { 1667 for (int c = 0; c < vd->vdev_children; c++) { 1668 vdev_t *cvd = vd->vdev_child[c]; 1669 uint64_t cmin, cmax; 1670 1671 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1672 thismin = MIN(thismin, cmin); 1673 thismax = MAX(thismax, cmax); 1674 needed = B_TRUE; 1675 } 1676 } 1677 } 1678 1679 if (needed && minp) { 1680 *minp = thismin; 1681 *maxp = thismax; 1682 } 1683 return (needed); 1684 } 1685 1686 void 1687 vdev_load(vdev_t *vd) 1688 { 1689 /* 1690 * Recursively load all children. 1691 */ 1692 for (int c = 0; c < vd->vdev_children; c++) 1693 vdev_load(vd->vdev_child[c]); 1694 1695 /* 1696 * If this is a top-level vdev, initialize its metaslabs. 1697 */ 1698 if (vd == vd->vdev_top && 1699 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1700 vdev_metaslab_init(vd, 0) != 0)) 1701 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1702 VDEV_AUX_CORRUPT_DATA); 1703 1704 /* 1705 * If this is a leaf vdev, load its DTL. 1706 */ 1707 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1708 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1709 VDEV_AUX_CORRUPT_DATA); 1710 } 1711 1712 /* 1713 * The special vdev case is used for hot spares and l2cache devices. Its 1714 * sole purpose it to set the vdev state for the associated vdev. To do this, 1715 * we make sure that we can open the underlying device, then try to read the 1716 * label, and make sure that the label is sane and that it hasn't been 1717 * repurposed to another pool. 1718 */ 1719 int 1720 vdev_validate_aux(vdev_t *vd) 1721 { 1722 nvlist_t *label; 1723 uint64_t guid, version; 1724 uint64_t state; 1725 1726 if (!vdev_readable(vd)) 1727 return (0); 1728 1729 if ((label = vdev_label_read_config(vd)) == NULL) { 1730 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1731 VDEV_AUX_CORRUPT_DATA); 1732 return (-1); 1733 } 1734 1735 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1736 version > SPA_VERSION || 1737 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1738 guid != vd->vdev_guid || 1739 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1740 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1741 VDEV_AUX_CORRUPT_DATA); 1742 nvlist_free(label); 1743 return (-1); 1744 } 1745 1746 /* 1747 * We don't actually check the pool state here. If it's in fact in 1748 * use by another pool, we update this fact on the fly when requested. 1749 */ 1750 nvlist_free(label); 1751 return (0); 1752 } 1753 1754 void 1755 vdev_sync_done(vdev_t *vd, uint64_t txg) 1756 { 1757 metaslab_t *msp; 1758 1759 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1760 metaslab_sync_done(msp, txg); 1761 } 1762 1763 void 1764 vdev_sync(vdev_t *vd, uint64_t txg) 1765 { 1766 spa_t *spa = vd->vdev_spa; 1767 vdev_t *lvd; 1768 metaslab_t *msp; 1769 dmu_tx_t *tx; 1770 1771 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1772 ASSERT(vd == vd->vdev_top); 1773 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1774 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1775 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1776 ASSERT(vd->vdev_ms_array != 0); 1777 vdev_config_dirty(vd); 1778 dmu_tx_commit(tx); 1779 } 1780 1781 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1782 metaslab_sync(msp, txg); 1783 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1784 } 1785 1786 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1787 vdev_dtl_sync(lvd, txg); 1788 1789 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1790 } 1791 1792 uint64_t 1793 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1794 { 1795 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1796 } 1797 1798 /* 1799 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1800 * not be opened, and no I/O is attempted. 1801 */ 1802 int 1803 vdev_fault(spa_t *spa, uint64_t guid) 1804 { 1805 vdev_t *vd; 1806 1807 spa_vdev_state_enter(spa); 1808 1809 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1810 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1811 1812 if (!vd->vdev_ops->vdev_op_leaf) 1813 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1814 1815 /* 1816 * Faulted state takes precedence over degraded. 1817 */ 1818 vd->vdev_faulted = 1ULL; 1819 vd->vdev_degraded = 0ULL; 1820 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1821 1822 /* 1823 * If marking the vdev as faulted cause the top-level vdev to become 1824 * unavailable, then back off and simply mark the vdev as degraded 1825 * instead. 1826 */ 1827 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1828 vd->vdev_degraded = 1ULL; 1829 vd->vdev_faulted = 0ULL; 1830 1831 /* 1832 * If we reopen the device and it's not dead, only then do we 1833 * mark it degraded. 1834 */ 1835 vdev_reopen(vd); 1836 1837 if (vdev_readable(vd)) { 1838 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1839 VDEV_AUX_ERR_EXCEEDED); 1840 } 1841 } 1842 1843 return (spa_vdev_state_exit(spa, vd, 0)); 1844 } 1845 1846 /* 1847 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1848 * user that something is wrong. The vdev continues to operate as normal as far 1849 * as I/O is concerned. 1850 */ 1851 int 1852 vdev_degrade(spa_t *spa, uint64_t guid) 1853 { 1854 vdev_t *vd; 1855 1856 spa_vdev_state_enter(spa); 1857 1858 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1859 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1860 1861 if (!vd->vdev_ops->vdev_op_leaf) 1862 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1863 1864 /* 1865 * If the vdev is already faulted, then don't do anything. 1866 */ 1867 if (vd->vdev_faulted || vd->vdev_degraded) 1868 return (spa_vdev_state_exit(spa, NULL, 0)); 1869 1870 vd->vdev_degraded = 1ULL; 1871 if (!vdev_is_dead(vd)) 1872 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1873 VDEV_AUX_ERR_EXCEEDED); 1874 1875 return (spa_vdev_state_exit(spa, vd, 0)); 1876 } 1877 1878 /* 1879 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1880 * any attached spare device should be detached when the device finishes 1881 * resilvering. Second, the online should be treated like a 'test' online case, 1882 * so no FMA events are generated if the device fails to open. 1883 */ 1884 int 1885 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1886 { 1887 vdev_t *vd; 1888 1889 spa_vdev_state_enter(spa); 1890 1891 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1892 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1893 1894 if (!vd->vdev_ops->vdev_op_leaf) 1895 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1896 1897 vd->vdev_offline = B_FALSE; 1898 vd->vdev_tmpoffline = B_FALSE; 1899 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1900 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1901 vdev_reopen(vd->vdev_top); 1902 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1903 1904 if (newstate) 1905 *newstate = vd->vdev_state; 1906 if ((flags & ZFS_ONLINE_UNSPARE) && 1907 !vdev_is_dead(vd) && vd->vdev_parent && 1908 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1909 vd->vdev_parent->vdev_child[0] == vd) 1910 vd->vdev_unspare = B_TRUE; 1911 1912 return (spa_vdev_state_exit(spa, vd, 0)); 1913 } 1914 1915 int 1916 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1917 { 1918 vdev_t *vd; 1919 1920 spa_vdev_state_enter(spa); 1921 1922 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1923 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1924 1925 if (!vd->vdev_ops->vdev_op_leaf) 1926 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1927 1928 /* 1929 * If the device isn't already offline, try to offline it. 1930 */ 1931 if (!vd->vdev_offline) { 1932 /* 1933 * If this device has the only valid copy of some data, 1934 * don't allow it to be offlined. 1935 */ 1936 if (vd->vdev_aux == NULL && vdev_dtl_required(vd)) 1937 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1938 1939 /* 1940 * Offline this device and reopen its top-level vdev. 1941 * If this action results in the top-level vdev becoming 1942 * unusable, undo it and fail the request. 1943 */ 1944 vd->vdev_offline = B_TRUE; 1945 vdev_reopen(vd->vdev_top); 1946 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) { 1947 vd->vdev_offline = B_FALSE; 1948 vdev_reopen(vd->vdev_top); 1949 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1950 } 1951 } 1952 1953 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 1954 1955 return (spa_vdev_state_exit(spa, vd, 0)); 1956 } 1957 1958 /* 1959 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1960 * vdev_offline(), we assume the spa config is locked. We also clear all 1961 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1962 */ 1963 void 1964 vdev_clear(spa_t *spa, vdev_t *vd) 1965 { 1966 vdev_t *rvd = spa->spa_root_vdev; 1967 1968 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1969 1970 if (vd == NULL) 1971 vd = rvd; 1972 1973 vd->vdev_stat.vs_read_errors = 0; 1974 vd->vdev_stat.vs_write_errors = 0; 1975 vd->vdev_stat.vs_checksum_errors = 0; 1976 1977 for (int c = 0; c < vd->vdev_children; c++) 1978 vdev_clear(spa, vd->vdev_child[c]); 1979 1980 /* 1981 * If we're in the FAULTED state or have experienced failed I/O, then 1982 * clear the persistent state and attempt to reopen the device. We 1983 * also mark the vdev config dirty, so that the new faulted state is 1984 * written out to disk. 1985 */ 1986 if (vd->vdev_faulted || vd->vdev_degraded || 1987 !vdev_readable(vd) || !vdev_writeable(vd)) { 1988 1989 vd->vdev_faulted = vd->vdev_degraded = 0; 1990 vd->vdev_cant_read = B_FALSE; 1991 vd->vdev_cant_write = B_FALSE; 1992 1993 vdev_reopen(vd); 1994 1995 if (vd != rvd) 1996 vdev_state_dirty(vd->vdev_top); 1997 1998 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 1999 spa_async_request(spa, SPA_ASYNC_RESILVER); 2000 2001 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2002 } 2003 } 2004 2005 boolean_t 2006 vdev_is_dead(vdev_t *vd) 2007 { 2008 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2009 } 2010 2011 boolean_t 2012 vdev_readable(vdev_t *vd) 2013 { 2014 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2015 } 2016 2017 boolean_t 2018 vdev_writeable(vdev_t *vd) 2019 { 2020 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2021 } 2022 2023 boolean_t 2024 vdev_allocatable(vdev_t *vd) 2025 { 2026 uint64_t state = vd->vdev_state; 2027 2028 /* 2029 * We currently allow allocations from vdevs which may be in the 2030 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2031 * fails to reopen then we'll catch it later when we're holding 2032 * the proper locks. Note that we have to get the vdev state 2033 * in a local variable because although it changes atomically, 2034 * we're asking two separate questions about it. 2035 */ 2036 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2037 !vd->vdev_cant_write); 2038 } 2039 2040 boolean_t 2041 vdev_accessible(vdev_t *vd, zio_t *zio) 2042 { 2043 ASSERT(zio->io_vd == vd); 2044 2045 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2046 return (B_FALSE); 2047 2048 if (zio->io_type == ZIO_TYPE_READ) 2049 return (!vd->vdev_cant_read); 2050 2051 if (zio->io_type == ZIO_TYPE_WRITE) 2052 return (!vd->vdev_cant_write); 2053 2054 return (B_TRUE); 2055 } 2056 2057 /* 2058 * Get statistics for the given vdev. 2059 */ 2060 void 2061 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2062 { 2063 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2064 2065 mutex_enter(&vd->vdev_stat_lock); 2066 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2067 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2068 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2069 vs->vs_state = vd->vdev_state; 2070 vs->vs_rsize = vdev_get_rsize(vd); 2071 mutex_exit(&vd->vdev_stat_lock); 2072 2073 /* 2074 * If we're getting stats on the root vdev, aggregate the I/O counts 2075 * over all top-level vdevs (i.e. the direct children of the root). 2076 */ 2077 if (vd == rvd) { 2078 for (int c = 0; c < rvd->vdev_children; c++) { 2079 vdev_t *cvd = rvd->vdev_child[c]; 2080 vdev_stat_t *cvs = &cvd->vdev_stat; 2081 2082 mutex_enter(&vd->vdev_stat_lock); 2083 for (int t = 0; t < ZIO_TYPES; t++) { 2084 vs->vs_ops[t] += cvs->vs_ops[t]; 2085 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2086 } 2087 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2088 mutex_exit(&vd->vdev_stat_lock); 2089 } 2090 } 2091 } 2092 2093 void 2094 vdev_clear_stats(vdev_t *vd) 2095 { 2096 mutex_enter(&vd->vdev_stat_lock); 2097 vd->vdev_stat.vs_space = 0; 2098 vd->vdev_stat.vs_dspace = 0; 2099 vd->vdev_stat.vs_alloc = 0; 2100 mutex_exit(&vd->vdev_stat_lock); 2101 } 2102 2103 void 2104 vdev_stat_update(zio_t *zio, uint64_t psize) 2105 { 2106 spa_t *spa = zio->io_spa; 2107 vdev_t *rvd = spa->spa_root_vdev; 2108 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2109 vdev_t *pvd; 2110 uint64_t txg = zio->io_txg; 2111 vdev_stat_t *vs = &vd->vdev_stat; 2112 zio_type_t type = zio->io_type; 2113 int flags = zio->io_flags; 2114 2115 /* 2116 * If this i/o is a gang leader, it didn't do any actual work. 2117 */ 2118 if (zio->io_gang_tree) 2119 return; 2120 2121 if (zio->io_error == 0) { 2122 /* 2123 * If this is a root i/o, don't count it -- we've already 2124 * counted the top-level vdevs, and vdev_get_stats() will 2125 * aggregate them when asked. This reduces contention on 2126 * the root vdev_stat_lock and implicitly handles blocks 2127 * that compress away to holes, for which there is no i/o. 2128 * (Holes never create vdev children, so all the counters 2129 * remain zero, which is what we want.) 2130 * 2131 * Note: this only applies to successful i/o (io_error == 0) 2132 * because unlike i/o counts, errors are not additive. 2133 * When reading a ditto block, for example, failure of 2134 * one top-level vdev does not imply a root-level error. 2135 */ 2136 if (vd == rvd) 2137 return; 2138 2139 ASSERT(vd == zio->io_vd); 2140 2141 if (flags & ZIO_FLAG_IO_BYPASS) 2142 return; 2143 2144 mutex_enter(&vd->vdev_stat_lock); 2145 2146 if (flags & ZIO_FLAG_IO_REPAIR) { 2147 if (flags & ZIO_FLAG_SCRUB_THREAD) 2148 vs->vs_scrub_repaired += psize; 2149 if (flags & ZIO_FLAG_SELF_HEAL) 2150 vs->vs_self_healed += psize; 2151 } 2152 2153 vs->vs_ops[type]++; 2154 vs->vs_bytes[type] += psize; 2155 2156 mutex_exit(&vd->vdev_stat_lock); 2157 return; 2158 } 2159 2160 if (flags & ZIO_FLAG_SPECULATIVE) 2161 return; 2162 2163 mutex_enter(&vd->vdev_stat_lock); 2164 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2165 if (zio->io_error == ECKSUM) 2166 vs->vs_checksum_errors++; 2167 else 2168 vs->vs_read_errors++; 2169 } 2170 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2171 vs->vs_write_errors++; 2172 mutex_exit(&vd->vdev_stat_lock); 2173 2174 if (type == ZIO_TYPE_WRITE && txg != 0 && 2175 (!(flags & ZIO_FLAG_IO_REPAIR) || 2176 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2177 /* 2178 * This is either a normal write (not a repair), or it's a 2179 * repair induced by the scrub thread. In the normal case, 2180 * we commit the DTL change in the same txg as the block 2181 * was born. In the scrub-induced repair case, we know that 2182 * scrubs run in first-pass syncing context, so we commit 2183 * the DTL change in spa->spa_syncing_txg. 2184 * 2185 * We currently do not make DTL entries for failed spontaneous 2186 * self-healing writes triggered by normal (non-scrubbing) 2187 * reads, because we have no transactional context in which to 2188 * do so -- and it's not clear that it'd be desirable anyway. 2189 */ 2190 if (vd->vdev_ops->vdev_op_leaf) { 2191 uint64_t commit_txg = txg; 2192 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2193 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2194 ASSERT(spa_sync_pass(spa) == 1); 2195 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2196 commit_txg = spa->spa_syncing_txg; 2197 } 2198 ASSERT(commit_txg >= spa->spa_syncing_txg); 2199 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2200 return; 2201 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2202 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2203 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2204 } 2205 if (vd != rvd) 2206 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2207 } 2208 } 2209 2210 void 2211 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2212 { 2213 int c; 2214 vdev_stat_t *vs = &vd->vdev_stat; 2215 2216 for (c = 0; c < vd->vdev_children; c++) 2217 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2218 2219 mutex_enter(&vd->vdev_stat_lock); 2220 2221 if (type == POOL_SCRUB_NONE) { 2222 /* 2223 * Update completion and end time. Leave everything else alone 2224 * so we can report what happened during the previous scrub. 2225 */ 2226 vs->vs_scrub_complete = complete; 2227 vs->vs_scrub_end = gethrestime_sec(); 2228 } else { 2229 vs->vs_scrub_type = type; 2230 vs->vs_scrub_complete = 0; 2231 vs->vs_scrub_examined = 0; 2232 vs->vs_scrub_repaired = 0; 2233 vs->vs_scrub_start = gethrestime_sec(); 2234 vs->vs_scrub_end = 0; 2235 } 2236 2237 mutex_exit(&vd->vdev_stat_lock); 2238 } 2239 2240 /* 2241 * Update the in-core space usage stats for this vdev and the root vdev. 2242 */ 2243 void 2244 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2245 boolean_t update_root) 2246 { 2247 int64_t dspace_delta = space_delta; 2248 spa_t *spa = vd->vdev_spa; 2249 vdev_t *rvd = spa->spa_root_vdev; 2250 2251 ASSERT(vd == vd->vdev_top); 2252 2253 /* 2254 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2255 * factor. We must calculate this here and not at the root vdev 2256 * because the root vdev's psize-to-asize is simply the max of its 2257 * childrens', thus not accurate enough for us. 2258 */ 2259 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2260 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2261 vd->vdev_deflate_ratio; 2262 2263 mutex_enter(&vd->vdev_stat_lock); 2264 vd->vdev_stat.vs_space += space_delta; 2265 vd->vdev_stat.vs_alloc += alloc_delta; 2266 vd->vdev_stat.vs_dspace += dspace_delta; 2267 mutex_exit(&vd->vdev_stat_lock); 2268 2269 if (update_root) { 2270 ASSERT(rvd == vd->vdev_parent); 2271 ASSERT(vd->vdev_ms_count != 0); 2272 2273 /* 2274 * Don't count non-normal (e.g. intent log) space as part of 2275 * the pool's capacity. 2276 */ 2277 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2278 return; 2279 2280 mutex_enter(&rvd->vdev_stat_lock); 2281 rvd->vdev_stat.vs_space += space_delta; 2282 rvd->vdev_stat.vs_alloc += alloc_delta; 2283 rvd->vdev_stat.vs_dspace += dspace_delta; 2284 mutex_exit(&rvd->vdev_stat_lock); 2285 } 2286 } 2287 2288 /* 2289 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2290 * so that it will be written out next time the vdev configuration is synced. 2291 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2292 */ 2293 void 2294 vdev_config_dirty(vdev_t *vd) 2295 { 2296 spa_t *spa = vd->vdev_spa; 2297 vdev_t *rvd = spa->spa_root_vdev; 2298 int c; 2299 2300 /* 2301 * If this is an aux vdev (as with l2cache and spare devices), then we 2302 * update the vdev config manually and set the sync flag. 2303 */ 2304 if (vd->vdev_aux != NULL) { 2305 spa_aux_vdev_t *sav = vd->vdev_aux; 2306 nvlist_t **aux; 2307 uint_t naux; 2308 2309 for (c = 0; c < sav->sav_count; c++) { 2310 if (sav->sav_vdevs[c] == vd) 2311 break; 2312 } 2313 2314 if (c == sav->sav_count) { 2315 /* 2316 * We're being removed. There's nothing more to do. 2317 */ 2318 ASSERT(sav->sav_sync == B_TRUE); 2319 return; 2320 } 2321 2322 sav->sav_sync = B_TRUE; 2323 2324 if (nvlist_lookup_nvlist_array(sav->sav_config, 2325 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2326 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2327 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2328 } 2329 2330 ASSERT(c < naux); 2331 2332 /* 2333 * Setting the nvlist in the middle if the array is a little 2334 * sketchy, but it will work. 2335 */ 2336 nvlist_free(aux[c]); 2337 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2338 2339 return; 2340 } 2341 2342 /* 2343 * The dirty list is protected by the SCL_CONFIG lock. The caller 2344 * must either hold SCL_CONFIG as writer, or must be the sync thread 2345 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2346 * so this is sufficient to ensure mutual exclusion. 2347 */ 2348 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2349 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2350 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2351 2352 if (vd == rvd) { 2353 for (c = 0; c < rvd->vdev_children; c++) 2354 vdev_config_dirty(rvd->vdev_child[c]); 2355 } else { 2356 ASSERT(vd == vd->vdev_top); 2357 2358 if (!list_link_active(&vd->vdev_config_dirty_node)) 2359 list_insert_head(&spa->spa_config_dirty_list, vd); 2360 } 2361 } 2362 2363 void 2364 vdev_config_clean(vdev_t *vd) 2365 { 2366 spa_t *spa = vd->vdev_spa; 2367 2368 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2369 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2370 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2371 2372 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2373 list_remove(&spa->spa_config_dirty_list, vd); 2374 } 2375 2376 /* 2377 * Mark a top-level vdev's state as dirty, so that the next pass of 2378 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2379 * the state changes from larger config changes because they require 2380 * much less locking, and are often needed for administrative actions. 2381 */ 2382 void 2383 vdev_state_dirty(vdev_t *vd) 2384 { 2385 spa_t *spa = vd->vdev_spa; 2386 2387 ASSERT(vd == vd->vdev_top); 2388 2389 /* 2390 * The state list is protected by the SCL_STATE lock. The caller 2391 * must either hold SCL_STATE as writer, or must be the sync thread 2392 * (which holds SCL_STATE as reader). There's only one sync thread, 2393 * so this is sufficient to ensure mutual exclusion. 2394 */ 2395 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2396 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2397 spa_config_held(spa, SCL_STATE, RW_READER))); 2398 2399 if (!list_link_active(&vd->vdev_state_dirty_node)) 2400 list_insert_head(&spa->spa_state_dirty_list, vd); 2401 } 2402 2403 void 2404 vdev_state_clean(vdev_t *vd) 2405 { 2406 spa_t *spa = vd->vdev_spa; 2407 2408 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2409 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2410 spa_config_held(spa, SCL_STATE, RW_READER))); 2411 2412 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2413 list_remove(&spa->spa_state_dirty_list, vd); 2414 } 2415 2416 /* 2417 * Propagate vdev state up from children to parent. 2418 */ 2419 void 2420 vdev_propagate_state(vdev_t *vd) 2421 { 2422 spa_t *spa = vd->vdev_spa; 2423 vdev_t *rvd = spa->spa_root_vdev; 2424 int degraded = 0, faulted = 0; 2425 int corrupted = 0; 2426 int c; 2427 vdev_t *child; 2428 2429 if (vd->vdev_children > 0) { 2430 for (c = 0; c < vd->vdev_children; c++) { 2431 child = vd->vdev_child[c]; 2432 2433 if (!vdev_readable(child) || 2434 (!vdev_writeable(child) && spa_writeable(spa))) { 2435 /* 2436 * Root special: if there is a top-level log 2437 * device, treat the root vdev as if it were 2438 * degraded. 2439 */ 2440 if (child->vdev_islog && vd == rvd) 2441 degraded++; 2442 else 2443 faulted++; 2444 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2445 degraded++; 2446 } 2447 2448 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2449 corrupted++; 2450 } 2451 2452 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2453 2454 /* 2455 * Root special: if there is a top-level vdev that cannot be 2456 * opened due to corrupted metadata, then propagate the root 2457 * vdev's aux state as 'corrupt' rather than 'insufficient 2458 * replicas'. 2459 */ 2460 if (corrupted && vd == rvd && 2461 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2462 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2463 VDEV_AUX_CORRUPT_DATA); 2464 } 2465 2466 if (vd->vdev_parent) 2467 vdev_propagate_state(vd->vdev_parent); 2468 } 2469 2470 /* 2471 * Set a vdev's state. If this is during an open, we don't update the parent 2472 * state, because we're in the process of opening children depth-first. 2473 * Otherwise, we propagate the change to the parent. 2474 * 2475 * If this routine places a device in a faulted state, an appropriate ereport is 2476 * generated. 2477 */ 2478 void 2479 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2480 { 2481 uint64_t save_state; 2482 spa_t *spa = vd->vdev_spa; 2483 2484 if (state == vd->vdev_state) { 2485 vd->vdev_stat.vs_aux = aux; 2486 return; 2487 } 2488 2489 save_state = vd->vdev_state; 2490 2491 vd->vdev_state = state; 2492 vd->vdev_stat.vs_aux = aux; 2493 2494 /* 2495 * If we are setting the vdev state to anything but an open state, then 2496 * always close the underlying device. Otherwise, we keep accessible 2497 * but invalid devices open forever. We don't call vdev_close() itself, 2498 * because that implies some extra checks (offline, etc) that we don't 2499 * want here. This is limited to leaf devices, because otherwise 2500 * closing the device will affect other children. 2501 */ 2502 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2503 vd->vdev_ops->vdev_op_close(vd); 2504 2505 if (vd->vdev_removed && 2506 state == VDEV_STATE_CANT_OPEN && 2507 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2508 /* 2509 * If the previous state is set to VDEV_STATE_REMOVED, then this 2510 * device was previously marked removed and someone attempted to 2511 * reopen it. If this failed due to a nonexistent device, then 2512 * keep the device in the REMOVED state. We also let this be if 2513 * it is one of our special test online cases, which is only 2514 * attempting to online the device and shouldn't generate an FMA 2515 * fault. 2516 */ 2517 vd->vdev_state = VDEV_STATE_REMOVED; 2518 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2519 } else if (state == VDEV_STATE_REMOVED) { 2520 /* 2521 * Indicate to the ZFS DE that this device has been removed, and 2522 * any recent errors should be ignored. 2523 */ 2524 zfs_post_remove(spa, vd); 2525 vd->vdev_removed = B_TRUE; 2526 } else if (state == VDEV_STATE_CANT_OPEN) { 2527 /* 2528 * If we fail to open a vdev during an import, we mark it as 2529 * "not available", which signifies that it was never there to 2530 * begin with. Failure to open such a device is not considered 2531 * an error. 2532 */ 2533 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2534 vd->vdev_ops->vdev_op_leaf) 2535 vd->vdev_not_present = 1; 2536 2537 /* 2538 * Post the appropriate ereport. If the 'prevstate' field is 2539 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2540 * that this is part of a vdev_reopen(). In this case, we don't 2541 * want to post the ereport if the device was already in the 2542 * CANT_OPEN state beforehand. 2543 * 2544 * If the 'checkremove' flag is set, then this is an attempt to 2545 * online the device in response to an insertion event. If we 2546 * hit this case, then we have detected an insertion event for a 2547 * faulted or offline device that wasn't in the removed state. 2548 * In this scenario, we don't post an ereport because we are 2549 * about to replace the device, or attempt an online with 2550 * vdev_forcefault, which will generate the fault for us. 2551 */ 2552 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2553 !vd->vdev_not_present && !vd->vdev_checkremove && 2554 vd != spa->spa_root_vdev) { 2555 const char *class; 2556 2557 switch (aux) { 2558 case VDEV_AUX_OPEN_FAILED: 2559 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2560 break; 2561 case VDEV_AUX_CORRUPT_DATA: 2562 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2563 break; 2564 case VDEV_AUX_NO_REPLICAS: 2565 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2566 break; 2567 case VDEV_AUX_BAD_GUID_SUM: 2568 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2569 break; 2570 case VDEV_AUX_TOO_SMALL: 2571 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2572 break; 2573 case VDEV_AUX_BAD_LABEL: 2574 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2575 break; 2576 case VDEV_AUX_IO_FAILURE: 2577 class = FM_EREPORT_ZFS_IO_FAILURE; 2578 break; 2579 default: 2580 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2581 } 2582 2583 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2584 } 2585 2586 /* Erase any notion of persistent removed state */ 2587 vd->vdev_removed = B_FALSE; 2588 } else { 2589 vd->vdev_removed = B_FALSE; 2590 } 2591 2592 if (!isopen) 2593 vdev_propagate_state(vd); 2594 } 2595 2596 /* 2597 * Check the vdev configuration to ensure that it's capable of supporting 2598 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2599 * In addition, only a single top-level vdev is allowed and none of the leaves 2600 * can be wholedisks. 2601 */ 2602 boolean_t 2603 vdev_is_bootable(vdev_t *vd) 2604 { 2605 int c; 2606 2607 if (!vd->vdev_ops->vdev_op_leaf) { 2608 char *vdev_type = vd->vdev_ops->vdev_op_type; 2609 2610 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2611 vd->vdev_children > 1) { 2612 return (B_FALSE); 2613 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2614 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2615 return (B_FALSE); 2616 } 2617 } else if (vd->vdev_wholedisk == 1) { 2618 return (B_FALSE); 2619 } 2620 2621 for (c = 0; c < vd->vdev_children; c++) { 2622 if (!vdev_is_bootable(vd->vdev_child[c])) 2623 return (B_FALSE); 2624 } 2625 return (B_TRUE); 2626 } 2627