1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_disk_ops, 53 &vdev_file_ops, 54 &vdev_missing_ops, 55 NULL 56 }; 57 58 /* 59 * Given a vdev type, return the appropriate ops vector. 60 */ 61 static vdev_ops_t * 62 vdev_getops(const char *type) 63 { 64 vdev_ops_t *ops, **opspp; 65 66 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 67 if (strcmp(ops->vdev_op_type, type) == 0) 68 break; 69 70 return (ops); 71 } 72 73 /* 74 * Default asize function: return the MAX of psize with the asize of 75 * all children. This is what's used by anything other than RAID-Z. 76 */ 77 uint64_t 78 vdev_default_asize(vdev_t *vd, uint64_t psize) 79 { 80 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift); 81 uint64_t csize; 82 uint64_t c; 83 84 for (c = 0; c < vd->vdev_children; c++) { 85 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 86 asize = MAX(asize, csize); 87 } 88 89 return (asize); 90 } 91 92 /* 93 * Get the replaceable or attachable device size. 94 * If the parent is a mirror or raidz, the replaceable size is the minimum 95 * psize of all its children. For the rest, just return our own psize. 96 * 97 * e.g. 98 * psize rsize 99 * root - - 100 * mirror/raidz - - 101 * disk1 20g 20g 102 * disk2 40g 20g 103 * disk3 80g 80g 104 */ 105 uint64_t 106 vdev_get_rsize(vdev_t *vd) 107 { 108 vdev_t *pvd, *cvd; 109 uint64_t c, rsize; 110 111 pvd = vd->vdev_parent; 112 113 /* 114 * If our parent is NULL or the root, just return our own psize. 115 */ 116 if (pvd == NULL || pvd->vdev_parent == NULL) 117 return (vd->vdev_psize); 118 119 rsize = 0; 120 121 for (c = 0; c < pvd->vdev_children; c++) { 122 cvd = pvd->vdev_child[c]; 123 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 124 } 125 126 return (rsize); 127 } 128 129 vdev_t * 130 vdev_lookup_top(spa_t *spa, uint64_t vdev) 131 { 132 vdev_t *rvd = spa->spa_root_vdev; 133 134 if (vdev < rvd->vdev_children) 135 return (rvd->vdev_child[vdev]); 136 137 return (NULL); 138 } 139 140 vdev_t * 141 vdev_lookup_by_path(vdev_t *vd, const char *path) 142 { 143 int c; 144 vdev_t *mvd; 145 146 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 147 return (vd); 148 149 for (c = 0; c < vd->vdev_children; c++) 150 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 151 NULL) 152 return (mvd); 153 154 return (NULL); 155 } 156 157 vdev_t * 158 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 159 { 160 int c; 161 vdev_t *mvd; 162 163 if (vd->vdev_children == 0 && vd->vdev_guid == guid) 164 return (vd); 165 166 for (c = 0; c < vd->vdev_children; c++) 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 168 NULL) 169 return (mvd); 170 171 return (NULL); 172 } 173 174 void 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 176 { 177 size_t oldsize, newsize; 178 uint64_t id = cvd->vdev_id; 179 vdev_t **newchild; 180 181 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 182 ASSERT(cvd->vdev_parent == NULL); 183 184 cvd->vdev_parent = pvd; 185 186 if (pvd == NULL) 187 return; 188 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 190 191 oldsize = pvd->vdev_children * sizeof (vdev_t *); 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 193 newsize = pvd->vdev_children * sizeof (vdev_t *); 194 195 newchild = kmem_zalloc(newsize, KM_SLEEP); 196 if (pvd->vdev_child != NULL) { 197 bcopy(pvd->vdev_child, newchild, oldsize); 198 kmem_free(pvd->vdev_child, oldsize); 199 } 200 201 pvd->vdev_child = newchild; 202 pvd->vdev_child[id] = cvd; 203 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 206 207 /* 208 * Walk up all ancestors to update guid sum. 209 */ 210 for (; pvd != NULL; pvd = pvd->vdev_parent) 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 } 247 248 /* 249 * Remove any holes in the child array. 250 */ 251 void 252 vdev_compact_children(vdev_t *pvd) 253 { 254 vdev_t **newchild, *cvd; 255 int oldc = pvd->vdev_children; 256 int newc, c; 257 258 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 259 260 for (c = newc = 0; c < oldc; c++) 261 if (pvd->vdev_child[c]) 262 newc++; 263 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 265 266 for (c = newc = 0; c < oldc; c++) { 267 if ((cvd = pvd->vdev_child[c]) != NULL) { 268 newchild[newc] = cvd; 269 cvd->vdev_id = newc++; 270 } 271 } 272 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 274 pvd->vdev_child = newchild; 275 pvd->vdev_children = newc; 276 } 277 278 /* 279 * Allocate and minimally initialize a vdev_t. 280 */ 281 static vdev_t * 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 283 { 284 vdev_t *vd; 285 286 while (guid == 0) 287 guid = spa_get_random(-1ULL); 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 vd->vdev_spa = spa; 292 vd->vdev_id = id; 293 vd->vdev_guid = guid; 294 vd->vdev_guid_sum = guid; 295 vd->vdev_ops = ops; 296 vd->vdev_state = VDEV_STATE_CLOSED; 297 298 mutex_init(&vd->vdev_io_lock, NULL, MUTEX_DEFAULT, NULL); 299 cv_init(&vd->vdev_io_cv, NULL, CV_DEFAULT, NULL); 300 list_create(&vd->vdev_io_pending, sizeof (zio_t), 301 offsetof(zio_t, io_pending)); 302 mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL); 303 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 304 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 305 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 306 txg_list_create(&vd->vdev_ms_list, 307 offsetof(struct metaslab, ms_txg_node)); 308 txg_list_create(&vd->vdev_dtl_list, 309 offsetof(struct vdev, vdev_dtl_node)); 310 vd->vdev_stat.vs_timestamp = gethrtime(); 311 312 return (vd); 313 } 314 315 /* 316 * Free a vdev_t that has been removed from service. 317 */ 318 static void 319 vdev_free_common(vdev_t *vd) 320 { 321 if (vd->vdev_path) 322 spa_strfree(vd->vdev_path); 323 if (vd->vdev_devid) 324 spa_strfree(vd->vdev_devid); 325 326 txg_list_destroy(&vd->vdev_ms_list); 327 txg_list_destroy(&vd->vdev_dtl_list); 328 mutex_enter(&vd->vdev_dtl_lock); 329 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 330 space_map_destroy(&vd->vdev_dtl_map); 331 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 332 space_map_destroy(&vd->vdev_dtl_scrub); 333 mutex_exit(&vd->vdev_dtl_lock); 334 mutex_destroy(&vd->vdev_dtl_lock); 335 mutex_destroy(&vd->vdev_dirty_lock); 336 list_destroy(&vd->vdev_io_pending); 337 mutex_destroy(&vd->vdev_io_lock); 338 cv_destroy(&vd->vdev_io_cv); 339 340 kmem_free(vd, sizeof (vdev_t)); 341 } 342 343 /* 344 * Allocate a new vdev. The 'alloctype' is used to control whether we are 345 * creating a new vdev or loading an existing one - the behavior is slightly 346 * different for each case. 347 */ 348 vdev_t * 349 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, RW_WRITER)); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (NULL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (NULL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (NULL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (NULL); 377 } 378 379 vd = vdev_alloc_common(spa, id, guid, ops); 380 381 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 382 vd->vdev_path = spa_strdup(vd->vdev_path); 383 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 384 vd->vdev_devid = spa_strdup(vd->vdev_devid); 385 386 /* 387 * Set the whole_disk property. If it's not specified, leave the value 388 * as -1. 389 */ 390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 391 &vd->vdev_wholedisk) != 0) 392 vd->vdev_wholedisk = -1ULL; 393 394 /* 395 * If we're a top-level vdev, try to load the allocation parameters. 396 */ 397 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 399 &vd->vdev_ms_array); 400 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 401 &vd->vdev_ms_shift); 402 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 403 &vd->vdev_ashift); 404 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 405 &vd->vdev_asize); 406 } 407 408 /* 409 * If we're a leaf vdev, try to load the DTL object. 410 */ 411 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 412 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 413 &vd->vdev_dtl.smo_object); 414 } 415 416 /* 417 * Add ourselves to the parent's list of children. 418 */ 419 vdev_add_child(parent, vd); 420 421 return (vd); 422 } 423 424 void 425 vdev_free(vdev_t *vd) 426 { 427 int c; 428 429 /* 430 * vdev_free() implies closing the vdev first. This is simpler than 431 * trying to ensure complicated semantics for all callers. 432 */ 433 vdev_close(vd); 434 435 /* 436 * It's possible to free a vdev that's been added to the dirty 437 * list when in the middle of spa_vdev_add(). Handle that case 438 * correctly here. 439 */ 440 if (vd->vdev_is_dirty) 441 vdev_config_clean(vd); 442 443 /* 444 * Free all children. 445 */ 446 for (c = 0; c < vd->vdev_children; c++) 447 vdev_free(vd->vdev_child[c]); 448 449 ASSERT(vd->vdev_child == NULL); 450 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 451 452 /* 453 * Discard allocation state. 454 */ 455 if (vd == vd->vdev_top) 456 vdev_metaslab_fini(vd); 457 458 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 459 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 460 461 /* 462 * Remove this vdev from its parent's child list. 463 */ 464 vdev_remove_child(vd->vdev_parent, vd); 465 466 ASSERT(vd->vdev_parent == NULL); 467 468 vdev_free_common(vd); 469 } 470 471 /* 472 * Transfer top-level vdev state from svd to tvd. 473 */ 474 static void 475 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 476 { 477 spa_t *spa = svd->vdev_spa; 478 metaslab_t *msp; 479 vdev_t *vd; 480 int t; 481 482 ASSERT(tvd == tvd->vdev_top); 483 484 tvd->vdev_ms_array = svd->vdev_ms_array; 485 tvd->vdev_ms_shift = svd->vdev_ms_shift; 486 tvd->vdev_ms_count = svd->vdev_ms_count; 487 488 svd->vdev_ms_array = 0; 489 svd->vdev_ms_shift = 0; 490 svd->vdev_ms_count = 0; 491 492 tvd->vdev_mg = svd->vdev_mg; 493 tvd->vdev_mg->mg_vd = tvd; 494 tvd->vdev_ms = svd->vdev_ms; 495 tvd->vdev_smo = svd->vdev_smo; 496 497 svd->vdev_mg = NULL; 498 svd->vdev_ms = NULL; 499 svd->vdev_smo = NULL; 500 501 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 502 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 503 504 svd->vdev_stat.vs_alloc = 0; 505 svd->vdev_stat.vs_space = 0; 506 507 for (t = 0; t < TXG_SIZE; t++) { 508 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 509 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 510 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 511 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 512 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 513 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 514 tvd->vdev_dirty[t] = svd->vdev_dirty[t]; 515 svd->vdev_dirty[t] = 0; 516 } 517 518 if (svd->vdev_is_dirty) { 519 vdev_config_clean(svd); 520 vdev_config_dirty(tvd); 521 } 522 523 ASSERT(svd->vdev_io_retry == NULL); 524 ASSERT(list_is_empty(&svd->vdev_io_pending)); 525 } 526 527 static void 528 vdev_top_update(vdev_t *tvd, vdev_t *vd) 529 { 530 int c; 531 532 if (vd == NULL) 533 return; 534 535 vd->vdev_top = tvd; 536 537 for (c = 0; c < vd->vdev_children; c++) 538 vdev_top_update(tvd, vd->vdev_child[c]); 539 } 540 541 /* 542 * Add a mirror/replacing vdev above an existing vdev. 543 */ 544 vdev_t * 545 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 546 { 547 spa_t *spa = cvd->vdev_spa; 548 vdev_t *pvd = cvd->vdev_parent; 549 vdev_t *mvd; 550 551 ASSERT(spa_config_held(spa, RW_WRITER)); 552 553 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 554 vdev_remove_child(pvd, cvd); 555 vdev_add_child(pvd, mvd); 556 cvd->vdev_id = mvd->vdev_children; 557 vdev_add_child(mvd, cvd); 558 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 559 560 mvd->vdev_asize = cvd->vdev_asize; 561 mvd->vdev_ashift = cvd->vdev_ashift; 562 mvd->vdev_state = cvd->vdev_state; 563 564 if (mvd == mvd->vdev_top) 565 vdev_top_transfer(cvd, mvd); 566 567 return (mvd); 568 } 569 570 /* 571 * Remove a 1-way mirror/replacing vdev from the tree. 572 */ 573 void 574 vdev_remove_parent(vdev_t *cvd) 575 { 576 vdev_t *mvd = cvd->vdev_parent; 577 vdev_t *pvd = mvd->vdev_parent; 578 579 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 580 581 ASSERT(mvd->vdev_children == 1); 582 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 583 mvd->vdev_ops == &vdev_replacing_ops); 584 585 vdev_remove_child(mvd, cvd); 586 vdev_remove_child(pvd, mvd); 587 cvd->vdev_id = mvd->vdev_id; 588 vdev_add_child(pvd, cvd); 589 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 590 591 if (cvd == cvd->vdev_top) 592 vdev_top_transfer(mvd, cvd); 593 594 ASSERT(mvd->vdev_children == 0); 595 vdev_free(mvd); 596 } 597 598 void 599 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 600 { 601 spa_t *spa = vd->vdev_spa; 602 metaslab_class_t *mc = spa_metaslab_class_select(spa); 603 uint64_t c; 604 uint64_t oldc = vd->vdev_ms_count; 605 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 606 space_map_obj_t *smo = vd->vdev_smo; 607 metaslab_t **mspp = vd->vdev_ms; 608 609 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 610 611 ASSERT(oldc <= newc); 612 613 vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP); 614 vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 615 vd->vdev_ms_count = newc; 616 617 if (vd->vdev_mg == NULL) { 618 if (txg == 0) { 619 dmu_buf_t *db; 620 uint64_t *ms_array; 621 622 ms_array = kmem_zalloc(newc * sizeof (uint64_t), 623 KM_SLEEP); 624 625 dmu_read(spa->spa_meta_objset, vd->vdev_ms_array, 626 0, newc * sizeof (uint64_t), ms_array); 627 628 for (c = 0; c < newc; c++) { 629 if (ms_array[c] == 0) 630 continue; 631 db = dmu_bonus_hold(spa->spa_meta_objset, 632 ms_array[c]); 633 dmu_buf_read(db); 634 ASSERT3U(db->db_size, ==, sizeof (*smo)); 635 bcopy(db->db_data, &vd->vdev_smo[c], 636 db->db_size); 637 ASSERT3U(vd->vdev_smo[c].smo_object, ==, 638 ms_array[c]); 639 dmu_buf_rele(db); 640 } 641 kmem_free(ms_array, newc * sizeof (uint64_t)); 642 } 643 vd->vdev_mg = metaslab_group_create(mc, vd); 644 } 645 646 for (c = 0; c < oldc; c++) { 647 vd->vdev_smo[c] = smo[c]; 648 vd->vdev_ms[c] = mspp[c]; 649 mspp[c]->ms_smo = &vd->vdev_smo[c]; 650 } 651 652 for (c = oldc; c < newc; c++) 653 metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c], 654 c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 655 656 if (oldc != 0) { 657 kmem_free(smo, oldc * sizeof (*smo)); 658 kmem_free(mspp, oldc * sizeof (*mspp)); 659 } 660 661 } 662 663 void 664 vdev_metaslab_fini(vdev_t *vd) 665 { 666 uint64_t m; 667 uint64_t count = vd->vdev_ms_count; 668 669 if (vd->vdev_ms != NULL) { 670 for (m = 0; m < count; m++) 671 metaslab_fini(vd->vdev_ms[m]); 672 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 673 vd->vdev_ms = NULL; 674 } 675 676 if (vd->vdev_smo != NULL) { 677 kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t)); 678 vd->vdev_smo = NULL; 679 } 680 } 681 682 /* 683 * Prepare a virtual device for access. 684 */ 685 int 686 vdev_open(vdev_t *vd) 687 { 688 int error; 689 vdev_knob_t *vk; 690 int c; 691 uint64_t osize = 0; 692 uint64_t asize, psize; 693 uint64_t ashift = -1ULL; 694 695 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 696 vd->vdev_state == VDEV_STATE_CANT_OPEN || 697 vd->vdev_state == VDEV_STATE_OFFLINE); 698 699 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 700 vd->vdev_fault_arg >>= 1; 701 else 702 vd->vdev_fault_mode = VDEV_FAULT_NONE; 703 704 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 705 706 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 707 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 708 709 *valp = vk->vk_default; 710 *valp = MAX(*valp, vk->vk_min); 711 *valp = MIN(*valp, vk->vk_max); 712 } 713 714 if (vd->vdev_ops->vdev_op_leaf) { 715 vdev_cache_init(vd); 716 vdev_queue_init(vd); 717 vd->vdev_cache_active = B_TRUE; 718 } 719 720 if (vd->vdev_offline) { 721 ASSERT(vd->vdev_children == 0); 722 dprintf("OFFLINE: %s = ENXIO\n", vdev_description(vd)); 723 vd->vdev_state = VDEV_STATE_OFFLINE; 724 return (ENXIO); 725 } 726 727 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 728 729 dprintf("%s = %d, osize %llu, state = %d\n", 730 vdev_description(vd), error, osize, vd->vdev_state); 731 732 if (error) { 733 dprintf("%s in %s failed to open, error %d, aux %d\n", 734 vdev_description(vd), 735 vdev_description(vd->vdev_parent), 736 error, 737 vd->vdev_stat.vs_aux); 738 739 vd->vdev_state = VDEV_STATE_CANT_OPEN; 740 return (error); 741 } 742 743 vd->vdev_state = VDEV_STATE_HEALTHY; 744 745 for (c = 0; c < vd->vdev_children; c++) 746 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) 747 vd->vdev_state = VDEV_STATE_DEGRADED; 748 749 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 750 751 if (vd->vdev_children == 0) { 752 if (osize < SPA_MINDEVSIZE) { 753 vd->vdev_state = VDEV_STATE_CANT_OPEN; 754 vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL; 755 return (EOVERFLOW); 756 } 757 psize = osize; 758 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 759 } else { 760 if (osize < SPA_MINDEVSIZE - 761 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 762 vd->vdev_state = VDEV_STATE_CANT_OPEN; 763 vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL; 764 return (EOVERFLOW); 765 } 766 psize = 0; 767 asize = osize; 768 } 769 770 vd->vdev_psize = psize; 771 772 if (vd->vdev_asize == 0) { 773 /* 774 * This is the first-ever open, so use the computed values. 775 */ 776 vd->vdev_asize = asize; 777 vd->vdev_ashift = ashift; 778 } else { 779 /* 780 * Make sure the alignment requirement hasn't increased. 781 */ 782 if (ashift > vd->vdev_ashift) { 783 dprintf("%s: ashift grew\n", vdev_description(vd)); 784 vd->vdev_state = VDEV_STATE_CANT_OPEN; 785 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 786 return (EINVAL); 787 } 788 789 /* 790 * Make sure the device hasn't shrunk. 791 */ 792 if (asize < vd->vdev_asize) { 793 dprintf("%s: device shrank\n", vdev_description(vd)); 794 vd->vdev_state = VDEV_STATE_CANT_OPEN; 795 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 796 return (EINVAL); 797 } 798 799 /* 800 * If all children are healthy and the asize has increased, 801 * then we've experienced dynamic LUN growth. 802 */ 803 if (vd->vdev_state == VDEV_STATE_HEALTHY && 804 asize > vd->vdev_asize) { 805 dprintf("%s: device grew\n", vdev_description(vd)); 806 vd->vdev_asize = asize; 807 } 808 } 809 810 return (0); 811 } 812 813 /* 814 * Close a virtual device. 815 */ 816 void 817 vdev_close(vdev_t *vd) 818 { 819 ASSERT3P(list_head(&vd->vdev_io_pending), ==, NULL); 820 821 vd->vdev_ops->vdev_op_close(vd); 822 823 if (vd->vdev_cache_active) { 824 vdev_cache_fini(vd); 825 vdev_queue_fini(vd); 826 vd->vdev_cache_active = B_FALSE; 827 } 828 829 if (vd->vdev_offline) 830 vd->vdev_state = VDEV_STATE_OFFLINE; 831 else 832 vd->vdev_state = VDEV_STATE_CLOSED; 833 } 834 835 void 836 vdev_reopen(vdev_t *vd, zio_t **rq) 837 { 838 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 839 int c; 840 841 if (vd == rvd) { 842 ASSERT(rq == NULL); 843 for (c = 0; c < rvd->vdev_children; c++) 844 vdev_reopen(rvd->vdev_child[c], NULL); 845 return; 846 } 847 848 /* only valid for top-level vdevs */ 849 ASSERT3P(vd, ==, vd->vdev_top); 850 851 /* 852 * vdev_state can change when spa_config_lock is held as writer, 853 * or when it's held as reader and we're doing a vdev_reopen(). 854 * To handle the latter case, we grab rvd's io_lock to serialize 855 * reopens. This ensures that there's never more than one vdev 856 * state changer active at a time. 857 */ 858 mutex_enter(&rvd->vdev_io_lock); 859 860 mutex_enter(&vd->vdev_io_lock); 861 while (list_head(&vd->vdev_io_pending) != NULL) 862 cv_wait(&vd->vdev_io_cv, &vd->vdev_io_lock); 863 vdev_close(vd); 864 (void) vdev_open(vd); 865 if (rq != NULL) { 866 *rq = vd->vdev_io_retry; 867 vd->vdev_io_retry = NULL; 868 } 869 mutex_exit(&vd->vdev_io_lock); 870 871 /* 872 * Reassess root vdev's health. 873 */ 874 rvd->vdev_state = VDEV_STATE_HEALTHY; 875 for (c = 0; c < rvd->vdev_children; c++) { 876 uint64_t state = rvd->vdev_child[c]->vdev_state; 877 rvd->vdev_state = MIN(rvd->vdev_state, state); 878 } 879 880 mutex_exit(&rvd->vdev_io_lock); 881 } 882 883 int 884 vdev_create(vdev_t *vd, uint64_t txg) 885 { 886 int error; 887 888 /* 889 * Normally, partial opens (e.g. of a mirror) are allowed. 890 * For a create, however, we want to fail the request if 891 * there are any components we can't open. 892 */ 893 error = vdev_open(vd); 894 895 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 896 vdev_close(vd); 897 return (error ? error : ENXIO); 898 } 899 900 /* 901 * Recursively initialize all labels. 902 */ 903 if ((error = vdev_label_init(vd, txg)) != 0) { 904 vdev_close(vd); 905 return (error); 906 } 907 908 return (0); 909 } 910 911 /* 912 * The is the latter half of vdev_create(). It is distinct because it 913 * involves initiating transactions in order to do metaslab creation. 914 * For creation, we want to try to create all vdevs at once and then undo it 915 * if anything fails; this is much harder if we have pending transactions. 916 */ 917 void 918 vdev_init(vdev_t *vd, uint64_t txg) 919 { 920 /* 921 * Aim for roughly 200 metaslabs per vdev. 922 */ 923 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 924 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 925 926 /* 927 * Initialize the vdev's metaslabs. 928 */ 929 vdev_metaslab_init(vd, txg); 930 } 931 932 void 933 vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg) 934 { 935 vdev_t *tvd = vd->vdev_top; 936 937 mutex_enter(&tvd->vdev_dirty_lock); 938 if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) { 939 tvd->vdev_dirty[txg & TXG_MASK] |= flags; 940 (void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list, 941 tvd, txg); 942 } 943 mutex_exit(&tvd->vdev_dirty_lock); 944 } 945 946 void 947 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 948 { 949 mutex_enter(sm->sm_lock); 950 if (!space_map_contains(sm, txg, size)) 951 space_map_add(sm, txg, size); 952 mutex_exit(sm->sm_lock); 953 } 954 955 int 956 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 957 { 958 int dirty; 959 960 /* 961 * Quick test without the lock -- covers the common case that 962 * there are no dirty time segments. 963 */ 964 if (sm->sm_space == 0) 965 return (0); 966 967 mutex_enter(sm->sm_lock); 968 dirty = space_map_contains(sm, txg, size); 969 mutex_exit(sm->sm_lock); 970 971 return (dirty); 972 } 973 974 /* 975 * Reassess DTLs after a config change or scrub completion. 976 */ 977 void 978 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 979 { 980 int c; 981 982 ASSERT(spa_config_held(vd->vdev_spa, RW_WRITER)); 983 984 if (vd->vdev_children == 0) { 985 mutex_enter(&vd->vdev_dtl_lock); 986 /* 987 * We're successfully scrubbed everything up to scrub_txg. 988 * Therefore, excise all old DTLs up to that point, then 989 * fold in the DTLs for everything we couldn't scrub. 990 */ 991 if (scrub_txg != 0) { 992 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 993 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 994 } 995 if (scrub_done) 996 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 997 mutex_exit(&vd->vdev_dtl_lock); 998 if (txg != 0) { 999 vdev_t *tvd = vd->vdev_top; 1000 vdev_dirty(tvd, VDD_DTL, txg); 1001 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 1002 } 1003 return; 1004 } 1005 1006 mutex_enter(&vd->vdev_dtl_lock); 1007 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1008 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1009 mutex_exit(&vd->vdev_dtl_lock); 1010 1011 for (c = 0; c < vd->vdev_children; c++) { 1012 vdev_t *cvd = vd->vdev_child[c]; 1013 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1014 mutex_enter(&vd->vdev_dtl_lock); 1015 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1016 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1017 mutex_exit(&vd->vdev_dtl_lock); 1018 } 1019 } 1020 1021 static int 1022 vdev_dtl_load(vdev_t *vd) 1023 { 1024 spa_t *spa = vd->vdev_spa; 1025 space_map_obj_t *smo = &vd->vdev_dtl; 1026 dmu_buf_t *db; 1027 int error; 1028 1029 ASSERT(vd->vdev_children == 0); 1030 1031 if (smo->smo_object == 0) 1032 return (0); 1033 1034 db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object); 1035 dmu_buf_read(db); 1036 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1037 bcopy(db->db_data, smo, db->db_size); 1038 dmu_buf_rele(db); 1039 1040 mutex_enter(&vd->vdev_dtl_lock); 1041 error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC, 1042 spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc); 1043 mutex_exit(&vd->vdev_dtl_lock); 1044 1045 return (error); 1046 } 1047 1048 void 1049 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1050 { 1051 spa_t *spa = vd->vdev_spa; 1052 space_map_obj_t *smo = &vd->vdev_dtl; 1053 space_map_t *sm = &vd->vdev_dtl_map; 1054 space_map_t smsync; 1055 kmutex_t smlock; 1056 avl_tree_t *t = &sm->sm_root; 1057 space_seg_t *ss; 1058 dmu_buf_t *db; 1059 dmu_tx_t *tx; 1060 1061 dprintf("%s in txg %llu pass %d\n", 1062 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1063 1064 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1065 1066 if (vd->vdev_detached) { 1067 if (smo->smo_object != 0) { 1068 int err = dmu_object_free(spa->spa_meta_objset, 1069 smo->smo_object, tx); 1070 ASSERT3U(err, ==, 0); 1071 smo->smo_object = 0; 1072 } 1073 dmu_tx_commit(tx); 1074 return; 1075 } 1076 1077 if (smo->smo_object == 0) { 1078 ASSERT(smo->smo_objsize == 0); 1079 ASSERT(smo->smo_alloc == 0); 1080 smo->smo_object = dmu_object_alloc(spa->spa_meta_objset, 1081 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1082 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1083 ASSERT(smo->smo_object != 0); 1084 vdev_config_dirty(vd->vdev_top); 1085 } 1086 1087 dmu_free_range(spa->spa_meta_objset, smo->smo_object, 1088 0, smo->smo_objsize, tx); 1089 1090 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1091 1092 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1093 &smlock); 1094 1095 mutex_enter(&smlock); 1096 1097 mutex_enter(&vd->vdev_dtl_lock); 1098 for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) 1099 space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start); 1100 mutex_exit(&vd->vdev_dtl_lock); 1101 1102 smo->smo_objsize = 0; 1103 smo->smo_alloc = smsync.sm_space; 1104 1105 space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx); 1106 space_map_destroy(&smsync); 1107 1108 mutex_exit(&smlock); 1109 mutex_destroy(&smlock); 1110 1111 db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object); 1112 dmu_buf_will_dirty(db, tx); 1113 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1114 bcopy(smo, db->db_data, db->db_size); 1115 dmu_buf_rele(db); 1116 1117 dmu_tx_commit(tx); 1118 } 1119 1120 int 1121 vdev_load(vdev_t *vd, int import) 1122 { 1123 spa_t *spa = vd->vdev_spa; 1124 int c, error; 1125 nvlist_t *label; 1126 uint64_t guid, state; 1127 1128 dprintf("loading %s\n", vdev_description(vd)); 1129 1130 /* 1131 * Recursively load all children. 1132 */ 1133 for (c = 0; c < vd->vdev_children; c++) 1134 if ((error = vdev_load(vd->vdev_child[c], import)) != 0) 1135 return (error); 1136 1137 /* 1138 * If this is a leaf vdev, make sure its agrees with its disk labels. 1139 */ 1140 if (vd->vdev_ops->vdev_op_leaf) { 1141 1142 if (vdev_is_dead(vd)) 1143 return (0); 1144 1145 /* 1146 * XXX state transitions don't propagate to parent here. 1147 * Also, merely setting the state isn't sufficient because 1148 * it's not persistent; a vdev_reopen() would make us 1149 * forget all about it. 1150 */ 1151 if ((label = vdev_label_read_config(vd)) == NULL) { 1152 dprintf("can't load label config\n"); 1153 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1154 VDEV_AUX_CORRUPT_DATA); 1155 return (0); 1156 } 1157 1158 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1159 &guid) != 0 || guid != spa_guid(spa)) { 1160 dprintf("bad or missing pool GUID (%llu)\n", guid); 1161 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1162 VDEV_AUX_CORRUPT_DATA); 1163 nvlist_free(label); 1164 return (0); 1165 } 1166 1167 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) || 1168 guid != vd->vdev_guid) { 1169 dprintf("bad or missing vdev guid (%llu != %llu)\n", 1170 guid, vd->vdev_guid); 1171 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1172 VDEV_AUX_CORRUPT_DATA); 1173 nvlist_free(label); 1174 return (0); 1175 } 1176 1177 /* 1178 * If we find a vdev with a matching pool guid and vdev guid, 1179 * but the pool state is not active, it indicates that the user 1180 * exported or destroyed the pool without affecting the config 1181 * cache (if / was mounted readonly, for example). In this 1182 * case, immediately return EBADF so the caller can remove it 1183 * from the config. 1184 */ 1185 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1186 &state)) { 1187 dprintf("missing pool state\n"); 1188 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1189 VDEV_AUX_CORRUPT_DATA); 1190 nvlist_free(label); 1191 return (0); 1192 } 1193 1194 if (state != POOL_STATE_ACTIVE && 1195 (!import || state != POOL_STATE_EXPORTED)) { 1196 dprintf("pool state not active (%llu)\n", state); 1197 nvlist_free(label); 1198 return (EBADF); 1199 } 1200 1201 nvlist_free(label); 1202 } 1203 1204 /* 1205 * If this is a top-level vdev, make sure its allocation parameters 1206 * exist and initialize its metaslabs. 1207 */ 1208 if (vd == vd->vdev_top) { 1209 1210 if (vd->vdev_ms_array == 0 || 1211 vd->vdev_ms_shift == 0 || 1212 vd->vdev_ashift == 0 || 1213 vd->vdev_asize == 0) { 1214 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1215 VDEV_AUX_CORRUPT_DATA); 1216 return (0); 1217 } 1218 1219 vdev_metaslab_init(vd, 0); 1220 } 1221 1222 /* 1223 * If this is a leaf vdev, load its DTL. 1224 */ 1225 if (vd->vdev_ops->vdev_op_leaf) { 1226 error = vdev_dtl_load(vd); 1227 if (error) { 1228 dprintf("can't load DTL for %s, error %d\n", 1229 vdev_description(vd), error); 1230 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1231 VDEV_AUX_CORRUPT_DATA); 1232 return (0); 1233 } 1234 } 1235 1236 return (0); 1237 } 1238 1239 void 1240 vdev_sync_done(vdev_t *vd, uint64_t txg) 1241 { 1242 metaslab_t *msp; 1243 1244 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1245 1246 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1247 metaslab_sync_done(msp, txg); 1248 } 1249 1250 void 1251 vdev_add_sync(vdev_t *vd, uint64_t txg) 1252 { 1253 spa_t *spa = vd->vdev_spa; 1254 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1255 1256 ASSERT(vd == vd->vdev_top); 1257 1258 if (vd->vdev_ms_array == 0) 1259 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1260 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1261 1262 ASSERT(vd->vdev_ms_array != 0); 1263 1264 vdev_config_dirty(vd); 1265 1266 dmu_tx_commit(tx); 1267 } 1268 1269 void 1270 vdev_sync(vdev_t *vd, uint64_t txg) 1271 { 1272 spa_t *spa = vd->vdev_spa; 1273 vdev_t *lvd; 1274 metaslab_t *msp; 1275 uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK]; 1276 uint8_t dirty = *dirtyp; 1277 1278 mutex_enter(&vd->vdev_dirty_lock); 1279 *dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL); 1280 mutex_exit(&vd->vdev_dirty_lock); 1281 1282 dprintf("%s txg %llu pass %d\n", 1283 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1284 1285 if (dirty & VDD_ADD) 1286 vdev_add_sync(vd, txg); 1287 1288 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) 1289 metaslab_sync(msp, txg); 1290 1291 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1292 vdev_dtl_sync(lvd, txg); 1293 1294 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1295 } 1296 1297 uint64_t 1298 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1299 { 1300 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1301 } 1302 1303 void 1304 vdev_io_start(zio_t *zio) 1305 { 1306 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1307 } 1308 1309 void 1310 vdev_io_done(zio_t *zio) 1311 { 1312 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1313 } 1314 1315 const char * 1316 vdev_description(vdev_t *vd) 1317 { 1318 if (vd == NULL || vd->vdev_ops == NULL) 1319 return ("<unknown>"); 1320 1321 if (vd->vdev_path != NULL) 1322 return (vd->vdev_path); 1323 1324 if (vd->vdev_parent == NULL) 1325 return (spa_name(vd->vdev_spa)); 1326 1327 return (vd->vdev_ops->vdev_op_type); 1328 } 1329 1330 int 1331 vdev_online(spa_t *spa, const char *path) 1332 { 1333 vdev_t *vd; 1334 1335 spa_config_enter(spa, RW_WRITER); 1336 1337 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1338 spa_config_exit(spa); 1339 return (ENODEV); 1340 } 1341 1342 dprintf("ONLINE: %s\n", vdev_description(vd)); 1343 1344 vd->vdev_offline = B_FALSE; 1345 1346 /* 1347 * Clear the error counts. The idea is that you expect to see all 1348 * zeroes when everything is working, so if you've just onlined a 1349 * device, you don't want to keep hearing about errors from before. 1350 */ 1351 vd->vdev_stat.vs_read_errors = 0; 1352 vd->vdev_stat.vs_write_errors = 0; 1353 vd->vdev_stat.vs_checksum_errors = 0; 1354 1355 vdev_reopen(vd->vdev_top, NULL); 1356 1357 spa_config_exit(spa); 1358 1359 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1360 1361 return (0); 1362 } 1363 1364 int 1365 vdev_offline(spa_t *spa, const char *path) 1366 { 1367 vdev_t *vd; 1368 1369 spa_config_enter(spa, RW_WRITER); 1370 1371 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1372 spa_config_exit(spa); 1373 return (ENODEV); 1374 } 1375 1376 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1377 1378 /* 1379 * If this device's top-level vdev has a non-empty DTL, 1380 * don't allow the device to be offlined. 1381 * 1382 * XXX -- we should make this more precise by allowing the offline 1383 * as long as the remaining devices don't have any DTL holes. 1384 */ 1385 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) { 1386 spa_config_exit(spa); 1387 return (EBUSY); 1388 } 1389 1390 /* 1391 * Set this device to offline state and reopen its top-level vdev. 1392 * If this action results in the top-level vdev becoming unusable, 1393 * undo it and fail the request. 1394 */ 1395 vd->vdev_offline = B_TRUE; 1396 vdev_reopen(vd->vdev_top, NULL); 1397 if (vdev_is_dead(vd->vdev_top)) { 1398 vd->vdev_offline = B_FALSE; 1399 vdev_reopen(vd->vdev_top, NULL); 1400 spa_config_exit(spa); 1401 return (EBUSY); 1402 } 1403 1404 spa_config_exit(spa); 1405 1406 return (0); 1407 } 1408 1409 int 1410 vdev_error_setup(spa_t *spa, const char *path, int mode, int mask, uint64_t arg) 1411 { 1412 vdev_t *vd; 1413 1414 spa_config_enter(spa, RW_WRITER); 1415 1416 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1417 spa_config_exit(spa); 1418 return (ENODEV); 1419 } 1420 1421 vd->vdev_fault_mode = mode; 1422 vd->vdev_fault_mask = mask; 1423 vd->vdev_fault_arg = arg; 1424 1425 spa_config_exit(spa); 1426 1427 return (0); 1428 } 1429 1430 int 1431 vdev_is_dead(vdev_t *vd) 1432 { 1433 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1434 } 1435 1436 int 1437 vdev_error_inject(vdev_t *vd, zio_t *zio) 1438 { 1439 int error = 0; 1440 1441 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1442 return (0); 1443 1444 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1445 return (0); 1446 1447 switch (vd->vdev_fault_mode) { 1448 case VDEV_FAULT_RANDOM: 1449 if (spa_get_random(vd->vdev_fault_arg) == 0) 1450 error = EIO; 1451 break; 1452 1453 case VDEV_FAULT_COUNT: 1454 if ((int64_t)--vd->vdev_fault_arg <= 0) 1455 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1456 error = EIO; 1457 break; 1458 } 1459 1460 if (error != 0) { 1461 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1462 error, zio->io_type, vdev_description(vd), 1463 vd->vdev_state, zio->io_offset); 1464 } 1465 1466 return (error); 1467 } 1468 1469 /* 1470 * Get statistics for the given vdev. 1471 */ 1472 void 1473 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1474 { 1475 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1476 int c, t; 1477 1478 mutex_enter(&vd->vdev_stat_lock); 1479 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1480 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1481 vs->vs_state = vd->vdev_state; 1482 vs->vs_rsize = vdev_get_rsize(vd); 1483 mutex_exit(&vd->vdev_stat_lock); 1484 1485 /* 1486 * If we're getting stats on the root vdev, aggregate the I/O counts 1487 * over all top-level vdevs (i.e. the direct children of the root). 1488 */ 1489 if (vd == rvd) { 1490 for (c = 0; c < rvd->vdev_children; c++) { 1491 vdev_t *cvd = rvd->vdev_child[c]; 1492 vdev_stat_t *cvs = &cvd->vdev_stat; 1493 1494 mutex_enter(&vd->vdev_stat_lock); 1495 for (t = 0; t < ZIO_TYPES; t++) { 1496 vs->vs_ops[t] += cvs->vs_ops[t]; 1497 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1498 } 1499 vs->vs_read_errors += cvs->vs_read_errors; 1500 vs->vs_write_errors += cvs->vs_write_errors; 1501 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1502 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1503 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1504 mutex_exit(&vd->vdev_stat_lock); 1505 } 1506 } 1507 } 1508 1509 void 1510 vdev_stat_update(zio_t *zio) 1511 { 1512 vdev_t *vd = zio->io_vd; 1513 vdev_t *pvd; 1514 uint64_t txg = zio->io_txg; 1515 vdev_stat_t *vs = &vd->vdev_stat; 1516 zio_type_t type = zio->io_type; 1517 int flags = zio->io_flags; 1518 1519 if (zio->io_error == 0) { 1520 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1521 mutex_enter(&vd->vdev_stat_lock); 1522 vs->vs_ops[type]++; 1523 vs->vs_bytes[type] += zio->io_size; 1524 mutex_exit(&vd->vdev_stat_lock); 1525 } 1526 if ((flags & ZIO_FLAG_IO_REPAIR) && 1527 zio->io_delegate_list == NULL) { 1528 mutex_enter(&vd->vdev_stat_lock); 1529 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) 1530 vs->vs_scrub_repaired += zio->io_size; 1531 else 1532 vs->vs_self_healed += zio->io_size; 1533 mutex_exit(&vd->vdev_stat_lock); 1534 } 1535 return; 1536 } 1537 1538 if (flags & ZIO_FLAG_SPECULATIVE) 1539 return; 1540 1541 if (!vdev_is_dead(vd)) { 1542 mutex_enter(&vd->vdev_stat_lock); 1543 if (type == ZIO_TYPE_READ) { 1544 if (zio->io_error == ECKSUM) 1545 vs->vs_checksum_errors++; 1546 else 1547 vs->vs_read_errors++; 1548 } 1549 if (type == ZIO_TYPE_WRITE) 1550 vs->vs_write_errors++; 1551 mutex_exit(&vd->vdev_stat_lock); 1552 } 1553 1554 if (type == ZIO_TYPE_WRITE) { 1555 if (txg == 0 || vd->vdev_children != 0) 1556 return; 1557 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) { 1558 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1559 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1560 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1561 } 1562 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1563 vdev_t *tvd = vd->vdev_top; 1564 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1565 return; 1566 vdev_dirty(tvd, VDD_DTL, txg); 1567 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 1568 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1569 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1570 } 1571 } 1572 } 1573 1574 void 1575 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1576 { 1577 int c; 1578 vdev_stat_t *vs = &vd->vdev_stat; 1579 1580 for (c = 0; c < vd->vdev_children; c++) 1581 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1582 1583 mutex_enter(&vd->vdev_stat_lock); 1584 1585 if (type == POOL_SCRUB_NONE) { 1586 /* 1587 * Update completion and end time. Leave everything else alone 1588 * so we can report what happened during the previous scrub. 1589 */ 1590 vs->vs_scrub_complete = complete; 1591 vs->vs_scrub_end = gethrestime_sec(); 1592 } else { 1593 vs->vs_scrub_type = type; 1594 vs->vs_scrub_complete = 0; 1595 vs->vs_scrub_examined = 0; 1596 vs->vs_scrub_repaired = 0; 1597 vs->vs_scrub_errors = 0; 1598 vs->vs_scrub_start = gethrestime_sec(); 1599 vs->vs_scrub_end = 0; 1600 } 1601 1602 mutex_exit(&vd->vdev_stat_lock); 1603 } 1604 1605 /* 1606 * Report checksum errors that a vdev that didn't realize it made. 1607 * This can happen, for example, when RAID-Z combinatorial reconstruction 1608 * infers that one of its components returned bad data. 1609 */ 1610 void 1611 vdev_checksum_error(zio_t *zio, vdev_t *vd) 1612 { 1613 dprintf_bp(zio->io_bp, "imputed checksum error on %s: ", 1614 vdev_description(vd)); 1615 1616 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 1617 mutex_enter(&vd->vdev_stat_lock); 1618 vd->vdev_stat.vs_checksum_errors++; 1619 mutex_exit(&vd->vdev_stat_lock); 1620 } 1621 } 1622 1623 /* 1624 * Update the in-core space usage stats for this vdev and the root vdev. 1625 */ 1626 void 1627 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta) 1628 { 1629 ASSERT(vd == vd->vdev_top); 1630 1631 do { 1632 mutex_enter(&vd->vdev_stat_lock); 1633 vd->vdev_stat.vs_space += space_delta; 1634 vd->vdev_stat.vs_alloc += alloc_delta; 1635 mutex_exit(&vd->vdev_stat_lock); 1636 } while ((vd = vd->vdev_parent) != NULL); 1637 } 1638 1639 /* 1640 * Various knobs to tune a vdev. 1641 */ 1642 static vdev_knob_t vdev_knob[] = { 1643 { 1644 "cache_size", 1645 "size of the read-ahead cache", 1646 0, 1647 1ULL << 30, 1648 10ULL << 20, 1649 offsetof(struct vdev, vdev_cache.vc_size) 1650 }, 1651 { 1652 "cache_bshift", 1653 "log2 of cache blocksize", 1654 SPA_MINBLOCKSHIFT, 1655 SPA_MAXBLOCKSHIFT, 1656 16, 1657 offsetof(struct vdev, vdev_cache.vc_bshift) 1658 }, 1659 { 1660 "cache_max", 1661 "largest block size to cache", 1662 0, 1663 SPA_MAXBLOCKSIZE, 1664 1ULL << 14, 1665 offsetof(struct vdev, vdev_cache.vc_max) 1666 }, 1667 { 1668 "min_pending", 1669 "minimum pending I/Os to the disk", 1670 1, 1671 10000, 1672 2, 1673 offsetof(struct vdev, vdev_queue.vq_min_pending) 1674 }, 1675 { 1676 "max_pending", 1677 "maximum pending I/Os to the disk", 1678 1, 1679 10000, 1680 35, 1681 offsetof(struct vdev, vdev_queue.vq_max_pending) 1682 }, 1683 { 1684 "agg_limit", 1685 "maximum size of aggregated I/Os", 1686 0, 1687 SPA_MAXBLOCKSIZE, 1688 SPA_MAXBLOCKSIZE, 1689 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1690 }, 1691 { 1692 "time_shift", 1693 "deadline = pri + (lbolt >> time_shift)", 1694 0, 1695 63, 1696 4, 1697 offsetof(struct vdev, vdev_queue.vq_time_shift) 1698 }, 1699 { 1700 "ramp_rate", 1701 "exponential I/O issue ramp-up rate", 1702 1, 1703 10000, 1704 2, 1705 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1706 }, 1707 }; 1708 1709 vdev_knob_t * 1710 vdev_knob_next(vdev_knob_t *vk) 1711 { 1712 if (vk == NULL) 1713 return (vdev_knob); 1714 1715 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1716 return (NULL); 1717 1718 return (vk); 1719 } 1720 1721 /* 1722 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1723 * so that it will be written out next time the vdev configuration is synced. 1724 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1725 */ 1726 void 1727 vdev_config_dirty(vdev_t *vd) 1728 { 1729 spa_t *spa = vd->vdev_spa; 1730 vdev_t *rvd = spa->spa_root_vdev; 1731 int c; 1732 1733 if (vd == rvd) { 1734 for (c = 0; c < rvd->vdev_children; c++) 1735 vdev_config_dirty(rvd->vdev_child[c]); 1736 } else { 1737 ASSERT(vd == vd->vdev_top); 1738 1739 if (!vd->vdev_is_dirty) { 1740 list_insert_head(&spa->spa_dirty_list, vd); 1741 vd->vdev_is_dirty = B_TRUE; 1742 } 1743 } 1744 } 1745 1746 void 1747 vdev_config_clean(vdev_t *vd) 1748 { 1749 ASSERT(vd->vdev_is_dirty); 1750 1751 list_remove(&vd->vdev_spa->spa_dirty_list, vd); 1752 vd->vdev_is_dirty = B_FALSE; 1753 } 1754 1755 /* 1756 * Set a vdev's state, updating any parent's state as well. 1757 */ 1758 void 1759 vdev_set_state(vdev_t *vd, vdev_state_t state, vdev_aux_t aux) 1760 { 1761 if (state == vd->vdev_state) 1762 return; 1763 1764 vd->vdev_state = state; 1765 vd->vdev_stat.vs_aux = aux; 1766 1767 if (vd->vdev_parent != NULL) { 1768 int c; 1769 int degraded = 0, faulted = 0; 1770 vdev_t *parent, *child; 1771 1772 parent = vd->vdev_parent; 1773 for (c = 0; c < parent->vdev_children; c++) { 1774 child = parent->vdev_child[c]; 1775 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1776 faulted++; 1777 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1778 degraded++; 1779 } 1780 1781 vd->vdev_parent->vdev_ops->vdev_op_state_change( 1782 vd->vdev_parent, faulted, degraded); 1783 } 1784 } 1785