xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev.c (revision b48b4ad70157f504f1e9b62203d1cc83a5c03104)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue */
61 int zfs_scrub_limit = 70;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 	uint64_t c;
88 
89 	for (c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the replaceable or attachable device size.
99  * If the parent is a mirror or raidz, the replaceable size is the minimum
100  * psize of all its children. For the rest, just return our own psize.
101  *
102  * e.g.
103  *			psize	rsize
104  * root			-	-
105  *	mirror/raidz	-	-
106  *	    disk1	20g	20g
107  *	    disk2 	40g	20g
108  *	disk3 		80g	80g
109  */
110 uint64_t
111 vdev_get_rsize(vdev_t *vd)
112 {
113 	vdev_t *pvd, *cvd;
114 	uint64_t c, rsize;
115 
116 	pvd = vd->vdev_parent;
117 
118 	/*
119 	 * If our parent is NULL or the root, just return our own psize.
120 	 */
121 	if (pvd == NULL || pvd->vdev_parent == NULL)
122 		return (vd->vdev_psize);
123 
124 	rsize = 0;
125 
126 	for (c = 0; c < pvd->vdev_children; c++) {
127 		cvd = pvd->vdev_child[c];
128 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
129 	}
130 
131 	return (rsize);
132 }
133 
134 vdev_t *
135 vdev_lookup_top(spa_t *spa, uint64_t vdev)
136 {
137 	vdev_t *rvd = spa->spa_root_vdev;
138 
139 	if (vdev < rvd->vdev_children)
140 		return (rvd->vdev_child[vdev]);
141 
142 	return (NULL);
143 }
144 
145 vdev_t *
146 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
147 {
148 	int c;
149 	vdev_t *mvd;
150 
151 	if (vd->vdev_guid == guid)
152 		return (vd);
153 
154 	for (c = 0; c < vd->vdev_children; c++)
155 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
156 		    NULL)
157 			return (mvd);
158 
159 	return (NULL);
160 }
161 
162 void
163 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
164 {
165 	size_t oldsize, newsize;
166 	uint64_t id = cvd->vdev_id;
167 	vdev_t **newchild;
168 
169 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
170 	ASSERT(cvd->vdev_parent == NULL);
171 
172 	cvd->vdev_parent = pvd;
173 
174 	if (pvd == NULL)
175 		return;
176 
177 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
178 
179 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
180 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
181 	newsize = pvd->vdev_children * sizeof (vdev_t *);
182 
183 	newchild = kmem_zalloc(newsize, KM_SLEEP);
184 	if (pvd->vdev_child != NULL) {
185 		bcopy(pvd->vdev_child, newchild, oldsize);
186 		kmem_free(pvd->vdev_child, oldsize);
187 	}
188 
189 	pvd->vdev_child = newchild;
190 	pvd->vdev_child[id] = cvd;
191 
192 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
193 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
194 
195 	/*
196 	 * Walk up all ancestors to update guid sum.
197 	 */
198 	for (; pvd != NULL; pvd = pvd->vdev_parent)
199 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
200 
201 	if (cvd->vdev_ops->vdev_op_leaf)
202 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
203 }
204 
205 void
206 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
207 {
208 	int c;
209 	uint_t id = cvd->vdev_id;
210 
211 	ASSERT(cvd->vdev_parent == pvd);
212 
213 	if (pvd == NULL)
214 		return;
215 
216 	ASSERT(id < pvd->vdev_children);
217 	ASSERT(pvd->vdev_child[id] == cvd);
218 
219 	pvd->vdev_child[id] = NULL;
220 	cvd->vdev_parent = NULL;
221 
222 	for (c = 0; c < pvd->vdev_children; c++)
223 		if (pvd->vdev_child[c])
224 			break;
225 
226 	if (c == pvd->vdev_children) {
227 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
228 		pvd->vdev_child = NULL;
229 		pvd->vdev_children = 0;
230 	}
231 
232 	/*
233 	 * Walk up all ancestors to update guid sum.
234 	 */
235 	for (; pvd != NULL; pvd = pvd->vdev_parent)
236 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
237 
238 	if (cvd->vdev_ops->vdev_op_leaf)
239 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
240 }
241 
242 /*
243  * Remove any holes in the child array.
244  */
245 void
246 vdev_compact_children(vdev_t *pvd)
247 {
248 	vdev_t **newchild, *cvd;
249 	int oldc = pvd->vdev_children;
250 	int newc, c;
251 
252 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
253 
254 	for (c = newc = 0; c < oldc; c++)
255 		if (pvd->vdev_child[c])
256 			newc++;
257 
258 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
259 
260 	for (c = newc = 0; c < oldc; c++) {
261 		if ((cvd = pvd->vdev_child[c]) != NULL) {
262 			newchild[newc] = cvd;
263 			cvd->vdev_id = newc++;
264 		}
265 	}
266 
267 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
268 	pvd->vdev_child = newchild;
269 	pvd->vdev_children = newc;
270 }
271 
272 /*
273  * Allocate and minimally initialize a vdev_t.
274  */
275 static vdev_t *
276 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
277 {
278 	vdev_t *vd;
279 
280 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
281 
282 	if (spa->spa_root_vdev == NULL) {
283 		ASSERT(ops == &vdev_root_ops);
284 		spa->spa_root_vdev = vd;
285 	}
286 
287 	if (guid == 0) {
288 		if (spa->spa_root_vdev == vd) {
289 			/*
290 			 * The root vdev's guid will also be the pool guid,
291 			 * which must be unique among all pools.
292 			 */
293 			while (guid == 0 || spa_guid_exists(guid, 0))
294 				guid = spa_get_random(-1ULL);
295 		} else {
296 			/*
297 			 * Any other vdev's guid must be unique within the pool.
298 			 */
299 			while (guid == 0 ||
300 			    spa_guid_exists(spa_guid(spa), guid))
301 				guid = spa_get_random(-1ULL);
302 		}
303 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
304 	}
305 
306 	vd->vdev_spa = spa;
307 	vd->vdev_id = id;
308 	vd->vdev_guid = guid;
309 	vd->vdev_guid_sum = guid;
310 	vd->vdev_ops = ops;
311 	vd->vdev_state = VDEV_STATE_CLOSED;
312 
313 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
314 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
315 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
316 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
317 	txg_list_create(&vd->vdev_ms_list,
318 	    offsetof(struct metaslab, ms_txg_node));
319 	txg_list_create(&vd->vdev_dtl_list,
320 	    offsetof(struct vdev, vdev_dtl_node));
321 	vd->vdev_stat.vs_timestamp = gethrtime();
322 	vdev_queue_init(vd);
323 	vdev_cache_init(vd);
324 
325 	return (vd);
326 }
327 
328 /*
329  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
330  * creating a new vdev or loading an existing one - the behavior is slightly
331  * different for each case.
332  */
333 int
334 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
335     int alloctype)
336 {
337 	vdev_ops_t *ops;
338 	char *type;
339 	uint64_t guid = 0;
340 	vdev_t *vd;
341 
342 	ASSERT(spa_config_held(spa, RW_WRITER));
343 
344 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
345 		return (EINVAL);
346 
347 	if ((ops = vdev_getops(type)) == NULL)
348 		return (EINVAL);
349 
350 	/*
351 	 * If this is a load, get the vdev guid from the nvlist.
352 	 * Otherwise, vdev_alloc_common() will generate one for us.
353 	 */
354 	if (alloctype == VDEV_ALLOC_LOAD) {
355 		uint64_t label_id;
356 
357 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
358 		    label_id != id)
359 			return (EINVAL);
360 
361 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
362 			return (EINVAL);
363 	} else if (alloctype == VDEV_ALLOC_SPARE) {
364 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
365 			return (EINVAL);
366 	}
367 
368 	/*
369 	 * The first allocated vdev must be of type 'root'.
370 	 */
371 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
372 		return (EINVAL);
373 
374 	vd = vdev_alloc_common(spa, id, guid, ops);
375 
376 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
377 		vd->vdev_path = spa_strdup(vd->vdev_path);
378 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
379 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
380 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
381 	    &vd->vdev_physpath) == 0)
382 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
383 
384 	/*
385 	 * Set the nparity propery for RAID-Z vdevs.
386 	 */
387 	if (ops == &vdev_raidz_ops) {
388 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
389 		    &vd->vdev_nparity) == 0) {
390 			/*
391 			 * Currently, we can only support 2 parity devices.
392 			 */
393 			if (vd->vdev_nparity > 2)
394 				return (EINVAL);
395 			/*
396 			 * Older versions can only support 1 parity device.
397 			 */
398 			if (vd->vdev_nparity == 2 &&
399 			    spa_version(spa) < ZFS_VERSION_RAID6)
400 				return (ENOTSUP);
401 
402 		} else {
403 			/*
404 			 * We require the parity to be specified for SPAs that
405 			 * support multiple parity levels.
406 			 */
407 			if (spa_version(spa) >= ZFS_VERSION_RAID6)
408 				return (EINVAL);
409 
410 			/*
411 			 * Otherwise, we default to 1 parity device for RAID-Z.
412 			 */
413 			vd->vdev_nparity = 1;
414 		}
415 	} else {
416 		vd->vdev_nparity = 0;
417 	}
418 
419 	/*
420 	 * Set the whole_disk property.  If it's not specified, leave the value
421 	 * as -1.
422 	 */
423 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
424 	    &vd->vdev_wholedisk) != 0)
425 		vd->vdev_wholedisk = -1ULL;
426 
427 	/*
428 	 * Look for the 'not present' flag.  This will only be set if the device
429 	 * was not present at the time of import.
430 	 */
431 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
432 	    &vd->vdev_not_present);
433 
434 	/*
435 	 * Get the alignment requirement.
436 	 */
437 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
438 
439 	/*
440 	 * If we're a top-level vdev, try to load the allocation parameters.
441 	 */
442 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
443 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
444 		    &vd->vdev_ms_array);
445 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
446 		    &vd->vdev_ms_shift);
447 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
448 		    &vd->vdev_asize);
449 	}
450 
451 	/*
452 	 * If we're a leaf vdev, try to load the DTL object and other state.
453 	 */
454 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
455 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
456 		    &vd->vdev_dtl.smo_object);
457 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
458 		    &vd->vdev_offline);
459 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
460 		    &vd->vdev_unspare);
461 		/*
462 		 * When importing a pool, we want to ignore the persistent fault
463 		 * state, as the diagnosis made on another system may not be
464 		 * valid in the current context.
465 		 */
466 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
467 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
468 			    &vd->vdev_faulted);
469 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
470 			    &vd->vdev_degraded);
471 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
472 			    &vd->vdev_removed);
473 		}
474 	}
475 
476 	/*
477 	 * Add ourselves to the parent's list of children.
478 	 */
479 	vdev_add_child(parent, vd);
480 
481 	*vdp = vd;
482 
483 	return (0);
484 }
485 
486 void
487 vdev_free(vdev_t *vd)
488 {
489 	int c;
490 	spa_t *spa = vd->vdev_spa;
491 
492 	/*
493 	 * vdev_free() implies closing the vdev first.  This is simpler than
494 	 * trying to ensure complicated semantics for all callers.
495 	 */
496 	vdev_close(vd);
497 
498 
499 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
500 
501 	/*
502 	 * Free all children.
503 	 */
504 	for (c = 0; c < vd->vdev_children; c++)
505 		vdev_free(vd->vdev_child[c]);
506 
507 	ASSERT(vd->vdev_child == NULL);
508 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
509 
510 	/*
511 	 * Discard allocation state.
512 	 */
513 	if (vd == vd->vdev_top)
514 		vdev_metaslab_fini(vd);
515 
516 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
517 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
518 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
519 
520 	/*
521 	 * Remove this vdev from its parent's child list.
522 	 */
523 	vdev_remove_child(vd->vdev_parent, vd);
524 
525 	ASSERT(vd->vdev_parent == NULL);
526 
527 	/*
528 	 * Clean up vdev structure.
529 	 */
530 	vdev_queue_fini(vd);
531 	vdev_cache_fini(vd);
532 
533 	if (vd->vdev_path)
534 		spa_strfree(vd->vdev_path);
535 	if (vd->vdev_devid)
536 		spa_strfree(vd->vdev_devid);
537 	if (vd->vdev_physpath)
538 		spa_strfree(vd->vdev_physpath);
539 
540 	if (vd->vdev_isspare)
541 		spa_spare_remove(vd);
542 
543 	txg_list_destroy(&vd->vdev_ms_list);
544 	txg_list_destroy(&vd->vdev_dtl_list);
545 	mutex_enter(&vd->vdev_dtl_lock);
546 	space_map_unload(&vd->vdev_dtl_map);
547 	space_map_destroy(&vd->vdev_dtl_map);
548 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
549 	space_map_destroy(&vd->vdev_dtl_scrub);
550 	mutex_exit(&vd->vdev_dtl_lock);
551 	mutex_destroy(&vd->vdev_dtl_lock);
552 	mutex_destroy(&vd->vdev_stat_lock);
553 
554 	if (vd == spa->spa_root_vdev)
555 		spa->spa_root_vdev = NULL;
556 
557 	kmem_free(vd, sizeof (vdev_t));
558 }
559 
560 /*
561  * Transfer top-level vdev state from svd to tvd.
562  */
563 static void
564 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
565 {
566 	spa_t *spa = svd->vdev_spa;
567 	metaslab_t *msp;
568 	vdev_t *vd;
569 	int t;
570 
571 	ASSERT(tvd == tvd->vdev_top);
572 
573 	tvd->vdev_ms_array = svd->vdev_ms_array;
574 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
575 	tvd->vdev_ms_count = svd->vdev_ms_count;
576 
577 	svd->vdev_ms_array = 0;
578 	svd->vdev_ms_shift = 0;
579 	svd->vdev_ms_count = 0;
580 
581 	tvd->vdev_mg = svd->vdev_mg;
582 	tvd->vdev_ms = svd->vdev_ms;
583 
584 	svd->vdev_mg = NULL;
585 	svd->vdev_ms = NULL;
586 
587 	if (tvd->vdev_mg != NULL)
588 		tvd->vdev_mg->mg_vd = tvd;
589 
590 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
591 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
592 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
593 
594 	svd->vdev_stat.vs_alloc = 0;
595 	svd->vdev_stat.vs_space = 0;
596 	svd->vdev_stat.vs_dspace = 0;
597 
598 	for (t = 0; t < TXG_SIZE; t++) {
599 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
600 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
601 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
602 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
603 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
604 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
605 	}
606 
607 	if (list_link_active(&svd->vdev_dirty_node)) {
608 		vdev_config_clean(svd);
609 		vdev_config_dirty(tvd);
610 	}
611 
612 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
613 	svd->vdev_deflate_ratio = 0;
614 }
615 
616 static void
617 vdev_top_update(vdev_t *tvd, vdev_t *vd)
618 {
619 	int c;
620 
621 	if (vd == NULL)
622 		return;
623 
624 	vd->vdev_top = tvd;
625 
626 	for (c = 0; c < vd->vdev_children; c++)
627 		vdev_top_update(tvd, vd->vdev_child[c]);
628 }
629 
630 /*
631  * Add a mirror/replacing vdev above an existing vdev.
632  */
633 vdev_t *
634 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
635 {
636 	spa_t *spa = cvd->vdev_spa;
637 	vdev_t *pvd = cvd->vdev_parent;
638 	vdev_t *mvd;
639 
640 	ASSERT(spa_config_held(spa, RW_WRITER));
641 
642 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
643 
644 	mvd->vdev_asize = cvd->vdev_asize;
645 	mvd->vdev_ashift = cvd->vdev_ashift;
646 	mvd->vdev_state = cvd->vdev_state;
647 
648 	vdev_remove_child(pvd, cvd);
649 	vdev_add_child(pvd, mvd);
650 	cvd->vdev_id = mvd->vdev_children;
651 	vdev_add_child(mvd, cvd);
652 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
653 
654 	if (mvd == mvd->vdev_top)
655 		vdev_top_transfer(cvd, mvd);
656 
657 	return (mvd);
658 }
659 
660 /*
661  * Remove a 1-way mirror/replacing vdev from the tree.
662  */
663 void
664 vdev_remove_parent(vdev_t *cvd)
665 {
666 	vdev_t *mvd = cvd->vdev_parent;
667 	vdev_t *pvd = mvd->vdev_parent;
668 
669 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
670 
671 	ASSERT(mvd->vdev_children == 1);
672 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
673 	    mvd->vdev_ops == &vdev_replacing_ops ||
674 	    mvd->vdev_ops == &vdev_spare_ops);
675 	cvd->vdev_ashift = mvd->vdev_ashift;
676 
677 	vdev_remove_child(mvd, cvd);
678 	vdev_remove_child(pvd, mvd);
679 	cvd->vdev_id = mvd->vdev_id;
680 	vdev_add_child(pvd, cvd);
681 	/*
682 	 * If we created a new toplevel vdev, then we need to change the child's
683 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
684 	 * detached an offline device, and when we go to import the pool we'll
685 	 * think we have two toplevel vdevs, instead of a different version of
686 	 * the same toplevel vdev.
687 	 */
688 	if (cvd->vdev_top == cvd) {
689 		pvd->vdev_guid_sum -= cvd->vdev_guid;
690 		cvd->vdev_guid_sum -= cvd->vdev_guid;
691 		cvd->vdev_guid = mvd->vdev_guid;
692 		cvd->vdev_guid_sum += mvd->vdev_guid;
693 		pvd->vdev_guid_sum += cvd->vdev_guid;
694 	}
695 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
696 
697 	if (cvd == cvd->vdev_top)
698 		vdev_top_transfer(mvd, cvd);
699 
700 	ASSERT(mvd->vdev_children == 0);
701 	vdev_free(mvd);
702 }
703 
704 int
705 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
706 {
707 	spa_t *spa = vd->vdev_spa;
708 	objset_t *mos = spa->spa_meta_objset;
709 	metaslab_class_t *mc = spa_metaslab_class_select(spa);
710 	uint64_t m;
711 	uint64_t oldc = vd->vdev_ms_count;
712 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
713 	metaslab_t **mspp;
714 	int error;
715 
716 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
717 		return (0);
718 
719 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
720 
721 	ASSERT(oldc <= newc);
722 
723 	if (vd->vdev_mg == NULL)
724 		vd->vdev_mg = metaslab_group_create(mc, vd);
725 
726 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
727 
728 	if (oldc != 0) {
729 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
730 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
731 	}
732 
733 	vd->vdev_ms = mspp;
734 	vd->vdev_ms_count = newc;
735 
736 	for (m = oldc; m < newc; m++) {
737 		space_map_obj_t smo = { 0, 0, 0 };
738 		if (txg == 0) {
739 			uint64_t object = 0;
740 			error = dmu_read(mos, vd->vdev_ms_array,
741 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
742 			if (error)
743 				return (error);
744 			if (object != 0) {
745 				dmu_buf_t *db;
746 				error = dmu_bonus_hold(mos, object, FTAG, &db);
747 				if (error)
748 					return (error);
749 				ASSERT3U(db->db_size, ==, sizeof (smo));
750 				bcopy(db->db_data, &smo, db->db_size);
751 				ASSERT3U(smo.smo_object, ==, object);
752 				dmu_buf_rele(db, FTAG);
753 			}
754 		}
755 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
756 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
757 	}
758 
759 	return (0);
760 }
761 
762 void
763 vdev_metaslab_fini(vdev_t *vd)
764 {
765 	uint64_t m;
766 	uint64_t count = vd->vdev_ms_count;
767 
768 	if (vd->vdev_ms != NULL) {
769 		for (m = 0; m < count; m++)
770 			if (vd->vdev_ms[m] != NULL)
771 				metaslab_fini(vd->vdev_ms[m]);
772 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
773 		vd->vdev_ms = NULL;
774 	}
775 }
776 
777 /*
778  * Prepare a virtual device for access.
779  */
780 int
781 vdev_open(vdev_t *vd)
782 {
783 	int error;
784 	int c;
785 	uint64_t osize = 0;
786 	uint64_t asize, psize;
787 	uint64_t ashift = 0;
788 
789 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
790 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
791 	    vd->vdev_state == VDEV_STATE_OFFLINE);
792 
793 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
794 		vd->vdev_fault_arg >>= 1;
795 	else
796 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
797 
798 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
799 
800 	if (!vd->vdev_removed && vd->vdev_faulted) {
801 		ASSERT(vd->vdev_children == 0);
802 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
803 		    VDEV_AUX_ERR_EXCEEDED);
804 		return (ENXIO);
805 	} else if (vd->vdev_offline) {
806 		ASSERT(vd->vdev_children == 0);
807 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
808 		return (ENXIO);
809 	}
810 
811 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
812 
813 	if (zio_injection_enabled && error == 0)
814 		error = zio_handle_device_injection(vd, ENXIO);
815 
816 	if (error) {
817 		if (vd->vdev_removed &&
818 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
819 			vd->vdev_removed = B_FALSE;
820 
821 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
822 		    vd->vdev_stat.vs_aux);
823 		return (error);
824 	}
825 
826 	vd->vdev_removed = B_FALSE;
827 
828 	if (vd->vdev_degraded) {
829 		ASSERT(vd->vdev_children == 0);
830 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
831 		    VDEV_AUX_ERR_EXCEEDED);
832 	} else {
833 		vd->vdev_state = VDEV_STATE_HEALTHY;
834 	}
835 
836 	for (c = 0; c < vd->vdev_children; c++)
837 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
838 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
839 			    VDEV_AUX_NONE);
840 			break;
841 		}
842 
843 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
844 
845 	if (vd->vdev_children == 0) {
846 		if (osize < SPA_MINDEVSIZE) {
847 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
848 			    VDEV_AUX_TOO_SMALL);
849 			return (EOVERFLOW);
850 		}
851 		psize = osize;
852 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
853 	} else {
854 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
855 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
856 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
857 			    VDEV_AUX_TOO_SMALL);
858 			return (EOVERFLOW);
859 		}
860 		psize = 0;
861 		asize = osize;
862 	}
863 
864 	vd->vdev_psize = psize;
865 
866 	if (vd->vdev_asize == 0) {
867 		/*
868 		 * This is the first-ever open, so use the computed values.
869 		 * For testing purposes, a higher ashift can be requested.
870 		 */
871 		vd->vdev_asize = asize;
872 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
873 	} else {
874 		/*
875 		 * Make sure the alignment requirement hasn't increased.
876 		 */
877 		if (ashift > vd->vdev_top->vdev_ashift) {
878 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
879 			    VDEV_AUX_BAD_LABEL);
880 			return (EINVAL);
881 		}
882 
883 		/*
884 		 * Make sure the device hasn't shrunk.
885 		 */
886 		if (asize < vd->vdev_asize) {
887 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
888 			    VDEV_AUX_BAD_LABEL);
889 			return (EINVAL);
890 		}
891 
892 		/*
893 		 * If all children are healthy and the asize has increased,
894 		 * then we've experienced dynamic LUN growth.
895 		 */
896 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
897 		    asize > vd->vdev_asize) {
898 			vd->vdev_asize = asize;
899 		}
900 	}
901 
902 	/*
903 	 * If this is a top-level vdev, compute the raidz-deflation
904 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
905 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
906 	 * changes, this algorithm must never change, or we will
907 	 * inconsistently account for existing bp's.
908 	 */
909 	if (vd->vdev_top == vd) {
910 		vd->vdev_deflate_ratio = (1<<17) /
911 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
912 	}
913 
914 	/*
915 	 * This allows the ZFS DE to close cases appropriately.  If a device
916 	 * goes away and later returns, we want to close the associated case.
917 	 * But it's not enough to simply post this only when a device goes from
918 	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
919 	 * back, we also need to close the case (otherwise we will try to replay
920 	 * it).  So we have to post this notifier every time.  Since this only
921 	 * occurs during pool open or error recovery, this should not be an
922 	 * issue.
923 	 */
924 	zfs_post_ok(vd->vdev_spa, vd);
925 
926 	return (0);
927 }
928 
929 /*
930  * Called once the vdevs are all opened, this routine validates the label
931  * contents.  This needs to be done before vdev_load() so that we don't
932  * inadvertently do repair I/Os to the wrong device.
933  *
934  * This function will only return failure if one of the vdevs indicates that it
935  * has since been destroyed or exported.  This is only possible if
936  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
937  * will be updated but the function will return 0.
938  */
939 int
940 vdev_validate(vdev_t *vd)
941 {
942 	spa_t *spa = vd->vdev_spa;
943 	int c;
944 	nvlist_t *label;
945 	uint64_t guid;
946 	uint64_t state;
947 
948 	for (c = 0; c < vd->vdev_children; c++)
949 		if (vdev_validate(vd->vdev_child[c]) != 0)
950 			return (EBADF);
951 
952 	/*
953 	 * If the device has already failed, or was marked offline, don't do
954 	 * any further validation.  Otherwise, label I/O will fail and we will
955 	 * overwrite the previous state.
956 	 */
957 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
958 
959 		if ((label = vdev_label_read_config(vd)) == NULL) {
960 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
961 			    VDEV_AUX_BAD_LABEL);
962 			return (0);
963 		}
964 
965 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
966 		    &guid) != 0 || guid != spa_guid(spa)) {
967 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
968 			    VDEV_AUX_CORRUPT_DATA);
969 			nvlist_free(label);
970 			return (0);
971 		}
972 
973 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
974 		    &guid) != 0 || guid != vd->vdev_guid) {
975 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
976 			    VDEV_AUX_CORRUPT_DATA);
977 			nvlist_free(label);
978 			return (0);
979 		}
980 
981 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
982 		    &state) != 0) {
983 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
984 			    VDEV_AUX_CORRUPT_DATA);
985 			nvlist_free(label);
986 			return (0);
987 		}
988 
989 		nvlist_free(label);
990 
991 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
992 		    state != POOL_STATE_ACTIVE)
993 			return (EBADF);
994 	}
995 
996 	/*
997 	 * If we were able to open and validate a vdev that was previously
998 	 * marked permanently unavailable, clear that state now.
999 	 */
1000 	if (vd->vdev_not_present)
1001 		vd->vdev_not_present = 0;
1002 
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Close a virtual device.
1008  */
1009 void
1010 vdev_close(vdev_t *vd)
1011 {
1012 	vd->vdev_ops->vdev_op_close(vd);
1013 
1014 	vdev_cache_purge(vd);
1015 
1016 	/*
1017 	 * We record the previous state before we close it, so  that if we are
1018 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1019 	 * it's still faulted.
1020 	 */
1021 	vd->vdev_prevstate = vd->vdev_state;
1022 
1023 	if (vd->vdev_offline)
1024 		vd->vdev_state = VDEV_STATE_OFFLINE;
1025 	else
1026 		vd->vdev_state = VDEV_STATE_CLOSED;
1027 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1028 }
1029 
1030 void
1031 vdev_reopen(vdev_t *vd)
1032 {
1033 	spa_t *spa = vd->vdev_spa;
1034 
1035 	ASSERT(spa_config_held(spa, RW_WRITER));
1036 
1037 	vdev_close(vd);
1038 	(void) vdev_open(vd);
1039 
1040 	/*
1041 	 * Call vdev_validate() here to make sure we have the same device.
1042 	 * Otherwise, a device with an invalid label could be successfully
1043 	 * opened in response to vdev_reopen().
1044 	 */
1045 	(void) vdev_validate(vd);
1046 
1047 	/*
1048 	 * Reassess parent vdev's health.
1049 	 */
1050 	vdev_propagate_state(vd);
1051 }
1052 
1053 int
1054 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1055 {
1056 	int error;
1057 
1058 	/*
1059 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1060 	 * For a create, however, we want to fail the request if
1061 	 * there are any components we can't open.
1062 	 */
1063 	error = vdev_open(vd);
1064 
1065 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1066 		vdev_close(vd);
1067 		return (error ? error : ENXIO);
1068 	}
1069 
1070 	/*
1071 	 * Recursively initialize all labels.
1072 	 */
1073 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1074 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1075 		vdev_close(vd);
1076 		return (error);
1077 	}
1078 
1079 	return (0);
1080 }
1081 
1082 /*
1083  * The is the latter half of vdev_create().  It is distinct because it
1084  * involves initiating transactions in order to do metaslab creation.
1085  * For creation, we want to try to create all vdevs at once and then undo it
1086  * if anything fails; this is much harder if we have pending transactions.
1087  */
1088 void
1089 vdev_init(vdev_t *vd, uint64_t txg)
1090 {
1091 	/*
1092 	 * Aim for roughly 200 metaslabs per vdev.
1093 	 */
1094 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1095 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1096 
1097 	/*
1098 	 * Initialize the vdev's metaslabs.  This can't fail because
1099 	 * there's nothing to read when creating all new metaslabs.
1100 	 */
1101 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1102 }
1103 
1104 void
1105 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1106 {
1107 	ASSERT(vd == vd->vdev_top);
1108 	ASSERT(ISP2(flags));
1109 
1110 	if (flags & VDD_METASLAB)
1111 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1112 
1113 	if (flags & VDD_DTL)
1114 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1115 
1116 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1117 }
1118 
1119 void
1120 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1121 {
1122 	mutex_enter(sm->sm_lock);
1123 	if (!space_map_contains(sm, txg, size))
1124 		space_map_add(sm, txg, size);
1125 	mutex_exit(sm->sm_lock);
1126 }
1127 
1128 int
1129 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1130 {
1131 	int dirty;
1132 
1133 	/*
1134 	 * Quick test without the lock -- covers the common case that
1135 	 * there are no dirty time segments.
1136 	 */
1137 	if (sm->sm_space == 0)
1138 		return (0);
1139 
1140 	mutex_enter(sm->sm_lock);
1141 	dirty = space_map_contains(sm, txg, size);
1142 	mutex_exit(sm->sm_lock);
1143 
1144 	return (dirty);
1145 }
1146 
1147 /*
1148  * Reassess DTLs after a config change or scrub completion.
1149  */
1150 void
1151 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1152 {
1153 	spa_t *spa = vd->vdev_spa;
1154 	int c;
1155 
1156 	ASSERT(spa_config_held(spa, RW_WRITER));
1157 
1158 	if (vd->vdev_children == 0) {
1159 		mutex_enter(&vd->vdev_dtl_lock);
1160 		/*
1161 		 * We're successfully scrubbed everything up to scrub_txg.
1162 		 * Therefore, excise all old DTLs up to that point, then
1163 		 * fold in the DTLs for everything we couldn't scrub.
1164 		 */
1165 		if (scrub_txg != 0) {
1166 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1167 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1168 		}
1169 		if (scrub_done)
1170 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1171 		mutex_exit(&vd->vdev_dtl_lock);
1172 		if (txg != 0)
1173 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1174 		return;
1175 	}
1176 
1177 	/*
1178 	 * Make sure the DTLs are always correct under the scrub lock.
1179 	 */
1180 	if (vd == spa->spa_root_vdev)
1181 		mutex_enter(&spa->spa_scrub_lock);
1182 
1183 	mutex_enter(&vd->vdev_dtl_lock);
1184 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1185 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1186 	mutex_exit(&vd->vdev_dtl_lock);
1187 
1188 	for (c = 0; c < vd->vdev_children; c++) {
1189 		vdev_t *cvd = vd->vdev_child[c];
1190 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1191 		mutex_enter(&vd->vdev_dtl_lock);
1192 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1193 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1194 		mutex_exit(&vd->vdev_dtl_lock);
1195 	}
1196 
1197 	if (vd == spa->spa_root_vdev)
1198 		mutex_exit(&spa->spa_scrub_lock);
1199 }
1200 
1201 static int
1202 vdev_dtl_load(vdev_t *vd)
1203 {
1204 	spa_t *spa = vd->vdev_spa;
1205 	space_map_obj_t *smo = &vd->vdev_dtl;
1206 	objset_t *mos = spa->spa_meta_objset;
1207 	dmu_buf_t *db;
1208 	int error;
1209 
1210 	ASSERT(vd->vdev_children == 0);
1211 
1212 	if (smo->smo_object == 0)
1213 		return (0);
1214 
1215 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1216 		return (error);
1217 
1218 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1219 	bcopy(db->db_data, smo, db->db_size);
1220 	dmu_buf_rele(db, FTAG);
1221 
1222 	mutex_enter(&vd->vdev_dtl_lock);
1223 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1224 	mutex_exit(&vd->vdev_dtl_lock);
1225 
1226 	return (error);
1227 }
1228 
1229 void
1230 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1231 {
1232 	spa_t *spa = vd->vdev_spa;
1233 	space_map_obj_t *smo = &vd->vdev_dtl;
1234 	space_map_t *sm = &vd->vdev_dtl_map;
1235 	objset_t *mos = spa->spa_meta_objset;
1236 	space_map_t smsync;
1237 	kmutex_t smlock;
1238 	dmu_buf_t *db;
1239 	dmu_tx_t *tx;
1240 
1241 	dprintf("%s in txg %llu pass %d\n",
1242 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1243 
1244 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1245 
1246 	if (vd->vdev_detached) {
1247 		if (smo->smo_object != 0) {
1248 			int err = dmu_object_free(mos, smo->smo_object, tx);
1249 			ASSERT3U(err, ==, 0);
1250 			smo->smo_object = 0;
1251 		}
1252 		dmu_tx_commit(tx);
1253 		dprintf("detach %s committed in txg %llu\n",
1254 		    vdev_description(vd), txg);
1255 		return;
1256 	}
1257 
1258 	if (smo->smo_object == 0) {
1259 		ASSERT(smo->smo_objsize == 0);
1260 		ASSERT(smo->smo_alloc == 0);
1261 		smo->smo_object = dmu_object_alloc(mos,
1262 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1263 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1264 		ASSERT(smo->smo_object != 0);
1265 		vdev_config_dirty(vd->vdev_top);
1266 	}
1267 
1268 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1269 
1270 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1271 	    &smlock);
1272 
1273 	mutex_enter(&smlock);
1274 
1275 	mutex_enter(&vd->vdev_dtl_lock);
1276 	space_map_walk(sm, space_map_add, &smsync);
1277 	mutex_exit(&vd->vdev_dtl_lock);
1278 
1279 	space_map_truncate(smo, mos, tx);
1280 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1281 
1282 	space_map_destroy(&smsync);
1283 
1284 	mutex_exit(&smlock);
1285 	mutex_destroy(&smlock);
1286 
1287 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1288 	dmu_buf_will_dirty(db, tx);
1289 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1290 	bcopy(smo, db->db_data, db->db_size);
1291 	dmu_buf_rele(db, FTAG);
1292 
1293 	dmu_tx_commit(tx);
1294 }
1295 
1296 void
1297 vdev_load(vdev_t *vd)
1298 {
1299 	int c;
1300 
1301 	/*
1302 	 * Recursively load all children.
1303 	 */
1304 	for (c = 0; c < vd->vdev_children; c++)
1305 		vdev_load(vd->vdev_child[c]);
1306 
1307 	/*
1308 	 * If this is a top-level vdev, initialize its metaslabs.
1309 	 */
1310 	if (vd == vd->vdev_top &&
1311 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1312 	    vdev_metaslab_init(vd, 0) != 0))
1313 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1314 		    VDEV_AUX_CORRUPT_DATA);
1315 
1316 	/*
1317 	 * If this is a leaf vdev, load its DTL.
1318 	 */
1319 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1320 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1321 		    VDEV_AUX_CORRUPT_DATA);
1322 }
1323 
1324 /*
1325  * This special case of vdev_spare() is used for hot spares.  It's sole purpose
1326  * it to set the vdev state for the associated vdev.  To do this, we make sure
1327  * that we can open the underlying device, then try to read the label, and make
1328  * sure that the label is sane and that it hasn't been repurposed to another
1329  * pool.
1330  */
1331 int
1332 vdev_validate_spare(vdev_t *vd)
1333 {
1334 	nvlist_t *label;
1335 	uint64_t guid, version;
1336 	uint64_t state;
1337 
1338 	if ((label = vdev_label_read_config(vd)) == NULL) {
1339 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1340 		    VDEV_AUX_CORRUPT_DATA);
1341 		return (-1);
1342 	}
1343 
1344 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1345 	    version > ZFS_VERSION ||
1346 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1347 	    guid != vd->vdev_guid ||
1348 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1349 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350 		    VDEV_AUX_CORRUPT_DATA);
1351 		nvlist_free(label);
1352 		return (-1);
1353 	}
1354 
1355 	spa_spare_add(vd);
1356 
1357 	/*
1358 	 * We don't actually check the pool state here.  If it's in fact in
1359 	 * use by another pool, we update this fact on the fly when requested.
1360 	 */
1361 	nvlist_free(label);
1362 	return (0);
1363 }
1364 
1365 void
1366 vdev_sync_done(vdev_t *vd, uint64_t txg)
1367 {
1368 	metaslab_t *msp;
1369 
1370 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1371 
1372 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1373 		metaslab_sync_done(msp, txg);
1374 }
1375 
1376 void
1377 vdev_sync(vdev_t *vd, uint64_t txg)
1378 {
1379 	spa_t *spa = vd->vdev_spa;
1380 	vdev_t *lvd;
1381 	metaslab_t *msp;
1382 	dmu_tx_t *tx;
1383 
1384 	dprintf("%s txg %llu pass %d\n",
1385 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1386 
1387 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1388 		ASSERT(vd == vd->vdev_top);
1389 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1390 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1391 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1392 		ASSERT(vd->vdev_ms_array != 0);
1393 		vdev_config_dirty(vd);
1394 		dmu_tx_commit(tx);
1395 	}
1396 
1397 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1398 		metaslab_sync(msp, txg);
1399 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1400 	}
1401 
1402 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1403 		vdev_dtl_sync(lvd, txg);
1404 
1405 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1406 }
1407 
1408 uint64_t
1409 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1410 {
1411 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1412 }
1413 
1414 void
1415 vdev_io_start(zio_t *zio)
1416 {
1417 	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1418 }
1419 
1420 void
1421 vdev_io_done(zio_t *zio)
1422 {
1423 	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1424 }
1425 
1426 const char *
1427 vdev_description(vdev_t *vd)
1428 {
1429 	if (vd == NULL || vd->vdev_ops == NULL)
1430 		return ("<unknown>");
1431 
1432 	if (vd->vdev_path != NULL)
1433 		return (vd->vdev_path);
1434 
1435 	if (vd->vdev_parent == NULL)
1436 		return (spa_name(vd->vdev_spa));
1437 
1438 	return (vd->vdev_ops->vdev_op_type);
1439 }
1440 
1441 /*
1442  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1443  * not be opened, and no I/O is attempted.
1444  */
1445 int
1446 vdev_fault(spa_t *spa, uint64_t guid)
1447 {
1448 	vdev_t *rvd, *vd;
1449 	uint64_t txg;
1450 
1451 	txg = spa_vdev_enter(spa);
1452 
1453 	rvd = spa->spa_root_vdev;
1454 
1455 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1456 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1457 	if (!vd->vdev_ops->vdev_op_leaf)
1458 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1459 
1460 	/*
1461 	 * Faulted state takes precedence over degraded.
1462 	 */
1463 	vd->vdev_faulted = 1ULL;
1464 	vd->vdev_degraded = 0ULL;
1465 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED,
1466 	    VDEV_AUX_ERR_EXCEEDED);
1467 
1468 	/*
1469 	 * If marking the vdev as faulted cause the toplevel vdev to become
1470 	 * unavailable, then back off and simply mark the vdev as degraded
1471 	 * instead.
1472 	 */
1473 	if (vdev_is_dead(vd->vdev_top)) {
1474 		vd->vdev_degraded = 1ULL;
1475 		vd->vdev_faulted = 0ULL;
1476 
1477 		/*
1478 		 * If we reopen the device and it's not dead, only then do we
1479 		 * mark it degraded.
1480 		 */
1481 		vdev_reopen(vd);
1482 
1483 		if (!vdev_is_dead(vd)) {
1484 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1485 			    VDEV_AUX_ERR_EXCEEDED);
1486 		}
1487 	}
1488 
1489 	vdev_config_dirty(vd->vdev_top);
1490 
1491 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1492 
1493 	return (0);
1494 }
1495 
1496 /*
1497  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1498  * user that something is wrong.  The vdev continues to operate as normal as far
1499  * as I/O is concerned.
1500  */
1501 int
1502 vdev_degrade(spa_t *spa, uint64_t guid)
1503 {
1504 	vdev_t *rvd, *vd;
1505 	uint64_t txg;
1506 
1507 	txg = spa_vdev_enter(spa);
1508 
1509 	rvd = spa->spa_root_vdev;
1510 
1511 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1512 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1513 	if (!vd->vdev_ops->vdev_op_leaf)
1514 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1515 
1516 	/*
1517 	 * If the vdev is already faulted, then don't do anything.
1518 	 */
1519 	if (vd->vdev_faulted || vd->vdev_degraded) {
1520 		(void) spa_vdev_exit(spa, NULL, txg, 0);
1521 		return (0);
1522 	}
1523 
1524 	vd->vdev_degraded = 1ULL;
1525 	if (!vdev_is_dead(vd))
1526 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1527 		    VDEV_AUX_ERR_EXCEEDED);
1528 	vdev_config_dirty(vd->vdev_top);
1529 
1530 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1531 
1532 	return (0);
1533 }
1534 
1535 /*
1536  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1537  * any attached spare device should be detached when the device finishes
1538  * resilvering.  Second, the online should be treated like a 'test' online case,
1539  * so no FMA events are generated if the device fails to open.
1540  */
1541 int
1542 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
1543     vdev_state_t *newstate)
1544 {
1545 	vdev_t *rvd, *vd;
1546 	uint64_t txg;
1547 
1548 	txg = spa_vdev_enter(spa);
1549 
1550 	rvd = spa->spa_root_vdev;
1551 
1552 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1553 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1554 
1555 	if (!vd->vdev_ops->vdev_op_leaf)
1556 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1557 
1558 	vd->vdev_offline = B_FALSE;
1559 	vd->vdev_tmpoffline = B_FALSE;
1560 	vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ?
1561 	    B_TRUE : B_FALSE;
1562 	vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ?
1563 	    B_TRUE : B_FALSE;
1564 	vdev_reopen(vd->vdev_top);
1565 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1566 
1567 	if (newstate)
1568 		*newstate = vd->vdev_state;
1569 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1570 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1571 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1572 	    vd->vdev_parent->vdev_child[0] == vd)
1573 		vd->vdev_unspare = B_TRUE;
1574 
1575 	vdev_config_dirty(vd->vdev_top);
1576 
1577 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1578 
1579 	/*
1580 	 * Must hold spa_namespace_lock in order to post resilver sysevent
1581 	 * w/pool name.
1582 	 */
1583 	mutex_enter(&spa_namespace_lock);
1584 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1585 	mutex_exit(&spa_namespace_lock);
1586 
1587 	return (0);
1588 }
1589 
1590 int
1591 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1592 {
1593 	vdev_t *rvd, *vd;
1594 	uint64_t txg;
1595 
1596 	txg = spa_vdev_enter(spa);
1597 
1598 	rvd = spa->spa_root_vdev;
1599 
1600 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1601 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1602 
1603 	if (!vd->vdev_ops->vdev_op_leaf)
1604 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1605 
1606 	/*
1607 	 * If the device isn't already offline, try to offline it.
1608 	 */
1609 	if (!vd->vdev_offline) {
1610 		/*
1611 		 * If this device's top-level vdev has a non-empty DTL,
1612 		 * don't allow the device to be offlined.
1613 		 *
1614 		 * XXX -- make this more precise by allowing the offline
1615 		 * as long as the remaining devices don't have any DTL holes.
1616 		 */
1617 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1618 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1619 
1620 		/*
1621 		 * Offline this device and reopen its top-level vdev.
1622 		 * If this action results in the top-level vdev becoming
1623 		 * unusable, undo it and fail the request.
1624 		 */
1625 		vd->vdev_offline = B_TRUE;
1626 		vdev_reopen(vd->vdev_top);
1627 		if (vdev_is_dead(vd->vdev_top)) {
1628 			vd->vdev_offline = B_FALSE;
1629 			vdev_reopen(vd->vdev_top);
1630 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1631 		}
1632 	}
1633 
1634 	vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ?
1635 	    B_TRUE : B_FALSE;
1636 
1637 	vdev_config_dirty(vd->vdev_top);
1638 
1639 	return (spa_vdev_exit(spa, NULL, txg, 0));
1640 }
1641 
1642 /*
1643  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1644  * vdev_offline(), we assume the spa config is locked.  We also clear all
1645  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1646  */
1647 void
1648 vdev_clear(spa_t *spa, vdev_t *vd)
1649 {
1650 	int c;
1651 
1652 	if (vd == NULL)
1653 		vd = spa->spa_root_vdev;
1654 
1655 	vd->vdev_stat.vs_read_errors = 0;
1656 	vd->vdev_stat.vs_write_errors = 0;
1657 	vd->vdev_stat.vs_checksum_errors = 0;
1658 
1659 	for (c = 0; c < vd->vdev_children; c++)
1660 		vdev_clear(spa, vd->vdev_child[c]);
1661 
1662 	/*
1663 	 * If we're in the FAULTED state, then clear the persistent state and
1664 	 * attempt to reopen the device.  We also mark the vdev config dirty, so
1665 	 * that the new faulted state is written out to disk.
1666 	 */
1667 	if (vd->vdev_faulted || vd->vdev_degraded) {
1668 		vd->vdev_faulted = vd->vdev_degraded = 0;
1669 		vdev_reopen(vd);
1670 		vdev_config_dirty(vd->vdev_top);
1671 
1672 		if (vd->vdev_faulted)
1673 			VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER,
1674 			    B_TRUE) == 0);
1675 
1676 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1677 	}
1678 }
1679 
1680 int
1681 vdev_is_dead(vdev_t *vd)
1682 {
1683 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
1684 }
1685 
1686 int
1687 vdev_error_inject(vdev_t *vd, zio_t *zio)
1688 {
1689 	int error = 0;
1690 
1691 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1692 		return (0);
1693 
1694 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1695 		return (0);
1696 
1697 	switch (vd->vdev_fault_mode) {
1698 	case VDEV_FAULT_RANDOM:
1699 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1700 			error = EIO;
1701 		break;
1702 
1703 	case VDEV_FAULT_COUNT:
1704 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1705 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1706 		error = EIO;
1707 		break;
1708 	}
1709 
1710 	return (error);
1711 }
1712 
1713 /*
1714  * Get statistics for the given vdev.
1715  */
1716 void
1717 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1718 {
1719 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1720 	int c, t;
1721 
1722 	mutex_enter(&vd->vdev_stat_lock);
1723 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1724 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1725 	vs->vs_state = vd->vdev_state;
1726 	vs->vs_rsize = vdev_get_rsize(vd);
1727 	mutex_exit(&vd->vdev_stat_lock);
1728 
1729 	/*
1730 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1731 	 * over all top-level vdevs (i.e. the direct children of the root).
1732 	 */
1733 	if (vd == rvd) {
1734 		for (c = 0; c < rvd->vdev_children; c++) {
1735 			vdev_t *cvd = rvd->vdev_child[c];
1736 			vdev_stat_t *cvs = &cvd->vdev_stat;
1737 
1738 			mutex_enter(&vd->vdev_stat_lock);
1739 			for (t = 0; t < ZIO_TYPES; t++) {
1740 				vs->vs_ops[t] += cvs->vs_ops[t];
1741 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1742 			}
1743 			vs->vs_read_errors += cvs->vs_read_errors;
1744 			vs->vs_write_errors += cvs->vs_write_errors;
1745 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1746 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1747 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1748 			mutex_exit(&vd->vdev_stat_lock);
1749 		}
1750 	}
1751 }
1752 
1753 void
1754 vdev_stat_update(zio_t *zio)
1755 {
1756 	vdev_t *vd = zio->io_vd;
1757 	vdev_t *pvd;
1758 	uint64_t txg = zio->io_txg;
1759 	vdev_stat_t *vs = &vd->vdev_stat;
1760 	zio_type_t type = zio->io_type;
1761 	int flags = zio->io_flags;
1762 
1763 	if (zio->io_error == 0) {
1764 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1765 			mutex_enter(&vd->vdev_stat_lock);
1766 			vs->vs_ops[type]++;
1767 			vs->vs_bytes[type] += zio->io_size;
1768 			mutex_exit(&vd->vdev_stat_lock);
1769 		}
1770 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1771 		    zio->io_delegate_list == NULL) {
1772 			mutex_enter(&vd->vdev_stat_lock);
1773 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1774 				vs->vs_scrub_repaired += zio->io_size;
1775 			else
1776 				vs->vs_self_healed += zio->io_size;
1777 			mutex_exit(&vd->vdev_stat_lock);
1778 		}
1779 		return;
1780 	}
1781 
1782 	if (flags & ZIO_FLAG_SPECULATIVE)
1783 		return;
1784 
1785 	if (!vdev_is_dead(vd)) {
1786 		mutex_enter(&vd->vdev_stat_lock);
1787 		if (type == ZIO_TYPE_READ) {
1788 			if (zio->io_error == ECKSUM)
1789 				vs->vs_checksum_errors++;
1790 			else
1791 				vs->vs_read_errors++;
1792 		}
1793 		if (type == ZIO_TYPE_WRITE)
1794 			vs->vs_write_errors++;
1795 		mutex_exit(&vd->vdev_stat_lock);
1796 	}
1797 
1798 	if (type == ZIO_TYPE_WRITE) {
1799 		if (txg == 0 || vd->vdev_children != 0)
1800 			return;
1801 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1802 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1803 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1804 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1805 		}
1806 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1807 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1808 				return;
1809 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1810 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1811 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1812 		}
1813 	}
1814 }
1815 
1816 void
1817 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1818 {
1819 	int c;
1820 	vdev_stat_t *vs = &vd->vdev_stat;
1821 
1822 	for (c = 0; c < vd->vdev_children; c++)
1823 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1824 
1825 	mutex_enter(&vd->vdev_stat_lock);
1826 
1827 	if (type == POOL_SCRUB_NONE) {
1828 		/*
1829 		 * Update completion and end time.  Leave everything else alone
1830 		 * so we can report what happened during the previous scrub.
1831 		 */
1832 		vs->vs_scrub_complete = complete;
1833 		vs->vs_scrub_end = gethrestime_sec();
1834 	} else {
1835 		vs->vs_scrub_type = type;
1836 		vs->vs_scrub_complete = 0;
1837 		vs->vs_scrub_examined = 0;
1838 		vs->vs_scrub_repaired = 0;
1839 		vs->vs_scrub_errors = 0;
1840 		vs->vs_scrub_start = gethrestime_sec();
1841 		vs->vs_scrub_end = 0;
1842 	}
1843 
1844 	mutex_exit(&vd->vdev_stat_lock);
1845 }
1846 
1847 /*
1848  * Update the in-core space usage stats for this vdev and the root vdev.
1849  */
1850 void
1851 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta)
1852 {
1853 	ASSERT(vd == vd->vdev_top);
1854 	int64_t dspace_delta = space_delta;
1855 
1856 	do {
1857 		if (vd->vdev_ms_count) {
1858 			/*
1859 			 * If this is a top-level vdev, apply the
1860 			 * inverse of its psize-to-asize (ie. RAID-Z)
1861 			 * space-expansion factor.  We must calculate
1862 			 * this here and not at the root vdev because
1863 			 * the root vdev's psize-to-asize is simply the
1864 			 * max of its childrens', thus not accurate
1865 			 * enough for us.
1866 			 */
1867 			ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
1868 			dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
1869 			    vd->vdev_deflate_ratio;
1870 		}
1871 
1872 		mutex_enter(&vd->vdev_stat_lock);
1873 		vd->vdev_stat.vs_space += space_delta;
1874 		vd->vdev_stat.vs_alloc += alloc_delta;
1875 		vd->vdev_stat.vs_dspace += dspace_delta;
1876 		mutex_exit(&vd->vdev_stat_lock);
1877 	} while ((vd = vd->vdev_parent) != NULL);
1878 }
1879 
1880 /*
1881  * Mark a top-level vdev's config as dirty, placing it on the dirty list
1882  * so that it will be written out next time the vdev configuration is synced.
1883  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1884  */
1885 void
1886 vdev_config_dirty(vdev_t *vd)
1887 {
1888 	spa_t *spa = vd->vdev_spa;
1889 	vdev_t *rvd = spa->spa_root_vdev;
1890 	int c;
1891 
1892 	/*
1893 	 * The dirty list is protected by the config lock.  The caller must
1894 	 * either hold the config lock as writer, or must be the sync thread
1895 	 * (which holds the lock as reader).  There's only one sync thread,
1896 	 * so this is sufficient to ensure mutual exclusion.
1897 	 */
1898 	ASSERT(spa_config_held(spa, RW_WRITER) ||
1899 	    dsl_pool_sync_context(spa_get_dsl(spa)));
1900 
1901 	if (vd == rvd) {
1902 		for (c = 0; c < rvd->vdev_children; c++)
1903 			vdev_config_dirty(rvd->vdev_child[c]);
1904 	} else {
1905 		ASSERT(vd == vd->vdev_top);
1906 
1907 		if (!list_link_active(&vd->vdev_dirty_node))
1908 			list_insert_head(&spa->spa_dirty_list, vd);
1909 	}
1910 }
1911 
1912 void
1913 vdev_config_clean(vdev_t *vd)
1914 {
1915 	spa_t *spa = vd->vdev_spa;
1916 
1917 	ASSERT(spa_config_held(spa, RW_WRITER) ||
1918 	    dsl_pool_sync_context(spa_get_dsl(spa)));
1919 
1920 	ASSERT(list_link_active(&vd->vdev_dirty_node));
1921 	list_remove(&spa->spa_dirty_list, vd);
1922 }
1923 
1924 void
1925 vdev_propagate_state(vdev_t *vd)
1926 {
1927 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1928 	int degraded = 0, faulted = 0;
1929 	int corrupted = 0;
1930 	int c;
1931 	vdev_t *child;
1932 
1933 	if (vd->vdev_children > 0) {
1934 		for (c = 0; c < vd->vdev_children; c++) {
1935 			child = vd->vdev_child[c];
1936 			if (vdev_is_dead(child))
1937 				faulted++;
1938 			else if (child->vdev_state == VDEV_STATE_DEGRADED)
1939 				degraded++;
1940 
1941 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
1942 				corrupted++;
1943 		}
1944 
1945 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
1946 
1947 		/*
1948 		 * Root special: if there is a toplevel vdev that cannot be
1949 		 * opened due to corrupted metadata, then propagate the root
1950 		 * vdev's aux state as 'corrupt' rather than 'insufficient
1951 		 * replicas'.
1952 		 */
1953 		if (corrupted && vd == rvd &&
1954 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
1955 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
1956 			    VDEV_AUX_CORRUPT_DATA);
1957 	}
1958 
1959 	if (vd->vdev_parent)
1960 		vdev_propagate_state(vd->vdev_parent);
1961 }
1962 
1963 /*
1964  * Set a vdev's state.  If this is during an open, we don't update the parent
1965  * state, because we're in the process of opening children depth-first.
1966  * Otherwise, we propagate the change to the parent.
1967  *
1968  * If this routine places a device in a faulted state, an appropriate ereport is
1969  * generated.
1970  */
1971 void
1972 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1973 {
1974 	uint64_t save_state;
1975 
1976 	if (state == vd->vdev_state) {
1977 		vd->vdev_stat.vs_aux = aux;
1978 		return;
1979 	}
1980 
1981 	save_state = vd->vdev_state;
1982 
1983 	vd->vdev_state = state;
1984 	vd->vdev_stat.vs_aux = aux;
1985 
1986 	/*
1987 	 * If we are setting the vdev state to anything but an open state, then
1988 	 * always close the underlying device.  Otherwise, we keep accessible
1989 	 * but invalid devices open forever.  We don't call vdev_close() itself,
1990 	 * because that implies some extra checks (offline, etc) that we don't
1991 	 * want here.  This is limited to leaf devices, because otherwise
1992 	 * closing the device will affect other children.
1993 	 */
1994 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
1995 		vd->vdev_ops->vdev_op_close(vd);
1996 
1997 	if (vd->vdev_removed &&
1998 	    state == VDEV_STATE_CANT_OPEN &&
1999 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2000 		/*
2001 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2002 		 * device was previously marked removed and someone attempted to
2003 		 * reopen it.  If this failed due to a nonexistent device, then
2004 		 * keep the device in the REMOVED state.  We also let this be if
2005 		 * it is one of our special test online cases, which is only
2006 		 * attempting to online the device and shouldn't generate an FMA
2007 		 * fault.
2008 		 */
2009 		vd->vdev_state = VDEV_STATE_REMOVED;
2010 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2011 	} else if (state == VDEV_STATE_REMOVED) {
2012 		/*
2013 		 * Indicate to the ZFS DE that this device has been removed, and
2014 		 * any recent errors should be ignored.
2015 		 */
2016 		zfs_post_remove(vd->vdev_spa, vd);
2017 		vd->vdev_removed = B_TRUE;
2018 	} else if (state == VDEV_STATE_CANT_OPEN) {
2019 		/*
2020 		 * If we fail to open a vdev during an import, we mark it as
2021 		 * "not available", which signifies that it was never there to
2022 		 * begin with.  Failure to open such a device is not considered
2023 		 * an error.
2024 		 */
2025 		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
2026 		    vd->vdev_ops->vdev_op_leaf)
2027 			vd->vdev_not_present = 1;
2028 
2029 		/*
2030 		 * Post the appropriate ereport.  If the 'prevstate' field is
2031 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2032 		 * that this is part of a vdev_reopen().  In this case, we don't
2033 		 * want to post the ereport if the device was already in the
2034 		 * CANT_OPEN state beforehand.
2035 		 *
2036 		 * If the 'checkremove' flag is set, then this is an attempt to
2037 		 * online the device in response to an insertion event.  If we
2038 		 * hit this case, then we have detected an insertion event for a
2039 		 * faulted or offline device that wasn't in the removed state.
2040 		 * In this scenario, we don't post an ereport because we are
2041 		 * about to replace the device, or attempt an online with
2042 		 * vdev_forcefault, which will generate the fault for us.
2043 		 */
2044 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2045 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2046 		    vd != vd->vdev_spa->spa_root_vdev) {
2047 			const char *class;
2048 
2049 			switch (aux) {
2050 			case VDEV_AUX_OPEN_FAILED:
2051 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2052 				break;
2053 			case VDEV_AUX_CORRUPT_DATA:
2054 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2055 				break;
2056 			case VDEV_AUX_NO_REPLICAS:
2057 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2058 				break;
2059 			case VDEV_AUX_BAD_GUID_SUM:
2060 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2061 				break;
2062 			case VDEV_AUX_TOO_SMALL:
2063 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2064 				break;
2065 			case VDEV_AUX_BAD_LABEL:
2066 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2067 				break;
2068 			default:
2069 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2070 			}
2071 
2072 			zfs_ereport_post(class, vd->vdev_spa,
2073 			    vd, NULL, save_state, 0);
2074 		}
2075 
2076 		/* Erase any notion of persistent removed state */
2077 		vd->vdev_removed = B_FALSE;
2078 	} else {
2079 		vd->vdev_removed = B_FALSE;
2080 	}
2081 
2082 	if (!isopen)
2083 		vdev_propagate_state(vd);
2084 }
2085