1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_disk_ops, 53 &vdev_file_ops, 54 &vdev_missing_ops, 55 NULL 56 }; 57 58 /* 59 * Given a vdev type, return the appropriate ops vector. 60 */ 61 static vdev_ops_t * 62 vdev_getops(const char *type) 63 { 64 vdev_ops_t *ops, **opspp; 65 66 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 67 if (strcmp(ops->vdev_op_type, type) == 0) 68 break; 69 70 return (ops); 71 } 72 73 /* 74 * Default asize function: return the MAX of psize with the asize of 75 * all children. This is what's used by anything other than RAID-Z. 76 */ 77 uint64_t 78 vdev_default_asize(vdev_t *vd, uint64_t psize) 79 { 80 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 81 uint64_t csize; 82 uint64_t c; 83 84 for (c = 0; c < vd->vdev_children; c++) { 85 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 86 asize = MAX(asize, csize); 87 } 88 89 return (asize); 90 } 91 92 /* 93 * Get the replaceable or attachable device size. 94 * If the parent is a mirror or raidz, the replaceable size is the minimum 95 * psize of all its children. For the rest, just return our own psize. 96 * 97 * e.g. 98 * psize rsize 99 * root - - 100 * mirror/raidz - - 101 * disk1 20g 20g 102 * disk2 40g 20g 103 * disk3 80g 80g 104 */ 105 uint64_t 106 vdev_get_rsize(vdev_t *vd) 107 { 108 vdev_t *pvd, *cvd; 109 uint64_t c, rsize; 110 111 pvd = vd->vdev_parent; 112 113 /* 114 * If our parent is NULL or the root, just return our own psize. 115 */ 116 if (pvd == NULL || pvd->vdev_parent == NULL) 117 return (vd->vdev_psize); 118 119 rsize = 0; 120 121 for (c = 0; c < pvd->vdev_children; c++) { 122 cvd = pvd->vdev_child[c]; 123 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 124 } 125 126 return (rsize); 127 } 128 129 vdev_t * 130 vdev_lookup_top(spa_t *spa, uint64_t vdev) 131 { 132 vdev_t *rvd = spa->spa_root_vdev; 133 134 if (vdev < rvd->vdev_children) 135 return (rvd->vdev_child[vdev]); 136 137 return (NULL); 138 } 139 140 vdev_t * 141 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 142 { 143 int c; 144 vdev_t *mvd; 145 146 if (vd->vdev_guid == guid) 147 return (vd); 148 149 for (c = 0; c < vd->vdev_children; c++) 150 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 151 NULL) 152 return (mvd); 153 154 return (NULL); 155 } 156 157 void 158 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 159 { 160 size_t oldsize, newsize; 161 uint64_t id = cvd->vdev_id; 162 vdev_t **newchild; 163 164 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 165 ASSERT(cvd->vdev_parent == NULL); 166 167 cvd->vdev_parent = pvd; 168 169 if (pvd == NULL) 170 return; 171 172 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 173 174 oldsize = pvd->vdev_children * sizeof (vdev_t *); 175 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 176 newsize = pvd->vdev_children * sizeof (vdev_t *); 177 178 newchild = kmem_zalloc(newsize, KM_SLEEP); 179 if (pvd->vdev_child != NULL) { 180 bcopy(pvd->vdev_child, newchild, oldsize); 181 kmem_free(pvd->vdev_child, oldsize); 182 } 183 184 pvd->vdev_child = newchild; 185 pvd->vdev_child[id] = cvd; 186 187 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 188 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 189 190 /* 191 * Walk up all ancestors to update guid sum. 192 */ 193 for (; pvd != NULL; pvd = pvd->vdev_parent) 194 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 195 } 196 197 void 198 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 199 { 200 int c; 201 uint_t id = cvd->vdev_id; 202 203 ASSERT(cvd->vdev_parent == pvd); 204 205 if (pvd == NULL) 206 return; 207 208 ASSERT(id < pvd->vdev_children); 209 ASSERT(pvd->vdev_child[id] == cvd); 210 211 pvd->vdev_child[id] = NULL; 212 cvd->vdev_parent = NULL; 213 214 for (c = 0; c < pvd->vdev_children; c++) 215 if (pvd->vdev_child[c]) 216 break; 217 218 if (c == pvd->vdev_children) { 219 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 220 pvd->vdev_child = NULL; 221 pvd->vdev_children = 0; 222 } 223 224 /* 225 * Walk up all ancestors to update guid sum. 226 */ 227 for (; pvd != NULL; pvd = pvd->vdev_parent) 228 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 229 } 230 231 /* 232 * Remove any holes in the child array. 233 */ 234 void 235 vdev_compact_children(vdev_t *pvd) 236 { 237 vdev_t **newchild, *cvd; 238 int oldc = pvd->vdev_children; 239 int newc, c; 240 241 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 242 243 for (c = newc = 0; c < oldc; c++) 244 if (pvd->vdev_child[c]) 245 newc++; 246 247 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 248 249 for (c = newc = 0; c < oldc; c++) { 250 if ((cvd = pvd->vdev_child[c]) != NULL) { 251 newchild[newc] = cvd; 252 cvd->vdev_id = newc++; 253 } 254 } 255 256 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 257 pvd->vdev_child = newchild; 258 pvd->vdev_children = newc; 259 } 260 261 /* 262 * Allocate and minimally initialize a vdev_t. 263 */ 264 static vdev_t * 265 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 266 { 267 vdev_t *vd; 268 269 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 270 271 if (spa->spa_root_vdev == NULL) { 272 ASSERT(ops == &vdev_root_ops); 273 spa->spa_root_vdev = vd; 274 } 275 276 if (guid == 0) { 277 if (spa->spa_root_vdev == vd) { 278 /* 279 * The root vdev's guid will also be the pool guid, 280 * which must be unique among all pools. 281 */ 282 while (guid == 0 || spa_guid_exists(guid, 0)) 283 guid = spa_get_random(-1ULL); 284 } else { 285 /* 286 * Any other vdev's guid must be unique within the pool. 287 */ 288 while (guid == 0 || 289 spa_guid_exists(spa_guid(spa), guid)) 290 guid = spa_get_random(-1ULL); 291 } 292 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 293 } 294 295 vd->vdev_spa = spa; 296 vd->vdev_id = id; 297 vd->vdev_guid = guid; 298 vd->vdev_guid_sum = guid; 299 vd->vdev_ops = ops; 300 vd->vdev_state = VDEV_STATE_CLOSED; 301 302 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 303 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 304 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 305 txg_list_create(&vd->vdev_ms_list, 306 offsetof(struct metaslab, ms_txg_node)); 307 txg_list_create(&vd->vdev_dtl_list, 308 offsetof(struct vdev, vdev_dtl_node)); 309 vd->vdev_stat.vs_timestamp = gethrtime(); 310 311 return (vd); 312 } 313 314 /* 315 * Free a vdev_t that has been removed from service. 316 */ 317 static void 318 vdev_free_common(vdev_t *vd) 319 { 320 spa_t *spa = vd->vdev_spa; 321 322 if (vd->vdev_path) 323 spa_strfree(vd->vdev_path); 324 if (vd->vdev_devid) 325 spa_strfree(vd->vdev_devid); 326 327 txg_list_destroy(&vd->vdev_ms_list); 328 txg_list_destroy(&vd->vdev_dtl_list); 329 mutex_enter(&vd->vdev_dtl_lock); 330 space_map_unload(&vd->vdev_dtl_map); 331 space_map_destroy(&vd->vdev_dtl_map); 332 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 333 space_map_destroy(&vd->vdev_dtl_scrub); 334 mutex_exit(&vd->vdev_dtl_lock); 335 mutex_destroy(&vd->vdev_dtl_lock); 336 337 if (vd == spa->spa_root_vdev) 338 spa->spa_root_vdev = NULL; 339 340 kmem_free(vd, sizeof (vdev_t)); 341 } 342 343 /* 344 * Allocate a new vdev. The 'alloctype' is used to control whether we are 345 * creating a new vdev or loading an existing one - the behavior is slightly 346 * different for each case. 347 */ 348 vdev_t * 349 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, RW_WRITER)); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (NULL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (NULL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (NULL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (NULL); 377 } 378 379 vd = vdev_alloc_common(spa, id, guid, ops); 380 381 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 382 vd->vdev_path = spa_strdup(vd->vdev_path); 383 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 384 vd->vdev_devid = spa_strdup(vd->vdev_devid); 385 386 /* 387 * Set the whole_disk property. If it's not specified, leave the value 388 * as -1. 389 */ 390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 391 &vd->vdev_wholedisk) != 0) 392 vd->vdev_wholedisk = -1ULL; 393 394 /* 395 * Look for the 'not present' flag. This will only be set if the device 396 * was not present at the time of import. 397 */ 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 399 &vd->vdev_not_present); 400 401 /* 402 * Get the alignment requirement. 403 */ 404 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 405 406 /* 407 * If we're a top-level vdev, try to load the allocation parameters. 408 */ 409 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 410 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 411 &vd->vdev_ms_array); 412 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 413 &vd->vdev_ms_shift); 414 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 415 &vd->vdev_asize); 416 } 417 418 /* 419 * If we're a leaf vdev, try to load the DTL object and offline state. 420 */ 421 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 422 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 423 &vd->vdev_dtl.smo_object); 424 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 425 &vd->vdev_offline); 426 } 427 428 /* 429 * Add ourselves to the parent's list of children. 430 */ 431 vdev_add_child(parent, vd); 432 433 return (vd); 434 } 435 436 void 437 vdev_free(vdev_t *vd) 438 { 439 int c; 440 441 /* 442 * vdev_free() implies closing the vdev first. This is simpler than 443 * trying to ensure complicated semantics for all callers. 444 */ 445 vdev_close(vd); 446 447 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 448 449 /* 450 * Free all children. 451 */ 452 for (c = 0; c < vd->vdev_children; c++) 453 vdev_free(vd->vdev_child[c]); 454 455 ASSERT(vd->vdev_child == NULL); 456 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 457 458 /* 459 * Discard allocation state. 460 */ 461 if (vd == vd->vdev_top) 462 vdev_metaslab_fini(vd); 463 464 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 465 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 466 467 /* 468 * Remove this vdev from its parent's child list. 469 */ 470 vdev_remove_child(vd->vdev_parent, vd); 471 472 ASSERT(vd->vdev_parent == NULL); 473 474 vdev_free_common(vd); 475 } 476 477 /* 478 * Transfer top-level vdev state from svd to tvd. 479 */ 480 static void 481 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 482 { 483 spa_t *spa = svd->vdev_spa; 484 metaslab_t *msp; 485 vdev_t *vd; 486 int t; 487 488 ASSERT(tvd == tvd->vdev_top); 489 490 tvd->vdev_ms_array = svd->vdev_ms_array; 491 tvd->vdev_ms_shift = svd->vdev_ms_shift; 492 tvd->vdev_ms_count = svd->vdev_ms_count; 493 494 svd->vdev_ms_array = 0; 495 svd->vdev_ms_shift = 0; 496 svd->vdev_ms_count = 0; 497 498 tvd->vdev_mg = svd->vdev_mg; 499 tvd->vdev_ms = svd->vdev_ms; 500 501 svd->vdev_mg = NULL; 502 svd->vdev_ms = NULL; 503 504 if (tvd->vdev_mg != NULL) 505 tvd->vdev_mg->mg_vd = tvd; 506 507 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 508 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 509 510 svd->vdev_stat.vs_alloc = 0; 511 svd->vdev_stat.vs_space = 0; 512 513 for (t = 0; t < TXG_SIZE; t++) { 514 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 515 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 516 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 517 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 518 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 519 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 520 } 521 522 if (list_link_active(&svd->vdev_dirty_node)) { 523 vdev_config_clean(svd); 524 vdev_config_dirty(tvd); 525 } 526 527 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 528 svd->vdev_reopen_wanted = 0; 529 } 530 531 static void 532 vdev_top_update(vdev_t *tvd, vdev_t *vd) 533 { 534 int c; 535 536 if (vd == NULL) 537 return; 538 539 vd->vdev_top = tvd; 540 541 for (c = 0; c < vd->vdev_children; c++) 542 vdev_top_update(tvd, vd->vdev_child[c]); 543 } 544 545 /* 546 * Add a mirror/replacing vdev above an existing vdev. 547 */ 548 vdev_t * 549 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 550 { 551 spa_t *spa = cvd->vdev_spa; 552 vdev_t *pvd = cvd->vdev_parent; 553 vdev_t *mvd; 554 555 ASSERT(spa_config_held(spa, RW_WRITER)); 556 557 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 558 559 mvd->vdev_asize = cvd->vdev_asize; 560 mvd->vdev_ashift = cvd->vdev_ashift; 561 mvd->vdev_state = cvd->vdev_state; 562 563 vdev_remove_child(pvd, cvd); 564 vdev_add_child(pvd, mvd); 565 cvd->vdev_id = mvd->vdev_children; 566 vdev_add_child(mvd, cvd); 567 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 568 569 if (mvd == mvd->vdev_top) 570 vdev_top_transfer(cvd, mvd); 571 572 return (mvd); 573 } 574 575 /* 576 * Remove a 1-way mirror/replacing vdev from the tree. 577 */ 578 void 579 vdev_remove_parent(vdev_t *cvd) 580 { 581 vdev_t *mvd = cvd->vdev_parent; 582 vdev_t *pvd = mvd->vdev_parent; 583 584 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 585 586 ASSERT(mvd->vdev_children == 1); 587 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 588 mvd->vdev_ops == &vdev_replacing_ops); 589 cvd->vdev_ashift = mvd->vdev_ashift; 590 591 vdev_remove_child(mvd, cvd); 592 vdev_remove_child(pvd, mvd); 593 cvd->vdev_id = mvd->vdev_id; 594 vdev_add_child(pvd, cvd); 595 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 596 597 if (cvd == cvd->vdev_top) 598 vdev_top_transfer(mvd, cvd); 599 600 ASSERT(mvd->vdev_children == 0); 601 vdev_free(mvd); 602 } 603 604 int 605 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 606 { 607 spa_t *spa = vd->vdev_spa; 608 objset_t *mos = spa->spa_meta_objset; 609 metaslab_class_t *mc = spa_metaslab_class_select(spa); 610 uint64_t m; 611 uint64_t oldc = vd->vdev_ms_count; 612 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 613 metaslab_t **mspp; 614 int error; 615 616 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 617 return (0); 618 619 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 620 621 ASSERT(oldc <= newc); 622 623 if (vd->vdev_mg == NULL) 624 vd->vdev_mg = metaslab_group_create(mc, vd); 625 626 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 627 628 if (oldc != 0) { 629 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 630 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 631 } 632 633 vd->vdev_ms = mspp; 634 vd->vdev_ms_count = newc; 635 636 for (m = oldc; m < newc; m++) { 637 space_map_obj_t smo = { 0, 0, 0 }; 638 if (txg == 0) { 639 uint64_t object = 0; 640 error = dmu_read(mos, vd->vdev_ms_array, 641 m * sizeof (uint64_t), sizeof (uint64_t), &object); 642 if (error) 643 return (error); 644 if (object != 0) { 645 dmu_buf_t *db; 646 error = dmu_bonus_hold(mos, object, FTAG, &db); 647 if (error) 648 return (error); 649 ASSERT3U(db->db_size, ==, sizeof (smo)); 650 bcopy(db->db_data, &smo, db->db_size); 651 ASSERT3U(smo.smo_object, ==, object); 652 dmu_buf_rele(db, FTAG); 653 } 654 } 655 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 656 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 657 } 658 659 return (0); 660 } 661 662 void 663 vdev_metaslab_fini(vdev_t *vd) 664 { 665 uint64_t m; 666 uint64_t count = vd->vdev_ms_count; 667 668 if (vd->vdev_ms != NULL) { 669 for (m = 0; m < count; m++) 670 if (vd->vdev_ms[m] != NULL) 671 metaslab_fini(vd->vdev_ms[m]); 672 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 673 vd->vdev_ms = NULL; 674 } 675 } 676 677 /* 678 * Prepare a virtual device for access. 679 */ 680 int 681 vdev_open(vdev_t *vd) 682 { 683 int error; 684 vdev_knob_t *vk; 685 int c; 686 uint64_t osize = 0; 687 uint64_t asize, psize; 688 uint64_t ashift = 0; 689 690 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 691 vd->vdev_state == VDEV_STATE_CANT_OPEN || 692 vd->vdev_state == VDEV_STATE_OFFLINE); 693 694 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 695 vd->vdev_fault_arg >>= 1; 696 else 697 vd->vdev_fault_mode = VDEV_FAULT_NONE; 698 699 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 700 701 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 702 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 703 704 *valp = vk->vk_default; 705 *valp = MAX(*valp, vk->vk_min); 706 *valp = MIN(*valp, vk->vk_max); 707 } 708 709 if (vd->vdev_ops->vdev_op_leaf) { 710 vdev_cache_init(vd); 711 vdev_queue_init(vd); 712 vd->vdev_cache_active = B_TRUE; 713 } 714 715 if (vd->vdev_offline) { 716 ASSERT(vd->vdev_children == 0); 717 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 718 return (ENXIO); 719 } 720 721 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 722 723 if (zio_injection_enabled && error == 0) 724 error = zio_handle_device_injection(vd, ENXIO); 725 726 dprintf("%s = %d, osize %llu, state = %d\n", 727 vdev_description(vd), error, osize, vd->vdev_state); 728 729 if (error) { 730 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 731 vd->vdev_stat.vs_aux); 732 return (error); 733 } 734 735 vd->vdev_state = VDEV_STATE_HEALTHY; 736 737 for (c = 0; c < vd->vdev_children; c++) 738 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 739 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 740 VDEV_AUX_NONE); 741 break; 742 } 743 744 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 745 746 if (vd->vdev_children == 0) { 747 if (osize < SPA_MINDEVSIZE) { 748 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 749 VDEV_AUX_TOO_SMALL); 750 return (EOVERFLOW); 751 } 752 psize = osize; 753 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 754 } else { 755 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 756 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 757 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 758 VDEV_AUX_TOO_SMALL); 759 return (EOVERFLOW); 760 } 761 psize = 0; 762 asize = osize; 763 } 764 765 vd->vdev_psize = psize; 766 767 if (vd->vdev_asize == 0) { 768 /* 769 * This is the first-ever open, so use the computed values. 770 * For testing purposes, a higher ashift can be requested. 771 */ 772 vd->vdev_asize = asize; 773 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 774 } else { 775 /* 776 * Make sure the alignment requirement hasn't increased. 777 */ 778 if (ashift > vd->vdev_top->vdev_ashift) { 779 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 780 VDEV_AUX_BAD_LABEL); 781 return (EINVAL); 782 } 783 784 /* 785 * Make sure the device hasn't shrunk. 786 */ 787 if (asize < vd->vdev_asize) { 788 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 789 VDEV_AUX_BAD_LABEL); 790 return (EINVAL); 791 } 792 793 /* 794 * If all children are healthy and the asize has increased, 795 * then we've experienced dynamic LUN growth. 796 */ 797 if (vd->vdev_state == VDEV_STATE_HEALTHY && 798 asize > vd->vdev_asize) { 799 vd->vdev_asize = asize; 800 } 801 } 802 803 /* 804 * This allows the ZFS DE to close cases appropriately. If a device 805 * goes away and later returns, we want to close the associated case. 806 * But it's not enough to simply post this only when a device goes from 807 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 808 * back, we also need to close the case (otherwise we will try to replay 809 * it). So we have to post this notifier every time. Since this only 810 * occurs during pool open or error recovery, this should not be an 811 * issue. 812 */ 813 zfs_post_ok(vd->vdev_spa, vd); 814 815 return (0); 816 } 817 818 /* 819 * Called once the vdevs are all opened, this routine validates the label 820 * contents. This needs to be done before vdev_load() so that we don't 821 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 822 * won't succeed if the device has been changed underneath. 823 * 824 * This function will only return failure if one of the vdevs indicates that it 825 * has since been destroyed or exported. This is only possible if 826 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 827 * will be updated but the function will return 0. 828 */ 829 int 830 vdev_validate(vdev_t *vd) 831 { 832 spa_t *spa = vd->vdev_spa; 833 int c; 834 nvlist_t *label; 835 uint64_t guid; 836 uint64_t state; 837 838 for (c = 0; c < vd->vdev_children; c++) 839 if (vdev_validate(vd->vdev_child[c]) != 0) 840 return (-1); 841 842 if (vd->vdev_ops->vdev_op_leaf) { 843 844 if ((label = vdev_label_read_config(vd)) == NULL) { 845 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 846 VDEV_AUX_BAD_LABEL); 847 return (0); 848 } 849 850 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 851 &guid) != 0 || guid != spa_guid(spa)) { 852 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 853 VDEV_AUX_CORRUPT_DATA); 854 nvlist_free(label); 855 return (0); 856 } 857 858 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 859 &guid) != 0 || guid != vd->vdev_guid) { 860 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 861 VDEV_AUX_CORRUPT_DATA); 862 nvlist_free(label); 863 return (0); 864 } 865 866 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 867 &state) != 0) { 868 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 869 VDEV_AUX_CORRUPT_DATA); 870 nvlist_free(label); 871 return (0); 872 } 873 874 nvlist_free(label); 875 876 if (spa->spa_load_state == SPA_LOAD_OPEN && 877 state != POOL_STATE_ACTIVE) 878 return (-1); 879 } 880 881 /* 882 * If we were able to open and validate a vdev that was previously 883 * marked permanently unavailable, clear that state now. 884 */ 885 if (vd->vdev_not_present) 886 vd->vdev_not_present = 0; 887 888 return (0); 889 } 890 891 /* 892 * Close a virtual device. 893 */ 894 void 895 vdev_close(vdev_t *vd) 896 { 897 vd->vdev_ops->vdev_op_close(vd); 898 899 if (vd->vdev_cache_active) { 900 vdev_cache_fini(vd); 901 vdev_queue_fini(vd); 902 vd->vdev_cache_active = B_FALSE; 903 } 904 905 /* 906 * We record the previous state before we close it, so that if we are 907 * doing a reopen(), we don't generate FMA ereports if we notice that 908 * it's still faulted. 909 */ 910 vd->vdev_prevstate = vd->vdev_state; 911 912 if (vd->vdev_offline) 913 vd->vdev_state = VDEV_STATE_OFFLINE; 914 else 915 vd->vdev_state = VDEV_STATE_CLOSED; 916 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 917 } 918 919 void 920 vdev_reopen(vdev_t *vd) 921 { 922 spa_t *spa = vd->vdev_spa; 923 924 ASSERT(spa_config_held(spa, RW_WRITER)); 925 926 vdev_close(vd); 927 (void) vdev_open(vd); 928 929 /* 930 * Reassess root vdev's health. 931 */ 932 vdev_propagate_state(spa->spa_root_vdev); 933 } 934 935 int 936 vdev_create(vdev_t *vd, uint64_t txg) 937 { 938 int error; 939 940 /* 941 * Normally, partial opens (e.g. of a mirror) are allowed. 942 * For a create, however, we want to fail the request if 943 * there are any components we can't open. 944 */ 945 error = vdev_open(vd); 946 947 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 948 vdev_close(vd); 949 return (error ? error : ENXIO); 950 } 951 952 /* 953 * Recursively initialize all labels. 954 */ 955 if ((error = vdev_label_init(vd, txg)) != 0) { 956 vdev_close(vd); 957 return (error); 958 } 959 960 return (0); 961 } 962 963 /* 964 * The is the latter half of vdev_create(). It is distinct because it 965 * involves initiating transactions in order to do metaslab creation. 966 * For creation, we want to try to create all vdevs at once and then undo it 967 * if anything fails; this is much harder if we have pending transactions. 968 */ 969 void 970 vdev_init(vdev_t *vd, uint64_t txg) 971 { 972 /* 973 * Aim for roughly 200 metaslabs per vdev. 974 */ 975 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 976 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 977 978 /* 979 * Initialize the vdev's metaslabs. This can't fail because 980 * there's nothing to read when creating all new metaslabs. 981 */ 982 VERIFY(vdev_metaslab_init(vd, txg) == 0); 983 } 984 985 void 986 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 987 { 988 ASSERT(vd == vd->vdev_top); 989 ASSERT(ISP2(flags)); 990 991 if (flags & VDD_METASLAB) 992 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 993 994 if (flags & VDD_DTL) 995 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 996 997 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 998 } 999 1000 void 1001 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1002 { 1003 mutex_enter(sm->sm_lock); 1004 if (!space_map_contains(sm, txg, size)) 1005 space_map_add(sm, txg, size); 1006 mutex_exit(sm->sm_lock); 1007 } 1008 1009 int 1010 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1011 { 1012 int dirty; 1013 1014 /* 1015 * Quick test without the lock -- covers the common case that 1016 * there are no dirty time segments. 1017 */ 1018 if (sm->sm_space == 0) 1019 return (0); 1020 1021 mutex_enter(sm->sm_lock); 1022 dirty = space_map_contains(sm, txg, size); 1023 mutex_exit(sm->sm_lock); 1024 1025 return (dirty); 1026 } 1027 1028 /* 1029 * Reassess DTLs after a config change or scrub completion. 1030 */ 1031 void 1032 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1033 { 1034 spa_t *spa = vd->vdev_spa; 1035 int c; 1036 1037 ASSERT(spa_config_held(spa, RW_WRITER)); 1038 1039 if (vd->vdev_children == 0) { 1040 mutex_enter(&vd->vdev_dtl_lock); 1041 /* 1042 * We're successfully scrubbed everything up to scrub_txg. 1043 * Therefore, excise all old DTLs up to that point, then 1044 * fold in the DTLs for everything we couldn't scrub. 1045 */ 1046 if (scrub_txg != 0) { 1047 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1048 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1049 } 1050 if (scrub_done) 1051 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1052 mutex_exit(&vd->vdev_dtl_lock); 1053 if (txg != 0) 1054 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1055 return; 1056 } 1057 1058 /* 1059 * Make sure the DTLs are always correct under the scrub lock. 1060 */ 1061 if (vd == spa->spa_root_vdev) 1062 mutex_enter(&spa->spa_scrub_lock); 1063 1064 mutex_enter(&vd->vdev_dtl_lock); 1065 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1066 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1067 mutex_exit(&vd->vdev_dtl_lock); 1068 1069 for (c = 0; c < vd->vdev_children; c++) { 1070 vdev_t *cvd = vd->vdev_child[c]; 1071 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1072 mutex_enter(&vd->vdev_dtl_lock); 1073 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1074 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1075 mutex_exit(&vd->vdev_dtl_lock); 1076 } 1077 1078 if (vd == spa->spa_root_vdev) 1079 mutex_exit(&spa->spa_scrub_lock); 1080 } 1081 1082 static int 1083 vdev_dtl_load(vdev_t *vd) 1084 { 1085 spa_t *spa = vd->vdev_spa; 1086 space_map_obj_t *smo = &vd->vdev_dtl; 1087 objset_t *mos = spa->spa_meta_objset; 1088 dmu_buf_t *db; 1089 int error; 1090 1091 ASSERT(vd->vdev_children == 0); 1092 1093 if (smo->smo_object == 0) 1094 return (0); 1095 1096 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1097 return (error); 1098 1099 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1100 bcopy(db->db_data, smo, db->db_size); 1101 dmu_buf_rele(db, FTAG); 1102 1103 mutex_enter(&vd->vdev_dtl_lock); 1104 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1105 mutex_exit(&vd->vdev_dtl_lock); 1106 1107 return (error); 1108 } 1109 1110 void 1111 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1112 { 1113 spa_t *spa = vd->vdev_spa; 1114 space_map_obj_t *smo = &vd->vdev_dtl; 1115 space_map_t *sm = &vd->vdev_dtl_map; 1116 objset_t *mos = spa->spa_meta_objset; 1117 space_map_t smsync; 1118 kmutex_t smlock; 1119 dmu_buf_t *db; 1120 dmu_tx_t *tx; 1121 1122 dprintf("%s in txg %llu pass %d\n", 1123 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1124 1125 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1126 1127 if (vd->vdev_detached) { 1128 if (smo->smo_object != 0) { 1129 int err = dmu_object_free(mos, smo->smo_object, tx); 1130 ASSERT3U(err, ==, 0); 1131 smo->smo_object = 0; 1132 } 1133 dmu_tx_commit(tx); 1134 dprintf("detach %s committed in txg %llu\n", 1135 vdev_description(vd), txg); 1136 return; 1137 } 1138 1139 if (smo->smo_object == 0) { 1140 ASSERT(smo->smo_objsize == 0); 1141 ASSERT(smo->smo_alloc == 0); 1142 smo->smo_object = dmu_object_alloc(mos, 1143 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1144 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1145 ASSERT(smo->smo_object != 0); 1146 vdev_config_dirty(vd->vdev_top); 1147 } 1148 1149 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1150 1151 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1152 &smlock); 1153 1154 mutex_enter(&smlock); 1155 1156 mutex_enter(&vd->vdev_dtl_lock); 1157 space_map_walk(sm, space_map_add, &smsync); 1158 mutex_exit(&vd->vdev_dtl_lock); 1159 1160 space_map_truncate(smo, mos, tx); 1161 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1162 1163 space_map_destroy(&smsync); 1164 1165 mutex_exit(&smlock); 1166 mutex_destroy(&smlock); 1167 1168 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1169 dmu_buf_will_dirty(db, tx); 1170 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1171 bcopy(smo, db->db_data, db->db_size); 1172 dmu_buf_rele(db, FTAG); 1173 1174 dmu_tx_commit(tx); 1175 } 1176 1177 void 1178 vdev_load(vdev_t *vd) 1179 { 1180 int c; 1181 1182 /* 1183 * Recursively load all children. 1184 */ 1185 for (c = 0; c < vd->vdev_children; c++) 1186 vdev_load(vd->vdev_child[c]); 1187 1188 /* 1189 * If this is a top-level vdev, initialize its metaslabs. 1190 */ 1191 if (vd == vd->vdev_top && 1192 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1193 vdev_metaslab_init(vd, 0) != 0)) 1194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1195 VDEV_AUX_CORRUPT_DATA); 1196 1197 /* 1198 * If this is a leaf vdev, load its DTL. 1199 */ 1200 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1201 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1202 VDEV_AUX_CORRUPT_DATA); 1203 } 1204 1205 void 1206 vdev_sync_done(vdev_t *vd, uint64_t txg) 1207 { 1208 metaslab_t *msp; 1209 1210 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1211 1212 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1213 metaslab_sync_done(msp, txg); 1214 } 1215 1216 void 1217 vdev_sync(vdev_t *vd, uint64_t txg) 1218 { 1219 spa_t *spa = vd->vdev_spa; 1220 vdev_t *lvd; 1221 metaslab_t *msp; 1222 dmu_tx_t *tx; 1223 1224 dprintf("%s txg %llu pass %d\n", 1225 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1226 1227 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1228 ASSERT(vd == vd->vdev_top); 1229 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1230 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1231 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1232 ASSERT(vd->vdev_ms_array != 0); 1233 vdev_config_dirty(vd); 1234 dmu_tx_commit(tx); 1235 } 1236 1237 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1238 metaslab_sync(msp, txg); 1239 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1240 } 1241 1242 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1243 vdev_dtl_sync(lvd, txg); 1244 1245 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1246 } 1247 1248 uint64_t 1249 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1250 { 1251 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1252 } 1253 1254 void 1255 vdev_io_start(zio_t *zio) 1256 { 1257 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1258 } 1259 1260 void 1261 vdev_io_done(zio_t *zio) 1262 { 1263 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1264 } 1265 1266 const char * 1267 vdev_description(vdev_t *vd) 1268 { 1269 if (vd == NULL || vd->vdev_ops == NULL) 1270 return ("<unknown>"); 1271 1272 if (vd->vdev_path != NULL) 1273 return (vd->vdev_path); 1274 1275 if (vd->vdev_parent == NULL) 1276 return (spa_name(vd->vdev_spa)); 1277 1278 return (vd->vdev_ops->vdev_op_type); 1279 } 1280 1281 int 1282 vdev_online(spa_t *spa, uint64_t guid) 1283 { 1284 vdev_t *rvd, *vd; 1285 uint64_t txg; 1286 1287 txg = spa_vdev_enter(spa); 1288 1289 rvd = spa->spa_root_vdev; 1290 1291 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1292 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1293 1294 if (!vd->vdev_ops->vdev_op_leaf) 1295 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1296 1297 dprintf("ONLINE: %s\n", vdev_description(vd)); 1298 1299 vd->vdev_offline = B_FALSE; 1300 vd->vdev_tmpoffline = B_FALSE; 1301 vdev_reopen(vd->vdev_top); 1302 1303 vdev_config_dirty(vd->vdev_top); 1304 1305 (void) spa_vdev_exit(spa, NULL, txg, 0); 1306 1307 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1308 1309 return (0); 1310 } 1311 1312 int 1313 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1314 { 1315 vdev_t *rvd, *vd; 1316 uint64_t txg; 1317 1318 txg = spa_vdev_enter(spa); 1319 1320 rvd = spa->spa_root_vdev; 1321 1322 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1323 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1324 1325 if (!vd->vdev_ops->vdev_op_leaf) 1326 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1327 1328 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1329 1330 /* 1331 * If the device isn't already offline, try to offline it. 1332 */ 1333 if (!vd->vdev_offline) { 1334 /* 1335 * If this device's top-level vdev has a non-empty DTL, 1336 * don't allow the device to be offlined. 1337 * 1338 * XXX -- make this more precise by allowing the offline 1339 * as long as the remaining devices don't have any DTL holes. 1340 */ 1341 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1342 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1343 1344 /* 1345 * Offline this device and reopen its top-level vdev. 1346 * If this action results in the top-level vdev becoming 1347 * unusable, undo it and fail the request. 1348 */ 1349 vd->vdev_offline = B_TRUE; 1350 vdev_reopen(vd->vdev_top); 1351 if (vdev_is_dead(vd->vdev_top)) { 1352 vd->vdev_offline = B_FALSE; 1353 vdev_reopen(vd->vdev_top); 1354 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1355 } 1356 } 1357 1358 vd->vdev_tmpoffline = istmp; 1359 1360 vdev_config_dirty(vd->vdev_top); 1361 1362 return (spa_vdev_exit(spa, NULL, txg, 0)); 1363 } 1364 1365 /* 1366 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1367 * vdev_offline(), we assume the spa config is locked. We also clear all 1368 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1369 */ 1370 void 1371 vdev_clear(spa_t *spa, vdev_t *vd) 1372 { 1373 int c; 1374 1375 if (vd == NULL) 1376 vd = spa->spa_root_vdev; 1377 1378 vd->vdev_stat.vs_read_errors = 0; 1379 vd->vdev_stat.vs_write_errors = 0; 1380 vd->vdev_stat.vs_checksum_errors = 0; 1381 1382 for (c = 0; c < vd->vdev_children; c++) 1383 vdev_clear(spa, vd->vdev_child[c]); 1384 } 1385 1386 int 1387 vdev_is_dead(vdev_t *vd) 1388 { 1389 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1390 } 1391 1392 int 1393 vdev_error_inject(vdev_t *vd, zio_t *zio) 1394 { 1395 int error = 0; 1396 1397 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1398 return (0); 1399 1400 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1401 return (0); 1402 1403 switch (vd->vdev_fault_mode) { 1404 case VDEV_FAULT_RANDOM: 1405 if (spa_get_random(vd->vdev_fault_arg) == 0) 1406 error = EIO; 1407 break; 1408 1409 case VDEV_FAULT_COUNT: 1410 if ((int64_t)--vd->vdev_fault_arg <= 0) 1411 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1412 error = EIO; 1413 break; 1414 } 1415 1416 if (error != 0) { 1417 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1418 error, zio->io_type, vdev_description(vd), 1419 vd->vdev_state, zio->io_offset); 1420 } 1421 1422 return (error); 1423 } 1424 1425 /* 1426 * Get statistics for the given vdev. 1427 */ 1428 void 1429 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1430 { 1431 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1432 int c, t; 1433 1434 mutex_enter(&vd->vdev_stat_lock); 1435 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1436 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1437 vs->vs_state = vd->vdev_state; 1438 vs->vs_rsize = vdev_get_rsize(vd); 1439 mutex_exit(&vd->vdev_stat_lock); 1440 1441 /* 1442 * If we're getting stats on the root vdev, aggregate the I/O counts 1443 * over all top-level vdevs (i.e. the direct children of the root). 1444 */ 1445 if (vd == rvd) { 1446 for (c = 0; c < rvd->vdev_children; c++) { 1447 vdev_t *cvd = rvd->vdev_child[c]; 1448 vdev_stat_t *cvs = &cvd->vdev_stat; 1449 1450 mutex_enter(&vd->vdev_stat_lock); 1451 for (t = 0; t < ZIO_TYPES; t++) { 1452 vs->vs_ops[t] += cvs->vs_ops[t]; 1453 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1454 } 1455 vs->vs_read_errors += cvs->vs_read_errors; 1456 vs->vs_write_errors += cvs->vs_write_errors; 1457 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1458 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1459 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1460 mutex_exit(&vd->vdev_stat_lock); 1461 } 1462 } 1463 } 1464 1465 void 1466 vdev_stat_update(zio_t *zio) 1467 { 1468 vdev_t *vd = zio->io_vd; 1469 vdev_t *pvd; 1470 uint64_t txg = zio->io_txg; 1471 vdev_stat_t *vs = &vd->vdev_stat; 1472 zio_type_t type = zio->io_type; 1473 int flags = zio->io_flags; 1474 1475 if (zio->io_error == 0) { 1476 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1477 mutex_enter(&vd->vdev_stat_lock); 1478 vs->vs_ops[type]++; 1479 vs->vs_bytes[type] += zio->io_size; 1480 mutex_exit(&vd->vdev_stat_lock); 1481 } 1482 if ((flags & ZIO_FLAG_IO_REPAIR) && 1483 zio->io_delegate_list == NULL) { 1484 mutex_enter(&vd->vdev_stat_lock); 1485 if (flags & ZIO_FLAG_SCRUB_THREAD) 1486 vs->vs_scrub_repaired += zio->io_size; 1487 else 1488 vs->vs_self_healed += zio->io_size; 1489 mutex_exit(&vd->vdev_stat_lock); 1490 } 1491 return; 1492 } 1493 1494 if (flags & ZIO_FLAG_SPECULATIVE) 1495 return; 1496 1497 if (!vdev_is_dead(vd)) { 1498 mutex_enter(&vd->vdev_stat_lock); 1499 if (type == ZIO_TYPE_READ) { 1500 if (zio->io_error == ECKSUM) 1501 vs->vs_checksum_errors++; 1502 else 1503 vs->vs_read_errors++; 1504 } 1505 if (type == ZIO_TYPE_WRITE) 1506 vs->vs_write_errors++; 1507 mutex_exit(&vd->vdev_stat_lock); 1508 } 1509 1510 if (type == ZIO_TYPE_WRITE) { 1511 if (txg == 0 || vd->vdev_children != 0) 1512 return; 1513 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1514 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1515 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1516 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1517 } 1518 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1519 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1520 return; 1521 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1522 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1523 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1524 } 1525 } 1526 } 1527 1528 void 1529 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1530 { 1531 int c; 1532 vdev_stat_t *vs = &vd->vdev_stat; 1533 1534 for (c = 0; c < vd->vdev_children; c++) 1535 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1536 1537 mutex_enter(&vd->vdev_stat_lock); 1538 1539 if (type == POOL_SCRUB_NONE) { 1540 /* 1541 * Update completion and end time. Leave everything else alone 1542 * so we can report what happened during the previous scrub. 1543 */ 1544 vs->vs_scrub_complete = complete; 1545 vs->vs_scrub_end = gethrestime_sec(); 1546 } else { 1547 vs->vs_scrub_type = type; 1548 vs->vs_scrub_complete = 0; 1549 vs->vs_scrub_examined = 0; 1550 vs->vs_scrub_repaired = 0; 1551 vs->vs_scrub_errors = 0; 1552 vs->vs_scrub_start = gethrestime_sec(); 1553 vs->vs_scrub_end = 0; 1554 } 1555 1556 mutex_exit(&vd->vdev_stat_lock); 1557 } 1558 1559 /* 1560 * Update the in-core space usage stats for this vdev and the root vdev. 1561 */ 1562 void 1563 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta) 1564 { 1565 ASSERT(vd == vd->vdev_top); 1566 1567 do { 1568 mutex_enter(&vd->vdev_stat_lock); 1569 vd->vdev_stat.vs_space += space_delta; 1570 vd->vdev_stat.vs_alloc += alloc_delta; 1571 mutex_exit(&vd->vdev_stat_lock); 1572 } while ((vd = vd->vdev_parent) != NULL); 1573 } 1574 1575 /* 1576 * Various knobs to tune a vdev. 1577 */ 1578 static vdev_knob_t vdev_knob[] = { 1579 { 1580 "cache_size", 1581 "size of the read-ahead cache", 1582 0, 1583 1ULL << 30, 1584 10ULL << 20, 1585 offsetof(struct vdev, vdev_cache.vc_size) 1586 }, 1587 { 1588 "cache_bshift", 1589 "log2 of cache blocksize", 1590 SPA_MINBLOCKSHIFT, 1591 SPA_MAXBLOCKSHIFT, 1592 16, 1593 offsetof(struct vdev, vdev_cache.vc_bshift) 1594 }, 1595 { 1596 "cache_max", 1597 "largest block size to cache", 1598 0, 1599 SPA_MAXBLOCKSIZE, 1600 1ULL << 14, 1601 offsetof(struct vdev, vdev_cache.vc_max) 1602 }, 1603 { 1604 "min_pending", 1605 "minimum pending I/Os to the disk", 1606 1, 1607 10000, 1608 2, 1609 offsetof(struct vdev, vdev_queue.vq_min_pending) 1610 }, 1611 { 1612 "max_pending", 1613 "maximum pending I/Os to the disk", 1614 1, 1615 10000, 1616 35, 1617 offsetof(struct vdev, vdev_queue.vq_max_pending) 1618 }, 1619 { 1620 "scrub_limit", 1621 "maximum scrub/resilver I/O queue", 1622 0, 1623 10000, 1624 70, 1625 offsetof(struct vdev, vdev_queue.vq_scrub_limit) 1626 }, 1627 { 1628 "agg_limit", 1629 "maximum size of aggregated I/Os", 1630 0, 1631 SPA_MAXBLOCKSIZE, 1632 SPA_MAXBLOCKSIZE, 1633 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1634 }, 1635 { 1636 "time_shift", 1637 "deadline = pri + (lbolt >> time_shift)", 1638 0, 1639 63, 1640 4, 1641 offsetof(struct vdev, vdev_queue.vq_time_shift) 1642 }, 1643 { 1644 "ramp_rate", 1645 "exponential I/O issue ramp-up rate", 1646 1, 1647 10000, 1648 2, 1649 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1650 }, 1651 }; 1652 1653 vdev_knob_t * 1654 vdev_knob_next(vdev_knob_t *vk) 1655 { 1656 if (vk == NULL) 1657 return (vdev_knob); 1658 1659 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1660 return (NULL); 1661 1662 return (vk); 1663 } 1664 1665 /* 1666 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1667 * so that it will be written out next time the vdev configuration is synced. 1668 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1669 */ 1670 void 1671 vdev_config_dirty(vdev_t *vd) 1672 { 1673 spa_t *spa = vd->vdev_spa; 1674 vdev_t *rvd = spa->spa_root_vdev; 1675 int c; 1676 1677 /* 1678 * The dirty list is protected by the config lock. The caller must 1679 * either hold the config lock as writer, or must be the sync thread 1680 * (which holds the lock as reader). There's only one sync thread, 1681 * so this is sufficient to ensure mutual exclusion. 1682 */ 1683 ASSERT(spa_config_held(spa, RW_WRITER) || 1684 dsl_pool_sync_context(spa_get_dsl(spa))); 1685 1686 if (vd == rvd) { 1687 for (c = 0; c < rvd->vdev_children; c++) 1688 vdev_config_dirty(rvd->vdev_child[c]); 1689 } else { 1690 ASSERT(vd == vd->vdev_top); 1691 1692 if (!list_link_active(&vd->vdev_dirty_node)) 1693 list_insert_head(&spa->spa_dirty_list, vd); 1694 } 1695 } 1696 1697 void 1698 vdev_config_clean(vdev_t *vd) 1699 { 1700 spa_t *spa = vd->vdev_spa; 1701 1702 ASSERT(spa_config_held(spa, RW_WRITER) || 1703 dsl_pool_sync_context(spa_get_dsl(spa))); 1704 1705 ASSERT(list_link_active(&vd->vdev_dirty_node)); 1706 list_remove(&spa->spa_dirty_list, vd); 1707 } 1708 1709 void 1710 vdev_propagate_state(vdev_t *vd) 1711 { 1712 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1713 int degraded = 0, faulted = 0; 1714 int corrupted = 0; 1715 int c; 1716 vdev_t *child; 1717 1718 for (c = 0; c < vd->vdev_children; c++) { 1719 child = vd->vdev_child[c]; 1720 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1721 faulted++; 1722 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1723 degraded++; 1724 1725 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1726 corrupted++; 1727 } 1728 1729 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 1730 1731 /* 1732 * Root special: if there is a toplevel vdev that cannot be 1733 * opened due to corrupted metadata, then propagate the root 1734 * vdev's aux state as 'corrupt' rather than 'insufficient 1735 * replicas'. 1736 */ 1737 if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 1738 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 1739 VDEV_AUX_CORRUPT_DATA); 1740 } 1741 1742 /* 1743 * Set a vdev's state. If this is during an open, we don't update the parent 1744 * state, because we're in the process of opening children depth-first. 1745 * Otherwise, we propagate the change to the parent. 1746 * 1747 * If this routine places a device in a faulted state, an appropriate ereport is 1748 * generated. 1749 */ 1750 void 1751 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1752 { 1753 uint64_t save_state; 1754 1755 if (state == vd->vdev_state) { 1756 vd->vdev_stat.vs_aux = aux; 1757 return; 1758 } 1759 1760 save_state = vd->vdev_state; 1761 1762 vd->vdev_state = state; 1763 vd->vdev_stat.vs_aux = aux; 1764 1765 if (state == VDEV_STATE_CANT_OPEN) { 1766 /* 1767 * If we fail to open a vdev during an import, we mark it as 1768 * "not available", which signifies that it was never there to 1769 * begin with. Failure to open such a device is not considered 1770 * an error. 1771 */ 1772 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1773 vd->vdev_ops->vdev_op_leaf) 1774 vd->vdev_not_present = 1; 1775 1776 /* 1777 * Post the appropriate ereport. If the 'prevstate' field is 1778 * set to something other than VDEV_STATE_UNKNOWN, it indicates 1779 * that this is part of a vdev_reopen(). In this case, we don't 1780 * want to post the ereport if the device was already in the 1781 * CANT_OPEN state beforehand. 1782 */ 1783 if (vd->vdev_prevstate != state && !vd->vdev_not_present && 1784 vd != vd->vdev_spa->spa_root_vdev) { 1785 const char *class; 1786 1787 switch (aux) { 1788 case VDEV_AUX_OPEN_FAILED: 1789 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1790 break; 1791 case VDEV_AUX_CORRUPT_DATA: 1792 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1793 break; 1794 case VDEV_AUX_NO_REPLICAS: 1795 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1796 break; 1797 case VDEV_AUX_BAD_GUID_SUM: 1798 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1799 break; 1800 case VDEV_AUX_TOO_SMALL: 1801 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1802 break; 1803 case VDEV_AUX_BAD_LABEL: 1804 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1805 break; 1806 default: 1807 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1808 } 1809 1810 zfs_ereport_post(class, vd->vdev_spa, 1811 vd, NULL, save_state, 0); 1812 } 1813 } 1814 1815 if (isopen) 1816 return; 1817 1818 if (vd->vdev_parent != NULL) 1819 vdev_propagate_state(vd->vdev_parent); 1820 } 1821