xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev.c (revision 60471b7bbfab236de7d8776aed871d919c5f81c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	&vdev_hole_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 
89 	for (int c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 	vdev_t *pvd = vd->vdev_parent;
107 
108 	/*
109 	 * The our parent is NULL (inactive spare or cache) or is the root,
110 	 * just return our own asize.
111 	 */
112 	if (pvd == NULL)
113 		return (vd->vdev_asize);
114 
115 	/*
116 	 * The top-level vdev just returns the allocatable size rounded
117 	 * to the nearest metaslab.
118 	 */
119 	if (vd == vd->vdev_top)
120 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121 
122 	/*
123 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 	 * so each child must provide at least 1/Nth of its asize.
125 	 */
126 	if (pvd->vdev_ops == &vdev_raidz_ops)
127 		return (pvd->vdev_min_asize / pvd->vdev_children);
128 
129 	return (pvd->vdev_min_asize);
130 }
131 
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 	vd->vdev_min_asize = vdev_get_min_asize(vd);
136 
137 	for (int c = 0; c < vd->vdev_children; c++)
138 		vdev_set_min_asize(vd->vdev_child[c]);
139 }
140 
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 	vdev_t *rvd = spa->spa_root_vdev;
145 
146 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147 
148 	if (vdev < rvd->vdev_children) {
149 		ASSERT(rvd->vdev_child[vdev] != NULL);
150 		return (rvd->vdev_child[vdev]);
151 	}
152 
153 	return (NULL);
154 }
155 
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 	vdev_t *mvd;
160 
161 	if (vd->vdev_guid == guid)
162 		return (vd);
163 
164 	for (int c = 0; c < vd->vdev_children; c++)
165 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 		    NULL)
167 			return (mvd);
168 
169 	return (NULL);
170 }
171 
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 	size_t oldsize, newsize;
176 	uint64_t id = cvd->vdev_id;
177 	vdev_t **newchild;
178 
179 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 	ASSERT(cvd->vdev_parent == NULL);
181 
182 	cvd->vdev_parent = pvd;
183 
184 	if (pvd == NULL)
185 		return;
186 
187 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188 
189 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 	newsize = pvd->vdev_children * sizeof (vdev_t *);
192 
193 	newchild = kmem_zalloc(newsize, KM_SLEEP);
194 	if (pvd->vdev_child != NULL) {
195 		bcopy(pvd->vdev_child, newchild, oldsize);
196 		kmem_free(pvd->vdev_child, oldsize);
197 	}
198 
199 	pvd->vdev_child = newchild;
200 	pvd->vdev_child[id] = cvd;
201 
202 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204 
205 	/*
206 	 * Walk up all ancestors to update guid sum.
207 	 */
208 	for (; pvd != NULL; pvd = pvd->vdev_parent)
209 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 
211 	if (cvd->vdev_ops->vdev_op_leaf)
212 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214 
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 	int c;
219 	uint_t id = cvd->vdev_id;
220 
221 	ASSERT(cvd->vdev_parent == pvd);
222 
223 	if (pvd == NULL)
224 		return;
225 
226 	ASSERT(id < pvd->vdev_children);
227 	ASSERT(pvd->vdev_child[id] == cvd);
228 
229 	pvd->vdev_child[id] = NULL;
230 	cvd->vdev_parent = NULL;
231 
232 	for (c = 0; c < pvd->vdev_children; c++)
233 		if (pvd->vdev_child[c])
234 			break;
235 
236 	if (c == pvd->vdev_children) {
237 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 		pvd->vdev_child = NULL;
239 		pvd->vdev_children = 0;
240 	}
241 
242 	/*
243 	 * Walk up all ancestors to update guid sum.
244 	 */
245 	for (; pvd != NULL; pvd = pvd->vdev_parent)
246 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 
248 	if (cvd->vdev_ops->vdev_op_leaf)
249 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251 
252 /*
253  * Remove any holes in the child array.
254  */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 	vdev_t **newchild, *cvd;
259 	int oldc = pvd->vdev_children;
260 	int newc;
261 
262 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263 
264 	for (int c = newc = 0; c < oldc; c++)
265 		if (pvd->vdev_child[c])
266 			newc++;
267 
268 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269 
270 	for (int c = newc = 0; c < oldc; c++) {
271 		if ((cvd = pvd->vdev_child[c]) != NULL) {
272 			newchild[newc] = cvd;
273 			cvd->vdev_id = newc++;
274 		}
275 	}
276 
277 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 	pvd->vdev_child = newchild;
279 	pvd->vdev_children = newc;
280 }
281 
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 	vdev_t *vd;
289 
290 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291 
292 	if (spa->spa_root_vdev == NULL) {
293 		ASSERT(ops == &vdev_root_ops);
294 		spa->spa_root_vdev = vd;
295 	}
296 
297 	if (guid == 0 && ops != &vdev_hole_ops) {
298 		if (spa->spa_root_vdev == vd) {
299 			/*
300 			 * The root vdev's guid will also be the pool guid,
301 			 * which must be unique among all pools.
302 			 */
303 			while (guid == 0 || spa_guid_exists(guid, 0))
304 				guid = spa_get_random(-1ULL);
305 		} else {
306 			/*
307 			 * Any other vdev's guid must be unique within the pool.
308 			 */
309 			while (guid == 0 ||
310 			    spa_guid_exists(spa_guid(spa), guid))
311 				guid = spa_get_random(-1ULL);
312 		}
313 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314 	}
315 
316 	vd->vdev_spa = spa;
317 	vd->vdev_id = id;
318 	vd->vdev_guid = guid;
319 	vd->vdev_guid_sum = guid;
320 	vd->vdev_ops = ops;
321 	vd->vdev_state = VDEV_STATE_CLOSED;
322 	vd->vdev_ishole = (ops == &vdev_hole_ops);
323 
324 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327 	for (int t = 0; t < DTL_TYPES; t++) {
328 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
329 		    &vd->vdev_dtl_lock);
330 	}
331 	txg_list_create(&vd->vdev_ms_list,
332 	    offsetof(struct metaslab, ms_txg_node));
333 	txg_list_create(&vd->vdev_dtl_list,
334 	    offsetof(struct vdev, vdev_dtl_node));
335 	vd->vdev_stat.vs_timestamp = gethrtime();
336 	vdev_queue_init(vd);
337 	vdev_cache_init(vd);
338 
339 	return (vd);
340 }
341 
342 /*
343  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
344  * creating a new vdev or loading an existing one - the behavior is slightly
345  * different for each case.
346  */
347 int
348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349     int alloctype)
350 {
351 	vdev_ops_t *ops;
352 	char *type;
353 	uint64_t guid = 0, islog, nparity;
354 	vdev_t *vd;
355 
356 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357 
358 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359 		return (EINVAL);
360 
361 	if ((ops = vdev_getops(type)) == NULL)
362 		return (EINVAL);
363 
364 	/*
365 	 * If this is a load, get the vdev guid from the nvlist.
366 	 * Otherwise, vdev_alloc_common() will generate one for us.
367 	 */
368 	if (alloctype == VDEV_ALLOC_LOAD) {
369 		uint64_t label_id;
370 
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372 		    label_id != id)
373 			return (EINVAL);
374 
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	} else if (alloctype == VDEV_ALLOC_SPARE) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (EINVAL);
380 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
381 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 			return (EINVAL);
383 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385 			return (EINVAL);
386 	}
387 
388 	/*
389 	 * The first allocated vdev must be of type 'root'.
390 	 */
391 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392 		return (EINVAL);
393 
394 	/*
395 	 * Determine whether we're a log vdev.
396 	 */
397 	islog = 0;
398 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400 		return (ENOTSUP);
401 
402 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403 		return (ENOTSUP);
404 
405 	/*
406 	 * Set the nparity property for RAID-Z vdevs.
407 	 */
408 	nparity = -1ULL;
409 	if (ops == &vdev_raidz_ops) {
410 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411 		    &nparity) == 0) {
412 			/*
413 			 * Currently, we can only support 3 parity devices.
414 			 */
415 			if (nparity == 0 || nparity > 3)
416 				return (EINVAL);
417 			/*
418 			 * Previous versions could only support 1 or 2 parity
419 			 * device.
420 			 */
421 			if (nparity > 1 &&
422 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
423 				return (ENOTSUP);
424 			if (nparity > 2 &&
425 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
426 				return (ENOTSUP);
427 		} else {
428 			/*
429 			 * We require the parity to be specified for SPAs that
430 			 * support multiple parity levels.
431 			 */
432 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
433 				return (EINVAL);
434 			/*
435 			 * Otherwise, we default to 1 parity device for RAID-Z.
436 			 */
437 			nparity = 1;
438 		}
439 	} else {
440 		nparity = 0;
441 	}
442 	ASSERT(nparity != -1ULL);
443 
444 	vd = vdev_alloc_common(spa, id, guid, ops);
445 
446 	vd->vdev_islog = islog;
447 	vd->vdev_nparity = nparity;
448 
449 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
450 		vd->vdev_path = spa_strdup(vd->vdev_path);
451 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
452 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
453 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
454 	    &vd->vdev_physpath) == 0)
455 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
456 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
457 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
458 
459 	/*
460 	 * Set the whole_disk property.  If it's not specified, leave the value
461 	 * as -1.
462 	 */
463 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
464 	    &vd->vdev_wholedisk) != 0)
465 		vd->vdev_wholedisk = -1ULL;
466 
467 	/*
468 	 * Look for the 'not present' flag.  This will only be set if the device
469 	 * was not present at the time of import.
470 	 */
471 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
472 	    &vd->vdev_not_present);
473 
474 	/*
475 	 * Get the alignment requirement.
476 	 */
477 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
478 
479 	/*
480 	 * Retrieve the vdev creation time.
481 	 */
482 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
483 	    &vd->vdev_crtxg);
484 
485 	/*
486 	 * If we're a top-level vdev, try to load the allocation parameters.
487 	 */
488 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
489 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
490 		    &vd->vdev_ms_array);
491 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
492 		    &vd->vdev_ms_shift);
493 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
494 		    &vd->vdev_asize);
495 	}
496 
497 	/*
498 	 * If we're a leaf vdev, try to load the DTL object and other state.
499 	 */
500 	if (vd->vdev_ops->vdev_op_leaf &&
501 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
503 		if (alloctype == VDEV_ALLOC_LOAD) {
504 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
505 			    &vd->vdev_dtl_smo.smo_object);
506 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507 			    &vd->vdev_unspare);
508 		}
509 
510 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511 			uint64_t spare = 0;
512 
513 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514 			    &spare) == 0 && spare)
515 				spa_spare_add(vd);
516 		}
517 
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519 		    &vd->vdev_offline);
520 
521 		/*
522 		 * When importing a pool, we want to ignore the persistent fault
523 		 * state, as the diagnosis made on another system may not be
524 		 * valid in the current context.
525 		 */
526 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
527 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
528 			    &vd->vdev_faulted);
529 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
530 			    &vd->vdev_degraded);
531 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
532 			    &vd->vdev_removed);
533 		}
534 	}
535 
536 	/*
537 	 * Add ourselves to the parent's list of children.
538 	 */
539 	vdev_add_child(parent, vd);
540 
541 	*vdp = vd;
542 
543 	return (0);
544 }
545 
546 void
547 vdev_free(vdev_t *vd)
548 {
549 	spa_t *spa = vd->vdev_spa;
550 
551 	/*
552 	 * vdev_free() implies closing the vdev first.  This is simpler than
553 	 * trying to ensure complicated semantics for all callers.
554 	 */
555 	vdev_close(vd);
556 
557 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
558 
559 	/*
560 	 * Free all children.
561 	 */
562 	for (int c = 0; c < vd->vdev_children; c++)
563 		vdev_free(vd->vdev_child[c]);
564 
565 	ASSERT(vd->vdev_child == NULL);
566 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
567 
568 	/*
569 	 * Discard allocation state.
570 	 */
571 	if (vd == vd->vdev_top)
572 		vdev_metaslab_fini(vd);
573 
574 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
575 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
576 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
577 
578 	/*
579 	 * Remove this vdev from its parent's child list.
580 	 */
581 	vdev_remove_child(vd->vdev_parent, vd);
582 
583 	ASSERT(vd->vdev_parent == NULL);
584 
585 	/*
586 	 * Clean up vdev structure.
587 	 */
588 	vdev_queue_fini(vd);
589 	vdev_cache_fini(vd);
590 
591 	if (vd->vdev_path)
592 		spa_strfree(vd->vdev_path);
593 	if (vd->vdev_devid)
594 		spa_strfree(vd->vdev_devid);
595 	if (vd->vdev_physpath)
596 		spa_strfree(vd->vdev_physpath);
597 	if (vd->vdev_fru)
598 		spa_strfree(vd->vdev_fru);
599 
600 	if (vd->vdev_isspare)
601 		spa_spare_remove(vd);
602 	if (vd->vdev_isl2cache)
603 		spa_l2cache_remove(vd);
604 
605 	txg_list_destroy(&vd->vdev_ms_list);
606 	txg_list_destroy(&vd->vdev_dtl_list);
607 
608 	mutex_enter(&vd->vdev_dtl_lock);
609 	for (int t = 0; t < DTL_TYPES; t++) {
610 		space_map_unload(&vd->vdev_dtl[t]);
611 		space_map_destroy(&vd->vdev_dtl[t]);
612 	}
613 	mutex_exit(&vd->vdev_dtl_lock);
614 
615 	mutex_destroy(&vd->vdev_dtl_lock);
616 	mutex_destroy(&vd->vdev_stat_lock);
617 	mutex_destroy(&vd->vdev_probe_lock);
618 
619 	if (vd == spa->spa_root_vdev)
620 		spa->spa_root_vdev = NULL;
621 
622 	kmem_free(vd, sizeof (vdev_t));
623 }
624 
625 /*
626  * Transfer top-level vdev state from svd to tvd.
627  */
628 static void
629 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
630 {
631 	spa_t *spa = svd->vdev_spa;
632 	metaslab_t *msp;
633 	vdev_t *vd;
634 	int t;
635 
636 	ASSERT(tvd == tvd->vdev_top);
637 
638 	tvd->vdev_ms_array = svd->vdev_ms_array;
639 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
640 	tvd->vdev_ms_count = svd->vdev_ms_count;
641 
642 	svd->vdev_ms_array = 0;
643 	svd->vdev_ms_shift = 0;
644 	svd->vdev_ms_count = 0;
645 
646 	tvd->vdev_mg = svd->vdev_mg;
647 	tvd->vdev_ms = svd->vdev_ms;
648 
649 	svd->vdev_mg = NULL;
650 	svd->vdev_ms = NULL;
651 
652 	if (tvd->vdev_mg != NULL)
653 		tvd->vdev_mg->mg_vd = tvd;
654 
655 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
656 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
657 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
658 
659 	svd->vdev_stat.vs_alloc = 0;
660 	svd->vdev_stat.vs_space = 0;
661 	svd->vdev_stat.vs_dspace = 0;
662 
663 	for (t = 0; t < TXG_SIZE; t++) {
664 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
665 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
666 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
667 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
668 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
669 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
670 	}
671 
672 	if (list_link_active(&svd->vdev_config_dirty_node)) {
673 		vdev_config_clean(svd);
674 		vdev_config_dirty(tvd);
675 	}
676 
677 	if (list_link_active(&svd->vdev_state_dirty_node)) {
678 		vdev_state_clean(svd);
679 		vdev_state_dirty(tvd);
680 	}
681 
682 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
683 	svd->vdev_deflate_ratio = 0;
684 
685 	tvd->vdev_islog = svd->vdev_islog;
686 	svd->vdev_islog = 0;
687 }
688 
689 static void
690 vdev_top_update(vdev_t *tvd, vdev_t *vd)
691 {
692 	if (vd == NULL)
693 		return;
694 
695 	vd->vdev_top = tvd;
696 
697 	for (int c = 0; c < vd->vdev_children; c++)
698 		vdev_top_update(tvd, vd->vdev_child[c]);
699 }
700 
701 /*
702  * Add a mirror/replacing vdev above an existing vdev.
703  */
704 vdev_t *
705 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
706 {
707 	spa_t *spa = cvd->vdev_spa;
708 	vdev_t *pvd = cvd->vdev_parent;
709 	vdev_t *mvd;
710 
711 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
712 
713 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
714 
715 	mvd->vdev_asize = cvd->vdev_asize;
716 	mvd->vdev_min_asize = cvd->vdev_min_asize;
717 	mvd->vdev_ashift = cvd->vdev_ashift;
718 	mvd->vdev_state = cvd->vdev_state;
719 	mvd->vdev_crtxg = cvd->vdev_crtxg;
720 
721 	vdev_remove_child(pvd, cvd);
722 	vdev_add_child(pvd, mvd);
723 	cvd->vdev_id = mvd->vdev_children;
724 	vdev_add_child(mvd, cvd);
725 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
726 
727 	if (mvd == mvd->vdev_top)
728 		vdev_top_transfer(cvd, mvd);
729 
730 	return (mvd);
731 }
732 
733 /*
734  * Remove a 1-way mirror/replacing vdev from the tree.
735  */
736 void
737 vdev_remove_parent(vdev_t *cvd)
738 {
739 	vdev_t *mvd = cvd->vdev_parent;
740 	vdev_t *pvd = mvd->vdev_parent;
741 
742 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743 
744 	ASSERT(mvd->vdev_children == 1);
745 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
746 	    mvd->vdev_ops == &vdev_replacing_ops ||
747 	    mvd->vdev_ops == &vdev_spare_ops);
748 	cvd->vdev_ashift = mvd->vdev_ashift;
749 
750 	vdev_remove_child(mvd, cvd);
751 	vdev_remove_child(pvd, mvd);
752 
753 	/*
754 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
755 	 * Otherwise, we could have detached an offline device, and when we
756 	 * go to import the pool we'll think we have two top-level vdevs,
757 	 * instead of a different version of the same top-level vdev.
758 	 */
759 	if (mvd->vdev_top == mvd) {
760 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
761 		cvd->vdev_guid += guid_delta;
762 		cvd->vdev_guid_sum += guid_delta;
763 	}
764 	cvd->vdev_id = mvd->vdev_id;
765 	vdev_add_child(pvd, cvd);
766 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
767 
768 	if (cvd == cvd->vdev_top)
769 		vdev_top_transfer(mvd, cvd);
770 
771 	ASSERT(mvd->vdev_children == 0);
772 	vdev_free(mvd);
773 }
774 
775 int
776 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
777 {
778 	spa_t *spa = vd->vdev_spa;
779 	objset_t *mos = spa->spa_meta_objset;
780 	metaslab_class_t *mc;
781 	uint64_t m;
782 	uint64_t oldc = vd->vdev_ms_count;
783 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
784 	metaslab_t **mspp;
785 	int error;
786 
787 	/*
788 	 * This vdev is not being allocated from yet or is a hole.
789 	 */
790 	if (vd->vdev_ms_shift == 0)
791 		return (0);
792 
793 	ASSERT(!vd->vdev_ishole);
794 
795 	/*
796 	 * Compute the raidz-deflation ratio.  Note, we hard-code
797 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
798 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
799 	 * or we will inconsistently account for existing bp's.
800 	 */
801 	vd->vdev_deflate_ratio = (1 << 17) /
802 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
803 
804 	ASSERT(oldc <= newc);
805 
806 	if (vd->vdev_islog)
807 		mc = spa->spa_log_class;
808 	else
809 		mc = spa->spa_normal_class;
810 
811 	if (vd->vdev_mg == NULL)
812 		vd->vdev_mg = metaslab_group_create(mc, vd);
813 
814 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
815 
816 	if (oldc != 0) {
817 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
818 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
819 	}
820 
821 	vd->vdev_ms = mspp;
822 	vd->vdev_ms_count = newc;
823 
824 	for (m = oldc; m < newc; m++) {
825 		space_map_obj_t smo = { 0, 0, 0 };
826 		if (txg == 0) {
827 			uint64_t object = 0;
828 			error = dmu_read(mos, vd->vdev_ms_array,
829 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
830 			    DMU_READ_PREFETCH);
831 			if (error)
832 				return (error);
833 			if (object != 0) {
834 				dmu_buf_t *db;
835 				error = dmu_bonus_hold(mos, object, FTAG, &db);
836 				if (error)
837 					return (error);
838 				ASSERT3U(db->db_size, >=, sizeof (smo));
839 				bcopy(db->db_data, &smo, sizeof (smo));
840 				ASSERT3U(smo.smo_object, ==, object);
841 				dmu_buf_rele(db, FTAG);
842 			}
843 		}
844 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
845 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
846 	}
847 
848 	return (0);
849 }
850 
851 void
852 vdev_metaslab_fini(vdev_t *vd)
853 {
854 	uint64_t m;
855 	uint64_t count = vd->vdev_ms_count;
856 
857 	if (vd->vdev_ms != NULL) {
858 		for (m = 0; m < count; m++)
859 			if (vd->vdev_ms[m] != NULL)
860 				metaslab_fini(vd->vdev_ms[m]);
861 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
862 		vd->vdev_ms = NULL;
863 	}
864 }
865 
866 typedef struct vdev_probe_stats {
867 	boolean_t	vps_readable;
868 	boolean_t	vps_writeable;
869 	int		vps_flags;
870 } vdev_probe_stats_t;
871 
872 static void
873 vdev_probe_done(zio_t *zio)
874 {
875 	spa_t *spa = zio->io_spa;
876 	vdev_t *vd = zio->io_vd;
877 	vdev_probe_stats_t *vps = zio->io_private;
878 
879 	ASSERT(vd->vdev_probe_zio != NULL);
880 
881 	if (zio->io_type == ZIO_TYPE_READ) {
882 		if (zio->io_error == 0)
883 			vps->vps_readable = 1;
884 		if (zio->io_error == 0 && spa_writeable(spa)) {
885 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
886 			    zio->io_offset, zio->io_size, zio->io_data,
887 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
888 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
889 		} else {
890 			zio_buf_free(zio->io_data, zio->io_size);
891 		}
892 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
893 		if (zio->io_error == 0)
894 			vps->vps_writeable = 1;
895 		zio_buf_free(zio->io_data, zio->io_size);
896 	} else if (zio->io_type == ZIO_TYPE_NULL) {
897 		zio_t *pio;
898 
899 		vd->vdev_cant_read |= !vps->vps_readable;
900 		vd->vdev_cant_write |= !vps->vps_writeable;
901 
902 		if (vdev_readable(vd) &&
903 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
904 			zio->io_error = 0;
905 		} else {
906 			ASSERT(zio->io_error != 0);
907 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
908 			    spa, vd, NULL, 0, 0);
909 			zio->io_error = ENXIO;
910 		}
911 
912 		mutex_enter(&vd->vdev_probe_lock);
913 		ASSERT(vd->vdev_probe_zio == zio);
914 		vd->vdev_probe_zio = NULL;
915 		mutex_exit(&vd->vdev_probe_lock);
916 
917 		while ((pio = zio_walk_parents(zio)) != NULL)
918 			if (!vdev_accessible(vd, pio))
919 				pio->io_error = ENXIO;
920 
921 		kmem_free(vps, sizeof (*vps));
922 	}
923 }
924 
925 /*
926  * Determine whether this device is accessible by reading and writing
927  * to several known locations: the pad regions of each vdev label
928  * but the first (which we leave alone in case it contains a VTOC).
929  */
930 zio_t *
931 vdev_probe(vdev_t *vd, zio_t *zio)
932 {
933 	spa_t *spa = vd->vdev_spa;
934 	vdev_probe_stats_t *vps = NULL;
935 	zio_t *pio;
936 
937 	ASSERT(vd->vdev_ops->vdev_op_leaf);
938 
939 	/*
940 	 * Don't probe the probe.
941 	 */
942 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
943 		return (NULL);
944 
945 	/*
946 	 * To prevent 'probe storms' when a device fails, we create
947 	 * just one probe i/o at a time.  All zios that want to probe
948 	 * this vdev will become parents of the probe io.
949 	 */
950 	mutex_enter(&vd->vdev_probe_lock);
951 
952 	if ((pio = vd->vdev_probe_zio) == NULL) {
953 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
954 
955 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
956 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
957 		    ZIO_FLAG_TRYHARD;
958 
959 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
960 			/*
961 			 * vdev_cant_read and vdev_cant_write can only
962 			 * transition from TRUE to FALSE when we have the
963 			 * SCL_ZIO lock as writer; otherwise they can only
964 			 * transition from FALSE to TRUE.  This ensures that
965 			 * any zio looking at these values can assume that
966 			 * failures persist for the life of the I/O.  That's
967 			 * important because when a device has intermittent
968 			 * connectivity problems, we want to ensure that
969 			 * they're ascribed to the device (ENXIO) and not
970 			 * the zio (EIO).
971 			 *
972 			 * Since we hold SCL_ZIO as writer here, clear both
973 			 * values so the probe can reevaluate from first
974 			 * principles.
975 			 */
976 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
977 			vd->vdev_cant_read = B_FALSE;
978 			vd->vdev_cant_write = B_FALSE;
979 		}
980 
981 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
982 		    vdev_probe_done, vps,
983 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
984 
985 		if (zio != NULL) {
986 			vd->vdev_probe_wanted = B_TRUE;
987 			spa_async_request(spa, SPA_ASYNC_PROBE);
988 		}
989 	}
990 
991 	if (zio != NULL)
992 		zio_add_child(zio, pio);
993 
994 	mutex_exit(&vd->vdev_probe_lock);
995 
996 	if (vps == NULL) {
997 		ASSERT(zio != NULL);
998 		return (NULL);
999 	}
1000 
1001 	for (int l = 1; l < VDEV_LABELS; l++) {
1002 		zio_nowait(zio_read_phys(pio, vd,
1003 		    vdev_label_offset(vd->vdev_psize, l,
1004 		    offsetof(vdev_label_t, vl_pad2)),
1005 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1006 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1007 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1008 	}
1009 
1010 	if (zio == NULL)
1011 		return (pio);
1012 
1013 	zio_nowait(pio);
1014 	return (NULL);
1015 }
1016 
1017 static void
1018 vdev_open_child(void *arg)
1019 {
1020 	vdev_t *vd = arg;
1021 
1022 	vd->vdev_open_thread = curthread;
1023 	vd->vdev_open_error = vdev_open(vd);
1024 	vd->vdev_open_thread = NULL;
1025 }
1026 
1027 boolean_t
1028 vdev_uses_zvols(vdev_t *vd)
1029 {
1030 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1031 	    strlen(ZVOL_DIR)) == 0)
1032 		return (B_TRUE);
1033 	for (int c = 0; c < vd->vdev_children; c++)
1034 		if (vdev_uses_zvols(vd->vdev_child[c]))
1035 			return (B_TRUE);
1036 	return (B_FALSE);
1037 }
1038 
1039 void
1040 vdev_open_children(vdev_t *vd)
1041 {
1042 	taskq_t *tq;
1043 	int children = vd->vdev_children;
1044 
1045 	/*
1046 	 * in order to handle pools on top of zvols, do the opens
1047 	 * in a single thread so that the same thread holds the
1048 	 * spa_namespace_lock
1049 	 */
1050 	if (vdev_uses_zvols(vd)) {
1051 		for (int c = 0; c < children; c++)
1052 			vd->vdev_child[c]->vdev_open_error =
1053 			    vdev_open(vd->vdev_child[c]);
1054 		return;
1055 	}
1056 	tq = taskq_create("vdev_open", children, minclsyspri,
1057 	    children, children, TASKQ_PREPOPULATE);
1058 
1059 	for (int c = 0; c < children; c++)
1060 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1061 		    TQ_SLEEP) != NULL);
1062 
1063 	taskq_destroy(tq);
1064 }
1065 
1066 /*
1067  * Prepare a virtual device for access.
1068  */
1069 int
1070 vdev_open(vdev_t *vd)
1071 {
1072 	spa_t *spa = vd->vdev_spa;
1073 	int error;
1074 	uint64_t osize = 0;
1075 	uint64_t asize, psize;
1076 	uint64_t ashift = 0;
1077 
1078 	ASSERT(vd->vdev_open_thread == curthread ||
1079 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1080 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1081 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1082 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1083 
1084 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1085 	vd->vdev_cant_read = B_FALSE;
1086 	vd->vdev_cant_write = B_FALSE;
1087 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1088 
1089 	if (!vd->vdev_removed && vd->vdev_faulted) {
1090 		ASSERT(vd->vdev_children == 0);
1091 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1092 		    VDEV_AUX_ERR_EXCEEDED);
1093 		return (ENXIO);
1094 	} else if (vd->vdev_offline) {
1095 		ASSERT(vd->vdev_children == 0);
1096 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1097 		return (ENXIO);
1098 	}
1099 
1100 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1101 
1102 	if (zio_injection_enabled && error == 0)
1103 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1104 
1105 	if (error) {
1106 		if (vd->vdev_removed &&
1107 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1108 			vd->vdev_removed = B_FALSE;
1109 
1110 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1111 		    vd->vdev_stat.vs_aux);
1112 		return (error);
1113 	}
1114 
1115 	vd->vdev_removed = B_FALSE;
1116 
1117 	if (vd->vdev_degraded) {
1118 		ASSERT(vd->vdev_children == 0);
1119 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1120 		    VDEV_AUX_ERR_EXCEEDED);
1121 	} else {
1122 		vd->vdev_state = VDEV_STATE_HEALTHY;
1123 	}
1124 
1125 	/*
1126 	 * For hole or missing vdevs we just return success.
1127 	 */
1128 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1129 		return (0);
1130 
1131 	for (int c = 0; c < vd->vdev_children; c++) {
1132 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1133 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1134 			    VDEV_AUX_NONE);
1135 			break;
1136 		}
1137 	}
1138 
1139 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1140 
1141 	if (vd->vdev_children == 0) {
1142 		if (osize < SPA_MINDEVSIZE) {
1143 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1144 			    VDEV_AUX_TOO_SMALL);
1145 			return (EOVERFLOW);
1146 		}
1147 		psize = osize;
1148 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1149 	} else {
1150 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1151 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1152 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1153 			    VDEV_AUX_TOO_SMALL);
1154 			return (EOVERFLOW);
1155 		}
1156 		psize = 0;
1157 		asize = osize;
1158 	}
1159 
1160 	vd->vdev_psize = psize;
1161 
1162 	/*
1163 	 * Make sure the allocatable size hasn't shrunk.
1164 	 */
1165 	if (asize < vd->vdev_min_asize) {
1166 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167 		    VDEV_AUX_BAD_LABEL);
1168 		return (EINVAL);
1169 	}
1170 
1171 	if (vd->vdev_asize == 0) {
1172 		/*
1173 		 * This is the first-ever open, so use the computed values.
1174 		 * For testing purposes, a higher ashift can be requested.
1175 		 */
1176 		vd->vdev_asize = asize;
1177 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1178 	} else {
1179 		/*
1180 		 * Make sure the alignment requirement hasn't increased.
1181 		 */
1182 		if (ashift > vd->vdev_top->vdev_ashift) {
1183 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1184 			    VDEV_AUX_BAD_LABEL);
1185 			return (EINVAL);
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * If all children are healthy and the asize has increased,
1191 	 * then we've experienced dynamic LUN growth.  If automatic
1192 	 * expansion is enabled then use the additional space.
1193 	 */
1194 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1195 	    (vd->vdev_expanding || spa->spa_autoexpand))
1196 		vd->vdev_asize = asize;
1197 
1198 	vdev_set_min_asize(vd);
1199 
1200 	/*
1201 	 * Ensure we can issue some IO before declaring the
1202 	 * vdev open for business.
1203 	 */
1204 	if (vd->vdev_ops->vdev_op_leaf &&
1205 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1206 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 		    VDEV_AUX_IO_FAILURE);
1208 		return (error);
1209 	}
1210 
1211 	/*
1212 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1213 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1214 	 * since this would just restart the scrub we are already doing.
1215 	 */
1216 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1217 	    vdev_resilver_needed(vd, NULL, NULL))
1218 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Called once the vdevs are all opened, this routine validates the label
1225  * contents.  This needs to be done before vdev_load() so that we don't
1226  * inadvertently do repair I/Os to the wrong device.
1227  *
1228  * This function will only return failure if one of the vdevs indicates that it
1229  * has since been destroyed or exported.  This is only possible if
1230  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1231  * will be updated but the function will return 0.
1232  */
1233 int
1234 vdev_validate(vdev_t *vd)
1235 {
1236 	spa_t *spa = vd->vdev_spa;
1237 	nvlist_t *label;
1238 	uint64_t guid, top_guid;
1239 	uint64_t state;
1240 
1241 	for (int c = 0; c < vd->vdev_children; c++)
1242 		if (vdev_validate(vd->vdev_child[c]) != 0)
1243 			return (EBADF);
1244 
1245 	/*
1246 	 * If the device has already failed, or was marked offline, don't do
1247 	 * any further validation.  Otherwise, label I/O will fail and we will
1248 	 * overwrite the previous state.
1249 	 */
1250 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1251 
1252 		if ((label = vdev_label_read_config(vd)) == NULL) {
1253 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254 			    VDEV_AUX_BAD_LABEL);
1255 			return (0);
1256 		}
1257 
1258 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1259 		    &guid) != 0 || guid != spa_guid(spa)) {
1260 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1261 			    VDEV_AUX_CORRUPT_DATA);
1262 			nvlist_free(label);
1263 			return (0);
1264 		}
1265 
1266 		/*
1267 		 * If this vdev just became a top-level vdev because its
1268 		 * sibling was detached, it will have adopted the parent's
1269 		 * vdev guid -- but the label may or may not be on disk yet.
1270 		 * Fortunately, either version of the label will have the
1271 		 * same top guid, so if we're a top-level vdev, we can
1272 		 * safely compare to that instead.
1273 		 */
1274 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1275 		    &guid) != 0 ||
1276 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1277 		    &top_guid) != 0 ||
1278 		    (vd->vdev_guid != guid &&
1279 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1280 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1281 			    VDEV_AUX_CORRUPT_DATA);
1282 			nvlist_free(label);
1283 			return (0);
1284 		}
1285 
1286 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1287 		    &state) != 0) {
1288 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1289 			    VDEV_AUX_CORRUPT_DATA);
1290 			nvlist_free(label);
1291 			return (0);
1292 		}
1293 
1294 		nvlist_free(label);
1295 
1296 		/*
1297 		 * If spa->spa_load_verbatim is true, no need to check the
1298 		 * state of the pool.
1299 		 */
1300 		if (!spa->spa_load_verbatim &&
1301 		    spa->spa_load_state == SPA_LOAD_OPEN &&
1302 		    state != POOL_STATE_ACTIVE)
1303 			return (EBADF);
1304 
1305 		/*
1306 		 * If we were able to open and validate a vdev that was
1307 		 * previously marked permanently unavailable, clear that state
1308 		 * now.
1309 		 */
1310 		if (vd->vdev_not_present)
1311 			vd->vdev_not_present = 0;
1312 	}
1313 
1314 	return (0);
1315 }
1316 
1317 /*
1318  * Close a virtual device.
1319  */
1320 void
1321 vdev_close(vdev_t *vd)
1322 {
1323 	spa_t *spa = vd->vdev_spa;
1324 
1325 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1326 
1327 	vd->vdev_ops->vdev_op_close(vd);
1328 
1329 	vdev_cache_purge(vd);
1330 
1331 	/*
1332 	 * We record the previous state before we close it, so that if we are
1333 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1334 	 * it's still faulted.
1335 	 */
1336 	vd->vdev_prevstate = vd->vdev_state;
1337 
1338 	if (vd->vdev_offline)
1339 		vd->vdev_state = VDEV_STATE_OFFLINE;
1340 	else
1341 		vd->vdev_state = VDEV_STATE_CLOSED;
1342 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1343 }
1344 
1345 void
1346 vdev_reopen(vdev_t *vd)
1347 {
1348 	spa_t *spa = vd->vdev_spa;
1349 
1350 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1351 
1352 	vdev_close(vd);
1353 	(void) vdev_open(vd);
1354 
1355 	/*
1356 	 * Call vdev_validate() here to make sure we have the same device.
1357 	 * Otherwise, a device with an invalid label could be successfully
1358 	 * opened in response to vdev_reopen().
1359 	 */
1360 	if (vd->vdev_aux) {
1361 		(void) vdev_validate_aux(vd);
1362 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1363 		    vd->vdev_aux == &spa->spa_l2cache &&
1364 		    !l2arc_vdev_present(vd))
1365 			l2arc_add_vdev(spa, vd);
1366 	} else {
1367 		(void) vdev_validate(vd);
1368 	}
1369 
1370 	/*
1371 	 * Reassess parent vdev's health.
1372 	 */
1373 	vdev_propagate_state(vd);
1374 }
1375 
1376 int
1377 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1378 {
1379 	int error;
1380 
1381 	/*
1382 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1383 	 * For a create, however, we want to fail the request if
1384 	 * there are any components we can't open.
1385 	 */
1386 	error = vdev_open(vd);
1387 
1388 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1389 		vdev_close(vd);
1390 		return (error ? error : ENXIO);
1391 	}
1392 
1393 	/*
1394 	 * Recursively initialize all labels.
1395 	 */
1396 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1397 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1398 		vdev_close(vd);
1399 		return (error);
1400 	}
1401 
1402 	return (0);
1403 }
1404 
1405 void
1406 vdev_metaslab_set_size(vdev_t *vd)
1407 {
1408 	/*
1409 	 * Aim for roughly 200 metaslabs per vdev.
1410 	 */
1411 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1412 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1413 }
1414 
1415 void
1416 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1417 {
1418 	ASSERT(vd == vd->vdev_top);
1419 	ASSERT(!vd->vdev_ishole);
1420 	ASSERT(ISP2(flags));
1421 
1422 	if (flags & VDD_METASLAB)
1423 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1424 
1425 	if (flags & VDD_DTL)
1426 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1427 
1428 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1429 }
1430 
1431 /*
1432  * DTLs.
1433  *
1434  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1435  * the vdev has less than perfect replication.  There are three kinds of DTL:
1436  *
1437  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1438  *
1439  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1440  *
1441  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1442  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1443  *	txgs that was scrubbed.
1444  *
1445  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1446  *	persistent errors or just some device being offline.
1447  *	Unlike the other three, the DTL_OUTAGE map is not generally
1448  *	maintained; it's only computed when needed, typically to
1449  *	determine whether a device can be detached.
1450  *
1451  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1452  * either has the data or it doesn't.
1453  *
1454  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1455  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1456  * if any child is less than fully replicated, then so is its parent.
1457  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1458  * comprising only those txgs which appear in 'maxfaults' or more children;
1459  * those are the txgs we don't have enough replication to read.  For example,
1460  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1461  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1462  * two child DTL_MISSING maps.
1463  *
1464  * It should be clear from the above that to compute the DTLs and outage maps
1465  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1466  * Therefore, that is all we keep on disk.  When loading the pool, or after
1467  * a configuration change, we generate all other DTLs from first principles.
1468  */
1469 void
1470 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1471 {
1472 	space_map_t *sm = &vd->vdev_dtl[t];
1473 
1474 	ASSERT(t < DTL_TYPES);
1475 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1476 
1477 	mutex_enter(sm->sm_lock);
1478 	if (!space_map_contains(sm, txg, size))
1479 		space_map_add(sm, txg, size);
1480 	mutex_exit(sm->sm_lock);
1481 }
1482 
1483 boolean_t
1484 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1485 {
1486 	space_map_t *sm = &vd->vdev_dtl[t];
1487 	boolean_t dirty = B_FALSE;
1488 
1489 	ASSERT(t < DTL_TYPES);
1490 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1491 
1492 	mutex_enter(sm->sm_lock);
1493 	if (sm->sm_space != 0)
1494 		dirty = space_map_contains(sm, txg, size);
1495 	mutex_exit(sm->sm_lock);
1496 
1497 	return (dirty);
1498 }
1499 
1500 boolean_t
1501 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1502 {
1503 	space_map_t *sm = &vd->vdev_dtl[t];
1504 	boolean_t empty;
1505 
1506 	mutex_enter(sm->sm_lock);
1507 	empty = (sm->sm_space == 0);
1508 	mutex_exit(sm->sm_lock);
1509 
1510 	return (empty);
1511 }
1512 
1513 /*
1514  * Reassess DTLs after a config change or scrub completion.
1515  */
1516 void
1517 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1518 {
1519 	spa_t *spa = vd->vdev_spa;
1520 	avl_tree_t reftree;
1521 	int minref;
1522 
1523 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1524 
1525 	for (int c = 0; c < vd->vdev_children; c++)
1526 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1527 		    scrub_txg, scrub_done);
1528 
1529 	if (vd == spa->spa_root_vdev || vd->vdev_ishole)
1530 		return;
1531 
1532 	if (vd->vdev_ops->vdev_op_leaf) {
1533 		mutex_enter(&vd->vdev_dtl_lock);
1534 		if (scrub_txg != 0 &&
1535 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1536 			/* XXX should check scrub_done? */
1537 			/*
1538 			 * We completed a scrub up to scrub_txg.  If we
1539 			 * did it without rebooting, then the scrub dtl
1540 			 * will be valid, so excise the old region and
1541 			 * fold in the scrub dtl.  Otherwise, leave the
1542 			 * dtl as-is if there was an error.
1543 			 *
1544 			 * There's little trick here: to excise the beginning
1545 			 * of the DTL_MISSING map, we put it into a reference
1546 			 * tree and then add a segment with refcnt -1 that
1547 			 * covers the range [0, scrub_txg).  This means
1548 			 * that each txg in that range has refcnt -1 or 0.
1549 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1550 			 * entries in the range [0, scrub_txg) will have a
1551 			 * positive refcnt -- either 1 or 2.  We then convert
1552 			 * the reference tree into the new DTL_MISSING map.
1553 			 */
1554 			space_map_ref_create(&reftree);
1555 			space_map_ref_add_map(&reftree,
1556 			    &vd->vdev_dtl[DTL_MISSING], 1);
1557 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1558 			space_map_ref_add_map(&reftree,
1559 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1560 			space_map_ref_generate_map(&reftree,
1561 			    &vd->vdev_dtl[DTL_MISSING], 1);
1562 			space_map_ref_destroy(&reftree);
1563 		}
1564 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1565 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1566 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1567 		if (scrub_done)
1568 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1569 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1570 		if (!vdev_readable(vd))
1571 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1572 		else
1573 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1574 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1575 		mutex_exit(&vd->vdev_dtl_lock);
1576 
1577 		if (txg != 0)
1578 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1579 		return;
1580 	}
1581 
1582 	mutex_enter(&vd->vdev_dtl_lock);
1583 	for (int t = 0; t < DTL_TYPES; t++) {
1584 		if (t == DTL_SCRUB)
1585 			continue;			/* leaf vdevs only */
1586 		if (t == DTL_PARTIAL)
1587 			minref = 1;			/* i.e. non-zero */
1588 		else if (vd->vdev_nparity != 0)
1589 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1590 		else
1591 			minref = vd->vdev_children;	/* any kind of mirror */
1592 		space_map_ref_create(&reftree);
1593 		for (int c = 0; c < vd->vdev_children; c++) {
1594 			vdev_t *cvd = vd->vdev_child[c];
1595 			mutex_enter(&cvd->vdev_dtl_lock);
1596 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1597 			mutex_exit(&cvd->vdev_dtl_lock);
1598 		}
1599 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1600 		space_map_ref_destroy(&reftree);
1601 	}
1602 	mutex_exit(&vd->vdev_dtl_lock);
1603 }
1604 
1605 static int
1606 vdev_dtl_load(vdev_t *vd)
1607 {
1608 	spa_t *spa = vd->vdev_spa;
1609 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1610 	objset_t *mos = spa->spa_meta_objset;
1611 	dmu_buf_t *db;
1612 	int error;
1613 
1614 	ASSERT(vd->vdev_children == 0);
1615 
1616 	if (smo->smo_object == 0)
1617 		return (0);
1618 
1619 	ASSERT(!vd->vdev_ishole);
1620 
1621 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1622 		return (error);
1623 
1624 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1625 	bcopy(db->db_data, smo, sizeof (*smo));
1626 	dmu_buf_rele(db, FTAG);
1627 
1628 	mutex_enter(&vd->vdev_dtl_lock);
1629 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1630 	    NULL, SM_ALLOC, smo, mos);
1631 	mutex_exit(&vd->vdev_dtl_lock);
1632 
1633 	return (error);
1634 }
1635 
1636 void
1637 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1638 {
1639 	spa_t *spa = vd->vdev_spa;
1640 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1641 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1642 	objset_t *mos = spa->spa_meta_objset;
1643 	space_map_t smsync;
1644 	kmutex_t smlock;
1645 	dmu_buf_t *db;
1646 	dmu_tx_t *tx;
1647 
1648 	ASSERT(!vd->vdev_ishole);
1649 
1650 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1651 
1652 	if (vd->vdev_detached) {
1653 		if (smo->smo_object != 0) {
1654 			int err = dmu_object_free(mos, smo->smo_object, tx);
1655 			ASSERT3U(err, ==, 0);
1656 			smo->smo_object = 0;
1657 		}
1658 		dmu_tx_commit(tx);
1659 		return;
1660 	}
1661 
1662 	if (smo->smo_object == 0) {
1663 		ASSERT(smo->smo_objsize == 0);
1664 		ASSERT(smo->smo_alloc == 0);
1665 		smo->smo_object = dmu_object_alloc(mos,
1666 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1667 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1668 		ASSERT(smo->smo_object != 0);
1669 		vdev_config_dirty(vd->vdev_top);
1670 	}
1671 
1672 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1673 
1674 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1675 	    &smlock);
1676 
1677 	mutex_enter(&smlock);
1678 
1679 	mutex_enter(&vd->vdev_dtl_lock);
1680 	space_map_walk(sm, space_map_add, &smsync);
1681 	mutex_exit(&vd->vdev_dtl_lock);
1682 
1683 	space_map_truncate(smo, mos, tx);
1684 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1685 
1686 	space_map_destroy(&smsync);
1687 
1688 	mutex_exit(&smlock);
1689 	mutex_destroy(&smlock);
1690 
1691 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1692 	dmu_buf_will_dirty(db, tx);
1693 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1694 	bcopy(smo, db->db_data, sizeof (*smo));
1695 	dmu_buf_rele(db, FTAG);
1696 
1697 	dmu_tx_commit(tx);
1698 }
1699 
1700 /*
1701  * Determine whether the specified vdev can be offlined/detached/removed
1702  * without losing data.
1703  */
1704 boolean_t
1705 vdev_dtl_required(vdev_t *vd)
1706 {
1707 	spa_t *spa = vd->vdev_spa;
1708 	vdev_t *tvd = vd->vdev_top;
1709 	uint8_t cant_read = vd->vdev_cant_read;
1710 	boolean_t required;
1711 
1712 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1713 
1714 	if (vd == spa->spa_root_vdev || vd == tvd)
1715 		return (B_TRUE);
1716 
1717 	/*
1718 	 * Temporarily mark the device as unreadable, and then determine
1719 	 * whether this results in any DTL outages in the top-level vdev.
1720 	 * If not, we can safely offline/detach/remove the device.
1721 	 */
1722 	vd->vdev_cant_read = B_TRUE;
1723 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1724 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1725 	vd->vdev_cant_read = cant_read;
1726 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1727 
1728 	return (required);
1729 }
1730 
1731 /*
1732  * Determine if resilver is needed, and if so the txg range.
1733  */
1734 boolean_t
1735 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1736 {
1737 	boolean_t needed = B_FALSE;
1738 	uint64_t thismin = UINT64_MAX;
1739 	uint64_t thismax = 0;
1740 
1741 	if (vd->vdev_children == 0) {
1742 		mutex_enter(&vd->vdev_dtl_lock);
1743 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1744 		    vdev_writeable(vd)) {
1745 			space_seg_t *ss;
1746 
1747 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1748 			thismin = ss->ss_start - 1;
1749 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1750 			thismax = ss->ss_end;
1751 			needed = B_TRUE;
1752 		}
1753 		mutex_exit(&vd->vdev_dtl_lock);
1754 	} else {
1755 		for (int c = 0; c < vd->vdev_children; c++) {
1756 			vdev_t *cvd = vd->vdev_child[c];
1757 			uint64_t cmin, cmax;
1758 
1759 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1760 				thismin = MIN(thismin, cmin);
1761 				thismax = MAX(thismax, cmax);
1762 				needed = B_TRUE;
1763 			}
1764 		}
1765 	}
1766 
1767 	if (needed && minp) {
1768 		*minp = thismin;
1769 		*maxp = thismax;
1770 	}
1771 	return (needed);
1772 }
1773 
1774 void
1775 vdev_load(vdev_t *vd)
1776 {
1777 	/*
1778 	 * Recursively load all children.
1779 	 */
1780 	for (int c = 0; c < vd->vdev_children; c++)
1781 		vdev_load(vd->vdev_child[c]);
1782 
1783 	/*
1784 	 * If this is a top-level vdev, initialize its metaslabs.
1785 	 */
1786 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1787 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1788 	    vdev_metaslab_init(vd, 0) != 0))
1789 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1790 		    VDEV_AUX_CORRUPT_DATA);
1791 
1792 	/*
1793 	 * If this is a leaf vdev, load its DTL.
1794 	 */
1795 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1796 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1797 		    VDEV_AUX_CORRUPT_DATA);
1798 }
1799 
1800 /*
1801  * The special vdev case is used for hot spares and l2cache devices.  Its
1802  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1803  * we make sure that we can open the underlying device, then try to read the
1804  * label, and make sure that the label is sane and that it hasn't been
1805  * repurposed to another pool.
1806  */
1807 int
1808 vdev_validate_aux(vdev_t *vd)
1809 {
1810 	nvlist_t *label;
1811 	uint64_t guid, version;
1812 	uint64_t state;
1813 
1814 	if (!vdev_readable(vd))
1815 		return (0);
1816 
1817 	if ((label = vdev_label_read_config(vd)) == NULL) {
1818 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1819 		    VDEV_AUX_CORRUPT_DATA);
1820 		return (-1);
1821 	}
1822 
1823 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1824 	    version > SPA_VERSION ||
1825 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1826 	    guid != vd->vdev_guid ||
1827 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1828 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1829 		    VDEV_AUX_CORRUPT_DATA);
1830 		nvlist_free(label);
1831 		return (-1);
1832 	}
1833 
1834 	/*
1835 	 * We don't actually check the pool state here.  If it's in fact in
1836 	 * use by another pool, we update this fact on the fly when requested.
1837 	 */
1838 	nvlist_free(label);
1839 	return (0);
1840 }
1841 
1842 void
1843 vdev_remove(vdev_t *vd, uint64_t txg)
1844 {
1845 	spa_t *spa = vd->vdev_spa;
1846 	objset_t *mos = spa->spa_meta_objset;
1847 	dmu_tx_t *tx;
1848 
1849 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1850 
1851 	if (vd->vdev_dtl_smo.smo_object) {
1852 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1853 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1854 		vd->vdev_dtl_smo.smo_object = 0;
1855 	}
1856 
1857 	if (vd->vdev_ms != NULL) {
1858 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1859 			metaslab_t *msp = vd->vdev_ms[m];
1860 
1861 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1862 				continue;
1863 
1864 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1865 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1866 			msp->ms_smo.smo_object = 0;
1867 		}
1868 	}
1869 
1870 	if (vd->vdev_ms_array) {
1871 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1872 		vd->vdev_ms_array = 0;
1873 		vd->vdev_ms_shift = 0;
1874 	}
1875 	dmu_tx_commit(tx);
1876 }
1877 
1878 void
1879 vdev_sync_done(vdev_t *vd, uint64_t txg)
1880 {
1881 	metaslab_t *msp;
1882 
1883 	ASSERT(!vd->vdev_ishole);
1884 
1885 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1886 		metaslab_sync_done(msp, txg);
1887 }
1888 
1889 void
1890 vdev_sync(vdev_t *vd, uint64_t txg)
1891 {
1892 	spa_t *spa = vd->vdev_spa;
1893 	vdev_t *lvd;
1894 	metaslab_t *msp;
1895 	dmu_tx_t *tx;
1896 
1897 	ASSERT(!vd->vdev_ishole);
1898 
1899 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1900 		ASSERT(vd == vd->vdev_top);
1901 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1902 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1903 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1904 		ASSERT(vd->vdev_ms_array != 0);
1905 		vdev_config_dirty(vd);
1906 		dmu_tx_commit(tx);
1907 	}
1908 
1909 	if (vd->vdev_removing)
1910 		vdev_remove(vd, txg);
1911 
1912 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1913 		metaslab_sync(msp, txg);
1914 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1915 	}
1916 
1917 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1918 		vdev_dtl_sync(lvd, txg);
1919 
1920 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1921 }
1922 
1923 uint64_t
1924 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1925 {
1926 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1927 }
1928 
1929 /*
1930  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1931  * not be opened, and no I/O is attempted.
1932  */
1933 int
1934 vdev_fault(spa_t *spa, uint64_t guid)
1935 {
1936 	vdev_t *vd;
1937 
1938 	spa_vdev_state_enter(spa);
1939 
1940 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1941 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1942 
1943 	if (!vd->vdev_ops->vdev_op_leaf)
1944 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1945 
1946 	/*
1947 	 * Faulted state takes precedence over degraded.
1948 	 */
1949 	vd->vdev_faulted = 1ULL;
1950 	vd->vdev_degraded = 0ULL;
1951 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1952 
1953 	/*
1954 	 * If marking the vdev as faulted cause the top-level vdev to become
1955 	 * unavailable, then back off and simply mark the vdev as degraded
1956 	 * instead.
1957 	 */
1958 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1959 		vd->vdev_degraded = 1ULL;
1960 		vd->vdev_faulted = 0ULL;
1961 
1962 		/*
1963 		 * If we reopen the device and it's not dead, only then do we
1964 		 * mark it degraded.
1965 		 */
1966 		vdev_reopen(vd);
1967 
1968 		if (vdev_readable(vd)) {
1969 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1970 			    VDEV_AUX_ERR_EXCEEDED);
1971 		}
1972 	}
1973 
1974 	return (spa_vdev_state_exit(spa, vd, 0));
1975 }
1976 
1977 /*
1978  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1979  * user that something is wrong.  The vdev continues to operate as normal as far
1980  * as I/O is concerned.
1981  */
1982 int
1983 vdev_degrade(spa_t *spa, uint64_t guid)
1984 {
1985 	vdev_t *vd;
1986 
1987 	spa_vdev_state_enter(spa);
1988 
1989 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1990 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1991 
1992 	if (!vd->vdev_ops->vdev_op_leaf)
1993 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1994 
1995 	/*
1996 	 * If the vdev is already faulted, then don't do anything.
1997 	 */
1998 	if (vd->vdev_faulted || vd->vdev_degraded)
1999 		return (spa_vdev_state_exit(spa, NULL, 0));
2000 
2001 	vd->vdev_degraded = 1ULL;
2002 	if (!vdev_is_dead(vd))
2003 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2004 		    VDEV_AUX_ERR_EXCEEDED);
2005 
2006 	return (spa_vdev_state_exit(spa, vd, 0));
2007 }
2008 
2009 /*
2010  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2011  * any attached spare device should be detached when the device finishes
2012  * resilvering.  Second, the online should be treated like a 'test' online case,
2013  * so no FMA events are generated if the device fails to open.
2014  */
2015 int
2016 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2017 {
2018 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2019 
2020 	spa_vdev_state_enter(spa);
2021 
2022 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2023 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2024 
2025 	if (!vd->vdev_ops->vdev_op_leaf)
2026 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2027 
2028 	tvd = vd->vdev_top;
2029 	vd->vdev_offline = B_FALSE;
2030 	vd->vdev_tmpoffline = B_FALSE;
2031 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2032 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2033 
2034 	/* XXX - L2ARC 1.0 does not support expansion */
2035 	if (!vd->vdev_aux) {
2036 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2037 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2038 	}
2039 
2040 	vdev_reopen(tvd);
2041 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2042 
2043 	if (!vd->vdev_aux) {
2044 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2045 			pvd->vdev_expanding = B_FALSE;
2046 	}
2047 
2048 	if (newstate)
2049 		*newstate = vd->vdev_state;
2050 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2051 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2052 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2053 	    vd->vdev_parent->vdev_child[0] == vd)
2054 		vd->vdev_unspare = B_TRUE;
2055 
2056 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2057 
2058 		/* XXX - L2ARC 1.0 does not support expansion */
2059 		if (vd->vdev_aux)
2060 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2061 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2062 	}
2063 	return (spa_vdev_state_exit(spa, vd, 0));
2064 }
2065 
2066 int
2067 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2068 {
2069 	vdev_t *vd, *tvd;
2070 	int error;
2071 
2072 	spa_vdev_state_enter(spa);
2073 
2074 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2075 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2076 
2077 	if (!vd->vdev_ops->vdev_op_leaf)
2078 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2079 
2080 	tvd = vd->vdev_top;
2081 
2082 	/*
2083 	 * If the device isn't already offline, try to offline it.
2084 	 */
2085 	if (!vd->vdev_offline) {
2086 		/*
2087 		 * If this device has the only valid copy of some data,
2088 		 * don't allow it to be offlined. Log devices are always
2089 		 * expendable.
2090 		 */
2091 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2092 		    vdev_dtl_required(vd))
2093 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2094 
2095 		/*
2096 		 * Offline this device and reopen its top-level vdev.
2097 		 * If the top-level vdev is a log device then just offline
2098 		 * it. Otherwise, if this action results in the top-level
2099 		 * vdev becoming unusable, undo it and fail the request.
2100 		 */
2101 		vd->vdev_offline = B_TRUE;
2102 		vdev_reopen(tvd);
2103 
2104 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2105 		    vdev_is_dead(tvd)) {
2106 			vd->vdev_offline = B_FALSE;
2107 			vdev_reopen(tvd);
2108 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2109 		}
2110 	}
2111 
2112 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2113 
2114 	if (!tvd->vdev_islog || !vdev_is_dead(tvd))
2115 		return (spa_vdev_state_exit(spa, vd, 0));
2116 
2117 	(void) spa_vdev_state_exit(spa, vd, 0);
2118 
2119 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2120 	    NULL, DS_FIND_CHILDREN);
2121 	if (error) {
2122 		(void) vdev_online(spa, guid, 0, NULL);
2123 		return (error);
2124 	}
2125 	/*
2126 	 * If we successfully offlined the log device then we need to
2127 	 * sync out the current txg so that the "stubby" block can be
2128 	 * removed by zil_sync().
2129 	 */
2130 	txg_wait_synced(spa->spa_dsl_pool, 0);
2131 	return (0);
2132 }
2133 
2134 /*
2135  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2136  * vdev_offline(), we assume the spa config is locked.  We also clear all
2137  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2138  */
2139 void
2140 vdev_clear(spa_t *spa, vdev_t *vd)
2141 {
2142 	vdev_t *rvd = spa->spa_root_vdev;
2143 
2144 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2145 
2146 	if (vd == NULL)
2147 		vd = rvd;
2148 
2149 	vd->vdev_stat.vs_read_errors = 0;
2150 	vd->vdev_stat.vs_write_errors = 0;
2151 	vd->vdev_stat.vs_checksum_errors = 0;
2152 
2153 	for (int c = 0; c < vd->vdev_children; c++)
2154 		vdev_clear(spa, vd->vdev_child[c]);
2155 
2156 	/*
2157 	 * If we're in the FAULTED state or have experienced failed I/O, then
2158 	 * clear the persistent state and attempt to reopen the device.  We
2159 	 * also mark the vdev config dirty, so that the new faulted state is
2160 	 * written out to disk.
2161 	 */
2162 	if (vd->vdev_faulted || vd->vdev_degraded ||
2163 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2164 
2165 		vd->vdev_faulted = vd->vdev_degraded = 0;
2166 		vd->vdev_cant_read = B_FALSE;
2167 		vd->vdev_cant_write = B_FALSE;
2168 
2169 		vdev_reopen(vd);
2170 
2171 		if (vd != rvd)
2172 			vdev_state_dirty(vd->vdev_top);
2173 
2174 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2175 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2176 
2177 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2178 	}
2179 }
2180 
2181 boolean_t
2182 vdev_is_dead(vdev_t *vd)
2183 {
2184 	/*
2185 	 * Holes and missing devices are always considered "dead".
2186 	 * This simplifies the code since we don't have to check for
2187 	 * these types of devices in the various code paths.
2188 	 * Instead we rely on the fact that we skip over dead devices
2189 	 * before issuing I/O to them.
2190 	 */
2191 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2192 	    vd->vdev_ops == &vdev_missing_ops);
2193 }
2194 
2195 boolean_t
2196 vdev_readable(vdev_t *vd)
2197 {
2198 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2199 }
2200 
2201 boolean_t
2202 vdev_writeable(vdev_t *vd)
2203 {
2204 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2205 }
2206 
2207 boolean_t
2208 vdev_allocatable(vdev_t *vd)
2209 {
2210 	uint64_t state = vd->vdev_state;
2211 
2212 	/*
2213 	 * We currently allow allocations from vdevs which may be in the
2214 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2215 	 * fails to reopen then we'll catch it later when we're holding
2216 	 * the proper locks.  Note that we have to get the vdev state
2217 	 * in a local variable because although it changes atomically,
2218 	 * we're asking two separate questions about it.
2219 	 */
2220 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2221 	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2222 }
2223 
2224 boolean_t
2225 vdev_accessible(vdev_t *vd, zio_t *zio)
2226 {
2227 	ASSERT(zio->io_vd == vd);
2228 
2229 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2230 		return (B_FALSE);
2231 
2232 	if (zio->io_type == ZIO_TYPE_READ)
2233 		return (!vd->vdev_cant_read);
2234 
2235 	if (zio->io_type == ZIO_TYPE_WRITE)
2236 		return (!vd->vdev_cant_write);
2237 
2238 	return (B_TRUE);
2239 }
2240 
2241 /*
2242  * Get statistics for the given vdev.
2243  */
2244 void
2245 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2246 {
2247 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2248 
2249 	mutex_enter(&vd->vdev_stat_lock);
2250 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2251 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2252 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2253 	vs->vs_state = vd->vdev_state;
2254 	vs->vs_rsize = vdev_get_min_asize(vd);
2255 	if (vd->vdev_ops->vdev_op_leaf)
2256 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2257 	mutex_exit(&vd->vdev_stat_lock);
2258 
2259 	/*
2260 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2261 	 * over all top-level vdevs (i.e. the direct children of the root).
2262 	 */
2263 	if (vd == rvd) {
2264 		for (int c = 0; c < rvd->vdev_children; c++) {
2265 			vdev_t *cvd = rvd->vdev_child[c];
2266 			vdev_stat_t *cvs = &cvd->vdev_stat;
2267 
2268 			mutex_enter(&vd->vdev_stat_lock);
2269 			for (int t = 0; t < ZIO_TYPES; t++) {
2270 				vs->vs_ops[t] += cvs->vs_ops[t];
2271 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2272 			}
2273 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2274 			mutex_exit(&vd->vdev_stat_lock);
2275 		}
2276 	}
2277 }
2278 
2279 void
2280 vdev_clear_stats(vdev_t *vd)
2281 {
2282 	mutex_enter(&vd->vdev_stat_lock);
2283 	vd->vdev_stat.vs_space = 0;
2284 	vd->vdev_stat.vs_dspace = 0;
2285 	vd->vdev_stat.vs_alloc = 0;
2286 	mutex_exit(&vd->vdev_stat_lock);
2287 }
2288 
2289 void
2290 vdev_stat_update(zio_t *zio, uint64_t psize)
2291 {
2292 	spa_t *spa = zio->io_spa;
2293 	vdev_t *rvd = spa->spa_root_vdev;
2294 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2295 	vdev_t *pvd;
2296 	uint64_t txg = zio->io_txg;
2297 	vdev_stat_t *vs = &vd->vdev_stat;
2298 	zio_type_t type = zio->io_type;
2299 	int flags = zio->io_flags;
2300 
2301 	/*
2302 	 * If this i/o is a gang leader, it didn't do any actual work.
2303 	 */
2304 	if (zio->io_gang_tree)
2305 		return;
2306 
2307 	if (zio->io_error == 0) {
2308 		/*
2309 		 * If this is a root i/o, don't count it -- we've already
2310 		 * counted the top-level vdevs, and vdev_get_stats() will
2311 		 * aggregate them when asked.  This reduces contention on
2312 		 * the root vdev_stat_lock and implicitly handles blocks
2313 		 * that compress away to holes, for which there is no i/o.
2314 		 * (Holes never create vdev children, so all the counters
2315 		 * remain zero, which is what we want.)
2316 		 *
2317 		 * Note: this only applies to successful i/o (io_error == 0)
2318 		 * because unlike i/o counts, errors are not additive.
2319 		 * When reading a ditto block, for example, failure of
2320 		 * one top-level vdev does not imply a root-level error.
2321 		 */
2322 		if (vd == rvd)
2323 			return;
2324 
2325 		ASSERT(vd == zio->io_vd);
2326 
2327 		if (flags & ZIO_FLAG_IO_BYPASS)
2328 			return;
2329 
2330 		mutex_enter(&vd->vdev_stat_lock);
2331 
2332 		if (flags & ZIO_FLAG_IO_REPAIR) {
2333 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2334 				vs->vs_scrub_repaired += psize;
2335 			if (flags & ZIO_FLAG_SELF_HEAL)
2336 				vs->vs_self_healed += psize;
2337 		}
2338 
2339 		vs->vs_ops[type]++;
2340 		vs->vs_bytes[type] += psize;
2341 
2342 		mutex_exit(&vd->vdev_stat_lock);
2343 		return;
2344 	}
2345 
2346 	if (flags & ZIO_FLAG_SPECULATIVE)
2347 		return;
2348 
2349 	/*
2350 	 * If this is an I/O error that is going to be retried, then ignore the
2351 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2352 	 * hard errors, when in reality they can happen for any number of
2353 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2354 	 */
2355 	if (zio->io_error == EIO &&
2356 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2357 		return;
2358 
2359 	mutex_enter(&vd->vdev_stat_lock);
2360 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2361 		if (zio->io_error == ECKSUM)
2362 			vs->vs_checksum_errors++;
2363 		else
2364 			vs->vs_read_errors++;
2365 	}
2366 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2367 		vs->vs_write_errors++;
2368 	mutex_exit(&vd->vdev_stat_lock);
2369 
2370 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2371 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2372 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2373 		/*
2374 		 * This is either a normal write (not a repair), or it's a
2375 		 * repair induced by the scrub thread.  In the normal case,
2376 		 * we commit the DTL change in the same txg as the block
2377 		 * was born.  In the scrub-induced repair case, we know that
2378 		 * scrubs run in first-pass syncing context, so we commit
2379 		 * the DTL change in spa->spa_syncing_txg.
2380 		 *
2381 		 * We currently do not make DTL entries for failed spontaneous
2382 		 * self-healing writes triggered by normal (non-scrubbing)
2383 		 * reads, because we have no transactional context in which to
2384 		 * do so -- and it's not clear that it'd be desirable anyway.
2385 		 */
2386 		if (vd->vdev_ops->vdev_op_leaf) {
2387 			uint64_t commit_txg = txg;
2388 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2389 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2390 				ASSERT(spa_sync_pass(spa) == 1);
2391 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2392 				commit_txg = spa->spa_syncing_txg;
2393 			}
2394 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2395 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2396 				return;
2397 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2398 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2399 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2400 		}
2401 		if (vd != rvd)
2402 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2403 	}
2404 }
2405 
2406 void
2407 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2408 {
2409 	vdev_stat_t *vs = &vd->vdev_stat;
2410 
2411 	for (int c = 0; c < vd->vdev_children; c++)
2412 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2413 
2414 	mutex_enter(&vd->vdev_stat_lock);
2415 
2416 	if (type == POOL_SCRUB_NONE) {
2417 		/*
2418 		 * Update completion and end time.  Leave everything else alone
2419 		 * so we can report what happened during the previous scrub.
2420 		 */
2421 		vs->vs_scrub_complete = complete;
2422 		vs->vs_scrub_end = gethrestime_sec();
2423 	} else {
2424 		vs->vs_scrub_type = type;
2425 		vs->vs_scrub_complete = 0;
2426 		vs->vs_scrub_examined = 0;
2427 		vs->vs_scrub_repaired = 0;
2428 		vs->vs_scrub_start = gethrestime_sec();
2429 		vs->vs_scrub_end = 0;
2430 	}
2431 
2432 	mutex_exit(&vd->vdev_stat_lock);
2433 }
2434 
2435 /*
2436  * Update the in-core space usage stats for this vdev and the root vdev.
2437  */
2438 void
2439 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2440     boolean_t update_root)
2441 {
2442 	int64_t dspace_delta = space_delta;
2443 	spa_t *spa = vd->vdev_spa;
2444 	vdev_t *rvd = spa->spa_root_vdev;
2445 
2446 	ASSERT(vd == vd->vdev_top);
2447 
2448 	/*
2449 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2450 	 * factor.  We must calculate this here and not at the root vdev
2451 	 * because the root vdev's psize-to-asize is simply the max of its
2452 	 * childrens', thus not accurate enough for us.
2453 	 */
2454 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2455 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2456 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2457 	    vd->vdev_deflate_ratio;
2458 
2459 	mutex_enter(&vd->vdev_stat_lock);
2460 	vd->vdev_stat.vs_space += space_delta;
2461 	vd->vdev_stat.vs_alloc += alloc_delta;
2462 	vd->vdev_stat.vs_dspace += dspace_delta;
2463 	mutex_exit(&vd->vdev_stat_lock);
2464 
2465 	if (update_root) {
2466 		ASSERT(rvd == vd->vdev_parent);
2467 		ASSERT(vd->vdev_ms_count != 0);
2468 
2469 		/*
2470 		 * Don't count non-normal (e.g. intent log) space as part of
2471 		 * the pool's capacity.
2472 		 */
2473 		if (vd->vdev_islog)
2474 			return;
2475 
2476 		mutex_enter(&rvd->vdev_stat_lock);
2477 		rvd->vdev_stat.vs_space += space_delta;
2478 		rvd->vdev_stat.vs_alloc += alloc_delta;
2479 		rvd->vdev_stat.vs_dspace += dspace_delta;
2480 		mutex_exit(&rvd->vdev_stat_lock);
2481 	}
2482 }
2483 
2484 /*
2485  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2486  * so that it will be written out next time the vdev configuration is synced.
2487  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2488  */
2489 void
2490 vdev_config_dirty(vdev_t *vd)
2491 {
2492 	spa_t *spa = vd->vdev_spa;
2493 	vdev_t *rvd = spa->spa_root_vdev;
2494 	int c;
2495 
2496 	/*
2497 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2498 	 * update the vdev config manually and set the sync flag.
2499 	 */
2500 	if (vd->vdev_aux != NULL) {
2501 		spa_aux_vdev_t *sav = vd->vdev_aux;
2502 		nvlist_t **aux;
2503 		uint_t naux;
2504 
2505 		for (c = 0; c < sav->sav_count; c++) {
2506 			if (sav->sav_vdevs[c] == vd)
2507 				break;
2508 		}
2509 
2510 		if (c == sav->sav_count) {
2511 			/*
2512 			 * We're being removed.  There's nothing more to do.
2513 			 */
2514 			ASSERT(sav->sav_sync == B_TRUE);
2515 			return;
2516 		}
2517 
2518 		sav->sav_sync = B_TRUE;
2519 
2520 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2521 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2522 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2523 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2524 		}
2525 
2526 		ASSERT(c < naux);
2527 
2528 		/*
2529 		 * Setting the nvlist in the middle if the array is a little
2530 		 * sketchy, but it will work.
2531 		 */
2532 		nvlist_free(aux[c]);
2533 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2534 
2535 		return;
2536 	}
2537 
2538 	/*
2539 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2540 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2541 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2542 	 * so this is sufficient to ensure mutual exclusion.
2543 	 */
2544 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2545 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2546 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2547 
2548 	if (vd == rvd) {
2549 		for (c = 0; c < rvd->vdev_children; c++)
2550 			vdev_config_dirty(rvd->vdev_child[c]);
2551 	} else {
2552 		ASSERT(vd == vd->vdev_top);
2553 
2554 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2555 		    !vd->vdev_ishole)
2556 			list_insert_head(&spa->spa_config_dirty_list, vd);
2557 	}
2558 }
2559 
2560 void
2561 vdev_config_clean(vdev_t *vd)
2562 {
2563 	spa_t *spa = vd->vdev_spa;
2564 
2565 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2566 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2567 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2568 
2569 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2570 	list_remove(&spa->spa_config_dirty_list, vd);
2571 }
2572 
2573 /*
2574  * Mark a top-level vdev's state as dirty, so that the next pass of
2575  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2576  * the state changes from larger config changes because they require
2577  * much less locking, and are often needed for administrative actions.
2578  */
2579 void
2580 vdev_state_dirty(vdev_t *vd)
2581 {
2582 	spa_t *spa = vd->vdev_spa;
2583 
2584 	ASSERT(vd == vd->vdev_top);
2585 
2586 	/*
2587 	 * The state list is protected by the SCL_STATE lock.  The caller
2588 	 * must either hold SCL_STATE as writer, or must be the sync thread
2589 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2590 	 * so this is sufficient to ensure mutual exclusion.
2591 	 */
2592 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2593 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2594 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2595 
2596 	if (!list_link_active(&vd->vdev_state_dirty_node))
2597 		list_insert_head(&spa->spa_state_dirty_list, vd);
2598 }
2599 
2600 void
2601 vdev_state_clean(vdev_t *vd)
2602 {
2603 	spa_t *spa = vd->vdev_spa;
2604 
2605 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2606 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2607 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2608 
2609 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2610 	list_remove(&spa->spa_state_dirty_list, vd);
2611 }
2612 
2613 /*
2614  * Propagate vdev state up from children to parent.
2615  */
2616 void
2617 vdev_propagate_state(vdev_t *vd)
2618 {
2619 	spa_t *spa = vd->vdev_spa;
2620 	vdev_t *rvd = spa->spa_root_vdev;
2621 	int degraded = 0, faulted = 0;
2622 	int corrupted = 0;
2623 	vdev_t *child;
2624 
2625 	if (vd->vdev_children > 0) {
2626 		for (int c = 0; c < vd->vdev_children; c++) {
2627 			child = vd->vdev_child[c];
2628 
2629 			/*
2630 			 * Don't factor holes into the decision.
2631 			 */
2632 			if (child->vdev_ishole)
2633 				continue;
2634 
2635 			if (!vdev_readable(child) ||
2636 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2637 				/*
2638 				 * Root special: if there is a top-level log
2639 				 * device, treat the root vdev as if it were
2640 				 * degraded.
2641 				 */
2642 				if (child->vdev_islog && vd == rvd)
2643 					degraded++;
2644 				else
2645 					faulted++;
2646 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2647 				degraded++;
2648 			}
2649 
2650 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2651 				corrupted++;
2652 		}
2653 
2654 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2655 
2656 		/*
2657 		 * Root special: if there is a top-level vdev that cannot be
2658 		 * opened due to corrupted metadata, then propagate the root
2659 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2660 		 * replicas'.
2661 		 */
2662 		if (corrupted && vd == rvd &&
2663 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2664 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2665 			    VDEV_AUX_CORRUPT_DATA);
2666 	}
2667 
2668 	if (vd->vdev_parent)
2669 		vdev_propagate_state(vd->vdev_parent);
2670 }
2671 
2672 /*
2673  * Set a vdev's state.  If this is during an open, we don't update the parent
2674  * state, because we're in the process of opening children depth-first.
2675  * Otherwise, we propagate the change to the parent.
2676  *
2677  * If this routine places a device in a faulted state, an appropriate ereport is
2678  * generated.
2679  */
2680 void
2681 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2682 {
2683 	uint64_t save_state;
2684 	spa_t *spa = vd->vdev_spa;
2685 
2686 	if (state == vd->vdev_state) {
2687 		vd->vdev_stat.vs_aux = aux;
2688 		return;
2689 	}
2690 
2691 	save_state = vd->vdev_state;
2692 
2693 	vd->vdev_state = state;
2694 	vd->vdev_stat.vs_aux = aux;
2695 
2696 	/*
2697 	 * If we are setting the vdev state to anything but an open state, then
2698 	 * always close the underlying device.  Otherwise, we keep accessible
2699 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2700 	 * because that implies some extra checks (offline, etc) that we don't
2701 	 * want here.  This is limited to leaf devices, because otherwise
2702 	 * closing the device will affect other children.
2703 	 */
2704 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2705 		vd->vdev_ops->vdev_op_close(vd);
2706 
2707 	if (vd->vdev_removed &&
2708 	    state == VDEV_STATE_CANT_OPEN &&
2709 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2710 		/*
2711 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2712 		 * device was previously marked removed and someone attempted to
2713 		 * reopen it.  If this failed due to a nonexistent device, then
2714 		 * keep the device in the REMOVED state.  We also let this be if
2715 		 * it is one of our special test online cases, which is only
2716 		 * attempting to online the device and shouldn't generate an FMA
2717 		 * fault.
2718 		 */
2719 		vd->vdev_state = VDEV_STATE_REMOVED;
2720 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2721 	} else if (state == VDEV_STATE_REMOVED) {
2722 		/*
2723 		 * Indicate to the ZFS DE that this device has been removed, and
2724 		 * any recent errors should be ignored.
2725 		 */
2726 		zfs_post_remove(spa, vd);
2727 		vd->vdev_removed = B_TRUE;
2728 	} else if (state == VDEV_STATE_CANT_OPEN) {
2729 		/*
2730 		 * If we fail to open a vdev during an import, we mark it as
2731 		 * "not available", which signifies that it was never there to
2732 		 * begin with.  Failure to open such a device is not considered
2733 		 * an error.
2734 		 */
2735 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2736 		    vd->vdev_ops->vdev_op_leaf)
2737 			vd->vdev_not_present = 1;
2738 
2739 		/*
2740 		 * Post the appropriate ereport.  If the 'prevstate' field is
2741 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2742 		 * that this is part of a vdev_reopen().  In this case, we don't
2743 		 * want to post the ereport if the device was already in the
2744 		 * CANT_OPEN state beforehand.
2745 		 *
2746 		 * If the 'checkremove' flag is set, then this is an attempt to
2747 		 * online the device in response to an insertion event.  If we
2748 		 * hit this case, then we have detected an insertion event for a
2749 		 * faulted or offline device that wasn't in the removed state.
2750 		 * In this scenario, we don't post an ereport because we are
2751 		 * about to replace the device, or attempt an online with
2752 		 * vdev_forcefault, which will generate the fault for us.
2753 		 */
2754 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2755 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2756 		    vd != spa->spa_root_vdev) {
2757 			const char *class;
2758 
2759 			switch (aux) {
2760 			case VDEV_AUX_OPEN_FAILED:
2761 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2762 				break;
2763 			case VDEV_AUX_CORRUPT_DATA:
2764 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2765 				break;
2766 			case VDEV_AUX_NO_REPLICAS:
2767 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2768 				break;
2769 			case VDEV_AUX_BAD_GUID_SUM:
2770 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2771 				break;
2772 			case VDEV_AUX_TOO_SMALL:
2773 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2774 				break;
2775 			case VDEV_AUX_BAD_LABEL:
2776 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2777 				break;
2778 			case VDEV_AUX_IO_FAILURE:
2779 				class = FM_EREPORT_ZFS_IO_FAILURE;
2780 				break;
2781 			default:
2782 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2783 			}
2784 
2785 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2786 		}
2787 
2788 		/* Erase any notion of persistent removed state */
2789 		vd->vdev_removed = B_FALSE;
2790 	} else {
2791 		vd->vdev_removed = B_FALSE;
2792 	}
2793 
2794 	if (!isopen && vd->vdev_parent)
2795 		vdev_propagate_state(vd->vdev_parent);
2796 }
2797 
2798 /*
2799  * Check the vdev configuration to ensure that it's capable of supporting
2800  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2801  * In addition, only a single top-level vdev is allowed and none of the leaves
2802  * can be wholedisks.
2803  */
2804 boolean_t
2805 vdev_is_bootable(vdev_t *vd)
2806 {
2807 	if (!vd->vdev_ops->vdev_op_leaf) {
2808 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2809 
2810 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2811 		    vd->vdev_children > 1) {
2812 			return (B_FALSE);
2813 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2814 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2815 			return (B_FALSE);
2816 		}
2817 	} else if (vd->vdev_wholedisk == 1) {
2818 		return (B_FALSE);
2819 	}
2820 
2821 	for (int c = 0; c < vd->vdev_children; c++) {
2822 		if (!vdev_is_bootable(vd->vdev_child[c]))
2823 			return (B_FALSE);
2824 	}
2825 	return (B_TRUE);
2826 }
2827 
2828 /*
2829  * Load the state from the original vdev tree (ovd) which
2830  * we've retrieved from the MOS config object. If the original
2831  * vdev was offline then we transfer that state to the device
2832  * in the current vdev tree (nvd).
2833  */
2834 void
2835 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
2836 {
2837 	spa_t *spa = nvd->vdev_spa;
2838 
2839 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2840 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
2841 
2842 	for (int c = 0; c < nvd->vdev_children; c++)
2843 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
2844 
2845 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
2846 		/*
2847 		 * It would be nice to call vdev_offline()
2848 		 * directly but the pool isn't fully loaded and
2849 		 * the txg threads have not been started yet.
2850 		 */
2851 		nvd->vdev_offline = ovd->vdev_offline;
2852 		vdev_reopen(nvd->vdev_top);
2853 	}
2854 }
2855 
2856 /*
2857  * Expand a vdev if possible.
2858  */
2859 void
2860 vdev_expand(vdev_t *vd, uint64_t txg)
2861 {
2862 	ASSERT(vd->vdev_top == vd);
2863 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2864 
2865 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2866 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
2867 		vdev_config_dirty(vd);
2868 	}
2869 }
2870