xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev.c (revision 37b285d61e57561b538d999834714df1f5c2db53)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	&vdev_hole_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 
89 	for (int c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 	vdev_t *pvd = vd->vdev_parent;
107 
108 	/*
109 	 * The our parent is NULL (inactive spare or cache) or is the root,
110 	 * just return our own asize.
111 	 */
112 	if (pvd == NULL)
113 		return (vd->vdev_asize);
114 
115 	/*
116 	 * The top-level vdev just returns the allocatable size rounded
117 	 * to the nearest metaslab.
118 	 */
119 	if (vd == vd->vdev_top)
120 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121 
122 	/*
123 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 	 * so each child must provide at least 1/Nth of its asize.
125 	 */
126 	if (pvd->vdev_ops == &vdev_raidz_ops)
127 		return (pvd->vdev_min_asize / pvd->vdev_children);
128 
129 	return (pvd->vdev_min_asize);
130 }
131 
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 	vd->vdev_min_asize = vdev_get_min_asize(vd);
136 
137 	for (int c = 0; c < vd->vdev_children; c++)
138 		vdev_set_min_asize(vd->vdev_child[c]);
139 }
140 
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 	vdev_t *rvd = spa->spa_root_vdev;
145 
146 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147 
148 	if (vdev < rvd->vdev_children) {
149 		ASSERT(rvd->vdev_child[vdev] != NULL);
150 		return (rvd->vdev_child[vdev]);
151 	}
152 
153 	return (NULL);
154 }
155 
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 	vdev_t *mvd;
160 
161 	if (vd->vdev_guid == guid)
162 		return (vd);
163 
164 	for (int c = 0; c < vd->vdev_children; c++)
165 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 		    NULL)
167 			return (mvd);
168 
169 	return (NULL);
170 }
171 
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 	size_t oldsize, newsize;
176 	uint64_t id = cvd->vdev_id;
177 	vdev_t **newchild;
178 
179 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 	ASSERT(cvd->vdev_parent == NULL);
181 
182 	cvd->vdev_parent = pvd;
183 
184 	if (pvd == NULL)
185 		return;
186 
187 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188 
189 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 	newsize = pvd->vdev_children * sizeof (vdev_t *);
192 
193 	newchild = kmem_zalloc(newsize, KM_SLEEP);
194 	if (pvd->vdev_child != NULL) {
195 		bcopy(pvd->vdev_child, newchild, oldsize);
196 		kmem_free(pvd->vdev_child, oldsize);
197 	}
198 
199 	pvd->vdev_child = newchild;
200 	pvd->vdev_child[id] = cvd;
201 
202 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204 
205 	/*
206 	 * Walk up all ancestors to update guid sum.
207 	 */
208 	for (; pvd != NULL; pvd = pvd->vdev_parent)
209 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 
211 	if (cvd->vdev_ops->vdev_op_leaf)
212 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214 
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 	int c;
219 	uint_t id = cvd->vdev_id;
220 
221 	ASSERT(cvd->vdev_parent == pvd);
222 
223 	if (pvd == NULL)
224 		return;
225 
226 	ASSERT(id < pvd->vdev_children);
227 	ASSERT(pvd->vdev_child[id] == cvd);
228 
229 	pvd->vdev_child[id] = NULL;
230 	cvd->vdev_parent = NULL;
231 
232 	for (c = 0; c < pvd->vdev_children; c++)
233 		if (pvd->vdev_child[c])
234 			break;
235 
236 	if (c == pvd->vdev_children) {
237 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 		pvd->vdev_child = NULL;
239 		pvd->vdev_children = 0;
240 	}
241 
242 	/*
243 	 * Walk up all ancestors to update guid sum.
244 	 */
245 	for (; pvd != NULL; pvd = pvd->vdev_parent)
246 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 
248 	if (cvd->vdev_ops->vdev_op_leaf)
249 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251 
252 /*
253  * Remove any holes in the child array.
254  */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 	vdev_t **newchild, *cvd;
259 	int oldc = pvd->vdev_children;
260 	int newc;
261 
262 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263 
264 	for (int c = newc = 0; c < oldc; c++)
265 		if (pvd->vdev_child[c])
266 			newc++;
267 
268 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269 
270 	for (int c = newc = 0; c < oldc; c++) {
271 		if ((cvd = pvd->vdev_child[c]) != NULL) {
272 			newchild[newc] = cvd;
273 			cvd->vdev_id = newc++;
274 		}
275 	}
276 
277 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 	pvd->vdev_child = newchild;
279 	pvd->vdev_children = newc;
280 }
281 
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 	vdev_t *vd;
289 
290 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291 
292 	if (spa->spa_root_vdev == NULL) {
293 		ASSERT(ops == &vdev_root_ops);
294 		spa->spa_root_vdev = vd;
295 	}
296 
297 	if (guid == 0 && ops != &vdev_hole_ops) {
298 		if (spa->spa_root_vdev == vd) {
299 			/*
300 			 * The root vdev's guid will also be the pool guid,
301 			 * which must be unique among all pools.
302 			 */
303 			while (guid == 0 || spa_guid_exists(guid, 0))
304 				guid = spa_get_random(-1ULL);
305 		} else {
306 			/*
307 			 * Any other vdev's guid must be unique within the pool.
308 			 */
309 			while (guid == 0 ||
310 			    spa_guid_exists(spa_guid(spa), guid))
311 				guid = spa_get_random(-1ULL);
312 		}
313 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314 	}
315 
316 	vd->vdev_spa = spa;
317 	vd->vdev_id = id;
318 	vd->vdev_guid = guid;
319 	vd->vdev_guid_sum = guid;
320 	vd->vdev_ops = ops;
321 	vd->vdev_state = VDEV_STATE_CLOSED;
322 	vd->vdev_ishole = (ops == &vdev_hole_ops);
323 
324 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327 	for (int t = 0; t < DTL_TYPES; t++) {
328 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
329 		    &vd->vdev_dtl_lock);
330 	}
331 	txg_list_create(&vd->vdev_ms_list,
332 	    offsetof(struct metaslab, ms_txg_node));
333 	txg_list_create(&vd->vdev_dtl_list,
334 	    offsetof(struct vdev, vdev_dtl_node));
335 	vd->vdev_stat.vs_timestamp = gethrtime();
336 	vdev_queue_init(vd);
337 	vdev_cache_init(vd);
338 
339 	return (vd);
340 }
341 
342 /*
343  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
344  * creating a new vdev or loading an existing one - the behavior is slightly
345  * different for each case.
346  */
347 int
348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349     int alloctype)
350 {
351 	vdev_ops_t *ops;
352 	char *type;
353 	uint64_t guid = 0, islog, nparity;
354 	vdev_t *vd;
355 
356 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357 
358 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359 		return (EINVAL);
360 
361 	if ((ops = vdev_getops(type)) == NULL)
362 		return (EINVAL);
363 
364 	/*
365 	 * If this is a load, get the vdev guid from the nvlist.
366 	 * Otherwise, vdev_alloc_common() will generate one for us.
367 	 */
368 	if (alloctype == VDEV_ALLOC_LOAD) {
369 		uint64_t label_id;
370 
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372 		    label_id != id)
373 			return (EINVAL);
374 
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	} else if (alloctype == VDEV_ALLOC_SPARE) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (EINVAL);
380 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
381 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 			return (EINVAL);
383 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385 			return (EINVAL);
386 	}
387 
388 	/*
389 	 * The first allocated vdev must be of type 'root'.
390 	 */
391 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392 		return (EINVAL);
393 
394 	/*
395 	 * Determine whether we're a log vdev.
396 	 */
397 	islog = 0;
398 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400 		return (ENOTSUP);
401 
402 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403 		return (ENOTSUP);
404 
405 	/*
406 	 * Set the nparity property for RAID-Z vdevs.
407 	 */
408 	nparity = -1ULL;
409 	if (ops == &vdev_raidz_ops) {
410 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411 		    &nparity) == 0) {
412 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
413 				return (EINVAL);
414 			/*
415 			 * Previous versions could only support 1 or 2 parity
416 			 * device.
417 			 */
418 			if (nparity > 1 &&
419 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
420 				return (ENOTSUP);
421 			if (nparity > 2 &&
422 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
423 				return (ENOTSUP);
424 		} else {
425 			/*
426 			 * We require the parity to be specified for SPAs that
427 			 * support multiple parity levels.
428 			 */
429 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
430 				return (EINVAL);
431 			/*
432 			 * Otherwise, we default to 1 parity device for RAID-Z.
433 			 */
434 			nparity = 1;
435 		}
436 	} else {
437 		nparity = 0;
438 	}
439 	ASSERT(nparity != -1ULL);
440 
441 	vd = vdev_alloc_common(spa, id, guid, ops);
442 
443 	vd->vdev_islog = islog;
444 	vd->vdev_nparity = nparity;
445 
446 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
447 		vd->vdev_path = spa_strdup(vd->vdev_path);
448 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
449 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
450 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
451 	    &vd->vdev_physpath) == 0)
452 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
453 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
454 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
455 
456 	/*
457 	 * Set the whole_disk property.  If it's not specified, leave the value
458 	 * as -1.
459 	 */
460 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
461 	    &vd->vdev_wholedisk) != 0)
462 		vd->vdev_wholedisk = -1ULL;
463 
464 	/*
465 	 * Look for the 'not present' flag.  This will only be set if the device
466 	 * was not present at the time of import.
467 	 */
468 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
469 	    &vd->vdev_not_present);
470 
471 	/*
472 	 * Get the alignment requirement.
473 	 */
474 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
475 
476 	/*
477 	 * Retrieve the vdev creation time.
478 	 */
479 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
480 	    &vd->vdev_crtxg);
481 
482 	/*
483 	 * If we're a top-level vdev, try to load the allocation parameters.
484 	 */
485 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
486 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487 		    &vd->vdev_ms_array);
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489 		    &vd->vdev_ms_shift);
490 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491 		    &vd->vdev_asize);
492 	}
493 
494 	if (parent && !parent->vdev_parent) {
495 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
496 		    alloctype == VDEV_ALLOC_ADD ||
497 		    alloctype == VDEV_ALLOC_ROOTPOOL);
498 		vd->vdev_mg = metaslab_group_create(islog ?
499 		    spa_log_class(spa) : spa_normal_class(spa), vd);
500 	}
501 
502 	/*
503 	 * If we're a leaf vdev, try to load the DTL object and other state.
504 	 */
505 	if (vd->vdev_ops->vdev_op_leaf &&
506 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
507 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
508 		if (alloctype == VDEV_ALLOC_LOAD) {
509 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
510 			    &vd->vdev_dtl_smo.smo_object);
511 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
512 			    &vd->vdev_unspare);
513 		}
514 
515 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
516 			uint64_t spare = 0;
517 
518 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
519 			    &spare) == 0 && spare)
520 				spa_spare_add(vd);
521 		}
522 
523 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
524 		    &vd->vdev_offline);
525 
526 		/*
527 		 * When importing a pool, we want to ignore the persistent fault
528 		 * state, as the diagnosis made on another system may not be
529 		 * valid in the current context.  Local vdevs will
530 		 * remain in the faulted state.
531 		 */
532 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
533 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
534 			    &vd->vdev_faulted);
535 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
536 			    &vd->vdev_degraded);
537 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
538 			    &vd->vdev_removed);
539 
540 			if (vd->vdev_faulted || vd->vdev_degraded) {
541 				char *aux;
542 
543 				vd->vdev_label_aux =
544 				    VDEV_AUX_ERR_EXCEEDED;
545 				if (nvlist_lookup_string(nv,
546 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
547 				    strcmp(aux, "external") == 0)
548 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
549 			}
550 		}
551 	}
552 
553 	/*
554 	 * Add ourselves to the parent's list of children.
555 	 */
556 	vdev_add_child(parent, vd);
557 
558 	*vdp = vd;
559 
560 	return (0);
561 }
562 
563 void
564 vdev_free(vdev_t *vd)
565 {
566 	spa_t *spa = vd->vdev_spa;
567 
568 	/*
569 	 * vdev_free() implies closing the vdev first.  This is simpler than
570 	 * trying to ensure complicated semantics for all callers.
571 	 */
572 	vdev_close(vd);
573 
574 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
575 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
576 
577 	/*
578 	 * Free all children.
579 	 */
580 	for (int c = 0; c < vd->vdev_children; c++)
581 		vdev_free(vd->vdev_child[c]);
582 
583 	ASSERT(vd->vdev_child == NULL);
584 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
585 
586 	/*
587 	 * Discard allocation state.
588 	 */
589 	if (vd->vdev_mg != NULL) {
590 		vdev_metaslab_fini(vd);
591 		metaslab_group_destroy(vd->vdev_mg);
592 	}
593 
594 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
595 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
596 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
597 
598 	/*
599 	 * Remove this vdev from its parent's child list.
600 	 */
601 	vdev_remove_child(vd->vdev_parent, vd);
602 
603 	ASSERT(vd->vdev_parent == NULL);
604 
605 	/*
606 	 * Clean up vdev structure.
607 	 */
608 	vdev_queue_fini(vd);
609 	vdev_cache_fini(vd);
610 
611 	if (vd->vdev_path)
612 		spa_strfree(vd->vdev_path);
613 	if (vd->vdev_devid)
614 		spa_strfree(vd->vdev_devid);
615 	if (vd->vdev_physpath)
616 		spa_strfree(vd->vdev_physpath);
617 	if (vd->vdev_fru)
618 		spa_strfree(vd->vdev_fru);
619 
620 	if (vd->vdev_isspare)
621 		spa_spare_remove(vd);
622 	if (vd->vdev_isl2cache)
623 		spa_l2cache_remove(vd);
624 
625 	txg_list_destroy(&vd->vdev_ms_list);
626 	txg_list_destroy(&vd->vdev_dtl_list);
627 
628 	mutex_enter(&vd->vdev_dtl_lock);
629 	for (int t = 0; t < DTL_TYPES; t++) {
630 		space_map_unload(&vd->vdev_dtl[t]);
631 		space_map_destroy(&vd->vdev_dtl[t]);
632 	}
633 	mutex_exit(&vd->vdev_dtl_lock);
634 
635 	mutex_destroy(&vd->vdev_dtl_lock);
636 	mutex_destroy(&vd->vdev_stat_lock);
637 	mutex_destroy(&vd->vdev_probe_lock);
638 
639 	if (vd == spa->spa_root_vdev)
640 		spa->spa_root_vdev = NULL;
641 
642 	kmem_free(vd, sizeof (vdev_t));
643 }
644 
645 /*
646  * Transfer top-level vdev state from svd to tvd.
647  */
648 static void
649 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
650 {
651 	spa_t *spa = svd->vdev_spa;
652 	metaslab_t *msp;
653 	vdev_t *vd;
654 	int t;
655 
656 	ASSERT(tvd == tvd->vdev_top);
657 
658 	tvd->vdev_ms_array = svd->vdev_ms_array;
659 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
660 	tvd->vdev_ms_count = svd->vdev_ms_count;
661 
662 	svd->vdev_ms_array = 0;
663 	svd->vdev_ms_shift = 0;
664 	svd->vdev_ms_count = 0;
665 
666 	tvd->vdev_mg = svd->vdev_mg;
667 	tvd->vdev_ms = svd->vdev_ms;
668 
669 	svd->vdev_mg = NULL;
670 	svd->vdev_ms = NULL;
671 
672 	if (tvd->vdev_mg != NULL)
673 		tvd->vdev_mg->mg_vd = tvd;
674 
675 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
676 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
677 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
678 
679 	svd->vdev_stat.vs_alloc = 0;
680 	svd->vdev_stat.vs_space = 0;
681 	svd->vdev_stat.vs_dspace = 0;
682 
683 	for (t = 0; t < TXG_SIZE; t++) {
684 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
685 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
686 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
687 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
688 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
689 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
690 	}
691 
692 	if (list_link_active(&svd->vdev_config_dirty_node)) {
693 		vdev_config_clean(svd);
694 		vdev_config_dirty(tvd);
695 	}
696 
697 	if (list_link_active(&svd->vdev_state_dirty_node)) {
698 		vdev_state_clean(svd);
699 		vdev_state_dirty(tvd);
700 	}
701 
702 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
703 	svd->vdev_deflate_ratio = 0;
704 
705 	tvd->vdev_islog = svd->vdev_islog;
706 	svd->vdev_islog = 0;
707 }
708 
709 static void
710 vdev_top_update(vdev_t *tvd, vdev_t *vd)
711 {
712 	if (vd == NULL)
713 		return;
714 
715 	vd->vdev_top = tvd;
716 
717 	for (int c = 0; c < vd->vdev_children; c++)
718 		vdev_top_update(tvd, vd->vdev_child[c]);
719 }
720 
721 /*
722  * Add a mirror/replacing vdev above an existing vdev.
723  */
724 vdev_t *
725 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
726 {
727 	spa_t *spa = cvd->vdev_spa;
728 	vdev_t *pvd = cvd->vdev_parent;
729 	vdev_t *mvd;
730 
731 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
732 
733 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
734 
735 	mvd->vdev_asize = cvd->vdev_asize;
736 	mvd->vdev_min_asize = cvd->vdev_min_asize;
737 	mvd->vdev_ashift = cvd->vdev_ashift;
738 	mvd->vdev_state = cvd->vdev_state;
739 	mvd->vdev_crtxg = cvd->vdev_crtxg;
740 
741 	vdev_remove_child(pvd, cvd);
742 	vdev_add_child(pvd, mvd);
743 	cvd->vdev_id = mvd->vdev_children;
744 	vdev_add_child(mvd, cvd);
745 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
746 
747 	if (mvd == mvd->vdev_top)
748 		vdev_top_transfer(cvd, mvd);
749 
750 	return (mvd);
751 }
752 
753 /*
754  * Remove a 1-way mirror/replacing vdev from the tree.
755  */
756 void
757 vdev_remove_parent(vdev_t *cvd)
758 {
759 	vdev_t *mvd = cvd->vdev_parent;
760 	vdev_t *pvd = mvd->vdev_parent;
761 
762 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
763 
764 	ASSERT(mvd->vdev_children == 1);
765 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
766 	    mvd->vdev_ops == &vdev_replacing_ops ||
767 	    mvd->vdev_ops == &vdev_spare_ops);
768 	cvd->vdev_ashift = mvd->vdev_ashift;
769 
770 	vdev_remove_child(mvd, cvd);
771 	vdev_remove_child(pvd, mvd);
772 
773 	/*
774 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
775 	 * Otherwise, we could have detached an offline device, and when we
776 	 * go to import the pool we'll think we have two top-level vdevs,
777 	 * instead of a different version of the same top-level vdev.
778 	 */
779 	if (mvd->vdev_top == mvd) {
780 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
781 		cvd->vdev_guid += guid_delta;
782 		cvd->vdev_guid_sum += guid_delta;
783 	}
784 	cvd->vdev_id = mvd->vdev_id;
785 	vdev_add_child(pvd, cvd);
786 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
787 
788 	if (cvd == cvd->vdev_top)
789 		vdev_top_transfer(mvd, cvd);
790 
791 	ASSERT(mvd->vdev_children == 0);
792 	vdev_free(mvd);
793 }
794 
795 int
796 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
797 {
798 	spa_t *spa = vd->vdev_spa;
799 	objset_t *mos = spa->spa_meta_objset;
800 	uint64_t m;
801 	uint64_t oldc = vd->vdev_ms_count;
802 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
803 	metaslab_t **mspp;
804 	int error;
805 
806 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
807 
808 	/*
809 	 * This vdev is not being allocated from yet or is a hole.
810 	 */
811 	if (vd->vdev_ms_shift == 0)
812 		return (0);
813 
814 	ASSERT(!vd->vdev_ishole);
815 
816 	/*
817 	 * Compute the raidz-deflation ratio.  Note, we hard-code
818 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
819 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
820 	 * or we will inconsistently account for existing bp's.
821 	 */
822 	vd->vdev_deflate_ratio = (1 << 17) /
823 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
824 
825 	ASSERT(oldc <= newc);
826 
827 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
828 
829 	if (oldc != 0) {
830 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
831 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
832 	}
833 
834 	vd->vdev_ms = mspp;
835 	vd->vdev_ms_count = newc;
836 
837 	for (m = oldc; m < newc; m++) {
838 		space_map_obj_t smo = { 0, 0, 0 };
839 		if (txg == 0) {
840 			uint64_t object = 0;
841 			error = dmu_read(mos, vd->vdev_ms_array,
842 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
843 			    DMU_READ_PREFETCH);
844 			if (error)
845 				return (error);
846 			if (object != 0) {
847 				dmu_buf_t *db;
848 				error = dmu_bonus_hold(mos, object, FTAG, &db);
849 				if (error)
850 					return (error);
851 				ASSERT3U(db->db_size, >=, sizeof (smo));
852 				bcopy(db->db_data, &smo, sizeof (smo));
853 				ASSERT3U(smo.smo_object, ==, object);
854 				dmu_buf_rele(db, FTAG);
855 			}
856 		}
857 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
858 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
859 	}
860 
861 	if (txg == 0)
862 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
863 
864 	if (oldc == 0)
865 		metaslab_group_activate(vd->vdev_mg);
866 
867 	if (txg == 0)
868 		spa_config_exit(spa, SCL_ALLOC, FTAG);
869 
870 	return (0);
871 }
872 
873 void
874 vdev_metaslab_fini(vdev_t *vd)
875 {
876 	uint64_t m;
877 	uint64_t count = vd->vdev_ms_count;
878 
879 	if (vd->vdev_ms != NULL) {
880 		metaslab_group_passivate(vd->vdev_mg);
881 		for (m = 0; m < count; m++)
882 			if (vd->vdev_ms[m] != NULL)
883 				metaslab_fini(vd->vdev_ms[m]);
884 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
885 		vd->vdev_ms = NULL;
886 	}
887 }
888 
889 typedef struct vdev_probe_stats {
890 	boolean_t	vps_readable;
891 	boolean_t	vps_writeable;
892 	int		vps_flags;
893 } vdev_probe_stats_t;
894 
895 static void
896 vdev_probe_done(zio_t *zio)
897 {
898 	spa_t *spa = zio->io_spa;
899 	vdev_t *vd = zio->io_vd;
900 	vdev_probe_stats_t *vps = zio->io_private;
901 
902 	ASSERT(vd->vdev_probe_zio != NULL);
903 
904 	if (zio->io_type == ZIO_TYPE_READ) {
905 		if (zio->io_error == 0)
906 			vps->vps_readable = 1;
907 		if (zio->io_error == 0 && spa_writeable(spa)) {
908 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
909 			    zio->io_offset, zio->io_size, zio->io_data,
910 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
911 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
912 		} else {
913 			zio_buf_free(zio->io_data, zio->io_size);
914 		}
915 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
916 		if (zio->io_error == 0)
917 			vps->vps_writeable = 1;
918 		zio_buf_free(zio->io_data, zio->io_size);
919 	} else if (zio->io_type == ZIO_TYPE_NULL) {
920 		zio_t *pio;
921 
922 		vd->vdev_cant_read |= !vps->vps_readable;
923 		vd->vdev_cant_write |= !vps->vps_writeable;
924 
925 		if (vdev_readable(vd) &&
926 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
927 			zio->io_error = 0;
928 		} else {
929 			ASSERT(zio->io_error != 0);
930 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
931 			    spa, vd, NULL, 0, 0);
932 			zio->io_error = ENXIO;
933 		}
934 
935 		mutex_enter(&vd->vdev_probe_lock);
936 		ASSERT(vd->vdev_probe_zio == zio);
937 		vd->vdev_probe_zio = NULL;
938 		mutex_exit(&vd->vdev_probe_lock);
939 
940 		while ((pio = zio_walk_parents(zio)) != NULL)
941 			if (!vdev_accessible(vd, pio))
942 				pio->io_error = ENXIO;
943 
944 		kmem_free(vps, sizeof (*vps));
945 	}
946 }
947 
948 /*
949  * Determine whether this device is accessible by reading and writing
950  * to several known locations: the pad regions of each vdev label
951  * but the first (which we leave alone in case it contains a VTOC).
952  */
953 zio_t *
954 vdev_probe(vdev_t *vd, zio_t *zio)
955 {
956 	spa_t *spa = vd->vdev_spa;
957 	vdev_probe_stats_t *vps = NULL;
958 	zio_t *pio;
959 
960 	ASSERT(vd->vdev_ops->vdev_op_leaf);
961 
962 	/*
963 	 * Don't probe the probe.
964 	 */
965 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
966 		return (NULL);
967 
968 	/*
969 	 * To prevent 'probe storms' when a device fails, we create
970 	 * just one probe i/o at a time.  All zios that want to probe
971 	 * this vdev will become parents of the probe io.
972 	 */
973 	mutex_enter(&vd->vdev_probe_lock);
974 
975 	if ((pio = vd->vdev_probe_zio) == NULL) {
976 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
977 
978 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
979 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
980 		    ZIO_FLAG_TRYHARD;
981 
982 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
983 			/*
984 			 * vdev_cant_read and vdev_cant_write can only
985 			 * transition from TRUE to FALSE when we have the
986 			 * SCL_ZIO lock as writer; otherwise they can only
987 			 * transition from FALSE to TRUE.  This ensures that
988 			 * any zio looking at these values can assume that
989 			 * failures persist for the life of the I/O.  That's
990 			 * important because when a device has intermittent
991 			 * connectivity problems, we want to ensure that
992 			 * they're ascribed to the device (ENXIO) and not
993 			 * the zio (EIO).
994 			 *
995 			 * Since we hold SCL_ZIO as writer here, clear both
996 			 * values so the probe can reevaluate from first
997 			 * principles.
998 			 */
999 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1000 			vd->vdev_cant_read = B_FALSE;
1001 			vd->vdev_cant_write = B_FALSE;
1002 		}
1003 
1004 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1005 		    vdev_probe_done, vps,
1006 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1007 
1008 		if (zio != NULL) {
1009 			vd->vdev_probe_wanted = B_TRUE;
1010 			spa_async_request(spa, SPA_ASYNC_PROBE);
1011 		}
1012 	}
1013 
1014 	if (zio != NULL)
1015 		zio_add_child(zio, pio);
1016 
1017 	mutex_exit(&vd->vdev_probe_lock);
1018 
1019 	if (vps == NULL) {
1020 		ASSERT(zio != NULL);
1021 		return (NULL);
1022 	}
1023 
1024 	for (int l = 1; l < VDEV_LABELS; l++) {
1025 		zio_nowait(zio_read_phys(pio, vd,
1026 		    vdev_label_offset(vd->vdev_psize, l,
1027 		    offsetof(vdev_label_t, vl_pad2)),
1028 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1029 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1030 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1031 	}
1032 
1033 	if (zio == NULL)
1034 		return (pio);
1035 
1036 	zio_nowait(pio);
1037 	return (NULL);
1038 }
1039 
1040 static void
1041 vdev_open_child(void *arg)
1042 {
1043 	vdev_t *vd = arg;
1044 
1045 	vd->vdev_open_thread = curthread;
1046 	vd->vdev_open_error = vdev_open(vd);
1047 	vd->vdev_open_thread = NULL;
1048 }
1049 
1050 boolean_t
1051 vdev_uses_zvols(vdev_t *vd)
1052 {
1053 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1054 	    strlen(ZVOL_DIR)) == 0)
1055 		return (B_TRUE);
1056 	for (int c = 0; c < vd->vdev_children; c++)
1057 		if (vdev_uses_zvols(vd->vdev_child[c]))
1058 			return (B_TRUE);
1059 	return (B_FALSE);
1060 }
1061 
1062 void
1063 vdev_open_children(vdev_t *vd)
1064 {
1065 	taskq_t *tq;
1066 	int children = vd->vdev_children;
1067 
1068 	/*
1069 	 * in order to handle pools on top of zvols, do the opens
1070 	 * in a single thread so that the same thread holds the
1071 	 * spa_namespace_lock
1072 	 */
1073 	if (vdev_uses_zvols(vd)) {
1074 		for (int c = 0; c < children; c++)
1075 			vd->vdev_child[c]->vdev_open_error =
1076 			    vdev_open(vd->vdev_child[c]);
1077 		return;
1078 	}
1079 	tq = taskq_create("vdev_open", children, minclsyspri,
1080 	    children, children, TASKQ_PREPOPULATE);
1081 
1082 	for (int c = 0; c < children; c++)
1083 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1084 		    TQ_SLEEP) != NULL);
1085 
1086 	taskq_destroy(tq);
1087 }
1088 
1089 /*
1090  * Prepare a virtual device for access.
1091  */
1092 int
1093 vdev_open(vdev_t *vd)
1094 {
1095 	spa_t *spa = vd->vdev_spa;
1096 	int error;
1097 	uint64_t osize = 0;
1098 	uint64_t asize, psize;
1099 	uint64_t ashift = 0;
1100 
1101 	ASSERT(vd->vdev_open_thread == curthread ||
1102 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1103 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1104 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1105 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1106 
1107 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1108 	vd->vdev_cant_read = B_FALSE;
1109 	vd->vdev_cant_write = B_FALSE;
1110 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1111 
1112 	/*
1113 	 * If this vdev is not removed, check its fault status.  If it's
1114 	 * faulted, bail out of the open.
1115 	 */
1116 	if (!vd->vdev_removed && vd->vdev_faulted) {
1117 		ASSERT(vd->vdev_children == 0);
1118 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1119 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1120 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1121 		    vd->vdev_label_aux);
1122 		return (ENXIO);
1123 	} else if (vd->vdev_offline) {
1124 		ASSERT(vd->vdev_children == 0);
1125 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1126 		return (ENXIO);
1127 	}
1128 
1129 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1130 
1131 	/*
1132 	 * Reset the vdev_reopening flag so that we actually close
1133 	 * the vdev on error.
1134 	 */
1135 	vd->vdev_reopening = B_FALSE;
1136 	if (zio_injection_enabled && error == 0)
1137 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1138 
1139 	if (error) {
1140 		if (vd->vdev_removed &&
1141 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1142 			vd->vdev_removed = B_FALSE;
1143 
1144 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1145 		    vd->vdev_stat.vs_aux);
1146 		return (error);
1147 	}
1148 
1149 	vd->vdev_removed = B_FALSE;
1150 
1151 	/*
1152 	 * Recheck the faulted flag now that we have confirmed that
1153 	 * the vdev is accessible.  If we're faulted, bail.
1154 	 */
1155 	if (vd->vdev_faulted) {
1156 		ASSERT(vd->vdev_children == 0);
1157 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1158 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1159 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1160 		    vd->vdev_label_aux);
1161 		return (ENXIO);
1162 	}
1163 
1164 	if (vd->vdev_degraded) {
1165 		ASSERT(vd->vdev_children == 0);
1166 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1167 		    VDEV_AUX_ERR_EXCEEDED);
1168 	} else {
1169 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1170 	}
1171 
1172 	/*
1173 	 * For hole or missing vdevs we just return success.
1174 	 */
1175 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1176 		return (0);
1177 
1178 	for (int c = 0; c < vd->vdev_children; c++) {
1179 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1180 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1181 			    VDEV_AUX_NONE);
1182 			break;
1183 		}
1184 	}
1185 
1186 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1187 
1188 	if (vd->vdev_children == 0) {
1189 		if (osize < SPA_MINDEVSIZE) {
1190 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1191 			    VDEV_AUX_TOO_SMALL);
1192 			return (EOVERFLOW);
1193 		}
1194 		psize = osize;
1195 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1196 	} else {
1197 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1198 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1199 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1200 			    VDEV_AUX_TOO_SMALL);
1201 			return (EOVERFLOW);
1202 		}
1203 		psize = 0;
1204 		asize = osize;
1205 	}
1206 
1207 	vd->vdev_psize = psize;
1208 
1209 	/*
1210 	 * Make sure the allocatable size hasn't shrunk.
1211 	 */
1212 	if (asize < vd->vdev_min_asize) {
1213 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214 		    VDEV_AUX_BAD_LABEL);
1215 		return (EINVAL);
1216 	}
1217 
1218 	if (vd->vdev_asize == 0) {
1219 		/*
1220 		 * This is the first-ever open, so use the computed values.
1221 		 * For testing purposes, a higher ashift can be requested.
1222 		 */
1223 		vd->vdev_asize = asize;
1224 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1225 	} else {
1226 		/*
1227 		 * Make sure the alignment requirement hasn't increased.
1228 		 */
1229 		if (ashift > vd->vdev_top->vdev_ashift) {
1230 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231 			    VDEV_AUX_BAD_LABEL);
1232 			return (EINVAL);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If all children are healthy and the asize has increased,
1238 	 * then we've experienced dynamic LUN growth.  If automatic
1239 	 * expansion is enabled then use the additional space.
1240 	 */
1241 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1242 	    (vd->vdev_expanding || spa->spa_autoexpand))
1243 		vd->vdev_asize = asize;
1244 
1245 	vdev_set_min_asize(vd);
1246 
1247 	/*
1248 	 * Ensure we can issue some IO before declaring the
1249 	 * vdev open for business.
1250 	 */
1251 	if (vd->vdev_ops->vdev_op_leaf &&
1252 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1253 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254 		    VDEV_AUX_IO_FAILURE);
1255 		return (error);
1256 	}
1257 
1258 	/*
1259 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1260 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1261 	 * since this would just restart the scrub we are already doing.
1262 	 */
1263 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1264 	    vdev_resilver_needed(vd, NULL, NULL))
1265 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1266 
1267 	return (0);
1268 }
1269 
1270 /*
1271  * Called once the vdevs are all opened, this routine validates the label
1272  * contents.  This needs to be done before vdev_load() so that we don't
1273  * inadvertently do repair I/Os to the wrong device.
1274  *
1275  * This function will only return failure if one of the vdevs indicates that it
1276  * has since been destroyed or exported.  This is only possible if
1277  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1278  * will be updated but the function will return 0.
1279  */
1280 int
1281 vdev_validate(vdev_t *vd)
1282 {
1283 	spa_t *spa = vd->vdev_spa;
1284 	nvlist_t *label;
1285 	uint64_t guid, top_guid;
1286 	uint64_t state;
1287 
1288 	for (int c = 0; c < vd->vdev_children; c++)
1289 		if (vdev_validate(vd->vdev_child[c]) != 0)
1290 			return (EBADF);
1291 
1292 	/*
1293 	 * If the device has already failed, or was marked offline, don't do
1294 	 * any further validation.  Otherwise, label I/O will fail and we will
1295 	 * overwrite the previous state.
1296 	 */
1297 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1298 
1299 		if ((label = vdev_label_read_config(vd)) == NULL) {
1300 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1301 			    VDEV_AUX_BAD_LABEL);
1302 			return (0);
1303 		}
1304 
1305 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1306 		    &guid) != 0 || guid != spa_guid(spa)) {
1307 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1308 			    VDEV_AUX_CORRUPT_DATA);
1309 			nvlist_free(label);
1310 			return (0);
1311 		}
1312 
1313 		/*
1314 		 * If this vdev just became a top-level vdev because its
1315 		 * sibling was detached, it will have adopted the parent's
1316 		 * vdev guid -- but the label may or may not be on disk yet.
1317 		 * Fortunately, either version of the label will have the
1318 		 * same top guid, so if we're a top-level vdev, we can
1319 		 * safely compare to that instead.
1320 		 */
1321 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1322 		    &guid) != 0 ||
1323 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1324 		    &top_guid) != 0 ||
1325 		    (vd->vdev_guid != guid &&
1326 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1327 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1328 			    VDEV_AUX_CORRUPT_DATA);
1329 			nvlist_free(label);
1330 			return (0);
1331 		}
1332 
1333 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1334 		    &state) != 0) {
1335 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1336 			    VDEV_AUX_CORRUPT_DATA);
1337 			nvlist_free(label);
1338 			return (0);
1339 		}
1340 
1341 		nvlist_free(label);
1342 
1343 		/*
1344 		 * If spa->spa_load_verbatim is true, no need to check the
1345 		 * state of the pool.
1346 		 */
1347 		if (!spa->spa_load_verbatim &&
1348 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1349 		    state != POOL_STATE_ACTIVE)
1350 			return (EBADF);
1351 
1352 		/*
1353 		 * If we were able to open and validate a vdev that was
1354 		 * previously marked permanently unavailable, clear that state
1355 		 * now.
1356 		 */
1357 		if (vd->vdev_not_present)
1358 			vd->vdev_not_present = 0;
1359 	}
1360 
1361 	return (0);
1362 }
1363 
1364 /*
1365  * Close a virtual device.
1366  */
1367 void
1368 vdev_close(vdev_t *vd)
1369 {
1370 	spa_t *spa = vd->vdev_spa;
1371 	vdev_t *pvd = vd->vdev_parent;
1372 
1373 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1374 
1375 	if (pvd != NULL && pvd->vdev_reopening)
1376 		vd->vdev_reopening = pvd->vdev_reopening;
1377 
1378 	vd->vdev_ops->vdev_op_close(vd);
1379 
1380 	vdev_cache_purge(vd);
1381 
1382 	/*
1383 	 * We record the previous state before we close it, so that if we are
1384 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1385 	 * it's still faulted.
1386 	 */
1387 	vd->vdev_prevstate = vd->vdev_state;
1388 
1389 	if (vd->vdev_offline)
1390 		vd->vdev_state = VDEV_STATE_OFFLINE;
1391 	else
1392 		vd->vdev_state = VDEV_STATE_CLOSED;
1393 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1394 }
1395 
1396 /*
1397  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1398  * reopen leaf vdevs which had previously been opened as they might deadlock
1399  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1400  * If the leaf has never been opened then open it, as usual.
1401  */
1402 void
1403 vdev_reopen(vdev_t *vd)
1404 {
1405 	spa_t *spa = vd->vdev_spa;
1406 
1407 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1408 
1409 	vd->vdev_reopening = B_TRUE;
1410 	vdev_close(vd);
1411 	(void) vdev_open(vd);
1412 
1413 	/*
1414 	 * Call vdev_validate() here to make sure we have the same device.
1415 	 * Otherwise, a device with an invalid label could be successfully
1416 	 * opened in response to vdev_reopen().
1417 	 */
1418 	if (vd->vdev_aux) {
1419 		(void) vdev_validate_aux(vd);
1420 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1421 		    vd->vdev_aux == &spa->spa_l2cache &&
1422 		    !l2arc_vdev_present(vd))
1423 			l2arc_add_vdev(spa, vd);
1424 	} else {
1425 		(void) vdev_validate(vd);
1426 	}
1427 
1428 	/*
1429 	 * Reassess parent vdev's health.
1430 	 */
1431 	vdev_propagate_state(vd);
1432 }
1433 
1434 int
1435 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1436 {
1437 	int error;
1438 
1439 	/*
1440 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1441 	 * For a create, however, we want to fail the request if
1442 	 * there are any components we can't open.
1443 	 */
1444 	error = vdev_open(vd);
1445 
1446 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1447 		vdev_close(vd);
1448 		return (error ? error : ENXIO);
1449 	}
1450 
1451 	/*
1452 	 * Recursively initialize all labels.
1453 	 */
1454 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1455 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1456 		vdev_close(vd);
1457 		return (error);
1458 	}
1459 
1460 	return (0);
1461 }
1462 
1463 void
1464 vdev_metaslab_set_size(vdev_t *vd)
1465 {
1466 	/*
1467 	 * Aim for roughly 200 metaslabs per vdev.
1468 	 */
1469 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1470 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1471 }
1472 
1473 void
1474 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1475 {
1476 	ASSERT(vd == vd->vdev_top);
1477 	ASSERT(!vd->vdev_ishole);
1478 	ASSERT(ISP2(flags));
1479 
1480 	if (flags & VDD_METASLAB)
1481 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1482 
1483 	if (flags & VDD_DTL)
1484 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1485 
1486 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1487 }
1488 
1489 /*
1490  * DTLs.
1491  *
1492  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1493  * the vdev has less than perfect replication.  There are three kinds of DTL:
1494  *
1495  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1496  *
1497  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1498  *
1499  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1500  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1501  *	txgs that was scrubbed.
1502  *
1503  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1504  *	persistent errors or just some device being offline.
1505  *	Unlike the other three, the DTL_OUTAGE map is not generally
1506  *	maintained; it's only computed when needed, typically to
1507  *	determine whether a device can be detached.
1508  *
1509  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1510  * either has the data or it doesn't.
1511  *
1512  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1513  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1514  * if any child is less than fully replicated, then so is its parent.
1515  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1516  * comprising only those txgs which appear in 'maxfaults' or more children;
1517  * those are the txgs we don't have enough replication to read.  For example,
1518  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1519  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1520  * two child DTL_MISSING maps.
1521  *
1522  * It should be clear from the above that to compute the DTLs and outage maps
1523  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1524  * Therefore, that is all we keep on disk.  When loading the pool, or after
1525  * a configuration change, we generate all other DTLs from first principles.
1526  */
1527 void
1528 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1529 {
1530 	space_map_t *sm = &vd->vdev_dtl[t];
1531 
1532 	ASSERT(t < DTL_TYPES);
1533 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1534 
1535 	mutex_enter(sm->sm_lock);
1536 	if (!space_map_contains(sm, txg, size))
1537 		space_map_add(sm, txg, size);
1538 	mutex_exit(sm->sm_lock);
1539 }
1540 
1541 boolean_t
1542 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1543 {
1544 	space_map_t *sm = &vd->vdev_dtl[t];
1545 	boolean_t dirty = B_FALSE;
1546 
1547 	ASSERT(t < DTL_TYPES);
1548 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1549 
1550 	mutex_enter(sm->sm_lock);
1551 	if (sm->sm_space != 0)
1552 		dirty = space_map_contains(sm, txg, size);
1553 	mutex_exit(sm->sm_lock);
1554 
1555 	return (dirty);
1556 }
1557 
1558 boolean_t
1559 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1560 {
1561 	space_map_t *sm = &vd->vdev_dtl[t];
1562 	boolean_t empty;
1563 
1564 	mutex_enter(sm->sm_lock);
1565 	empty = (sm->sm_space == 0);
1566 	mutex_exit(sm->sm_lock);
1567 
1568 	return (empty);
1569 }
1570 
1571 /*
1572  * Reassess DTLs after a config change or scrub completion.
1573  */
1574 void
1575 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1576 {
1577 	spa_t *spa = vd->vdev_spa;
1578 	avl_tree_t reftree;
1579 	int minref;
1580 
1581 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1582 
1583 	for (int c = 0; c < vd->vdev_children; c++)
1584 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1585 		    scrub_txg, scrub_done);
1586 
1587 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1588 		return;
1589 
1590 	if (vd->vdev_ops->vdev_op_leaf) {
1591 		mutex_enter(&vd->vdev_dtl_lock);
1592 		if (scrub_txg != 0 &&
1593 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1594 			/* XXX should check scrub_done? */
1595 			/*
1596 			 * We completed a scrub up to scrub_txg.  If we
1597 			 * did it without rebooting, then the scrub dtl
1598 			 * will be valid, so excise the old region and
1599 			 * fold in the scrub dtl.  Otherwise, leave the
1600 			 * dtl as-is if there was an error.
1601 			 *
1602 			 * There's little trick here: to excise the beginning
1603 			 * of the DTL_MISSING map, we put it into a reference
1604 			 * tree and then add a segment with refcnt -1 that
1605 			 * covers the range [0, scrub_txg).  This means
1606 			 * that each txg in that range has refcnt -1 or 0.
1607 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1608 			 * entries in the range [0, scrub_txg) will have a
1609 			 * positive refcnt -- either 1 or 2.  We then convert
1610 			 * the reference tree into the new DTL_MISSING map.
1611 			 */
1612 			space_map_ref_create(&reftree);
1613 			space_map_ref_add_map(&reftree,
1614 			    &vd->vdev_dtl[DTL_MISSING], 1);
1615 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1616 			space_map_ref_add_map(&reftree,
1617 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1618 			space_map_ref_generate_map(&reftree,
1619 			    &vd->vdev_dtl[DTL_MISSING], 1);
1620 			space_map_ref_destroy(&reftree);
1621 		}
1622 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1623 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1624 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1625 		if (scrub_done)
1626 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1627 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1628 		if (!vdev_readable(vd))
1629 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1630 		else
1631 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1632 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1633 		mutex_exit(&vd->vdev_dtl_lock);
1634 
1635 		if (txg != 0)
1636 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1637 		return;
1638 	}
1639 
1640 	mutex_enter(&vd->vdev_dtl_lock);
1641 	for (int t = 0; t < DTL_TYPES; t++) {
1642 		/* account for child's outage in parent's missing map */
1643 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1644 		if (t == DTL_SCRUB)
1645 			continue;			/* leaf vdevs only */
1646 		if (t == DTL_PARTIAL)
1647 			minref = 1;			/* i.e. non-zero */
1648 		else if (vd->vdev_nparity != 0)
1649 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1650 		else
1651 			minref = vd->vdev_children;	/* any kind of mirror */
1652 		space_map_ref_create(&reftree);
1653 		for (int c = 0; c < vd->vdev_children; c++) {
1654 			vdev_t *cvd = vd->vdev_child[c];
1655 			mutex_enter(&cvd->vdev_dtl_lock);
1656 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1657 			mutex_exit(&cvd->vdev_dtl_lock);
1658 		}
1659 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1660 		space_map_ref_destroy(&reftree);
1661 	}
1662 	mutex_exit(&vd->vdev_dtl_lock);
1663 }
1664 
1665 static int
1666 vdev_dtl_load(vdev_t *vd)
1667 {
1668 	spa_t *spa = vd->vdev_spa;
1669 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1670 	objset_t *mos = spa->spa_meta_objset;
1671 	dmu_buf_t *db;
1672 	int error;
1673 
1674 	ASSERT(vd->vdev_children == 0);
1675 
1676 	if (smo->smo_object == 0)
1677 		return (0);
1678 
1679 	ASSERT(!vd->vdev_ishole);
1680 
1681 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1682 		return (error);
1683 
1684 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1685 	bcopy(db->db_data, smo, sizeof (*smo));
1686 	dmu_buf_rele(db, FTAG);
1687 
1688 	mutex_enter(&vd->vdev_dtl_lock);
1689 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1690 	    NULL, SM_ALLOC, smo, mos);
1691 	mutex_exit(&vd->vdev_dtl_lock);
1692 
1693 	return (error);
1694 }
1695 
1696 void
1697 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1698 {
1699 	spa_t *spa = vd->vdev_spa;
1700 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1701 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1702 	objset_t *mos = spa->spa_meta_objset;
1703 	space_map_t smsync;
1704 	kmutex_t smlock;
1705 	dmu_buf_t *db;
1706 	dmu_tx_t *tx;
1707 
1708 	ASSERT(!vd->vdev_ishole);
1709 
1710 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1711 
1712 	if (vd->vdev_detached) {
1713 		if (smo->smo_object != 0) {
1714 			int err = dmu_object_free(mos, smo->smo_object, tx);
1715 			ASSERT3U(err, ==, 0);
1716 			smo->smo_object = 0;
1717 		}
1718 		dmu_tx_commit(tx);
1719 		return;
1720 	}
1721 
1722 	if (smo->smo_object == 0) {
1723 		ASSERT(smo->smo_objsize == 0);
1724 		ASSERT(smo->smo_alloc == 0);
1725 		smo->smo_object = dmu_object_alloc(mos,
1726 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1727 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1728 		ASSERT(smo->smo_object != 0);
1729 		vdev_config_dirty(vd->vdev_top);
1730 	}
1731 
1732 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1733 
1734 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1735 	    &smlock);
1736 
1737 	mutex_enter(&smlock);
1738 
1739 	mutex_enter(&vd->vdev_dtl_lock);
1740 	space_map_walk(sm, space_map_add, &smsync);
1741 	mutex_exit(&vd->vdev_dtl_lock);
1742 
1743 	space_map_truncate(smo, mos, tx);
1744 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1745 
1746 	space_map_destroy(&smsync);
1747 
1748 	mutex_exit(&smlock);
1749 	mutex_destroy(&smlock);
1750 
1751 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1752 	dmu_buf_will_dirty(db, tx);
1753 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1754 	bcopy(smo, db->db_data, sizeof (*smo));
1755 	dmu_buf_rele(db, FTAG);
1756 
1757 	dmu_tx_commit(tx);
1758 }
1759 
1760 /*
1761  * Determine whether the specified vdev can be offlined/detached/removed
1762  * without losing data.
1763  */
1764 boolean_t
1765 vdev_dtl_required(vdev_t *vd)
1766 {
1767 	spa_t *spa = vd->vdev_spa;
1768 	vdev_t *tvd = vd->vdev_top;
1769 	uint8_t cant_read = vd->vdev_cant_read;
1770 	boolean_t required;
1771 
1772 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1773 
1774 	if (vd == spa->spa_root_vdev || vd == tvd)
1775 		return (B_TRUE);
1776 
1777 	/*
1778 	 * Temporarily mark the device as unreadable, and then determine
1779 	 * whether this results in any DTL outages in the top-level vdev.
1780 	 * If not, we can safely offline/detach/remove the device.
1781 	 */
1782 	vd->vdev_cant_read = B_TRUE;
1783 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1784 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1785 	vd->vdev_cant_read = cant_read;
1786 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1787 
1788 	return (required);
1789 }
1790 
1791 /*
1792  * Determine if resilver is needed, and if so the txg range.
1793  */
1794 boolean_t
1795 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1796 {
1797 	boolean_t needed = B_FALSE;
1798 	uint64_t thismin = UINT64_MAX;
1799 	uint64_t thismax = 0;
1800 
1801 	if (vd->vdev_children == 0) {
1802 		mutex_enter(&vd->vdev_dtl_lock);
1803 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1804 		    vdev_writeable(vd)) {
1805 			space_seg_t *ss;
1806 
1807 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1808 			thismin = ss->ss_start - 1;
1809 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1810 			thismax = ss->ss_end;
1811 			needed = B_TRUE;
1812 		}
1813 		mutex_exit(&vd->vdev_dtl_lock);
1814 	} else {
1815 		for (int c = 0; c < vd->vdev_children; c++) {
1816 			vdev_t *cvd = vd->vdev_child[c];
1817 			uint64_t cmin, cmax;
1818 
1819 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1820 				thismin = MIN(thismin, cmin);
1821 				thismax = MAX(thismax, cmax);
1822 				needed = B_TRUE;
1823 			}
1824 		}
1825 	}
1826 
1827 	if (needed && minp) {
1828 		*minp = thismin;
1829 		*maxp = thismax;
1830 	}
1831 	return (needed);
1832 }
1833 
1834 void
1835 vdev_load(vdev_t *vd)
1836 {
1837 	/*
1838 	 * Recursively load all children.
1839 	 */
1840 	for (int c = 0; c < vd->vdev_children; c++)
1841 		vdev_load(vd->vdev_child[c]);
1842 
1843 	/*
1844 	 * If this is a top-level vdev, initialize its metaslabs.
1845 	 */
1846 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1847 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1848 	    vdev_metaslab_init(vd, 0) != 0))
1849 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1850 		    VDEV_AUX_CORRUPT_DATA);
1851 
1852 	/*
1853 	 * If this is a leaf vdev, load its DTL.
1854 	 */
1855 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1856 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1857 		    VDEV_AUX_CORRUPT_DATA);
1858 }
1859 
1860 /*
1861  * The special vdev case is used for hot spares and l2cache devices.  Its
1862  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1863  * we make sure that we can open the underlying device, then try to read the
1864  * label, and make sure that the label is sane and that it hasn't been
1865  * repurposed to another pool.
1866  */
1867 int
1868 vdev_validate_aux(vdev_t *vd)
1869 {
1870 	nvlist_t *label;
1871 	uint64_t guid, version;
1872 	uint64_t state;
1873 
1874 	if (!vdev_readable(vd))
1875 		return (0);
1876 
1877 	if ((label = vdev_label_read_config(vd)) == NULL) {
1878 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1879 		    VDEV_AUX_CORRUPT_DATA);
1880 		return (-1);
1881 	}
1882 
1883 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1884 	    version > SPA_VERSION ||
1885 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1886 	    guid != vd->vdev_guid ||
1887 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1888 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1889 		    VDEV_AUX_CORRUPT_DATA);
1890 		nvlist_free(label);
1891 		return (-1);
1892 	}
1893 
1894 	/*
1895 	 * We don't actually check the pool state here.  If it's in fact in
1896 	 * use by another pool, we update this fact on the fly when requested.
1897 	 */
1898 	nvlist_free(label);
1899 	return (0);
1900 }
1901 
1902 void
1903 vdev_remove(vdev_t *vd, uint64_t txg)
1904 {
1905 	spa_t *spa = vd->vdev_spa;
1906 	objset_t *mos = spa->spa_meta_objset;
1907 	dmu_tx_t *tx;
1908 
1909 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1910 
1911 	if (vd->vdev_dtl_smo.smo_object) {
1912 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1913 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1914 		vd->vdev_dtl_smo.smo_object = 0;
1915 	}
1916 
1917 	if (vd->vdev_ms != NULL) {
1918 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1919 			metaslab_t *msp = vd->vdev_ms[m];
1920 
1921 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1922 				continue;
1923 
1924 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1925 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1926 			msp->ms_smo.smo_object = 0;
1927 		}
1928 	}
1929 
1930 	if (vd->vdev_ms_array) {
1931 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1932 		vd->vdev_ms_array = 0;
1933 		vd->vdev_ms_shift = 0;
1934 	}
1935 	dmu_tx_commit(tx);
1936 }
1937 
1938 void
1939 vdev_sync_done(vdev_t *vd, uint64_t txg)
1940 {
1941 	metaslab_t *msp;
1942 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
1943 
1944 	ASSERT(!vd->vdev_ishole);
1945 
1946 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1947 		metaslab_sync_done(msp, txg);
1948 
1949 	if (reassess)
1950 		metaslab_sync_reassess(vd->vdev_mg);
1951 }
1952 
1953 void
1954 vdev_sync(vdev_t *vd, uint64_t txg)
1955 {
1956 	spa_t *spa = vd->vdev_spa;
1957 	vdev_t *lvd;
1958 	metaslab_t *msp;
1959 	dmu_tx_t *tx;
1960 
1961 	ASSERT(!vd->vdev_ishole);
1962 
1963 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1964 		ASSERT(vd == vd->vdev_top);
1965 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1966 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1967 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1968 		ASSERT(vd->vdev_ms_array != 0);
1969 		vdev_config_dirty(vd);
1970 		dmu_tx_commit(tx);
1971 	}
1972 
1973 	if (vd->vdev_removing)
1974 		vdev_remove(vd, txg);
1975 
1976 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1977 		metaslab_sync(msp, txg);
1978 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1979 	}
1980 
1981 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1982 		vdev_dtl_sync(lvd, txg);
1983 
1984 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1985 }
1986 
1987 uint64_t
1988 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1989 {
1990 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1991 }
1992 
1993 /*
1994  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1995  * not be opened, and no I/O is attempted.
1996  */
1997 int
1998 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
1999 {
2000 	vdev_t *vd;
2001 
2002 	spa_vdev_state_enter(spa, SCL_NONE);
2003 
2004 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2005 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2006 
2007 	if (!vd->vdev_ops->vdev_op_leaf)
2008 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2009 
2010 	/*
2011 	 * We don't directly use the aux state here, but if we do a
2012 	 * vdev_reopen(), we need this value to be present to remember why we
2013 	 * were faulted.
2014 	 */
2015 	vd->vdev_label_aux = aux;
2016 
2017 	/*
2018 	 * Faulted state takes precedence over degraded.
2019 	 */
2020 	vd->vdev_faulted = 1ULL;
2021 	vd->vdev_degraded = 0ULL;
2022 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2023 
2024 	/*
2025 	 * If marking the vdev as faulted cause the top-level vdev to become
2026 	 * unavailable, then back off and simply mark the vdev as degraded
2027 	 * instead.
2028 	 */
2029 	if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog &&
2030 	    vd->vdev_aux == NULL) {
2031 		vd->vdev_degraded = 1ULL;
2032 		vd->vdev_faulted = 0ULL;
2033 
2034 		/*
2035 		 * If we reopen the device and it's not dead, only then do we
2036 		 * mark it degraded.
2037 		 */
2038 		vdev_reopen(vd);
2039 
2040 		if (vdev_readable(vd))
2041 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2042 	}
2043 
2044 	return (spa_vdev_state_exit(spa, vd, 0));
2045 }
2046 
2047 /*
2048  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2049  * user that something is wrong.  The vdev continues to operate as normal as far
2050  * as I/O is concerned.
2051  */
2052 int
2053 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2054 {
2055 	vdev_t *vd;
2056 
2057 	spa_vdev_state_enter(spa, SCL_NONE);
2058 
2059 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2060 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2061 
2062 	if (!vd->vdev_ops->vdev_op_leaf)
2063 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2064 
2065 	/*
2066 	 * If the vdev is already faulted, then don't do anything.
2067 	 */
2068 	if (vd->vdev_faulted || vd->vdev_degraded)
2069 		return (spa_vdev_state_exit(spa, NULL, 0));
2070 
2071 	vd->vdev_degraded = 1ULL;
2072 	if (!vdev_is_dead(vd))
2073 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2074 		    aux);
2075 
2076 	return (spa_vdev_state_exit(spa, vd, 0));
2077 }
2078 
2079 /*
2080  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2081  * any attached spare device should be detached when the device finishes
2082  * resilvering.  Second, the online should be treated like a 'test' online case,
2083  * so no FMA events are generated if the device fails to open.
2084  */
2085 int
2086 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2087 {
2088 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2089 
2090 	spa_vdev_state_enter(spa, SCL_NONE);
2091 
2092 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2093 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2094 
2095 	if (!vd->vdev_ops->vdev_op_leaf)
2096 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2097 
2098 	tvd = vd->vdev_top;
2099 	vd->vdev_offline = B_FALSE;
2100 	vd->vdev_tmpoffline = B_FALSE;
2101 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2102 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2103 
2104 	/* XXX - L2ARC 1.0 does not support expansion */
2105 	if (!vd->vdev_aux) {
2106 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2107 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2108 	}
2109 
2110 	vdev_reopen(tvd);
2111 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2112 
2113 	if (!vd->vdev_aux) {
2114 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2115 			pvd->vdev_expanding = B_FALSE;
2116 	}
2117 
2118 	if (newstate)
2119 		*newstate = vd->vdev_state;
2120 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2121 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2122 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2123 	    vd->vdev_parent->vdev_child[0] == vd)
2124 		vd->vdev_unspare = B_TRUE;
2125 
2126 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2127 
2128 		/* XXX - L2ARC 1.0 does not support expansion */
2129 		if (vd->vdev_aux)
2130 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2131 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2132 	}
2133 	return (spa_vdev_state_exit(spa, vd, 0));
2134 }
2135 
2136 int
2137 vdev_offline_log(spa_t *spa)
2138 {
2139 	int error = 0;
2140 
2141 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2142 	    NULL, DS_FIND_CHILDREN)) == 0) {
2143 
2144 		/*
2145 		 * We successfully offlined the log device, sync out the
2146 		 * current txg so that the "stubby" block can be removed
2147 		 * by zil_sync().
2148 		 */
2149 		txg_wait_synced(spa->spa_dsl_pool, 0);
2150 	}
2151 	return (error);
2152 }
2153 
2154 static int
2155 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2156 {
2157 	vdev_t *vd, *tvd;
2158 	int error = 0;
2159 	uint64_t generation;
2160 	metaslab_group_t *mg;
2161 
2162 top:
2163 	spa_vdev_state_enter(spa, SCL_ALLOC);
2164 
2165 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2166 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2167 
2168 	if (!vd->vdev_ops->vdev_op_leaf)
2169 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2170 
2171 	tvd = vd->vdev_top;
2172 	mg = tvd->vdev_mg;
2173 	generation = spa->spa_config_generation + 1;
2174 
2175 	/*
2176 	 * If the device isn't already offline, try to offline it.
2177 	 */
2178 	if (!vd->vdev_offline) {
2179 		/*
2180 		 * If this device has the only valid copy of some data,
2181 		 * don't allow it to be offlined. Log devices are always
2182 		 * expendable.
2183 		 */
2184 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2185 		    vdev_dtl_required(vd))
2186 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2187 
2188 		/*
2189 		 * If the top-level is a slog and it has had allocations
2190 		 * then proceed.  We check that the vdev's metaslab group
2191 		 * is not NULL since it's possible that we may have just
2192 		 * added this vdev but not yet initialized its metaslabs.
2193 		 */
2194 		if (tvd->vdev_islog && mg != NULL) {
2195 			/*
2196 			 * Prevent any future allocations.
2197 			 */
2198 			metaslab_group_passivate(mg);
2199 			(void) spa_vdev_state_exit(spa, vd, 0);
2200 
2201 			error = vdev_offline_log(spa);
2202 
2203 			spa_vdev_state_enter(spa, SCL_ALLOC);
2204 
2205 			/*
2206 			 * Check to see if the config has changed.
2207 			 */
2208 			if (error || generation != spa->spa_config_generation) {
2209 				metaslab_group_activate(mg);
2210 				if (error)
2211 					return (spa_vdev_state_exit(spa,
2212 					    vd, error));
2213 				(void) spa_vdev_state_exit(spa, vd, 0);
2214 				goto top;
2215 			}
2216 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2217 		}
2218 
2219 		/*
2220 		 * Offline this device and reopen its top-level vdev.
2221 		 * If the top-level vdev is a log device then just offline
2222 		 * it. Otherwise, if this action results in the top-level
2223 		 * vdev becoming unusable, undo it and fail the request.
2224 		 */
2225 		vd->vdev_offline = B_TRUE;
2226 		vdev_reopen(tvd);
2227 
2228 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2229 		    vdev_is_dead(tvd)) {
2230 			vd->vdev_offline = B_FALSE;
2231 			vdev_reopen(tvd);
2232 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2233 		}
2234 
2235 		/*
2236 		 * Add the device back into the metaslab rotor so that
2237 		 * once we online the device it's open for business.
2238 		 */
2239 		if (tvd->vdev_islog && mg != NULL)
2240 			metaslab_group_activate(mg);
2241 	}
2242 
2243 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2244 
2245 	return (spa_vdev_state_exit(spa, vd, 0));
2246 }
2247 
2248 int
2249 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2250 {
2251 	int error;
2252 
2253 	mutex_enter(&spa->spa_vdev_top_lock);
2254 	error = vdev_offline_locked(spa, guid, flags);
2255 	mutex_exit(&spa->spa_vdev_top_lock);
2256 
2257 	return (error);
2258 }
2259 
2260 /*
2261  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2262  * vdev_offline(), we assume the spa config is locked.  We also clear all
2263  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2264  */
2265 void
2266 vdev_clear(spa_t *spa, vdev_t *vd)
2267 {
2268 	vdev_t *rvd = spa->spa_root_vdev;
2269 
2270 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2271 
2272 	if (vd == NULL)
2273 		vd = rvd;
2274 
2275 	vd->vdev_stat.vs_read_errors = 0;
2276 	vd->vdev_stat.vs_write_errors = 0;
2277 	vd->vdev_stat.vs_checksum_errors = 0;
2278 
2279 	for (int c = 0; c < vd->vdev_children; c++)
2280 		vdev_clear(spa, vd->vdev_child[c]);
2281 
2282 	/*
2283 	 * If we're in the FAULTED state or have experienced failed I/O, then
2284 	 * clear the persistent state and attempt to reopen the device.  We
2285 	 * also mark the vdev config dirty, so that the new faulted state is
2286 	 * written out to disk.
2287 	 */
2288 	if (vd->vdev_faulted || vd->vdev_degraded ||
2289 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2290 
2291 		/*
2292 		 * When reopening in reponse to a clear event, it may be due to
2293 		 * a fmadm repair request.  In this case, if the device is
2294 		 * still broken, we want to still post the ereport again.
2295 		 */
2296 		vd->vdev_forcefault = B_TRUE;
2297 
2298 		vd->vdev_faulted = vd->vdev_degraded = 0;
2299 		vd->vdev_cant_read = B_FALSE;
2300 		vd->vdev_cant_write = B_FALSE;
2301 
2302 		vdev_reopen(vd);
2303 
2304 		vd->vdev_forcefault = B_FALSE;
2305 
2306 		if (vd != rvd)
2307 			vdev_state_dirty(vd->vdev_top);
2308 
2309 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2310 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2311 
2312 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2313 	}
2314 
2315 	/*
2316 	 * When clearing a FMA-diagnosed fault, we always want to
2317 	 * unspare the device, as we assume that the original spare was
2318 	 * done in response to the FMA fault.
2319 	 */
2320 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2321 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2322 	    vd->vdev_parent->vdev_child[0] == vd)
2323 		vd->vdev_unspare = B_TRUE;
2324 }
2325 
2326 boolean_t
2327 vdev_is_dead(vdev_t *vd)
2328 {
2329 	/*
2330 	 * Holes and missing devices are always considered "dead".
2331 	 * This simplifies the code since we don't have to check for
2332 	 * these types of devices in the various code paths.
2333 	 * Instead we rely on the fact that we skip over dead devices
2334 	 * before issuing I/O to them.
2335 	 */
2336 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2337 	    vd->vdev_ops == &vdev_missing_ops);
2338 }
2339 
2340 boolean_t
2341 vdev_readable(vdev_t *vd)
2342 {
2343 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2344 }
2345 
2346 boolean_t
2347 vdev_writeable(vdev_t *vd)
2348 {
2349 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2350 }
2351 
2352 boolean_t
2353 vdev_allocatable(vdev_t *vd)
2354 {
2355 	uint64_t state = vd->vdev_state;
2356 
2357 	/*
2358 	 * We currently allow allocations from vdevs which may be in the
2359 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2360 	 * fails to reopen then we'll catch it later when we're holding
2361 	 * the proper locks.  Note that we have to get the vdev state
2362 	 * in a local variable because although it changes atomically,
2363 	 * we're asking two separate questions about it.
2364 	 */
2365 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2366 	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2367 }
2368 
2369 boolean_t
2370 vdev_accessible(vdev_t *vd, zio_t *zio)
2371 {
2372 	ASSERT(zio->io_vd == vd);
2373 
2374 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2375 		return (B_FALSE);
2376 
2377 	if (zio->io_type == ZIO_TYPE_READ)
2378 		return (!vd->vdev_cant_read);
2379 
2380 	if (zio->io_type == ZIO_TYPE_WRITE)
2381 		return (!vd->vdev_cant_write);
2382 
2383 	return (B_TRUE);
2384 }
2385 
2386 /*
2387  * Get statistics for the given vdev.
2388  */
2389 void
2390 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2391 {
2392 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2393 
2394 	mutex_enter(&vd->vdev_stat_lock);
2395 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2396 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2397 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2398 	vs->vs_state = vd->vdev_state;
2399 	vs->vs_rsize = vdev_get_min_asize(vd);
2400 	if (vd->vdev_ops->vdev_op_leaf)
2401 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2402 	mutex_exit(&vd->vdev_stat_lock);
2403 
2404 	/*
2405 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2406 	 * over all top-level vdevs (i.e. the direct children of the root).
2407 	 */
2408 	if (vd == rvd) {
2409 		for (int c = 0; c < rvd->vdev_children; c++) {
2410 			vdev_t *cvd = rvd->vdev_child[c];
2411 			vdev_stat_t *cvs = &cvd->vdev_stat;
2412 
2413 			mutex_enter(&vd->vdev_stat_lock);
2414 			for (int t = 0; t < ZIO_TYPES; t++) {
2415 				vs->vs_ops[t] += cvs->vs_ops[t];
2416 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2417 			}
2418 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2419 			mutex_exit(&vd->vdev_stat_lock);
2420 		}
2421 	}
2422 }
2423 
2424 void
2425 vdev_clear_stats(vdev_t *vd)
2426 {
2427 	mutex_enter(&vd->vdev_stat_lock);
2428 	vd->vdev_stat.vs_space = 0;
2429 	vd->vdev_stat.vs_dspace = 0;
2430 	vd->vdev_stat.vs_alloc = 0;
2431 	mutex_exit(&vd->vdev_stat_lock);
2432 }
2433 
2434 void
2435 vdev_stat_update(zio_t *zio, uint64_t psize)
2436 {
2437 	spa_t *spa = zio->io_spa;
2438 	vdev_t *rvd = spa->spa_root_vdev;
2439 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2440 	vdev_t *pvd;
2441 	uint64_t txg = zio->io_txg;
2442 	vdev_stat_t *vs = &vd->vdev_stat;
2443 	zio_type_t type = zio->io_type;
2444 	int flags = zio->io_flags;
2445 
2446 	/*
2447 	 * If this i/o is a gang leader, it didn't do any actual work.
2448 	 */
2449 	if (zio->io_gang_tree)
2450 		return;
2451 
2452 	if (zio->io_error == 0) {
2453 		/*
2454 		 * If this is a root i/o, don't count it -- we've already
2455 		 * counted the top-level vdevs, and vdev_get_stats() will
2456 		 * aggregate them when asked.  This reduces contention on
2457 		 * the root vdev_stat_lock and implicitly handles blocks
2458 		 * that compress away to holes, for which there is no i/o.
2459 		 * (Holes never create vdev children, so all the counters
2460 		 * remain zero, which is what we want.)
2461 		 *
2462 		 * Note: this only applies to successful i/o (io_error == 0)
2463 		 * because unlike i/o counts, errors are not additive.
2464 		 * When reading a ditto block, for example, failure of
2465 		 * one top-level vdev does not imply a root-level error.
2466 		 */
2467 		if (vd == rvd)
2468 			return;
2469 
2470 		ASSERT(vd == zio->io_vd);
2471 
2472 		if (flags & ZIO_FLAG_IO_BYPASS)
2473 			return;
2474 
2475 		mutex_enter(&vd->vdev_stat_lock);
2476 
2477 		if (flags & ZIO_FLAG_IO_REPAIR) {
2478 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2479 				vs->vs_scrub_repaired += psize;
2480 			if (flags & ZIO_FLAG_SELF_HEAL)
2481 				vs->vs_self_healed += psize;
2482 		}
2483 
2484 		vs->vs_ops[type]++;
2485 		vs->vs_bytes[type] += psize;
2486 
2487 		mutex_exit(&vd->vdev_stat_lock);
2488 		return;
2489 	}
2490 
2491 	if (flags & ZIO_FLAG_SPECULATIVE)
2492 		return;
2493 
2494 	/*
2495 	 * If this is an I/O error that is going to be retried, then ignore the
2496 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2497 	 * hard errors, when in reality they can happen for any number of
2498 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2499 	 */
2500 	if (zio->io_error == EIO &&
2501 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2502 		return;
2503 
2504 	/*
2505 	 * Intent logs writes won't propagate their error to the root
2506 	 * I/O so don't mark these types of failures as pool-level
2507 	 * errors.
2508 	 */
2509 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2510 		return;
2511 
2512 	mutex_enter(&vd->vdev_stat_lock);
2513 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2514 		if (zio->io_error == ECKSUM)
2515 			vs->vs_checksum_errors++;
2516 		else
2517 			vs->vs_read_errors++;
2518 	}
2519 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2520 		vs->vs_write_errors++;
2521 	mutex_exit(&vd->vdev_stat_lock);
2522 
2523 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2524 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2525 	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2526 	    spa->spa_claiming)) {
2527 		/*
2528 		 * This is either a normal write (not a repair), or it's
2529 		 * a repair induced by the scrub thread, or it's a repair
2530 		 * made by zil_claim() during spa_load() in the first txg.
2531 		 * In the normal case, we commit the DTL change in the same
2532 		 * txg as the block was born.  In the scrub-induced repair
2533 		 * case, we know that scrubs run in first-pass syncing context,
2534 		 * so we commit the DTL change in spa_syncing_txg(spa).
2535 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2536 		 *
2537 		 * We currently do not make DTL entries for failed spontaneous
2538 		 * self-healing writes triggered by normal (non-scrubbing)
2539 		 * reads, because we have no transactional context in which to
2540 		 * do so -- and it's not clear that it'd be desirable anyway.
2541 		 */
2542 		if (vd->vdev_ops->vdev_op_leaf) {
2543 			uint64_t commit_txg = txg;
2544 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2545 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2546 				ASSERT(spa_sync_pass(spa) == 1);
2547 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2548 				commit_txg = spa_syncing_txg(spa);
2549 			} else if (spa->spa_claiming) {
2550 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2551 				commit_txg = spa_first_txg(spa);
2552 			}
2553 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2554 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2555 				return;
2556 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2557 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2558 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2559 		}
2560 		if (vd != rvd)
2561 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2562 	}
2563 }
2564 
2565 void
2566 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2567 {
2568 	vdev_stat_t *vs = &vd->vdev_stat;
2569 
2570 	for (int c = 0; c < vd->vdev_children; c++)
2571 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2572 
2573 	mutex_enter(&vd->vdev_stat_lock);
2574 
2575 	if (type == POOL_SCRUB_NONE) {
2576 		/*
2577 		 * Update completion and end time.  Leave everything else alone
2578 		 * so we can report what happened during the previous scrub.
2579 		 */
2580 		vs->vs_scrub_complete = complete;
2581 		vs->vs_scrub_end = gethrestime_sec();
2582 	} else {
2583 		vs->vs_scrub_type = type;
2584 		vs->vs_scrub_complete = 0;
2585 		vs->vs_scrub_examined = 0;
2586 		vs->vs_scrub_repaired = 0;
2587 		vs->vs_scrub_start = gethrestime_sec();
2588 		vs->vs_scrub_end = 0;
2589 	}
2590 
2591 	mutex_exit(&vd->vdev_stat_lock);
2592 }
2593 
2594 /*
2595  * Update the in-core space usage stats for this vdev, its metaslab class,
2596  * and the root vdev.
2597  */
2598 void
2599 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2600     int64_t space_delta)
2601 {
2602 	int64_t dspace_delta = space_delta;
2603 	spa_t *spa = vd->vdev_spa;
2604 	vdev_t *rvd = spa->spa_root_vdev;
2605 	metaslab_group_t *mg = vd->vdev_mg;
2606 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2607 
2608 	ASSERT(vd == vd->vdev_top);
2609 
2610 	/*
2611 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2612 	 * factor.  We must calculate this here and not at the root vdev
2613 	 * because the root vdev's psize-to-asize is simply the max of its
2614 	 * childrens', thus not accurate enough for us.
2615 	 */
2616 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2617 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2618 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2619 	    vd->vdev_deflate_ratio;
2620 
2621 	mutex_enter(&vd->vdev_stat_lock);
2622 	vd->vdev_stat.vs_alloc += alloc_delta;
2623 	vd->vdev_stat.vs_space += space_delta;
2624 	vd->vdev_stat.vs_dspace += dspace_delta;
2625 	mutex_exit(&vd->vdev_stat_lock);
2626 
2627 	if (mc == spa_normal_class(spa)) {
2628 		mutex_enter(&rvd->vdev_stat_lock);
2629 		rvd->vdev_stat.vs_alloc += alloc_delta;
2630 		rvd->vdev_stat.vs_space += space_delta;
2631 		rvd->vdev_stat.vs_dspace += dspace_delta;
2632 		mutex_exit(&rvd->vdev_stat_lock);
2633 	}
2634 
2635 	if (mc != NULL) {
2636 		ASSERT(rvd == vd->vdev_parent);
2637 		ASSERT(vd->vdev_ms_count != 0);
2638 
2639 		metaslab_class_space_update(mc,
2640 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2641 	}
2642 }
2643 
2644 /*
2645  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2646  * so that it will be written out next time the vdev configuration is synced.
2647  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2648  */
2649 void
2650 vdev_config_dirty(vdev_t *vd)
2651 {
2652 	spa_t *spa = vd->vdev_spa;
2653 	vdev_t *rvd = spa->spa_root_vdev;
2654 	int c;
2655 
2656 	/*
2657 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2658 	 * update the vdev config manually and set the sync flag.
2659 	 */
2660 	if (vd->vdev_aux != NULL) {
2661 		spa_aux_vdev_t *sav = vd->vdev_aux;
2662 		nvlist_t **aux;
2663 		uint_t naux;
2664 
2665 		for (c = 0; c < sav->sav_count; c++) {
2666 			if (sav->sav_vdevs[c] == vd)
2667 				break;
2668 		}
2669 
2670 		if (c == sav->sav_count) {
2671 			/*
2672 			 * We're being removed.  There's nothing more to do.
2673 			 */
2674 			ASSERT(sav->sav_sync == B_TRUE);
2675 			return;
2676 		}
2677 
2678 		sav->sav_sync = B_TRUE;
2679 
2680 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2681 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2682 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2683 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2684 		}
2685 
2686 		ASSERT(c < naux);
2687 
2688 		/*
2689 		 * Setting the nvlist in the middle if the array is a little
2690 		 * sketchy, but it will work.
2691 		 */
2692 		nvlist_free(aux[c]);
2693 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2694 
2695 		return;
2696 	}
2697 
2698 	/*
2699 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2700 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2701 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2702 	 * so this is sufficient to ensure mutual exclusion.
2703 	 */
2704 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2705 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2706 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2707 
2708 	if (vd == rvd) {
2709 		for (c = 0; c < rvd->vdev_children; c++)
2710 			vdev_config_dirty(rvd->vdev_child[c]);
2711 	} else {
2712 		ASSERT(vd == vd->vdev_top);
2713 
2714 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2715 		    !vd->vdev_ishole)
2716 			list_insert_head(&spa->spa_config_dirty_list, vd);
2717 	}
2718 }
2719 
2720 void
2721 vdev_config_clean(vdev_t *vd)
2722 {
2723 	spa_t *spa = vd->vdev_spa;
2724 
2725 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2726 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2727 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2728 
2729 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2730 	list_remove(&spa->spa_config_dirty_list, vd);
2731 }
2732 
2733 /*
2734  * Mark a top-level vdev's state as dirty, so that the next pass of
2735  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2736  * the state changes from larger config changes because they require
2737  * much less locking, and are often needed for administrative actions.
2738  */
2739 void
2740 vdev_state_dirty(vdev_t *vd)
2741 {
2742 	spa_t *spa = vd->vdev_spa;
2743 
2744 	ASSERT(vd == vd->vdev_top);
2745 
2746 	/*
2747 	 * The state list is protected by the SCL_STATE lock.  The caller
2748 	 * must either hold SCL_STATE as writer, or must be the sync thread
2749 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2750 	 * so this is sufficient to ensure mutual exclusion.
2751 	 */
2752 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2753 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2754 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2755 
2756 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2757 		list_insert_head(&spa->spa_state_dirty_list, vd);
2758 }
2759 
2760 void
2761 vdev_state_clean(vdev_t *vd)
2762 {
2763 	spa_t *spa = vd->vdev_spa;
2764 
2765 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2766 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2767 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2768 
2769 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2770 	list_remove(&spa->spa_state_dirty_list, vd);
2771 }
2772 
2773 /*
2774  * Propagate vdev state up from children to parent.
2775  */
2776 void
2777 vdev_propagate_state(vdev_t *vd)
2778 {
2779 	spa_t *spa = vd->vdev_spa;
2780 	vdev_t *rvd = spa->spa_root_vdev;
2781 	int degraded = 0, faulted = 0;
2782 	int corrupted = 0;
2783 	vdev_t *child;
2784 
2785 	if (vd->vdev_children > 0) {
2786 		for (int c = 0; c < vd->vdev_children; c++) {
2787 			child = vd->vdev_child[c];
2788 
2789 			/*
2790 			 * Don't factor holes into the decision.
2791 			 */
2792 			if (child->vdev_ishole)
2793 				continue;
2794 
2795 			if (!vdev_readable(child) ||
2796 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2797 				/*
2798 				 * Root special: if there is a top-level log
2799 				 * device, treat the root vdev as if it were
2800 				 * degraded.
2801 				 */
2802 				if (child->vdev_islog && vd == rvd)
2803 					degraded++;
2804 				else
2805 					faulted++;
2806 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2807 				degraded++;
2808 			}
2809 
2810 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2811 				corrupted++;
2812 		}
2813 
2814 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2815 
2816 		/*
2817 		 * Root special: if there is a top-level vdev that cannot be
2818 		 * opened due to corrupted metadata, then propagate the root
2819 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2820 		 * replicas'.
2821 		 */
2822 		if (corrupted && vd == rvd &&
2823 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2824 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2825 			    VDEV_AUX_CORRUPT_DATA);
2826 	}
2827 
2828 	if (vd->vdev_parent)
2829 		vdev_propagate_state(vd->vdev_parent);
2830 }
2831 
2832 /*
2833  * Set a vdev's state.  If this is during an open, we don't update the parent
2834  * state, because we're in the process of opening children depth-first.
2835  * Otherwise, we propagate the change to the parent.
2836  *
2837  * If this routine places a device in a faulted state, an appropriate ereport is
2838  * generated.
2839  */
2840 void
2841 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2842 {
2843 	uint64_t save_state;
2844 	spa_t *spa = vd->vdev_spa;
2845 
2846 	if (state == vd->vdev_state) {
2847 		vd->vdev_stat.vs_aux = aux;
2848 		return;
2849 	}
2850 
2851 	save_state = vd->vdev_state;
2852 
2853 	vd->vdev_state = state;
2854 	vd->vdev_stat.vs_aux = aux;
2855 
2856 	/*
2857 	 * If we are setting the vdev state to anything but an open state, then
2858 	 * always close the underlying device.  Otherwise, we keep accessible
2859 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2860 	 * because that implies some extra checks (offline, etc) that we don't
2861 	 * want here.  This is limited to leaf devices, because otherwise
2862 	 * closing the device will affect other children.
2863 	 */
2864 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2865 		vd->vdev_ops->vdev_op_close(vd);
2866 
2867 	/*
2868 	 * If we have brought this vdev back into service, we need
2869 	 * to notify fmd so that it can gracefully repair any outstanding
2870 	 * cases due to a missing device.  We do this in all cases, even those
2871 	 * that probably don't correlate to a repaired fault.  This is sure to
2872 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2873 	 * this is a transient state it's OK, as the retire agent will
2874 	 * double-check the state of the vdev before repairing it.
2875 	 */
2876 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2877 	    vd->vdev_prevstate != state)
2878 		zfs_post_state_change(spa, vd);
2879 
2880 	if (vd->vdev_removed &&
2881 	    state == VDEV_STATE_CANT_OPEN &&
2882 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2883 		/*
2884 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2885 		 * device was previously marked removed and someone attempted to
2886 		 * reopen it.  If this failed due to a nonexistent device, then
2887 		 * keep the device in the REMOVED state.  We also let this be if
2888 		 * it is one of our special test online cases, which is only
2889 		 * attempting to online the device and shouldn't generate an FMA
2890 		 * fault.
2891 		 */
2892 		vd->vdev_state = VDEV_STATE_REMOVED;
2893 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2894 	} else if (state == VDEV_STATE_REMOVED) {
2895 		vd->vdev_removed = B_TRUE;
2896 	} else if (state == VDEV_STATE_CANT_OPEN) {
2897 		/*
2898 		 * If we fail to open a vdev during an import, we mark it as
2899 		 * "not available", which signifies that it was never there to
2900 		 * begin with.  Failure to open such a device is not considered
2901 		 * an error.
2902 		 */
2903 		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2904 		    vd->vdev_ops->vdev_op_leaf)
2905 			vd->vdev_not_present = 1;
2906 
2907 		/*
2908 		 * Post the appropriate ereport.  If the 'prevstate' field is
2909 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2910 		 * that this is part of a vdev_reopen().  In this case, we don't
2911 		 * want to post the ereport if the device was already in the
2912 		 * CANT_OPEN state beforehand.
2913 		 *
2914 		 * If the 'checkremove' flag is set, then this is an attempt to
2915 		 * online the device in response to an insertion event.  If we
2916 		 * hit this case, then we have detected an insertion event for a
2917 		 * faulted or offline device that wasn't in the removed state.
2918 		 * In this scenario, we don't post an ereport because we are
2919 		 * about to replace the device, or attempt an online with
2920 		 * vdev_forcefault, which will generate the fault for us.
2921 		 */
2922 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2923 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2924 		    vd != spa->spa_root_vdev) {
2925 			const char *class;
2926 
2927 			switch (aux) {
2928 			case VDEV_AUX_OPEN_FAILED:
2929 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2930 				break;
2931 			case VDEV_AUX_CORRUPT_DATA:
2932 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2933 				break;
2934 			case VDEV_AUX_NO_REPLICAS:
2935 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2936 				break;
2937 			case VDEV_AUX_BAD_GUID_SUM:
2938 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2939 				break;
2940 			case VDEV_AUX_TOO_SMALL:
2941 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2942 				break;
2943 			case VDEV_AUX_BAD_LABEL:
2944 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2945 				break;
2946 			case VDEV_AUX_IO_FAILURE:
2947 				class = FM_EREPORT_ZFS_IO_FAILURE;
2948 				break;
2949 			default:
2950 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2951 			}
2952 
2953 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2954 		}
2955 
2956 		/* Erase any notion of persistent removed state */
2957 		vd->vdev_removed = B_FALSE;
2958 	} else {
2959 		vd->vdev_removed = B_FALSE;
2960 	}
2961 
2962 	if (!isopen && vd->vdev_parent)
2963 		vdev_propagate_state(vd->vdev_parent);
2964 }
2965 
2966 /*
2967  * Check the vdev configuration to ensure that it's capable of supporting
2968  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2969  * In addition, only a single top-level vdev is allowed and none of the leaves
2970  * can be wholedisks.
2971  */
2972 boolean_t
2973 vdev_is_bootable(vdev_t *vd)
2974 {
2975 	if (!vd->vdev_ops->vdev_op_leaf) {
2976 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2977 
2978 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2979 		    vd->vdev_children > 1) {
2980 			return (B_FALSE);
2981 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2982 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2983 			return (B_FALSE);
2984 		}
2985 	} else if (vd->vdev_wholedisk == 1) {
2986 		return (B_FALSE);
2987 	}
2988 
2989 	for (int c = 0; c < vd->vdev_children; c++) {
2990 		if (!vdev_is_bootable(vd->vdev_child[c]))
2991 			return (B_FALSE);
2992 	}
2993 	return (B_TRUE);
2994 }
2995 
2996 /*
2997  * Load the state from the original vdev tree (ovd) which
2998  * we've retrieved from the MOS config object. If the original
2999  * vdev was offline then we transfer that state to the device
3000  * in the current vdev tree (nvd).
3001  */
3002 void
3003 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3004 {
3005 	spa_t *spa = nvd->vdev_spa;
3006 
3007 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3008 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3009 
3010 	for (int c = 0; c < nvd->vdev_children; c++)
3011 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3012 
3013 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3014 		/*
3015 		 * It would be nice to call vdev_offline()
3016 		 * directly but the pool isn't fully loaded and
3017 		 * the txg threads have not been started yet.
3018 		 */
3019 		nvd->vdev_offline = ovd->vdev_offline;
3020 		vdev_reopen(nvd->vdev_top);
3021 	}
3022 }
3023 
3024 /*
3025  * Expand a vdev if possible.
3026  */
3027 void
3028 vdev_expand(vdev_t *vd, uint64_t txg)
3029 {
3030 	ASSERT(vd->vdev_top == vd);
3031 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3032 
3033 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3034 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3035 		vdev_config_dirty(vd);
3036 	}
3037 }
3038