1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 88 for (int c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the minimum allocatable size. We define the allocatable size as 98 * the vdev's asize rounded to the nearest metaslab. This allows us to 99 * replace or attach devices which don't have the same physical size but 100 * can still satisfy the same number of allocations. 101 */ 102 uint64_t 103 vdev_get_min_asize(vdev_t *vd) 104 { 105 vdev_t *pvd = vd->vdev_parent; 106 107 /* 108 * The our parent is NULL (inactive spare or cache) or is the root, 109 * just return our own asize. 110 */ 111 if (pvd == NULL) 112 return (vd->vdev_asize); 113 114 /* 115 * The top-level vdev just returns the allocatable size rounded 116 * to the nearest metaslab. 117 */ 118 if (vd == vd->vdev_top) 119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 120 121 /* 122 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 123 * so each child must provide at least 1/Nth of its asize. 124 */ 125 if (pvd->vdev_ops == &vdev_raidz_ops) 126 return (pvd->vdev_min_asize / pvd->vdev_children); 127 128 return (pvd->vdev_min_asize); 129 } 130 131 void 132 vdev_set_min_asize(vdev_t *vd) 133 { 134 vd->vdev_min_asize = vdev_get_min_asize(vd); 135 136 for (int c = 0; c < vd->vdev_children; c++) 137 vdev_set_min_asize(vd->vdev_child[c]); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 146 147 if (vdev < rvd->vdev_children) { 148 ASSERT(rvd->vdev_child[vdev] != NULL); 149 return (rvd->vdev_child[vdev]); 150 } 151 152 return (NULL); 153 } 154 155 vdev_t * 156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 157 { 158 vdev_t *mvd; 159 160 if (vd->vdev_guid == guid) 161 return (vd); 162 163 for (int c = 0; c < vd->vdev_children; c++) 164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 165 NULL) 166 return (mvd); 167 168 return (NULL); 169 } 170 171 void 172 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 173 { 174 size_t oldsize, newsize; 175 uint64_t id = cvd->vdev_id; 176 vdev_t **newchild; 177 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 179 ASSERT(cvd->vdev_parent == NULL); 180 181 cvd->vdev_parent = pvd; 182 183 if (pvd == NULL) 184 return; 185 186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 187 188 oldsize = pvd->vdev_children * sizeof (vdev_t *); 189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 190 newsize = pvd->vdev_children * sizeof (vdev_t *); 191 192 newchild = kmem_zalloc(newsize, KM_SLEEP); 193 if (pvd->vdev_child != NULL) { 194 bcopy(pvd->vdev_child, newchild, oldsize); 195 kmem_free(pvd->vdev_child, oldsize); 196 } 197 198 pvd->vdev_child = newchild; 199 pvd->vdev_child[id] = cvd; 200 201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 209 210 if (cvd->vdev_ops->vdev_op_leaf) 211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 247 if (cvd->vdev_ops->vdev_op_leaf) 248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 249 } 250 251 /* 252 * Remove any holes in the child array. 253 */ 254 void 255 vdev_compact_children(vdev_t *pvd) 256 { 257 vdev_t **newchild, *cvd; 258 int oldc = pvd->vdev_children; 259 int newc; 260 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 262 263 for (int c = newc = 0; c < oldc; c++) 264 if (pvd->vdev_child[c]) 265 newc++; 266 267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 268 269 for (int c = newc = 0; c < oldc; c++) { 270 if ((cvd = pvd->vdev_child[c]) != NULL) { 271 newchild[newc] = cvd; 272 cvd->vdev_id = newc++; 273 } 274 } 275 276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 277 pvd->vdev_child = newchild; 278 pvd->vdev_children = newc; 279 } 280 281 /* 282 * Allocate and minimally initialize a vdev_t. 283 */ 284 static vdev_t * 285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 286 { 287 vdev_t *vd; 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 if (spa->spa_root_vdev == NULL) { 292 ASSERT(ops == &vdev_root_ops); 293 spa->spa_root_vdev = vd; 294 } 295 296 if (guid == 0) { 297 if (spa->spa_root_vdev == vd) { 298 /* 299 * The root vdev's guid will also be the pool guid, 300 * which must be unique among all pools. 301 */ 302 while (guid == 0 || spa_guid_exists(guid, 0)) 303 guid = spa_get_random(-1ULL); 304 } else { 305 /* 306 * Any other vdev's guid must be unique within the pool. 307 */ 308 while (guid == 0 || 309 spa_guid_exists(spa_guid(spa), guid)) 310 guid = spa_get_random(-1ULL); 311 } 312 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 313 } 314 315 vd->vdev_spa = spa; 316 vd->vdev_id = id; 317 vd->vdev_guid = guid; 318 vd->vdev_guid_sum = guid; 319 vd->vdev_ops = ops; 320 vd->vdev_state = VDEV_STATE_CLOSED; 321 322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 325 for (int t = 0; t < DTL_TYPES; t++) { 326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 327 &vd->vdev_dtl_lock); 328 } 329 txg_list_create(&vd->vdev_ms_list, 330 offsetof(struct metaslab, ms_txg_node)); 331 txg_list_create(&vd->vdev_dtl_list, 332 offsetof(struct vdev, vdev_dtl_node)); 333 vd->vdev_stat.vs_timestamp = gethrtime(); 334 vdev_queue_init(vd); 335 vdev_cache_init(vd); 336 337 return (vd); 338 } 339 340 /* 341 * Allocate a new vdev. The 'alloctype' is used to control whether we are 342 * creating a new vdev or loading an existing one - the behavior is slightly 343 * different for each case. 344 */ 345 int 346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 347 int alloctype) 348 { 349 vdev_ops_t *ops; 350 char *type; 351 uint64_t guid = 0, islog, nparity; 352 vdev_t *vd; 353 354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 355 356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 357 return (EINVAL); 358 359 if ((ops = vdev_getops(type)) == NULL) 360 return (EINVAL); 361 362 /* 363 * If this is a load, get the vdev guid from the nvlist. 364 * Otherwise, vdev_alloc_common() will generate one for us. 365 */ 366 if (alloctype == VDEV_ALLOC_LOAD) { 367 uint64_t label_id; 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 370 label_id != id) 371 return (EINVAL); 372 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } else if (alloctype == VDEV_ALLOC_SPARE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (EINVAL); 378 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (EINVAL); 381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (EINVAL); 384 } 385 386 /* 387 * The first allocated vdev must be of type 'root'. 388 */ 389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 390 return (EINVAL); 391 392 /* 393 * Determine whether we're a log vdev. 394 */ 395 islog = 0; 396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 398 return (ENOTSUP); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 /* 408 * Currently, we can only support 3 parity devices. 409 */ 410 if (nparity == 0 || nparity > 3) 411 return (EINVAL); 412 /* 413 * Previous versions could only support 1 or 2 parity 414 * device. 415 */ 416 if (nparity > 1 && 417 spa_version(spa) < SPA_VERSION_RAIDZ2) 418 return (ENOTSUP); 419 if (nparity > 2 && 420 spa_version(spa) < SPA_VERSION_RAIDZ3) 421 return (ENOTSUP); 422 } else { 423 /* 424 * We require the parity to be specified for SPAs that 425 * support multiple parity levels. 426 */ 427 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 428 return (EINVAL); 429 /* 430 * Otherwise, we default to 1 parity device for RAID-Z. 431 */ 432 nparity = 1; 433 } 434 } else { 435 nparity = 0; 436 } 437 ASSERT(nparity != -1ULL); 438 439 vd = vdev_alloc_common(spa, id, guid, ops); 440 441 vd->vdev_islog = islog; 442 vd->vdev_nparity = nparity; 443 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 445 vd->vdev_path = spa_strdup(vd->vdev_path); 446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 447 vd->vdev_devid = spa_strdup(vd->vdev_devid); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 449 &vd->vdev_physpath) == 0) 450 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 452 vd->vdev_fru = spa_strdup(vd->vdev_fru); 453 454 /* 455 * Set the whole_disk property. If it's not specified, leave the value 456 * as -1. 457 */ 458 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 459 &vd->vdev_wholedisk) != 0) 460 vd->vdev_wholedisk = -1ULL; 461 462 /* 463 * Look for the 'not present' flag. This will only be set if the device 464 * was not present at the time of import. 465 */ 466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 467 &vd->vdev_not_present); 468 469 /* 470 * Get the alignment requirement. 471 */ 472 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 473 474 /* 475 * If we're a top-level vdev, try to load the allocation parameters. 476 */ 477 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 479 &vd->vdev_ms_array); 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 481 &vd->vdev_ms_shift); 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 483 &vd->vdev_asize); 484 } 485 486 /* 487 * If we're a leaf vdev, try to load the DTL object and other state. 488 */ 489 if (vd->vdev_ops->vdev_op_leaf && 490 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 491 alloctype == VDEV_ALLOC_ROOTPOOL)) { 492 if (alloctype == VDEV_ALLOC_LOAD) { 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 494 &vd->vdev_dtl_smo.smo_object); 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 496 &vd->vdev_unspare); 497 } 498 499 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 500 uint64_t spare = 0; 501 502 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 503 &spare) == 0 && spare) 504 spa_spare_add(vd); 505 } 506 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 508 &vd->vdev_offline); 509 510 /* 511 * When importing a pool, we want to ignore the persistent fault 512 * state, as the diagnosis made on another system may not be 513 * valid in the current context. 514 */ 515 if (spa->spa_load_state == SPA_LOAD_OPEN) { 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 517 &vd->vdev_faulted); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 519 &vd->vdev_degraded); 520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 521 &vd->vdev_removed); 522 } 523 } 524 525 /* 526 * Add ourselves to the parent's list of children. 527 */ 528 vdev_add_child(parent, vd); 529 530 *vdp = vd; 531 532 return (0); 533 } 534 535 void 536 vdev_free(vdev_t *vd) 537 { 538 spa_t *spa = vd->vdev_spa; 539 540 /* 541 * vdev_free() implies closing the vdev first. This is simpler than 542 * trying to ensure complicated semantics for all callers. 543 */ 544 vdev_close(vd); 545 546 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 547 548 /* 549 * Free all children. 550 */ 551 for (int c = 0; c < vd->vdev_children; c++) 552 vdev_free(vd->vdev_child[c]); 553 554 ASSERT(vd->vdev_child == NULL); 555 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 556 557 /* 558 * Discard allocation state. 559 */ 560 if (vd == vd->vdev_top) 561 vdev_metaslab_fini(vd); 562 563 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 564 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 565 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 566 567 /* 568 * Remove this vdev from its parent's child list. 569 */ 570 vdev_remove_child(vd->vdev_parent, vd); 571 572 ASSERT(vd->vdev_parent == NULL); 573 574 /* 575 * Clean up vdev structure. 576 */ 577 vdev_queue_fini(vd); 578 vdev_cache_fini(vd); 579 580 if (vd->vdev_path) 581 spa_strfree(vd->vdev_path); 582 if (vd->vdev_devid) 583 spa_strfree(vd->vdev_devid); 584 if (vd->vdev_physpath) 585 spa_strfree(vd->vdev_physpath); 586 if (vd->vdev_fru) 587 spa_strfree(vd->vdev_fru); 588 589 if (vd->vdev_isspare) 590 spa_spare_remove(vd); 591 if (vd->vdev_isl2cache) 592 spa_l2cache_remove(vd); 593 594 txg_list_destroy(&vd->vdev_ms_list); 595 txg_list_destroy(&vd->vdev_dtl_list); 596 597 mutex_enter(&vd->vdev_dtl_lock); 598 for (int t = 0; t < DTL_TYPES; t++) { 599 space_map_unload(&vd->vdev_dtl[t]); 600 space_map_destroy(&vd->vdev_dtl[t]); 601 } 602 mutex_exit(&vd->vdev_dtl_lock); 603 604 mutex_destroy(&vd->vdev_dtl_lock); 605 mutex_destroy(&vd->vdev_stat_lock); 606 mutex_destroy(&vd->vdev_probe_lock); 607 608 if (vd == spa->spa_root_vdev) 609 spa->spa_root_vdev = NULL; 610 611 kmem_free(vd, sizeof (vdev_t)); 612 } 613 614 /* 615 * Transfer top-level vdev state from svd to tvd. 616 */ 617 static void 618 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 619 { 620 spa_t *spa = svd->vdev_spa; 621 metaslab_t *msp; 622 vdev_t *vd; 623 int t; 624 625 ASSERT(tvd == tvd->vdev_top); 626 627 tvd->vdev_ms_array = svd->vdev_ms_array; 628 tvd->vdev_ms_shift = svd->vdev_ms_shift; 629 tvd->vdev_ms_count = svd->vdev_ms_count; 630 631 svd->vdev_ms_array = 0; 632 svd->vdev_ms_shift = 0; 633 svd->vdev_ms_count = 0; 634 635 tvd->vdev_mg = svd->vdev_mg; 636 tvd->vdev_ms = svd->vdev_ms; 637 638 svd->vdev_mg = NULL; 639 svd->vdev_ms = NULL; 640 641 if (tvd->vdev_mg != NULL) 642 tvd->vdev_mg->mg_vd = tvd; 643 644 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 645 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 646 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 647 648 svd->vdev_stat.vs_alloc = 0; 649 svd->vdev_stat.vs_space = 0; 650 svd->vdev_stat.vs_dspace = 0; 651 652 for (t = 0; t < TXG_SIZE; t++) { 653 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 654 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 655 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 656 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 657 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 658 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 659 } 660 661 if (list_link_active(&svd->vdev_config_dirty_node)) { 662 vdev_config_clean(svd); 663 vdev_config_dirty(tvd); 664 } 665 666 if (list_link_active(&svd->vdev_state_dirty_node)) { 667 vdev_state_clean(svd); 668 vdev_state_dirty(tvd); 669 } 670 671 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 672 svd->vdev_deflate_ratio = 0; 673 674 tvd->vdev_islog = svd->vdev_islog; 675 svd->vdev_islog = 0; 676 } 677 678 static void 679 vdev_top_update(vdev_t *tvd, vdev_t *vd) 680 { 681 if (vd == NULL) 682 return; 683 684 vd->vdev_top = tvd; 685 686 for (int c = 0; c < vd->vdev_children; c++) 687 vdev_top_update(tvd, vd->vdev_child[c]); 688 } 689 690 /* 691 * Add a mirror/replacing vdev above an existing vdev. 692 */ 693 vdev_t * 694 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 695 { 696 spa_t *spa = cvd->vdev_spa; 697 vdev_t *pvd = cvd->vdev_parent; 698 vdev_t *mvd; 699 700 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 701 702 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 703 704 mvd->vdev_asize = cvd->vdev_asize; 705 mvd->vdev_min_asize = cvd->vdev_min_asize; 706 mvd->vdev_ashift = cvd->vdev_ashift; 707 mvd->vdev_state = cvd->vdev_state; 708 709 vdev_remove_child(pvd, cvd); 710 vdev_add_child(pvd, mvd); 711 cvd->vdev_id = mvd->vdev_children; 712 vdev_add_child(mvd, cvd); 713 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 714 715 if (mvd == mvd->vdev_top) 716 vdev_top_transfer(cvd, mvd); 717 718 return (mvd); 719 } 720 721 /* 722 * Remove a 1-way mirror/replacing vdev from the tree. 723 */ 724 void 725 vdev_remove_parent(vdev_t *cvd) 726 { 727 vdev_t *mvd = cvd->vdev_parent; 728 vdev_t *pvd = mvd->vdev_parent; 729 730 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 731 732 ASSERT(mvd->vdev_children == 1); 733 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 734 mvd->vdev_ops == &vdev_replacing_ops || 735 mvd->vdev_ops == &vdev_spare_ops); 736 cvd->vdev_ashift = mvd->vdev_ashift; 737 738 vdev_remove_child(mvd, cvd); 739 vdev_remove_child(pvd, mvd); 740 741 /* 742 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 743 * Otherwise, we could have detached an offline device, and when we 744 * go to import the pool we'll think we have two top-level vdevs, 745 * instead of a different version of the same top-level vdev. 746 */ 747 if (mvd->vdev_top == mvd) { 748 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 749 cvd->vdev_guid += guid_delta; 750 cvd->vdev_guid_sum += guid_delta; 751 } 752 cvd->vdev_id = mvd->vdev_id; 753 vdev_add_child(pvd, cvd); 754 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 755 756 if (cvd == cvd->vdev_top) 757 vdev_top_transfer(mvd, cvd); 758 759 ASSERT(mvd->vdev_children == 0); 760 vdev_free(mvd); 761 } 762 763 int 764 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 765 { 766 spa_t *spa = vd->vdev_spa; 767 objset_t *mos = spa->spa_meta_objset; 768 metaslab_class_t *mc; 769 uint64_t m; 770 uint64_t oldc = vd->vdev_ms_count; 771 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 772 metaslab_t **mspp; 773 int error; 774 775 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 776 return (0); 777 778 /* 779 * Compute the raidz-deflation ratio. Note, we hard-code 780 * in 128k (1 << 17) because it is the current "typical" blocksize. 781 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 782 * or we will inconsistently account for existing bp's. 783 */ 784 vd->vdev_deflate_ratio = (1 << 17) / 785 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 786 787 ASSERT(oldc <= newc); 788 789 if (vd->vdev_islog) 790 mc = spa->spa_log_class; 791 else 792 mc = spa->spa_normal_class; 793 794 if (vd->vdev_mg == NULL) 795 vd->vdev_mg = metaslab_group_create(mc, vd); 796 797 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 798 799 if (oldc != 0) { 800 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 801 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 802 } 803 804 vd->vdev_ms = mspp; 805 vd->vdev_ms_count = newc; 806 807 for (m = oldc; m < newc; m++) { 808 space_map_obj_t smo = { 0, 0, 0 }; 809 if (txg == 0) { 810 uint64_t object = 0; 811 error = dmu_read(mos, vd->vdev_ms_array, 812 m * sizeof (uint64_t), sizeof (uint64_t), &object, 813 DMU_READ_PREFETCH); 814 if (error) 815 return (error); 816 if (object != 0) { 817 dmu_buf_t *db; 818 error = dmu_bonus_hold(mos, object, FTAG, &db); 819 if (error) 820 return (error); 821 ASSERT3U(db->db_size, >=, sizeof (smo)); 822 bcopy(db->db_data, &smo, sizeof (smo)); 823 ASSERT3U(smo.smo_object, ==, object); 824 dmu_buf_rele(db, FTAG); 825 } 826 } 827 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 828 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 829 } 830 831 return (0); 832 } 833 834 void 835 vdev_metaslab_fini(vdev_t *vd) 836 { 837 uint64_t m; 838 uint64_t count = vd->vdev_ms_count; 839 840 if (vd->vdev_ms != NULL) { 841 for (m = 0; m < count; m++) 842 if (vd->vdev_ms[m] != NULL) 843 metaslab_fini(vd->vdev_ms[m]); 844 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 845 vd->vdev_ms = NULL; 846 } 847 } 848 849 typedef struct vdev_probe_stats { 850 boolean_t vps_readable; 851 boolean_t vps_writeable; 852 int vps_flags; 853 } vdev_probe_stats_t; 854 855 static void 856 vdev_probe_done(zio_t *zio) 857 { 858 spa_t *spa = zio->io_spa; 859 vdev_t *vd = zio->io_vd; 860 vdev_probe_stats_t *vps = zio->io_private; 861 862 ASSERT(vd->vdev_probe_zio != NULL); 863 864 if (zio->io_type == ZIO_TYPE_READ) { 865 if (zio->io_error == 0) 866 vps->vps_readable = 1; 867 if (zio->io_error == 0 && spa_writeable(spa)) { 868 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 869 zio->io_offset, zio->io_size, zio->io_data, 870 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 871 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 872 } else { 873 zio_buf_free(zio->io_data, zio->io_size); 874 } 875 } else if (zio->io_type == ZIO_TYPE_WRITE) { 876 if (zio->io_error == 0) 877 vps->vps_writeable = 1; 878 zio_buf_free(zio->io_data, zio->io_size); 879 } else if (zio->io_type == ZIO_TYPE_NULL) { 880 zio_t *pio; 881 882 vd->vdev_cant_read |= !vps->vps_readable; 883 vd->vdev_cant_write |= !vps->vps_writeable; 884 885 if (vdev_readable(vd) && 886 (vdev_writeable(vd) || !spa_writeable(spa))) { 887 zio->io_error = 0; 888 } else { 889 ASSERT(zio->io_error != 0); 890 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 891 spa, vd, NULL, 0, 0); 892 zio->io_error = ENXIO; 893 } 894 895 mutex_enter(&vd->vdev_probe_lock); 896 ASSERT(vd->vdev_probe_zio == zio); 897 vd->vdev_probe_zio = NULL; 898 mutex_exit(&vd->vdev_probe_lock); 899 900 while ((pio = zio_walk_parents(zio)) != NULL) 901 if (!vdev_accessible(vd, pio)) 902 pio->io_error = ENXIO; 903 904 kmem_free(vps, sizeof (*vps)); 905 } 906 } 907 908 /* 909 * Determine whether this device is accessible by reading and writing 910 * to several known locations: the pad regions of each vdev label 911 * but the first (which we leave alone in case it contains a VTOC). 912 */ 913 zio_t * 914 vdev_probe(vdev_t *vd, zio_t *zio) 915 { 916 spa_t *spa = vd->vdev_spa; 917 vdev_probe_stats_t *vps = NULL; 918 zio_t *pio; 919 920 ASSERT(vd->vdev_ops->vdev_op_leaf); 921 922 /* 923 * Don't probe the probe. 924 */ 925 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 926 return (NULL); 927 928 /* 929 * To prevent 'probe storms' when a device fails, we create 930 * just one probe i/o at a time. All zios that want to probe 931 * this vdev will become parents of the probe io. 932 */ 933 mutex_enter(&vd->vdev_probe_lock); 934 935 if ((pio = vd->vdev_probe_zio) == NULL) { 936 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 937 938 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 939 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 940 ZIO_FLAG_TRYHARD; 941 942 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 943 /* 944 * vdev_cant_read and vdev_cant_write can only 945 * transition from TRUE to FALSE when we have the 946 * SCL_ZIO lock as writer; otherwise they can only 947 * transition from FALSE to TRUE. This ensures that 948 * any zio looking at these values can assume that 949 * failures persist for the life of the I/O. That's 950 * important because when a device has intermittent 951 * connectivity problems, we want to ensure that 952 * they're ascribed to the device (ENXIO) and not 953 * the zio (EIO). 954 * 955 * Since we hold SCL_ZIO as writer here, clear both 956 * values so the probe can reevaluate from first 957 * principles. 958 */ 959 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 960 vd->vdev_cant_read = B_FALSE; 961 vd->vdev_cant_write = B_FALSE; 962 } 963 964 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 965 vdev_probe_done, vps, 966 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 967 968 if (zio != NULL) { 969 vd->vdev_probe_wanted = B_TRUE; 970 spa_async_request(spa, SPA_ASYNC_PROBE); 971 } 972 } 973 974 if (zio != NULL) 975 zio_add_child(zio, pio); 976 977 mutex_exit(&vd->vdev_probe_lock); 978 979 if (vps == NULL) { 980 ASSERT(zio != NULL); 981 return (NULL); 982 } 983 984 for (int l = 1; l < VDEV_LABELS; l++) { 985 zio_nowait(zio_read_phys(pio, vd, 986 vdev_label_offset(vd->vdev_psize, l, 987 offsetof(vdev_label_t, vl_pad2)), 988 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 989 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 990 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 991 } 992 993 if (zio == NULL) 994 return (pio); 995 996 zio_nowait(pio); 997 return (NULL); 998 } 999 1000 static void 1001 vdev_open_child(void *arg) 1002 { 1003 vdev_t *vd = arg; 1004 1005 vd->vdev_open_thread = curthread; 1006 vd->vdev_open_error = vdev_open(vd); 1007 vd->vdev_open_thread = NULL; 1008 } 1009 1010 void 1011 vdev_open_children(vdev_t *vd) 1012 { 1013 taskq_t *tq; 1014 int children = vd->vdev_children; 1015 1016 tq = taskq_create("vdev_open", children, minclsyspri, 1017 children, children, TASKQ_PREPOPULATE); 1018 1019 for (int c = 0; c < children; c++) 1020 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1021 TQ_SLEEP) != NULL); 1022 1023 taskq_destroy(tq); 1024 } 1025 1026 /* 1027 * Prepare a virtual device for access. 1028 */ 1029 int 1030 vdev_open(vdev_t *vd) 1031 { 1032 spa_t *spa = vd->vdev_spa; 1033 int error; 1034 uint64_t osize = 0; 1035 uint64_t asize, psize; 1036 uint64_t ashift = 0; 1037 1038 ASSERT(vd->vdev_open_thread == curthread || 1039 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1040 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1041 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1042 vd->vdev_state == VDEV_STATE_OFFLINE); 1043 1044 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1045 vd->vdev_cant_read = B_FALSE; 1046 vd->vdev_cant_write = B_FALSE; 1047 vd->vdev_min_asize = vdev_get_min_asize(vd); 1048 1049 if (!vd->vdev_removed && vd->vdev_faulted) { 1050 ASSERT(vd->vdev_children == 0); 1051 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1052 VDEV_AUX_ERR_EXCEEDED); 1053 return (ENXIO); 1054 } else if (vd->vdev_offline) { 1055 ASSERT(vd->vdev_children == 0); 1056 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1057 return (ENXIO); 1058 } 1059 1060 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1061 1062 if (zio_injection_enabled && error == 0) 1063 error = zio_handle_device_injection(vd, NULL, ENXIO); 1064 1065 if (error) { 1066 if (vd->vdev_removed && 1067 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1068 vd->vdev_removed = B_FALSE; 1069 1070 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1071 vd->vdev_stat.vs_aux); 1072 return (error); 1073 } 1074 1075 vd->vdev_removed = B_FALSE; 1076 1077 if (vd->vdev_degraded) { 1078 ASSERT(vd->vdev_children == 0); 1079 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1080 VDEV_AUX_ERR_EXCEEDED); 1081 } else { 1082 vd->vdev_state = VDEV_STATE_HEALTHY; 1083 } 1084 1085 for (int c = 0; c < vd->vdev_children; c++) { 1086 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1087 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1088 VDEV_AUX_NONE); 1089 break; 1090 } 1091 } 1092 1093 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1094 1095 if (vd->vdev_children == 0) { 1096 if (osize < SPA_MINDEVSIZE) { 1097 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1098 VDEV_AUX_TOO_SMALL); 1099 return (EOVERFLOW); 1100 } 1101 psize = osize; 1102 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1103 } else { 1104 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1105 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1106 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1107 VDEV_AUX_TOO_SMALL); 1108 return (EOVERFLOW); 1109 } 1110 psize = 0; 1111 asize = osize; 1112 } 1113 1114 vd->vdev_psize = psize; 1115 1116 /* 1117 * Make sure the allocatable size hasn't shrunk. 1118 */ 1119 if (asize < vd->vdev_min_asize) { 1120 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1121 VDEV_AUX_BAD_LABEL); 1122 return (EINVAL); 1123 } 1124 1125 if (vd->vdev_asize == 0) { 1126 /* 1127 * This is the first-ever open, so use the computed values. 1128 * For testing purposes, a higher ashift can be requested. 1129 */ 1130 vd->vdev_asize = asize; 1131 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1132 } else { 1133 /* 1134 * Make sure the alignment requirement hasn't increased. 1135 */ 1136 if (ashift > vd->vdev_top->vdev_ashift) { 1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1138 VDEV_AUX_BAD_LABEL); 1139 return (EINVAL); 1140 } 1141 } 1142 1143 /* 1144 * If all children are healthy and the asize has increased, 1145 * then we've experienced dynamic LUN growth. If automatic 1146 * expansion is enabled then use the additional space. 1147 */ 1148 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1149 (vd->vdev_expanding || spa->spa_autoexpand)) 1150 vd->vdev_asize = asize; 1151 1152 vdev_set_min_asize(vd); 1153 1154 /* 1155 * Ensure we can issue some IO before declaring the 1156 * vdev open for business. 1157 */ 1158 if (vd->vdev_ops->vdev_op_leaf && 1159 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1161 VDEV_AUX_IO_FAILURE); 1162 return (error); 1163 } 1164 1165 /* 1166 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1167 * resilver. But don't do this if we are doing a reopen for a scrub, 1168 * since this would just restart the scrub we are already doing. 1169 */ 1170 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1171 vdev_resilver_needed(vd, NULL, NULL)) 1172 spa_async_request(spa, SPA_ASYNC_RESILVER); 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Called once the vdevs are all opened, this routine validates the label 1179 * contents. This needs to be done before vdev_load() so that we don't 1180 * inadvertently do repair I/Os to the wrong device. 1181 * 1182 * This function will only return failure if one of the vdevs indicates that it 1183 * has since been destroyed or exported. This is only possible if 1184 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1185 * will be updated but the function will return 0. 1186 */ 1187 int 1188 vdev_validate(vdev_t *vd) 1189 { 1190 spa_t *spa = vd->vdev_spa; 1191 nvlist_t *label; 1192 uint64_t guid, top_guid; 1193 uint64_t state; 1194 1195 for (int c = 0; c < vd->vdev_children; c++) 1196 if (vdev_validate(vd->vdev_child[c]) != 0) 1197 return (EBADF); 1198 1199 /* 1200 * If the device has already failed, or was marked offline, don't do 1201 * any further validation. Otherwise, label I/O will fail and we will 1202 * overwrite the previous state. 1203 */ 1204 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1205 1206 if ((label = vdev_label_read_config(vd)) == NULL) { 1207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1208 VDEV_AUX_BAD_LABEL); 1209 return (0); 1210 } 1211 1212 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1213 &guid) != 0 || guid != spa_guid(spa)) { 1214 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1215 VDEV_AUX_CORRUPT_DATA); 1216 nvlist_free(label); 1217 return (0); 1218 } 1219 1220 /* 1221 * If this vdev just became a top-level vdev because its 1222 * sibling was detached, it will have adopted the parent's 1223 * vdev guid -- but the label may or may not be on disk yet. 1224 * Fortunately, either version of the label will have the 1225 * same top guid, so if we're a top-level vdev, we can 1226 * safely compare to that instead. 1227 */ 1228 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1229 &guid) != 0 || 1230 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1231 &top_guid) != 0 || 1232 (vd->vdev_guid != guid && 1233 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1234 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_CORRUPT_DATA); 1236 nvlist_free(label); 1237 return (0); 1238 } 1239 1240 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1241 &state) != 0) { 1242 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1243 VDEV_AUX_CORRUPT_DATA); 1244 nvlist_free(label); 1245 return (0); 1246 } 1247 1248 nvlist_free(label); 1249 1250 /* 1251 * If spa->spa_load_verbatim is true, no need to check the 1252 * state of the pool. 1253 */ 1254 if (!spa->spa_load_verbatim && 1255 spa->spa_load_state == SPA_LOAD_OPEN && 1256 state != POOL_STATE_ACTIVE) 1257 return (EBADF); 1258 1259 /* 1260 * If we were able to open and validate a vdev that was 1261 * previously marked permanently unavailable, clear that state 1262 * now. 1263 */ 1264 if (vd->vdev_not_present) 1265 vd->vdev_not_present = 0; 1266 } 1267 1268 return (0); 1269 } 1270 1271 /* 1272 * Close a virtual device. 1273 */ 1274 void 1275 vdev_close(vdev_t *vd) 1276 { 1277 spa_t *spa = vd->vdev_spa; 1278 1279 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1280 1281 vd->vdev_ops->vdev_op_close(vd); 1282 1283 vdev_cache_purge(vd); 1284 1285 /* 1286 * We record the previous state before we close it, so that if we are 1287 * doing a reopen(), we don't generate FMA ereports if we notice that 1288 * it's still faulted. 1289 */ 1290 vd->vdev_prevstate = vd->vdev_state; 1291 1292 if (vd->vdev_offline) 1293 vd->vdev_state = VDEV_STATE_OFFLINE; 1294 else 1295 vd->vdev_state = VDEV_STATE_CLOSED; 1296 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1297 } 1298 1299 void 1300 vdev_reopen(vdev_t *vd) 1301 { 1302 spa_t *spa = vd->vdev_spa; 1303 1304 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1305 1306 vdev_close(vd); 1307 (void) vdev_open(vd); 1308 1309 /* 1310 * Call vdev_validate() here to make sure we have the same device. 1311 * Otherwise, a device with an invalid label could be successfully 1312 * opened in response to vdev_reopen(). 1313 */ 1314 if (vd->vdev_aux) { 1315 (void) vdev_validate_aux(vd); 1316 if (vdev_readable(vd) && vdev_writeable(vd) && 1317 vd->vdev_aux == &spa->spa_l2cache && 1318 !l2arc_vdev_present(vd)) 1319 l2arc_add_vdev(spa, vd); 1320 } else { 1321 (void) vdev_validate(vd); 1322 } 1323 1324 /* 1325 * Reassess parent vdev's health. 1326 */ 1327 vdev_propagate_state(vd); 1328 } 1329 1330 int 1331 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1332 { 1333 int error; 1334 1335 /* 1336 * Normally, partial opens (e.g. of a mirror) are allowed. 1337 * For a create, however, we want to fail the request if 1338 * there are any components we can't open. 1339 */ 1340 error = vdev_open(vd); 1341 1342 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1343 vdev_close(vd); 1344 return (error ? error : ENXIO); 1345 } 1346 1347 /* 1348 * Recursively initialize all labels. 1349 */ 1350 if ((error = vdev_label_init(vd, txg, isreplacing ? 1351 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1352 vdev_close(vd); 1353 return (error); 1354 } 1355 1356 return (0); 1357 } 1358 1359 void 1360 vdev_metaslab_set_size(vdev_t *vd) 1361 { 1362 /* 1363 * Aim for roughly 200 metaslabs per vdev. 1364 */ 1365 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1366 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1367 } 1368 1369 void 1370 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1371 { 1372 ASSERT(vd == vd->vdev_top); 1373 ASSERT(ISP2(flags)); 1374 1375 if (flags & VDD_METASLAB) 1376 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1377 1378 if (flags & VDD_DTL) 1379 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1380 1381 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1382 } 1383 1384 /* 1385 * DTLs. 1386 * 1387 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1388 * the vdev has less than perfect replication. There are three kinds of DTL: 1389 * 1390 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1391 * 1392 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1393 * 1394 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1395 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1396 * txgs that was scrubbed. 1397 * 1398 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1399 * persistent errors or just some device being offline. 1400 * Unlike the other three, the DTL_OUTAGE map is not generally 1401 * maintained; it's only computed when needed, typically to 1402 * determine whether a device can be detached. 1403 * 1404 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1405 * either has the data or it doesn't. 1406 * 1407 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1408 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1409 * if any child is less than fully replicated, then so is its parent. 1410 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1411 * comprising only those txgs which appear in 'maxfaults' or more children; 1412 * those are the txgs we don't have enough replication to read. For example, 1413 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1414 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1415 * two child DTL_MISSING maps. 1416 * 1417 * It should be clear from the above that to compute the DTLs and outage maps 1418 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1419 * Therefore, that is all we keep on disk. When loading the pool, or after 1420 * a configuration change, we generate all other DTLs from first principles. 1421 */ 1422 void 1423 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1424 { 1425 space_map_t *sm = &vd->vdev_dtl[t]; 1426 1427 ASSERT(t < DTL_TYPES); 1428 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1429 1430 mutex_enter(sm->sm_lock); 1431 if (!space_map_contains(sm, txg, size)) 1432 space_map_add(sm, txg, size); 1433 mutex_exit(sm->sm_lock); 1434 } 1435 1436 boolean_t 1437 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1438 { 1439 space_map_t *sm = &vd->vdev_dtl[t]; 1440 boolean_t dirty = B_FALSE; 1441 1442 ASSERT(t < DTL_TYPES); 1443 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1444 1445 mutex_enter(sm->sm_lock); 1446 if (sm->sm_space != 0) 1447 dirty = space_map_contains(sm, txg, size); 1448 mutex_exit(sm->sm_lock); 1449 1450 return (dirty); 1451 } 1452 1453 boolean_t 1454 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1455 { 1456 space_map_t *sm = &vd->vdev_dtl[t]; 1457 boolean_t empty; 1458 1459 mutex_enter(sm->sm_lock); 1460 empty = (sm->sm_space == 0); 1461 mutex_exit(sm->sm_lock); 1462 1463 return (empty); 1464 } 1465 1466 /* 1467 * Reassess DTLs after a config change or scrub completion. 1468 */ 1469 void 1470 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1471 { 1472 spa_t *spa = vd->vdev_spa; 1473 avl_tree_t reftree; 1474 int minref; 1475 1476 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1477 1478 for (int c = 0; c < vd->vdev_children; c++) 1479 vdev_dtl_reassess(vd->vdev_child[c], txg, 1480 scrub_txg, scrub_done); 1481 1482 if (vd == spa->spa_root_vdev) 1483 return; 1484 1485 if (vd->vdev_ops->vdev_op_leaf) { 1486 mutex_enter(&vd->vdev_dtl_lock); 1487 if (scrub_txg != 0 && 1488 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1489 /* XXX should check scrub_done? */ 1490 /* 1491 * We completed a scrub up to scrub_txg. If we 1492 * did it without rebooting, then the scrub dtl 1493 * will be valid, so excise the old region and 1494 * fold in the scrub dtl. Otherwise, leave the 1495 * dtl as-is if there was an error. 1496 * 1497 * There's little trick here: to excise the beginning 1498 * of the DTL_MISSING map, we put it into a reference 1499 * tree and then add a segment with refcnt -1 that 1500 * covers the range [0, scrub_txg). This means 1501 * that each txg in that range has refcnt -1 or 0. 1502 * We then add DTL_SCRUB with a refcnt of 2, so that 1503 * entries in the range [0, scrub_txg) will have a 1504 * positive refcnt -- either 1 or 2. We then convert 1505 * the reference tree into the new DTL_MISSING map. 1506 */ 1507 space_map_ref_create(&reftree); 1508 space_map_ref_add_map(&reftree, 1509 &vd->vdev_dtl[DTL_MISSING], 1); 1510 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1511 space_map_ref_add_map(&reftree, 1512 &vd->vdev_dtl[DTL_SCRUB], 2); 1513 space_map_ref_generate_map(&reftree, 1514 &vd->vdev_dtl[DTL_MISSING], 1); 1515 space_map_ref_destroy(&reftree); 1516 } 1517 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1518 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1519 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1520 if (scrub_done) 1521 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1522 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1523 if (!vdev_readable(vd)) 1524 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1525 else 1526 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1527 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1528 mutex_exit(&vd->vdev_dtl_lock); 1529 1530 if (txg != 0) 1531 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1532 return; 1533 } 1534 1535 mutex_enter(&vd->vdev_dtl_lock); 1536 for (int t = 0; t < DTL_TYPES; t++) { 1537 if (t == DTL_SCRUB) 1538 continue; /* leaf vdevs only */ 1539 if (t == DTL_PARTIAL) 1540 minref = 1; /* i.e. non-zero */ 1541 else if (vd->vdev_nparity != 0) 1542 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1543 else 1544 minref = vd->vdev_children; /* any kind of mirror */ 1545 space_map_ref_create(&reftree); 1546 for (int c = 0; c < vd->vdev_children; c++) { 1547 vdev_t *cvd = vd->vdev_child[c]; 1548 mutex_enter(&cvd->vdev_dtl_lock); 1549 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1550 mutex_exit(&cvd->vdev_dtl_lock); 1551 } 1552 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1553 space_map_ref_destroy(&reftree); 1554 } 1555 mutex_exit(&vd->vdev_dtl_lock); 1556 } 1557 1558 static int 1559 vdev_dtl_load(vdev_t *vd) 1560 { 1561 spa_t *spa = vd->vdev_spa; 1562 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1563 objset_t *mos = spa->spa_meta_objset; 1564 dmu_buf_t *db; 1565 int error; 1566 1567 ASSERT(vd->vdev_children == 0); 1568 1569 if (smo->smo_object == 0) 1570 return (0); 1571 1572 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1573 return (error); 1574 1575 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1576 bcopy(db->db_data, smo, sizeof (*smo)); 1577 dmu_buf_rele(db, FTAG); 1578 1579 mutex_enter(&vd->vdev_dtl_lock); 1580 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1581 NULL, SM_ALLOC, smo, mos); 1582 mutex_exit(&vd->vdev_dtl_lock); 1583 1584 return (error); 1585 } 1586 1587 void 1588 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1589 { 1590 spa_t *spa = vd->vdev_spa; 1591 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1592 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1593 objset_t *mos = spa->spa_meta_objset; 1594 space_map_t smsync; 1595 kmutex_t smlock; 1596 dmu_buf_t *db; 1597 dmu_tx_t *tx; 1598 1599 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1600 1601 if (vd->vdev_detached) { 1602 if (smo->smo_object != 0) { 1603 int err = dmu_object_free(mos, smo->smo_object, tx); 1604 ASSERT3U(err, ==, 0); 1605 smo->smo_object = 0; 1606 } 1607 dmu_tx_commit(tx); 1608 return; 1609 } 1610 1611 if (smo->smo_object == 0) { 1612 ASSERT(smo->smo_objsize == 0); 1613 ASSERT(smo->smo_alloc == 0); 1614 smo->smo_object = dmu_object_alloc(mos, 1615 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1616 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1617 ASSERT(smo->smo_object != 0); 1618 vdev_config_dirty(vd->vdev_top); 1619 } 1620 1621 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1622 1623 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1624 &smlock); 1625 1626 mutex_enter(&smlock); 1627 1628 mutex_enter(&vd->vdev_dtl_lock); 1629 space_map_walk(sm, space_map_add, &smsync); 1630 mutex_exit(&vd->vdev_dtl_lock); 1631 1632 space_map_truncate(smo, mos, tx); 1633 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1634 1635 space_map_destroy(&smsync); 1636 1637 mutex_exit(&smlock); 1638 mutex_destroy(&smlock); 1639 1640 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1641 dmu_buf_will_dirty(db, tx); 1642 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1643 bcopy(smo, db->db_data, sizeof (*smo)); 1644 dmu_buf_rele(db, FTAG); 1645 1646 dmu_tx_commit(tx); 1647 } 1648 1649 /* 1650 * Determine whether the specified vdev can be offlined/detached/removed 1651 * without losing data. 1652 */ 1653 boolean_t 1654 vdev_dtl_required(vdev_t *vd) 1655 { 1656 spa_t *spa = vd->vdev_spa; 1657 vdev_t *tvd = vd->vdev_top; 1658 uint8_t cant_read = vd->vdev_cant_read; 1659 boolean_t required; 1660 1661 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1662 1663 if (vd == spa->spa_root_vdev || vd == tvd) 1664 return (B_TRUE); 1665 1666 /* 1667 * Temporarily mark the device as unreadable, and then determine 1668 * whether this results in any DTL outages in the top-level vdev. 1669 * If not, we can safely offline/detach/remove the device. 1670 */ 1671 vd->vdev_cant_read = B_TRUE; 1672 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1673 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1674 vd->vdev_cant_read = cant_read; 1675 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1676 1677 return (required); 1678 } 1679 1680 /* 1681 * Determine if resilver is needed, and if so the txg range. 1682 */ 1683 boolean_t 1684 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1685 { 1686 boolean_t needed = B_FALSE; 1687 uint64_t thismin = UINT64_MAX; 1688 uint64_t thismax = 0; 1689 1690 if (vd->vdev_children == 0) { 1691 mutex_enter(&vd->vdev_dtl_lock); 1692 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1693 vdev_writeable(vd)) { 1694 space_seg_t *ss; 1695 1696 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1697 thismin = ss->ss_start - 1; 1698 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1699 thismax = ss->ss_end; 1700 needed = B_TRUE; 1701 } 1702 mutex_exit(&vd->vdev_dtl_lock); 1703 } else { 1704 for (int c = 0; c < vd->vdev_children; c++) { 1705 vdev_t *cvd = vd->vdev_child[c]; 1706 uint64_t cmin, cmax; 1707 1708 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1709 thismin = MIN(thismin, cmin); 1710 thismax = MAX(thismax, cmax); 1711 needed = B_TRUE; 1712 } 1713 } 1714 } 1715 1716 if (needed && minp) { 1717 *minp = thismin; 1718 *maxp = thismax; 1719 } 1720 return (needed); 1721 } 1722 1723 void 1724 vdev_load(vdev_t *vd) 1725 { 1726 /* 1727 * Recursively load all children. 1728 */ 1729 for (int c = 0; c < vd->vdev_children; c++) 1730 vdev_load(vd->vdev_child[c]); 1731 1732 /* 1733 * If this is a top-level vdev, initialize its metaslabs. 1734 */ 1735 if (vd == vd->vdev_top && 1736 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1737 vdev_metaslab_init(vd, 0) != 0)) 1738 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1739 VDEV_AUX_CORRUPT_DATA); 1740 1741 /* 1742 * If this is a leaf vdev, load its DTL. 1743 */ 1744 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1745 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1746 VDEV_AUX_CORRUPT_DATA); 1747 } 1748 1749 /* 1750 * The special vdev case is used for hot spares and l2cache devices. Its 1751 * sole purpose it to set the vdev state for the associated vdev. To do this, 1752 * we make sure that we can open the underlying device, then try to read the 1753 * label, and make sure that the label is sane and that it hasn't been 1754 * repurposed to another pool. 1755 */ 1756 int 1757 vdev_validate_aux(vdev_t *vd) 1758 { 1759 nvlist_t *label; 1760 uint64_t guid, version; 1761 uint64_t state; 1762 1763 if (!vdev_readable(vd)) 1764 return (0); 1765 1766 if ((label = vdev_label_read_config(vd)) == NULL) { 1767 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1768 VDEV_AUX_CORRUPT_DATA); 1769 return (-1); 1770 } 1771 1772 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1773 version > SPA_VERSION || 1774 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1775 guid != vd->vdev_guid || 1776 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1777 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1778 VDEV_AUX_CORRUPT_DATA); 1779 nvlist_free(label); 1780 return (-1); 1781 } 1782 1783 /* 1784 * We don't actually check the pool state here. If it's in fact in 1785 * use by another pool, we update this fact on the fly when requested. 1786 */ 1787 nvlist_free(label); 1788 return (0); 1789 } 1790 1791 void 1792 vdev_sync_done(vdev_t *vd, uint64_t txg) 1793 { 1794 metaslab_t *msp; 1795 1796 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1797 metaslab_sync_done(msp, txg); 1798 } 1799 1800 void 1801 vdev_sync(vdev_t *vd, uint64_t txg) 1802 { 1803 spa_t *spa = vd->vdev_spa; 1804 vdev_t *lvd; 1805 metaslab_t *msp; 1806 dmu_tx_t *tx; 1807 1808 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1809 ASSERT(vd == vd->vdev_top); 1810 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1811 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1812 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1813 ASSERT(vd->vdev_ms_array != 0); 1814 vdev_config_dirty(vd); 1815 dmu_tx_commit(tx); 1816 } 1817 1818 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1819 metaslab_sync(msp, txg); 1820 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1821 } 1822 1823 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1824 vdev_dtl_sync(lvd, txg); 1825 1826 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1827 } 1828 1829 uint64_t 1830 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1831 { 1832 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1833 } 1834 1835 /* 1836 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1837 * not be opened, and no I/O is attempted. 1838 */ 1839 int 1840 vdev_fault(spa_t *spa, uint64_t guid) 1841 { 1842 vdev_t *vd; 1843 1844 spa_vdev_state_enter(spa); 1845 1846 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1847 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1848 1849 if (!vd->vdev_ops->vdev_op_leaf) 1850 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1851 1852 /* 1853 * Faulted state takes precedence over degraded. 1854 */ 1855 vd->vdev_faulted = 1ULL; 1856 vd->vdev_degraded = 0ULL; 1857 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1858 1859 /* 1860 * If marking the vdev as faulted cause the top-level vdev to become 1861 * unavailable, then back off and simply mark the vdev as degraded 1862 * instead. 1863 */ 1864 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1865 vd->vdev_degraded = 1ULL; 1866 vd->vdev_faulted = 0ULL; 1867 1868 /* 1869 * If we reopen the device and it's not dead, only then do we 1870 * mark it degraded. 1871 */ 1872 vdev_reopen(vd); 1873 1874 if (vdev_readable(vd)) { 1875 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1876 VDEV_AUX_ERR_EXCEEDED); 1877 } 1878 } 1879 1880 return (spa_vdev_state_exit(spa, vd, 0)); 1881 } 1882 1883 /* 1884 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1885 * user that something is wrong. The vdev continues to operate as normal as far 1886 * as I/O is concerned. 1887 */ 1888 int 1889 vdev_degrade(spa_t *spa, uint64_t guid) 1890 { 1891 vdev_t *vd; 1892 1893 spa_vdev_state_enter(spa); 1894 1895 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1896 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1897 1898 if (!vd->vdev_ops->vdev_op_leaf) 1899 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1900 1901 /* 1902 * If the vdev is already faulted, then don't do anything. 1903 */ 1904 if (vd->vdev_faulted || vd->vdev_degraded) 1905 return (spa_vdev_state_exit(spa, NULL, 0)); 1906 1907 vd->vdev_degraded = 1ULL; 1908 if (!vdev_is_dead(vd)) 1909 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1910 VDEV_AUX_ERR_EXCEEDED); 1911 1912 return (spa_vdev_state_exit(spa, vd, 0)); 1913 } 1914 1915 /* 1916 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1917 * any attached spare device should be detached when the device finishes 1918 * resilvering. Second, the online should be treated like a 'test' online case, 1919 * so no FMA events are generated if the device fails to open. 1920 */ 1921 int 1922 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1923 { 1924 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 1925 1926 spa_vdev_state_enter(spa); 1927 1928 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1929 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1930 1931 if (!vd->vdev_ops->vdev_op_leaf) 1932 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1933 1934 tvd = vd->vdev_top; 1935 vd->vdev_offline = B_FALSE; 1936 vd->vdev_tmpoffline = B_FALSE; 1937 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1938 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1939 1940 /* XXX - L2ARC 1.0 does not support expansion */ 1941 if (!vd->vdev_aux) { 1942 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1943 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 1944 } 1945 1946 vdev_reopen(tvd); 1947 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1948 1949 if (!vd->vdev_aux) { 1950 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1951 pvd->vdev_expanding = B_FALSE; 1952 } 1953 1954 if (newstate) 1955 *newstate = vd->vdev_state; 1956 if ((flags & ZFS_ONLINE_UNSPARE) && 1957 !vdev_is_dead(vd) && vd->vdev_parent && 1958 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1959 vd->vdev_parent->vdev_child[0] == vd) 1960 vd->vdev_unspare = B_TRUE; 1961 1962 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 1963 1964 /* XXX - L2ARC 1.0 does not support expansion */ 1965 if (vd->vdev_aux) 1966 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 1967 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1968 } 1969 return (spa_vdev_state_exit(spa, vd, 0)); 1970 } 1971 1972 int 1973 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1974 { 1975 vdev_t *vd, *tvd; 1976 int error; 1977 1978 spa_vdev_state_enter(spa); 1979 1980 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1981 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1982 1983 if (!vd->vdev_ops->vdev_op_leaf) 1984 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1985 1986 tvd = vd->vdev_top; 1987 1988 /* 1989 * If the device isn't already offline, try to offline it. 1990 */ 1991 if (!vd->vdev_offline) { 1992 /* 1993 * If this device has the only valid copy of some data, 1994 * don't allow it to be offlined. Log devices are always 1995 * expendable. 1996 */ 1997 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1998 vdev_dtl_required(vd)) 1999 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2000 2001 /* 2002 * Offline this device and reopen its top-level vdev. 2003 * If the top-level vdev is a log device then just offline 2004 * it. Otherwise, if this action results in the top-level 2005 * vdev becoming unusable, undo it and fail the request. 2006 */ 2007 vd->vdev_offline = B_TRUE; 2008 vdev_reopen(tvd); 2009 2010 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2011 vdev_is_dead(tvd)) { 2012 vd->vdev_offline = B_FALSE; 2013 vdev_reopen(tvd); 2014 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2015 } 2016 } 2017 2018 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2019 2020 if (!tvd->vdev_islog || !vdev_is_dead(tvd)) 2021 return (spa_vdev_state_exit(spa, vd, 0)); 2022 2023 (void) spa_vdev_state_exit(spa, vd, 0); 2024 2025 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2026 NULL, DS_FIND_CHILDREN); 2027 if (error) { 2028 (void) vdev_online(spa, guid, 0, NULL); 2029 return (error); 2030 } 2031 /* 2032 * If we successfully offlined the log device then we need to 2033 * sync out the current txg so that the "stubby" block can be 2034 * removed by zil_sync(). 2035 */ 2036 txg_wait_synced(spa->spa_dsl_pool, 0); 2037 return (0); 2038 } 2039 2040 /* 2041 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2042 * vdev_offline(), we assume the spa config is locked. We also clear all 2043 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2044 */ 2045 void 2046 vdev_clear(spa_t *spa, vdev_t *vd) 2047 { 2048 vdev_t *rvd = spa->spa_root_vdev; 2049 2050 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2051 2052 if (vd == NULL) 2053 vd = rvd; 2054 2055 vd->vdev_stat.vs_read_errors = 0; 2056 vd->vdev_stat.vs_write_errors = 0; 2057 vd->vdev_stat.vs_checksum_errors = 0; 2058 2059 for (int c = 0; c < vd->vdev_children; c++) 2060 vdev_clear(spa, vd->vdev_child[c]); 2061 2062 /* 2063 * If we're in the FAULTED state or have experienced failed I/O, then 2064 * clear the persistent state and attempt to reopen the device. We 2065 * also mark the vdev config dirty, so that the new faulted state is 2066 * written out to disk. 2067 */ 2068 if (vd->vdev_faulted || vd->vdev_degraded || 2069 !vdev_readable(vd) || !vdev_writeable(vd)) { 2070 2071 vd->vdev_faulted = vd->vdev_degraded = 0; 2072 vd->vdev_cant_read = B_FALSE; 2073 vd->vdev_cant_write = B_FALSE; 2074 2075 vdev_reopen(vd); 2076 2077 if (vd != rvd) 2078 vdev_state_dirty(vd->vdev_top); 2079 2080 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2081 spa_async_request(spa, SPA_ASYNC_RESILVER); 2082 2083 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2084 } 2085 } 2086 2087 boolean_t 2088 vdev_is_dead(vdev_t *vd) 2089 { 2090 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2091 } 2092 2093 boolean_t 2094 vdev_readable(vdev_t *vd) 2095 { 2096 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2097 } 2098 2099 boolean_t 2100 vdev_writeable(vdev_t *vd) 2101 { 2102 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2103 } 2104 2105 boolean_t 2106 vdev_allocatable(vdev_t *vd) 2107 { 2108 uint64_t state = vd->vdev_state; 2109 2110 /* 2111 * We currently allow allocations from vdevs which may be in the 2112 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2113 * fails to reopen then we'll catch it later when we're holding 2114 * the proper locks. Note that we have to get the vdev state 2115 * in a local variable because although it changes atomically, 2116 * we're asking two separate questions about it. 2117 */ 2118 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2119 !vd->vdev_cant_write); 2120 } 2121 2122 boolean_t 2123 vdev_accessible(vdev_t *vd, zio_t *zio) 2124 { 2125 ASSERT(zio->io_vd == vd); 2126 2127 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2128 return (B_FALSE); 2129 2130 if (zio->io_type == ZIO_TYPE_READ) 2131 return (!vd->vdev_cant_read); 2132 2133 if (zio->io_type == ZIO_TYPE_WRITE) 2134 return (!vd->vdev_cant_write); 2135 2136 return (B_TRUE); 2137 } 2138 2139 /* 2140 * Get statistics for the given vdev. 2141 */ 2142 void 2143 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2144 { 2145 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2146 2147 mutex_enter(&vd->vdev_stat_lock); 2148 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2149 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2150 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2151 vs->vs_state = vd->vdev_state; 2152 vs->vs_rsize = vdev_get_min_asize(vd); 2153 if (vd->vdev_ops->vdev_op_leaf) 2154 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2155 mutex_exit(&vd->vdev_stat_lock); 2156 2157 /* 2158 * If we're getting stats on the root vdev, aggregate the I/O counts 2159 * over all top-level vdevs (i.e. the direct children of the root). 2160 */ 2161 if (vd == rvd) { 2162 for (int c = 0; c < rvd->vdev_children; c++) { 2163 vdev_t *cvd = rvd->vdev_child[c]; 2164 vdev_stat_t *cvs = &cvd->vdev_stat; 2165 2166 mutex_enter(&vd->vdev_stat_lock); 2167 for (int t = 0; t < ZIO_TYPES; t++) { 2168 vs->vs_ops[t] += cvs->vs_ops[t]; 2169 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2170 } 2171 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2172 mutex_exit(&vd->vdev_stat_lock); 2173 } 2174 } 2175 } 2176 2177 void 2178 vdev_clear_stats(vdev_t *vd) 2179 { 2180 mutex_enter(&vd->vdev_stat_lock); 2181 vd->vdev_stat.vs_space = 0; 2182 vd->vdev_stat.vs_dspace = 0; 2183 vd->vdev_stat.vs_alloc = 0; 2184 mutex_exit(&vd->vdev_stat_lock); 2185 } 2186 2187 void 2188 vdev_stat_update(zio_t *zio, uint64_t psize) 2189 { 2190 spa_t *spa = zio->io_spa; 2191 vdev_t *rvd = spa->spa_root_vdev; 2192 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2193 vdev_t *pvd; 2194 uint64_t txg = zio->io_txg; 2195 vdev_stat_t *vs = &vd->vdev_stat; 2196 zio_type_t type = zio->io_type; 2197 int flags = zio->io_flags; 2198 2199 /* 2200 * If this i/o is a gang leader, it didn't do any actual work. 2201 */ 2202 if (zio->io_gang_tree) 2203 return; 2204 2205 if (zio->io_error == 0) { 2206 /* 2207 * If this is a root i/o, don't count it -- we've already 2208 * counted the top-level vdevs, and vdev_get_stats() will 2209 * aggregate them when asked. This reduces contention on 2210 * the root vdev_stat_lock and implicitly handles blocks 2211 * that compress away to holes, for which there is no i/o. 2212 * (Holes never create vdev children, so all the counters 2213 * remain zero, which is what we want.) 2214 * 2215 * Note: this only applies to successful i/o (io_error == 0) 2216 * because unlike i/o counts, errors are not additive. 2217 * When reading a ditto block, for example, failure of 2218 * one top-level vdev does not imply a root-level error. 2219 */ 2220 if (vd == rvd) 2221 return; 2222 2223 ASSERT(vd == zio->io_vd); 2224 2225 if (flags & ZIO_FLAG_IO_BYPASS) 2226 return; 2227 2228 mutex_enter(&vd->vdev_stat_lock); 2229 2230 if (flags & ZIO_FLAG_IO_REPAIR) { 2231 if (flags & ZIO_FLAG_SCRUB_THREAD) 2232 vs->vs_scrub_repaired += psize; 2233 if (flags & ZIO_FLAG_SELF_HEAL) 2234 vs->vs_self_healed += psize; 2235 } 2236 2237 vs->vs_ops[type]++; 2238 vs->vs_bytes[type] += psize; 2239 2240 mutex_exit(&vd->vdev_stat_lock); 2241 return; 2242 } 2243 2244 if (flags & ZIO_FLAG_SPECULATIVE) 2245 return; 2246 2247 /* 2248 * If this is an I/O error that is going to be retried, then ignore the 2249 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2250 * hard errors, when in reality they can happen for any number of 2251 * innocuous reasons (bus resets, MPxIO link failure, etc). 2252 */ 2253 if (zio->io_error == EIO && 2254 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2255 return; 2256 2257 mutex_enter(&vd->vdev_stat_lock); 2258 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2259 if (zio->io_error == ECKSUM) 2260 vs->vs_checksum_errors++; 2261 else 2262 vs->vs_read_errors++; 2263 } 2264 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2265 vs->vs_write_errors++; 2266 mutex_exit(&vd->vdev_stat_lock); 2267 2268 if (type == ZIO_TYPE_WRITE && txg != 0 && 2269 (!(flags & ZIO_FLAG_IO_REPAIR) || 2270 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2271 /* 2272 * This is either a normal write (not a repair), or it's a 2273 * repair induced by the scrub thread. In the normal case, 2274 * we commit the DTL change in the same txg as the block 2275 * was born. In the scrub-induced repair case, we know that 2276 * scrubs run in first-pass syncing context, so we commit 2277 * the DTL change in spa->spa_syncing_txg. 2278 * 2279 * We currently do not make DTL entries for failed spontaneous 2280 * self-healing writes triggered by normal (non-scrubbing) 2281 * reads, because we have no transactional context in which to 2282 * do so -- and it's not clear that it'd be desirable anyway. 2283 */ 2284 if (vd->vdev_ops->vdev_op_leaf) { 2285 uint64_t commit_txg = txg; 2286 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2287 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2288 ASSERT(spa_sync_pass(spa) == 1); 2289 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2290 commit_txg = spa->spa_syncing_txg; 2291 } 2292 ASSERT(commit_txg >= spa->spa_syncing_txg); 2293 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2294 return; 2295 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2296 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2297 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2298 } 2299 if (vd != rvd) 2300 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2301 } 2302 } 2303 2304 void 2305 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2306 { 2307 vdev_stat_t *vs = &vd->vdev_stat; 2308 2309 for (int c = 0; c < vd->vdev_children; c++) 2310 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2311 2312 mutex_enter(&vd->vdev_stat_lock); 2313 2314 if (type == POOL_SCRUB_NONE) { 2315 /* 2316 * Update completion and end time. Leave everything else alone 2317 * so we can report what happened during the previous scrub. 2318 */ 2319 vs->vs_scrub_complete = complete; 2320 vs->vs_scrub_end = gethrestime_sec(); 2321 } else { 2322 vs->vs_scrub_type = type; 2323 vs->vs_scrub_complete = 0; 2324 vs->vs_scrub_examined = 0; 2325 vs->vs_scrub_repaired = 0; 2326 vs->vs_scrub_start = gethrestime_sec(); 2327 vs->vs_scrub_end = 0; 2328 } 2329 2330 mutex_exit(&vd->vdev_stat_lock); 2331 } 2332 2333 /* 2334 * Update the in-core space usage stats for this vdev and the root vdev. 2335 */ 2336 void 2337 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2338 boolean_t update_root) 2339 { 2340 int64_t dspace_delta = space_delta; 2341 spa_t *spa = vd->vdev_spa; 2342 vdev_t *rvd = spa->spa_root_vdev; 2343 2344 ASSERT(vd == vd->vdev_top); 2345 2346 /* 2347 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2348 * factor. We must calculate this here and not at the root vdev 2349 * because the root vdev's psize-to-asize is simply the max of its 2350 * childrens', thus not accurate enough for us. 2351 */ 2352 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2353 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2354 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2355 vd->vdev_deflate_ratio; 2356 2357 mutex_enter(&vd->vdev_stat_lock); 2358 vd->vdev_stat.vs_space += space_delta; 2359 vd->vdev_stat.vs_alloc += alloc_delta; 2360 vd->vdev_stat.vs_dspace += dspace_delta; 2361 mutex_exit(&vd->vdev_stat_lock); 2362 2363 if (update_root) { 2364 ASSERT(rvd == vd->vdev_parent); 2365 ASSERT(vd->vdev_ms_count != 0); 2366 2367 /* 2368 * Don't count non-normal (e.g. intent log) space as part of 2369 * the pool's capacity. 2370 */ 2371 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2372 return; 2373 2374 mutex_enter(&rvd->vdev_stat_lock); 2375 rvd->vdev_stat.vs_space += space_delta; 2376 rvd->vdev_stat.vs_alloc += alloc_delta; 2377 rvd->vdev_stat.vs_dspace += dspace_delta; 2378 mutex_exit(&rvd->vdev_stat_lock); 2379 } 2380 } 2381 2382 /* 2383 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2384 * so that it will be written out next time the vdev configuration is synced. 2385 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2386 */ 2387 void 2388 vdev_config_dirty(vdev_t *vd) 2389 { 2390 spa_t *spa = vd->vdev_spa; 2391 vdev_t *rvd = spa->spa_root_vdev; 2392 int c; 2393 2394 /* 2395 * If this is an aux vdev (as with l2cache and spare devices), then we 2396 * update the vdev config manually and set the sync flag. 2397 */ 2398 if (vd->vdev_aux != NULL) { 2399 spa_aux_vdev_t *sav = vd->vdev_aux; 2400 nvlist_t **aux; 2401 uint_t naux; 2402 2403 for (c = 0; c < sav->sav_count; c++) { 2404 if (sav->sav_vdevs[c] == vd) 2405 break; 2406 } 2407 2408 if (c == sav->sav_count) { 2409 /* 2410 * We're being removed. There's nothing more to do. 2411 */ 2412 ASSERT(sav->sav_sync == B_TRUE); 2413 return; 2414 } 2415 2416 sav->sav_sync = B_TRUE; 2417 2418 if (nvlist_lookup_nvlist_array(sav->sav_config, 2419 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2420 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2421 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2422 } 2423 2424 ASSERT(c < naux); 2425 2426 /* 2427 * Setting the nvlist in the middle if the array is a little 2428 * sketchy, but it will work. 2429 */ 2430 nvlist_free(aux[c]); 2431 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2432 2433 return; 2434 } 2435 2436 /* 2437 * The dirty list is protected by the SCL_CONFIG lock. The caller 2438 * must either hold SCL_CONFIG as writer, or must be the sync thread 2439 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2440 * so this is sufficient to ensure mutual exclusion. 2441 */ 2442 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2443 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2444 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2445 2446 if (vd == rvd) { 2447 for (c = 0; c < rvd->vdev_children; c++) 2448 vdev_config_dirty(rvd->vdev_child[c]); 2449 } else { 2450 ASSERT(vd == vd->vdev_top); 2451 2452 if (!list_link_active(&vd->vdev_config_dirty_node)) 2453 list_insert_head(&spa->spa_config_dirty_list, vd); 2454 } 2455 } 2456 2457 void 2458 vdev_config_clean(vdev_t *vd) 2459 { 2460 spa_t *spa = vd->vdev_spa; 2461 2462 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2463 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2464 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2465 2466 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2467 list_remove(&spa->spa_config_dirty_list, vd); 2468 } 2469 2470 /* 2471 * Mark a top-level vdev's state as dirty, so that the next pass of 2472 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2473 * the state changes from larger config changes because they require 2474 * much less locking, and are often needed for administrative actions. 2475 */ 2476 void 2477 vdev_state_dirty(vdev_t *vd) 2478 { 2479 spa_t *spa = vd->vdev_spa; 2480 2481 ASSERT(vd == vd->vdev_top); 2482 2483 /* 2484 * The state list is protected by the SCL_STATE lock. The caller 2485 * must either hold SCL_STATE as writer, or must be the sync thread 2486 * (which holds SCL_STATE as reader). There's only one sync thread, 2487 * so this is sufficient to ensure mutual exclusion. 2488 */ 2489 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2490 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2491 spa_config_held(spa, SCL_STATE, RW_READER))); 2492 2493 if (!list_link_active(&vd->vdev_state_dirty_node)) 2494 list_insert_head(&spa->spa_state_dirty_list, vd); 2495 } 2496 2497 void 2498 vdev_state_clean(vdev_t *vd) 2499 { 2500 spa_t *spa = vd->vdev_spa; 2501 2502 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2503 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2504 spa_config_held(spa, SCL_STATE, RW_READER))); 2505 2506 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2507 list_remove(&spa->spa_state_dirty_list, vd); 2508 } 2509 2510 /* 2511 * Propagate vdev state up from children to parent. 2512 */ 2513 void 2514 vdev_propagate_state(vdev_t *vd) 2515 { 2516 spa_t *spa = vd->vdev_spa; 2517 vdev_t *rvd = spa->spa_root_vdev; 2518 int degraded = 0, faulted = 0; 2519 int corrupted = 0; 2520 vdev_t *child; 2521 2522 if (vd->vdev_children > 0) { 2523 for (int c = 0; c < vd->vdev_children; c++) { 2524 child = vd->vdev_child[c]; 2525 2526 if (!vdev_readable(child) || 2527 (!vdev_writeable(child) && spa_writeable(spa))) { 2528 /* 2529 * Root special: if there is a top-level log 2530 * device, treat the root vdev as if it were 2531 * degraded. 2532 */ 2533 if (child->vdev_islog && vd == rvd) 2534 degraded++; 2535 else 2536 faulted++; 2537 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2538 degraded++; 2539 } 2540 2541 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2542 corrupted++; 2543 } 2544 2545 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2546 2547 /* 2548 * Root special: if there is a top-level vdev that cannot be 2549 * opened due to corrupted metadata, then propagate the root 2550 * vdev's aux state as 'corrupt' rather than 'insufficient 2551 * replicas'. 2552 */ 2553 if (corrupted && vd == rvd && 2554 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2555 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2556 VDEV_AUX_CORRUPT_DATA); 2557 } 2558 2559 if (vd->vdev_parent) 2560 vdev_propagate_state(vd->vdev_parent); 2561 } 2562 2563 /* 2564 * Set a vdev's state. If this is during an open, we don't update the parent 2565 * state, because we're in the process of opening children depth-first. 2566 * Otherwise, we propagate the change to the parent. 2567 * 2568 * If this routine places a device in a faulted state, an appropriate ereport is 2569 * generated. 2570 */ 2571 void 2572 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2573 { 2574 uint64_t save_state; 2575 spa_t *spa = vd->vdev_spa; 2576 2577 if (state == vd->vdev_state) { 2578 vd->vdev_stat.vs_aux = aux; 2579 return; 2580 } 2581 2582 save_state = vd->vdev_state; 2583 2584 vd->vdev_state = state; 2585 vd->vdev_stat.vs_aux = aux; 2586 2587 /* 2588 * If we are setting the vdev state to anything but an open state, then 2589 * always close the underlying device. Otherwise, we keep accessible 2590 * but invalid devices open forever. We don't call vdev_close() itself, 2591 * because that implies some extra checks (offline, etc) that we don't 2592 * want here. This is limited to leaf devices, because otherwise 2593 * closing the device will affect other children. 2594 */ 2595 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2596 vd->vdev_ops->vdev_op_close(vd); 2597 2598 if (vd->vdev_removed && 2599 state == VDEV_STATE_CANT_OPEN && 2600 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2601 /* 2602 * If the previous state is set to VDEV_STATE_REMOVED, then this 2603 * device was previously marked removed and someone attempted to 2604 * reopen it. If this failed due to a nonexistent device, then 2605 * keep the device in the REMOVED state. We also let this be if 2606 * it is one of our special test online cases, which is only 2607 * attempting to online the device and shouldn't generate an FMA 2608 * fault. 2609 */ 2610 vd->vdev_state = VDEV_STATE_REMOVED; 2611 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2612 } else if (state == VDEV_STATE_REMOVED) { 2613 /* 2614 * Indicate to the ZFS DE that this device has been removed, and 2615 * any recent errors should be ignored. 2616 */ 2617 zfs_post_remove(spa, vd); 2618 vd->vdev_removed = B_TRUE; 2619 } else if (state == VDEV_STATE_CANT_OPEN) { 2620 /* 2621 * If we fail to open a vdev during an import, we mark it as 2622 * "not available", which signifies that it was never there to 2623 * begin with. Failure to open such a device is not considered 2624 * an error. 2625 */ 2626 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2627 vd->vdev_ops->vdev_op_leaf) 2628 vd->vdev_not_present = 1; 2629 2630 /* 2631 * Post the appropriate ereport. If the 'prevstate' field is 2632 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2633 * that this is part of a vdev_reopen(). In this case, we don't 2634 * want to post the ereport if the device was already in the 2635 * CANT_OPEN state beforehand. 2636 * 2637 * If the 'checkremove' flag is set, then this is an attempt to 2638 * online the device in response to an insertion event. If we 2639 * hit this case, then we have detected an insertion event for a 2640 * faulted or offline device that wasn't in the removed state. 2641 * In this scenario, we don't post an ereport because we are 2642 * about to replace the device, or attempt an online with 2643 * vdev_forcefault, which will generate the fault for us. 2644 */ 2645 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2646 !vd->vdev_not_present && !vd->vdev_checkremove && 2647 vd != spa->spa_root_vdev) { 2648 const char *class; 2649 2650 switch (aux) { 2651 case VDEV_AUX_OPEN_FAILED: 2652 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2653 break; 2654 case VDEV_AUX_CORRUPT_DATA: 2655 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2656 break; 2657 case VDEV_AUX_NO_REPLICAS: 2658 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2659 break; 2660 case VDEV_AUX_BAD_GUID_SUM: 2661 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2662 break; 2663 case VDEV_AUX_TOO_SMALL: 2664 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2665 break; 2666 case VDEV_AUX_BAD_LABEL: 2667 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2668 break; 2669 case VDEV_AUX_IO_FAILURE: 2670 class = FM_EREPORT_ZFS_IO_FAILURE; 2671 break; 2672 default: 2673 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2674 } 2675 2676 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2677 } 2678 2679 /* Erase any notion of persistent removed state */ 2680 vd->vdev_removed = B_FALSE; 2681 } else { 2682 vd->vdev_removed = B_FALSE; 2683 } 2684 2685 if (!isopen && vd->vdev_parent) 2686 vdev_propagate_state(vd->vdev_parent); 2687 } 2688 2689 /* 2690 * Check the vdev configuration to ensure that it's capable of supporting 2691 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2692 * In addition, only a single top-level vdev is allowed and none of the leaves 2693 * can be wholedisks. 2694 */ 2695 boolean_t 2696 vdev_is_bootable(vdev_t *vd) 2697 { 2698 if (!vd->vdev_ops->vdev_op_leaf) { 2699 char *vdev_type = vd->vdev_ops->vdev_op_type; 2700 2701 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2702 vd->vdev_children > 1) { 2703 return (B_FALSE); 2704 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2705 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2706 return (B_FALSE); 2707 } 2708 } else if (vd->vdev_wholedisk == 1) { 2709 return (B_FALSE); 2710 } 2711 2712 for (int c = 0; c < vd->vdev_children; c++) { 2713 if (!vdev_is_bootable(vd->vdev_child[c])) 2714 return (B_FALSE); 2715 } 2716 return (B_TRUE); 2717 } 2718 2719 void 2720 vdev_load_log_state(vdev_t *vd, nvlist_t *nv) 2721 { 2722 uint_t children; 2723 nvlist_t **child; 2724 uint64_t val; 2725 spa_t *spa = vd->vdev_spa; 2726 2727 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2728 &child, &children) == 0) { 2729 for (int c = 0; c < children; c++) 2730 vdev_load_log_state(vd->vdev_child[c], child[c]); 2731 } 2732 2733 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv, 2734 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) { 2735 2736 /* 2737 * It would be nice to call vdev_offline() 2738 * directly but the pool isn't fully loaded and 2739 * the txg threads have not been started yet. 2740 */ 2741 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER); 2742 vd->vdev_offline = val; 2743 vdev_reopen(vd->vdev_top); 2744 spa_config_exit(spa, SCL_STATE_ALL, FTAG); 2745 } 2746 } 2747 2748 /* 2749 * Expand a vdev if possible. 2750 */ 2751 void 2752 vdev_expand(vdev_t *vd, uint64_t txg) 2753 { 2754 ASSERT(vd->vdev_top == vd); 2755 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2756 2757 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2758 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2759 vdev_config_dirty(vd); 2760 } 2761 } 2762