xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev.c (revision 2695d4f4d1e2a6022c8a279d40c3cb750964974d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 
47 /*
48  * Virtual device management.
49  */
50 
51 static vdev_ops_t *vdev_ops_table[] = {
52 	&vdev_root_ops,
53 	&vdev_raidz_ops,
54 	&vdev_mirror_ops,
55 	&vdev_replacing_ops,
56 	&vdev_spare_ops,
57 	&vdev_disk_ops,
58 	&vdev_file_ops,
59 	&vdev_missing_ops,
60 	&vdev_hole_ops,
61 	NULL
62 };
63 
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66 
67 /*
68  * When a vdev is added, it will be divided into approximately (but no
69  * more than) this number of metaslabs.
70  */
71 int metaslabs_per_vdev = 200;
72 
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 	vdev_ops_t *ops, **opspp;
80 
81 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 		if (strcmp(ops->vdev_op_type, type) == 0)
83 			break;
84 
85 	return (ops);
86 }
87 
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 	uint64_t csize;
97 
98 	for (int c = 0; c < vd->vdev_children; c++) {
99 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 		asize = MAX(asize, csize);
101 	}
102 
103 	return (asize);
104 }
105 
106 /*
107  * Get the minimum allocatable size. We define the allocatable size as
108  * the vdev's asize rounded to the nearest metaslab. This allows us to
109  * replace or attach devices which don't have the same physical size but
110  * can still satisfy the same number of allocations.
111  */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 	vdev_t *pvd = vd->vdev_parent;
116 
117 	/*
118 	 * If our parent is NULL (inactive spare or cache) or is the root,
119 	 * just return our own asize.
120 	 */
121 	if (pvd == NULL)
122 		return (vd->vdev_asize);
123 
124 	/*
125 	 * The top-level vdev just returns the allocatable size rounded
126 	 * to the nearest metaslab.
127 	 */
128 	if (vd == vd->vdev_top)
129 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130 
131 	/*
132 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 	 * so each child must provide at least 1/Nth of its asize.
134 	 */
135 	if (pvd->vdev_ops == &vdev_raidz_ops)
136 		return (pvd->vdev_min_asize / pvd->vdev_children);
137 
138 	return (pvd->vdev_min_asize);
139 }
140 
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 	vd->vdev_min_asize = vdev_get_min_asize(vd);
145 
146 	for (int c = 0; c < vd->vdev_children; c++)
147 		vdev_set_min_asize(vd->vdev_child[c]);
148 }
149 
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 	vdev_t *rvd = spa->spa_root_vdev;
154 
155 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156 
157 	if (vdev < rvd->vdev_children) {
158 		ASSERT(rvd->vdev_child[vdev] != NULL);
159 		return (rvd->vdev_child[vdev]);
160 	}
161 
162 	return (NULL);
163 }
164 
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 	vdev_t *mvd;
169 
170 	if (vd->vdev_guid == guid)
171 		return (vd);
172 
173 	for (int c = 0; c < vd->vdev_children; c++)
174 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175 		    NULL)
176 			return (mvd);
177 
178 	return (NULL);
179 }
180 
181 static int
182 vdev_count_leaves_impl(vdev_t *vd)
183 {
184 	int n = 0;
185 
186 	if (vd->vdev_ops->vdev_op_leaf)
187 		return (1);
188 
189 	for (int c = 0; c < vd->vdev_children; c++)
190 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
191 
192 	return (n);
193 }
194 
195 int
196 vdev_count_leaves(spa_t *spa)
197 {
198 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
199 }
200 
201 void
202 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
203 {
204 	size_t oldsize, newsize;
205 	uint64_t id = cvd->vdev_id;
206 	vdev_t **newchild;
207 
208 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
209 	ASSERT(cvd->vdev_parent == NULL);
210 
211 	cvd->vdev_parent = pvd;
212 
213 	if (pvd == NULL)
214 		return;
215 
216 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
217 
218 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
219 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
220 	newsize = pvd->vdev_children * sizeof (vdev_t *);
221 
222 	newchild = kmem_zalloc(newsize, KM_SLEEP);
223 	if (pvd->vdev_child != NULL) {
224 		bcopy(pvd->vdev_child, newchild, oldsize);
225 		kmem_free(pvd->vdev_child, oldsize);
226 	}
227 
228 	pvd->vdev_child = newchild;
229 	pvd->vdev_child[id] = cvd;
230 
231 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
232 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
233 
234 	/*
235 	 * Walk up all ancestors to update guid sum.
236 	 */
237 	for (; pvd != NULL; pvd = pvd->vdev_parent)
238 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
239 }
240 
241 void
242 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
243 {
244 	int c;
245 	uint_t id = cvd->vdev_id;
246 
247 	ASSERT(cvd->vdev_parent == pvd);
248 
249 	if (pvd == NULL)
250 		return;
251 
252 	ASSERT(id < pvd->vdev_children);
253 	ASSERT(pvd->vdev_child[id] == cvd);
254 
255 	pvd->vdev_child[id] = NULL;
256 	cvd->vdev_parent = NULL;
257 
258 	for (c = 0; c < pvd->vdev_children; c++)
259 		if (pvd->vdev_child[c])
260 			break;
261 
262 	if (c == pvd->vdev_children) {
263 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
264 		pvd->vdev_child = NULL;
265 		pvd->vdev_children = 0;
266 	}
267 
268 	/*
269 	 * Walk up all ancestors to update guid sum.
270 	 */
271 	for (; pvd != NULL; pvd = pvd->vdev_parent)
272 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
273 }
274 
275 /*
276  * Remove any holes in the child array.
277  */
278 void
279 vdev_compact_children(vdev_t *pvd)
280 {
281 	vdev_t **newchild, *cvd;
282 	int oldc = pvd->vdev_children;
283 	int newc;
284 
285 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
286 
287 	for (int c = newc = 0; c < oldc; c++)
288 		if (pvd->vdev_child[c])
289 			newc++;
290 
291 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
292 
293 	for (int c = newc = 0; c < oldc; c++) {
294 		if ((cvd = pvd->vdev_child[c]) != NULL) {
295 			newchild[newc] = cvd;
296 			cvd->vdev_id = newc++;
297 		}
298 	}
299 
300 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
301 	pvd->vdev_child = newchild;
302 	pvd->vdev_children = newc;
303 }
304 
305 /*
306  * Allocate and minimally initialize a vdev_t.
307  */
308 vdev_t *
309 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
310 {
311 	vdev_t *vd;
312 
313 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
314 
315 	if (spa->spa_root_vdev == NULL) {
316 		ASSERT(ops == &vdev_root_ops);
317 		spa->spa_root_vdev = vd;
318 		spa->spa_load_guid = spa_generate_guid(NULL);
319 	}
320 
321 	if (guid == 0 && ops != &vdev_hole_ops) {
322 		if (spa->spa_root_vdev == vd) {
323 			/*
324 			 * The root vdev's guid will also be the pool guid,
325 			 * which must be unique among all pools.
326 			 */
327 			guid = spa_generate_guid(NULL);
328 		} else {
329 			/*
330 			 * Any other vdev's guid must be unique within the pool.
331 			 */
332 			guid = spa_generate_guid(spa);
333 		}
334 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
335 	}
336 
337 	vd->vdev_spa = spa;
338 	vd->vdev_id = id;
339 	vd->vdev_guid = guid;
340 	vd->vdev_guid_sum = guid;
341 	vd->vdev_ops = ops;
342 	vd->vdev_state = VDEV_STATE_CLOSED;
343 	vd->vdev_ishole = (ops == &vdev_hole_ops);
344 
345 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
346 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
347 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
348 	for (int t = 0; t < DTL_TYPES; t++) {
349 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
350 		    &vd->vdev_dtl_lock);
351 	}
352 	txg_list_create(&vd->vdev_ms_list,
353 	    offsetof(struct metaslab, ms_txg_node));
354 	txg_list_create(&vd->vdev_dtl_list,
355 	    offsetof(struct vdev, vdev_dtl_node));
356 	vd->vdev_stat.vs_timestamp = gethrtime();
357 	vdev_queue_init(vd);
358 	vdev_cache_init(vd);
359 
360 	return (vd);
361 }
362 
363 /*
364  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
365  * creating a new vdev or loading an existing one - the behavior is slightly
366  * different for each case.
367  */
368 int
369 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
370     int alloctype)
371 {
372 	vdev_ops_t *ops;
373 	char *type;
374 	uint64_t guid = 0, islog, nparity;
375 	vdev_t *vd;
376 
377 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
378 
379 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
380 		return (SET_ERROR(EINVAL));
381 
382 	if ((ops = vdev_getops(type)) == NULL)
383 		return (SET_ERROR(EINVAL));
384 
385 	/*
386 	 * If this is a load, get the vdev guid from the nvlist.
387 	 * Otherwise, vdev_alloc_common() will generate one for us.
388 	 */
389 	if (alloctype == VDEV_ALLOC_LOAD) {
390 		uint64_t label_id;
391 
392 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
393 		    label_id != id)
394 			return (SET_ERROR(EINVAL));
395 
396 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
397 			return (SET_ERROR(EINVAL));
398 	} else if (alloctype == VDEV_ALLOC_SPARE) {
399 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
400 			return (SET_ERROR(EINVAL));
401 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
402 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 			return (SET_ERROR(EINVAL));
404 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 			return (SET_ERROR(EINVAL));
407 	}
408 
409 	/*
410 	 * The first allocated vdev must be of type 'root'.
411 	 */
412 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
413 		return (SET_ERROR(EINVAL));
414 
415 	/*
416 	 * Determine whether we're a log vdev.
417 	 */
418 	islog = 0;
419 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
420 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
421 		return (SET_ERROR(ENOTSUP));
422 
423 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
424 		return (SET_ERROR(ENOTSUP));
425 
426 	/*
427 	 * Set the nparity property for RAID-Z vdevs.
428 	 */
429 	nparity = -1ULL;
430 	if (ops == &vdev_raidz_ops) {
431 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
432 		    &nparity) == 0) {
433 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
434 				return (SET_ERROR(EINVAL));
435 			/*
436 			 * Previous versions could only support 1 or 2 parity
437 			 * device.
438 			 */
439 			if (nparity > 1 &&
440 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
441 				return (SET_ERROR(ENOTSUP));
442 			if (nparity > 2 &&
443 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
444 				return (SET_ERROR(ENOTSUP));
445 		} else {
446 			/*
447 			 * We require the parity to be specified for SPAs that
448 			 * support multiple parity levels.
449 			 */
450 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
451 				return (SET_ERROR(EINVAL));
452 			/*
453 			 * Otherwise, we default to 1 parity device for RAID-Z.
454 			 */
455 			nparity = 1;
456 		}
457 	} else {
458 		nparity = 0;
459 	}
460 	ASSERT(nparity != -1ULL);
461 
462 	vd = vdev_alloc_common(spa, id, guid, ops);
463 
464 	vd->vdev_islog = islog;
465 	vd->vdev_nparity = nparity;
466 
467 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
468 		vd->vdev_path = spa_strdup(vd->vdev_path);
469 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
470 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
471 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
472 	    &vd->vdev_physpath) == 0)
473 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
474 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
475 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
476 
477 	/*
478 	 * Set the whole_disk property.  If it's not specified, leave the value
479 	 * as -1.
480 	 */
481 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
482 	    &vd->vdev_wholedisk) != 0)
483 		vd->vdev_wholedisk = -1ULL;
484 
485 	/*
486 	 * Look for the 'not present' flag.  This will only be set if the device
487 	 * was not present at the time of import.
488 	 */
489 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
490 	    &vd->vdev_not_present);
491 
492 	/*
493 	 * Get the alignment requirement.
494 	 */
495 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
496 
497 	/*
498 	 * Retrieve the vdev creation time.
499 	 */
500 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
501 	    &vd->vdev_crtxg);
502 
503 	/*
504 	 * If we're a top-level vdev, try to load the allocation parameters.
505 	 */
506 	if (parent && !parent->vdev_parent &&
507 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
508 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
509 		    &vd->vdev_ms_array);
510 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
511 		    &vd->vdev_ms_shift);
512 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
513 		    &vd->vdev_asize);
514 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
515 		    &vd->vdev_removing);
516 	}
517 
518 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
519 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
520 		    alloctype == VDEV_ALLOC_ADD ||
521 		    alloctype == VDEV_ALLOC_SPLIT ||
522 		    alloctype == VDEV_ALLOC_ROOTPOOL);
523 		vd->vdev_mg = metaslab_group_create(islog ?
524 		    spa_log_class(spa) : spa_normal_class(spa), vd);
525 	}
526 
527 	/*
528 	 * If we're a leaf vdev, try to load the DTL object and other state.
529 	 */
530 	if (vd->vdev_ops->vdev_op_leaf &&
531 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
532 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
533 		if (alloctype == VDEV_ALLOC_LOAD) {
534 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
535 			    &vd->vdev_dtl_object);
536 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
537 			    &vd->vdev_unspare);
538 		}
539 
540 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
541 			uint64_t spare = 0;
542 
543 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
544 			    &spare) == 0 && spare)
545 				spa_spare_add(vd);
546 		}
547 
548 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
549 		    &vd->vdev_offline);
550 
551 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
552 		    &vd->vdev_resilver_txg);
553 
554 		/*
555 		 * When importing a pool, we want to ignore the persistent fault
556 		 * state, as the diagnosis made on another system may not be
557 		 * valid in the current context.  Local vdevs will
558 		 * remain in the faulted state.
559 		 */
560 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
561 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
562 			    &vd->vdev_faulted);
563 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
564 			    &vd->vdev_degraded);
565 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
566 			    &vd->vdev_removed);
567 
568 			if (vd->vdev_faulted || vd->vdev_degraded) {
569 				char *aux;
570 
571 				vd->vdev_label_aux =
572 				    VDEV_AUX_ERR_EXCEEDED;
573 				if (nvlist_lookup_string(nv,
574 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
575 				    strcmp(aux, "external") == 0)
576 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
577 			}
578 		}
579 	}
580 
581 	/*
582 	 * Add ourselves to the parent's list of children.
583 	 */
584 	vdev_add_child(parent, vd);
585 
586 	*vdp = vd;
587 
588 	return (0);
589 }
590 
591 void
592 vdev_free(vdev_t *vd)
593 {
594 	spa_t *spa = vd->vdev_spa;
595 
596 	/*
597 	 * vdev_free() implies closing the vdev first.  This is simpler than
598 	 * trying to ensure complicated semantics for all callers.
599 	 */
600 	vdev_close(vd);
601 
602 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
603 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
604 
605 	/*
606 	 * Free all children.
607 	 */
608 	for (int c = 0; c < vd->vdev_children; c++)
609 		vdev_free(vd->vdev_child[c]);
610 
611 	ASSERT(vd->vdev_child == NULL);
612 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
613 
614 	/*
615 	 * Discard allocation state.
616 	 */
617 	if (vd->vdev_mg != NULL) {
618 		vdev_metaslab_fini(vd);
619 		metaslab_group_destroy(vd->vdev_mg);
620 	}
621 
622 	ASSERT0(vd->vdev_stat.vs_space);
623 	ASSERT0(vd->vdev_stat.vs_dspace);
624 	ASSERT0(vd->vdev_stat.vs_alloc);
625 
626 	/*
627 	 * Remove this vdev from its parent's child list.
628 	 */
629 	vdev_remove_child(vd->vdev_parent, vd);
630 
631 	ASSERT(vd->vdev_parent == NULL);
632 
633 	/*
634 	 * Clean up vdev structure.
635 	 */
636 	vdev_queue_fini(vd);
637 	vdev_cache_fini(vd);
638 
639 	if (vd->vdev_path)
640 		spa_strfree(vd->vdev_path);
641 	if (vd->vdev_devid)
642 		spa_strfree(vd->vdev_devid);
643 	if (vd->vdev_physpath)
644 		spa_strfree(vd->vdev_physpath);
645 	if (vd->vdev_fru)
646 		spa_strfree(vd->vdev_fru);
647 
648 	if (vd->vdev_isspare)
649 		spa_spare_remove(vd);
650 	if (vd->vdev_isl2cache)
651 		spa_l2cache_remove(vd);
652 
653 	txg_list_destroy(&vd->vdev_ms_list);
654 	txg_list_destroy(&vd->vdev_dtl_list);
655 
656 	mutex_enter(&vd->vdev_dtl_lock);
657 	space_map_close(vd->vdev_dtl_sm);
658 	for (int t = 0; t < DTL_TYPES; t++) {
659 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
660 		range_tree_destroy(vd->vdev_dtl[t]);
661 	}
662 	mutex_exit(&vd->vdev_dtl_lock);
663 
664 	mutex_destroy(&vd->vdev_dtl_lock);
665 	mutex_destroy(&vd->vdev_stat_lock);
666 	mutex_destroy(&vd->vdev_probe_lock);
667 
668 	if (vd == spa->spa_root_vdev)
669 		spa->spa_root_vdev = NULL;
670 
671 	kmem_free(vd, sizeof (vdev_t));
672 }
673 
674 /*
675  * Transfer top-level vdev state from svd to tvd.
676  */
677 static void
678 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
679 {
680 	spa_t *spa = svd->vdev_spa;
681 	metaslab_t *msp;
682 	vdev_t *vd;
683 	int t;
684 
685 	ASSERT(tvd == tvd->vdev_top);
686 
687 	tvd->vdev_ms_array = svd->vdev_ms_array;
688 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
689 	tvd->vdev_ms_count = svd->vdev_ms_count;
690 
691 	svd->vdev_ms_array = 0;
692 	svd->vdev_ms_shift = 0;
693 	svd->vdev_ms_count = 0;
694 
695 	if (tvd->vdev_mg)
696 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
697 	tvd->vdev_mg = svd->vdev_mg;
698 	tvd->vdev_ms = svd->vdev_ms;
699 
700 	svd->vdev_mg = NULL;
701 	svd->vdev_ms = NULL;
702 
703 	if (tvd->vdev_mg != NULL)
704 		tvd->vdev_mg->mg_vd = tvd;
705 
706 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
707 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
708 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
709 
710 	svd->vdev_stat.vs_alloc = 0;
711 	svd->vdev_stat.vs_space = 0;
712 	svd->vdev_stat.vs_dspace = 0;
713 
714 	for (t = 0; t < TXG_SIZE; t++) {
715 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
716 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
717 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
718 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
719 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
720 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
721 	}
722 
723 	if (list_link_active(&svd->vdev_config_dirty_node)) {
724 		vdev_config_clean(svd);
725 		vdev_config_dirty(tvd);
726 	}
727 
728 	if (list_link_active(&svd->vdev_state_dirty_node)) {
729 		vdev_state_clean(svd);
730 		vdev_state_dirty(tvd);
731 	}
732 
733 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
734 	svd->vdev_deflate_ratio = 0;
735 
736 	tvd->vdev_islog = svd->vdev_islog;
737 	svd->vdev_islog = 0;
738 }
739 
740 static void
741 vdev_top_update(vdev_t *tvd, vdev_t *vd)
742 {
743 	if (vd == NULL)
744 		return;
745 
746 	vd->vdev_top = tvd;
747 
748 	for (int c = 0; c < vd->vdev_children; c++)
749 		vdev_top_update(tvd, vd->vdev_child[c]);
750 }
751 
752 /*
753  * Add a mirror/replacing vdev above an existing vdev.
754  */
755 vdev_t *
756 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
757 {
758 	spa_t *spa = cvd->vdev_spa;
759 	vdev_t *pvd = cvd->vdev_parent;
760 	vdev_t *mvd;
761 
762 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
763 
764 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
765 
766 	mvd->vdev_asize = cvd->vdev_asize;
767 	mvd->vdev_min_asize = cvd->vdev_min_asize;
768 	mvd->vdev_max_asize = cvd->vdev_max_asize;
769 	mvd->vdev_ashift = cvd->vdev_ashift;
770 	mvd->vdev_state = cvd->vdev_state;
771 	mvd->vdev_crtxg = cvd->vdev_crtxg;
772 
773 	vdev_remove_child(pvd, cvd);
774 	vdev_add_child(pvd, mvd);
775 	cvd->vdev_id = mvd->vdev_children;
776 	vdev_add_child(mvd, cvd);
777 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
778 
779 	if (mvd == mvd->vdev_top)
780 		vdev_top_transfer(cvd, mvd);
781 
782 	return (mvd);
783 }
784 
785 /*
786  * Remove a 1-way mirror/replacing vdev from the tree.
787  */
788 void
789 vdev_remove_parent(vdev_t *cvd)
790 {
791 	vdev_t *mvd = cvd->vdev_parent;
792 	vdev_t *pvd = mvd->vdev_parent;
793 
794 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
795 
796 	ASSERT(mvd->vdev_children == 1);
797 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
798 	    mvd->vdev_ops == &vdev_replacing_ops ||
799 	    mvd->vdev_ops == &vdev_spare_ops);
800 	cvd->vdev_ashift = mvd->vdev_ashift;
801 
802 	vdev_remove_child(mvd, cvd);
803 	vdev_remove_child(pvd, mvd);
804 
805 	/*
806 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
807 	 * Otherwise, we could have detached an offline device, and when we
808 	 * go to import the pool we'll think we have two top-level vdevs,
809 	 * instead of a different version of the same top-level vdev.
810 	 */
811 	if (mvd->vdev_top == mvd) {
812 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
813 		cvd->vdev_orig_guid = cvd->vdev_guid;
814 		cvd->vdev_guid += guid_delta;
815 		cvd->vdev_guid_sum += guid_delta;
816 	}
817 	cvd->vdev_id = mvd->vdev_id;
818 	vdev_add_child(pvd, cvd);
819 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
820 
821 	if (cvd == cvd->vdev_top)
822 		vdev_top_transfer(mvd, cvd);
823 
824 	ASSERT(mvd->vdev_children == 0);
825 	vdev_free(mvd);
826 }
827 
828 int
829 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
830 {
831 	spa_t *spa = vd->vdev_spa;
832 	objset_t *mos = spa->spa_meta_objset;
833 	uint64_t m;
834 	uint64_t oldc = vd->vdev_ms_count;
835 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
836 	metaslab_t **mspp;
837 	int error;
838 
839 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
840 
841 	/*
842 	 * This vdev is not being allocated from yet or is a hole.
843 	 */
844 	if (vd->vdev_ms_shift == 0)
845 		return (0);
846 
847 	ASSERT(!vd->vdev_ishole);
848 
849 	/*
850 	 * Compute the raidz-deflation ratio.  Note, we hard-code
851 	 * in 128k (1 << 17) because it is the "typical" blocksize.
852 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
853 	 * otherwise it would inconsistently account for existing bp's.
854 	 */
855 	vd->vdev_deflate_ratio = (1 << 17) /
856 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
857 
858 	ASSERT(oldc <= newc);
859 
860 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
861 
862 	if (oldc != 0) {
863 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
864 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
865 	}
866 
867 	vd->vdev_ms = mspp;
868 	vd->vdev_ms_count = newc;
869 
870 	for (m = oldc; m < newc; m++) {
871 		uint64_t object = 0;
872 
873 		if (txg == 0) {
874 			error = dmu_read(mos, vd->vdev_ms_array,
875 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
876 			    DMU_READ_PREFETCH);
877 			if (error)
878 				return (error);
879 		}
880 
881 		error = metaslab_init(vd->vdev_mg, m, object, txg,
882 		    &(vd->vdev_ms[m]));
883 		if (error)
884 			return (error);
885 	}
886 
887 	if (txg == 0)
888 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
889 
890 	/*
891 	 * If the vdev is being removed we don't activate
892 	 * the metaslabs since we want to ensure that no new
893 	 * allocations are performed on this device.
894 	 */
895 	if (oldc == 0 && !vd->vdev_removing)
896 		metaslab_group_activate(vd->vdev_mg);
897 
898 	if (txg == 0)
899 		spa_config_exit(spa, SCL_ALLOC, FTAG);
900 
901 	return (0);
902 }
903 
904 void
905 vdev_metaslab_fini(vdev_t *vd)
906 {
907 	uint64_t m;
908 	uint64_t count = vd->vdev_ms_count;
909 
910 	if (vd->vdev_ms != NULL) {
911 		metaslab_group_passivate(vd->vdev_mg);
912 		for (m = 0; m < count; m++) {
913 			metaslab_t *msp = vd->vdev_ms[m];
914 
915 			if (msp != NULL)
916 				metaslab_fini(msp);
917 		}
918 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
919 		vd->vdev_ms = NULL;
920 	}
921 }
922 
923 typedef struct vdev_probe_stats {
924 	boolean_t	vps_readable;
925 	boolean_t	vps_writeable;
926 	int		vps_flags;
927 } vdev_probe_stats_t;
928 
929 static void
930 vdev_probe_done(zio_t *zio)
931 {
932 	spa_t *spa = zio->io_spa;
933 	vdev_t *vd = zio->io_vd;
934 	vdev_probe_stats_t *vps = zio->io_private;
935 
936 	ASSERT(vd->vdev_probe_zio != NULL);
937 
938 	if (zio->io_type == ZIO_TYPE_READ) {
939 		if (zio->io_error == 0)
940 			vps->vps_readable = 1;
941 		if (zio->io_error == 0 && spa_writeable(spa)) {
942 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
943 			    zio->io_offset, zio->io_size, zio->io_data,
944 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
945 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
946 		} else {
947 			zio_buf_free(zio->io_data, zio->io_size);
948 		}
949 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
950 		if (zio->io_error == 0)
951 			vps->vps_writeable = 1;
952 		zio_buf_free(zio->io_data, zio->io_size);
953 	} else if (zio->io_type == ZIO_TYPE_NULL) {
954 		zio_t *pio;
955 
956 		vd->vdev_cant_read |= !vps->vps_readable;
957 		vd->vdev_cant_write |= !vps->vps_writeable;
958 
959 		if (vdev_readable(vd) &&
960 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
961 			zio->io_error = 0;
962 		} else {
963 			ASSERT(zio->io_error != 0);
964 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
965 			    spa, vd, NULL, 0, 0);
966 			zio->io_error = SET_ERROR(ENXIO);
967 		}
968 
969 		mutex_enter(&vd->vdev_probe_lock);
970 		ASSERT(vd->vdev_probe_zio == zio);
971 		vd->vdev_probe_zio = NULL;
972 		mutex_exit(&vd->vdev_probe_lock);
973 
974 		while ((pio = zio_walk_parents(zio)) != NULL)
975 			if (!vdev_accessible(vd, pio))
976 				pio->io_error = SET_ERROR(ENXIO);
977 
978 		kmem_free(vps, sizeof (*vps));
979 	}
980 }
981 
982 /*
983  * Determine whether this device is accessible.
984  *
985  * Read and write to several known locations: the pad regions of each
986  * vdev label but the first, which we leave alone in case it contains
987  * a VTOC.
988  */
989 zio_t *
990 vdev_probe(vdev_t *vd, zio_t *zio)
991 {
992 	spa_t *spa = vd->vdev_spa;
993 	vdev_probe_stats_t *vps = NULL;
994 	zio_t *pio;
995 
996 	ASSERT(vd->vdev_ops->vdev_op_leaf);
997 
998 	/*
999 	 * Don't probe the probe.
1000 	 */
1001 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1002 		return (NULL);
1003 
1004 	/*
1005 	 * To prevent 'probe storms' when a device fails, we create
1006 	 * just one probe i/o at a time.  All zios that want to probe
1007 	 * this vdev will become parents of the probe io.
1008 	 */
1009 	mutex_enter(&vd->vdev_probe_lock);
1010 
1011 	if ((pio = vd->vdev_probe_zio) == NULL) {
1012 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1013 
1014 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1015 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1016 		    ZIO_FLAG_TRYHARD;
1017 
1018 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1019 			/*
1020 			 * vdev_cant_read and vdev_cant_write can only
1021 			 * transition from TRUE to FALSE when we have the
1022 			 * SCL_ZIO lock as writer; otherwise they can only
1023 			 * transition from FALSE to TRUE.  This ensures that
1024 			 * any zio looking at these values can assume that
1025 			 * failures persist for the life of the I/O.  That's
1026 			 * important because when a device has intermittent
1027 			 * connectivity problems, we want to ensure that
1028 			 * they're ascribed to the device (ENXIO) and not
1029 			 * the zio (EIO).
1030 			 *
1031 			 * Since we hold SCL_ZIO as writer here, clear both
1032 			 * values so the probe can reevaluate from first
1033 			 * principles.
1034 			 */
1035 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1036 			vd->vdev_cant_read = B_FALSE;
1037 			vd->vdev_cant_write = B_FALSE;
1038 		}
1039 
1040 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1041 		    vdev_probe_done, vps,
1042 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1043 
1044 		/*
1045 		 * We can't change the vdev state in this context, so we
1046 		 * kick off an async task to do it on our behalf.
1047 		 */
1048 		if (zio != NULL) {
1049 			vd->vdev_probe_wanted = B_TRUE;
1050 			spa_async_request(spa, SPA_ASYNC_PROBE);
1051 		}
1052 	}
1053 
1054 	if (zio != NULL)
1055 		zio_add_child(zio, pio);
1056 
1057 	mutex_exit(&vd->vdev_probe_lock);
1058 
1059 	if (vps == NULL) {
1060 		ASSERT(zio != NULL);
1061 		return (NULL);
1062 	}
1063 
1064 	for (int l = 1; l < VDEV_LABELS; l++) {
1065 		zio_nowait(zio_read_phys(pio, vd,
1066 		    vdev_label_offset(vd->vdev_psize, l,
1067 		    offsetof(vdev_label_t, vl_pad2)),
1068 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1069 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1070 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1071 	}
1072 
1073 	if (zio == NULL)
1074 		return (pio);
1075 
1076 	zio_nowait(pio);
1077 	return (NULL);
1078 }
1079 
1080 static void
1081 vdev_open_child(void *arg)
1082 {
1083 	vdev_t *vd = arg;
1084 
1085 	vd->vdev_open_thread = curthread;
1086 	vd->vdev_open_error = vdev_open(vd);
1087 	vd->vdev_open_thread = NULL;
1088 }
1089 
1090 boolean_t
1091 vdev_uses_zvols(vdev_t *vd)
1092 {
1093 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1094 	    strlen(ZVOL_DIR)) == 0)
1095 		return (B_TRUE);
1096 	for (int c = 0; c < vd->vdev_children; c++)
1097 		if (vdev_uses_zvols(vd->vdev_child[c]))
1098 			return (B_TRUE);
1099 	return (B_FALSE);
1100 }
1101 
1102 void
1103 vdev_open_children(vdev_t *vd)
1104 {
1105 	taskq_t *tq;
1106 	int children = vd->vdev_children;
1107 
1108 	/*
1109 	 * in order to handle pools on top of zvols, do the opens
1110 	 * in a single thread so that the same thread holds the
1111 	 * spa_namespace_lock
1112 	 */
1113 	if (vdev_uses_zvols(vd)) {
1114 		for (int c = 0; c < children; c++)
1115 			vd->vdev_child[c]->vdev_open_error =
1116 			    vdev_open(vd->vdev_child[c]);
1117 		return;
1118 	}
1119 	tq = taskq_create("vdev_open", children, minclsyspri,
1120 	    children, children, TASKQ_PREPOPULATE);
1121 
1122 	for (int c = 0; c < children; c++)
1123 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1124 		    TQ_SLEEP) != NULL);
1125 
1126 	taskq_destroy(tq);
1127 }
1128 
1129 /*
1130  * Prepare a virtual device for access.
1131  */
1132 int
1133 vdev_open(vdev_t *vd)
1134 {
1135 	spa_t *spa = vd->vdev_spa;
1136 	int error;
1137 	uint64_t osize = 0;
1138 	uint64_t max_osize = 0;
1139 	uint64_t asize, max_asize, psize;
1140 	uint64_t ashift = 0;
1141 
1142 	ASSERT(vd->vdev_open_thread == curthread ||
1143 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1144 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1145 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1146 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1147 
1148 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1149 	vd->vdev_cant_read = B_FALSE;
1150 	vd->vdev_cant_write = B_FALSE;
1151 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1152 
1153 	/*
1154 	 * If this vdev is not removed, check its fault status.  If it's
1155 	 * faulted, bail out of the open.
1156 	 */
1157 	if (!vd->vdev_removed && vd->vdev_faulted) {
1158 		ASSERT(vd->vdev_children == 0);
1159 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1160 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1161 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1162 		    vd->vdev_label_aux);
1163 		return (SET_ERROR(ENXIO));
1164 	} else if (vd->vdev_offline) {
1165 		ASSERT(vd->vdev_children == 0);
1166 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1167 		return (SET_ERROR(ENXIO));
1168 	}
1169 
1170 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1171 
1172 	/*
1173 	 * Reset the vdev_reopening flag so that we actually close
1174 	 * the vdev on error.
1175 	 */
1176 	vd->vdev_reopening = B_FALSE;
1177 	if (zio_injection_enabled && error == 0)
1178 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1179 
1180 	if (error) {
1181 		if (vd->vdev_removed &&
1182 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1183 			vd->vdev_removed = B_FALSE;
1184 
1185 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1186 		    vd->vdev_stat.vs_aux);
1187 		return (error);
1188 	}
1189 
1190 	vd->vdev_removed = B_FALSE;
1191 
1192 	/*
1193 	 * Recheck the faulted flag now that we have confirmed that
1194 	 * the vdev is accessible.  If we're faulted, bail.
1195 	 */
1196 	if (vd->vdev_faulted) {
1197 		ASSERT(vd->vdev_children == 0);
1198 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1199 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1200 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1201 		    vd->vdev_label_aux);
1202 		return (SET_ERROR(ENXIO));
1203 	}
1204 
1205 	if (vd->vdev_degraded) {
1206 		ASSERT(vd->vdev_children == 0);
1207 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1208 		    VDEV_AUX_ERR_EXCEEDED);
1209 	} else {
1210 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1211 	}
1212 
1213 	/*
1214 	 * For hole or missing vdevs we just return success.
1215 	 */
1216 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1217 		return (0);
1218 
1219 	for (int c = 0; c < vd->vdev_children; c++) {
1220 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1221 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1222 			    VDEV_AUX_NONE);
1223 			break;
1224 		}
1225 	}
1226 
1227 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1228 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1229 
1230 	if (vd->vdev_children == 0) {
1231 		if (osize < SPA_MINDEVSIZE) {
1232 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 			    VDEV_AUX_TOO_SMALL);
1234 			return (SET_ERROR(EOVERFLOW));
1235 		}
1236 		psize = osize;
1237 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1238 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1239 		    VDEV_LABEL_END_SIZE);
1240 	} else {
1241 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1242 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1243 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1244 			    VDEV_AUX_TOO_SMALL);
1245 			return (SET_ERROR(EOVERFLOW));
1246 		}
1247 		psize = 0;
1248 		asize = osize;
1249 		max_asize = max_osize;
1250 	}
1251 
1252 	vd->vdev_psize = psize;
1253 
1254 	/*
1255 	 * Make sure the allocatable size hasn't shrunk.
1256 	 */
1257 	if (asize < vd->vdev_min_asize) {
1258 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1259 		    VDEV_AUX_BAD_LABEL);
1260 		return (SET_ERROR(EINVAL));
1261 	}
1262 
1263 	if (vd->vdev_asize == 0) {
1264 		/*
1265 		 * This is the first-ever open, so use the computed values.
1266 		 * For testing purposes, a higher ashift can be requested.
1267 		 */
1268 		vd->vdev_asize = asize;
1269 		vd->vdev_max_asize = max_asize;
1270 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1271 	} else {
1272 		/*
1273 		 * Detect if the alignment requirement has increased.
1274 		 * We don't want to make the pool unavailable, just
1275 		 * issue a warning instead.
1276 		 */
1277 		if (ashift > vd->vdev_top->vdev_ashift &&
1278 		    vd->vdev_ops->vdev_op_leaf) {
1279 			cmn_err(CE_WARN,
1280 			    "Disk, '%s', has a block alignment that is "
1281 			    "larger than the pool's alignment\n",
1282 			    vd->vdev_path);
1283 		}
1284 		vd->vdev_max_asize = max_asize;
1285 	}
1286 
1287 	/*
1288 	 * If all children are healthy and the asize has increased,
1289 	 * then we've experienced dynamic LUN growth.  If automatic
1290 	 * expansion is enabled then use the additional space.
1291 	 */
1292 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1293 	    (vd->vdev_expanding || spa->spa_autoexpand))
1294 		vd->vdev_asize = asize;
1295 
1296 	vdev_set_min_asize(vd);
1297 
1298 	/*
1299 	 * Ensure we can issue some IO before declaring the
1300 	 * vdev open for business.
1301 	 */
1302 	if (vd->vdev_ops->vdev_op_leaf &&
1303 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1304 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1305 		    VDEV_AUX_ERR_EXCEEDED);
1306 		return (error);
1307 	}
1308 
1309 	/*
1310 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1311 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1312 	 * since this would just restart the scrub we are already doing.
1313 	 */
1314 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1315 	    vdev_resilver_needed(vd, NULL, NULL))
1316 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1317 
1318 	return (0);
1319 }
1320 
1321 /*
1322  * Called once the vdevs are all opened, this routine validates the label
1323  * contents.  This needs to be done before vdev_load() so that we don't
1324  * inadvertently do repair I/Os to the wrong device.
1325  *
1326  * If 'strict' is false ignore the spa guid check. This is necessary because
1327  * if the machine crashed during a re-guid the new guid might have been written
1328  * to all of the vdev labels, but not the cached config. The strict check
1329  * will be performed when the pool is opened again using the mos config.
1330  *
1331  * This function will only return failure if one of the vdevs indicates that it
1332  * has since been destroyed or exported.  This is only possible if
1333  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1334  * will be updated but the function will return 0.
1335  */
1336 int
1337 vdev_validate(vdev_t *vd, boolean_t strict)
1338 {
1339 	spa_t *spa = vd->vdev_spa;
1340 	nvlist_t *label;
1341 	uint64_t guid = 0, top_guid;
1342 	uint64_t state;
1343 
1344 	for (int c = 0; c < vd->vdev_children; c++)
1345 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1346 			return (SET_ERROR(EBADF));
1347 
1348 	/*
1349 	 * If the device has already failed, or was marked offline, don't do
1350 	 * any further validation.  Otherwise, label I/O will fail and we will
1351 	 * overwrite the previous state.
1352 	 */
1353 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1354 		uint64_t aux_guid = 0;
1355 		nvlist_t *nvl;
1356 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1357 		    spa_last_synced_txg(spa) : -1ULL;
1358 
1359 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1360 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1361 			    VDEV_AUX_BAD_LABEL);
1362 			return (0);
1363 		}
1364 
1365 		/*
1366 		 * Determine if this vdev has been split off into another
1367 		 * pool.  If so, then refuse to open it.
1368 		 */
1369 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1370 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1371 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1372 			    VDEV_AUX_SPLIT_POOL);
1373 			nvlist_free(label);
1374 			return (0);
1375 		}
1376 
1377 		if (strict && (nvlist_lookup_uint64(label,
1378 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1379 		    guid != spa_guid(spa))) {
1380 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1381 			    VDEV_AUX_CORRUPT_DATA);
1382 			nvlist_free(label);
1383 			return (0);
1384 		}
1385 
1386 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1387 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1388 		    &aux_guid) != 0)
1389 			aux_guid = 0;
1390 
1391 		/*
1392 		 * If this vdev just became a top-level vdev because its
1393 		 * sibling was detached, it will have adopted the parent's
1394 		 * vdev guid -- but the label may or may not be on disk yet.
1395 		 * Fortunately, either version of the label will have the
1396 		 * same top guid, so if we're a top-level vdev, we can
1397 		 * safely compare to that instead.
1398 		 *
1399 		 * If we split this vdev off instead, then we also check the
1400 		 * original pool's guid.  We don't want to consider the vdev
1401 		 * corrupt if it is partway through a split operation.
1402 		 */
1403 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1404 		    &guid) != 0 ||
1405 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1406 		    &top_guid) != 0 ||
1407 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1408 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1409 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1410 			    VDEV_AUX_CORRUPT_DATA);
1411 			nvlist_free(label);
1412 			return (0);
1413 		}
1414 
1415 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1416 		    &state) != 0) {
1417 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1418 			    VDEV_AUX_CORRUPT_DATA);
1419 			nvlist_free(label);
1420 			return (0);
1421 		}
1422 
1423 		nvlist_free(label);
1424 
1425 		/*
1426 		 * If this is a verbatim import, no need to check the
1427 		 * state of the pool.
1428 		 */
1429 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1430 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1431 		    state != POOL_STATE_ACTIVE)
1432 			return (SET_ERROR(EBADF));
1433 
1434 		/*
1435 		 * If we were able to open and validate a vdev that was
1436 		 * previously marked permanently unavailable, clear that state
1437 		 * now.
1438 		 */
1439 		if (vd->vdev_not_present)
1440 			vd->vdev_not_present = 0;
1441 	}
1442 
1443 	return (0);
1444 }
1445 
1446 /*
1447  * Close a virtual device.
1448  */
1449 void
1450 vdev_close(vdev_t *vd)
1451 {
1452 	spa_t *spa = vd->vdev_spa;
1453 	vdev_t *pvd = vd->vdev_parent;
1454 
1455 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1456 
1457 	/*
1458 	 * If our parent is reopening, then we are as well, unless we are
1459 	 * going offline.
1460 	 */
1461 	if (pvd != NULL && pvd->vdev_reopening)
1462 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1463 
1464 	vd->vdev_ops->vdev_op_close(vd);
1465 
1466 	vdev_cache_purge(vd);
1467 
1468 	/*
1469 	 * We record the previous state before we close it, so that if we are
1470 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1471 	 * it's still faulted.
1472 	 */
1473 	vd->vdev_prevstate = vd->vdev_state;
1474 
1475 	if (vd->vdev_offline)
1476 		vd->vdev_state = VDEV_STATE_OFFLINE;
1477 	else
1478 		vd->vdev_state = VDEV_STATE_CLOSED;
1479 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1480 }
1481 
1482 void
1483 vdev_hold(vdev_t *vd)
1484 {
1485 	spa_t *spa = vd->vdev_spa;
1486 
1487 	ASSERT(spa_is_root(spa));
1488 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1489 		return;
1490 
1491 	for (int c = 0; c < vd->vdev_children; c++)
1492 		vdev_hold(vd->vdev_child[c]);
1493 
1494 	if (vd->vdev_ops->vdev_op_leaf)
1495 		vd->vdev_ops->vdev_op_hold(vd);
1496 }
1497 
1498 void
1499 vdev_rele(vdev_t *vd)
1500 {
1501 	spa_t *spa = vd->vdev_spa;
1502 
1503 	ASSERT(spa_is_root(spa));
1504 	for (int c = 0; c < vd->vdev_children; c++)
1505 		vdev_rele(vd->vdev_child[c]);
1506 
1507 	if (vd->vdev_ops->vdev_op_leaf)
1508 		vd->vdev_ops->vdev_op_rele(vd);
1509 }
1510 
1511 /*
1512  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1513  * reopen leaf vdevs which had previously been opened as they might deadlock
1514  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1515  * If the leaf has never been opened then open it, as usual.
1516  */
1517 void
1518 vdev_reopen(vdev_t *vd)
1519 {
1520 	spa_t *spa = vd->vdev_spa;
1521 
1522 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1523 
1524 	/* set the reopening flag unless we're taking the vdev offline */
1525 	vd->vdev_reopening = !vd->vdev_offline;
1526 	vdev_close(vd);
1527 	(void) vdev_open(vd);
1528 
1529 	/*
1530 	 * Call vdev_validate() here to make sure we have the same device.
1531 	 * Otherwise, a device with an invalid label could be successfully
1532 	 * opened in response to vdev_reopen().
1533 	 */
1534 	if (vd->vdev_aux) {
1535 		(void) vdev_validate_aux(vd);
1536 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1537 		    vd->vdev_aux == &spa->spa_l2cache &&
1538 		    !l2arc_vdev_present(vd))
1539 			l2arc_add_vdev(spa, vd);
1540 	} else {
1541 		(void) vdev_validate(vd, B_TRUE);
1542 	}
1543 
1544 	/*
1545 	 * Reassess parent vdev's health.
1546 	 */
1547 	vdev_propagate_state(vd);
1548 }
1549 
1550 int
1551 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1552 {
1553 	int error;
1554 
1555 	/*
1556 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1557 	 * For a create, however, we want to fail the request if
1558 	 * there are any components we can't open.
1559 	 */
1560 	error = vdev_open(vd);
1561 
1562 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1563 		vdev_close(vd);
1564 		return (error ? error : ENXIO);
1565 	}
1566 
1567 	/*
1568 	 * Recursively load DTLs and initialize all labels.
1569 	 */
1570 	if ((error = vdev_dtl_load(vd)) != 0 ||
1571 	    (error = vdev_label_init(vd, txg, isreplacing ?
1572 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1573 		vdev_close(vd);
1574 		return (error);
1575 	}
1576 
1577 	return (0);
1578 }
1579 
1580 void
1581 vdev_metaslab_set_size(vdev_t *vd)
1582 {
1583 	/*
1584 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1585 	 */
1586 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1587 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1588 }
1589 
1590 void
1591 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1592 {
1593 	ASSERT(vd == vd->vdev_top);
1594 	ASSERT(!vd->vdev_ishole);
1595 	ASSERT(ISP2(flags));
1596 	ASSERT(spa_writeable(vd->vdev_spa));
1597 
1598 	if (flags & VDD_METASLAB)
1599 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1600 
1601 	if (flags & VDD_DTL)
1602 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1603 
1604 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1605 }
1606 
1607 void
1608 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1609 {
1610 	for (int c = 0; c < vd->vdev_children; c++)
1611 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1612 
1613 	if (vd->vdev_ops->vdev_op_leaf)
1614 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1615 }
1616 
1617 /*
1618  * DTLs.
1619  *
1620  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1621  * the vdev has less than perfect replication.  There are four kinds of DTL:
1622  *
1623  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1624  *
1625  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1626  *
1627  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1628  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1629  *	txgs that was scrubbed.
1630  *
1631  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1632  *	persistent errors or just some device being offline.
1633  *	Unlike the other three, the DTL_OUTAGE map is not generally
1634  *	maintained; it's only computed when needed, typically to
1635  *	determine whether a device can be detached.
1636  *
1637  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1638  * either has the data or it doesn't.
1639  *
1640  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1641  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1642  * if any child is less than fully replicated, then so is its parent.
1643  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1644  * comprising only those txgs which appear in 'maxfaults' or more children;
1645  * those are the txgs we don't have enough replication to read.  For example,
1646  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1647  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1648  * two child DTL_MISSING maps.
1649  *
1650  * It should be clear from the above that to compute the DTLs and outage maps
1651  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1652  * Therefore, that is all we keep on disk.  When loading the pool, or after
1653  * a configuration change, we generate all other DTLs from first principles.
1654  */
1655 void
1656 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1657 {
1658 	range_tree_t *rt = vd->vdev_dtl[t];
1659 
1660 	ASSERT(t < DTL_TYPES);
1661 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1662 	ASSERT(spa_writeable(vd->vdev_spa));
1663 
1664 	mutex_enter(rt->rt_lock);
1665 	if (!range_tree_contains(rt, txg, size))
1666 		range_tree_add(rt, txg, size);
1667 	mutex_exit(rt->rt_lock);
1668 }
1669 
1670 boolean_t
1671 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1672 {
1673 	range_tree_t *rt = vd->vdev_dtl[t];
1674 	boolean_t dirty = B_FALSE;
1675 
1676 	ASSERT(t < DTL_TYPES);
1677 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1678 
1679 	mutex_enter(rt->rt_lock);
1680 	if (range_tree_space(rt) != 0)
1681 		dirty = range_tree_contains(rt, txg, size);
1682 	mutex_exit(rt->rt_lock);
1683 
1684 	return (dirty);
1685 }
1686 
1687 boolean_t
1688 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1689 {
1690 	range_tree_t *rt = vd->vdev_dtl[t];
1691 	boolean_t empty;
1692 
1693 	mutex_enter(rt->rt_lock);
1694 	empty = (range_tree_space(rt) == 0);
1695 	mutex_exit(rt->rt_lock);
1696 
1697 	return (empty);
1698 }
1699 
1700 /*
1701  * Returns the lowest txg in the DTL range.
1702  */
1703 static uint64_t
1704 vdev_dtl_min(vdev_t *vd)
1705 {
1706 	range_seg_t *rs;
1707 
1708 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1709 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1710 	ASSERT0(vd->vdev_children);
1711 
1712 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1713 	return (rs->rs_start - 1);
1714 }
1715 
1716 /*
1717  * Returns the highest txg in the DTL.
1718  */
1719 static uint64_t
1720 vdev_dtl_max(vdev_t *vd)
1721 {
1722 	range_seg_t *rs;
1723 
1724 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1725 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1726 	ASSERT0(vd->vdev_children);
1727 
1728 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1729 	return (rs->rs_end);
1730 }
1731 
1732 /*
1733  * Determine if a resilvering vdev should remove any DTL entries from
1734  * its range. If the vdev was resilvering for the entire duration of the
1735  * scan then it should excise that range from its DTLs. Otherwise, this
1736  * vdev is considered partially resilvered and should leave its DTL
1737  * entries intact. The comment in vdev_dtl_reassess() describes how we
1738  * excise the DTLs.
1739  */
1740 static boolean_t
1741 vdev_dtl_should_excise(vdev_t *vd)
1742 {
1743 	spa_t *spa = vd->vdev_spa;
1744 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1745 
1746 	ASSERT0(scn->scn_phys.scn_errors);
1747 	ASSERT0(vd->vdev_children);
1748 
1749 	if (vd->vdev_resilver_txg == 0 ||
1750 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1751 		return (B_TRUE);
1752 
1753 	/*
1754 	 * When a resilver is initiated the scan will assign the scn_max_txg
1755 	 * value to the highest txg value that exists in all DTLs. If this
1756 	 * device's max DTL is not part of this scan (i.e. it is not in
1757 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1758 	 * for excision.
1759 	 */
1760 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1761 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1762 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1763 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1764 		return (B_TRUE);
1765 	}
1766 	return (B_FALSE);
1767 }
1768 
1769 /*
1770  * Reassess DTLs after a config change or scrub completion.
1771  */
1772 void
1773 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1774 {
1775 	spa_t *spa = vd->vdev_spa;
1776 	avl_tree_t reftree;
1777 	int minref;
1778 
1779 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1780 
1781 	for (int c = 0; c < vd->vdev_children; c++)
1782 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1783 		    scrub_txg, scrub_done);
1784 
1785 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1786 		return;
1787 
1788 	if (vd->vdev_ops->vdev_op_leaf) {
1789 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1790 
1791 		mutex_enter(&vd->vdev_dtl_lock);
1792 
1793 		/*
1794 		 * If we've completed a scan cleanly then determine
1795 		 * if this vdev should remove any DTLs. We only want to
1796 		 * excise regions on vdevs that were available during
1797 		 * the entire duration of this scan.
1798 		 */
1799 		if (scrub_txg != 0 &&
1800 		    (spa->spa_scrub_started ||
1801 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1802 		    vdev_dtl_should_excise(vd)) {
1803 			/*
1804 			 * We completed a scrub up to scrub_txg.  If we
1805 			 * did it without rebooting, then the scrub dtl
1806 			 * will be valid, so excise the old region and
1807 			 * fold in the scrub dtl.  Otherwise, leave the
1808 			 * dtl as-is if there was an error.
1809 			 *
1810 			 * There's little trick here: to excise the beginning
1811 			 * of the DTL_MISSING map, we put it into a reference
1812 			 * tree and then add a segment with refcnt -1 that
1813 			 * covers the range [0, scrub_txg).  This means
1814 			 * that each txg in that range has refcnt -1 or 0.
1815 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1816 			 * entries in the range [0, scrub_txg) will have a
1817 			 * positive refcnt -- either 1 or 2.  We then convert
1818 			 * the reference tree into the new DTL_MISSING map.
1819 			 */
1820 			space_reftree_create(&reftree);
1821 			space_reftree_add_map(&reftree,
1822 			    vd->vdev_dtl[DTL_MISSING], 1);
1823 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1824 			space_reftree_add_map(&reftree,
1825 			    vd->vdev_dtl[DTL_SCRUB], 2);
1826 			space_reftree_generate_map(&reftree,
1827 			    vd->vdev_dtl[DTL_MISSING], 1);
1828 			space_reftree_destroy(&reftree);
1829 		}
1830 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1831 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1832 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1833 		if (scrub_done)
1834 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1835 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1836 		if (!vdev_readable(vd))
1837 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1838 		else
1839 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1840 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1841 
1842 		/*
1843 		 * If the vdev was resilvering and no longer has any
1844 		 * DTLs then reset its resilvering flag.
1845 		 */
1846 		if (vd->vdev_resilver_txg != 0 &&
1847 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1848 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1849 			vd->vdev_resilver_txg = 0;
1850 
1851 		mutex_exit(&vd->vdev_dtl_lock);
1852 
1853 		if (txg != 0)
1854 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1855 		return;
1856 	}
1857 
1858 	mutex_enter(&vd->vdev_dtl_lock);
1859 	for (int t = 0; t < DTL_TYPES; t++) {
1860 		/* account for child's outage in parent's missing map */
1861 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1862 		if (t == DTL_SCRUB)
1863 			continue;			/* leaf vdevs only */
1864 		if (t == DTL_PARTIAL)
1865 			minref = 1;			/* i.e. non-zero */
1866 		else if (vd->vdev_nparity != 0)
1867 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1868 		else
1869 			minref = vd->vdev_children;	/* any kind of mirror */
1870 		space_reftree_create(&reftree);
1871 		for (int c = 0; c < vd->vdev_children; c++) {
1872 			vdev_t *cvd = vd->vdev_child[c];
1873 			mutex_enter(&cvd->vdev_dtl_lock);
1874 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1875 			mutex_exit(&cvd->vdev_dtl_lock);
1876 		}
1877 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1878 		space_reftree_destroy(&reftree);
1879 	}
1880 	mutex_exit(&vd->vdev_dtl_lock);
1881 }
1882 
1883 int
1884 vdev_dtl_load(vdev_t *vd)
1885 {
1886 	spa_t *spa = vd->vdev_spa;
1887 	objset_t *mos = spa->spa_meta_objset;
1888 	int error = 0;
1889 
1890 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1891 		ASSERT(!vd->vdev_ishole);
1892 
1893 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1894 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1895 		if (error)
1896 			return (error);
1897 		ASSERT(vd->vdev_dtl_sm != NULL);
1898 
1899 		mutex_enter(&vd->vdev_dtl_lock);
1900 
1901 		/*
1902 		 * Now that we've opened the space_map we need to update
1903 		 * the in-core DTL.
1904 		 */
1905 		space_map_update(vd->vdev_dtl_sm);
1906 
1907 		error = space_map_load(vd->vdev_dtl_sm,
1908 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1909 		mutex_exit(&vd->vdev_dtl_lock);
1910 
1911 		return (error);
1912 	}
1913 
1914 	for (int c = 0; c < vd->vdev_children; c++) {
1915 		error = vdev_dtl_load(vd->vdev_child[c]);
1916 		if (error != 0)
1917 			break;
1918 	}
1919 
1920 	return (error);
1921 }
1922 
1923 void
1924 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1925 {
1926 	spa_t *spa = vd->vdev_spa;
1927 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1928 	objset_t *mos = spa->spa_meta_objset;
1929 	range_tree_t *rtsync;
1930 	kmutex_t rtlock;
1931 	dmu_tx_t *tx;
1932 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1933 
1934 	ASSERT(!vd->vdev_ishole);
1935 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1936 
1937 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1938 
1939 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1940 		mutex_enter(&vd->vdev_dtl_lock);
1941 		space_map_free(vd->vdev_dtl_sm, tx);
1942 		space_map_close(vd->vdev_dtl_sm);
1943 		vd->vdev_dtl_sm = NULL;
1944 		mutex_exit(&vd->vdev_dtl_lock);
1945 		dmu_tx_commit(tx);
1946 		return;
1947 	}
1948 
1949 	if (vd->vdev_dtl_sm == NULL) {
1950 		uint64_t new_object;
1951 
1952 		new_object = space_map_alloc(mos, tx);
1953 		VERIFY3U(new_object, !=, 0);
1954 
1955 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1956 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
1957 		ASSERT(vd->vdev_dtl_sm != NULL);
1958 	}
1959 
1960 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1961 
1962 	rtsync = range_tree_create(NULL, NULL, &rtlock);
1963 
1964 	mutex_enter(&rtlock);
1965 
1966 	mutex_enter(&vd->vdev_dtl_lock);
1967 	range_tree_walk(rt, range_tree_add, rtsync);
1968 	mutex_exit(&vd->vdev_dtl_lock);
1969 
1970 	space_map_truncate(vd->vdev_dtl_sm, tx);
1971 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1972 	range_tree_vacate(rtsync, NULL, NULL);
1973 
1974 	range_tree_destroy(rtsync);
1975 
1976 	mutex_exit(&rtlock);
1977 	mutex_destroy(&rtlock);
1978 
1979 	/*
1980 	 * If the object for the space map has changed then dirty
1981 	 * the top level so that we update the config.
1982 	 */
1983 	if (object != space_map_object(vd->vdev_dtl_sm)) {
1984 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1985 		    "new object %llu", txg, spa_name(spa), object,
1986 		    space_map_object(vd->vdev_dtl_sm));
1987 		vdev_config_dirty(vd->vdev_top);
1988 	}
1989 
1990 	dmu_tx_commit(tx);
1991 
1992 	mutex_enter(&vd->vdev_dtl_lock);
1993 	space_map_update(vd->vdev_dtl_sm);
1994 	mutex_exit(&vd->vdev_dtl_lock);
1995 }
1996 
1997 /*
1998  * Determine whether the specified vdev can be offlined/detached/removed
1999  * without losing data.
2000  */
2001 boolean_t
2002 vdev_dtl_required(vdev_t *vd)
2003 {
2004 	spa_t *spa = vd->vdev_spa;
2005 	vdev_t *tvd = vd->vdev_top;
2006 	uint8_t cant_read = vd->vdev_cant_read;
2007 	boolean_t required;
2008 
2009 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2010 
2011 	if (vd == spa->spa_root_vdev || vd == tvd)
2012 		return (B_TRUE);
2013 
2014 	/*
2015 	 * Temporarily mark the device as unreadable, and then determine
2016 	 * whether this results in any DTL outages in the top-level vdev.
2017 	 * If not, we can safely offline/detach/remove the device.
2018 	 */
2019 	vd->vdev_cant_read = B_TRUE;
2020 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2021 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2022 	vd->vdev_cant_read = cant_read;
2023 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2024 
2025 	if (!required && zio_injection_enabled)
2026 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2027 
2028 	return (required);
2029 }
2030 
2031 /*
2032  * Determine if resilver is needed, and if so the txg range.
2033  */
2034 boolean_t
2035 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2036 {
2037 	boolean_t needed = B_FALSE;
2038 	uint64_t thismin = UINT64_MAX;
2039 	uint64_t thismax = 0;
2040 
2041 	if (vd->vdev_children == 0) {
2042 		mutex_enter(&vd->vdev_dtl_lock);
2043 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2044 		    vdev_writeable(vd)) {
2045 
2046 			thismin = vdev_dtl_min(vd);
2047 			thismax = vdev_dtl_max(vd);
2048 			needed = B_TRUE;
2049 		}
2050 		mutex_exit(&vd->vdev_dtl_lock);
2051 	} else {
2052 		for (int c = 0; c < vd->vdev_children; c++) {
2053 			vdev_t *cvd = vd->vdev_child[c];
2054 			uint64_t cmin, cmax;
2055 
2056 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2057 				thismin = MIN(thismin, cmin);
2058 				thismax = MAX(thismax, cmax);
2059 				needed = B_TRUE;
2060 			}
2061 		}
2062 	}
2063 
2064 	if (needed && minp) {
2065 		*minp = thismin;
2066 		*maxp = thismax;
2067 	}
2068 	return (needed);
2069 }
2070 
2071 void
2072 vdev_load(vdev_t *vd)
2073 {
2074 	/*
2075 	 * Recursively load all children.
2076 	 */
2077 	for (int c = 0; c < vd->vdev_children; c++)
2078 		vdev_load(vd->vdev_child[c]);
2079 
2080 	/*
2081 	 * If this is a top-level vdev, initialize its metaslabs.
2082 	 */
2083 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2084 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2085 	    vdev_metaslab_init(vd, 0) != 0))
2086 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2087 		    VDEV_AUX_CORRUPT_DATA);
2088 
2089 	/*
2090 	 * If this is a leaf vdev, load its DTL.
2091 	 */
2092 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2093 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2094 		    VDEV_AUX_CORRUPT_DATA);
2095 }
2096 
2097 /*
2098  * The special vdev case is used for hot spares and l2cache devices.  Its
2099  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2100  * we make sure that we can open the underlying device, then try to read the
2101  * label, and make sure that the label is sane and that it hasn't been
2102  * repurposed to another pool.
2103  */
2104 int
2105 vdev_validate_aux(vdev_t *vd)
2106 {
2107 	nvlist_t *label;
2108 	uint64_t guid, version;
2109 	uint64_t state;
2110 
2111 	if (!vdev_readable(vd))
2112 		return (0);
2113 
2114 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2115 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2116 		    VDEV_AUX_CORRUPT_DATA);
2117 		return (-1);
2118 	}
2119 
2120 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2121 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2122 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2123 	    guid != vd->vdev_guid ||
2124 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2125 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2126 		    VDEV_AUX_CORRUPT_DATA);
2127 		nvlist_free(label);
2128 		return (-1);
2129 	}
2130 
2131 	/*
2132 	 * We don't actually check the pool state here.  If it's in fact in
2133 	 * use by another pool, we update this fact on the fly when requested.
2134 	 */
2135 	nvlist_free(label);
2136 	return (0);
2137 }
2138 
2139 void
2140 vdev_remove(vdev_t *vd, uint64_t txg)
2141 {
2142 	spa_t *spa = vd->vdev_spa;
2143 	objset_t *mos = spa->spa_meta_objset;
2144 	dmu_tx_t *tx;
2145 
2146 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2147 
2148 	if (vd->vdev_ms != NULL) {
2149 		metaslab_group_t *mg = vd->vdev_mg;
2150 
2151 		metaslab_group_histogram_verify(mg);
2152 		metaslab_class_histogram_verify(mg->mg_class);
2153 
2154 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2155 			metaslab_t *msp = vd->vdev_ms[m];
2156 
2157 			if (msp == NULL || msp->ms_sm == NULL)
2158 				continue;
2159 
2160 			mutex_enter(&msp->ms_lock);
2161 			/*
2162 			 * If the metaslab was not loaded when the vdev
2163 			 * was removed then the histogram accounting may
2164 			 * not be accurate. Update the histogram information
2165 			 * here so that we ensure that the metaslab group
2166 			 * and metaslab class are up-to-date.
2167 			 */
2168 			metaslab_group_histogram_remove(mg, msp);
2169 
2170 			VERIFY0(space_map_allocated(msp->ms_sm));
2171 			space_map_free(msp->ms_sm, tx);
2172 			space_map_close(msp->ms_sm);
2173 			msp->ms_sm = NULL;
2174 			mutex_exit(&msp->ms_lock);
2175 		}
2176 
2177 		metaslab_group_histogram_verify(mg);
2178 		metaslab_class_histogram_verify(mg->mg_class);
2179 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2180 			ASSERT0(mg->mg_histogram[i]);
2181 
2182 	}
2183 
2184 	if (vd->vdev_ms_array) {
2185 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2186 		vd->vdev_ms_array = 0;
2187 	}
2188 	dmu_tx_commit(tx);
2189 }
2190 
2191 void
2192 vdev_sync_done(vdev_t *vd, uint64_t txg)
2193 {
2194 	metaslab_t *msp;
2195 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2196 
2197 	ASSERT(!vd->vdev_ishole);
2198 
2199 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2200 		metaslab_sync_done(msp, txg);
2201 
2202 	if (reassess)
2203 		metaslab_sync_reassess(vd->vdev_mg);
2204 }
2205 
2206 void
2207 vdev_sync(vdev_t *vd, uint64_t txg)
2208 {
2209 	spa_t *spa = vd->vdev_spa;
2210 	vdev_t *lvd;
2211 	metaslab_t *msp;
2212 	dmu_tx_t *tx;
2213 
2214 	ASSERT(!vd->vdev_ishole);
2215 
2216 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2217 		ASSERT(vd == vd->vdev_top);
2218 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2219 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2220 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2221 		ASSERT(vd->vdev_ms_array != 0);
2222 		vdev_config_dirty(vd);
2223 		dmu_tx_commit(tx);
2224 	}
2225 
2226 	/*
2227 	 * Remove the metadata associated with this vdev once it's empty.
2228 	 */
2229 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2230 		vdev_remove(vd, txg);
2231 
2232 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2233 		metaslab_sync(msp, txg);
2234 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2235 	}
2236 
2237 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2238 		vdev_dtl_sync(lvd, txg);
2239 
2240 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2241 }
2242 
2243 uint64_t
2244 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2245 {
2246 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2247 }
2248 
2249 /*
2250  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2251  * not be opened, and no I/O is attempted.
2252  */
2253 int
2254 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2255 {
2256 	vdev_t *vd, *tvd;
2257 
2258 	spa_vdev_state_enter(spa, SCL_NONE);
2259 
2260 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2261 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2262 
2263 	if (!vd->vdev_ops->vdev_op_leaf)
2264 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2265 
2266 	tvd = vd->vdev_top;
2267 
2268 	/*
2269 	 * We don't directly use the aux state here, but if we do a
2270 	 * vdev_reopen(), we need this value to be present to remember why we
2271 	 * were faulted.
2272 	 */
2273 	vd->vdev_label_aux = aux;
2274 
2275 	/*
2276 	 * Faulted state takes precedence over degraded.
2277 	 */
2278 	vd->vdev_delayed_close = B_FALSE;
2279 	vd->vdev_faulted = 1ULL;
2280 	vd->vdev_degraded = 0ULL;
2281 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2282 
2283 	/*
2284 	 * If this device has the only valid copy of the data, then
2285 	 * back off and simply mark the vdev as degraded instead.
2286 	 */
2287 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2288 		vd->vdev_degraded = 1ULL;
2289 		vd->vdev_faulted = 0ULL;
2290 
2291 		/*
2292 		 * If we reopen the device and it's not dead, only then do we
2293 		 * mark it degraded.
2294 		 */
2295 		vdev_reopen(tvd);
2296 
2297 		if (vdev_readable(vd))
2298 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2299 	}
2300 
2301 	return (spa_vdev_state_exit(spa, vd, 0));
2302 }
2303 
2304 /*
2305  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2306  * user that something is wrong.  The vdev continues to operate as normal as far
2307  * as I/O is concerned.
2308  */
2309 int
2310 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2311 {
2312 	vdev_t *vd;
2313 
2314 	spa_vdev_state_enter(spa, SCL_NONE);
2315 
2316 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2317 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2318 
2319 	if (!vd->vdev_ops->vdev_op_leaf)
2320 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2321 
2322 	/*
2323 	 * If the vdev is already faulted, then don't do anything.
2324 	 */
2325 	if (vd->vdev_faulted || vd->vdev_degraded)
2326 		return (spa_vdev_state_exit(spa, NULL, 0));
2327 
2328 	vd->vdev_degraded = 1ULL;
2329 	if (!vdev_is_dead(vd))
2330 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2331 		    aux);
2332 
2333 	return (spa_vdev_state_exit(spa, vd, 0));
2334 }
2335 
2336 /*
2337  * Online the given vdev.
2338  *
2339  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2340  * spare device should be detached when the device finishes resilvering.
2341  * Second, the online should be treated like a 'test' online case, so no FMA
2342  * events are generated if the device fails to open.
2343  */
2344 int
2345 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2346 {
2347 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2348 
2349 	spa_vdev_state_enter(spa, SCL_NONE);
2350 
2351 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2352 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2353 
2354 	if (!vd->vdev_ops->vdev_op_leaf)
2355 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2356 
2357 	tvd = vd->vdev_top;
2358 	vd->vdev_offline = B_FALSE;
2359 	vd->vdev_tmpoffline = B_FALSE;
2360 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2361 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2362 
2363 	/* XXX - L2ARC 1.0 does not support expansion */
2364 	if (!vd->vdev_aux) {
2365 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2366 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2367 	}
2368 
2369 	vdev_reopen(tvd);
2370 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2371 
2372 	if (!vd->vdev_aux) {
2373 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2374 			pvd->vdev_expanding = B_FALSE;
2375 	}
2376 
2377 	if (newstate)
2378 		*newstate = vd->vdev_state;
2379 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2380 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2381 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2382 	    vd->vdev_parent->vdev_child[0] == vd)
2383 		vd->vdev_unspare = B_TRUE;
2384 
2385 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2386 
2387 		/* XXX - L2ARC 1.0 does not support expansion */
2388 		if (vd->vdev_aux)
2389 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2390 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2391 	}
2392 	return (spa_vdev_state_exit(spa, vd, 0));
2393 }
2394 
2395 static int
2396 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2397 {
2398 	vdev_t *vd, *tvd;
2399 	int error = 0;
2400 	uint64_t generation;
2401 	metaslab_group_t *mg;
2402 
2403 top:
2404 	spa_vdev_state_enter(spa, SCL_ALLOC);
2405 
2406 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2407 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2408 
2409 	if (!vd->vdev_ops->vdev_op_leaf)
2410 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2411 
2412 	tvd = vd->vdev_top;
2413 	mg = tvd->vdev_mg;
2414 	generation = spa->spa_config_generation + 1;
2415 
2416 	/*
2417 	 * If the device isn't already offline, try to offline it.
2418 	 */
2419 	if (!vd->vdev_offline) {
2420 		/*
2421 		 * If this device has the only valid copy of some data,
2422 		 * don't allow it to be offlined. Log devices are always
2423 		 * expendable.
2424 		 */
2425 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2426 		    vdev_dtl_required(vd))
2427 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2428 
2429 		/*
2430 		 * If the top-level is a slog and it has had allocations
2431 		 * then proceed.  We check that the vdev's metaslab group
2432 		 * is not NULL since it's possible that we may have just
2433 		 * added this vdev but not yet initialized its metaslabs.
2434 		 */
2435 		if (tvd->vdev_islog && mg != NULL) {
2436 			/*
2437 			 * Prevent any future allocations.
2438 			 */
2439 			metaslab_group_passivate(mg);
2440 			(void) spa_vdev_state_exit(spa, vd, 0);
2441 
2442 			error = spa_offline_log(spa);
2443 
2444 			spa_vdev_state_enter(spa, SCL_ALLOC);
2445 
2446 			/*
2447 			 * Check to see if the config has changed.
2448 			 */
2449 			if (error || generation != spa->spa_config_generation) {
2450 				metaslab_group_activate(mg);
2451 				if (error)
2452 					return (spa_vdev_state_exit(spa,
2453 					    vd, error));
2454 				(void) spa_vdev_state_exit(spa, vd, 0);
2455 				goto top;
2456 			}
2457 			ASSERT0(tvd->vdev_stat.vs_alloc);
2458 		}
2459 
2460 		/*
2461 		 * Offline this device and reopen its top-level vdev.
2462 		 * If the top-level vdev is a log device then just offline
2463 		 * it. Otherwise, if this action results in the top-level
2464 		 * vdev becoming unusable, undo it and fail the request.
2465 		 */
2466 		vd->vdev_offline = B_TRUE;
2467 		vdev_reopen(tvd);
2468 
2469 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2470 		    vdev_is_dead(tvd)) {
2471 			vd->vdev_offline = B_FALSE;
2472 			vdev_reopen(tvd);
2473 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2474 		}
2475 
2476 		/*
2477 		 * Add the device back into the metaslab rotor so that
2478 		 * once we online the device it's open for business.
2479 		 */
2480 		if (tvd->vdev_islog && mg != NULL)
2481 			metaslab_group_activate(mg);
2482 	}
2483 
2484 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2485 
2486 	return (spa_vdev_state_exit(spa, vd, 0));
2487 }
2488 
2489 int
2490 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2491 {
2492 	int error;
2493 
2494 	mutex_enter(&spa->spa_vdev_top_lock);
2495 	error = vdev_offline_locked(spa, guid, flags);
2496 	mutex_exit(&spa->spa_vdev_top_lock);
2497 
2498 	return (error);
2499 }
2500 
2501 /*
2502  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2503  * vdev_offline(), we assume the spa config is locked.  We also clear all
2504  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2505  */
2506 void
2507 vdev_clear(spa_t *spa, vdev_t *vd)
2508 {
2509 	vdev_t *rvd = spa->spa_root_vdev;
2510 
2511 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2512 
2513 	if (vd == NULL)
2514 		vd = rvd;
2515 
2516 	vd->vdev_stat.vs_read_errors = 0;
2517 	vd->vdev_stat.vs_write_errors = 0;
2518 	vd->vdev_stat.vs_checksum_errors = 0;
2519 
2520 	for (int c = 0; c < vd->vdev_children; c++)
2521 		vdev_clear(spa, vd->vdev_child[c]);
2522 
2523 	/*
2524 	 * If we're in the FAULTED state or have experienced failed I/O, then
2525 	 * clear the persistent state and attempt to reopen the device.  We
2526 	 * also mark the vdev config dirty, so that the new faulted state is
2527 	 * written out to disk.
2528 	 */
2529 	if (vd->vdev_faulted || vd->vdev_degraded ||
2530 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2531 
2532 		/*
2533 		 * When reopening in reponse to a clear event, it may be due to
2534 		 * a fmadm repair request.  In this case, if the device is
2535 		 * still broken, we want to still post the ereport again.
2536 		 */
2537 		vd->vdev_forcefault = B_TRUE;
2538 
2539 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2540 		vd->vdev_cant_read = B_FALSE;
2541 		vd->vdev_cant_write = B_FALSE;
2542 
2543 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2544 
2545 		vd->vdev_forcefault = B_FALSE;
2546 
2547 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2548 			vdev_state_dirty(vd->vdev_top);
2549 
2550 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2551 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2552 
2553 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2554 	}
2555 
2556 	/*
2557 	 * When clearing a FMA-diagnosed fault, we always want to
2558 	 * unspare the device, as we assume that the original spare was
2559 	 * done in response to the FMA fault.
2560 	 */
2561 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2562 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2563 	    vd->vdev_parent->vdev_child[0] == vd)
2564 		vd->vdev_unspare = B_TRUE;
2565 }
2566 
2567 boolean_t
2568 vdev_is_dead(vdev_t *vd)
2569 {
2570 	/*
2571 	 * Holes and missing devices are always considered "dead".
2572 	 * This simplifies the code since we don't have to check for
2573 	 * these types of devices in the various code paths.
2574 	 * Instead we rely on the fact that we skip over dead devices
2575 	 * before issuing I/O to them.
2576 	 */
2577 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2578 	    vd->vdev_ops == &vdev_missing_ops);
2579 }
2580 
2581 boolean_t
2582 vdev_readable(vdev_t *vd)
2583 {
2584 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2585 }
2586 
2587 boolean_t
2588 vdev_writeable(vdev_t *vd)
2589 {
2590 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2591 }
2592 
2593 boolean_t
2594 vdev_allocatable(vdev_t *vd)
2595 {
2596 	uint64_t state = vd->vdev_state;
2597 
2598 	/*
2599 	 * We currently allow allocations from vdevs which may be in the
2600 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2601 	 * fails to reopen then we'll catch it later when we're holding
2602 	 * the proper locks.  Note that we have to get the vdev state
2603 	 * in a local variable because although it changes atomically,
2604 	 * we're asking two separate questions about it.
2605 	 */
2606 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2607 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2608 }
2609 
2610 boolean_t
2611 vdev_accessible(vdev_t *vd, zio_t *zio)
2612 {
2613 	ASSERT(zio->io_vd == vd);
2614 
2615 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2616 		return (B_FALSE);
2617 
2618 	if (zio->io_type == ZIO_TYPE_READ)
2619 		return (!vd->vdev_cant_read);
2620 
2621 	if (zio->io_type == ZIO_TYPE_WRITE)
2622 		return (!vd->vdev_cant_write);
2623 
2624 	return (B_TRUE);
2625 }
2626 
2627 /*
2628  * Get statistics for the given vdev.
2629  */
2630 void
2631 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2632 {
2633 	spa_t *spa = vd->vdev_spa;
2634 	vdev_t *rvd = spa->spa_root_vdev;
2635 
2636 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2637 
2638 	mutex_enter(&vd->vdev_stat_lock);
2639 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2640 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2641 	vs->vs_state = vd->vdev_state;
2642 	vs->vs_rsize = vdev_get_min_asize(vd);
2643 	if (vd->vdev_ops->vdev_op_leaf)
2644 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2645 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2646 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2647 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2648 	}
2649 
2650 	/*
2651 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2652 	 * over all top-level vdevs (i.e. the direct children of the root).
2653 	 */
2654 	if (vd == rvd) {
2655 		for (int c = 0; c < rvd->vdev_children; c++) {
2656 			vdev_t *cvd = rvd->vdev_child[c];
2657 			vdev_stat_t *cvs = &cvd->vdev_stat;
2658 
2659 			for (int t = 0; t < ZIO_TYPES; t++) {
2660 				vs->vs_ops[t] += cvs->vs_ops[t];
2661 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2662 			}
2663 			cvs->vs_scan_removing = cvd->vdev_removing;
2664 		}
2665 	}
2666 	mutex_exit(&vd->vdev_stat_lock);
2667 }
2668 
2669 void
2670 vdev_clear_stats(vdev_t *vd)
2671 {
2672 	mutex_enter(&vd->vdev_stat_lock);
2673 	vd->vdev_stat.vs_space = 0;
2674 	vd->vdev_stat.vs_dspace = 0;
2675 	vd->vdev_stat.vs_alloc = 0;
2676 	mutex_exit(&vd->vdev_stat_lock);
2677 }
2678 
2679 void
2680 vdev_scan_stat_init(vdev_t *vd)
2681 {
2682 	vdev_stat_t *vs = &vd->vdev_stat;
2683 
2684 	for (int c = 0; c < vd->vdev_children; c++)
2685 		vdev_scan_stat_init(vd->vdev_child[c]);
2686 
2687 	mutex_enter(&vd->vdev_stat_lock);
2688 	vs->vs_scan_processed = 0;
2689 	mutex_exit(&vd->vdev_stat_lock);
2690 }
2691 
2692 void
2693 vdev_stat_update(zio_t *zio, uint64_t psize)
2694 {
2695 	spa_t *spa = zio->io_spa;
2696 	vdev_t *rvd = spa->spa_root_vdev;
2697 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2698 	vdev_t *pvd;
2699 	uint64_t txg = zio->io_txg;
2700 	vdev_stat_t *vs = &vd->vdev_stat;
2701 	zio_type_t type = zio->io_type;
2702 	int flags = zio->io_flags;
2703 
2704 	/*
2705 	 * If this i/o is a gang leader, it didn't do any actual work.
2706 	 */
2707 	if (zio->io_gang_tree)
2708 		return;
2709 
2710 	if (zio->io_error == 0) {
2711 		/*
2712 		 * If this is a root i/o, don't count it -- we've already
2713 		 * counted the top-level vdevs, and vdev_get_stats() will
2714 		 * aggregate them when asked.  This reduces contention on
2715 		 * the root vdev_stat_lock and implicitly handles blocks
2716 		 * that compress away to holes, for which there is no i/o.
2717 		 * (Holes never create vdev children, so all the counters
2718 		 * remain zero, which is what we want.)
2719 		 *
2720 		 * Note: this only applies to successful i/o (io_error == 0)
2721 		 * because unlike i/o counts, errors are not additive.
2722 		 * When reading a ditto block, for example, failure of
2723 		 * one top-level vdev does not imply a root-level error.
2724 		 */
2725 		if (vd == rvd)
2726 			return;
2727 
2728 		ASSERT(vd == zio->io_vd);
2729 
2730 		if (flags & ZIO_FLAG_IO_BYPASS)
2731 			return;
2732 
2733 		mutex_enter(&vd->vdev_stat_lock);
2734 
2735 		if (flags & ZIO_FLAG_IO_REPAIR) {
2736 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2737 				dsl_scan_phys_t *scn_phys =
2738 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2739 				uint64_t *processed = &scn_phys->scn_processed;
2740 
2741 				/* XXX cleanup? */
2742 				if (vd->vdev_ops->vdev_op_leaf)
2743 					atomic_add_64(processed, psize);
2744 				vs->vs_scan_processed += psize;
2745 			}
2746 
2747 			if (flags & ZIO_FLAG_SELF_HEAL)
2748 				vs->vs_self_healed += psize;
2749 		}
2750 
2751 		vs->vs_ops[type]++;
2752 		vs->vs_bytes[type] += psize;
2753 
2754 		mutex_exit(&vd->vdev_stat_lock);
2755 		return;
2756 	}
2757 
2758 	if (flags & ZIO_FLAG_SPECULATIVE)
2759 		return;
2760 
2761 	/*
2762 	 * If this is an I/O error that is going to be retried, then ignore the
2763 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2764 	 * hard errors, when in reality they can happen for any number of
2765 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2766 	 */
2767 	if (zio->io_error == EIO &&
2768 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2769 		return;
2770 
2771 	/*
2772 	 * Intent logs writes won't propagate their error to the root
2773 	 * I/O so don't mark these types of failures as pool-level
2774 	 * errors.
2775 	 */
2776 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2777 		return;
2778 
2779 	mutex_enter(&vd->vdev_stat_lock);
2780 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2781 		if (zio->io_error == ECKSUM)
2782 			vs->vs_checksum_errors++;
2783 		else
2784 			vs->vs_read_errors++;
2785 	}
2786 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2787 		vs->vs_write_errors++;
2788 	mutex_exit(&vd->vdev_stat_lock);
2789 
2790 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2791 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2792 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2793 	    spa->spa_claiming)) {
2794 		/*
2795 		 * This is either a normal write (not a repair), or it's
2796 		 * a repair induced by the scrub thread, or it's a repair
2797 		 * made by zil_claim() during spa_load() in the first txg.
2798 		 * In the normal case, we commit the DTL change in the same
2799 		 * txg as the block was born.  In the scrub-induced repair
2800 		 * case, we know that scrubs run in first-pass syncing context,
2801 		 * so we commit the DTL change in spa_syncing_txg(spa).
2802 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2803 		 *
2804 		 * We currently do not make DTL entries for failed spontaneous
2805 		 * self-healing writes triggered by normal (non-scrubbing)
2806 		 * reads, because we have no transactional context in which to
2807 		 * do so -- and it's not clear that it'd be desirable anyway.
2808 		 */
2809 		if (vd->vdev_ops->vdev_op_leaf) {
2810 			uint64_t commit_txg = txg;
2811 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2812 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2813 				ASSERT(spa_sync_pass(spa) == 1);
2814 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2815 				commit_txg = spa_syncing_txg(spa);
2816 			} else if (spa->spa_claiming) {
2817 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2818 				commit_txg = spa_first_txg(spa);
2819 			}
2820 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2821 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2822 				return;
2823 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2824 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2825 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2826 		}
2827 		if (vd != rvd)
2828 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2829 	}
2830 }
2831 
2832 /*
2833  * Update the in-core space usage stats for this vdev, its metaslab class,
2834  * and the root vdev.
2835  */
2836 void
2837 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2838     int64_t space_delta)
2839 {
2840 	int64_t dspace_delta = space_delta;
2841 	spa_t *spa = vd->vdev_spa;
2842 	vdev_t *rvd = spa->spa_root_vdev;
2843 	metaslab_group_t *mg = vd->vdev_mg;
2844 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2845 
2846 	ASSERT(vd == vd->vdev_top);
2847 
2848 	/*
2849 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2850 	 * factor.  We must calculate this here and not at the root vdev
2851 	 * because the root vdev's psize-to-asize is simply the max of its
2852 	 * childrens', thus not accurate enough for us.
2853 	 */
2854 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2855 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2856 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2857 	    vd->vdev_deflate_ratio;
2858 
2859 	mutex_enter(&vd->vdev_stat_lock);
2860 	vd->vdev_stat.vs_alloc += alloc_delta;
2861 	vd->vdev_stat.vs_space += space_delta;
2862 	vd->vdev_stat.vs_dspace += dspace_delta;
2863 	mutex_exit(&vd->vdev_stat_lock);
2864 
2865 	if (mc == spa_normal_class(spa)) {
2866 		mutex_enter(&rvd->vdev_stat_lock);
2867 		rvd->vdev_stat.vs_alloc += alloc_delta;
2868 		rvd->vdev_stat.vs_space += space_delta;
2869 		rvd->vdev_stat.vs_dspace += dspace_delta;
2870 		mutex_exit(&rvd->vdev_stat_lock);
2871 	}
2872 
2873 	if (mc != NULL) {
2874 		ASSERT(rvd == vd->vdev_parent);
2875 		ASSERT(vd->vdev_ms_count != 0);
2876 
2877 		metaslab_class_space_update(mc,
2878 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2879 	}
2880 }
2881 
2882 /*
2883  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2884  * so that it will be written out next time the vdev configuration is synced.
2885  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2886  */
2887 void
2888 vdev_config_dirty(vdev_t *vd)
2889 {
2890 	spa_t *spa = vd->vdev_spa;
2891 	vdev_t *rvd = spa->spa_root_vdev;
2892 	int c;
2893 
2894 	ASSERT(spa_writeable(spa));
2895 
2896 	/*
2897 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2898 	 * update the vdev config manually and set the sync flag.
2899 	 */
2900 	if (vd->vdev_aux != NULL) {
2901 		spa_aux_vdev_t *sav = vd->vdev_aux;
2902 		nvlist_t **aux;
2903 		uint_t naux;
2904 
2905 		for (c = 0; c < sav->sav_count; c++) {
2906 			if (sav->sav_vdevs[c] == vd)
2907 				break;
2908 		}
2909 
2910 		if (c == sav->sav_count) {
2911 			/*
2912 			 * We're being removed.  There's nothing more to do.
2913 			 */
2914 			ASSERT(sav->sav_sync == B_TRUE);
2915 			return;
2916 		}
2917 
2918 		sav->sav_sync = B_TRUE;
2919 
2920 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2921 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2922 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2923 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2924 		}
2925 
2926 		ASSERT(c < naux);
2927 
2928 		/*
2929 		 * Setting the nvlist in the middle if the array is a little
2930 		 * sketchy, but it will work.
2931 		 */
2932 		nvlist_free(aux[c]);
2933 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2934 
2935 		return;
2936 	}
2937 
2938 	/*
2939 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2940 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2941 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2942 	 * so this is sufficient to ensure mutual exclusion.
2943 	 */
2944 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2945 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2946 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2947 
2948 	if (vd == rvd) {
2949 		for (c = 0; c < rvd->vdev_children; c++)
2950 			vdev_config_dirty(rvd->vdev_child[c]);
2951 	} else {
2952 		ASSERT(vd == vd->vdev_top);
2953 
2954 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2955 		    !vd->vdev_ishole)
2956 			list_insert_head(&spa->spa_config_dirty_list, vd);
2957 	}
2958 }
2959 
2960 void
2961 vdev_config_clean(vdev_t *vd)
2962 {
2963 	spa_t *spa = vd->vdev_spa;
2964 
2965 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2966 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2967 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2968 
2969 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2970 	list_remove(&spa->spa_config_dirty_list, vd);
2971 }
2972 
2973 /*
2974  * Mark a top-level vdev's state as dirty, so that the next pass of
2975  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2976  * the state changes from larger config changes because they require
2977  * much less locking, and are often needed for administrative actions.
2978  */
2979 void
2980 vdev_state_dirty(vdev_t *vd)
2981 {
2982 	spa_t *spa = vd->vdev_spa;
2983 
2984 	ASSERT(spa_writeable(spa));
2985 	ASSERT(vd == vd->vdev_top);
2986 
2987 	/*
2988 	 * The state list is protected by the SCL_STATE lock.  The caller
2989 	 * must either hold SCL_STATE as writer, or must be the sync thread
2990 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2991 	 * so this is sufficient to ensure mutual exclusion.
2992 	 */
2993 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2994 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2995 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2996 
2997 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2998 		list_insert_head(&spa->spa_state_dirty_list, vd);
2999 }
3000 
3001 void
3002 vdev_state_clean(vdev_t *vd)
3003 {
3004 	spa_t *spa = vd->vdev_spa;
3005 
3006 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3007 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3008 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3009 
3010 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3011 	list_remove(&spa->spa_state_dirty_list, vd);
3012 }
3013 
3014 /*
3015  * Propagate vdev state up from children to parent.
3016  */
3017 void
3018 vdev_propagate_state(vdev_t *vd)
3019 {
3020 	spa_t *spa = vd->vdev_spa;
3021 	vdev_t *rvd = spa->spa_root_vdev;
3022 	int degraded = 0, faulted = 0;
3023 	int corrupted = 0;
3024 	vdev_t *child;
3025 
3026 	if (vd->vdev_children > 0) {
3027 		for (int c = 0; c < vd->vdev_children; c++) {
3028 			child = vd->vdev_child[c];
3029 
3030 			/*
3031 			 * Don't factor holes into the decision.
3032 			 */
3033 			if (child->vdev_ishole)
3034 				continue;
3035 
3036 			if (!vdev_readable(child) ||
3037 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3038 				/*
3039 				 * Root special: if there is a top-level log
3040 				 * device, treat the root vdev as if it were
3041 				 * degraded.
3042 				 */
3043 				if (child->vdev_islog && vd == rvd)
3044 					degraded++;
3045 				else
3046 					faulted++;
3047 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3048 				degraded++;
3049 			}
3050 
3051 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3052 				corrupted++;
3053 		}
3054 
3055 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3056 
3057 		/*
3058 		 * Root special: if there is a top-level vdev that cannot be
3059 		 * opened due to corrupted metadata, then propagate the root
3060 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3061 		 * replicas'.
3062 		 */
3063 		if (corrupted && vd == rvd &&
3064 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3065 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3066 			    VDEV_AUX_CORRUPT_DATA);
3067 	}
3068 
3069 	if (vd->vdev_parent)
3070 		vdev_propagate_state(vd->vdev_parent);
3071 }
3072 
3073 /*
3074  * Set a vdev's state.  If this is during an open, we don't update the parent
3075  * state, because we're in the process of opening children depth-first.
3076  * Otherwise, we propagate the change to the parent.
3077  *
3078  * If this routine places a device in a faulted state, an appropriate ereport is
3079  * generated.
3080  */
3081 void
3082 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3083 {
3084 	uint64_t save_state;
3085 	spa_t *spa = vd->vdev_spa;
3086 
3087 	if (state == vd->vdev_state) {
3088 		vd->vdev_stat.vs_aux = aux;
3089 		return;
3090 	}
3091 
3092 	save_state = vd->vdev_state;
3093 
3094 	vd->vdev_state = state;
3095 	vd->vdev_stat.vs_aux = aux;
3096 
3097 	/*
3098 	 * If we are setting the vdev state to anything but an open state, then
3099 	 * always close the underlying device unless the device has requested
3100 	 * a delayed close (i.e. we're about to remove or fault the device).
3101 	 * Otherwise, we keep accessible but invalid devices open forever.
3102 	 * We don't call vdev_close() itself, because that implies some extra
3103 	 * checks (offline, etc) that we don't want here.  This is limited to
3104 	 * leaf devices, because otherwise closing the device will affect other
3105 	 * children.
3106 	 */
3107 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3108 	    vd->vdev_ops->vdev_op_leaf)
3109 		vd->vdev_ops->vdev_op_close(vd);
3110 
3111 	/*
3112 	 * If we have brought this vdev back into service, we need
3113 	 * to notify fmd so that it can gracefully repair any outstanding
3114 	 * cases due to a missing device.  We do this in all cases, even those
3115 	 * that probably don't correlate to a repaired fault.  This is sure to
3116 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3117 	 * this is a transient state it's OK, as the retire agent will
3118 	 * double-check the state of the vdev before repairing it.
3119 	 */
3120 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3121 	    vd->vdev_prevstate != state)
3122 		zfs_post_state_change(spa, vd);
3123 
3124 	if (vd->vdev_removed &&
3125 	    state == VDEV_STATE_CANT_OPEN &&
3126 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3127 		/*
3128 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3129 		 * device was previously marked removed and someone attempted to
3130 		 * reopen it.  If this failed due to a nonexistent device, then
3131 		 * keep the device in the REMOVED state.  We also let this be if
3132 		 * it is one of our special test online cases, which is only
3133 		 * attempting to online the device and shouldn't generate an FMA
3134 		 * fault.
3135 		 */
3136 		vd->vdev_state = VDEV_STATE_REMOVED;
3137 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3138 	} else if (state == VDEV_STATE_REMOVED) {
3139 		vd->vdev_removed = B_TRUE;
3140 	} else if (state == VDEV_STATE_CANT_OPEN) {
3141 		/*
3142 		 * If we fail to open a vdev during an import or recovery, we
3143 		 * mark it as "not available", which signifies that it was
3144 		 * never there to begin with.  Failure to open such a device
3145 		 * is not considered an error.
3146 		 */
3147 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3148 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3149 		    vd->vdev_ops->vdev_op_leaf)
3150 			vd->vdev_not_present = 1;
3151 
3152 		/*
3153 		 * Post the appropriate ereport.  If the 'prevstate' field is
3154 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3155 		 * that this is part of a vdev_reopen().  In this case, we don't
3156 		 * want to post the ereport if the device was already in the
3157 		 * CANT_OPEN state beforehand.
3158 		 *
3159 		 * If the 'checkremove' flag is set, then this is an attempt to
3160 		 * online the device in response to an insertion event.  If we
3161 		 * hit this case, then we have detected an insertion event for a
3162 		 * faulted or offline device that wasn't in the removed state.
3163 		 * In this scenario, we don't post an ereport because we are
3164 		 * about to replace the device, or attempt an online with
3165 		 * vdev_forcefault, which will generate the fault for us.
3166 		 */
3167 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3168 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3169 		    vd != spa->spa_root_vdev) {
3170 			const char *class;
3171 
3172 			switch (aux) {
3173 			case VDEV_AUX_OPEN_FAILED:
3174 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3175 				break;
3176 			case VDEV_AUX_CORRUPT_DATA:
3177 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3178 				break;
3179 			case VDEV_AUX_NO_REPLICAS:
3180 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3181 				break;
3182 			case VDEV_AUX_BAD_GUID_SUM:
3183 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3184 				break;
3185 			case VDEV_AUX_TOO_SMALL:
3186 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3187 				break;
3188 			case VDEV_AUX_BAD_LABEL:
3189 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3190 				break;
3191 			default:
3192 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3193 			}
3194 
3195 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3196 		}
3197 
3198 		/* Erase any notion of persistent removed state */
3199 		vd->vdev_removed = B_FALSE;
3200 	} else {
3201 		vd->vdev_removed = B_FALSE;
3202 	}
3203 
3204 	if (!isopen && vd->vdev_parent)
3205 		vdev_propagate_state(vd->vdev_parent);
3206 }
3207 
3208 /*
3209  * Check the vdev configuration to ensure that it's capable of supporting
3210  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3211  * In addition, only a single top-level vdev is allowed and none of the leaves
3212  * can be wholedisks.
3213  */
3214 boolean_t
3215 vdev_is_bootable(vdev_t *vd)
3216 {
3217 	if (!vd->vdev_ops->vdev_op_leaf) {
3218 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3219 
3220 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3221 		    vd->vdev_children > 1) {
3222 			return (B_FALSE);
3223 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3224 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3225 			return (B_FALSE);
3226 		}
3227 	}
3228 
3229 	for (int c = 0; c < vd->vdev_children; c++) {
3230 		if (!vdev_is_bootable(vd->vdev_child[c]))
3231 			return (B_FALSE);
3232 	}
3233 	return (B_TRUE);
3234 }
3235 
3236 /*
3237  * Load the state from the original vdev tree (ovd) which
3238  * we've retrieved from the MOS config object. If the original
3239  * vdev was offline or faulted then we transfer that state to the
3240  * device in the current vdev tree (nvd).
3241  */
3242 void
3243 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3244 {
3245 	spa_t *spa = nvd->vdev_spa;
3246 
3247 	ASSERT(nvd->vdev_top->vdev_islog);
3248 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3249 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3250 
3251 	for (int c = 0; c < nvd->vdev_children; c++)
3252 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3253 
3254 	if (nvd->vdev_ops->vdev_op_leaf) {
3255 		/*
3256 		 * Restore the persistent vdev state
3257 		 */
3258 		nvd->vdev_offline = ovd->vdev_offline;
3259 		nvd->vdev_faulted = ovd->vdev_faulted;
3260 		nvd->vdev_degraded = ovd->vdev_degraded;
3261 		nvd->vdev_removed = ovd->vdev_removed;
3262 	}
3263 }
3264 
3265 /*
3266  * Determine if a log device has valid content.  If the vdev was
3267  * removed or faulted in the MOS config then we know that
3268  * the content on the log device has already been written to the pool.
3269  */
3270 boolean_t
3271 vdev_log_state_valid(vdev_t *vd)
3272 {
3273 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3274 	    !vd->vdev_removed)
3275 		return (B_TRUE);
3276 
3277 	for (int c = 0; c < vd->vdev_children; c++)
3278 		if (vdev_log_state_valid(vd->vdev_child[c]))
3279 			return (B_TRUE);
3280 
3281 	return (B_FALSE);
3282 }
3283 
3284 /*
3285  * Expand a vdev if possible.
3286  */
3287 void
3288 vdev_expand(vdev_t *vd, uint64_t txg)
3289 {
3290 	ASSERT(vd->vdev_top == vd);
3291 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3292 
3293 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3294 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3295 		vdev_config_dirty(vd);
3296 	}
3297 }
3298 
3299 /*
3300  * Split a vdev.
3301  */
3302 void
3303 vdev_split(vdev_t *vd)
3304 {
3305 	vdev_t *cvd, *pvd = vd->vdev_parent;
3306 
3307 	vdev_remove_child(pvd, vd);
3308 	vdev_compact_children(pvd);
3309 
3310 	cvd = pvd->vdev_child[0];
3311 	if (pvd->vdev_children == 1) {
3312 		vdev_remove_parent(cvd);
3313 		cvd->vdev_splitting = B_TRUE;
3314 	}
3315 	vdev_propagate_state(cvd);
3316 }
3317 
3318 void
3319 vdev_deadman(vdev_t *vd)
3320 {
3321 	for (int c = 0; c < vd->vdev_children; c++) {
3322 		vdev_t *cvd = vd->vdev_child[c];
3323 
3324 		vdev_deadman(cvd);
3325 	}
3326 
3327 	if (vd->vdev_ops->vdev_op_leaf) {
3328 		vdev_queue_t *vq = &vd->vdev_queue;
3329 
3330 		mutex_enter(&vq->vq_lock);
3331 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3332 			spa_t *spa = vd->vdev_spa;
3333 			zio_t *fio;
3334 			uint64_t delta;
3335 
3336 			/*
3337 			 * Look at the head of all the pending queues,
3338 			 * if any I/O has been outstanding for longer than
3339 			 * the spa_deadman_synctime we panic the system.
3340 			 */
3341 			fio = avl_first(&vq->vq_active_tree);
3342 			delta = gethrtime() - fio->io_timestamp;
3343 			if (delta > spa_deadman_synctime(spa)) {
3344 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3345 				    "delta %lluns, last io %lluns",
3346 				    fio->io_timestamp, delta,
3347 				    vq->vq_io_complete_ts);
3348 				fm_panic("I/O to pool '%s' appears to be "
3349 				    "hung.", spa_name(spa));
3350 			}
3351 		}
3352 		mutex_exit(&vq->vq_lock);
3353 	}
3354 }
3355