1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue */ 61 int zfs_scrub_limit = 70; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 uint64_t c; 88 89 for (c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the replaceable or attachable device size. 99 * If the parent is a mirror or raidz, the replaceable size is the minimum 100 * psize of all its children. For the rest, just return our own psize. 101 * 102 * e.g. 103 * psize rsize 104 * root - - 105 * mirror/raidz - - 106 * disk1 20g 20g 107 * disk2 40g 20g 108 * disk3 80g 80g 109 */ 110 uint64_t 111 vdev_get_rsize(vdev_t *vd) 112 { 113 vdev_t *pvd, *cvd; 114 uint64_t c, rsize; 115 116 pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL or the root, just return our own psize. 120 */ 121 if (pvd == NULL || pvd->vdev_parent == NULL) 122 return (vd->vdev_psize); 123 124 rsize = 0; 125 126 for (c = 0; c < pvd->vdev_children; c++) { 127 cvd = pvd->vdev_child[c]; 128 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 129 } 130 131 return (rsize); 132 } 133 134 vdev_t * 135 vdev_lookup_top(spa_t *spa, uint64_t vdev) 136 { 137 vdev_t *rvd = spa->spa_root_vdev; 138 139 if (vdev < rvd->vdev_children) 140 return (rvd->vdev_child[vdev]); 141 142 return (NULL); 143 } 144 145 vdev_t * 146 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 147 { 148 int c; 149 vdev_t *mvd; 150 151 if (vd->vdev_guid == guid) 152 return (vd); 153 154 for (c = 0; c < vd->vdev_children; c++) 155 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 156 NULL) 157 return (mvd); 158 159 return (NULL); 160 } 161 162 void 163 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 164 { 165 size_t oldsize, newsize; 166 uint64_t id = cvd->vdev_id; 167 vdev_t **newchild; 168 169 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 170 ASSERT(cvd->vdev_parent == NULL); 171 172 cvd->vdev_parent = pvd; 173 174 if (pvd == NULL) 175 return; 176 177 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 178 179 oldsize = pvd->vdev_children * sizeof (vdev_t *); 180 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 181 newsize = pvd->vdev_children * sizeof (vdev_t *); 182 183 newchild = kmem_zalloc(newsize, KM_SLEEP); 184 if (pvd->vdev_child != NULL) { 185 bcopy(pvd->vdev_child, newchild, oldsize); 186 kmem_free(pvd->vdev_child, oldsize); 187 } 188 189 pvd->vdev_child = newchild; 190 pvd->vdev_child[id] = cvd; 191 192 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 193 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 194 195 /* 196 * Walk up all ancestors to update guid sum. 197 */ 198 for (; pvd != NULL; pvd = pvd->vdev_parent) 199 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 200 201 if (cvd->vdev_ops->vdev_op_leaf) 202 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 203 } 204 205 void 206 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 207 { 208 int c; 209 uint_t id = cvd->vdev_id; 210 211 ASSERT(cvd->vdev_parent == pvd); 212 213 if (pvd == NULL) 214 return; 215 216 ASSERT(id < pvd->vdev_children); 217 ASSERT(pvd->vdev_child[id] == cvd); 218 219 pvd->vdev_child[id] = NULL; 220 cvd->vdev_parent = NULL; 221 222 for (c = 0; c < pvd->vdev_children; c++) 223 if (pvd->vdev_child[c]) 224 break; 225 226 if (c == pvd->vdev_children) { 227 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 228 pvd->vdev_child = NULL; 229 pvd->vdev_children = 0; 230 } 231 232 /* 233 * Walk up all ancestors to update guid sum. 234 */ 235 for (; pvd != NULL; pvd = pvd->vdev_parent) 236 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 237 238 if (cvd->vdev_ops->vdev_op_leaf) 239 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 240 } 241 242 /* 243 * Remove any holes in the child array. 244 */ 245 void 246 vdev_compact_children(vdev_t *pvd) 247 { 248 vdev_t **newchild, *cvd; 249 int oldc = pvd->vdev_children; 250 int newc, c; 251 252 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 253 254 for (c = newc = 0; c < oldc; c++) 255 if (pvd->vdev_child[c]) 256 newc++; 257 258 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 259 260 for (c = newc = 0; c < oldc; c++) { 261 if ((cvd = pvd->vdev_child[c]) != NULL) { 262 newchild[newc] = cvd; 263 cvd->vdev_id = newc++; 264 } 265 } 266 267 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 268 pvd->vdev_child = newchild; 269 pvd->vdev_children = newc; 270 } 271 272 /* 273 * Allocate and minimally initialize a vdev_t. 274 */ 275 static vdev_t * 276 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 277 { 278 vdev_t *vd; 279 280 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 281 282 if (spa->spa_root_vdev == NULL) { 283 ASSERT(ops == &vdev_root_ops); 284 spa->spa_root_vdev = vd; 285 } 286 287 if (guid == 0) { 288 if (spa->spa_root_vdev == vd) { 289 /* 290 * The root vdev's guid will also be the pool guid, 291 * which must be unique among all pools. 292 */ 293 while (guid == 0 || spa_guid_exists(guid, 0)) 294 guid = spa_get_random(-1ULL); 295 } else { 296 /* 297 * Any other vdev's guid must be unique within the pool. 298 */ 299 while (guid == 0 || 300 spa_guid_exists(spa_guid(spa), guid)) 301 guid = spa_get_random(-1ULL); 302 } 303 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 304 } 305 306 vd->vdev_spa = spa; 307 vd->vdev_id = id; 308 vd->vdev_guid = guid; 309 vd->vdev_guid_sum = guid; 310 vd->vdev_ops = ops; 311 vd->vdev_state = VDEV_STATE_CLOSED; 312 313 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 314 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 315 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 316 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 317 txg_list_create(&vd->vdev_ms_list, 318 offsetof(struct metaslab, ms_txg_node)); 319 txg_list_create(&vd->vdev_dtl_list, 320 offsetof(struct vdev, vdev_dtl_node)); 321 vd->vdev_stat.vs_timestamp = gethrtime(); 322 323 return (vd); 324 } 325 326 /* 327 * Free a vdev_t that has been removed from service. 328 */ 329 static void 330 vdev_free_common(vdev_t *vd) 331 { 332 spa_t *spa = vd->vdev_spa; 333 334 if (vd->vdev_path) 335 spa_strfree(vd->vdev_path); 336 if (vd->vdev_devid) 337 spa_strfree(vd->vdev_devid); 338 339 if (vd->vdev_isspare) 340 spa_spare_remove(vd); 341 342 txg_list_destroy(&vd->vdev_ms_list); 343 txg_list_destroy(&vd->vdev_dtl_list); 344 mutex_enter(&vd->vdev_dtl_lock); 345 space_map_unload(&vd->vdev_dtl_map); 346 space_map_destroy(&vd->vdev_dtl_map); 347 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 348 space_map_destroy(&vd->vdev_dtl_scrub); 349 mutex_exit(&vd->vdev_dtl_lock); 350 mutex_destroy(&vd->vdev_dtl_lock); 351 mutex_destroy(&vd->vdev_stat_lock); 352 353 if (vd == spa->spa_root_vdev) 354 spa->spa_root_vdev = NULL; 355 356 kmem_free(vd, sizeof (vdev_t)); 357 } 358 359 /* 360 * Allocate a new vdev. The 'alloctype' is used to control whether we are 361 * creating a new vdev or loading an existing one - the behavior is slightly 362 * different for each case. 363 */ 364 int 365 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 366 int alloctype) 367 { 368 vdev_ops_t *ops; 369 char *type; 370 uint64_t guid = 0; 371 vdev_t *vd; 372 373 ASSERT(spa_config_held(spa, RW_WRITER)); 374 375 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 376 return (EINVAL); 377 378 if ((ops = vdev_getops(type)) == NULL) 379 return (EINVAL); 380 381 /* 382 * If this is a load, get the vdev guid from the nvlist. 383 * Otherwise, vdev_alloc_common() will generate one for us. 384 */ 385 if (alloctype == VDEV_ALLOC_LOAD) { 386 uint64_t label_id; 387 388 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 389 label_id != id) 390 return (EINVAL); 391 392 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 393 return (EINVAL); 394 } else if (alloctype == VDEV_ALLOC_SPARE) { 395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 396 return (EINVAL); 397 } 398 399 /* 400 * The first allocated vdev must be of type 'root'. 401 */ 402 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 403 return (EINVAL); 404 405 vd = vdev_alloc_common(spa, id, guid, ops); 406 407 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 408 vd->vdev_path = spa_strdup(vd->vdev_path); 409 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 410 vd->vdev_devid = spa_strdup(vd->vdev_devid); 411 412 /* 413 * Set the nparity propery for RAID-Z vdevs. 414 */ 415 if (ops == &vdev_raidz_ops) { 416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 417 &vd->vdev_nparity) == 0) { 418 /* 419 * Currently, we can only support 2 parity devices. 420 */ 421 if (vd->vdev_nparity > 2) 422 return (EINVAL); 423 /* 424 * Older versions can only support 1 parity device. 425 */ 426 if (vd->vdev_nparity == 2 && 427 spa_version(spa) < ZFS_VERSION_RAID6) 428 return (ENOTSUP); 429 430 } else { 431 /* 432 * We require the parity to be specified for SPAs that 433 * support multiple parity levels. 434 */ 435 if (spa_version(spa) >= ZFS_VERSION_RAID6) 436 return (EINVAL); 437 438 /* 439 * Otherwise, we default to 1 parity device for RAID-Z. 440 */ 441 vd->vdev_nparity = 1; 442 } 443 } else { 444 vd->vdev_nparity = 0; 445 } 446 447 /* 448 * Set the whole_disk property. If it's not specified, leave the value 449 * as -1. 450 */ 451 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 452 &vd->vdev_wholedisk) != 0) 453 vd->vdev_wholedisk = -1ULL; 454 455 /* 456 * Look for the 'not present' flag. This will only be set if the device 457 * was not present at the time of import. 458 */ 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 460 &vd->vdev_not_present); 461 462 /* 463 * Get the alignment requirement. 464 */ 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 466 467 /* 468 * If we're a top-level vdev, try to load the allocation parameters. 469 */ 470 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 472 &vd->vdev_ms_array); 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 474 &vd->vdev_ms_shift); 475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 476 &vd->vdev_asize); 477 } 478 479 /* 480 * If we're a leaf vdev, try to load the DTL object and offline state. 481 */ 482 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 484 &vd->vdev_dtl.smo_object); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 486 &vd->vdev_offline); 487 } 488 489 /* 490 * Add ourselves to the parent's list of children. 491 */ 492 vdev_add_child(parent, vd); 493 494 *vdp = vd; 495 496 return (0); 497 } 498 499 void 500 vdev_free(vdev_t *vd) 501 { 502 int c; 503 504 /* 505 * vdev_free() implies closing the vdev first. This is simpler than 506 * trying to ensure complicated semantics for all callers. 507 */ 508 vdev_close(vd); 509 510 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 511 512 /* 513 * Free all children. 514 */ 515 for (c = 0; c < vd->vdev_children; c++) 516 vdev_free(vd->vdev_child[c]); 517 518 ASSERT(vd->vdev_child == NULL); 519 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 520 521 /* 522 * Discard allocation state. 523 */ 524 if (vd == vd->vdev_top) 525 vdev_metaslab_fini(vd); 526 527 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 528 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 529 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 530 531 /* 532 * Remove this vdev from its parent's child list. 533 */ 534 vdev_remove_child(vd->vdev_parent, vd); 535 536 ASSERT(vd->vdev_parent == NULL); 537 538 vdev_free_common(vd); 539 } 540 541 /* 542 * Transfer top-level vdev state from svd to tvd. 543 */ 544 static void 545 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 546 { 547 spa_t *spa = svd->vdev_spa; 548 metaslab_t *msp; 549 vdev_t *vd; 550 int t; 551 552 ASSERT(tvd == tvd->vdev_top); 553 554 tvd->vdev_ms_array = svd->vdev_ms_array; 555 tvd->vdev_ms_shift = svd->vdev_ms_shift; 556 tvd->vdev_ms_count = svd->vdev_ms_count; 557 558 svd->vdev_ms_array = 0; 559 svd->vdev_ms_shift = 0; 560 svd->vdev_ms_count = 0; 561 562 tvd->vdev_mg = svd->vdev_mg; 563 tvd->vdev_ms = svd->vdev_ms; 564 565 svd->vdev_mg = NULL; 566 svd->vdev_ms = NULL; 567 568 if (tvd->vdev_mg != NULL) 569 tvd->vdev_mg->mg_vd = tvd; 570 571 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 572 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 573 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 574 575 svd->vdev_stat.vs_alloc = 0; 576 svd->vdev_stat.vs_space = 0; 577 svd->vdev_stat.vs_dspace = 0; 578 579 for (t = 0; t < TXG_SIZE; t++) { 580 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 581 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 582 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 583 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 584 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 585 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 586 } 587 588 if (list_link_active(&svd->vdev_dirty_node)) { 589 vdev_config_clean(svd); 590 vdev_config_dirty(tvd); 591 } 592 593 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 594 svd->vdev_reopen_wanted = 0; 595 596 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 597 svd->vdev_deflate_ratio = 0; 598 } 599 600 static void 601 vdev_top_update(vdev_t *tvd, vdev_t *vd) 602 { 603 int c; 604 605 if (vd == NULL) 606 return; 607 608 vd->vdev_top = tvd; 609 610 for (c = 0; c < vd->vdev_children; c++) 611 vdev_top_update(tvd, vd->vdev_child[c]); 612 } 613 614 /* 615 * Add a mirror/replacing vdev above an existing vdev. 616 */ 617 vdev_t * 618 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 619 { 620 spa_t *spa = cvd->vdev_spa; 621 vdev_t *pvd = cvd->vdev_parent; 622 vdev_t *mvd; 623 624 ASSERT(spa_config_held(spa, RW_WRITER)); 625 626 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 627 628 mvd->vdev_asize = cvd->vdev_asize; 629 mvd->vdev_ashift = cvd->vdev_ashift; 630 mvd->vdev_state = cvd->vdev_state; 631 632 vdev_remove_child(pvd, cvd); 633 vdev_add_child(pvd, mvd); 634 cvd->vdev_id = mvd->vdev_children; 635 vdev_add_child(mvd, cvd); 636 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 637 638 if (mvd == mvd->vdev_top) 639 vdev_top_transfer(cvd, mvd); 640 641 return (mvd); 642 } 643 644 /* 645 * Remove a 1-way mirror/replacing vdev from the tree. 646 */ 647 void 648 vdev_remove_parent(vdev_t *cvd) 649 { 650 vdev_t *mvd = cvd->vdev_parent; 651 vdev_t *pvd = mvd->vdev_parent; 652 653 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 654 655 ASSERT(mvd->vdev_children == 1); 656 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 657 mvd->vdev_ops == &vdev_replacing_ops || 658 mvd->vdev_ops == &vdev_spare_ops); 659 cvd->vdev_ashift = mvd->vdev_ashift; 660 661 vdev_remove_child(mvd, cvd); 662 vdev_remove_child(pvd, mvd); 663 cvd->vdev_id = mvd->vdev_id; 664 vdev_add_child(pvd, cvd); 665 /* 666 * If we created a new toplevel vdev, then we need to change the child's 667 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 668 * detached an offline device, and when we go to import the pool we'll 669 * think we have two toplevel vdevs, instead of a different version of 670 * the same toplevel vdev. 671 */ 672 if (cvd->vdev_top == cvd) { 673 pvd->vdev_guid_sum -= cvd->vdev_guid; 674 cvd->vdev_guid_sum -= cvd->vdev_guid; 675 cvd->vdev_guid = mvd->vdev_guid; 676 cvd->vdev_guid_sum += mvd->vdev_guid; 677 pvd->vdev_guid_sum += cvd->vdev_guid; 678 } 679 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 680 681 if (cvd == cvd->vdev_top) 682 vdev_top_transfer(mvd, cvd); 683 684 ASSERT(mvd->vdev_children == 0); 685 vdev_free(mvd); 686 } 687 688 int 689 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 690 { 691 spa_t *spa = vd->vdev_spa; 692 objset_t *mos = spa->spa_meta_objset; 693 metaslab_class_t *mc = spa_metaslab_class_select(spa); 694 uint64_t m; 695 uint64_t oldc = vd->vdev_ms_count; 696 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 697 metaslab_t **mspp; 698 int error; 699 700 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 701 return (0); 702 703 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 704 705 ASSERT(oldc <= newc); 706 707 if (vd->vdev_mg == NULL) 708 vd->vdev_mg = metaslab_group_create(mc, vd); 709 710 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 711 712 if (oldc != 0) { 713 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 714 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 715 } 716 717 vd->vdev_ms = mspp; 718 vd->vdev_ms_count = newc; 719 720 for (m = oldc; m < newc; m++) { 721 space_map_obj_t smo = { 0, 0, 0 }; 722 if (txg == 0) { 723 uint64_t object = 0; 724 error = dmu_read(mos, vd->vdev_ms_array, 725 m * sizeof (uint64_t), sizeof (uint64_t), &object); 726 if (error) 727 return (error); 728 if (object != 0) { 729 dmu_buf_t *db; 730 error = dmu_bonus_hold(mos, object, FTAG, &db); 731 if (error) 732 return (error); 733 ASSERT3U(db->db_size, ==, sizeof (smo)); 734 bcopy(db->db_data, &smo, db->db_size); 735 ASSERT3U(smo.smo_object, ==, object); 736 dmu_buf_rele(db, FTAG); 737 } 738 } 739 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 740 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 741 } 742 743 return (0); 744 } 745 746 void 747 vdev_metaslab_fini(vdev_t *vd) 748 { 749 uint64_t m; 750 uint64_t count = vd->vdev_ms_count; 751 752 if (vd->vdev_ms != NULL) { 753 for (m = 0; m < count; m++) 754 if (vd->vdev_ms[m] != NULL) 755 metaslab_fini(vd->vdev_ms[m]); 756 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 757 vd->vdev_ms = NULL; 758 } 759 } 760 761 /* 762 * Prepare a virtual device for access. 763 */ 764 int 765 vdev_open(vdev_t *vd) 766 { 767 int error; 768 int c; 769 uint64_t osize = 0; 770 uint64_t asize, psize; 771 uint64_t ashift = 0; 772 773 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 774 vd->vdev_state == VDEV_STATE_CANT_OPEN || 775 vd->vdev_state == VDEV_STATE_OFFLINE); 776 777 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 778 vd->vdev_fault_arg >>= 1; 779 else 780 vd->vdev_fault_mode = VDEV_FAULT_NONE; 781 782 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 783 784 if (vd->vdev_ops->vdev_op_leaf) { 785 vdev_cache_init(vd); 786 vdev_queue_init(vd); 787 vd->vdev_cache_active = B_TRUE; 788 } 789 790 if (vd->vdev_offline) { 791 ASSERT(vd->vdev_children == 0); 792 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 793 return (ENXIO); 794 } 795 796 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 797 798 if (zio_injection_enabled && error == 0) 799 error = zio_handle_device_injection(vd, ENXIO); 800 801 dprintf("%s = %d, osize %llu, state = %d\n", 802 vdev_description(vd), error, osize, vd->vdev_state); 803 804 if (error) { 805 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 806 vd->vdev_stat.vs_aux); 807 return (error); 808 } 809 810 vd->vdev_state = VDEV_STATE_HEALTHY; 811 812 for (c = 0; c < vd->vdev_children; c++) 813 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 814 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 815 VDEV_AUX_NONE); 816 break; 817 } 818 819 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 820 821 if (vd->vdev_children == 0) { 822 if (osize < SPA_MINDEVSIZE) { 823 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 824 VDEV_AUX_TOO_SMALL); 825 return (EOVERFLOW); 826 } 827 psize = osize; 828 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 829 } else { 830 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 831 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 832 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 833 VDEV_AUX_TOO_SMALL); 834 return (EOVERFLOW); 835 } 836 psize = 0; 837 asize = osize; 838 } 839 840 vd->vdev_psize = psize; 841 842 if (vd->vdev_asize == 0) { 843 /* 844 * This is the first-ever open, so use the computed values. 845 * For testing purposes, a higher ashift can be requested. 846 */ 847 vd->vdev_asize = asize; 848 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 849 } else { 850 /* 851 * Make sure the alignment requirement hasn't increased. 852 */ 853 if (ashift > vd->vdev_top->vdev_ashift) { 854 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 855 VDEV_AUX_BAD_LABEL); 856 return (EINVAL); 857 } 858 859 /* 860 * Make sure the device hasn't shrunk. 861 */ 862 if (asize < vd->vdev_asize) { 863 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 864 VDEV_AUX_BAD_LABEL); 865 return (EINVAL); 866 } 867 868 /* 869 * If all children are healthy and the asize has increased, 870 * then we've experienced dynamic LUN growth. 871 */ 872 if (vd->vdev_state == VDEV_STATE_HEALTHY && 873 asize > vd->vdev_asize) { 874 vd->vdev_asize = asize; 875 } 876 } 877 878 /* 879 * If this is a top-level vdev, compute the raidz-deflation 880 * ratio. Note, we hard-code in 128k (1<<17) because it is the 881 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 882 * changes, this algorithm must never change, or we will 883 * inconsistently account for existing bp's. 884 */ 885 if (vd->vdev_top == vd) { 886 vd->vdev_deflate_ratio = (1<<17) / 887 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 888 } 889 890 /* 891 * This allows the ZFS DE to close cases appropriately. If a device 892 * goes away and later returns, we want to close the associated case. 893 * But it's not enough to simply post this only when a device goes from 894 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 895 * back, we also need to close the case (otherwise we will try to replay 896 * it). So we have to post this notifier every time. Since this only 897 * occurs during pool open or error recovery, this should not be an 898 * issue. 899 */ 900 zfs_post_ok(vd->vdev_spa, vd); 901 902 return (0); 903 } 904 905 /* 906 * Called once the vdevs are all opened, this routine validates the label 907 * contents. This needs to be done before vdev_load() so that we don't 908 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 909 * won't succeed if the device has been changed underneath. 910 * 911 * This function will only return failure if one of the vdevs indicates that it 912 * has since been destroyed or exported. This is only possible if 913 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 914 * will be updated but the function will return 0. 915 */ 916 int 917 vdev_validate(vdev_t *vd) 918 { 919 spa_t *spa = vd->vdev_spa; 920 int c; 921 nvlist_t *label; 922 uint64_t guid; 923 uint64_t state; 924 925 for (c = 0; c < vd->vdev_children; c++) 926 if (vdev_validate(vd->vdev_child[c]) != 0) 927 return (EBADF); 928 929 /* 930 * If the device has already failed, or was marked offline, don't do 931 * any further validation. Otherwise, label I/O will fail and we will 932 * overwrite the previous state. 933 */ 934 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 935 936 if ((label = vdev_label_read_config(vd)) == NULL) { 937 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 938 VDEV_AUX_BAD_LABEL); 939 return (0); 940 } 941 942 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 943 &guid) != 0 || guid != spa_guid(spa)) { 944 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 945 VDEV_AUX_CORRUPT_DATA); 946 nvlist_free(label); 947 return (0); 948 } 949 950 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 951 &guid) != 0 || guid != vd->vdev_guid) { 952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 953 VDEV_AUX_CORRUPT_DATA); 954 nvlist_free(label); 955 return (0); 956 } 957 958 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 959 &state) != 0) { 960 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 961 VDEV_AUX_CORRUPT_DATA); 962 nvlist_free(label); 963 return (0); 964 } 965 966 nvlist_free(label); 967 968 if (spa->spa_load_state == SPA_LOAD_OPEN && 969 state != POOL_STATE_ACTIVE) 970 return (EBADF); 971 } 972 973 /* 974 * If we were able to open and validate a vdev that was previously 975 * marked permanently unavailable, clear that state now. 976 */ 977 if (vd->vdev_not_present) 978 vd->vdev_not_present = 0; 979 980 return (0); 981 } 982 983 /* 984 * Close a virtual device. 985 */ 986 void 987 vdev_close(vdev_t *vd) 988 { 989 vd->vdev_ops->vdev_op_close(vd); 990 991 if (vd->vdev_cache_active) { 992 vdev_cache_fini(vd); 993 vdev_queue_fini(vd); 994 vd->vdev_cache_active = B_FALSE; 995 } 996 997 /* 998 * We record the previous state before we close it, so that if we are 999 * doing a reopen(), we don't generate FMA ereports if we notice that 1000 * it's still faulted. 1001 */ 1002 vd->vdev_prevstate = vd->vdev_state; 1003 1004 if (vd->vdev_offline) 1005 vd->vdev_state = VDEV_STATE_OFFLINE; 1006 else 1007 vd->vdev_state = VDEV_STATE_CLOSED; 1008 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1009 } 1010 1011 void 1012 vdev_reopen(vdev_t *vd) 1013 { 1014 spa_t *spa = vd->vdev_spa; 1015 1016 ASSERT(spa_config_held(spa, RW_WRITER)); 1017 1018 vdev_close(vd); 1019 (void) vdev_open(vd); 1020 1021 /* 1022 * Call vdev_validate() here to make sure we have the same device. 1023 * Otherwise, a device with an invalid label could be successfully 1024 * opened in response to vdev_reopen(). 1025 * 1026 * The downside to this is that if the user is simply experimenting by 1027 * overwriting an entire disk, we'll fault the device rather than 1028 * demonstrate self-healing capabilities. On the other hand, with 1029 * proper FMA integration, the series of errors we'd see from the device 1030 * would result in a faulted device anyway. Given that this doesn't 1031 * model any real-world corruption, it's better to catch this here and 1032 * correctly identify that the device has either changed beneath us, or 1033 * is corrupted beyond recognition. 1034 */ 1035 (void) vdev_validate(vd); 1036 1037 /* 1038 * Reassess root vdev's health. 1039 */ 1040 vdev_propagate_state(spa->spa_root_vdev); 1041 } 1042 1043 int 1044 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1045 { 1046 int error; 1047 1048 /* 1049 * Normally, partial opens (e.g. of a mirror) are allowed. 1050 * For a create, however, we want to fail the request if 1051 * there are any components we can't open. 1052 */ 1053 error = vdev_open(vd); 1054 1055 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1056 vdev_close(vd); 1057 return (error ? error : ENXIO); 1058 } 1059 1060 /* 1061 * Recursively initialize all labels. 1062 */ 1063 if ((error = vdev_label_init(vd, txg, isreplacing ? 1064 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1065 vdev_close(vd); 1066 return (error); 1067 } 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * The is the latter half of vdev_create(). It is distinct because it 1074 * involves initiating transactions in order to do metaslab creation. 1075 * For creation, we want to try to create all vdevs at once and then undo it 1076 * if anything fails; this is much harder if we have pending transactions. 1077 */ 1078 void 1079 vdev_init(vdev_t *vd, uint64_t txg) 1080 { 1081 /* 1082 * Aim for roughly 200 metaslabs per vdev. 1083 */ 1084 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1085 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1086 1087 /* 1088 * Initialize the vdev's metaslabs. This can't fail because 1089 * there's nothing to read when creating all new metaslabs. 1090 */ 1091 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1092 } 1093 1094 void 1095 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1096 { 1097 ASSERT(vd == vd->vdev_top); 1098 ASSERT(ISP2(flags)); 1099 1100 if (flags & VDD_METASLAB) 1101 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1102 1103 if (flags & VDD_DTL) 1104 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1105 1106 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1107 } 1108 1109 void 1110 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1111 { 1112 mutex_enter(sm->sm_lock); 1113 if (!space_map_contains(sm, txg, size)) 1114 space_map_add(sm, txg, size); 1115 mutex_exit(sm->sm_lock); 1116 } 1117 1118 int 1119 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1120 { 1121 int dirty; 1122 1123 /* 1124 * Quick test without the lock -- covers the common case that 1125 * there are no dirty time segments. 1126 */ 1127 if (sm->sm_space == 0) 1128 return (0); 1129 1130 mutex_enter(sm->sm_lock); 1131 dirty = space_map_contains(sm, txg, size); 1132 mutex_exit(sm->sm_lock); 1133 1134 return (dirty); 1135 } 1136 1137 /* 1138 * Reassess DTLs after a config change or scrub completion. 1139 */ 1140 void 1141 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1142 { 1143 spa_t *spa = vd->vdev_spa; 1144 int c; 1145 1146 ASSERT(spa_config_held(spa, RW_WRITER)); 1147 1148 if (vd->vdev_children == 0) { 1149 mutex_enter(&vd->vdev_dtl_lock); 1150 /* 1151 * We're successfully scrubbed everything up to scrub_txg. 1152 * Therefore, excise all old DTLs up to that point, then 1153 * fold in the DTLs for everything we couldn't scrub. 1154 */ 1155 if (scrub_txg != 0) { 1156 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1157 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1158 } 1159 if (scrub_done) 1160 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1161 mutex_exit(&vd->vdev_dtl_lock); 1162 if (txg != 0) 1163 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1164 return; 1165 } 1166 1167 /* 1168 * Make sure the DTLs are always correct under the scrub lock. 1169 */ 1170 if (vd == spa->spa_root_vdev) 1171 mutex_enter(&spa->spa_scrub_lock); 1172 1173 mutex_enter(&vd->vdev_dtl_lock); 1174 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1175 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1176 mutex_exit(&vd->vdev_dtl_lock); 1177 1178 for (c = 0; c < vd->vdev_children; c++) { 1179 vdev_t *cvd = vd->vdev_child[c]; 1180 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1181 mutex_enter(&vd->vdev_dtl_lock); 1182 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1183 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1184 mutex_exit(&vd->vdev_dtl_lock); 1185 } 1186 1187 if (vd == spa->spa_root_vdev) 1188 mutex_exit(&spa->spa_scrub_lock); 1189 } 1190 1191 static int 1192 vdev_dtl_load(vdev_t *vd) 1193 { 1194 spa_t *spa = vd->vdev_spa; 1195 space_map_obj_t *smo = &vd->vdev_dtl; 1196 objset_t *mos = spa->spa_meta_objset; 1197 dmu_buf_t *db; 1198 int error; 1199 1200 ASSERT(vd->vdev_children == 0); 1201 1202 if (smo->smo_object == 0) 1203 return (0); 1204 1205 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1206 return (error); 1207 1208 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1209 bcopy(db->db_data, smo, db->db_size); 1210 dmu_buf_rele(db, FTAG); 1211 1212 mutex_enter(&vd->vdev_dtl_lock); 1213 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1214 mutex_exit(&vd->vdev_dtl_lock); 1215 1216 return (error); 1217 } 1218 1219 void 1220 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1221 { 1222 spa_t *spa = vd->vdev_spa; 1223 space_map_obj_t *smo = &vd->vdev_dtl; 1224 space_map_t *sm = &vd->vdev_dtl_map; 1225 objset_t *mos = spa->spa_meta_objset; 1226 space_map_t smsync; 1227 kmutex_t smlock; 1228 dmu_buf_t *db; 1229 dmu_tx_t *tx; 1230 1231 dprintf("%s in txg %llu pass %d\n", 1232 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1233 1234 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1235 1236 if (vd->vdev_detached) { 1237 if (smo->smo_object != 0) { 1238 int err = dmu_object_free(mos, smo->smo_object, tx); 1239 ASSERT3U(err, ==, 0); 1240 smo->smo_object = 0; 1241 } 1242 dmu_tx_commit(tx); 1243 dprintf("detach %s committed in txg %llu\n", 1244 vdev_description(vd), txg); 1245 return; 1246 } 1247 1248 if (smo->smo_object == 0) { 1249 ASSERT(smo->smo_objsize == 0); 1250 ASSERT(smo->smo_alloc == 0); 1251 smo->smo_object = dmu_object_alloc(mos, 1252 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1253 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1254 ASSERT(smo->smo_object != 0); 1255 vdev_config_dirty(vd->vdev_top); 1256 } 1257 1258 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1259 1260 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1261 &smlock); 1262 1263 mutex_enter(&smlock); 1264 1265 mutex_enter(&vd->vdev_dtl_lock); 1266 space_map_walk(sm, space_map_add, &smsync); 1267 mutex_exit(&vd->vdev_dtl_lock); 1268 1269 space_map_truncate(smo, mos, tx); 1270 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1271 1272 space_map_destroy(&smsync); 1273 1274 mutex_exit(&smlock); 1275 mutex_destroy(&smlock); 1276 1277 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1278 dmu_buf_will_dirty(db, tx); 1279 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1280 bcopy(smo, db->db_data, db->db_size); 1281 dmu_buf_rele(db, FTAG); 1282 1283 dmu_tx_commit(tx); 1284 } 1285 1286 void 1287 vdev_load(vdev_t *vd) 1288 { 1289 int c; 1290 1291 /* 1292 * Recursively load all children. 1293 */ 1294 for (c = 0; c < vd->vdev_children; c++) 1295 vdev_load(vd->vdev_child[c]); 1296 1297 /* 1298 * If this is a top-level vdev, initialize its metaslabs. 1299 */ 1300 if (vd == vd->vdev_top && 1301 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1302 vdev_metaslab_init(vd, 0) != 0)) 1303 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1304 VDEV_AUX_CORRUPT_DATA); 1305 1306 /* 1307 * If this is a leaf vdev, load its DTL. 1308 */ 1309 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1310 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1311 VDEV_AUX_CORRUPT_DATA); 1312 } 1313 1314 /* 1315 * This special case of vdev_spare() is used for hot spares. It's sole purpose 1316 * it to set the vdev state for the associated vdev. To do this, we make sure 1317 * that we can open the underlying device, then try to read the label, and make 1318 * sure that the label is sane and that it hasn't been repurposed to another 1319 * pool. 1320 */ 1321 int 1322 vdev_validate_spare(vdev_t *vd) 1323 { 1324 nvlist_t *label; 1325 uint64_t guid, version; 1326 uint64_t state; 1327 1328 if ((label = vdev_label_read_config(vd)) == NULL) { 1329 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1330 VDEV_AUX_CORRUPT_DATA); 1331 return (-1); 1332 } 1333 1334 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1335 version > ZFS_VERSION || 1336 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1337 guid != vd->vdev_guid || 1338 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1339 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1340 VDEV_AUX_CORRUPT_DATA); 1341 nvlist_free(label); 1342 return (-1); 1343 } 1344 1345 spa_spare_add(vd); 1346 1347 /* 1348 * We don't actually check the pool state here. If it's in fact in 1349 * use by another pool, we update this fact on the fly when requested. 1350 */ 1351 nvlist_free(label); 1352 return (0); 1353 } 1354 1355 void 1356 vdev_sync_done(vdev_t *vd, uint64_t txg) 1357 { 1358 metaslab_t *msp; 1359 1360 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1361 1362 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1363 metaslab_sync_done(msp, txg); 1364 } 1365 1366 void 1367 vdev_sync(vdev_t *vd, uint64_t txg) 1368 { 1369 spa_t *spa = vd->vdev_spa; 1370 vdev_t *lvd; 1371 metaslab_t *msp; 1372 dmu_tx_t *tx; 1373 1374 dprintf("%s txg %llu pass %d\n", 1375 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1376 1377 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1378 ASSERT(vd == vd->vdev_top); 1379 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1380 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1381 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1382 ASSERT(vd->vdev_ms_array != 0); 1383 vdev_config_dirty(vd); 1384 dmu_tx_commit(tx); 1385 } 1386 1387 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1388 metaslab_sync(msp, txg); 1389 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1390 } 1391 1392 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1393 vdev_dtl_sync(lvd, txg); 1394 1395 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1396 } 1397 1398 uint64_t 1399 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1400 { 1401 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1402 } 1403 1404 void 1405 vdev_io_start(zio_t *zio) 1406 { 1407 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1408 } 1409 1410 void 1411 vdev_io_done(zio_t *zio) 1412 { 1413 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1414 } 1415 1416 const char * 1417 vdev_description(vdev_t *vd) 1418 { 1419 if (vd == NULL || vd->vdev_ops == NULL) 1420 return ("<unknown>"); 1421 1422 if (vd->vdev_path != NULL) 1423 return (vd->vdev_path); 1424 1425 if (vd->vdev_parent == NULL) 1426 return (spa_name(vd->vdev_spa)); 1427 1428 return (vd->vdev_ops->vdev_op_type); 1429 } 1430 1431 int 1432 vdev_online(spa_t *spa, uint64_t guid) 1433 { 1434 vdev_t *rvd, *vd; 1435 uint64_t txg; 1436 1437 txg = spa_vdev_enter(spa); 1438 1439 rvd = spa->spa_root_vdev; 1440 1441 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1442 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1443 1444 if (!vd->vdev_ops->vdev_op_leaf) 1445 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1446 1447 dprintf("ONLINE: %s\n", vdev_description(vd)); 1448 1449 vd->vdev_offline = B_FALSE; 1450 vd->vdev_tmpoffline = B_FALSE; 1451 vdev_reopen(vd->vdev_top); 1452 1453 vdev_config_dirty(vd->vdev_top); 1454 1455 (void) spa_vdev_exit(spa, NULL, txg, 0); 1456 1457 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1458 1459 return (0); 1460 } 1461 1462 int 1463 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1464 { 1465 vdev_t *rvd, *vd; 1466 uint64_t txg; 1467 1468 txg = spa_vdev_enter(spa); 1469 1470 rvd = spa->spa_root_vdev; 1471 1472 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1473 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1474 1475 if (!vd->vdev_ops->vdev_op_leaf) 1476 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1477 1478 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1479 1480 /* 1481 * If the device isn't already offline, try to offline it. 1482 */ 1483 if (!vd->vdev_offline) { 1484 /* 1485 * If this device's top-level vdev has a non-empty DTL, 1486 * don't allow the device to be offlined. 1487 * 1488 * XXX -- make this more precise by allowing the offline 1489 * as long as the remaining devices don't have any DTL holes. 1490 */ 1491 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1492 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1493 1494 /* 1495 * Offline this device and reopen its top-level vdev. 1496 * If this action results in the top-level vdev becoming 1497 * unusable, undo it and fail the request. 1498 */ 1499 vd->vdev_offline = B_TRUE; 1500 vdev_reopen(vd->vdev_top); 1501 if (vdev_is_dead(vd->vdev_top)) { 1502 vd->vdev_offline = B_FALSE; 1503 vdev_reopen(vd->vdev_top); 1504 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1505 } 1506 } 1507 1508 vd->vdev_tmpoffline = istmp; 1509 1510 vdev_config_dirty(vd->vdev_top); 1511 1512 return (spa_vdev_exit(spa, NULL, txg, 0)); 1513 } 1514 1515 /* 1516 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1517 * vdev_offline(), we assume the spa config is locked. We also clear all 1518 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1519 */ 1520 void 1521 vdev_clear(spa_t *spa, vdev_t *vd) 1522 { 1523 int c; 1524 1525 if (vd == NULL) 1526 vd = spa->spa_root_vdev; 1527 1528 vd->vdev_stat.vs_read_errors = 0; 1529 vd->vdev_stat.vs_write_errors = 0; 1530 vd->vdev_stat.vs_checksum_errors = 0; 1531 1532 for (c = 0; c < vd->vdev_children; c++) 1533 vdev_clear(spa, vd->vdev_child[c]); 1534 } 1535 1536 int 1537 vdev_is_dead(vdev_t *vd) 1538 { 1539 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1540 } 1541 1542 int 1543 vdev_error_inject(vdev_t *vd, zio_t *zio) 1544 { 1545 int error = 0; 1546 1547 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1548 return (0); 1549 1550 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1551 return (0); 1552 1553 switch (vd->vdev_fault_mode) { 1554 case VDEV_FAULT_RANDOM: 1555 if (spa_get_random(vd->vdev_fault_arg) == 0) 1556 error = EIO; 1557 break; 1558 1559 case VDEV_FAULT_COUNT: 1560 if ((int64_t)--vd->vdev_fault_arg <= 0) 1561 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1562 error = EIO; 1563 break; 1564 } 1565 1566 if (error != 0) { 1567 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1568 error, zio->io_type, vdev_description(vd), 1569 vd->vdev_state, zio->io_offset); 1570 } 1571 1572 return (error); 1573 } 1574 1575 /* 1576 * Get statistics for the given vdev. 1577 */ 1578 void 1579 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1580 { 1581 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1582 int c, t; 1583 1584 mutex_enter(&vd->vdev_stat_lock); 1585 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1586 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1587 vs->vs_state = vd->vdev_state; 1588 vs->vs_rsize = vdev_get_rsize(vd); 1589 mutex_exit(&vd->vdev_stat_lock); 1590 1591 /* 1592 * If we're getting stats on the root vdev, aggregate the I/O counts 1593 * over all top-level vdevs (i.e. the direct children of the root). 1594 */ 1595 if (vd == rvd) { 1596 for (c = 0; c < rvd->vdev_children; c++) { 1597 vdev_t *cvd = rvd->vdev_child[c]; 1598 vdev_stat_t *cvs = &cvd->vdev_stat; 1599 1600 mutex_enter(&vd->vdev_stat_lock); 1601 for (t = 0; t < ZIO_TYPES; t++) { 1602 vs->vs_ops[t] += cvs->vs_ops[t]; 1603 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1604 } 1605 vs->vs_read_errors += cvs->vs_read_errors; 1606 vs->vs_write_errors += cvs->vs_write_errors; 1607 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1608 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1609 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1610 mutex_exit(&vd->vdev_stat_lock); 1611 } 1612 } 1613 } 1614 1615 void 1616 vdev_stat_update(zio_t *zio) 1617 { 1618 vdev_t *vd = zio->io_vd; 1619 vdev_t *pvd; 1620 uint64_t txg = zio->io_txg; 1621 vdev_stat_t *vs = &vd->vdev_stat; 1622 zio_type_t type = zio->io_type; 1623 int flags = zio->io_flags; 1624 1625 if (zio->io_error == 0) { 1626 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1627 mutex_enter(&vd->vdev_stat_lock); 1628 vs->vs_ops[type]++; 1629 vs->vs_bytes[type] += zio->io_size; 1630 mutex_exit(&vd->vdev_stat_lock); 1631 } 1632 if ((flags & ZIO_FLAG_IO_REPAIR) && 1633 zio->io_delegate_list == NULL) { 1634 mutex_enter(&vd->vdev_stat_lock); 1635 if (flags & ZIO_FLAG_SCRUB_THREAD) 1636 vs->vs_scrub_repaired += zio->io_size; 1637 else 1638 vs->vs_self_healed += zio->io_size; 1639 mutex_exit(&vd->vdev_stat_lock); 1640 } 1641 return; 1642 } 1643 1644 if (flags & ZIO_FLAG_SPECULATIVE) 1645 return; 1646 1647 if (!vdev_is_dead(vd)) { 1648 mutex_enter(&vd->vdev_stat_lock); 1649 if (type == ZIO_TYPE_READ) { 1650 if (zio->io_error == ECKSUM) 1651 vs->vs_checksum_errors++; 1652 else 1653 vs->vs_read_errors++; 1654 } 1655 if (type == ZIO_TYPE_WRITE) 1656 vs->vs_write_errors++; 1657 mutex_exit(&vd->vdev_stat_lock); 1658 } 1659 1660 if (type == ZIO_TYPE_WRITE) { 1661 if (txg == 0 || vd->vdev_children != 0) 1662 return; 1663 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1664 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1665 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1666 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1667 } 1668 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1669 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1670 return; 1671 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1672 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1673 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1674 } 1675 } 1676 } 1677 1678 void 1679 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1680 { 1681 int c; 1682 vdev_stat_t *vs = &vd->vdev_stat; 1683 1684 for (c = 0; c < vd->vdev_children; c++) 1685 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1686 1687 mutex_enter(&vd->vdev_stat_lock); 1688 1689 if (type == POOL_SCRUB_NONE) { 1690 /* 1691 * Update completion and end time. Leave everything else alone 1692 * so we can report what happened during the previous scrub. 1693 */ 1694 vs->vs_scrub_complete = complete; 1695 vs->vs_scrub_end = gethrestime_sec(); 1696 } else { 1697 vs->vs_scrub_type = type; 1698 vs->vs_scrub_complete = 0; 1699 vs->vs_scrub_examined = 0; 1700 vs->vs_scrub_repaired = 0; 1701 vs->vs_scrub_errors = 0; 1702 vs->vs_scrub_start = gethrestime_sec(); 1703 vs->vs_scrub_end = 0; 1704 } 1705 1706 mutex_exit(&vd->vdev_stat_lock); 1707 } 1708 1709 /* 1710 * Update the in-core space usage stats for this vdev and the root vdev. 1711 */ 1712 void 1713 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1714 { 1715 ASSERT(vd == vd->vdev_top); 1716 int64_t dspace_delta = space_delta; 1717 1718 do { 1719 if (vd->vdev_ms_count) { 1720 /* 1721 * If this is a top-level vdev, apply the 1722 * inverse of its psize-to-asize (ie. RAID-Z) 1723 * space-expansion factor. We must calculate 1724 * this here and not at the root vdev because 1725 * the root vdev's psize-to-asize is simply the 1726 * max of its childrens', thus not accurate 1727 * enough for us. 1728 */ 1729 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1730 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1731 vd->vdev_deflate_ratio; 1732 } 1733 1734 mutex_enter(&vd->vdev_stat_lock); 1735 vd->vdev_stat.vs_space += space_delta; 1736 vd->vdev_stat.vs_alloc += alloc_delta; 1737 vd->vdev_stat.vs_dspace += dspace_delta; 1738 mutex_exit(&vd->vdev_stat_lock); 1739 } while ((vd = vd->vdev_parent) != NULL); 1740 } 1741 1742 /* 1743 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1744 * so that it will be written out next time the vdev configuration is synced. 1745 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1746 */ 1747 void 1748 vdev_config_dirty(vdev_t *vd) 1749 { 1750 spa_t *spa = vd->vdev_spa; 1751 vdev_t *rvd = spa->spa_root_vdev; 1752 int c; 1753 1754 /* 1755 * The dirty list is protected by the config lock. The caller must 1756 * either hold the config lock as writer, or must be the sync thread 1757 * (which holds the lock as reader). There's only one sync thread, 1758 * so this is sufficient to ensure mutual exclusion. 1759 */ 1760 ASSERT(spa_config_held(spa, RW_WRITER) || 1761 dsl_pool_sync_context(spa_get_dsl(spa))); 1762 1763 if (vd == rvd) { 1764 for (c = 0; c < rvd->vdev_children; c++) 1765 vdev_config_dirty(rvd->vdev_child[c]); 1766 } else { 1767 ASSERT(vd == vd->vdev_top); 1768 1769 if (!list_link_active(&vd->vdev_dirty_node)) 1770 list_insert_head(&spa->spa_dirty_list, vd); 1771 } 1772 } 1773 1774 void 1775 vdev_config_clean(vdev_t *vd) 1776 { 1777 spa_t *spa = vd->vdev_spa; 1778 1779 ASSERT(spa_config_held(spa, RW_WRITER) || 1780 dsl_pool_sync_context(spa_get_dsl(spa))); 1781 1782 ASSERT(list_link_active(&vd->vdev_dirty_node)); 1783 list_remove(&spa->spa_dirty_list, vd); 1784 } 1785 1786 void 1787 vdev_propagate_state(vdev_t *vd) 1788 { 1789 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1790 int degraded = 0, faulted = 0; 1791 int corrupted = 0; 1792 int c; 1793 vdev_t *child; 1794 1795 for (c = 0; c < vd->vdev_children; c++) { 1796 child = vd->vdev_child[c]; 1797 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1798 faulted++; 1799 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1800 degraded++; 1801 1802 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1803 corrupted++; 1804 } 1805 1806 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 1807 1808 /* 1809 * Root special: if there is a toplevel vdev that cannot be 1810 * opened due to corrupted metadata, then propagate the root 1811 * vdev's aux state as 'corrupt' rather than 'insufficient 1812 * replicas'. 1813 */ 1814 if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 1815 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 1816 VDEV_AUX_CORRUPT_DATA); 1817 } 1818 1819 /* 1820 * Set a vdev's state. If this is during an open, we don't update the parent 1821 * state, because we're in the process of opening children depth-first. 1822 * Otherwise, we propagate the change to the parent. 1823 * 1824 * If this routine places a device in a faulted state, an appropriate ereport is 1825 * generated. 1826 */ 1827 void 1828 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1829 { 1830 uint64_t save_state; 1831 1832 if (state == vd->vdev_state) { 1833 vd->vdev_stat.vs_aux = aux; 1834 return; 1835 } 1836 1837 save_state = vd->vdev_state; 1838 1839 vd->vdev_state = state; 1840 vd->vdev_stat.vs_aux = aux; 1841 1842 if (state == VDEV_STATE_CANT_OPEN) { 1843 /* 1844 * If we fail to open a vdev during an import, we mark it as 1845 * "not available", which signifies that it was never there to 1846 * begin with. Failure to open such a device is not considered 1847 * an error. 1848 */ 1849 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1850 vd->vdev_ops->vdev_op_leaf) 1851 vd->vdev_not_present = 1; 1852 1853 /* 1854 * Post the appropriate ereport. If the 'prevstate' field is 1855 * set to something other than VDEV_STATE_UNKNOWN, it indicates 1856 * that this is part of a vdev_reopen(). In this case, we don't 1857 * want to post the ereport if the device was already in the 1858 * CANT_OPEN state beforehand. 1859 */ 1860 if (vd->vdev_prevstate != state && !vd->vdev_not_present && 1861 vd != vd->vdev_spa->spa_root_vdev) { 1862 const char *class; 1863 1864 switch (aux) { 1865 case VDEV_AUX_OPEN_FAILED: 1866 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1867 break; 1868 case VDEV_AUX_CORRUPT_DATA: 1869 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1870 break; 1871 case VDEV_AUX_NO_REPLICAS: 1872 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1873 break; 1874 case VDEV_AUX_BAD_GUID_SUM: 1875 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1876 break; 1877 case VDEV_AUX_TOO_SMALL: 1878 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1879 break; 1880 case VDEV_AUX_BAD_LABEL: 1881 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1882 break; 1883 default: 1884 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1885 } 1886 1887 zfs_ereport_post(class, vd->vdev_spa, 1888 vd, NULL, save_state, 0); 1889 } 1890 } 1891 1892 if (isopen) 1893 return; 1894 1895 if (vd->vdev_parent != NULL) 1896 vdev_propagate_state(vd->vdev_parent); 1897 } 1898