xref: /titanic_50/usr/src/uts/common/fs/zfs/vdev.c (revision 13237b7e1e5bd293e466307b2e06f8e0e2321a0a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 	uint64_t c;
88 
89 	for (c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the replaceable or attachable device size.
99  * If the parent is a mirror or raidz, the replaceable size is the minimum
100  * psize of all its children. For the rest, just return our own psize.
101  *
102  * e.g.
103  *			psize	rsize
104  * root			-	-
105  *	mirror/raidz	-	-
106  *	    disk1	20g	20g
107  *	    disk2 	40g	20g
108  *	disk3 		80g	80g
109  */
110 uint64_t
111 vdev_get_rsize(vdev_t *vd)
112 {
113 	vdev_t *pvd, *cvd;
114 	uint64_t c, rsize;
115 
116 	pvd = vd->vdev_parent;
117 
118 	/*
119 	 * If our parent is NULL or the root, just return our own psize.
120 	 */
121 	if (pvd == NULL || pvd->vdev_parent == NULL)
122 		return (vd->vdev_psize);
123 
124 	rsize = 0;
125 
126 	for (c = 0; c < pvd->vdev_children; c++) {
127 		cvd = pvd->vdev_child[c];
128 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
129 	}
130 
131 	return (rsize);
132 }
133 
134 vdev_t *
135 vdev_lookup_top(spa_t *spa, uint64_t vdev)
136 {
137 	vdev_t *rvd = spa->spa_root_vdev;
138 
139 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
140 
141 	if (vdev < rvd->vdev_children) {
142 		ASSERT(rvd->vdev_child[vdev] != NULL);
143 		return (rvd->vdev_child[vdev]);
144 	}
145 
146 	return (NULL);
147 }
148 
149 vdev_t *
150 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
151 {
152 	int c;
153 	vdev_t *mvd;
154 
155 	if (vd->vdev_guid == guid)
156 		return (vd);
157 
158 	for (c = 0; c < vd->vdev_children; c++)
159 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
160 		    NULL)
161 			return (mvd);
162 
163 	return (NULL);
164 }
165 
166 void
167 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
168 {
169 	size_t oldsize, newsize;
170 	uint64_t id = cvd->vdev_id;
171 	vdev_t **newchild;
172 
173 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
174 	ASSERT(cvd->vdev_parent == NULL);
175 
176 	cvd->vdev_parent = pvd;
177 
178 	if (pvd == NULL)
179 		return;
180 
181 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
182 
183 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
184 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
185 	newsize = pvd->vdev_children * sizeof (vdev_t *);
186 
187 	newchild = kmem_zalloc(newsize, KM_SLEEP);
188 	if (pvd->vdev_child != NULL) {
189 		bcopy(pvd->vdev_child, newchild, oldsize);
190 		kmem_free(pvd->vdev_child, oldsize);
191 	}
192 
193 	pvd->vdev_child = newchild;
194 	pvd->vdev_child[id] = cvd;
195 
196 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
197 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
198 
199 	/*
200 	 * Walk up all ancestors to update guid sum.
201 	 */
202 	for (; pvd != NULL; pvd = pvd->vdev_parent)
203 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
204 
205 	if (cvd->vdev_ops->vdev_op_leaf)
206 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
207 }
208 
209 void
210 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
211 {
212 	int c;
213 	uint_t id = cvd->vdev_id;
214 
215 	ASSERT(cvd->vdev_parent == pvd);
216 
217 	if (pvd == NULL)
218 		return;
219 
220 	ASSERT(id < pvd->vdev_children);
221 	ASSERT(pvd->vdev_child[id] == cvd);
222 
223 	pvd->vdev_child[id] = NULL;
224 	cvd->vdev_parent = NULL;
225 
226 	for (c = 0; c < pvd->vdev_children; c++)
227 		if (pvd->vdev_child[c])
228 			break;
229 
230 	if (c == pvd->vdev_children) {
231 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
232 		pvd->vdev_child = NULL;
233 		pvd->vdev_children = 0;
234 	}
235 
236 	/*
237 	 * Walk up all ancestors to update guid sum.
238 	 */
239 	for (; pvd != NULL; pvd = pvd->vdev_parent)
240 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
241 
242 	if (cvd->vdev_ops->vdev_op_leaf)
243 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
244 }
245 
246 /*
247  * Remove any holes in the child array.
248  */
249 void
250 vdev_compact_children(vdev_t *pvd)
251 {
252 	vdev_t **newchild, *cvd;
253 	int oldc = pvd->vdev_children;
254 	int newc, c;
255 
256 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
257 
258 	for (c = newc = 0; c < oldc; c++)
259 		if (pvd->vdev_child[c])
260 			newc++;
261 
262 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263 
264 	for (c = newc = 0; c < oldc; c++) {
265 		if ((cvd = pvd->vdev_child[c]) != NULL) {
266 			newchild[newc] = cvd;
267 			cvd->vdev_id = newc++;
268 		}
269 	}
270 
271 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272 	pvd->vdev_child = newchild;
273 	pvd->vdev_children = newc;
274 }
275 
276 /*
277  * Allocate and minimally initialize a vdev_t.
278  */
279 static vdev_t *
280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281 {
282 	vdev_t *vd;
283 
284 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285 
286 	if (spa->spa_root_vdev == NULL) {
287 		ASSERT(ops == &vdev_root_ops);
288 		spa->spa_root_vdev = vd;
289 	}
290 
291 	if (guid == 0) {
292 		if (spa->spa_root_vdev == vd) {
293 			/*
294 			 * The root vdev's guid will also be the pool guid,
295 			 * which must be unique among all pools.
296 			 */
297 			while (guid == 0 || spa_guid_exists(guid, 0))
298 				guid = spa_get_random(-1ULL);
299 		} else {
300 			/*
301 			 * Any other vdev's guid must be unique within the pool.
302 			 */
303 			while (guid == 0 ||
304 			    spa_guid_exists(spa_guid(spa), guid))
305 				guid = spa_get_random(-1ULL);
306 		}
307 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 	}
309 
310 	vd->vdev_spa = spa;
311 	vd->vdev_id = id;
312 	vd->vdev_guid = guid;
313 	vd->vdev_guid_sum = guid;
314 	vd->vdev_ops = ops;
315 	vd->vdev_state = VDEV_STATE_CLOSED;
316 
317 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
318 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
319 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
320 	for (int t = 0; t < DTL_TYPES; t++) {
321 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
322 		    &vd->vdev_dtl_lock);
323 	}
324 	txg_list_create(&vd->vdev_ms_list,
325 	    offsetof(struct metaslab, ms_txg_node));
326 	txg_list_create(&vd->vdev_dtl_list,
327 	    offsetof(struct vdev, vdev_dtl_node));
328 	vd->vdev_stat.vs_timestamp = gethrtime();
329 	vdev_queue_init(vd);
330 	vdev_cache_init(vd);
331 
332 	return (vd);
333 }
334 
335 /*
336  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
337  * creating a new vdev or loading an existing one - the behavior is slightly
338  * different for each case.
339  */
340 int
341 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
342     int alloctype)
343 {
344 	vdev_ops_t *ops;
345 	char *type;
346 	uint64_t guid = 0, islog, nparity;
347 	vdev_t *vd;
348 
349 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
350 
351 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
352 		return (EINVAL);
353 
354 	if ((ops = vdev_getops(type)) == NULL)
355 		return (EINVAL);
356 
357 	/*
358 	 * If this is a load, get the vdev guid from the nvlist.
359 	 * Otherwise, vdev_alloc_common() will generate one for us.
360 	 */
361 	if (alloctype == VDEV_ALLOC_LOAD) {
362 		uint64_t label_id;
363 
364 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
365 		    label_id != id)
366 			return (EINVAL);
367 
368 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
369 			return (EINVAL);
370 	} else if (alloctype == VDEV_ALLOC_SPARE) {
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 			return (EINVAL);
373 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
374 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 			return (EINVAL);
376 	}
377 
378 	/*
379 	 * The first allocated vdev must be of type 'root'.
380 	 */
381 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
382 		return (EINVAL);
383 
384 	/*
385 	 * Determine whether we're a log vdev.
386 	 */
387 	islog = 0;
388 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
389 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
390 		return (ENOTSUP);
391 
392 	/*
393 	 * Set the nparity property for RAID-Z vdevs.
394 	 */
395 	nparity = -1ULL;
396 	if (ops == &vdev_raidz_ops) {
397 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
398 		    &nparity) == 0) {
399 			/*
400 			 * Currently, we can only support 2 parity devices.
401 			 */
402 			if (nparity == 0 || nparity > 2)
403 				return (EINVAL);
404 			/*
405 			 * Older versions can only support 1 parity device.
406 			 */
407 			if (nparity == 2 &&
408 			    spa_version(spa) < SPA_VERSION_RAID6)
409 				return (ENOTSUP);
410 		} else {
411 			/*
412 			 * We require the parity to be specified for SPAs that
413 			 * support multiple parity levels.
414 			 */
415 			if (spa_version(spa) >= SPA_VERSION_RAID6)
416 				return (EINVAL);
417 			/*
418 			 * Otherwise, we default to 1 parity device for RAID-Z.
419 			 */
420 			nparity = 1;
421 		}
422 	} else {
423 		nparity = 0;
424 	}
425 	ASSERT(nparity != -1ULL);
426 
427 	vd = vdev_alloc_common(spa, id, guid, ops);
428 
429 	vd->vdev_islog = islog;
430 	vd->vdev_nparity = nparity;
431 
432 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
433 		vd->vdev_path = spa_strdup(vd->vdev_path);
434 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
435 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
436 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
437 	    &vd->vdev_physpath) == 0)
438 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
439 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
440 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
441 
442 	/*
443 	 * Set the whole_disk property.  If it's not specified, leave the value
444 	 * as -1.
445 	 */
446 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
447 	    &vd->vdev_wholedisk) != 0)
448 		vd->vdev_wholedisk = -1ULL;
449 
450 	/*
451 	 * Look for the 'not present' flag.  This will only be set if the device
452 	 * was not present at the time of import.
453 	 */
454 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
455 	    &vd->vdev_not_present);
456 
457 	/*
458 	 * Get the alignment requirement.
459 	 */
460 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
461 
462 	/*
463 	 * If we're a top-level vdev, try to load the allocation parameters.
464 	 */
465 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
466 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
467 		    &vd->vdev_ms_array);
468 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
469 		    &vd->vdev_ms_shift);
470 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
471 		    &vd->vdev_asize);
472 	}
473 
474 	/*
475 	 * If we're a leaf vdev, try to load the DTL object and other state.
476 	 */
477 	if (vd->vdev_ops->vdev_op_leaf &&
478 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
479 		if (alloctype == VDEV_ALLOC_LOAD) {
480 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
481 			    &vd->vdev_dtl_smo.smo_object);
482 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
483 			    &vd->vdev_unspare);
484 		}
485 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
486 		    &vd->vdev_offline);
487 
488 		/*
489 		 * When importing a pool, we want to ignore the persistent fault
490 		 * state, as the diagnosis made on another system may not be
491 		 * valid in the current context.
492 		 */
493 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
494 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
495 			    &vd->vdev_faulted);
496 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
497 			    &vd->vdev_degraded);
498 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
499 			    &vd->vdev_removed);
500 		}
501 	}
502 
503 	/*
504 	 * Add ourselves to the parent's list of children.
505 	 */
506 	vdev_add_child(parent, vd);
507 
508 	*vdp = vd;
509 
510 	return (0);
511 }
512 
513 void
514 vdev_free(vdev_t *vd)
515 {
516 	int c;
517 	spa_t *spa = vd->vdev_spa;
518 
519 	/*
520 	 * vdev_free() implies closing the vdev first.  This is simpler than
521 	 * trying to ensure complicated semantics for all callers.
522 	 */
523 	vdev_close(vd);
524 
525 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
526 
527 	/*
528 	 * Free all children.
529 	 */
530 	for (c = 0; c < vd->vdev_children; c++)
531 		vdev_free(vd->vdev_child[c]);
532 
533 	ASSERT(vd->vdev_child == NULL);
534 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
535 
536 	/*
537 	 * Discard allocation state.
538 	 */
539 	if (vd == vd->vdev_top)
540 		vdev_metaslab_fini(vd);
541 
542 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
543 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
544 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
545 
546 	/*
547 	 * Remove this vdev from its parent's child list.
548 	 */
549 	vdev_remove_child(vd->vdev_parent, vd);
550 
551 	ASSERT(vd->vdev_parent == NULL);
552 
553 	/*
554 	 * Clean up vdev structure.
555 	 */
556 	vdev_queue_fini(vd);
557 	vdev_cache_fini(vd);
558 
559 	if (vd->vdev_path)
560 		spa_strfree(vd->vdev_path);
561 	if (vd->vdev_devid)
562 		spa_strfree(vd->vdev_devid);
563 	if (vd->vdev_physpath)
564 		spa_strfree(vd->vdev_physpath);
565 	if (vd->vdev_fru)
566 		spa_strfree(vd->vdev_fru);
567 
568 	if (vd->vdev_isspare)
569 		spa_spare_remove(vd);
570 	if (vd->vdev_isl2cache)
571 		spa_l2cache_remove(vd);
572 
573 	txg_list_destroy(&vd->vdev_ms_list);
574 	txg_list_destroy(&vd->vdev_dtl_list);
575 
576 	mutex_enter(&vd->vdev_dtl_lock);
577 	for (int t = 0; t < DTL_TYPES; t++) {
578 		space_map_unload(&vd->vdev_dtl[t]);
579 		space_map_destroy(&vd->vdev_dtl[t]);
580 	}
581 	mutex_exit(&vd->vdev_dtl_lock);
582 
583 	mutex_destroy(&vd->vdev_dtl_lock);
584 	mutex_destroy(&vd->vdev_stat_lock);
585 	mutex_destroy(&vd->vdev_probe_lock);
586 
587 	if (vd == spa->spa_root_vdev)
588 		spa->spa_root_vdev = NULL;
589 
590 	kmem_free(vd, sizeof (vdev_t));
591 }
592 
593 /*
594  * Transfer top-level vdev state from svd to tvd.
595  */
596 static void
597 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
598 {
599 	spa_t *spa = svd->vdev_spa;
600 	metaslab_t *msp;
601 	vdev_t *vd;
602 	int t;
603 
604 	ASSERT(tvd == tvd->vdev_top);
605 
606 	tvd->vdev_ms_array = svd->vdev_ms_array;
607 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
608 	tvd->vdev_ms_count = svd->vdev_ms_count;
609 
610 	svd->vdev_ms_array = 0;
611 	svd->vdev_ms_shift = 0;
612 	svd->vdev_ms_count = 0;
613 
614 	tvd->vdev_mg = svd->vdev_mg;
615 	tvd->vdev_ms = svd->vdev_ms;
616 
617 	svd->vdev_mg = NULL;
618 	svd->vdev_ms = NULL;
619 
620 	if (tvd->vdev_mg != NULL)
621 		tvd->vdev_mg->mg_vd = tvd;
622 
623 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
624 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
625 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
626 
627 	svd->vdev_stat.vs_alloc = 0;
628 	svd->vdev_stat.vs_space = 0;
629 	svd->vdev_stat.vs_dspace = 0;
630 
631 	for (t = 0; t < TXG_SIZE; t++) {
632 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
633 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
634 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
635 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
636 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
637 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
638 	}
639 
640 	if (list_link_active(&svd->vdev_config_dirty_node)) {
641 		vdev_config_clean(svd);
642 		vdev_config_dirty(tvd);
643 	}
644 
645 	if (list_link_active(&svd->vdev_state_dirty_node)) {
646 		vdev_state_clean(svd);
647 		vdev_state_dirty(tvd);
648 	}
649 
650 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
651 	svd->vdev_deflate_ratio = 0;
652 
653 	tvd->vdev_islog = svd->vdev_islog;
654 	svd->vdev_islog = 0;
655 }
656 
657 static void
658 vdev_top_update(vdev_t *tvd, vdev_t *vd)
659 {
660 	int c;
661 
662 	if (vd == NULL)
663 		return;
664 
665 	vd->vdev_top = tvd;
666 
667 	for (c = 0; c < vd->vdev_children; c++)
668 		vdev_top_update(tvd, vd->vdev_child[c]);
669 }
670 
671 /*
672  * Add a mirror/replacing vdev above an existing vdev.
673  */
674 vdev_t *
675 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
676 {
677 	spa_t *spa = cvd->vdev_spa;
678 	vdev_t *pvd = cvd->vdev_parent;
679 	vdev_t *mvd;
680 
681 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
682 
683 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
684 
685 	mvd->vdev_asize = cvd->vdev_asize;
686 	mvd->vdev_ashift = cvd->vdev_ashift;
687 	mvd->vdev_state = cvd->vdev_state;
688 
689 	vdev_remove_child(pvd, cvd);
690 	vdev_add_child(pvd, mvd);
691 	cvd->vdev_id = mvd->vdev_children;
692 	vdev_add_child(mvd, cvd);
693 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
694 
695 	if (mvd == mvd->vdev_top)
696 		vdev_top_transfer(cvd, mvd);
697 
698 	return (mvd);
699 }
700 
701 /*
702  * Remove a 1-way mirror/replacing vdev from the tree.
703  */
704 void
705 vdev_remove_parent(vdev_t *cvd)
706 {
707 	vdev_t *mvd = cvd->vdev_parent;
708 	vdev_t *pvd = mvd->vdev_parent;
709 
710 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
711 
712 	ASSERT(mvd->vdev_children == 1);
713 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
714 	    mvd->vdev_ops == &vdev_replacing_ops ||
715 	    mvd->vdev_ops == &vdev_spare_ops);
716 	cvd->vdev_ashift = mvd->vdev_ashift;
717 
718 	vdev_remove_child(mvd, cvd);
719 	vdev_remove_child(pvd, mvd);
720 
721 	/*
722 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
723 	 * Otherwise, we could have detached an offline device, and when we
724 	 * go to import the pool we'll think we have two top-level vdevs,
725 	 * instead of a different version of the same top-level vdev.
726 	 */
727 	if (mvd->vdev_top == mvd) {
728 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
729 		cvd->vdev_guid += guid_delta;
730 		cvd->vdev_guid_sum += guid_delta;
731 	}
732 	cvd->vdev_id = mvd->vdev_id;
733 	vdev_add_child(pvd, cvd);
734 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
735 
736 	if (cvd == cvd->vdev_top)
737 		vdev_top_transfer(mvd, cvd);
738 
739 	ASSERT(mvd->vdev_children == 0);
740 	vdev_free(mvd);
741 }
742 
743 int
744 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
745 {
746 	spa_t *spa = vd->vdev_spa;
747 	objset_t *mos = spa->spa_meta_objset;
748 	metaslab_class_t *mc;
749 	uint64_t m;
750 	uint64_t oldc = vd->vdev_ms_count;
751 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
752 	metaslab_t **mspp;
753 	int error;
754 
755 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
756 		return (0);
757 
758 	/*
759 	 * Compute the raidz-deflation ratio.  Note, we hard-code
760 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
761 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
762 	 * or we will inconsistently account for existing bp's.
763 	 */
764 	vd->vdev_deflate_ratio = (1 << 17) /
765 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
766 
767 	ASSERT(oldc <= newc);
768 
769 	if (vd->vdev_islog)
770 		mc = spa->spa_log_class;
771 	else
772 		mc = spa->spa_normal_class;
773 
774 	if (vd->vdev_mg == NULL)
775 		vd->vdev_mg = metaslab_group_create(mc, vd);
776 
777 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
778 
779 	if (oldc != 0) {
780 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
781 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
782 	}
783 
784 	vd->vdev_ms = mspp;
785 	vd->vdev_ms_count = newc;
786 
787 	for (m = oldc; m < newc; m++) {
788 		space_map_obj_t smo = { 0, 0, 0 };
789 		if (txg == 0) {
790 			uint64_t object = 0;
791 			error = dmu_read(mos, vd->vdev_ms_array,
792 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
793 			    DMU_READ_PREFETCH);
794 			if (error)
795 				return (error);
796 			if (object != 0) {
797 				dmu_buf_t *db;
798 				error = dmu_bonus_hold(mos, object, FTAG, &db);
799 				if (error)
800 					return (error);
801 				ASSERT3U(db->db_size, >=, sizeof (smo));
802 				bcopy(db->db_data, &smo, sizeof (smo));
803 				ASSERT3U(smo.smo_object, ==, object);
804 				dmu_buf_rele(db, FTAG);
805 			}
806 		}
807 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
808 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
809 	}
810 
811 	return (0);
812 }
813 
814 void
815 vdev_metaslab_fini(vdev_t *vd)
816 {
817 	uint64_t m;
818 	uint64_t count = vd->vdev_ms_count;
819 
820 	if (vd->vdev_ms != NULL) {
821 		for (m = 0; m < count; m++)
822 			if (vd->vdev_ms[m] != NULL)
823 				metaslab_fini(vd->vdev_ms[m]);
824 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
825 		vd->vdev_ms = NULL;
826 	}
827 }
828 
829 typedef struct vdev_probe_stats {
830 	boolean_t	vps_readable;
831 	boolean_t	vps_writeable;
832 	int		vps_flags;
833 } vdev_probe_stats_t;
834 
835 static void
836 vdev_probe_done(zio_t *zio)
837 {
838 	spa_t *spa = zio->io_spa;
839 	vdev_t *vd = zio->io_vd;
840 	vdev_probe_stats_t *vps = zio->io_private;
841 
842 	ASSERT(vd->vdev_probe_zio != NULL);
843 
844 	if (zio->io_type == ZIO_TYPE_READ) {
845 		if (zio->io_error == 0)
846 			vps->vps_readable = 1;
847 		if (zio->io_error == 0 && spa_writeable(spa)) {
848 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
849 			    zio->io_offset, zio->io_size, zio->io_data,
850 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
851 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
852 		} else {
853 			zio_buf_free(zio->io_data, zio->io_size);
854 		}
855 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
856 		if (zio->io_error == 0)
857 			vps->vps_writeable = 1;
858 		zio_buf_free(zio->io_data, zio->io_size);
859 	} else if (zio->io_type == ZIO_TYPE_NULL) {
860 		zio_t *pio;
861 
862 		vd->vdev_cant_read |= !vps->vps_readable;
863 		vd->vdev_cant_write |= !vps->vps_writeable;
864 
865 		if (vdev_readable(vd) &&
866 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
867 			zio->io_error = 0;
868 		} else {
869 			ASSERT(zio->io_error != 0);
870 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
871 			    spa, vd, NULL, 0, 0);
872 			zio->io_error = ENXIO;
873 		}
874 
875 		mutex_enter(&vd->vdev_probe_lock);
876 		ASSERT(vd->vdev_probe_zio == zio);
877 		vd->vdev_probe_zio = NULL;
878 		mutex_exit(&vd->vdev_probe_lock);
879 
880 		while ((pio = zio_walk_parents(zio)) != NULL)
881 			if (!vdev_accessible(vd, pio))
882 				pio->io_error = ENXIO;
883 
884 		kmem_free(vps, sizeof (*vps));
885 	}
886 }
887 
888 /*
889  * Determine whether this device is accessible by reading and writing
890  * to several known locations: the pad regions of each vdev label
891  * but the first (which we leave alone in case it contains a VTOC).
892  */
893 zio_t *
894 vdev_probe(vdev_t *vd, zio_t *zio)
895 {
896 	spa_t *spa = vd->vdev_spa;
897 	vdev_probe_stats_t *vps = NULL;
898 	zio_t *pio;
899 
900 	ASSERT(vd->vdev_ops->vdev_op_leaf);
901 
902 	/*
903 	 * Don't probe the probe.
904 	 */
905 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
906 		return (NULL);
907 
908 	/*
909 	 * To prevent 'probe storms' when a device fails, we create
910 	 * just one probe i/o at a time.  All zios that want to probe
911 	 * this vdev will become parents of the probe io.
912 	 */
913 	mutex_enter(&vd->vdev_probe_lock);
914 
915 	if ((pio = vd->vdev_probe_zio) == NULL) {
916 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
917 
918 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
919 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
920 		    ZIO_FLAG_TRYHARD;
921 
922 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
923 			/*
924 			 * vdev_cant_read and vdev_cant_write can only
925 			 * transition from TRUE to FALSE when we have the
926 			 * SCL_ZIO lock as writer; otherwise they can only
927 			 * transition from FALSE to TRUE.  This ensures that
928 			 * any zio looking at these values can assume that
929 			 * failures persist for the life of the I/O.  That's
930 			 * important because when a device has intermittent
931 			 * connectivity problems, we want to ensure that
932 			 * they're ascribed to the device (ENXIO) and not
933 			 * the zio (EIO).
934 			 *
935 			 * Since we hold SCL_ZIO as writer here, clear both
936 			 * values so the probe can reevaluate from first
937 			 * principles.
938 			 */
939 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
940 			vd->vdev_cant_read = B_FALSE;
941 			vd->vdev_cant_write = B_FALSE;
942 		}
943 
944 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
945 		    vdev_probe_done, vps,
946 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
947 
948 		if (zio != NULL) {
949 			vd->vdev_probe_wanted = B_TRUE;
950 			spa_async_request(spa, SPA_ASYNC_PROBE);
951 		}
952 	}
953 
954 	if (zio != NULL)
955 		zio_add_child(zio, pio);
956 
957 	mutex_exit(&vd->vdev_probe_lock);
958 
959 	if (vps == NULL) {
960 		ASSERT(zio != NULL);
961 		return (NULL);
962 	}
963 
964 	for (int l = 1; l < VDEV_LABELS; l++) {
965 		zio_nowait(zio_read_phys(pio, vd,
966 		    vdev_label_offset(vd->vdev_psize, l,
967 		    offsetof(vdev_label_t, vl_pad2)),
968 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
969 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
970 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
971 	}
972 
973 	if (zio == NULL)
974 		return (pio);
975 
976 	zio_nowait(pio);
977 	return (NULL);
978 }
979 
980 /*
981  * Prepare a virtual device for access.
982  */
983 int
984 vdev_open(vdev_t *vd)
985 {
986 	spa_t *spa = vd->vdev_spa;
987 	int error;
988 	int c;
989 	uint64_t osize = 0;
990 	uint64_t asize, psize;
991 	uint64_t ashift = 0;
992 
993 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
994 
995 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
996 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
997 	    vd->vdev_state == VDEV_STATE_OFFLINE);
998 
999 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1000 	vd->vdev_cant_read = B_FALSE;
1001 	vd->vdev_cant_write = B_FALSE;
1002 
1003 	if (!vd->vdev_removed && vd->vdev_faulted) {
1004 		ASSERT(vd->vdev_children == 0);
1005 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1006 		    VDEV_AUX_ERR_EXCEEDED);
1007 		return (ENXIO);
1008 	} else if (vd->vdev_offline) {
1009 		ASSERT(vd->vdev_children == 0);
1010 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1011 		return (ENXIO);
1012 	}
1013 
1014 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1015 
1016 	if (zio_injection_enabled && error == 0)
1017 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1018 
1019 	if (error) {
1020 		if (vd->vdev_removed &&
1021 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1022 			vd->vdev_removed = B_FALSE;
1023 
1024 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1025 		    vd->vdev_stat.vs_aux);
1026 		return (error);
1027 	}
1028 
1029 	vd->vdev_removed = B_FALSE;
1030 
1031 	if (vd->vdev_degraded) {
1032 		ASSERT(vd->vdev_children == 0);
1033 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1034 		    VDEV_AUX_ERR_EXCEEDED);
1035 	} else {
1036 		vd->vdev_state = VDEV_STATE_HEALTHY;
1037 	}
1038 
1039 	for (c = 0; c < vd->vdev_children; c++)
1040 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1041 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1042 			    VDEV_AUX_NONE);
1043 			break;
1044 		}
1045 
1046 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1047 
1048 	if (vd->vdev_children == 0) {
1049 		if (osize < SPA_MINDEVSIZE) {
1050 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1051 			    VDEV_AUX_TOO_SMALL);
1052 			return (EOVERFLOW);
1053 		}
1054 		psize = osize;
1055 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1056 	} else {
1057 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1058 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1059 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1060 			    VDEV_AUX_TOO_SMALL);
1061 			return (EOVERFLOW);
1062 		}
1063 		psize = 0;
1064 		asize = osize;
1065 	}
1066 
1067 	vd->vdev_psize = psize;
1068 
1069 	if (vd->vdev_asize == 0) {
1070 		/*
1071 		 * This is the first-ever open, so use the computed values.
1072 		 * For testing purposes, a higher ashift can be requested.
1073 		 */
1074 		vd->vdev_asize = asize;
1075 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1076 	} else {
1077 		/*
1078 		 * Make sure the alignment requirement hasn't increased.
1079 		 */
1080 		if (ashift > vd->vdev_top->vdev_ashift) {
1081 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1082 			    VDEV_AUX_BAD_LABEL);
1083 			return (EINVAL);
1084 		}
1085 
1086 		/*
1087 		 * Make sure the device hasn't shrunk.
1088 		 */
1089 		if (asize < vd->vdev_asize) {
1090 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091 			    VDEV_AUX_BAD_LABEL);
1092 			return (EINVAL);
1093 		}
1094 
1095 		/*
1096 		 * If all children are healthy and the asize has increased,
1097 		 * then we've experienced dynamic LUN growth.
1098 		 */
1099 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1100 		    asize > vd->vdev_asize) {
1101 			vd->vdev_asize = asize;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Ensure we can issue some IO before declaring the
1107 	 * vdev open for business.
1108 	 */
1109 	if (vd->vdev_ops->vdev_op_leaf &&
1110 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1111 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112 		    VDEV_AUX_IO_FAILURE);
1113 		return (error);
1114 	}
1115 
1116 	/*
1117 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1118 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1119 	 * since this would just restart the scrub we are already doing.
1120 	 */
1121 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1122 	    vdev_resilver_needed(vd, NULL, NULL))
1123 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1124 
1125 	return (0);
1126 }
1127 
1128 /*
1129  * Called once the vdevs are all opened, this routine validates the label
1130  * contents.  This needs to be done before vdev_load() so that we don't
1131  * inadvertently do repair I/Os to the wrong device.
1132  *
1133  * This function will only return failure if one of the vdevs indicates that it
1134  * has since been destroyed or exported.  This is only possible if
1135  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1136  * will be updated but the function will return 0.
1137  */
1138 int
1139 vdev_validate(vdev_t *vd)
1140 {
1141 	spa_t *spa = vd->vdev_spa;
1142 	int c;
1143 	nvlist_t *label;
1144 	uint64_t guid, top_guid;
1145 	uint64_t state;
1146 
1147 	for (c = 0; c < vd->vdev_children; c++)
1148 		if (vdev_validate(vd->vdev_child[c]) != 0)
1149 			return (EBADF);
1150 
1151 	/*
1152 	 * If the device has already failed, or was marked offline, don't do
1153 	 * any further validation.  Otherwise, label I/O will fail and we will
1154 	 * overwrite the previous state.
1155 	 */
1156 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1157 
1158 		if ((label = vdev_label_read_config(vd)) == NULL) {
1159 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 			    VDEV_AUX_BAD_LABEL);
1161 			return (0);
1162 		}
1163 
1164 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1165 		    &guid) != 0 || guid != spa_guid(spa)) {
1166 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1167 			    VDEV_AUX_CORRUPT_DATA);
1168 			nvlist_free(label);
1169 			return (0);
1170 		}
1171 
1172 		/*
1173 		 * If this vdev just became a top-level vdev because its
1174 		 * sibling was detached, it will have adopted the parent's
1175 		 * vdev guid -- but the label may or may not be on disk yet.
1176 		 * Fortunately, either version of the label will have the
1177 		 * same top guid, so if we're a top-level vdev, we can
1178 		 * safely compare to that instead.
1179 		 */
1180 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1181 		    &guid) != 0 ||
1182 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1183 		    &top_guid) != 0 ||
1184 		    (vd->vdev_guid != guid &&
1185 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1186 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1187 			    VDEV_AUX_CORRUPT_DATA);
1188 			nvlist_free(label);
1189 			return (0);
1190 		}
1191 
1192 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1193 		    &state) != 0) {
1194 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1195 			    VDEV_AUX_CORRUPT_DATA);
1196 			nvlist_free(label);
1197 			return (0);
1198 		}
1199 
1200 		nvlist_free(label);
1201 
1202 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1203 		    state != POOL_STATE_ACTIVE)
1204 			return (EBADF);
1205 
1206 		/*
1207 		 * If we were able to open and validate a vdev that was
1208 		 * previously marked permanently unavailable, clear that state
1209 		 * now.
1210 		 */
1211 		if (vd->vdev_not_present)
1212 			vd->vdev_not_present = 0;
1213 	}
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Close a virtual device.
1220  */
1221 void
1222 vdev_close(vdev_t *vd)
1223 {
1224 	spa_t *spa = vd->vdev_spa;
1225 
1226 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1227 
1228 	vd->vdev_ops->vdev_op_close(vd);
1229 
1230 	vdev_cache_purge(vd);
1231 
1232 	/*
1233 	 * We record the previous state before we close it, so  that if we are
1234 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1235 	 * it's still faulted.
1236 	 */
1237 	vd->vdev_prevstate = vd->vdev_state;
1238 
1239 	if (vd->vdev_offline)
1240 		vd->vdev_state = VDEV_STATE_OFFLINE;
1241 	else
1242 		vd->vdev_state = VDEV_STATE_CLOSED;
1243 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1244 }
1245 
1246 void
1247 vdev_reopen(vdev_t *vd)
1248 {
1249 	spa_t *spa = vd->vdev_spa;
1250 
1251 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1252 
1253 	vdev_close(vd);
1254 	(void) vdev_open(vd);
1255 
1256 	/*
1257 	 * Call vdev_validate() here to make sure we have the same device.
1258 	 * Otherwise, a device with an invalid label could be successfully
1259 	 * opened in response to vdev_reopen().
1260 	 */
1261 	if (vd->vdev_aux) {
1262 		(void) vdev_validate_aux(vd);
1263 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1264 		    vd->vdev_aux == &spa->spa_l2cache &&
1265 		    !l2arc_vdev_present(vd)) {
1266 			uint64_t size = vdev_get_rsize(vd);
1267 			l2arc_add_vdev(spa, vd,
1268 			    VDEV_LABEL_START_SIZE,
1269 			    size - VDEV_LABEL_START_SIZE);
1270 		}
1271 	} else {
1272 		(void) vdev_validate(vd);
1273 	}
1274 
1275 	/*
1276 	 * Reassess parent vdev's health.
1277 	 */
1278 	vdev_propagate_state(vd);
1279 }
1280 
1281 int
1282 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1283 {
1284 	int error;
1285 
1286 	/*
1287 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1288 	 * For a create, however, we want to fail the request if
1289 	 * there are any components we can't open.
1290 	 */
1291 	error = vdev_open(vd);
1292 
1293 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1294 		vdev_close(vd);
1295 		return (error ? error : ENXIO);
1296 	}
1297 
1298 	/*
1299 	 * Recursively initialize all labels.
1300 	 */
1301 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1302 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1303 		vdev_close(vd);
1304 		return (error);
1305 	}
1306 
1307 	return (0);
1308 }
1309 
1310 /*
1311  * The is the latter half of vdev_create().  It is distinct because it
1312  * involves initiating transactions in order to do metaslab creation.
1313  * For creation, we want to try to create all vdevs at once and then undo it
1314  * if anything fails; this is much harder if we have pending transactions.
1315  */
1316 void
1317 vdev_init(vdev_t *vd, uint64_t txg)
1318 {
1319 	/*
1320 	 * Aim for roughly 200 metaslabs per vdev.
1321 	 */
1322 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1323 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1324 
1325 	/*
1326 	 * Initialize the vdev's metaslabs.  This can't fail because
1327 	 * there's nothing to read when creating all new metaslabs.
1328 	 */
1329 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1330 }
1331 
1332 void
1333 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1334 {
1335 	ASSERT(vd == vd->vdev_top);
1336 	ASSERT(ISP2(flags));
1337 
1338 	if (flags & VDD_METASLAB)
1339 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1340 
1341 	if (flags & VDD_DTL)
1342 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1343 
1344 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1345 }
1346 
1347 /*
1348  * DTLs.
1349  *
1350  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1351  * the vdev has less than perfect replication.  There are three kinds of DTL:
1352  *
1353  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1354  *
1355  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1356  *
1357  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1358  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1359  *	txgs that was scrubbed.
1360  *
1361  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1362  *	persistent errors or just some device being offline.
1363  *	Unlike the other three, the DTL_OUTAGE map is not generally
1364  *	maintained; it's only computed when needed, typically to
1365  *	determine whether a device can be detached.
1366  *
1367  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1368  * either has the data or it doesn't.
1369  *
1370  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1371  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1372  * if any child is less than fully replicated, then so is its parent.
1373  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1374  * comprising only those txgs which appear in 'maxfaults' or more children;
1375  * those are the txgs we don't have enough replication to read.  For example,
1376  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1377  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1378  * two child DTL_MISSING maps.
1379  *
1380  * It should be clear from the above that to compute the DTLs and outage maps
1381  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1382  * Therefore, that is all we keep on disk.  When loading the pool, or after
1383  * a configuration change, we generate all other DTLs from first principles.
1384  */
1385 void
1386 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1387 {
1388 	space_map_t *sm = &vd->vdev_dtl[t];
1389 
1390 	ASSERT(t < DTL_TYPES);
1391 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1392 
1393 	mutex_enter(sm->sm_lock);
1394 	if (!space_map_contains(sm, txg, size))
1395 		space_map_add(sm, txg, size);
1396 	mutex_exit(sm->sm_lock);
1397 }
1398 
1399 boolean_t
1400 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1401 {
1402 	space_map_t *sm = &vd->vdev_dtl[t];
1403 	boolean_t dirty = B_FALSE;
1404 
1405 	ASSERT(t < DTL_TYPES);
1406 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1407 
1408 	mutex_enter(sm->sm_lock);
1409 	if (sm->sm_space != 0)
1410 		dirty = space_map_contains(sm, txg, size);
1411 	mutex_exit(sm->sm_lock);
1412 
1413 	return (dirty);
1414 }
1415 
1416 boolean_t
1417 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1418 {
1419 	space_map_t *sm = &vd->vdev_dtl[t];
1420 	boolean_t empty;
1421 
1422 	mutex_enter(sm->sm_lock);
1423 	empty = (sm->sm_space == 0);
1424 	mutex_exit(sm->sm_lock);
1425 
1426 	return (empty);
1427 }
1428 
1429 /*
1430  * Reassess DTLs after a config change or scrub completion.
1431  */
1432 void
1433 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1434 {
1435 	spa_t *spa = vd->vdev_spa;
1436 	avl_tree_t reftree;
1437 	int minref;
1438 
1439 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1440 
1441 	for (int c = 0; c < vd->vdev_children; c++)
1442 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1443 		    scrub_txg, scrub_done);
1444 
1445 	if (vd == spa->spa_root_vdev)
1446 		return;
1447 
1448 	if (vd->vdev_ops->vdev_op_leaf) {
1449 		mutex_enter(&vd->vdev_dtl_lock);
1450 		if (scrub_txg != 0 &&
1451 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1452 			/* XXX should check scrub_done? */
1453 			/*
1454 			 * We completed a scrub up to scrub_txg.  If we
1455 			 * did it without rebooting, then the scrub dtl
1456 			 * will be valid, so excise the old region and
1457 			 * fold in the scrub dtl.  Otherwise, leave the
1458 			 * dtl as-is if there was an error.
1459 			 *
1460 			 * There's little trick here: to excise the beginning
1461 			 * of the DTL_MISSING map, we put it into a reference
1462 			 * tree and then add a segment with refcnt -1 that
1463 			 * covers the range [0, scrub_txg).  This means
1464 			 * that each txg in that range has refcnt -1 or 0.
1465 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1466 			 * entries in the range [0, scrub_txg) will have a
1467 			 * positive refcnt -- either 1 or 2.  We then convert
1468 			 * the reference tree into the new DTL_MISSING map.
1469 			 */
1470 			space_map_ref_create(&reftree);
1471 			space_map_ref_add_map(&reftree,
1472 			    &vd->vdev_dtl[DTL_MISSING], 1);
1473 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1474 			space_map_ref_add_map(&reftree,
1475 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1476 			space_map_ref_generate_map(&reftree,
1477 			    &vd->vdev_dtl[DTL_MISSING], 1);
1478 			space_map_ref_destroy(&reftree);
1479 		}
1480 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1481 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1482 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1483 		if (scrub_done)
1484 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1485 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1486 		if (!vdev_readable(vd))
1487 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1488 		else
1489 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1490 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1491 		mutex_exit(&vd->vdev_dtl_lock);
1492 
1493 		if (txg != 0)
1494 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1495 		return;
1496 	}
1497 
1498 	mutex_enter(&vd->vdev_dtl_lock);
1499 	for (int t = 0; t < DTL_TYPES; t++) {
1500 		if (t == DTL_SCRUB)
1501 			continue;			/* leaf vdevs only */
1502 		if (t == DTL_PARTIAL)
1503 			minref = 1;			/* i.e. non-zero */
1504 		else if (vd->vdev_nparity != 0)
1505 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1506 		else
1507 			minref = vd->vdev_children;	/* any kind of mirror */
1508 		space_map_ref_create(&reftree);
1509 		for (int c = 0; c < vd->vdev_children; c++) {
1510 			vdev_t *cvd = vd->vdev_child[c];
1511 			mutex_enter(&cvd->vdev_dtl_lock);
1512 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1513 			mutex_exit(&cvd->vdev_dtl_lock);
1514 		}
1515 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1516 		space_map_ref_destroy(&reftree);
1517 	}
1518 	mutex_exit(&vd->vdev_dtl_lock);
1519 }
1520 
1521 static int
1522 vdev_dtl_load(vdev_t *vd)
1523 {
1524 	spa_t *spa = vd->vdev_spa;
1525 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1526 	objset_t *mos = spa->spa_meta_objset;
1527 	dmu_buf_t *db;
1528 	int error;
1529 
1530 	ASSERT(vd->vdev_children == 0);
1531 
1532 	if (smo->smo_object == 0)
1533 		return (0);
1534 
1535 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1536 		return (error);
1537 
1538 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1539 	bcopy(db->db_data, smo, sizeof (*smo));
1540 	dmu_buf_rele(db, FTAG);
1541 
1542 	mutex_enter(&vd->vdev_dtl_lock);
1543 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1544 	    NULL, SM_ALLOC, smo, mos);
1545 	mutex_exit(&vd->vdev_dtl_lock);
1546 
1547 	return (error);
1548 }
1549 
1550 void
1551 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1552 {
1553 	spa_t *spa = vd->vdev_spa;
1554 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1555 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1556 	objset_t *mos = spa->spa_meta_objset;
1557 	space_map_t smsync;
1558 	kmutex_t smlock;
1559 	dmu_buf_t *db;
1560 	dmu_tx_t *tx;
1561 
1562 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1563 
1564 	if (vd->vdev_detached) {
1565 		if (smo->smo_object != 0) {
1566 			int err = dmu_object_free(mos, smo->smo_object, tx);
1567 			ASSERT3U(err, ==, 0);
1568 			smo->smo_object = 0;
1569 		}
1570 		dmu_tx_commit(tx);
1571 		return;
1572 	}
1573 
1574 	if (smo->smo_object == 0) {
1575 		ASSERT(smo->smo_objsize == 0);
1576 		ASSERT(smo->smo_alloc == 0);
1577 		smo->smo_object = dmu_object_alloc(mos,
1578 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1579 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1580 		ASSERT(smo->smo_object != 0);
1581 		vdev_config_dirty(vd->vdev_top);
1582 	}
1583 
1584 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1585 
1586 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1587 	    &smlock);
1588 
1589 	mutex_enter(&smlock);
1590 
1591 	mutex_enter(&vd->vdev_dtl_lock);
1592 	space_map_walk(sm, space_map_add, &smsync);
1593 	mutex_exit(&vd->vdev_dtl_lock);
1594 
1595 	space_map_truncate(smo, mos, tx);
1596 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1597 
1598 	space_map_destroy(&smsync);
1599 
1600 	mutex_exit(&smlock);
1601 	mutex_destroy(&smlock);
1602 
1603 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1604 	dmu_buf_will_dirty(db, tx);
1605 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1606 	bcopy(smo, db->db_data, sizeof (*smo));
1607 	dmu_buf_rele(db, FTAG);
1608 
1609 	dmu_tx_commit(tx);
1610 }
1611 
1612 /*
1613  * Determine whether the specified vdev can be offlined/detached/removed
1614  * without losing data.
1615  */
1616 boolean_t
1617 vdev_dtl_required(vdev_t *vd)
1618 {
1619 	spa_t *spa = vd->vdev_spa;
1620 	vdev_t *tvd = vd->vdev_top;
1621 	uint8_t cant_read = vd->vdev_cant_read;
1622 	boolean_t required;
1623 
1624 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1625 
1626 	if (vd == spa->spa_root_vdev || vd == tvd)
1627 		return (B_TRUE);
1628 
1629 	/*
1630 	 * Temporarily mark the device as unreadable, and then determine
1631 	 * whether this results in any DTL outages in the top-level vdev.
1632 	 * If not, we can safely offline/detach/remove the device.
1633 	 */
1634 	vd->vdev_cant_read = B_TRUE;
1635 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1636 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1637 	vd->vdev_cant_read = cant_read;
1638 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1639 
1640 	return (required);
1641 }
1642 
1643 /*
1644  * Determine if resilver is needed, and if so the txg range.
1645  */
1646 boolean_t
1647 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1648 {
1649 	boolean_t needed = B_FALSE;
1650 	uint64_t thismin = UINT64_MAX;
1651 	uint64_t thismax = 0;
1652 
1653 	if (vd->vdev_children == 0) {
1654 		mutex_enter(&vd->vdev_dtl_lock);
1655 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1656 		    vdev_writeable(vd)) {
1657 			space_seg_t *ss;
1658 
1659 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1660 			thismin = ss->ss_start - 1;
1661 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1662 			thismax = ss->ss_end;
1663 			needed = B_TRUE;
1664 		}
1665 		mutex_exit(&vd->vdev_dtl_lock);
1666 	} else {
1667 		for (int c = 0; c < vd->vdev_children; c++) {
1668 			vdev_t *cvd = vd->vdev_child[c];
1669 			uint64_t cmin, cmax;
1670 
1671 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1672 				thismin = MIN(thismin, cmin);
1673 				thismax = MAX(thismax, cmax);
1674 				needed = B_TRUE;
1675 			}
1676 		}
1677 	}
1678 
1679 	if (needed && minp) {
1680 		*minp = thismin;
1681 		*maxp = thismax;
1682 	}
1683 	return (needed);
1684 }
1685 
1686 void
1687 vdev_load(vdev_t *vd)
1688 {
1689 	/*
1690 	 * Recursively load all children.
1691 	 */
1692 	for (int c = 0; c < vd->vdev_children; c++)
1693 		vdev_load(vd->vdev_child[c]);
1694 
1695 	/*
1696 	 * If this is a top-level vdev, initialize its metaslabs.
1697 	 */
1698 	if (vd == vd->vdev_top &&
1699 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1700 	    vdev_metaslab_init(vd, 0) != 0))
1701 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1702 		    VDEV_AUX_CORRUPT_DATA);
1703 
1704 	/*
1705 	 * If this is a leaf vdev, load its DTL.
1706 	 */
1707 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1708 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1709 		    VDEV_AUX_CORRUPT_DATA);
1710 }
1711 
1712 /*
1713  * The special vdev case is used for hot spares and l2cache devices.  Its
1714  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1715  * we make sure that we can open the underlying device, then try to read the
1716  * label, and make sure that the label is sane and that it hasn't been
1717  * repurposed to another pool.
1718  */
1719 int
1720 vdev_validate_aux(vdev_t *vd)
1721 {
1722 	nvlist_t *label;
1723 	uint64_t guid, version;
1724 	uint64_t state;
1725 
1726 	if (!vdev_readable(vd))
1727 		return (0);
1728 
1729 	if ((label = vdev_label_read_config(vd)) == NULL) {
1730 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1731 		    VDEV_AUX_CORRUPT_DATA);
1732 		return (-1);
1733 	}
1734 
1735 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1736 	    version > SPA_VERSION ||
1737 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1738 	    guid != vd->vdev_guid ||
1739 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1740 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1741 		    VDEV_AUX_CORRUPT_DATA);
1742 		nvlist_free(label);
1743 		return (-1);
1744 	}
1745 
1746 	/*
1747 	 * We don't actually check the pool state here.  If it's in fact in
1748 	 * use by another pool, we update this fact on the fly when requested.
1749 	 */
1750 	nvlist_free(label);
1751 	return (0);
1752 }
1753 
1754 void
1755 vdev_sync_done(vdev_t *vd, uint64_t txg)
1756 {
1757 	metaslab_t *msp;
1758 
1759 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1760 		metaslab_sync_done(msp, txg);
1761 }
1762 
1763 void
1764 vdev_sync(vdev_t *vd, uint64_t txg)
1765 {
1766 	spa_t *spa = vd->vdev_spa;
1767 	vdev_t *lvd;
1768 	metaslab_t *msp;
1769 	dmu_tx_t *tx;
1770 
1771 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1772 		ASSERT(vd == vd->vdev_top);
1773 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1774 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1775 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1776 		ASSERT(vd->vdev_ms_array != 0);
1777 		vdev_config_dirty(vd);
1778 		dmu_tx_commit(tx);
1779 	}
1780 
1781 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1782 		metaslab_sync(msp, txg);
1783 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1784 	}
1785 
1786 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1787 		vdev_dtl_sync(lvd, txg);
1788 
1789 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1790 }
1791 
1792 uint64_t
1793 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1794 {
1795 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1796 }
1797 
1798 /*
1799  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1800  * not be opened, and no I/O is attempted.
1801  */
1802 int
1803 vdev_fault(spa_t *spa, uint64_t guid)
1804 {
1805 	vdev_t *vd;
1806 
1807 	spa_vdev_state_enter(spa);
1808 
1809 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1810 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1811 
1812 	if (!vd->vdev_ops->vdev_op_leaf)
1813 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1814 
1815 	/*
1816 	 * Faulted state takes precedence over degraded.
1817 	 */
1818 	vd->vdev_faulted = 1ULL;
1819 	vd->vdev_degraded = 0ULL;
1820 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1821 
1822 	/*
1823 	 * If marking the vdev as faulted cause the top-level vdev to become
1824 	 * unavailable, then back off and simply mark the vdev as degraded
1825 	 * instead.
1826 	 */
1827 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1828 		vd->vdev_degraded = 1ULL;
1829 		vd->vdev_faulted = 0ULL;
1830 
1831 		/*
1832 		 * If we reopen the device and it's not dead, only then do we
1833 		 * mark it degraded.
1834 		 */
1835 		vdev_reopen(vd);
1836 
1837 		if (vdev_readable(vd)) {
1838 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1839 			    VDEV_AUX_ERR_EXCEEDED);
1840 		}
1841 	}
1842 
1843 	return (spa_vdev_state_exit(spa, vd, 0));
1844 }
1845 
1846 /*
1847  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1848  * user that something is wrong.  The vdev continues to operate as normal as far
1849  * as I/O is concerned.
1850  */
1851 int
1852 vdev_degrade(spa_t *spa, uint64_t guid)
1853 {
1854 	vdev_t *vd;
1855 
1856 	spa_vdev_state_enter(spa);
1857 
1858 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1859 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1860 
1861 	if (!vd->vdev_ops->vdev_op_leaf)
1862 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1863 
1864 	/*
1865 	 * If the vdev is already faulted, then don't do anything.
1866 	 */
1867 	if (vd->vdev_faulted || vd->vdev_degraded)
1868 		return (spa_vdev_state_exit(spa, NULL, 0));
1869 
1870 	vd->vdev_degraded = 1ULL;
1871 	if (!vdev_is_dead(vd))
1872 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1873 		    VDEV_AUX_ERR_EXCEEDED);
1874 
1875 	return (spa_vdev_state_exit(spa, vd, 0));
1876 }
1877 
1878 /*
1879  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1880  * any attached spare device should be detached when the device finishes
1881  * resilvering.  Second, the online should be treated like a 'test' online case,
1882  * so no FMA events are generated if the device fails to open.
1883  */
1884 int
1885 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1886 {
1887 	vdev_t *vd;
1888 
1889 	spa_vdev_state_enter(spa);
1890 
1891 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1892 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1893 
1894 	if (!vd->vdev_ops->vdev_op_leaf)
1895 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1896 
1897 	vd->vdev_offline = B_FALSE;
1898 	vd->vdev_tmpoffline = B_FALSE;
1899 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1900 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1901 	vdev_reopen(vd->vdev_top);
1902 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1903 
1904 	if (newstate)
1905 		*newstate = vd->vdev_state;
1906 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1907 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1908 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1909 	    vd->vdev_parent->vdev_child[0] == vd)
1910 		vd->vdev_unspare = B_TRUE;
1911 
1912 	return (spa_vdev_state_exit(spa, vd, 0));
1913 }
1914 
1915 int
1916 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1917 {
1918 	vdev_t *vd, *tvd;
1919 	int error;
1920 
1921 	spa_vdev_state_enter(spa);
1922 
1923 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1924 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1925 
1926 	if (!vd->vdev_ops->vdev_op_leaf)
1927 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1928 
1929 	tvd = vd->vdev_top;
1930 
1931 	/*
1932 	 * If the device isn't already offline, try to offline it.
1933 	 */
1934 	if (!vd->vdev_offline) {
1935 		/*
1936 		 * If this device has the only valid copy of some data,
1937 		 * don't allow it to be offlined. Log devices are always
1938 		 * expendable.
1939 		 */
1940 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1941 		    vdev_dtl_required(vd))
1942 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1943 
1944 		/*
1945 		 * Offline this device and reopen its top-level vdev.
1946 		 * If the top-level vdev is a log device then just offline
1947 		 * it. Otherwise, if this action results in the top-level
1948 		 * vdev becoming unusable, undo it and fail the request.
1949 		 */
1950 		vd->vdev_offline = B_TRUE;
1951 		vdev_reopen(tvd);
1952 
1953 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1954 		    vdev_is_dead(tvd)) {
1955 			vd->vdev_offline = B_FALSE;
1956 			vdev_reopen(tvd);
1957 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1958 		}
1959 	}
1960 
1961 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1962 
1963 	if (!tvd->vdev_islog || !vdev_is_dead(tvd))
1964 		return (spa_vdev_state_exit(spa, vd, 0));
1965 
1966 	(void) spa_vdev_state_exit(spa, vd, 0);
1967 
1968 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1969 	    NULL, DS_FIND_CHILDREN);
1970 	if (error) {
1971 		(void) vdev_online(spa, guid, 0, NULL);
1972 		return (error);
1973 	}
1974 	/*
1975 	 * If we successfully offlined the log device then we need to
1976 	 * sync out the current txg so that the "stubby" block can be
1977 	 * removed by zil_sync().
1978 	 */
1979 	txg_wait_synced(spa->spa_dsl_pool, 0);
1980 	return (0);
1981 }
1982 
1983 /*
1984  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1985  * vdev_offline(), we assume the spa config is locked.  We also clear all
1986  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1987  */
1988 void
1989 vdev_clear(spa_t *spa, vdev_t *vd)
1990 {
1991 	vdev_t *rvd = spa->spa_root_vdev;
1992 
1993 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1994 
1995 	if (vd == NULL)
1996 		vd = rvd;
1997 
1998 	vd->vdev_stat.vs_read_errors = 0;
1999 	vd->vdev_stat.vs_write_errors = 0;
2000 	vd->vdev_stat.vs_checksum_errors = 0;
2001 
2002 	for (int c = 0; c < vd->vdev_children; c++)
2003 		vdev_clear(spa, vd->vdev_child[c]);
2004 
2005 	/*
2006 	 * If we're in the FAULTED state or have experienced failed I/O, then
2007 	 * clear the persistent state and attempt to reopen the device.  We
2008 	 * also mark the vdev config dirty, so that the new faulted state is
2009 	 * written out to disk.
2010 	 */
2011 	if (vd->vdev_faulted || vd->vdev_degraded ||
2012 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2013 
2014 		vd->vdev_faulted = vd->vdev_degraded = 0;
2015 		vd->vdev_cant_read = B_FALSE;
2016 		vd->vdev_cant_write = B_FALSE;
2017 
2018 		vdev_reopen(vd);
2019 
2020 		if (vd != rvd)
2021 			vdev_state_dirty(vd->vdev_top);
2022 
2023 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2024 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2025 
2026 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2027 	}
2028 }
2029 
2030 boolean_t
2031 vdev_is_dead(vdev_t *vd)
2032 {
2033 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
2034 }
2035 
2036 boolean_t
2037 vdev_readable(vdev_t *vd)
2038 {
2039 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2040 }
2041 
2042 boolean_t
2043 vdev_writeable(vdev_t *vd)
2044 {
2045 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2046 }
2047 
2048 boolean_t
2049 vdev_allocatable(vdev_t *vd)
2050 {
2051 	uint64_t state = vd->vdev_state;
2052 
2053 	/*
2054 	 * We currently allow allocations from vdevs which may be in the
2055 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2056 	 * fails to reopen then we'll catch it later when we're holding
2057 	 * the proper locks.  Note that we have to get the vdev state
2058 	 * in a local variable because although it changes atomically,
2059 	 * we're asking two separate questions about it.
2060 	 */
2061 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2062 	    !vd->vdev_cant_write);
2063 }
2064 
2065 boolean_t
2066 vdev_accessible(vdev_t *vd, zio_t *zio)
2067 {
2068 	ASSERT(zio->io_vd == vd);
2069 
2070 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2071 		return (B_FALSE);
2072 
2073 	if (zio->io_type == ZIO_TYPE_READ)
2074 		return (!vd->vdev_cant_read);
2075 
2076 	if (zio->io_type == ZIO_TYPE_WRITE)
2077 		return (!vd->vdev_cant_write);
2078 
2079 	return (B_TRUE);
2080 }
2081 
2082 /*
2083  * Get statistics for the given vdev.
2084  */
2085 void
2086 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2087 {
2088 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2089 
2090 	mutex_enter(&vd->vdev_stat_lock);
2091 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2092 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2093 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2094 	vs->vs_state = vd->vdev_state;
2095 	vs->vs_rsize = vdev_get_rsize(vd);
2096 	mutex_exit(&vd->vdev_stat_lock);
2097 
2098 	/*
2099 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2100 	 * over all top-level vdevs (i.e. the direct children of the root).
2101 	 */
2102 	if (vd == rvd) {
2103 		for (int c = 0; c < rvd->vdev_children; c++) {
2104 			vdev_t *cvd = rvd->vdev_child[c];
2105 			vdev_stat_t *cvs = &cvd->vdev_stat;
2106 
2107 			mutex_enter(&vd->vdev_stat_lock);
2108 			for (int t = 0; t < ZIO_TYPES; t++) {
2109 				vs->vs_ops[t] += cvs->vs_ops[t];
2110 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2111 			}
2112 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2113 			mutex_exit(&vd->vdev_stat_lock);
2114 		}
2115 	}
2116 }
2117 
2118 void
2119 vdev_clear_stats(vdev_t *vd)
2120 {
2121 	mutex_enter(&vd->vdev_stat_lock);
2122 	vd->vdev_stat.vs_space = 0;
2123 	vd->vdev_stat.vs_dspace = 0;
2124 	vd->vdev_stat.vs_alloc = 0;
2125 	mutex_exit(&vd->vdev_stat_lock);
2126 }
2127 
2128 void
2129 vdev_stat_update(zio_t *zio, uint64_t psize)
2130 {
2131 	spa_t *spa = zio->io_spa;
2132 	vdev_t *rvd = spa->spa_root_vdev;
2133 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2134 	vdev_t *pvd;
2135 	uint64_t txg = zio->io_txg;
2136 	vdev_stat_t *vs = &vd->vdev_stat;
2137 	zio_type_t type = zio->io_type;
2138 	int flags = zio->io_flags;
2139 
2140 	/*
2141 	 * If this i/o is a gang leader, it didn't do any actual work.
2142 	 */
2143 	if (zio->io_gang_tree)
2144 		return;
2145 
2146 	if (zio->io_error == 0) {
2147 		/*
2148 		 * If this is a root i/o, don't count it -- we've already
2149 		 * counted the top-level vdevs, and vdev_get_stats() will
2150 		 * aggregate them when asked.  This reduces contention on
2151 		 * the root vdev_stat_lock and implicitly handles blocks
2152 		 * that compress away to holes, for which there is no i/o.
2153 		 * (Holes never create vdev children, so all the counters
2154 		 * remain zero, which is what we want.)
2155 		 *
2156 		 * Note: this only applies to successful i/o (io_error == 0)
2157 		 * because unlike i/o counts, errors are not additive.
2158 		 * When reading a ditto block, for example, failure of
2159 		 * one top-level vdev does not imply a root-level error.
2160 		 */
2161 		if (vd == rvd)
2162 			return;
2163 
2164 		ASSERT(vd == zio->io_vd);
2165 
2166 		if (flags & ZIO_FLAG_IO_BYPASS)
2167 			return;
2168 
2169 		mutex_enter(&vd->vdev_stat_lock);
2170 
2171 		if (flags & ZIO_FLAG_IO_REPAIR) {
2172 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2173 				vs->vs_scrub_repaired += psize;
2174 			if (flags & ZIO_FLAG_SELF_HEAL)
2175 				vs->vs_self_healed += psize;
2176 		}
2177 
2178 		vs->vs_ops[type]++;
2179 		vs->vs_bytes[type] += psize;
2180 
2181 		mutex_exit(&vd->vdev_stat_lock);
2182 		return;
2183 	}
2184 
2185 	if (flags & ZIO_FLAG_SPECULATIVE)
2186 		return;
2187 
2188 	/*
2189 	 * If this is an I/O error that is going to be retried, then ignore the
2190 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2191 	 * hard errors, when in reality they can happen for any number of
2192 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2193 	 */
2194 	if (zio->io_error == EIO &&
2195 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2196 		return;
2197 
2198 	mutex_enter(&vd->vdev_stat_lock);
2199 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2200 		if (zio->io_error == ECKSUM)
2201 			vs->vs_checksum_errors++;
2202 		else
2203 			vs->vs_read_errors++;
2204 	}
2205 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2206 		vs->vs_write_errors++;
2207 	mutex_exit(&vd->vdev_stat_lock);
2208 
2209 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2210 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2211 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2212 		/*
2213 		 * This is either a normal write (not a repair), or it's a
2214 		 * repair induced by the scrub thread.  In the normal case,
2215 		 * we commit the DTL change in the same txg as the block
2216 		 * was born.  In the scrub-induced repair case, we know that
2217 		 * scrubs run in first-pass syncing context, so we commit
2218 		 * the DTL change in spa->spa_syncing_txg.
2219 		 *
2220 		 * We currently do not make DTL entries for failed spontaneous
2221 		 * self-healing writes triggered by normal (non-scrubbing)
2222 		 * reads, because we have no transactional context in which to
2223 		 * do so -- and it's not clear that it'd be desirable anyway.
2224 		 */
2225 		if (vd->vdev_ops->vdev_op_leaf) {
2226 			uint64_t commit_txg = txg;
2227 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2228 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2229 				ASSERT(spa_sync_pass(spa) == 1);
2230 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2231 				commit_txg = spa->spa_syncing_txg;
2232 			}
2233 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2234 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2235 				return;
2236 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2237 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2238 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2239 		}
2240 		if (vd != rvd)
2241 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2242 	}
2243 }
2244 
2245 void
2246 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2247 {
2248 	int c;
2249 	vdev_stat_t *vs = &vd->vdev_stat;
2250 
2251 	for (c = 0; c < vd->vdev_children; c++)
2252 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2253 
2254 	mutex_enter(&vd->vdev_stat_lock);
2255 
2256 	if (type == POOL_SCRUB_NONE) {
2257 		/*
2258 		 * Update completion and end time.  Leave everything else alone
2259 		 * so we can report what happened during the previous scrub.
2260 		 */
2261 		vs->vs_scrub_complete = complete;
2262 		vs->vs_scrub_end = gethrestime_sec();
2263 	} else {
2264 		vs->vs_scrub_type = type;
2265 		vs->vs_scrub_complete = 0;
2266 		vs->vs_scrub_examined = 0;
2267 		vs->vs_scrub_repaired = 0;
2268 		vs->vs_scrub_start = gethrestime_sec();
2269 		vs->vs_scrub_end = 0;
2270 	}
2271 
2272 	mutex_exit(&vd->vdev_stat_lock);
2273 }
2274 
2275 /*
2276  * Update the in-core space usage stats for this vdev and the root vdev.
2277  */
2278 void
2279 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2280     boolean_t update_root)
2281 {
2282 	int64_t dspace_delta = space_delta;
2283 	spa_t *spa = vd->vdev_spa;
2284 	vdev_t *rvd = spa->spa_root_vdev;
2285 
2286 	ASSERT(vd == vd->vdev_top);
2287 
2288 	/*
2289 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2290 	 * factor.  We must calculate this here and not at the root vdev
2291 	 * because the root vdev's psize-to-asize is simply the max of its
2292 	 * childrens', thus not accurate enough for us.
2293 	 */
2294 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2295 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2296 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2297 	    vd->vdev_deflate_ratio;
2298 
2299 	mutex_enter(&vd->vdev_stat_lock);
2300 	vd->vdev_stat.vs_space += space_delta;
2301 	vd->vdev_stat.vs_alloc += alloc_delta;
2302 	vd->vdev_stat.vs_dspace += dspace_delta;
2303 	mutex_exit(&vd->vdev_stat_lock);
2304 
2305 	if (update_root) {
2306 		ASSERT(rvd == vd->vdev_parent);
2307 		ASSERT(vd->vdev_ms_count != 0);
2308 
2309 		/*
2310 		 * Don't count non-normal (e.g. intent log) space as part of
2311 		 * the pool's capacity.
2312 		 */
2313 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2314 			return;
2315 
2316 		mutex_enter(&rvd->vdev_stat_lock);
2317 		rvd->vdev_stat.vs_space += space_delta;
2318 		rvd->vdev_stat.vs_alloc += alloc_delta;
2319 		rvd->vdev_stat.vs_dspace += dspace_delta;
2320 		mutex_exit(&rvd->vdev_stat_lock);
2321 	}
2322 }
2323 
2324 /*
2325  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2326  * so that it will be written out next time the vdev configuration is synced.
2327  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2328  */
2329 void
2330 vdev_config_dirty(vdev_t *vd)
2331 {
2332 	spa_t *spa = vd->vdev_spa;
2333 	vdev_t *rvd = spa->spa_root_vdev;
2334 	int c;
2335 
2336 	/*
2337 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2338 	 * update the vdev config manually and set the sync flag.
2339 	 */
2340 	if (vd->vdev_aux != NULL) {
2341 		spa_aux_vdev_t *sav = vd->vdev_aux;
2342 		nvlist_t **aux;
2343 		uint_t naux;
2344 
2345 		for (c = 0; c < sav->sav_count; c++) {
2346 			if (sav->sav_vdevs[c] == vd)
2347 				break;
2348 		}
2349 
2350 		if (c == sav->sav_count) {
2351 			/*
2352 			 * We're being removed.  There's nothing more to do.
2353 			 */
2354 			ASSERT(sav->sav_sync == B_TRUE);
2355 			return;
2356 		}
2357 
2358 		sav->sav_sync = B_TRUE;
2359 
2360 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2361 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2362 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2363 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2364 		}
2365 
2366 		ASSERT(c < naux);
2367 
2368 		/*
2369 		 * Setting the nvlist in the middle if the array is a little
2370 		 * sketchy, but it will work.
2371 		 */
2372 		nvlist_free(aux[c]);
2373 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2374 
2375 		return;
2376 	}
2377 
2378 	/*
2379 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2380 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2381 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2382 	 * so this is sufficient to ensure mutual exclusion.
2383 	 */
2384 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2385 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2386 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2387 
2388 	if (vd == rvd) {
2389 		for (c = 0; c < rvd->vdev_children; c++)
2390 			vdev_config_dirty(rvd->vdev_child[c]);
2391 	} else {
2392 		ASSERT(vd == vd->vdev_top);
2393 
2394 		if (!list_link_active(&vd->vdev_config_dirty_node))
2395 			list_insert_head(&spa->spa_config_dirty_list, vd);
2396 	}
2397 }
2398 
2399 void
2400 vdev_config_clean(vdev_t *vd)
2401 {
2402 	spa_t *spa = vd->vdev_spa;
2403 
2404 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2405 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2406 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2407 
2408 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2409 	list_remove(&spa->spa_config_dirty_list, vd);
2410 }
2411 
2412 /*
2413  * Mark a top-level vdev's state as dirty, so that the next pass of
2414  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2415  * the state changes from larger config changes because they require
2416  * much less locking, and are often needed for administrative actions.
2417  */
2418 void
2419 vdev_state_dirty(vdev_t *vd)
2420 {
2421 	spa_t *spa = vd->vdev_spa;
2422 
2423 	ASSERT(vd == vd->vdev_top);
2424 
2425 	/*
2426 	 * The state list is protected by the SCL_STATE lock.  The caller
2427 	 * must either hold SCL_STATE as writer, or must be the sync thread
2428 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2429 	 * so this is sufficient to ensure mutual exclusion.
2430 	 */
2431 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2432 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2433 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2434 
2435 	if (!list_link_active(&vd->vdev_state_dirty_node))
2436 		list_insert_head(&spa->spa_state_dirty_list, vd);
2437 }
2438 
2439 void
2440 vdev_state_clean(vdev_t *vd)
2441 {
2442 	spa_t *spa = vd->vdev_spa;
2443 
2444 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2445 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2446 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2447 
2448 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2449 	list_remove(&spa->spa_state_dirty_list, vd);
2450 }
2451 
2452 /*
2453  * Propagate vdev state up from children to parent.
2454  */
2455 void
2456 vdev_propagate_state(vdev_t *vd)
2457 {
2458 	spa_t *spa = vd->vdev_spa;
2459 	vdev_t *rvd = spa->spa_root_vdev;
2460 	int degraded = 0, faulted = 0;
2461 	int corrupted = 0;
2462 	int c;
2463 	vdev_t *child;
2464 
2465 	if (vd->vdev_children > 0) {
2466 		for (c = 0; c < vd->vdev_children; c++) {
2467 			child = vd->vdev_child[c];
2468 
2469 			if (!vdev_readable(child) ||
2470 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2471 				/*
2472 				 * Root special: if there is a top-level log
2473 				 * device, treat the root vdev as if it were
2474 				 * degraded.
2475 				 */
2476 				if (child->vdev_islog && vd == rvd)
2477 					degraded++;
2478 				else
2479 					faulted++;
2480 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2481 				degraded++;
2482 			}
2483 
2484 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2485 				corrupted++;
2486 		}
2487 
2488 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2489 
2490 		/*
2491 		 * Root special: if there is a top-level vdev that cannot be
2492 		 * opened due to corrupted metadata, then propagate the root
2493 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2494 		 * replicas'.
2495 		 */
2496 		if (corrupted && vd == rvd &&
2497 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2498 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2499 			    VDEV_AUX_CORRUPT_DATA);
2500 	}
2501 
2502 	if (vd->vdev_parent)
2503 		vdev_propagate_state(vd->vdev_parent);
2504 }
2505 
2506 /*
2507  * Set a vdev's state.  If this is during an open, we don't update the parent
2508  * state, because we're in the process of opening children depth-first.
2509  * Otherwise, we propagate the change to the parent.
2510  *
2511  * If this routine places a device in a faulted state, an appropriate ereport is
2512  * generated.
2513  */
2514 void
2515 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2516 {
2517 	uint64_t save_state;
2518 	spa_t *spa = vd->vdev_spa;
2519 
2520 	if (state == vd->vdev_state) {
2521 		vd->vdev_stat.vs_aux = aux;
2522 		return;
2523 	}
2524 
2525 	save_state = vd->vdev_state;
2526 
2527 	vd->vdev_state = state;
2528 	vd->vdev_stat.vs_aux = aux;
2529 
2530 	/*
2531 	 * If we are setting the vdev state to anything but an open state, then
2532 	 * always close the underlying device.  Otherwise, we keep accessible
2533 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2534 	 * because that implies some extra checks (offline, etc) that we don't
2535 	 * want here.  This is limited to leaf devices, because otherwise
2536 	 * closing the device will affect other children.
2537 	 */
2538 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2539 		vd->vdev_ops->vdev_op_close(vd);
2540 
2541 	if (vd->vdev_removed &&
2542 	    state == VDEV_STATE_CANT_OPEN &&
2543 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2544 		/*
2545 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2546 		 * device was previously marked removed and someone attempted to
2547 		 * reopen it.  If this failed due to a nonexistent device, then
2548 		 * keep the device in the REMOVED state.  We also let this be if
2549 		 * it is one of our special test online cases, which is only
2550 		 * attempting to online the device and shouldn't generate an FMA
2551 		 * fault.
2552 		 */
2553 		vd->vdev_state = VDEV_STATE_REMOVED;
2554 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2555 	} else if (state == VDEV_STATE_REMOVED) {
2556 		/*
2557 		 * Indicate to the ZFS DE that this device has been removed, and
2558 		 * any recent errors should be ignored.
2559 		 */
2560 		zfs_post_remove(spa, vd);
2561 		vd->vdev_removed = B_TRUE;
2562 	} else if (state == VDEV_STATE_CANT_OPEN) {
2563 		/*
2564 		 * If we fail to open a vdev during an import, we mark it as
2565 		 * "not available", which signifies that it was never there to
2566 		 * begin with.  Failure to open such a device is not considered
2567 		 * an error.
2568 		 */
2569 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2570 		    vd->vdev_ops->vdev_op_leaf)
2571 			vd->vdev_not_present = 1;
2572 
2573 		/*
2574 		 * Post the appropriate ereport.  If the 'prevstate' field is
2575 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2576 		 * that this is part of a vdev_reopen().  In this case, we don't
2577 		 * want to post the ereport if the device was already in the
2578 		 * CANT_OPEN state beforehand.
2579 		 *
2580 		 * If the 'checkremove' flag is set, then this is an attempt to
2581 		 * online the device in response to an insertion event.  If we
2582 		 * hit this case, then we have detected an insertion event for a
2583 		 * faulted or offline device that wasn't in the removed state.
2584 		 * In this scenario, we don't post an ereport because we are
2585 		 * about to replace the device, or attempt an online with
2586 		 * vdev_forcefault, which will generate the fault for us.
2587 		 */
2588 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2589 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2590 		    vd != spa->spa_root_vdev) {
2591 			const char *class;
2592 
2593 			switch (aux) {
2594 			case VDEV_AUX_OPEN_FAILED:
2595 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2596 				break;
2597 			case VDEV_AUX_CORRUPT_DATA:
2598 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2599 				break;
2600 			case VDEV_AUX_NO_REPLICAS:
2601 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2602 				break;
2603 			case VDEV_AUX_BAD_GUID_SUM:
2604 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2605 				break;
2606 			case VDEV_AUX_TOO_SMALL:
2607 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2608 				break;
2609 			case VDEV_AUX_BAD_LABEL:
2610 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2611 				break;
2612 			case VDEV_AUX_IO_FAILURE:
2613 				class = FM_EREPORT_ZFS_IO_FAILURE;
2614 				break;
2615 			default:
2616 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2617 			}
2618 
2619 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2620 		}
2621 
2622 		/* Erase any notion of persistent removed state */
2623 		vd->vdev_removed = B_FALSE;
2624 	} else {
2625 		vd->vdev_removed = B_FALSE;
2626 	}
2627 
2628 	if (!isopen && vd->vdev_parent)
2629 		vdev_propagate_state(vd->vdev_parent);
2630 }
2631 
2632 /*
2633  * Check the vdev configuration to ensure that it's capable of supporting
2634  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2635  * In addition, only a single top-level vdev is allowed and none of the leaves
2636  * can be wholedisks.
2637  */
2638 boolean_t
2639 vdev_is_bootable(vdev_t *vd)
2640 {
2641 	int c;
2642 
2643 	if (!vd->vdev_ops->vdev_op_leaf) {
2644 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2645 
2646 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2647 		    vd->vdev_children > 1) {
2648 			return (B_FALSE);
2649 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2650 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2651 			return (B_FALSE);
2652 		}
2653 	} else if (vd->vdev_wholedisk == 1) {
2654 		return (B_FALSE);
2655 	}
2656 
2657 	for (c = 0; c < vd->vdev_children; c++) {
2658 		if (!vdev_is_bootable(vd->vdev_child[c]))
2659 			return (B_FALSE);
2660 	}
2661 	return (B_TRUE);
2662 }
2663 
2664 void
2665 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2666 {
2667 	uint_t c, children;
2668 	nvlist_t **child;
2669 	uint64_t val;
2670 	spa_t *spa = vd->vdev_spa;
2671 
2672 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2673 	    &child, &children) == 0) {
2674 		for (c = 0; c < children; c++)
2675 			vdev_load_log_state(vd->vdev_child[c], child[c]);
2676 	}
2677 
2678 	if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2679 	    ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2680 
2681 		/*
2682 		 * It would be nice to call vdev_offline()
2683 		 * directly but the pool isn't fully loaded and
2684 		 * the txg threads have not been started yet.
2685 		 */
2686 		spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2687 		vd->vdev_offline = val;
2688 		vdev_reopen(vd->vdev_top);
2689 		spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2690 	}
2691 }
2692