1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 /* 49 * These tunables are for performance analysis, and override the 50 * (not-easily-turnable) vdev "knobs". 51 */ 52 int zfs_vdev_cache_max; 53 int zfs_vdev_max_pending; 54 int zfs_vdev_min_pending; 55 int zfs_vdev_time_shift; 56 57 static vdev_ops_t *vdev_ops_table[] = { 58 &vdev_root_ops, 59 &vdev_raidz_ops, 60 &vdev_mirror_ops, 61 &vdev_replacing_ops, 62 &vdev_spare_ops, 63 &vdev_disk_ops, 64 &vdev_file_ops, 65 &vdev_missing_ops, 66 NULL 67 }; 68 69 /* 70 * Given a vdev type, return the appropriate ops vector. 71 */ 72 static vdev_ops_t * 73 vdev_getops(const char *type) 74 { 75 vdev_ops_t *ops, **opspp; 76 77 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 78 if (strcmp(ops->vdev_op_type, type) == 0) 79 break; 80 81 return (ops); 82 } 83 84 /* 85 * Default asize function: return the MAX of psize with the asize of 86 * all children. This is what's used by anything other than RAID-Z. 87 */ 88 uint64_t 89 vdev_default_asize(vdev_t *vd, uint64_t psize) 90 { 91 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 92 uint64_t csize; 93 uint64_t c; 94 95 for (c = 0; c < vd->vdev_children; c++) { 96 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 97 asize = MAX(asize, csize); 98 } 99 100 return (asize); 101 } 102 103 /* 104 * Get the replaceable or attachable device size. 105 * If the parent is a mirror or raidz, the replaceable size is the minimum 106 * psize of all its children. For the rest, just return our own psize. 107 * 108 * e.g. 109 * psize rsize 110 * root - - 111 * mirror/raidz - - 112 * disk1 20g 20g 113 * disk2 40g 20g 114 * disk3 80g 80g 115 */ 116 uint64_t 117 vdev_get_rsize(vdev_t *vd) 118 { 119 vdev_t *pvd, *cvd; 120 uint64_t c, rsize; 121 122 pvd = vd->vdev_parent; 123 124 /* 125 * If our parent is NULL or the root, just return our own psize. 126 */ 127 if (pvd == NULL || pvd->vdev_parent == NULL) 128 return (vd->vdev_psize); 129 130 rsize = 0; 131 132 for (c = 0; c < pvd->vdev_children; c++) { 133 cvd = pvd->vdev_child[c]; 134 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 135 } 136 137 return (rsize); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 if (vdev < rvd->vdev_children) 146 return (rvd->vdev_child[vdev]); 147 148 return (NULL); 149 } 150 151 vdev_t * 152 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 153 { 154 int c; 155 vdev_t *mvd; 156 157 if (vd->vdev_guid == guid) 158 return (vd); 159 160 for (c = 0; c < vd->vdev_children; c++) 161 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 162 NULL) 163 return (mvd); 164 165 return (NULL); 166 } 167 168 void 169 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 170 { 171 size_t oldsize, newsize; 172 uint64_t id = cvd->vdev_id; 173 vdev_t **newchild; 174 175 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 176 ASSERT(cvd->vdev_parent == NULL); 177 178 cvd->vdev_parent = pvd; 179 180 if (pvd == NULL) 181 return; 182 183 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 184 185 oldsize = pvd->vdev_children * sizeof (vdev_t *); 186 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 187 newsize = pvd->vdev_children * sizeof (vdev_t *); 188 189 newchild = kmem_zalloc(newsize, KM_SLEEP); 190 if (pvd->vdev_child != NULL) { 191 bcopy(pvd->vdev_child, newchild, oldsize); 192 kmem_free(pvd->vdev_child, oldsize); 193 } 194 195 pvd->vdev_child = newchild; 196 pvd->vdev_child[id] = cvd; 197 198 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 199 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 200 201 /* 202 * Walk up all ancestors to update guid sum. 203 */ 204 for (; pvd != NULL; pvd = pvd->vdev_parent) 205 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 } 241 242 /* 243 * Remove any holes in the child array. 244 */ 245 void 246 vdev_compact_children(vdev_t *pvd) 247 { 248 vdev_t **newchild, *cvd; 249 int oldc = pvd->vdev_children; 250 int newc, c; 251 252 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 253 254 for (c = newc = 0; c < oldc; c++) 255 if (pvd->vdev_child[c]) 256 newc++; 257 258 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 259 260 for (c = newc = 0; c < oldc; c++) { 261 if ((cvd = pvd->vdev_child[c]) != NULL) { 262 newchild[newc] = cvd; 263 cvd->vdev_id = newc++; 264 } 265 } 266 267 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 268 pvd->vdev_child = newchild; 269 pvd->vdev_children = newc; 270 } 271 272 /* 273 * Allocate and minimally initialize a vdev_t. 274 */ 275 static vdev_t * 276 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 277 { 278 vdev_t *vd; 279 280 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 281 282 if (spa->spa_root_vdev == NULL) { 283 ASSERT(ops == &vdev_root_ops); 284 spa->spa_root_vdev = vd; 285 } 286 287 if (guid == 0) { 288 if (spa->spa_root_vdev == vd) { 289 /* 290 * The root vdev's guid will also be the pool guid, 291 * which must be unique among all pools. 292 */ 293 while (guid == 0 || spa_guid_exists(guid, 0)) 294 guid = spa_get_random(-1ULL); 295 } else { 296 /* 297 * Any other vdev's guid must be unique within the pool. 298 */ 299 while (guid == 0 || 300 spa_guid_exists(spa_guid(spa), guid)) 301 guid = spa_get_random(-1ULL); 302 } 303 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 304 } 305 306 vd->vdev_spa = spa; 307 vd->vdev_id = id; 308 vd->vdev_guid = guid; 309 vd->vdev_guid_sum = guid; 310 vd->vdev_ops = ops; 311 vd->vdev_state = VDEV_STATE_CLOSED; 312 313 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 314 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 315 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 316 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 317 txg_list_create(&vd->vdev_ms_list, 318 offsetof(struct metaslab, ms_txg_node)); 319 txg_list_create(&vd->vdev_dtl_list, 320 offsetof(struct vdev, vdev_dtl_node)); 321 vd->vdev_stat.vs_timestamp = gethrtime(); 322 323 return (vd); 324 } 325 326 /* 327 * Free a vdev_t that has been removed from service. 328 */ 329 static void 330 vdev_free_common(vdev_t *vd) 331 { 332 spa_t *spa = vd->vdev_spa; 333 334 if (vd->vdev_path) 335 spa_strfree(vd->vdev_path); 336 if (vd->vdev_devid) 337 spa_strfree(vd->vdev_devid); 338 339 if (vd->vdev_isspare) 340 spa_spare_remove(vd->vdev_guid); 341 342 txg_list_destroy(&vd->vdev_ms_list); 343 txg_list_destroy(&vd->vdev_dtl_list); 344 mutex_enter(&vd->vdev_dtl_lock); 345 space_map_unload(&vd->vdev_dtl_map); 346 space_map_destroy(&vd->vdev_dtl_map); 347 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 348 space_map_destroy(&vd->vdev_dtl_scrub); 349 mutex_exit(&vd->vdev_dtl_lock); 350 mutex_destroy(&vd->vdev_dtl_lock); 351 mutex_destroy(&vd->vdev_stat_lock); 352 353 if (vd == spa->spa_root_vdev) 354 spa->spa_root_vdev = NULL; 355 356 kmem_free(vd, sizeof (vdev_t)); 357 } 358 359 /* 360 * Allocate a new vdev. The 'alloctype' is used to control whether we are 361 * creating a new vdev or loading an existing one - the behavior is slightly 362 * different for each case. 363 */ 364 int 365 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 366 int alloctype) 367 { 368 vdev_ops_t *ops; 369 char *type; 370 uint64_t guid = 0; 371 vdev_t *vd; 372 373 ASSERT(spa_config_held(spa, RW_WRITER)); 374 375 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 376 return (EINVAL); 377 378 if ((ops = vdev_getops(type)) == NULL) 379 return (EINVAL); 380 381 /* 382 * If this is a load, get the vdev guid from the nvlist. 383 * Otherwise, vdev_alloc_common() will generate one for us. 384 */ 385 if (alloctype == VDEV_ALLOC_LOAD) { 386 uint64_t label_id; 387 388 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 389 label_id != id) 390 return (EINVAL); 391 392 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 393 return (EINVAL); 394 } else if (alloctype == VDEV_ALLOC_SPARE) { 395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 396 return (EINVAL); 397 } 398 399 /* 400 * The first allocated vdev must be of type 'root'. 401 */ 402 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 403 return (EINVAL); 404 405 vd = vdev_alloc_common(spa, id, guid, ops); 406 407 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 408 vd->vdev_path = spa_strdup(vd->vdev_path); 409 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 410 vd->vdev_devid = spa_strdup(vd->vdev_devid); 411 412 /* 413 * Set the nparity propery for RAID-Z vdevs. 414 */ 415 if (ops == &vdev_raidz_ops) { 416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 417 &vd->vdev_nparity) == 0) { 418 /* 419 * Currently, we can only support 2 parity devices. 420 */ 421 if (vd->vdev_nparity > 2) 422 return (EINVAL); 423 /* 424 * Older versions can only support 1 parity device. 425 */ 426 if (vd->vdev_nparity == 2 && 427 spa_version(spa) < ZFS_VERSION_RAID6) 428 return (ENOTSUP); 429 430 } else { 431 /* 432 * We require the parity to be specified for SPAs that 433 * support multiple parity levels. 434 */ 435 if (spa_version(spa) >= ZFS_VERSION_RAID6) 436 return (EINVAL); 437 438 /* 439 * Otherwise, we default to 1 parity device for RAID-Z. 440 */ 441 vd->vdev_nparity = 1; 442 } 443 } else { 444 vd->vdev_nparity = 0; 445 } 446 447 /* 448 * Set the whole_disk property. If it's not specified, leave the value 449 * as -1. 450 */ 451 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 452 &vd->vdev_wholedisk) != 0) 453 vd->vdev_wholedisk = -1ULL; 454 455 /* 456 * Look for the 'not present' flag. This will only be set if the device 457 * was not present at the time of import. 458 */ 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 460 &vd->vdev_not_present); 461 462 /* 463 * Get the alignment requirement. 464 */ 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 466 467 /* 468 * Look for the 'is_spare' flag. If this is the case, then we are a 469 * repurposed hot spare. 470 */ 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 472 &vd->vdev_isspare); 473 if (vd->vdev_isspare) 474 spa_spare_add(vd->vdev_guid); 475 476 /* 477 * If we're a top-level vdev, try to load the allocation parameters. 478 */ 479 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 481 &vd->vdev_ms_array); 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 483 &vd->vdev_ms_shift); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 485 &vd->vdev_asize); 486 } 487 488 /* 489 * If we're a leaf vdev, try to load the DTL object and offline state. 490 */ 491 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 493 &vd->vdev_dtl.smo_object); 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 495 &vd->vdev_offline); 496 } 497 498 /* 499 * Add ourselves to the parent's list of children. 500 */ 501 vdev_add_child(parent, vd); 502 503 *vdp = vd; 504 505 return (0); 506 } 507 508 void 509 vdev_free(vdev_t *vd) 510 { 511 int c; 512 513 /* 514 * vdev_free() implies closing the vdev first. This is simpler than 515 * trying to ensure complicated semantics for all callers. 516 */ 517 vdev_close(vd); 518 519 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 520 521 /* 522 * Free all children. 523 */ 524 for (c = 0; c < vd->vdev_children; c++) 525 vdev_free(vd->vdev_child[c]); 526 527 ASSERT(vd->vdev_child == NULL); 528 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 529 530 /* 531 * Discard allocation state. 532 */ 533 if (vd == vd->vdev_top) 534 vdev_metaslab_fini(vd); 535 536 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 537 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 538 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 539 540 /* 541 * Remove this vdev from its parent's child list. 542 */ 543 vdev_remove_child(vd->vdev_parent, vd); 544 545 ASSERT(vd->vdev_parent == NULL); 546 547 vdev_free_common(vd); 548 } 549 550 /* 551 * Transfer top-level vdev state from svd to tvd. 552 */ 553 static void 554 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 555 { 556 spa_t *spa = svd->vdev_spa; 557 metaslab_t *msp; 558 vdev_t *vd; 559 int t; 560 561 ASSERT(tvd == tvd->vdev_top); 562 563 tvd->vdev_ms_array = svd->vdev_ms_array; 564 tvd->vdev_ms_shift = svd->vdev_ms_shift; 565 tvd->vdev_ms_count = svd->vdev_ms_count; 566 567 svd->vdev_ms_array = 0; 568 svd->vdev_ms_shift = 0; 569 svd->vdev_ms_count = 0; 570 571 tvd->vdev_mg = svd->vdev_mg; 572 tvd->vdev_ms = svd->vdev_ms; 573 574 svd->vdev_mg = NULL; 575 svd->vdev_ms = NULL; 576 577 if (tvd->vdev_mg != NULL) 578 tvd->vdev_mg->mg_vd = tvd; 579 580 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 581 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 582 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 583 584 svd->vdev_stat.vs_alloc = 0; 585 svd->vdev_stat.vs_space = 0; 586 svd->vdev_stat.vs_dspace = 0; 587 588 for (t = 0; t < TXG_SIZE; t++) { 589 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 590 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 591 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 592 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 593 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 594 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 595 } 596 597 if (list_link_active(&svd->vdev_dirty_node)) { 598 vdev_config_clean(svd); 599 vdev_config_dirty(tvd); 600 } 601 602 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 603 svd->vdev_reopen_wanted = 0; 604 605 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 606 svd->vdev_deflate_ratio = 0; 607 } 608 609 static void 610 vdev_top_update(vdev_t *tvd, vdev_t *vd) 611 { 612 int c; 613 614 if (vd == NULL) 615 return; 616 617 vd->vdev_top = tvd; 618 619 for (c = 0; c < vd->vdev_children; c++) 620 vdev_top_update(tvd, vd->vdev_child[c]); 621 } 622 623 /* 624 * Add a mirror/replacing vdev above an existing vdev. 625 */ 626 vdev_t * 627 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 628 { 629 spa_t *spa = cvd->vdev_spa; 630 vdev_t *pvd = cvd->vdev_parent; 631 vdev_t *mvd; 632 633 ASSERT(spa_config_held(spa, RW_WRITER)); 634 635 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 636 637 mvd->vdev_asize = cvd->vdev_asize; 638 mvd->vdev_ashift = cvd->vdev_ashift; 639 mvd->vdev_state = cvd->vdev_state; 640 641 vdev_remove_child(pvd, cvd); 642 vdev_add_child(pvd, mvd); 643 cvd->vdev_id = mvd->vdev_children; 644 vdev_add_child(mvd, cvd); 645 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 646 647 if (mvd == mvd->vdev_top) 648 vdev_top_transfer(cvd, mvd); 649 650 return (mvd); 651 } 652 653 /* 654 * Remove a 1-way mirror/replacing vdev from the tree. 655 */ 656 void 657 vdev_remove_parent(vdev_t *cvd) 658 { 659 vdev_t *mvd = cvd->vdev_parent; 660 vdev_t *pvd = mvd->vdev_parent; 661 662 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 663 664 ASSERT(mvd->vdev_children == 1); 665 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 666 mvd->vdev_ops == &vdev_replacing_ops || 667 mvd->vdev_ops == &vdev_spare_ops); 668 cvd->vdev_ashift = mvd->vdev_ashift; 669 670 vdev_remove_child(mvd, cvd); 671 vdev_remove_child(pvd, mvd); 672 cvd->vdev_id = mvd->vdev_id; 673 vdev_add_child(pvd, cvd); 674 /* 675 * If we created a new toplevel vdev, then we need to change the child's 676 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 677 * detached an offline device, and when we go to import the pool we'll 678 * think we have two toplevel vdevs, instead of a different version of 679 * the same toplevel vdev. 680 */ 681 if (cvd->vdev_top == cvd) { 682 pvd->vdev_guid_sum -= cvd->vdev_guid; 683 cvd->vdev_guid_sum -= cvd->vdev_guid; 684 cvd->vdev_guid = mvd->vdev_guid; 685 cvd->vdev_guid_sum += mvd->vdev_guid; 686 pvd->vdev_guid_sum += cvd->vdev_guid; 687 } 688 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 689 690 if (cvd == cvd->vdev_top) 691 vdev_top_transfer(mvd, cvd); 692 693 ASSERT(mvd->vdev_children == 0); 694 vdev_free(mvd); 695 } 696 697 int 698 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 699 { 700 spa_t *spa = vd->vdev_spa; 701 objset_t *mos = spa->spa_meta_objset; 702 metaslab_class_t *mc = spa_metaslab_class_select(spa); 703 uint64_t m; 704 uint64_t oldc = vd->vdev_ms_count; 705 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 706 metaslab_t **mspp; 707 int error; 708 709 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 710 return (0); 711 712 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 713 714 ASSERT(oldc <= newc); 715 716 if (vd->vdev_mg == NULL) 717 vd->vdev_mg = metaslab_group_create(mc, vd); 718 719 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 720 721 if (oldc != 0) { 722 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 723 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 724 } 725 726 vd->vdev_ms = mspp; 727 vd->vdev_ms_count = newc; 728 729 for (m = oldc; m < newc; m++) { 730 space_map_obj_t smo = { 0, 0, 0 }; 731 if (txg == 0) { 732 uint64_t object = 0; 733 error = dmu_read(mos, vd->vdev_ms_array, 734 m * sizeof (uint64_t), sizeof (uint64_t), &object); 735 if (error) 736 return (error); 737 if (object != 0) { 738 dmu_buf_t *db; 739 error = dmu_bonus_hold(mos, object, FTAG, &db); 740 if (error) 741 return (error); 742 ASSERT3U(db->db_size, ==, sizeof (smo)); 743 bcopy(db->db_data, &smo, db->db_size); 744 ASSERT3U(smo.smo_object, ==, object); 745 dmu_buf_rele(db, FTAG); 746 } 747 } 748 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 749 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 750 } 751 752 return (0); 753 } 754 755 void 756 vdev_metaslab_fini(vdev_t *vd) 757 { 758 uint64_t m; 759 uint64_t count = vd->vdev_ms_count; 760 761 if (vd->vdev_ms != NULL) { 762 for (m = 0; m < count; m++) 763 if (vd->vdev_ms[m] != NULL) 764 metaslab_fini(vd->vdev_ms[m]); 765 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 766 vd->vdev_ms = NULL; 767 } 768 } 769 770 /* 771 * Prepare a virtual device for access. 772 */ 773 int 774 vdev_open(vdev_t *vd) 775 { 776 int error; 777 vdev_knob_t *vk; 778 int c; 779 uint64_t osize = 0; 780 uint64_t asize, psize; 781 uint64_t ashift = 0; 782 783 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 784 vd->vdev_state == VDEV_STATE_CANT_OPEN || 785 vd->vdev_state == VDEV_STATE_OFFLINE); 786 787 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 788 vd->vdev_fault_arg >>= 1; 789 else 790 vd->vdev_fault_mode = VDEV_FAULT_NONE; 791 792 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 793 794 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 795 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 796 797 *valp = vk->vk_default; 798 *valp = MAX(*valp, vk->vk_min); 799 *valp = MIN(*valp, vk->vk_max); 800 } 801 802 if (zfs_vdev_cache_max) 803 vd->vdev_cache.vc_max = zfs_vdev_cache_max; 804 if (zfs_vdev_max_pending) 805 vd->vdev_queue.vq_max_pending = zfs_vdev_max_pending; 806 if (zfs_vdev_min_pending) 807 vd->vdev_queue.vq_min_pending = zfs_vdev_min_pending; 808 if (zfs_vdev_time_shift) 809 vd->vdev_queue.vq_time_shift = zfs_vdev_time_shift; 810 811 if (vd->vdev_ops->vdev_op_leaf) { 812 vdev_cache_init(vd); 813 vdev_queue_init(vd); 814 vd->vdev_cache_active = B_TRUE; 815 } 816 817 if (vd->vdev_offline) { 818 ASSERT(vd->vdev_children == 0); 819 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 820 return (ENXIO); 821 } 822 823 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 824 825 if (zio_injection_enabled && error == 0) 826 error = zio_handle_device_injection(vd, ENXIO); 827 828 dprintf("%s = %d, osize %llu, state = %d\n", 829 vdev_description(vd), error, osize, vd->vdev_state); 830 831 if (error) { 832 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 833 vd->vdev_stat.vs_aux); 834 return (error); 835 } 836 837 vd->vdev_state = VDEV_STATE_HEALTHY; 838 839 for (c = 0; c < vd->vdev_children; c++) 840 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 841 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 842 VDEV_AUX_NONE); 843 break; 844 } 845 846 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 847 848 if (vd->vdev_children == 0) { 849 if (osize < SPA_MINDEVSIZE) { 850 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 851 VDEV_AUX_TOO_SMALL); 852 return (EOVERFLOW); 853 } 854 psize = osize; 855 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 856 } else { 857 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 858 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 859 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 860 VDEV_AUX_TOO_SMALL); 861 return (EOVERFLOW); 862 } 863 psize = 0; 864 asize = osize; 865 } 866 867 vd->vdev_psize = psize; 868 869 if (vd->vdev_asize == 0) { 870 /* 871 * This is the first-ever open, so use the computed values. 872 * For testing purposes, a higher ashift can be requested. 873 */ 874 vd->vdev_asize = asize; 875 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 876 } else { 877 /* 878 * Make sure the alignment requirement hasn't increased. 879 */ 880 if (ashift > vd->vdev_top->vdev_ashift) { 881 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 882 VDEV_AUX_BAD_LABEL); 883 return (EINVAL); 884 } 885 886 /* 887 * Make sure the device hasn't shrunk. 888 */ 889 if (asize < vd->vdev_asize) { 890 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 891 VDEV_AUX_BAD_LABEL); 892 return (EINVAL); 893 } 894 895 /* 896 * If all children are healthy and the asize has increased, 897 * then we've experienced dynamic LUN growth. 898 */ 899 if (vd->vdev_state == VDEV_STATE_HEALTHY && 900 asize > vd->vdev_asize) { 901 vd->vdev_asize = asize; 902 } 903 } 904 905 /* 906 * If this is a top-level vdev, compute the raidz-deflation 907 * ratio. Note, we hard-code in 128k (1<<17) because it is the 908 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 909 * changes, this algorithm must never change, or we will 910 * inconsistently account for existing bp's. 911 */ 912 if (vd->vdev_top == vd) { 913 vd->vdev_deflate_ratio = (1<<17) / 914 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 915 } 916 917 /* 918 * This allows the ZFS DE to close cases appropriately. If a device 919 * goes away and later returns, we want to close the associated case. 920 * But it's not enough to simply post this only when a device goes from 921 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 922 * back, we also need to close the case (otherwise we will try to replay 923 * it). So we have to post this notifier every time. Since this only 924 * occurs during pool open or error recovery, this should not be an 925 * issue. 926 */ 927 zfs_post_ok(vd->vdev_spa, vd); 928 929 return (0); 930 } 931 932 /* 933 * Called once the vdevs are all opened, this routine validates the label 934 * contents. This needs to be done before vdev_load() so that we don't 935 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 936 * won't succeed if the device has been changed underneath. 937 * 938 * This function will only return failure if one of the vdevs indicates that it 939 * has since been destroyed or exported. This is only possible if 940 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 941 * will be updated but the function will return 0. 942 */ 943 int 944 vdev_validate(vdev_t *vd) 945 { 946 spa_t *spa = vd->vdev_spa; 947 int c; 948 nvlist_t *label; 949 uint64_t guid; 950 uint64_t state; 951 952 for (c = 0; c < vd->vdev_children; c++) 953 if (vdev_validate(vd->vdev_child[c]) != 0) 954 return (-1); 955 956 /* 957 * If the device has already failed, or was marked offline, don't do 958 * any further validation. Otherwise, label I/O will fail and we will 959 * overwrite the previous state. 960 */ 961 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 962 963 if ((label = vdev_label_read_config(vd)) == NULL) { 964 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 965 VDEV_AUX_BAD_LABEL); 966 return (0); 967 } 968 969 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 970 &guid) != 0 || guid != spa_guid(spa)) { 971 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 972 VDEV_AUX_CORRUPT_DATA); 973 nvlist_free(label); 974 return (0); 975 } 976 977 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 978 &guid) != 0 || guid != vd->vdev_guid) { 979 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 980 VDEV_AUX_CORRUPT_DATA); 981 nvlist_free(label); 982 return (0); 983 } 984 985 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 986 &state) != 0) { 987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 988 VDEV_AUX_CORRUPT_DATA); 989 nvlist_free(label); 990 return (0); 991 } 992 993 nvlist_free(label); 994 995 if (spa->spa_load_state == SPA_LOAD_OPEN && 996 state != POOL_STATE_ACTIVE) 997 return (-1); 998 } 999 1000 /* 1001 * If we were able to open and validate a vdev that was previously 1002 * marked permanently unavailable, clear that state now. 1003 */ 1004 if (vd->vdev_not_present) 1005 vd->vdev_not_present = 0; 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * Close a virtual device. 1012 */ 1013 void 1014 vdev_close(vdev_t *vd) 1015 { 1016 vd->vdev_ops->vdev_op_close(vd); 1017 1018 if (vd->vdev_cache_active) { 1019 vdev_cache_fini(vd); 1020 vdev_queue_fini(vd); 1021 vd->vdev_cache_active = B_FALSE; 1022 } 1023 1024 /* 1025 * We record the previous state before we close it, so that if we are 1026 * doing a reopen(), we don't generate FMA ereports if we notice that 1027 * it's still faulted. 1028 */ 1029 vd->vdev_prevstate = vd->vdev_state; 1030 1031 if (vd->vdev_offline) 1032 vd->vdev_state = VDEV_STATE_OFFLINE; 1033 else 1034 vd->vdev_state = VDEV_STATE_CLOSED; 1035 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1036 } 1037 1038 void 1039 vdev_reopen(vdev_t *vd) 1040 { 1041 spa_t *spa = vd->vdev_spa; 1042 1043 ASSERT(spa_config_held(spa, RW_WRITER)); 1044 1045 vdev_close(vd); 1046 (void) vdev_open(vd); 1047 1048 /* 1049 * Reassess root vdev's health. 1050 */ 1051 vdev_propagate_state(spa->spa_root_vdev); 1052 } 1053 1054 int 1055 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1056 { 1057 int error; 1058 1059 /* 1060 * Normally, partial opens (e.g. of a mirror) are allowed. 1061 * For a create, however, we want to fail the request if 1062 * there are any components we can't open. 1063 */ 1064 error = vdev_open(vd); 1065 1066 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1067 vdev_close(vd); 1068 return (error ? error : ENXIO); 1069 } 1070 1071 /* 1072 * Recursively initialize all labels. 1073 */ 1074 if ((error = vdev_label_init(vd, txg, isreplacing)) != 0) { 1075 vdev_close(vd); 1076 return (error); 1077 } 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * The is the latter half of vdev_create(). It is distinct because it 1084 * involves initiating transactions in order to do metaslab creation. 1085 * For creation, we want to try to create all vdevs at once and then undo it 1086 * if anything fails; this is much harder if we have pending transactions. 1087 */ 1088 void 1089 vdev_init(vdev_t *vd, uint64_t txg) 1090 { 1091 /* 1092 * Aim for roughly 200 metaslabs per vdev. 1093 */ 1094 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1095 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1096 1097 /* 1098 * Initialize the vdev's metaslabs. This can't fail because 1099 * there's nothing to read when creating all new metaslabs. 1100 */ 1101 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1102 } 1103 1104 void 1105 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1106 { 1107 ASSERT(vd == vd->vdev_top); 1108 ASSERT(ISP2(flags)); 1109 1110 if (flags & VDD_METASLAB) 1111 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1112 1113 if (flags & VDD_DTL) 1114 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1115 1116 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1117 } 1118 1119 void 1120 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1121 { 1122 mutex_enter(sm->sm_lock); 1123 if (!space_map_contains(sm, txg, size)) 1124 space_map_add(sm, txg, size); 1125 mutex_exit(sm->sm_lock); 1126 } 1127 1128 int 1129 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1130 { 1131 int dirty; 1132 1133 /* 1134 * Quick test without the lock -- covers the common case that 1135 * there are no dirty time segments. 1136 */ 1137 if (sm->sm_space == 0) 1138 return (0); 1139 1140 mutex_enter(sm->sm_lock); 1141 dirty = space_map_contains(sm, txg, size); 1142 mutex_exit(sm->sm_lock); 1143 1144 return (dirty); 1145 } 1146 1147 /* 1148 * Reassess DTLs after a config change or scrub completion. 1149 */ 1150 void 1151 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1152 { 1153 spa_t *spa = vd->vdev_spa; 1154 int c; 1155 1156 ASSERT(spa_config_held(spa, RW_WRITER)); 1157 1158 if (vd->vdev_children == 0) { 1159 mutex_enter(&vd->vdev_dtl_lock); 1160 /* 1161 * We're successfully scrubbed everything up to scrub_txg. 1162 * Therefore, excise all old DTLs up to that point, then 1163 * fold in the DTLs for everything we couldn't scrub. 1164 */ 1165 if (scrub_txg != 0) { 1166 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1167 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1168 } 1169 if (scrub_done) 1170 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1171 mutex_exit(&vd->vdev_dtl_lock); 1172 if (txg != 0) 1173 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1174 return; 1175 } 1176 1177 /* 1178 * Make sure the DTLs are always correct under the scrub lock. 1179 */ 1180 if (vd == spa->spa_root_vdev) 1181 mutex_enter(&spa->spa_scrub_lock); 1182 1183 mutex_enter(&vd->vdev_dtl_lock); 1184 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1185 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1186 mutex_exit(&vd->vdev_dtl_lock); 1187 1188 for (c = 0; c < vd->vdev_children; c++) { 1189 vdev_t *cvd = vd->vdev_child[c]; 1190 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1191 mutex_enter(&vd->vdev_dtl_lock); 1192 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1193 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1194 mutex_exit(&vd->vdev_dtl_lock); 1195 } 1196 1197 if (vd == spa->spa_root_vdev) 1198 mutex_exit(&spa->spa_scrub_lock); 1199 } 1200 1201 static int 1202 vdev_dtl_load(vdev_t *vd) 1203 { 1204 spa_t *spa = vd->vdev_spa; 1205 space_map_obj_t *smo = &vd->vdev_dtl; 1206 objset_t *mos = spa->spa_meta_objset; 1207 dmu_buf_t *db; 1208 int error; 1209 1210 ASSERT(vd->vdev_children == 0); 1211 1212 if (smo->smo_object == 0) 1213 return (0); 1214 1215 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1216 return (error); 1217 1218 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1219 bcopy(db->db_data, smo, db->db_size); 1220 dmu_buf_rele(db, FTAG); 1221 1222 mutex_enter(&vd->vdev_dtl_lock); 1223 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1224 mutex_exit(&vd->vdev_dtl_lock); 1225 1226 return (error); 1227 } 1228 1229 void 1230 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1231 { 1232 spa_t *spa = vd->vdev_spa; 1233 space_map_obj_t *smo = &vd->vdev_dtl; 1234 space_map_t *sm = &vd->vdev_dtl_map; 1235 objset_t *mos = spa->spa_meta_objset; 1236 space_map_t smsync; 1237 kmutex_t smlock; 1238 dmu_buf_t *db; 1239 dmu_tx_t *tx; 1240 1241 dprintf("%s in txg %llu pass %d\n", 1242 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1243 1244 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1245 1246 if (vd->vdev_detached) { 1247 if (smo->smo_object != 0) { 1248 int err = dmu_object_free(mos, smo->smo_object, tx); 1249 ASSERT3U(err, ==, 0); 1250 smo->smo_object = 0; 1251 } 1252 dmu_tx_commit(tx); 1253 dprintf("detach %s committed in txg %llu\n", 1254 vdev_description(vd), txg); 1255 return; 1256 } 1257 1258 if (smo->smo_object == 0) { 1259 ASSERT(smo->smo_objsize == 0); 1260 ASSERT(smo->smo_alloc == 0); 1261 smo->smo_object = dmu_object_alloc(mos, 1262 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1263 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1264 ASSERT(smo->smo_object != 0); 1265 vdev_config_dirty(vd->vdev_top); 1266 } 1267 1268 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1269 1270 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1271 &smlock); 1272 1273 mutex_enter(&smlock); 1274 1275 mutex_enter(&vd->vdev_dtl_lock); 1276 space_map_walk(sm, space_map_add, &smsync); 1277 mutex_exit(&vd->vdev_dtl_lock); 1278 1279 space_map_truncate(smo, mos, tx); 1280 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1281 1282 space_map_destroy(&smsync); 1283 1284 mutex_exit(&smlock); 1285 mutex_destroy(&smlock); 1286 1287 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1288 dmu_buf_will_dirty(db, tx); 1289 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1290 bcopy(smo, db->db_data, db->db_size); 1291 dmu_buf_rele(db, FTAG); 1292 1293 dmu_tx_commit(tx); 1294 } 1295 1296 void 1297 vdev_load(vdev_t *vd) 1298 { 1299 int c; 1300 1301 /* 1302 * Recursively load all children. 1303 */ 1304 for (c = 0; c < vd->vdev_children; c++) 1305 vdev_load(vd->vdev_child[c]); 1306 1307 /* 1308 * If this is a top-level vdev, initialize its metaslabs. 1309 */ 1310 if (vd == vd->vdev_top && 1311 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1312 vdev_metaslab_init(vd, 0) != 0)) 1313 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1314 VDEV_AUX_CORRUPT_DATA); 1315 1316 /* 1317 * If this is a leaf vdev, load its DTL. 1318 */ 1319 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1320 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1321 VDEV_AUX_CORRUPT_DATA); 1322 } 1323 1324 /* 1325 * This special case of vdev_spare() is used for hot spares. It's sole purpose 1326 * it to set the vdev state for the associated vdev. To do this, we make sure 1327 * that we can open the underlying device, then try to read the label, and make 1328 * sure that the label is sane and that it hasn't been repurposed to another 1329 * pool. 1330 */ 1331 int 1332 vdev_validate_spare(vdev_t *vd) 1333 { 1334 nvlist_t *label; 1335 uint64_t guid, version; 1336 uint64_t state; 1337 1338 if ((label = vdev_label_read_config(vd)) == NULL) { 1339 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1340 VDEV_AUX_CORRUPT_DATA); 1341 return (-1); 1342 } 1343 1344 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1345 version > ZFS_VERSION || 1346 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1347 guid != vd->vdev_guid || 1348 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1349 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1350 VDEV_AUX_CORRUPT_DATA); 1351 nvlist_free(label); 1352 return (-1); 1353 } 1354 1355 /* 1356 * We don't actually check the pool state here. If it's in fact in 1357 * use by another pool, we update this fact on the fly when requested. 1358 */ 1359 nvlist_free(label); 1360 return (0); 1361 } 1362 1363 void 1364 vdev_sync_done(vdev_t *vd, uint64_t txg) 1365 { 1366 metaslab_t *msp; 1367 1368 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1369 1370 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1371 metaslab_sync_done(msp, txg); 1372 } 1373 1374 void 1375 vdev_sync(vdev_t *vd, uint64_t txg) 1376 { 1377 spa_t *spa = vd->vdev_spa; 1378 vdev_t *lvd; 1379 metaslab_t *msp; 1380 dmu_tx_t *tx; 1381 1382 dprintf("%s txg %llu pass %d\n", 1383 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1384 1385 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1386 ASSERT(vd == vd->vdev_top); 1387 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1388 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1389 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1390 ASSERT(vd->vdev_ms_array != 0); 1391 vdev_config_dirty(vd); 1392 dmu_tx_commit(tx); 1393 } 1394 1395 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1396 metaslab_sync(msp, txg); 1397 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1398 } 1399 1400 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1401 vdev_dtl_sync(lvd, txg); 1402 1403 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1404 } 1405 1406 uint64_t 1407 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1408 { 1409 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1410 } 1411 1412 void 1413 vdev_io_start(zio_t *zio) 1414 { 1415 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1416 } 1417 1418 void 1419 vdev_io_done(zio_t *zio) 1420 { 1421 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1422 } 1423 1424 const char * 1425 vdev_description(vdev_t *vd) 1426 { 1427 if (vd == NULL || vd->vdev_ops == NULL) 1428 return ("<unknown>"); 1429 1430 if (vd->vdev_path != NULL) 1431 return (vd->vdev_path); 1432 1433 if (vd->vdev_parent == NULL) 1434 return (spa_name(vd->vdev_spa)); 1435 1436 return (vd->vdev_ops->vdev_op_type); 1437 } 1438 1439 int 1440 vdev_online(spa_t *spa, uint64_t guid) 1441 { 1442 vdev_t *rvd, *vd; 1443 uint64_t txg; 1444 1445 txg = spa_vdev_enter(spa); 1446 1447 rvd = spa->spa_root_vdev; 1448 1449 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1450 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1451 1452 if (!vd->vdev_ops->vdev_op_leaf) 1453 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1454 1455 dprintf("ONLINE: %s\n", vdev_description(vd)); 1456 1457 vd->vdev_offline = B_FALSE; 1458 vd->vdev_tmpoffline = B_FALSE; 1459 vdev_reopen(vd->vdev_top); 1460 1461 vdev_config_dirty(vd->vdev_top); 1462 1463 (void) spa_vdev_exit(spa, NULL, txg, 0); 1464 1465 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1466 1467 return (0); 1468 } 1469 1470 int 1471 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1472 { 1473 vdev_t *rvd, *vd; 1474 uint64_t txg; 1475 1476 txg = spa_vdev_enter(spa); 1477 1478 rvd = spa->spa_root_vdev; 1479 1480 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1481 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1482 1483 if (!vd->vdev_ops->vdev_op_leaf) 1484 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1485 1486 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1487 1488 /* 1489 * If the device isn't already offline, try to offline it. 1490 */ 1491 if (!vd->vdev_offline) { 1492 /* 1493 * If this device's top-level vdev has a non-empty DTL, 1494 * don't allow the device to be offlined. 1495 * 1496 * XXX -- make this more precise by allowing the offline 1497 * as long as the remaining devices don't have any DTL holes. 1498 */ 1499 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1500 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1501 1502 /* 1503 * Offline this device and reopen its top-level vdev. 1504 * If this action results in the top-level vdev becoming 1505 * unusable, undo it and fail the request. 1506 */ 1507 vd->vdev_offline = B_TRUE; 1508 vdev_reopen(vd->vdev_top); 1509 if (vdev_is_dead(vd->vdev_top)) { 1510 vd->vdev_offline = B_FALSE; 1511 vdev_reopen(vd->vdev_top); 1512 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1513 } 1514 } 1515 1516 vd->vdev_tmpoffline = istmp; 1517 1518 vdev_config_dirty(vd->vdev_top); 1519 1520 return (spa_vdev_exit(spa, NULL, txg, 0)); 1521 } 1522 1523 /* 1524 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1525 * vdev_offline(), we assume the spa config is locked. We also clear all 1526 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1527 */ 1528 void 1529 vdev_clear(spa_t *spa, vdev_t *vd) 1530 { 1531 int c; 1532 1533 if (vd == NULL) 1534 vd = spa->spa_root_vdev; 1535 1536 vd->vdev_stat.vs_read_errors = 0; 1537 vd->vdev_stat.vs_write_errors = 0; 1538 vd->vdev_stat.vs_checksum_errors = 0; 1539 1540 for (c = 0; c < vd->vdev_children; c++) 1541 vdev_clear(spa, vd->vdev_child[c]); 1542 } 1543 1544 int 1545 vdev_is_dead(vdev_t *vd) 1546 { 1547 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1548 } 1549 1550 int 1551 vdev_error_inject(vdev_t *vd, zio_t *zio) 1552 { 1553 int error = 0; 1554 1555 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1556 return (0); 1557 1558 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1559 return (0); 1560 1561 switch (vd->vdev_fault_mode) { 1562 case VDEV_FAULT_RANDOM: 1563 if (spa_get_random(vd->vdev_fault_arg) == 0) 1564 error = EIO; 1565 break; 1566 1567 case VDEV_FAULT_COUNT: 1568 if ((int64_t)--vd->vdev_fault_arg <= 0) 1569 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1570 error = EIO; 1571 break; 1572 } 1573 1574 if (error != 0) { 1575 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1576 error, zio->io_type, vdev_description(vd), 1577 vd->vdev_state, zio->io_offset); 1578 } 1579 1580 return (error); 1581 } 1582 1583 /* 1584 * Get statistics for the given vdev. 1585 */ 1586 void 1587 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1588 { 1589 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1590 int c, t; 1591 1592 mutex_enter(&vd->vdev_stat_lock); 1593 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1594 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1595 vs->vs_state = vd->vdev_state; 1596 vs->vs_rsize = vdev_get_rsize(vd); 1597 mutex_exit(&vd->vdev_stat_lock); 1598 1599 /* 1600 * If we're getting stats on the root vdev, aggregate the I/O counts 1601 * over all top-level vdevs (i.e. the direct children of the root). 1602 */ 1603 if (vd == rvd) { 1604 for (c = 0; c < rvd->vdev_children; c++) { 1605 vdev_t *cvd = rvd->vdev_child[c]; 1606 vdev_stat_t *cvs = &cvd->vdev_stat; 1607 1608 mutex_enter(&vd->vdev_stat_lock); 1609 for (t = 0; t < ZIO_TYPES; t++) { 1610 vs->vs_ops[t] += cvs->vs_ops[t]; 1611 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1612 } 1613 vs->vs_read_errors += cvs->vs_read_errors; 1614 vs->vs_write_errors += cvs->vs_write_errors; 1615 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1616 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1617 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1618 mutex_exit(&vd->vdev_stat_lock); 1619 } 1620 } 1621 } 1622 1623 void 1624 vdev_stat_update(zio_t *zio) 1625 { 1626 vdev_t *vd = zio->io_vd; 1627 vdev_t *pvd; 1628 uint64_t txg = zio->io_txg; 1629 vdev_stat_t *vs = &vd->vdev_stat; 1630 zio_type_t type = zio->io_type; 1631 int flags = zio->io_flags; 1632 1633 if (zio->io_error == 0) { 1634 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1635 mutex_enter(&vd->vdev_stat_lock); 1636 vs->vs_ops[type]++; 1637 vs->vs_bytes[type] += zio->io_size; 1638 mutex_exit(&vd->vdev_stat_lock); 1639 } 1640 if ((flags & ZIO_FLAG_IO_REPAIR) && 1641 zio->io_delegate_list == NULL) { 1642 mutex_enter(&vd->vdev_stat_lock); 1643 if (flags & ZIO_FLAG_SCRUB_THREAD) 1644 vs->vs_scrub_repaired += zio->io_size; 1645 else 1646 vs->vs_self_healed += zio->io_size; 1647 mutex_exit(&vd->vdev_stat_lock); 1648 } 1649 return; 1650 } 1651 1652 if (flags & ZIO_FLAG_SPECULATIVE) 1653 return; 1654 1655 if (!vdev_is_dead(vd)) { 1656 mutex_enter(&vd->vdev_stat_lock); 1657 if (type == ZIO_TYPE_READ) { 1658 if (zio->io_error == ECKSUM) 1659 vs->vs_checksum_errors++; 1660 else 1661 vs->vs_read_errors++; 1662 } 1663 if (type == ZIO_TYPE_WRITE) 1664 vs->vs_write_errors++; 1665 mutex_exit(&vd->vdev_stat_lock); 1666 } 1667 1668 if (type == ZIO_TYPE_WRITE) { 1669 if (txg == 0 || vd->vdev_children != 0) 1670 return; 1671 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1672 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1673 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1674 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1675 } 1676 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1677 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1678 return; 1679 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1680 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1681 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1682 } 1683 } 1684 } 1685 1686 void 1687 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1688 { 1689 int c; 1690 vdev_stat_t *vs = &vd->vdev_stat; 1691 1692 for (c = 0; c < vd->vdev_children; c++) 1693 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1694 1695 mutex_enter(&vd->vdev_stat_lock); 1696 1697 if (type == POOL_SCRUB_NONE) { 1698 /* 1699 * Update completion and end time. Leave everything else alone 1700 * so we can report what happened during the previous scrub. 1701 */ 1702 vs->vs_scrub_complete = complete; 1703 vs->vs_scrub_end = gethrestime_sec(); 1704 } else { 1705 vs->vs_scrub_type = type; 1706 vs->vs_scrub_complete = 0; 1707 vs->vs_scrub_examined = 0; 1708 vs->vs_scrub_repaired = 0; 1709 vs->vs_scrub_errors = 0; 1710 vs->vs_scrub_start = gethrestime_sec(); 1711 vs->vs_scrub_end = 0; 1712 } 1713 1714 mutex_exit(&vd->vdev_stat_lock); 1715 } 1716 1717 /* 1718 * Update the in-core space usage stats for this vdev and the root vdev. 1719 */ 1720 void 1721 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1722 { 1723 ASSERT(vd == vd->vdev_top); 1724 int64_t dspace_delta = space_delta; 1725 1726 do { 1727 if (vd->vdev_ms_count) { 1728 /* 1729 * If this is a top-level vdev, apply the 1730 * inverse of its psize-to-asize (ie. RAID-Z) 1731 * space-expansion factor. We must calculate 1732 * this here and not at the root vdev because 1733 * the root vdev's psize-to-asize is simply the 1734 * max of its childrens', thus not accurate 1735 * enough for us. 1736 */ 1737 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1738 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1739 vd->vdev_deflate_ratio; 1740 } 1741 1742 mutex_enter(&vd->vdev_stat_lock); 1743 vd->vdev_stat.vs_space += space_delta; 1744 vd->vdev_stat.vs_alloc += alloc_delta; 1745 vd->vdev_stat.vs_dspace += dspace_delta; 1746 mutex_exit(&vd->vdev_stat_lock); 1747 } while ((vd = vd->vdev_parent) != NULL); 1748 } 1749 1750 /* 1751 * Various knobs to tune a vdev. 1752 */ 1753 static vdev_knob_t vdev_knob[] = { 1754 { 1755 "cache_size", 1756 "size of the read-ahead cache", 1757 0, 1758 1ULL << 30, 1759 10ULL << 20, 1760 offsetof(struct vdev, vdev_cache.vc_size) 1761 }, 1762 { 1763 "cache_bshift", 1764 "log2 of cache blocksize", 1765 SPA_MINBLOCKSHIFT, 1766 SPA_MAXBLOCKSHIFT, 1767 16, 1768 offsetof(struct vdev, vdev_cache.vc_bshift) 1769 }, 1770 { 1771 "cache_max", 1772 "largest block size to cache", 1773 0, 1774 SPA_MAXBLOCKSIZE, 1775 1ULL << 14, 1776 offsetof(struct vdev, vdev_cache.vc_max) 1777 }, 1778 { 1779 "min_pending", 1780 "minimum pending I/Os to the disk", 1781 1, 1782 10000, 1783 4, 1784 offsetof(struct vdev, vdev_queue.vq_min_pending) 1785 }, 1786 { 1787 "max_pending", 1788 "maximum pending I/Os to the disk", 1789 1, 1790 10000, 1791 35, 1792 offsetof(struct vdev, vdev_queue.vq_max_pending) 1793 }, 1794 { 1795 "scrub_limit", 1796 "maximum scrub/resilver I/O queue", 1797 0, 1798 10000, 1799 70, 1800 offsetof(struct vdev, vdev_queue.vq_scrub_limit) 1801 }, 1802 { 1803 "agg_limit", 1804 "maximum size of aggregated I/Os", 1805 0, 1806 SPA_MAXBLOCKSIZE, 1807 SPA_MAXBLOCKSIZE, 1808 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1809 }, 1810 { 1811 "time_shift", 1812 "deadline = pri + (lbolt >> time_shift)", 1813 0, 1814 63, 1815 6, 1816 offsetof(struct vdev, vdev_queue.vq_time_shift) 1817 }, 1818 { 1819 "ramp_rate", 1820 "exponential I/O issue ramp-up rate", 1821 1, 1822 10000, 1823 2, 1824 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1825 }, 1826 }; 1827 1828 vdev_knob_t * 1829 vdev_knob_next(vdev_knob_t *vk) 1830 { 1831 if (vk == NULL) 1832 return (vdev_knob); 1833 1834 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1835 return (NULL); 1836 1837 return (vk); 1838 } 1839 1840 /* 1841 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1842 * so that it will be written out next time the vdev configuration is synced. 1843 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1844 */ 1845 void 1846 vdev_config_dirty(vdev_t *vd) 1847 { 1848 spa_t *spa = vd->vdev_spa; 1849 vdev_t *rvd = spa->spa_root_vdev; 1850 int c; 1851 1852 /* 1853 * The dirty list is protected by the config lock. The caller must 1854 * either hold the config lock as writer, or must be the sync thread 1855 * (which holds the lock as reader). There's only one sync thread, 1856 * so this is sufficient to ensure mutual exclusion. 1857 */ 1858 ASSERT(spa_config_held(spa, RW_WRITER) || 1859 dsl_pool_sync_context(spa_get_dsl(spa))); 1860 1861 if (vd == rvd) { 1862 for (c = 0; c < rvd->vdev_children; c++) 1863 vdev_config_dirty(rvd->vdev_child[c]); 1864 } else { 1865 ASSERT(vd == vd->vdev_top); 1866 1867 if (!list_link_active(&vd->vdev_dirty_node)) 1868 list_insert_head(&spa->spa_dirty_list, vd); 1869 } 1870 } 1871 1872 void 1873 vdev_config_clean(vdev_t *vd) 1874 { 1875 spa_t *spa = vd->vdev_spa; 1876 1877 ASSERT(spa_config_held(spa, RW_WRITER) || 1878 dsl_pool_sync_context(spa_get_dsl(spa))); 1879 1880 ASSERT(list_link_active(&vd->vdev_dirty_node)); 1881 list_remove(&spa->spa_dirty_list, vd); 1882 } 1883 1884 void 1885 vdev_propagate_state(vdev_t *vd) 1886 { 1887 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1888 int degraded = 0, faulted = 0; 1889 int corrupted = 0; 1890 int c; 1891 vdev_t *child; 1892 1893 for (c = 0; c < vd->vdev_children; c++) { 1894 child = vd->vdev_child[c]; 1895 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1896 faulted++; 1897 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1898 degraded++; 1899 1900 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1901 corrupted++; 1902 } 1903 1904 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 1905 1906 /* 1907 * Root special: if there is a toplevel vdev that cannot be 1908 * opened due to corrupted metadata, then propagate the root 1909 * vdev's aux state as 'corrupt' rather than 'insufficient 1910 * replicas'. 1911 */ 1912 if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 1913 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 1914 VDEV_AUX_CORRUPT_DATA); 1915 } 1916 1917 /* 1918 * Set a vdev's state. If this is during an open, we don't update the parent 1919 * state, because we're in the process of opening children depth-first. 1920 * Otherwise, we propagate the change to the parent. 1921 * 1922 * If this routine places a device in a faulted state, an appropriate ereport is 1923 * generated. 1924 */ 1925 void 1926 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1927 { 1928 uint64_t save_state; 1929 1930 if (state == vd->vdev_state) { 1931 vd->vdev_stat.vs_aux = aux; 1932 return; 1933 } 1934 1935 save_state = vd->vdev_state; 1936 1937 vd->vdev_state = state; 1938 vd->vdev_stat.vs_aux = aux; 1939 1940 if (state == VDEV_STATE_CANT_OPEN) { 1941 /* 1942 * If we fail to open a vdev during an import, we mark it as 1943 * "not available", which signifies that it was never there to 1944 * begin with. Failure to open such a device is not considered 1945 * an error. 1946 */ 1947 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1948 vd->vdev_ops->vdev_op_leaf) 1949 vd->vdev_not_present = 1; 1950 1951 /* 1952 * Post the appropriate ereport. If the 'prevstate' field is 1953 * set to something other than VDEV_STATE_UNKNOWN, it indicates 1954 * that this is part of a vdev_reopen(). In this case, we don't 1955 * want to post the ereport if the device was already in the 1956 * CANT_OPEN state beforehand. 1957 */ 1958 if (vd->vdev_prevstate != state && !vd->vdev_not_present && 1959 vd != vd->vdev_spa->spa_root_vdev) { 1960 const char *class; 1961 1962 switch (aux) { 1963 case VDEV_AUX_OPEN_FAILED: 1964 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1965 break; 1966 case VDEV_AUX_CORRUPT_DATA: 1967 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1968 break; 1969 case VDEV_AUX_NO_REPLICAS: 1970 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1971 break; 1972 case VDEV_AUX_BAD_GUID_SUM: 1973 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1974 break; 1975 case VDEV_AUX_TOO_SMALL: 1976 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1977 break; 1978 case VDEV_AUX_BAD_LABEL: 1979 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1980 break; 1981 default: 1982 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1983 } 1984 1985 zfs_ereport_post(class, vd->vdev_spa, 1986 vd, NULL, save_state, 0); 1987 } 1988 } 1989 1990 if (isopen) 1991 return; 1992 1993 if (vd->vdev_parent != NULL) 1994 vdev_propagate_state(vd->vdev_parent); 1995 } 1996