1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * ZFS Transaction Groups 37 * ---------------------- 38 * 39 * ZFS transaction groups are, as the name implies, groups of transactions 40 * that act on persistent state. ZFS asserts consistency at the granularity of 41 * these transaction groups. Each successive transaction group (txg) is 42 * assigned a 64-bit consecutive identifier. There are three active 43 * transaction group states: open, quiescing, or syncing. At any given time, 44 * there may be an active txg associated with each state; each active txg may 45 * either be processing, or blocked waiting to enter the next state. There may 46 * be up to three active txgs, and there is always a txg in the open state 47 * (though it may be blocked waiting to enter the quiescing state). In broad 48 * strokes, transactions — operations that change in-memory structures — are 49 * accepted into the txg in the open state, and are completed while the txg is 50 * in the open or quiescing states. The accumulated changes are written to 51 * disk in the syncing state. 52 * 53 * Open 54 * 55 * When a new txg becomes active, it first enters the open state. New 56 * transactions — updates to in-memory structures — are assigned to the 57 * currently open txg. There is always a txg in the open state so that ZFS can 58 * accept new changes (though the txg may refuse new changes if it has hit 59 * some limit). ZFS advances the open txg to the next state for a variety of 60 * reasons such as it hitting a time or size threshold, or the execution of an 61 * administrative action that must be completed in the syncing state. 62 * 63 * Quiescing 64 * 65 * After a txg exits the open state, it enters the quiescing state. The 66 * quiescing state is intended to provide a buffer between accepting new 67 * transactions in the open state and writing them out to stable storage in 68 * the syncing state. While quiescing, transactions can continue their 69 * operation without delaying either of the other states. Typically, a txg is 70 * in the quiescing state very briefly since the operations are bounded by 71 * software latencies rather than, say, slower I/O latencies. After all 72 * transactions complete, the txg is ready to enter the next state. 73 * 74 * Syncing 75 * 76 * In the syncing state, the in-memory state built up during the open and (to 77 * a lesser degree) the quiescing states is written to stable storage. The 78 * process of writing out modified data can, in turn modify more data. For 79 * example when we write new blocks, we need to allocate space for them; those 80 * allocations modify metadata (space maps)... which themselves must be 81 * written to stable storage. During the sync state, ZFS iterates, writing out 82 * data until it converges and all in-memory changes have been written out. 83 * The first such pass is the largest as it encompasses all the modified user 84 * data (as opposed to filesystem metadata). Subsequent passes typically have 85 * far less data to write as they consist exclusively of filesystem metadata. 86 * 87 * To ensure convergence, after a certain number of passes ZFS begins 88 * overwriting locations on stable storage that had been allocated earlier in 89 * the syncing state (and subsequently freed). ZFS usually allocates new 90 * blocks to optimize for large, continuous, writes. For the syncing state to 91 * converge however it must complete a pass where no new blocks are allocated 92 * since each allocation requires a modification of persistent metadata. 93 * Further, to hasten convergence, after a prescribed number of passes, ZFS 94 * also defers frees, and stops compressing. 95 * 96 * In addition to writing out user data, we must also execute synctasks during 97 * the syncing context. A synctask is the mechanism by which some 98 * administrative activities work such as creating and destroying snapshots or 99 * datasets. Note that when a synctask is initiated it enters the open txg, 100 * and ZFS then pushes that txg as quickly as possible to completion of the 101 * syncing state in order to reduce the latency of the administrative 102 * activity. To complete the syncing state, ZFS writes out a new uberblock, 103 * the root of the tree of blocks that comprise all state stored on the ZFS 104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 105 * now transition to the syncing state. 106 */ 107 108 static void txg_sync_thread(dsl_pool_t *dp); 109 static void txg_quiesce_thread(dsl_pool_t *dp); 110 111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 112 113 /* 114 * Prepare the txg subsystem. 115 */ 116 void 117 txg_init(dsl_pool_t *dp, uint64_t txg) 118 { 119 tx_state_t *tx = &dp->dp_tx; 120 int c; 121 bzero(tx, sizeof (tx_state_t)); 122 123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 124 125 for (c = 0; c < max_ncpus; c++) { 126 int i; 127 128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 129 for (i = 0; i < TXG_SIZE; i++) { 130 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 131 NULL); 132 list_create(&tx->tx_cpu[c].tc_callbacks[i], 133 sizeof (dmu_tx_callback_t), 134 offsetof(dmu_tx_callback_t, dcb_node)); 135 } 136 } 137 138 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 139 140 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 141 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 142 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 143 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 145 146 tx->tx_open_txg = txg; 147 } 148 149 /* 150 * Close down the txg subsystem. 151 */ 152 void 153 txg_fini(dsl_pool_t *dp) 154 { 155 tx_state_t *tx = &dp->dp_tx; 156 int c; 157 158 ASSERT(tx->tx_threads == 0); 159 160 mutex_destroy(&tx->tx_sync_lock); 161 162 cv_destroy(&tx->tx_sync_more_cv); 163 cv_destroy(&tx->tx_sync_done_cv); 164 cv_destroy(&tx->tx_quiesce_more_cv); 165 cv_destroy(&tx->tx_quiesce_done_cv); 166 cv_destroy(&tx->tx_exit_cv); 167 168 for (c = 0; c < max_ncpus; c++) { 169 int i; 170 171 mutex_destroy(&tx->tx_cpu[c].tc_lock); 172 for (i = 0; i < TXG_SIZE; i++) { 173 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 174 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 175 } 176 } 177 178 if (tx->tx_commit_cb_taskq != NULL) 179 taskq_destroy(tx->tx_commit_cb_taskq); 180 181 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 182 183 bzero(tx, sizeof (tx_state_t)); 184 } 185 186 /* 187 * Start syncing transaction groups. 188 */ 189 void 190 txg_sync_start(dsl_pool_t *dp) 191 { 192 tx_state_t *tx = &dp->dp_tx; 193 194 mutex_enter(&tx->tx_sync_lock); 195 196 dprintf("pool %p\n", dp); 197 198 ASSERT(tx->tx_threads == 0); 199 200 tx->tx_threads = 2; 201 202 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 203 dp, 0, &p0, TS_RUN, minclsyspri); 204 205 /* 206 * The sync thread can need a larger-than-default stack size on 207 * 32-bit x86. This is due in part to nested pools and 208 * scrub_visitbp() recursion. 209 */ 210 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 211 dp, 0, &p0, TS_RUN, minclsyspri); 212 213 mutex_exit(&tx->tx_sync_lock); 214 } 215 216 static void 217 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 218 { 219 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 220 mutex_enter(&tx->tx_sync_lock); 221 } 222 223 static void 224 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 225 { 226 ASSERT(*tpp != NULL); 227 *tpp = NULL; 228 tx->tx_threads--; 229 cv_broadcast(&tx->tx_exit_cv); 230 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 231 thread_exit(); 232 } 233 234 static void 235 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time) 236 { 237 CALLB_CPR_SAFE_BEGIN(cpr); 238 239 if (time) 240 (void) cv_timedwait(cv, &tx->tx_sync_lock, 241 ddi_get_lbolt() + time); 242 else 243 cv_wait(cv, &tx->tx_sync_lock); 244 245 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 246 } 247 248 /* 249 * Stop syncing transaction groups. 250 */ 251 void 252 txg_sync_stop(dsl_pool_t *dp) 253 { 254 tx_state_t *tx = &dp->dp_tx; 255 256 dprintf("pool %p\n", dp); 257 /* 258 * Finish off any work in progress. 259 */ 260 ASSERT(tx->tx_threads == 2); 261 262 /* 263 * We need to ensure that we've vacated the deferred space_maps. 264 */ 265 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 266 267 /* 268 * Wake all sync threads and wait for them to die. 269 */ 270 mutex_enter(&tx->tx_sync_lock); 271 272 ASSERT(tx->tx_threads == 2); 273 274 tx->tx_exiting = 1; 275 276 cv_broadcast(&tx->tx_quiesce_more_cv); 277 cv_broadcast(&tx->tx_quiesce_done_cv); 278 cv_broadcast(&tx->tx_sync_more_cv); 279 280 while (tx->tx_threads != 0) 281 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 282 283 tx->tx_exiting = 0; 284 285 mutex_exit(&tx->tx_sync_lock); 286 } 287 288 uint64_t 289 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 290 { 291 tx_state_t *tx = &dp->dp_tx; 292 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 293 uint64_t txg; 294 295 mutex_enter(&tc->tc_lock); 296 297 txg = tx->tx_open_txg; 298 tc->tc_count[txg & TXG_MASK]++; 299 300 th->th_cpu = tc; 301 th->th_txg = txg; 302 303 return (txg); 304 } 305 306 void 307 txg_rele_to_quiesce(txg_handle_t *th) 308 { 309 tx_cpu_t *tc = th->th_cpu; 310 311 mutex_exit(&tc->tc_lock); 312 } 313 314 void 315 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 316 { 317 tx_cpu_t *tc = th->th_cpu; 318 int g = th->th_txg & TXG_MASK; 319 320 mutex_enter(&tc->tc_lock); 321 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 322 mutex_exit(&tc->tc_lock); 323 } 324 325 void 326 txg_rele_to_sync(txg_handle_t *th) 327 { 328 tx_cpu_t *tc = th->th_cpu; 329 int g = th->th_txg & TXG_MASK; 330 331 mutex_enter(&tc->tc_lock); 332 ASSERT(tc->tc_count[g] != 0); 333 if (--tc->tc_count[g] == 0) 334 cv_broadcast(&tc->tc_cv[g]); 335 mutex_exit(&tc->tc_lock); 336 337 th->th_cpu = NULL; /* defensive */ 338 } 339 340 static void 341 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 342 { 343 tx_state_t *tx = &dp->dp_tx; 344 int g = txg & TXG_MASK; 345 int c; 346 347 /* 348 * Grab all tx_cpu locks so nobody else can get into this txg. 349 */ 350 for (c = 0; c < max_ncpus; c++) 351 mutex_enter(&tx->tx_cpu[c].tc_lock); 352 353 ASSERT(txg == tx->tx_open_txg); 354 tx->tx_open_txg++; 355 356 /* 357 * Now that we've incremented tx_open_txg, we can let threads 358 * enter the next transaction group. 359 */ 360 for (c = 0; c < max_ncpus; c++) 361 mutex_exit(&tx->tx_cpu[c].tc_lock); 362 363 /* 364 * Quiesce the transaction group by waiting for everyone to txg_exit(). 365 */ 366 for (c = 0; c < max_ncpus; c++) { 367 tx_cpu_t *tc = &tx->tx_cpu[c]; 368 mutex_enter(&tc->tc_lock); 369 while (tc->tc_count[g] != 0) 370 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 371 mutex_exit(&tc->tc_lock); 372 } 373 } 374 375 static void 376 txg_do_callbacks(list_t *cb_list) 377 { 378 dmu_tx_do_callbacks(cb_list, 0); 379 380 list_destroy(cb_list); 381 382 kmem_free(cb_list, sizeof (list_t)); 383 } 384 385 /* 386 * Dispatch the commit callbacks registered on this txg to worker threads. 387 */ 388 static void 389 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 390 { 391 int c; 392 tx_state_t *tx = &dp->dp_tx; 393 list_t *cb_list; 394 395 for (c = 0; c < max_ncpus; c++) { 396 tx_cpu_t *tc = &tx->tx_cpu[c]; 397 /* No need to lock tx_cpu_t at this point */ 398 399 int g = txg & TXG_MASK; 400 401 if (list_is_empty(&tc->tc_callbacks[g])) 402 continue; 403 404 if (tx->tx_commit_cb_taskq == NULL) { 405 /* 406 * Commit callback taskq hasn't been created yet. 407 */ 408 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 409 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 410 TASKQ_PREPOPULATE); 411 } 412 413 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 414 list_create(cb_list, sizeof (dmu_tx_callback_t), 415 offsetof(dmu_tx_callback_t, dcb_node)); 416 417 list_move_tail(&tc->tc_callbacks[g], cb_list); 418 419 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 420 txg_do_callbacks, cb_list, TQ_SLEEP); 421 } 422 } 423 424 static void 425 txg_sync_thread(dsl_pool_t *dp) 426 { 427 spa_t *spa = dp->dp_spa; 428 tx_state_t *tx = &dp->dp_tx; 429 callb_cpr_t cpr; 430 uint64_t start, delta; 431 432 txg_thread_enter(tx, &cpr); 433 434 start = delta = 0; 435 for (;;) { 436 uint64_t timer, timeout = zfs_txg_timeout * hz; 437 uint64_t txg; 438 439 /* 440 * We sync when we're scanning, there's someone waiting 441 * on us, or the quiesce thread has handed off a txg to 442 * us, or we have reached our timeout. 443 */ 444 timer = (delta >= timeout ? 0 : timeout - delta); 445 while (!dsl_scan_active(dp->dp_scan) && 446 !tx->tx_exiting && timer > 0 && 447 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 448 tx->tx_quiesced_txg == 0) { 449 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 450 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 451 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 452 delta = ddi_get_lbolt() - start; 453 timer = (delta > timeout ? 0 : timeout - delta); 454 } 455 456 /* 457 * Wait until the quiesce thread hands off a txg to us, 458 * prompting it to do so if necessary. 459 */ 460 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 461 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 462 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 463 cv_broadcast(&tx->tx_quiesce_more_cv); 464 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 465 } 466 467 if (tx->tx_exiting) 468 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 469 470 /* 471 * Consume the quiesced txg which has been handed off to 472 * us. This may cause the quiescing thread to now be 473 * able to quiesce another txg, so we must signal it. 474 */ 475 txg = tx->tx_quiesced_txg; 476 tx->tx_quiesced_txg = 0; 477 tx->tx_syncing_txg = txg; 478 cv_broadcast(&tx->tx_quiesce_more_cv); 479 480 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 481 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 482 mutex_exit(&tx->tx_sync_lock); 483 484 start = ddi_get_lbolt(); 485 spa_sync(spa, txg); 486 delta = ddi_get_lbolt() - start; 487 488 mutex_enter(&tx->tx_sync_lock); 489 tx->tx_synced_txg = txg; 490 tx->tx_syncing_txg = 0; 491 cv_broadcast(&tx->tx_sync_done_cv); 492 493 /* 494 * Dispatch commit callbacks to worker threads. 495 */ 496 txg_dispatch_callbacks(dp, txg); 497 } 498 } 499 500 static void 501 txg_quiesce_thread(dsl_pool_t *dp) 502 { 503 tx_state_t *tx = &dp->dp_tx; 504 callb_cpr_t cpr; 505 506 txg_thread_enter(tx, &cpr); 507 508 for (;;) { 509 uint64_t txg; 510 511 /* 512 * We quiesce when there's someone waiting on us. 513 * However, we can only have one txg in "quiescing" or 514 * "quiesced, waiting to sync" state. So we wait until 515 * the "quiesced, waiting to sync" txg has been consumed 516 * by the sync thread. 517 */ 518 while (!tx->tx_exiting && 519 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 520 tx->tx_quiesced_txg != 0)) 521 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 522 523 if (tx->tx_exiting) 524 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 525 526 txg = tx->tx_open_txg; 527 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 528 txg, tx->tx_quiesce_txg_waiting, 529 tx->tx_sync_txg_waiting); 530 mutex_exit(&tx->tx_sync_lock); 531 txg_quiesce(dp, txg); 532 mutex_enter(&tx->tx_sync_lock); 533 534 /* 535 * Hand this txg off to the sync thread. 536 */ 537 dprintf("quiesce done, handing off txg %llu\n", txg); 538 tx->tx_quiesced_txg = txg; 539 cv_broadcast(&tx->tx_sync_more_cv); 540 cv_broadcast(&tx->tx_quiesce_done_cv); 541 } 542 } 543 544 /* 545 * Delay this thread by 'ticks' if we are still in the open transaction 546 * group and there is already a waiting txg quiesing or quiesced. Abort 547 * the delay if this txg stalls or enters the quiesing state. 548 */ 549 void 550 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks) 551 { 552 tx_state_t *tx = &dp->dp_tx; 553 clock_t timeout = ddi_get_lbolt() + ticks; 554 555 /* don't delay if this txg could transition to quiesing immediately */ 556 if (tx->tx_open_txg > txg || 557 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 558 return; 559 560 mutex_enter(&tx->tx_sync_lock); 561 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 562 mutex_exit(&tx->tx_sync_lock); 563 return; 564 } 565 566 while (ddi_get_lbolt() < timeout && 567 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) 568 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock, 569 timeout); 570 571 mutex_exit(&tx->tx_sync_lock); 572 } 573 574 void 575 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 576 { 577 tx_state_t *tx = &dp->dp_tx; 578 579 mutex_enter(&tx->tx_sync_lock); 580 ASSERT(tx->tx_threads == 2); 581 if (txg == 0) 582 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 583 if (tx->tx_sync_txg_waiting < txg) 584 tx->tx_sync_txg_waiting = txg; 585 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 586 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 587 while (tx->tx_synced_txg < txg) { 588 dprintf("broadcasting sync more " 589 "tx_synced=%llu waiting=%llu dp=%p\n", 590 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 591 cv_broadcast(&tx->tx_sync_more_cv); 592 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 593 } 594 mutex_exit(&tx->tx_sync_lock); 595 } 596 597 void 598 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 599 { 600 tx_state_t *tx = &dp->dp_tx; 601 602 mutex_enter(&tx->tx_sync_lock); 603 ASSERT(tx->tx_threads == 2); 604 if (txg == 0) 605 txg = tx->tx_open_txg + 1; 606 if (tx->tx_quiesce_txg_waiting < txg) 607 tx->tx_quiesce_txg_waiting = txg; 608 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 609 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 610 while (tx->tx_open_txg < txg) { 611 cv_broadcast(&tx->tx_quiesce_more_cv); 612 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 613 } 614 mutex_exit(&tx->tx_sync_lock); 615 } 616 617 boolean_t 618 txg_stalled(dsl_pool_t *dp) 619 { 620 tx_state_t *tx = &dp->dp_tx; 621 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 622 } 623 624 boolean_t 625 txg_sync_waiting(dsl_pool_t *dp) 626 { 627 tx_state_t *tx = &dp->dp_tx; 628 629 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 630 tx->tx_quiesced_txg != 0); 631 } 632 633 /* 634 * Per-txg object lists. 635 */ 636 void 637 txg_list_create(txg_list_t *tl, size_t offset) 638 { 639 int t; 640 641 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 642 643 tl->tl_offset = offset; 644 645 for (t = 0; t < TXG_SIZE; t++) 646 tl->tl_head[t] = NULL; 647 } 648 649 void 650 txg_list_destroy(txg_list_t *tl) 651 { 652 int t; 653 654 for (t = 0; t < TXG_SIZE; t++) 655 ASSERT(txg_list_empty(tl, t)); 656 657 mutex_destroy(&tl->tl_lock); 658 } 659 660 boolean_t 661 txg_list_empty(txg_list_t *tl, uint64_t txg) 662 { 663 return (tl->tl_head[txg & TXG_MASK] == NULL); 664 } 665 666 /* 667 * Add an entry to the list. 668 * Returns 0 if it's a new entry, 1 if it's already there. 669 */ 670 int 671 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 672 { 673 int t = txg & TXG_MASK; 674 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 675 int already_on_list; 676 677 mutex_enter(&tl->tl_lock); 678 already_on_list = tn->tn_member[t]; 679 if (!already_on_list) { 680 tn->tn_member[t] = 1; 681 tn->tn_next[t] = tl->tl_head[t]; 682 tl->tl_head[t] = tn; 683 } 684 mutex_exit(&tl->tl_lock); 685 686 return (already_on_list); 687 } 688 689 /* 690 * Add an entry to the end of the list (walks list to find end). 691 * Returns 0 if it's a new entry, 1 if it's already there. 692 */ 693 int 694 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 695 { 696 int t = txg & TXG_MASK; 697 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 698 int already_on_list; 699 700 mutex_enter(&tl->tl_lock); 701 already_on_list = tn->tn_member[t]; 702 if (!already_on_list) { 703 txg_node_t **tp; 704 705 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 706 continue; 707 708 tn->tn_member[t] = 1; 709 tn->tn_next[t] = NULL; 710 *tp = tn; 711 } 712 mutex_exit(&tl->tl_lock); 713 714 return (already_on_list); 715 } 716 717 /* 718 * Remove the head of the list and return it. 719 */ 720 void * 721 txg_list_remove(txg_list_t *tl, uint64_t txg) 722 { 723 int t = txg & TXG_MASK; 724 txg_node_t *tn; 725 void *p = NULL; 726 727 mutex_enter(&tl->tl_lock); 728 if ((tn = tl->tl_head[t]) != NULL) { 729 p = (char *)tn - tl->tl_offset; 730 tl->tl_head[t] = tn->tn_next[t]; 731 tn->tn_next[t] = NULL; 732 tn->tn_member[t] = 0; 733 } 734 mutex_exit(&tl->tl_lock); 735 736 return (p); 737 } 738 739 /* 740 * Remove a specific item from the list and return it. 741 */ 742 void * 743 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 744 { 745 int t = txg & TXG_MASK; 746 txg_node_t *tn, **tp; 747 748 mutex_enter(&tl->tl_lock); 749 750 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 751 if ((char *)tn - tl->tl_offset == p) { 752 *tp = tn->tn_next[t]; 753 tn->tn_next[t] = NULL; 754 tn->tn_member[t] = 0; 755 mutex_exit(&tl->tl_lock); 756 return (p); 757 } 758 } 759 760 mutex_exit(&tl->tl_lock); 761 762 return (NULL); 763 } 764 765 int 766 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 767 { 768 int t = txg & TXG_MASK; 769 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 770 771 return (tn->tn_member[t]); 772 } 773 774 /* 775 * Walk a txg list -- only safe if you know it's not changing. 776 */ 777 void * 778 txg_list_head(txg_list_t *tl, uint64_t txg) 779 { 780 int t = txg & TXG_MASK; 781 txg_node_t *tn = tl->tl_head[t]; 782 783 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 784 } 785 786 void * 787 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 788 { 789 int t = txg & TXG_MASK; 790 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 791 792 tn = tn->tn_next[t]; 793 794 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 795 } 796