xref: /titanic_50/usr/src/uts/common/fs/zfs/sys/zap.h (revision 49f9b365248ee858ee91baa36eab27c5200f6dca)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #ifndef	_SYS_ZAP_H
27 #define	_SYS_ZAP_H
28 
29 /*
30  * ZAP - ZFS Attribute Processor
31  *
32  * The ZAP is a module which sits on top of the DMU (Data Management
33  * Unit) and implements a higher-level storage primitive using DMU
34  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35  *
36  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37  * Users should use only zap routines to access a zapobj - they should
38  * not access the DMU object directly using DMU routines.
39  *
40  * The attributes stored in a zapobj are name-value pairs.  The name is
41  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42  * terminating NULL).  The value is an array of integers, which may be
43  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45  * Note that an 8-byte integer value can be used to store the location
46  * (object number) of another dmu object (which may be itself a zapobj).
47  * Note that you can use a zero-length attribute to store a single bit
48  * of information - the attribute is present or not.
49  *
50  * The ZAP routines are thread-safe.  However, you must observe the
51  * DMU's restriction that a transaction may not be operated on
52  * concurrently.
53  *
54  * Any of the routines that return an int may return an I/O error (EIO
55  * or ECHECKSUM).
56  *
57  *
58  * Implementation / Performance Notes:
59  *
60  * The ZAP is intended to operate most efficiently on attributes with
61  * short (49 bytes or less) names and single 8-byte values, for which
62  * the microzap will be used.  The ZAP should be efficient enough so
63  * that the user does not need to cache these attributes.
64  *
65  * The ZAP's locking scheme makes its routines thread-safe.  Operations
66  * on different zapobjs will be processed concurrently.  Operations on
67  * the same zapobj which only read data will be processed concurrently.
68  * Operations on the same zapobj which modify data will be processed
69  * concurrently when there are many attributes in the zapobj (because
70  * the ZAP uses per-block locking - more than 128 * (number of cpus)
71  * small attributes will suffice).
72  */
73 
74 /*
75  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76  * strings) for the names of attributes, rather than a byte string
77  * bounded by an explicit length.  If some day we want to support names
78  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79  * we'll have to add routines for using length-bounded strings.
80  */
81 
82 #include <sys/dmu.h>
83 
84 #ifdef	__cplusplus
85 extern "C" {
86 #endif
87 
88 /*
89  * The matchtype specifies which entry will be accessed.
90  * MT_EXACT: only find an exact match (non-normalized)
91  * MT_FIRST: find the "first" normalized (case and Unicode
92  *     form) match; the designated "first" match will not change as long
93  *     as the set of entries with this normalization doesn't change
94  * MT_BEST: if there is an exact match, find that, otherwise find the
95  *     first normalized match
96  */
97 typedef enum matchtype
98 {
99 	MT_EXACT,
100 	MT_BEST,
101 	MT_FIRST
102 } matchtype_t;
103 
104 typedef enum zap_flags {
105 	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
106 	ZAP_FLAG_HASH64 = 1 << 0,
107 	/* Key is binary, not string (zap_add_uint64() can be used) */
108 	ZAP_FLAG_UINT64_KEY = 1 << 1,
109 	/*
110 	 * First word of key (which must be an array of uint64) is
111 	 * already randomly distributed.
112 	 */
113 	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
114 } zap_flags_t;
115 
116 /*
117  * Create a new zapobj with no attributes and return its object number.
118  * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
119  * otherwise any matchtype can be used for lookups.
120  *
121  * normflags specifies what normalization will be done.  values are:
122  * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
123  *     only)
124  * U8_TEXTPREP_TOLOWER: case normalization will be performed.
125  *     MT_FIRST/MT_BEST matching will find entries that match without
126  *     regard to case (eg. looking for "foo" can find an entry "Foo").
127  * Eventually, other flags will permit unicode normalization as well.
128  */
129 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
130     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
131 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
132     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
133 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
134     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
135     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
137     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
138 
139 /*
140  * Create a new zapobj with no attributes from the given (unallocated)
141  * object number.
142  */
143 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
144     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
145 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
146     int normflags, dmu_object_type_t ot,
147     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
148 
149 /*
150  * The zapobj passed in must be a valid ZAP object for all of the
151  * following routines.
152  */
153 
154 /*
155  * Destroy this zapobj and all its attributes.
156  *
157  * Frees the object number using dmu_object_free.
158  */
159 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
160 
161 /*
162  * Manipulate attributes.
163  *
164  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
165  */
166 
167 /*
168  * Retrieve the contents of the attribute with the given name.
169  *
170  * If the requested attribute does not exist, the call will fail and
171  * return ENOENT.
172  *
173  * If 'integer_size' is smaller than the attribute's integer size, the
174  * call will fail and return EINVAL.
175  *
176  * If 'integer_size' is equal to or larger than the attribute's integer
177  * size, the call will succeed and return 0.  * When converting to a
178  * larger integer size, the integers will be treated as unsigned (ie. no
179  * sign-extension will be performed).
180  *
181  * 'num_integers' is the length (in integers) of 'buf'.
182  *
183  * If the attribute is longer than the buffer, as many integers as will
184  * fit will be transferred to 'buf'.  If the entire attribute was not
185  * transferred, the call will return EOVERFLOW.
186  *
187  * If rn_len is nonzero, realname will be set to the name of the found
188  * entry (which may be different from the requested name if matchtype is
189  * not MT_EXACT).
190  *
191  * If normalization_conflictp is not NULL, it will be set if there is
192  * another name with the same case/unicode normalized form.
193  */
194 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
195     uint64_t integer_size, uint64_t num_integers, void *buf);
196 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
197     uint64_t integer_size, uint64_t num_integers, void *buf,
198     matchtype_t mt, char *realname, int rn_len,
199     boolean_t *normalization_conflictp);
200 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
201     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
202 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
203 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
204     int key_numints);
205 
206 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
207     int add, uint64_t *towrite, uint64_t *tooverwrite);
208 
209 /*
210  * Create an attribute with the given name and value.
211  *
212  * If an attribute with the given name already exists, the call will
213  * fail and return EEXIST.
214  */
215 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
216     int integer_size, uint64_t num_integers,
217     const void *val, dmu_tx_t *tx);
218 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
219     int key_numints, int integer_size, uint64_t num_integers,
220     const void *val, dmu_tx_t *tx);
221 
222 /*
223  * Set the attribute with the given name to the given value.  If an
224  * attribute with the given name does not exist, it will be created.  If
225  * an attribute with the given name already exists, the previous value
226  * will be overwritten.  The integer_size may be different from the
227  * existing attribute's integer size, in which case the attribute's
228  * integer size will be updated to the new value.
229  */
230 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
231     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
232 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
233     int key_numints,
234     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
235 
236 /*
237  * Get the length (in integers) and the integer size of the specified
238  * attribute.
239  *
240  * If the requested attribute does not exist, the call will fail and
241  * return ENOENT.
242  */
243 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
244     uint64_t *integer_size, uint64_t *num_integers);
245 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
246     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
247 
248 /*
249  * Remove the specified attribute.
250  *
251  * If the specified attribute does not exist, the call will fail and
252  * return ENOENT.
253  */
254 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
255 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
256     matchtype_t mt, dmu_tx_t *tx);
257 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
258     int key_numints, dmu_tx_t *tx);
259 
260 /*
261  * Returns (in *count) the number of attributes in the specified zap
262  * object.
263  */
264 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
265 
266 /*
267  * Returns (in name) the name of the entry whose (value & mask)
268  * (za_first_integer) is value, or ENOENT if not found.  The string
269  * pointed to by name must be at least 256 bytes long.  If mask==0, the
270  * match must be exact (ie, same as mask=-1ULL).
271  */
272 int zap_value_search(objset_t *os, uint64_t zapobj,
273     uint64_t value, uint64_t mask, char *name);
274 
275 /*
276  * Transfer all the entries from fromobj into intoobj.  Only works on
277  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
278  * entries.
279  */
280 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
281 
282 /* Same as zap_join, but set the values to 'value'. */
283 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
284     uint64_t value, dmu_tx_t *tx);
285 
286 /* Same as zap_join, but add together any duplicated entries. */
287 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
288     dmu_tx_t *tx);
289 
290 /*
291  * Manipulate entries where the name + value are the "same" (the name is
292  * a stringified version of the value).
293  */
294 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
295 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
296 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
297 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
298     dmu_tx_t *tx);
299 
300 /* Here the key is an int and the value is a different int. */
301 int zap_add_int_key(objset_t *os, uint64_t obj,
302     uint64_t key, uint64_t value, dmu_tx_t *tx);
303 int zap_update_int_key(objset_t *os, uint64_t obj,
304     uint64_t key, uint64_t value, dmu_tx_t *tx);
305 int zap_lookup_int_key(objset_t *os, uint64_t obj,
306     uint64_t key, uint64_t *valuep);
307 
308 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
309     dmu_tx_t *tx);
310 
311 struct zap;
312 struct zap_leaf;
313 typedef struct zap_cursor {
314 	/* This structure is opaque! */
315 	objset_t *zc_objset;
316 	struct zap *zc_zap;
317 	struct zap_leaf *zc_leaf;
318 	uint64_t zc_zapobj;
319 	uint64_t zc_serialized;
320 	uint64_t zc_hash;
321 	uint32_t zc_cd;
322 } zap_cursor_t;
323 
324 typedef struct {
325 	int za_integer_length;
326 	/*
327 	 * za_normalization_conflict will be set if there are additional
328 	 * entries with this normalized form (eg, "foo" and "Foo").
329 	 */
330 	boolean_t za_normalization_conflict;
331 	uint64_t za_num_integers;
332 	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
333 	char za_name[MAXNAMELEN];
334 } zap_attribute_t;
335 
336 /*
337  * The interface for listing all the attributes of a zapobj can be
338  * thought of as cursor moving down a list of the attributes one by
339  * one.  The cookie returned by the zap_cursor_serialize routine is
340  * persistent across system calls (and across reboot, even).
341  */
342 
343 /*
344  * Initialize a zap cursor, pointing to the "first" attribute of the
345  * zapobj.  You must _fini the cursor when you are done with it.
346  */
347 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
348 void zap_cursor_fini(zap_cursor_t *zc);
349 
350 /*
351  * Get the attribute currently pointed to by the cursor.  Returns
352  * ENOENT if at the end of the attributes.
353  */
354 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
355 
356 /*
357  * Advance the cursor to the next attribute.
358  */
359 void zap_cursor_advance(zap_cursor_t *zc);
360 
361 /*
362  * Get a persistent cookie pointing to the current position of the zap
363  * cursor.  The low 4 bits in the cookie are always zero, and thus can
364  * be used as to differentiate a serialized cookie from a different type
365  * of value.  The cookie will be less than 2^32 as long as there are
366  * fewer than 2^22 (4.2 million) entries in the zap object.
367  */
368 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
369 
370 /*
371  * Advance the cursor to the attribute having the given key.
372  */
373 int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
374 
375 /*
376  * Initialize a zap cursor pointing to the position recorded by
377  * zap_cursor_serialize (in the "serialized" argument).  You can also
378  * use a "serialized" argument of 0 to start at the beginning of the
379  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
380  * zap_cursor_init(...).)
381  */
382 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
383     uint64_t zapobj, uint64_t serialized);
384 
385 
386 #define	ZAP_HISTOGRAM_SIZE 10
387 
388 typedef struct zap_stats {
389 	/*
390 	 * Size of the pointer table (in number of entries).
391 	 * This is always a power of 2, or zero if it's a microzap.
392 	 * In general, it should be considerably greater than zs_num_leafs.
393 	 */
394 	uint64_t zs_ptrtbl_len;
395 
396 	uint64_t zs_blocksize;		/* size of zap blocks */
397 
398 	/*
399 	 * The number of blocks used.  Note that some blocks may be
400 	 * wasted because old ptrtbl's and large name/value blocks are
401 	 * not reused.  (Although their space is reclaimed, we don't
402 	 * reuse those offsets in the object.)
403 	 */
404 	uint64_t zs_num_blocks;
405 
406 	/*
407 	 * Pointer table values from zap_ptrtbl in the zap_phys_t
408 	 */
409 	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
410 	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
411 	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
412 	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
413 	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
414 
415 	/*
416 	 * Values of the other members of the zap_phys_t
417 	 */
418 	uint64_t zs_block_type;		/* ZBT_HEADER */
419 	uint64_t zs_magic;		/* ZAP_MAGIC */
420 	uint64_t zs_num_leafs;		/* The number of leaf blocks */
421 	uint64_t zs_num_entries;	/* The number of zap entries */
422 	uint64_t zs_salt;		/* salt to stir into hash function */
423 
424 	/*
425 	 * Histograms.  For all histograms, the last index
426 	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
427 	 * than what can be represented.  For example
428 	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
429 	 * of leafs with more than 45 entries.
430 	 */
431 
432 	/*
433 	 * zs_leafs_with_n_pointers[n] is the number of leafs with
434 	 * 2^n pointers to it.
435 	 */
436 	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
437 
438 	/*
439 	 * zs_leafs_with_n_entries[n] is the number of leafs with
440 	 * [n*5, (n+1)*5) entries.  In the current implementation, there
441 	 * can be at most 55 entries in any block, but there may be
442 	 * fewer if the name or value is large, or the block is not
443 	 * completely full.
444 	 */
445 	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
446 
447 	/*
448 	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
449 	 * fullness is in the range [n/10, (n+1)/10).
450 	 */
451 	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
452 
453 	/*
454 	 * zs_entries_using_n_chunks[n] is the number of entries which
455 	 * consume n 24-byte chunks.  (Note, large names/values only use
456 	 * one chunk, but contribute to zs_num_blocks_large.)
457 	 */
458 	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
459 
460 	/*
461 	 * zs_buckets_with_n_entries[n] is the number of buckets (each
462 	 * leaf has 64 buckets) with n entries.
463 	 * zs_buckets_with_n_entries[1] should be very close to
464 	 * zs_num_entries.
465 	 */
466 	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
467 } zap_stats_t;
468 
469 /*
470  * Get statistics about a ZAP object.  Note: you need to be aware of the
471  * internal implementation of the ZAP to correctly interpret some of the
472  * statistics.  This interface shouldn't be relied on unless you really
473  * know what you're doing.
474  */
475 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
476 
477 #ifdef	__cplusplus
478 }
479 #endif
480 
481 #endif	/* _SYS_ZAP_H */
482