xref: /titanic_50/usr/src/uts/common/fs/zfs/spa_misc.c (revision f2e8686e6101ad6ab3df43205537e610151b5434)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/spa_impl.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/zio_compress.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/zil.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/unique.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/metaslab_impl.h>
45 #include <sys/arc.h>
46 #include <sys/ddt.h>
47 #include "zfs_prop.h"
48 
49 /*
50  * SPA locking
51  *
52  * There are four basic locks for managing spa_t structures:
53  *
54  * spa_namespace_lock (global mutex)
55  *
56  *	This lock must be acquired to do any of the following:
57  *
58  *		- Lookup a spa_t by name
59  *		- Add or remove a spa_t from the namespace
60  *		- Increase spa_refcount from non-zero
61  *		- Check if spa_refcount is zero
62  *		- Rename a spa_t
63  *		- add/remove/attach/detach devices
64  *		- Held for the duration of create/destroy/import/export
65  *
66  *	It does not need to handle recursion.  A create or destroy may
67  *	reference objects (files or zvols) in other pools, but by
68  *	definition they must have an existing reference, and will never need
69  *	to lookup a spa_t by name.
70  *
71  * spa_refcount (per-spa refcount_t protected by mutex)
72  *
73  *	This reference count keep track of any active users of the spa_t.  The
74  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
75  *	the refcount is never really 'zero' - opening a pool implicitly keeps
76  *	some references in the DMU.  Internally we check against spa_minref, but
77  *	present the image of a zero/non-zero value to consumers.
78  *
79  * spa_config_lock[] (per-spa array of rwlocks)
80  *
81  *	This protects the spa_t from config changes, and must be held in
82  *	the following circumstances:
83  *
84  *		- RW_READER to perform I/O to the spa
85  *		- RW_WRITER to change the vdev config
86  *
87  * The locking order is fairly straightforward:
88  *
89  *		spa_namespace_lock	->	spa_refcount
90  *
91  *	The namespace lock must be acquired to increase the refcount from 0
92  *	or to check if it is zero.
93  *
94  *		spa_refcount		->	spa_config_lock[]
95  *
96  *	There must be at least one valid reference on the spa_t to acquire
97  *	the config lock.
98  *
99  *		spa_namespace_lock	->	spa_config_lock[]
100  *
101  *	The namespace lock must always be taken before the config lock.
102  *
103  *
104  * The spa_namespace_lock can be acquired directly and is globally visible.
105  *
106  * The namespace is manipulated using the following functions, all of which
107  * require the spa_namespace_lock to be held.
108  *
109  *	spa_lookup()		Lookup a spa_t by name.
110  *
111  *	spa_add()		Create a new spa_t in the namespace.
112  *
113  *	spa_remove()		Remove a spa_t from the namespace.  This also
114  *				frees up any memory associated with the spa_t.
115  *
116  *	spa_next()		Returns the next spa_t in the system, or the
117  *				first if NULL is passed.
118  *
119  *	spa_evict_all()		Shutdown and remove all spa_t structures in
120  *				the system.
121  *
122  *	spa_guid_exists()	Determine whether a pool/device guid exists.
123  *
124  * The spa_refcount is manipulated using the following functions:
125  *
126  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
127  *				called with spa_namespace_lock held if the
128  *				refcount is currently zero.
129  *
130  *	spa_close()		Remove a reference from the spa_t.  This will
131  *				not free the spa_t or remove it from the
132  *				namespace.  No locking is required.
133  *
134  *	spa_refcount_zero()	Returns true if the refcount is currently
135  *				zero.  Must be called with spa_namespace_lock
136  *				held.
137  *
138  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
139  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
140  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
141  *
142  * To read the configuration, it suffices to hold one of these locks as reader.
143  * To modify the configuration, you must hold all locks as writer.  To modify
144  * vdev state without altering the vdev tree's topology (e.g. online/offline),
145  * you must hold SCL_STATE and SCL_ZIO as writer.
146  *
147  * We use these distinct config locks to avoid recursive lock entry.
148  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
149  * block allocations (SCL_ALLOC), which may require reading space maps
150  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
151  *
152  * The spa config locks cannot be normal rwlocks because we need the
153  * ability to hand off ownership.  For example, SCL_ZIO is acquired
154  * by the issuing thread and later released by an interrupt thread.
155  * They do, however, obey the usual write-wanted semantics to prevent
156  * writer (i.e. system administrator) starvation.
157  *
158  * The lock acquisition rules are as follows:
159  *
160  * SCL_CONFIG
161  *	Protects changes to the vdev tree topology, such as vdev
162  *	add/remove/attach/detach.  Protects the dirty config list
163  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
164  *
165  * SCL_STATE
166  *	Protects changes to pool state and vdev state, such as vdev
167  *	online/offline/fault/degrade/clear.  Protects the dirty state list
168  *	(spa_state_dirty_list) and global pool state (spa_state).
169  *
170  * SCL_ALLOC
171  *	Protects changes to metaslab groups and classes.
172  *	Held as reader by metaslab_alloc() and metaslab_claim().
173  *
174  * SCL_ZIO
175  *	Held by bp-level zios (those which have no io_vd upon entry)
176  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
177  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
178  *
179  * SCL_FREE
180  *	Protects changes to metaslab groups and classes.
181  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
182  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
183  *	blocks in zio_done() while another i/o that holds either
184  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
185  *
186  * SCL_VDEV
187  *	Held as reader to prevent changes to the vdev tree during trivial
188  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
189  *	other locks, and lower than all of them, to ensure that it's safe
190  *	to acquire regardless of caller context.
191  *
192  * In addition, the following rules apply:
193  *
194  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
195  *	The lock ordering is SCL_CONFIG > spa_props_lock.
196  *
197  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
198  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
199  *	or zio_write_phys() -- the caller must ensure that the config cannot
200  *	cannot change in the interim, and that the vdev cannot be reopened.
201  *	SCL_STATE as reader suffices for both.
202  *
203  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
204  *
205  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
206  *				for writing.
207  *
208  *	spa_vdev_exit()		Release the config lock, wait for all I/O
209  *				to complete, sync the updated configs to the
210  *				cache, and release the namespace lock.
211  *
212  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
213  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
214  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
215  *
216  * spa_rename() is also implemented within this file since is requires
217  * manipulation of the namespace.
218  */
219 
220 static avl_tree_t spa_namespace_avl;
221 kmutex_t spa_namespace_lock;
222 static kcondvar_t spa_namespace_cv;
223 static int spa_active_count;
224 int spa_max_replication_override = SPA_DVAS_PER_BP;
225 
226 static kmutex_t spa_spare_lock;
227 static avl_tree_t spa_spare_avl;
228 static kmutex_t spa_l2cache_lock;
229 static avl_tree_t spa_l2cache_avl;
230 
231 kmem_cache_t *spa_buffer_pool;
232 int spa_mode_global;
233 
234 #ifdef ZFS_DEBUG
235 /* Everything except dprintf is on by default in debug builds */
236 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
237 #else
238 int zfs_flags = 0;
239 #endif
240 
241 /*
242  * zfs_recover can be set to nonzero to attempt to recover from
243  * otherwise-fatal errors, typically caused by on-disk corruption.  When
244  * set, calls to zfs_panic_recover() will turn into warning messages.
245  */
246 int zfs_recover = 0;
247 
248 
249 /*
250  * ==========================================================================
251  * SPA config locking
252  * ==========================================================================
253  */
254 static void
255 spa_config_lock_init(spa_t *spa)
256 {
257 	for (int i = 0; i < SCL_LOCKS; i++) {
258 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
259 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
260 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
261 		refcount_create(&scl->scl_count);
262 		scl->scl_writer = NULL;
263 		scl->scl_write_wanted = 0;
264 	}
265 }
266 
267 static void
268 spa_config_lock_destroy(spa_t *spa)
269 {
270 	for (int i = 0; i < SCL_LOCKS; i++) {
271 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
272 		mutex_destroy(&scl->scl_lock);
273 		cv_destroy(&scl->scl_cv);
274 		refcount_destroy(&scl->scl_count);
275 		ASSERT(scl->scl_writer == NULL);
276 		ASSERT(scl->scl_write_wanted == 0);
277 	}
278 }
279 
280 int
281 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
282 {
283 	for (int i = 0; i < SCL_LOCKS; i++) {
284 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
285 		if (!(locks & (1 << i)))
286 			continue;
287 		mutex_enter(&scl->scl_lock);
288 		if (rw == RW_READER) {
289 			if (scl->scl_writer || scl->scl_write_wanted) {
290 				mutex_exit(&scl->scl_lock);
291 				spa_config_exit(spa, locks ^ (1 << i), tag);
292 				return (0);
293 			}
294 		} else {
295 			ASSERT(scl->scl_writer != curthread);
296 			if (!refcount_is_zero(&scl->scl_count)) {
297 				mutex_exit(&scl->scl_lock);
298 				spa_config_exit(spa, locks ^ (1 << i), tag);
299 				return (0);
300 			}
301 			scl->scl_writer = curthread;
302 		}
303 		(void) refcount_add(&scl->scl_count, tag);
304 		mutex_exit(&scl->scl_lock);
305 	}
306 	return (1);
307 }
308 
309 void
310 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
311 {
312 	int wlocks_held = 0;
313 
314 	for (int i = 0; i < SCL_LOCKS; i++) {
315 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
316 		if (scl->scl_writer == curthread)
317 			wlocks_held |= (1 << i);
318 		if (!(locks & (1 << i)))
319 			continue;
320 		mutex_enter(&scl->scl_lock);
321 		if (rw == RW_READER) {
322 			while (scl->scl_writer || scl->scl_write_wanted) {
323 				cv_wait(&scl->scl_cv, &scl->scl_lock);
324 			}
325 		} else {
326 			ASSERT(scl->scl_writer != curthread);
327 			while (!refcount_is_zero(&scl->scl_count)) {
328 				scl->scl_write_wanted++;
329 				cv_wait(&scl->scl_cv, &scl->scl_lock);
330 				scl->scl_write_wanted--;
331 			}
332 			scl->scl_writer = curthread;
333 		}
334 		(void) refcount_add(&scl->scl_count, tag);
335 		mutex_exit(&scl->scl_lock);
336 	}
337 	ASSERT(wlocks_held <= locks);
338 }
339 
340 void
341 spa_config_exit(spa_t *spa, int locks, void *tag)
342 {
343 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
344 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
345 		if (!(locks & (1 << i)))
346 			continue;
347 		mutex_enter(&scl->scl_lock);
348 		ASSERT(!refcount_is_zero(&scl->scl_count));
349 		if (refcount_remove(&scl->scl_count, tag) == 0) {
350 			ASSERT(scl->scl_writer == NULL ||
351 			    scl->scl_writer == curthread);
352 			scl->scl_writer = NULL;	/* OK in either case */
353 			cv_broadcast(&scl->scl_cv);
354 		}
355 		mutex_exit(&scl->scl_lock);
356 	}
357 }
358 
359 int
360 spa_config_held(spa_t *spa, int locks, krw_t rw)
361 {
362 	int locks_held = 0;
363 
364 	for (int i = 0; i < SCL_LOCKS; i++) {
365 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
366 		if (!(locks & (1 << i)))
367 			continue;
368 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
369 		    (rw == RW_WRITER && scl->scl_writer == curthread))
370 			locks_held |= 1 << i;
371 	}
372 
373 	return (locks_held);
374 }
375 
376 /*
377  * ==========================================================================
378  * SPA namespace functions
379  * ==========================================================================
380  */
381 
382 /*
383  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
384  * Returns NULL if no matching spa_t is found.
385  */
386 spa_t *
387 spa_lookup(const char *name)
388 {
389 	static spa_t search;	/* spa_t is large; don't allocate on stack */
390 	spa_t *spa;
391 	avl_index_t where;
392 	char c;
393 	char *cp;
394 
395 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
396 
397 	/*
398 	 * If it's a full dataset name, figure out the pool name and
399 	 * just use that.
400 	 */
401 	cp = strpbrk(name, "/@");
402 	if (cp) {
403 		c = *cp;
404 		*cp = '\0';
405 	}
406 
407 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
408 	spa = avl_find(&spa_namespace_avl, &search, &where);
409 
410 	if (cp)
411 		*cp = c;
412 
413 	return (spa);
414 }
415 
416 /*
417  * Create an uninitialized spa_t with the given name.  Requires
418  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
419  * exist by calling spa_lookup() first.
420  */
421 spa_t *
422 spa_add(const char *name, nvlist_t *config, const char *altroot)
423 {
424 	spa_t *spa;
425 	spa_config_dirent_t *dp;
426 
427 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
428 
429 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
430 
431 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
432 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
440 
441 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
442 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
443 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
444 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
445 
446 	for (int t = 0; t < TXG_SIZE; t++)
447 		bplist_init(&spa->spa_free_bplist[t]);
448 	bplist_init(&spa->spa_deferred_bplist);
449 
450 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
451 	spa->spa_state = POOL_STATE_UNINITIALIZED;
452 	spa->spa_freeze_txg = UINT64_MAX;
453 	spa->spa_final_txg = UINT64_MAX;
454 	spa->spa_load_max_txg = UINT64_MAX;
455 	spa->spa_proc = &p0;
456 	spa->spa_proc_state = SPA_PROC_NONE;
457 
458 	refcount_create(&spa->spa_refcount);
459 	spa_config_lock_init(spa);
460 
461 	avl_add(&spa_namespace_avl, spa);
462 
463 	/*
464 	 * Set the alternate root, if there is one.
465 	 */
466 	if (altroot) {
467 		spa->spa_root = spa_strdup(altroot);
468 		spa_active_count++;
469 	}
470 
471 	/*
472 	 * Every pool starts with the default cachefile
473 	 */
474 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
475 	    offsetof(spa_config_dirent_t, scd_link));
476 
477 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
478 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
479 	list_insert_head(&spa->spa_config_list, dp);
480 
481 	if (config != NULL)
482 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
483 
484 	return (spa);
485 }
486 
487 /*
488  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
489  * spa_namespace_lock.  This is called only after the spa_t has been closed and
490  * deactivated.
491  */
492 void
493 spa_remove(spa_t *spa)
494 {
495 	spa_config_dirent_t *dp;
496 
497 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
498 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
499 
500 	nvlist_free(spa->spa_config_splitting);
501 
502 	avl_remove(&spa_namespace_avl, spa);
503 	cv_broadcast(&spa_namespace_cv);
504 
505 	if (spa->spa_root) {
506 		spa_strfree(spa->spa_root);
507 		spa_active_count--;
508 	}
509 
510 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
511 		list_remove(&spa->spa_config_list, dp);
512 		if (dp->scd_path != NULL)
513 			spa_strfree(dp->scd_path);
514 		kmem_free(dp, sizeof (spa_config_dirent_t));
515 	}
516 
517 	list_destroy(&spa->spa_config_list);
518 
519 	spa_config_set(spa, NULL);
520 
521 	refcount_destroy(&spa->spa_refcount);
522 
523 	spa_config_lock_destroy(spa);
524 
525 	for (int t = 0; t < TXG_SIZE; t++)
526 		bplist_fini(&spa->spa_free_bplist[t]);
527 	bplist_fini(&spa->spa_deferred_bplist);
528 
529 	cv_destroy(&spa->spa_async_cv);
530 	cv_destroy(&spa->spa_proc_cv);
531 	cv_destroy(&spa->spa_scrub_io_cv);
532 	cv_destroy(&spa->spa_suspend_cv);
533 
534 	mutex_destroy(&spa->spa_async_lock);
535 	mutex_destroy(&spa->spa_errlist_lock);
536 	mutex_destroy(&spa->spa_errlog_lock);
537 	mutex_destroy(&spa->spa_history_lock);
538 	mutex_destroy(&spa->spa_proc_lock);
539 	mutex_destroy(&spa->spa_props_lock);
540 	mutex_destroy(&spa->spa_scrub_lock);
541 	mutex_destroy(&spa->spa_suspend_lock);
542 	mutex_destroy(&spa->spa_vdev_top_lock);
543 
544 	kmem_free(spa, sizeof (spa_t));
545 }
546 
547 /*
548  * Given a pool, return the next pool in the namespace, or NULL if there is
549  * none.  If 'prev' is NULL, return the first pool.
550  */
551 spa_t *
552 spa_next(spa_t *prev)
553 {
554 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
555 
556 	if (prev)
557 		return (AVL_NEXT(&spa_namespace_avl, prev));
558 	else
559 		return (avl_first(&spa_namespace_avl));
560 }
561 
562 /*
563  * ==========================================================================
564  * SPA refcount functions
565  * ==========================================================================
566  */
567 
568 /*
569  * Add a reference to the given spa_t.  Must have at least one reference, or
570  * have the namespace lock held.
571  */
572 void
573 spa_open_ref(spa_t *spa, void *tag)
574 {
575 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
576 	    MUTEX_HELD(&spa_namespace_lock));
577 	(void) refcount_add(&spa->spa_refcount, tag);
578 }
579 
580 /*
581  * Remove a reference to the given spa_t.  Must have at least one reference, or
582  * have the namespace lock held.
583  */
584 void
585 spa_close(spa_t *spa, void *tag)
586 {
587 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
588 	    MUTEX_HELD(&spa_namespace_lock));
589 	(void) refcount_remove(&spa->spa_refcount, tag);
590 }
591 
592 /*
593  * Check to see if the spa refcount is zero.  Must be called with
594  * spa_namespace_lock held.  We really compare against spa_minref, which is the
595  * number of references acquired when opening a pool
596  */
597 boolean_t
598 spa_refcount_zero(spa_t *spa)
599 {
600 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
601 
602 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
603 }
604 
605 /*
606  * ==========================================================================
607  * SPA spare and l2cache tracking
608  * ==========================================================================
609  */
610 
611 /*
612  * Hot spares and cache devices are tracked using the same code below,
613  * for 'auxiliary' devices.
614  */
615 
616 typedef struct spa_aux {
617 	uint64_t	aux_guid;
618 	uint64_t	aux_pool;
619 	avl_node_t	aux_avl;
620 	int		aux_count;
621 } spa_aux_t;
622 
623 static int
624 spa_aux_compare(const void *a, const void *b)
625 {
626 	const spa_aux_t *sa = a;
627 	const spa_aux_t *sb = b;
628 
629 	if (sa->aux_guid < sb->aux_guid)
630 		return (-1);
631 	else if (sa->aux_guid > sb->aux_guid)
632 		return (1);
633 	else
634 		return (0);
635 }
636 
637 void
638 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
639 {
640 	avl_index_t where;
641 	spa_aux_t search;
642 	spa_aux_t *aux;
643 
644 	search.aux_guid = vd->vdev_guid;
645 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
646 		aux->aux_count++;
647 	} else {
648 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
649 		aux->aux_guid = vd->vdev_guid;
650 		aux->aux_count = 1;
651 		avl_insert(avl, aux, where);
652 	}
653 }
654 
655 void
656 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
657 {
658 	spa_aux_t search;
659 	spa_aux_t *aux;
660 	avl_index_t where;
661 
662 	search.aux_guid = vd->vdev_guid;
663 	aux = avl_find(avl, &search, &where);
664 
665 	ASSERT(aux != NULL);
666 
667 	if (--aux->aux_count == 0) {
668 		avl_remove(avl, aux);
669 		kmem_free(aux, sizeof (spa_aux_t));
670 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
671 		aux->aux_pool = 0ULL;
672 	}
673 }
674 
675 boolean_t
676 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
677 {
678 	spa_aux_t search, *found;
679 
680 	search.aux_guid = guid;
681 	found = avl_find(avl, &search, NULL);
682 
683 	if (pool) {
684 		if (found)
685 			*pool = found->aux_pool;
686 		else
687 			*pool = 0ULL;
688 	}
689 
690 	if (refcnt) {
691 		if (found)
692 			*refcnt = found->aux_count;
693 		else
694 			*refcnt = 0;
695 	}
696 
697 	return (found != NULL);
698 }
699 
700 void
701 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
702 {
703 	spa_aux_t search, *found;
704 	avl_index_t where;
705 
706 	search.aux_guid = vd->vdev_guid;
707 	found = avl_find(avl, &search, &where);
708 	ASSERT(found != NULL);
709 	ASSERT(found->aux_pool == 0ULL);
710 
711 	found->aux_pool = spa_guid(vd->vdev_spa);
712 }
713 
714 /*
715  * Spares are tracked globally due to the following constraints:
716  *
717  * 	- A spare may be part of multiple pools.
718  * 	- A spare may be added to a pool even if it's actively in use within
719  *	  another pool.
720  * 	- A spare in use in any pool can only be the source of a replacement if
721  *	  the target is a spare in the same pool.
722  *
723  * We keep track of all spares on the system through the use of a reference
724  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
725  * spare, then we bump the reference count in the AVL tree.  In addition, we set
726  * the 'vdev_isspare' member to indicate that the device is a spare (active or
727  * inactive).  When a spare is made active (used to replace a device in the
728  * pool), we also keep track of which pool its been made a part of.
729  *
730  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
731  * called under the spa_namespace lock as part of vdev reconfiguration.  The
732  * separate spare lock exists for the status query path, which does not need to
733  * be completely consistent with respect to other vdev configuration changes.
734  */
735 
736 static int
737 spa_spare_compare(const void *a, const void *b)
738 {
739 	return (spa_aux_compare(a, b));
740 }
741 
742 void
743 spa_spare_add(vdev_t *vd)
744 {
745 	mutex_enter(&spa_spare_lock);
746 	ASSERT(!vd->vdev_isspare);
747 	spa_aux_add(vd, &spa_spare_avl);
748 	vd->vdev_isspare = B_TRUE;
749 	mutex_exit(&spa_spare_lock);
750 }
751 
752 void
753 spa_spare_remove(vdev_t *vd)
754 {
755 	mutex_enter(&spa_spare_lock);
756 	ASSERT(vd->vdev_isspare);
757 	spa_aux_remove(vd, &spa_spare_avl);
758 	vd->vdev_isspare = B_FALSE;
759 	mutex_exit(&spa_spare_lock);
760 }
761 
762 boolean_t
763 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
764 {
765 	boolean_t found;
766 
767 	mutex_enter(&spa_spare_lock);
768 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
769 	mutex_exit(&spa_spare_lock);
770 
771 	return (found);
772 }
773 
774 void
775 spa_spare_activate(vdev_t *vd)
776 {
777 	mutex_enter(&spa_spare_lock);
778 	ASSERT(vd->vdev_isspare);
779 	spa_aux_activate(vd, &spa_spare_avl);
780 	mutex_exit(&spa_spare_lock);
781 }
782 
783 /*
784  * Level 2 ARC devices are tracked globally for the same reasons as spares.
785  * Cache devices currently only support one pool per cache device, and so
786  * for these devices the aux reference count is currently unused beyond 1.
787  */
788 
789 static int
790 spa_l2cache_compare(const void *a, const void *b)
791 {
792 	return (spa_aux_compare(a, b));
793 }
794 
795 void
796 spa_l2cache_add(vdev_t *vd)
797 {
798 	mutex_enter(&spa_l2cache_lock);
799 	ASSERT(!vd->vdev_isl2cache);
800 	spa_aux_add(vd, &spa_l2cache_avl);
801 	vd->vdev_isl2cache = B_TRUE;
802 	mutex_exit(&spa_l2cache_lock);
803 }
804 
805 void
806 spa_l2cache_remove(vdev_t *vd)
807 {
808 	mutex_enter(&spa_l2cache_lock);
809 	ASSERT(vd->vdev_isl2cache);
810 	spa_aux_remove(vd, &spa_l2cache_avl);
811 	vd->vdev_isl2cache = B_FALSE;
812 	mutex_exit(&spa_l2cache_lock);
813 }
814 
815 boolean_t
816 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
817 {
818 	boolean_t found;
819 
820 	mutex_enter(&spa_l2cache_lock);
821 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
822 	mutex_exit(&spa_l2cache_lock);
823 
824 	return (found);
825 }
826 
827 void
828 spa_l2cache_activate(vdev_t *vd)
829 {
830 	mutex_enter(&spa_l2cache_lock);
831 	ASSERT(vd->vdev_isl2cache);
832 	spa_aux_activate(vd, &spa_l2cache_avl);
833 	mutex_exit(&spa_l2cache_lock);
834 }
835 
836 /*
837  * ==========================================================================
838  * SPA vdev locking
839  * ==========================================================================
840  */
841 
842 /*
843  * Lock the given spa_t for the purpose of adding or removing a vdev.
844  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
845  * It returns the next transaction group for the spa_t.
846  */
847 uint64_t
848 spa_vdev_enter(spa_t *spa)
849 {
850 	mutex_enter(&spa->spa_vdev_top_lock);
851 	mutex_enter(&spa_namespace_lock);
852 	return (spa_vdev_config_enter(spa));
853 }
854 
855 /*
856  * Internal implementation for spa_vdev_enter().  Used when a vdev
857  * operation requires multiple syncs (i.e. removing a device) while
858  * keeping the spa_namespace_lock held.
859  */
860 uint64_t
861 spa_vdev_config_enter(spa_t *spa)
862 {
863 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
864 
865 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
866 
867 	return (spa_last_synced_txg(spa) + 1);
868 }
869 
870 /*
871  * Used in combination with spa_vdev_config_enter() to allow the syncing
872  * of multiple transactions without releasing the spa_namespace_lock.
873  */
874 void
875 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
876 {
877 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
878 
879 	int config_changed = B_FALSE;
880 
881 	ASSERT(txg > spa_last_synced_txg(spa));
882 
883 	spa->spa_pending_vdev = NULL;
884 
885 	/*
886 	 * Reassess the DTLs.
887 	 */
888 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
889 
890 	/*
891 	 * If the config changed, notify the scrub thread that it must restart.
892 	 */
893 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
894 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
895 		config_changed = B_TRUE;
896 		spa->spa_config_generation++;
897 	}
898 
899 	/*
900 	 * Verify the metaslab classes.
901 	 */
902 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
903 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
904 
905 	spa_config_exit(spa, SCL_ALL, spa);
906 
907 	/*
908 	 * Panic the system if the specified tag requires it.  This
909 	 * is useful for ensuring that configurations are updated
910 	 * transactionally.
911 	 */
912 	if (zio_injection_enabled)
913 		zio_handle_panic_injection(spa, tag, 0);
914 
915 	/*
916 	 * Note: this txg_wait_synced() is important because it ensures
917 	 * that there won't be more than one config change per txg.
918 	 * This allows us to use the txg as the generation number.
919 	 */
920 	if (error == 0)
921 		txg_wait_synced(spa->spa_dsl_pool, txg);
922 
923 	if (vd != NULL) {
924 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
925 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
926 		vdev_free(vd);
927 		spa_config_exit(spa, SCL_ALL, spa);
928 	}
929 
930 	/*
931 	 * If the config changed, update the config cache.
932 	 */
933 	if (config_changed)
934 		spa_config_sync(spa, B_FALSE, B_TRUE);
935 }
936 
937 /*
938  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
939  * locking of spa_vdev_enter(), we also want make sure the transactions have
940  * synced to disk, and then update the global configuration cache with the new
941  * information.
942  */
943 int
944 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
945 {
946 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
947 	mutex_exit(&spa_namespace_lock);
948 	mutex_exit(&spa->spa_vdev_top_lock);
949 
950 	return (error);
951 }
952 
953 /*
954  * Lock the given spa_t for the purpose of changing vdev state.
955  */
956 void
957 spa_vdev_state_enter(spa_t *spa, int oplocks)
958 {
959 	int locks = SCL_STATE_ALL | oplocks;
960 
961 	/*
962 	 * Root pools may need to read of the underlying devfs filesystem
963 	 * when opening up a vdev.  Unfortunately if we're holding the
964 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
965 	 * the read from the root filesystem.  Instead we "prefetch"
966 	 * the associated vnodes that we need prior to opening the
967 	 * underlying devices and cache them so that we can prevent
968 	 * any I/O when we are doing the actual open.
969 	 */
970 	if (spa_is_root(spa)) {
971 		int low = locks & ~(SCL_ZIO - 1);
972 		int high = locks & ~low;
973 
974 		spa_config_enter(spa, high, spa, RW_WRITER);
975 		vdev_hold(spa->spa_root_vdev);
976 		spa_config_enter(spa, low, spa, RW_WRITER);
977 	} else {
978 		spa_config_enter(spa, locks, spa, RW_WRITER);
979 	}
980 	spa->spa_vdev_locks = locks;
981 }
982 
983 int
984 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
985 {
986 	boolean_t config_changed = B_FALSE;
987 
988 	if (vd != NULL || error == 0)
989 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
990 		    0, 0, B_FALSE);
991 
992 	if (vd != NULL) {
993 		vdev_state_dirty(vd->vdev_top);
994 		config_changed = B_TRUE;
995 		spa->spa_config_generation++;
996 	}
997 
998 	if (spa_is_root(spa))
999 		vdev_rele(spa->spa_root_vdev);
1000 
1001 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1002 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1003 
1004 	/*
1005 	 * If anything changed, wait for it to sync.  This ensures that,
1006 	 * from the system administrator's perspective, zpool(1M) commands
1007 	 * are synchronous.  This is important for things like zpool offline:
1008 	 * when the command completes, you expect no further I/O from ZFS.
1009 	 */
1010 	if (vd != NULL)
1011 		txg_wait_synced(spa->spa_dsl_pool, 0);
1012 
1013 	/*
1014 	 * If the config changed, update the config cache.
1015 	 */
1016 	if (config_changed) {
1017 		mutex_enter(&spa_namespace_lock);
1018 		spa_config_sync(spa, B_FALSE, B_TRUE);
1019 		mutex_exit(&spa_namespace_lock);
1020 	}
1021 
1022 	return (error);
1023 }
1024 
1025 /*
1026  * ==========================================================================
1027  * Miscellaneous functions
1028  * ==========================================================================
1029  */
1030 
1031 /*
1032  * Rename a spa_t.
1033  */
1034 int
1035 spa_rename(const char *name, const char *newname)
1036 {
1037 	spa_t *spa;
1038 	int err;
1039 
1040 	/*
1041 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1042 	 * actually open the pool so that we can sync out the necessary labels.
1043 	 * It's OK to call spa_open() with the namespace lock held because we
1044 	 * allow recursive calls for other reasons.
1045 	 */
1046 	mutex_enter(&spa_namespace_lock);
1047 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1048 		mutex_exit(&spa_namespace_lock);
1049 		return (err);
1050 	}
1051 
1052 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1053 
1054 	avl_remove(&spa_namespace_avl, spa);
1055 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1056 	avl_add(&spa_namespace_avl, spa);
1057 
1058 	/*
1059 	 * Sync all labels to disk with the new names by marking the root vdev
1060 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1061 	 * during the sync.
1062 	 */
1063 	vdev_config_dirty(spa->spa_root_vdev);
1064 
1065 	spa_config_exit(spa, SCL_ALL, FTAG);
1066 
1067 	txg_wait_synced(spa->spa_dsl_pool, 0);
1068 
1069 	/*
1070 	 * Sync the updated config cache.
1071 	 */
1072 	spa_config_sync(spa, B_FALSE, B_TRUE);
1073 
1074 	spa_close(spa, FTAG);
1075 
1076 	mutex_exit(&spa_namespace_lock);
1077 
1078 	return (0);
1079 }
1080 
1081 
1082 /*
1083  * Determine whether a pool with given pool_guid exists.  If device_guid is
1084  * non-zero, determine whether the pool exists *and* contains a device with the
1085  * specified device_guid.
1086  */
1087 boolean_t
1088 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1089 {
1090 	spa_t *spa;
1091 	avl_tree_t *t = &spa_namespace_avl;
1092 
1093 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1094 
1095 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1096 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1097 			continue;
1098 		if (spa->spa_root_vdev == NULL)
1099 			continue;
1100 		if (spa_guid(spa) == pool_guid) {
1101 			if (device_guid == 0)
1102 				break;
1103 
1104 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1105 			    device_guid) != NULL)
1106 				break;
1107 
1108 			/*
1109 			 * Check any devices we may be in the process of adding.
1110 			 */
1111 			if (spa->spa_pending_vdev) {
1112 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1113 				    device_guid) != NULL)
1114 					break;
1115 			}
1116 		}
1117 	}
1118 
1119 	return (spa != NULL);
1120 }
1121 
1122 char *
1123 spa_strdup(const char *s)
1124 {
1125 	size_t len;
1126 	char *new;
1127 
1128 	len = strlen(s);
1129 	new = kmem_alloc(len + 1, KM_SLEEP);
1130 	bcopy(s, new, len);
1131 	new[len] = '\0';
1132 
1133 	return (new);
1134 }
1135 
1136 void
1137 spa_strfree(char *s)
1138 {
1139 	kmem_free(s, strlen(s) + 1);
1140 }
1141 
1142 uint64_t
1143 spa_get_random(uint64_t range)
1144 {
1145 	uint64_t r;
1146 
1147 	ASSERT(range != 0);
1148 
1149 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1150 
1151 	return (r % range);
1152 }
1153 
1154 uint64_t
1155 spa_generate_guid(spa_t *spa)
1156 {
1157 	uint64_t guid = spa_get_random(-1ULL);
1158 
1159 	if (spa != NULL) {
1160 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1161 			guid = spa_get_random(-1ULL);
1162 	} else {
1163 		while (guid == 0 || spa_guid_exists(guid, 0))
1164 			guid = spa_get_random(-1ULL);
1165 	}
1166 
1167 	return (guid);
1168 }
1169 
1170 void
1171 sprintf_blkptr(char *buf, const blkptr_t *bp)
1172 {
1173 	char *type = NULL;
1174 	char *checksum = NULL;
1175 	char *compress = NULL;
1176 
1177 	if (bp != NULL) {
1178 		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1179 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1180 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1181 	}
1182 
1183 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1184 }
1185 
1186 void
1187 spa_freeze(spa_t *spa)
1188 {
1189 	uint64_t freeze_txg = 0;
1190 
1191 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1192 	if (spa->spa_freeze_txg == UINT64_MAX) {
1193 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1194 		spa->spa_freeze_txg = freeze_txg;
1195 	}
1196 	spa_config_exit(spa, SCL_ALL, FTAG);
1197 	if (freeze_txg != 0)
1198 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1199 }
1200 
1201 void
1202 zfs_panic_recover(const char *fmt, ...)
1203 {
1204 	va_list adx;
1205 
1206 	va_start(adx, fmt);
1207 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1208 	va_end(adx);
1209 }
1210 
1211 /*
1212  * ==========================================================================
1213  * Accessor functions
1214  * ==========================================================================
1215  */
1216 
1217 boolean_t
1218 spa_shutting_down(spa_t *spa)
1219 {
1220 	return (spa->spa_async_suspended);
1221 }
1222 
1223 dsl_pool_t *
1224 spa_get_dsl(spa_t *spa)
1225 {
1226 	return (spa->spa_dsl_pool);
1227 }
1228 
1229 blkptr_t *
1230 spa_get_rootblkptr(spa_t *spa)
1231 {
1232 	return (&spa->spa_ubsync.ub_rootbp);
1233 }
1234 
1235 void
1236 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1237 {
1238 	spa->spa_uberblock.ub_rootbp = *bp;
1239 }
1240 
1241 void
1242 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1243 {
1244 	if (spa->spa_root == NULL)
1245 		buf[0] = '\0';
1246 	else
1247 		(void) strncpy(buf, spa->spa_root, buflen);
1248 }
1249 
1250 int
1251 spa_sync_pass(spa_t *spa)
1252 {
1253 	return (spa->spa_sync_pass);
1254 }
1255 
1256 char *
1257 spa_name(spa_t *spa)
1258 {
1259 	return (spa->spa_name);
1260 }
1261 
1262 uint64_t
1263 spa_guid(spa_t *spa)
1264 {
1265 	/*
1266 	 * If we fail to parse the config during spa_load(), we can go through
1267 	 * the error path (which posts an ereport) and end up here with no root
1268 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1269 	 * this case.
1270 	 */
1271 	if (spa->spa_root_vdev != NULL)
1272 		return (spa->spa_root_vdev->vdev_guid);
1273 	else
1274 		return (spa->spa_load_guid);
1275 }
1276 
1277 uint64_t
1278 spa_last_synced_txg(spa_t *spa)
1279 {
1280 	return (spa->spa_ubsync.ub_txg);
1281 }
1282 
1283 uint64_t
1284 spa_first_txg(spa_t *spa)
1285 {
1286 	return (spa->spa_first_txg);
1287 }
1288 
1289 uint64_t
1290 spa_syncing_txg(spa_t *spa)
1291 {
1292 	return (spa->spa_syncing_txg);
1293 }
1294 
1295 pool_state_t
1296 spa_state(spa_t *spa)
1297 {
1298 	return (spa->spa_state);
1299 }
1300 
1301 spa_load_state_t
1302 spa_load_state(spa_t *spa)
1303 {
1304 	return (spa->spa_load_state);
1305 }
1306 
1307 uint64_t
1308 spa_freeze_txg(spa_t *spa)
1309 {
1310 	return (spa->spa_freeze_txg);
1311 }
1312 
1313 /* ARGSUSED */
1314 uint64_t
1315 spa_get_asize(spa_t *spa, uint64_t lsize)
1316 {
1317 	/*
1318 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1319 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1320 	 * times the size; so just assume that.  Add to this the fact that
1321 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1322 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1323 	 */
1324 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1325 }
1326 
1327 uint64_t
1328 spa_get_dspace(spa_t *spa)
1329 {
1330 	return (spa->spa_dspace);
1331 }
1332 
1333 void
1334 spa_update_dspace(spa_t *spa)
1335 {
1336 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1337 	    ddt_get_dedup_dspace(spa);
1338 }
1339 
1340 /*
1341  * Return the failure mode that has been set to this pool. The default
1342  * behavior will be to block all I/Os when a complete failure occurs.
1343  */
1344 uint8_t
1345 spa_get_failmode(spa_t *spa)
1346 {
1347 	return (spa->spa_failmode);
1348 }
1349 
1350 boolean_t
1351 spa_suspended(spa_t *spa)
1352 {
1353 	return (spa->spa_suspended);
1354 }
1355 
1356 uint64_t
1357 spa_version(spa_t *spa)
1358 {
1359 	return (spa->spa_ubsync.ub_version);
1360 }
1361 
1362 boolean_t
1363 spa_deflate(spa_t *spa)
1364 {
1365 	return (spa->spa_deflate);
1366 }
1367 
1368 metaslab_class_t *
1369 spa_normal_class(spa_t *spa)
1370 {
1371 	return (spa->spa_normal_class);
1372 }
1373 
1374 metaslab_class_t *
1375 spa_log_class(spa_t *spa)
1376 {
1377 	return (spa->spa_log_class);
1378 }
1379 
1380 int
1381 spa_max_replication(spa_t *spa)
1382 {
1383 	/*
1384 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1385 	 * handle BPs with more than one DVA allocated.  Set our max
1386 	 * replication level accordingly.
1387 	 */
1388 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1389 		return (1);
1390 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1391 }
1392 
1393 uint64_t
1394 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1395 {
1396 	uint64_t asize = DVA_GET_ASIZE(dva);
1397 	uint64_t dsize = asize;
1398 
1399 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1400 
1401 	if (asize != 0 && spa->spa_deflate) {
1402 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1403 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1404 	}
1405 
1406 	return (dsize);
1407 }
1408 
1409 uint64_t
1410 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1411 {
1412 	uint64_t dsize = 0;
1413 
1414 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1415 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1416 
1417 	return (dsize);
1418 }
1419 
1420 uint64_t
1421 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1422 {
1423 	uint64_t dsize = 0;
1424 
1425 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1426 
1427 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1428 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1429 
1430 	spa_config_exit(spa, SCL_VDEV, FTAG);
1431 
1432 	return (dsize);
1433 }
1434 
1435 /*
1436  * ==========================================================================
1437  * Initialization and Termination
1438  * ==========================================================================
1439  */
1440 
1441 static int
1442 spa_name_compare(const void *a1, const void *a2)
1443 {
1444 	const spa_t *s1 = a1;
1445 	const spa_t *s2 = a2;
1446 	int s;
1447 
1448 	s = strcmp(s1->spa_name, s2->spa_name);
1449 	if (s > 0)
1450 		return (1);
1451 	if (s < 0)
1452 		return (-1);
1453 	return (0);
1454 }
1455 
1456 int
1457 spa_busy(void)
1458 {
1459 	return (spa_active_count);
1460 }
1461 
1462 void
1463 spa_boot_init()
1464 {
1465 	spa_config_load();
1466 }
1467 
1468 void
1469 spa_init(int mode)
1470 {
1471 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1472 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1473 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1474 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1475 
1476 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1477 	    offsetof(spa_t, spa_avl));
1478 
1479 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1480 	    offsetof(spa_aux_t, aux_avl));
1481 
1482 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1483 	    offsetof(spa_aux_t, aux_avl));
1484 
1485 	spa_mode_global = mode;
1486 
1487 	refcount_init();
1488 	unique_init();
1489 	zio_init();
1490 	dmu_init();
1491 	zil_init();
1492 	vdev_cache_stat_init();
1493 	zfs_prop_init();
1494 	zpool_prop_init();
1495 	spa_config_load();
1496 	l2arc_start();
1497 }
1498 
1499 void
1500 spa_fini(void)
1501 {
1502 	l2arc_stop();
1503 
1504 	spa_evict_all();
1505 
1506 	vdev_cache_stat_fini();
1507 	zil_fini();
1508 	dmu_fini();
1509 	zio_fini();
1510 	unique_fini();
1511 	refcount_fini();
1512 
1513 	avl_destroy(&spa_namespace_avl);
1514 	avl_destroy(&spa_spare_avl);
1515 	avl_destroy(&spa_l2cache_avl);
1516 
1517 	cv_destroy(&spa_namespace_cv);
1518 	mutex_destroy(&spa_namespace_lock);
1519 	mutex_destroy(&spa_spare_lock);
1520 	mutex_destroy(&spa_l2cache_lock);
1521 }
1522 
1523 /*
1524  * Return whether this pool has slogs. No locking needed.
1525  * It's not a problem if the wrong answer is returned as it's only for
1526  * performance and not correctness
1527  */
1528 boolean_t
1529 spa_has_slogs(spa_t *spa)
1530 {
1531 	return (spa->spa_log_class->mc_rotor != NULL);
1532 }
1533 
1534 spa_log_state_t
1535 spa_get_log_state(spa_t *spa)
1536 {
1537 	return (spa->spa_log_state);
1538 }
1539 
1540 void
1541 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1542 {
1543 	spa->spa_log_state = state;
1544 }
1545 
1546 boolean_t
1547 spa_is_root(spa_t *spa)
1548 {
1549 	return (spa->spa_is_root);
1550 }
1551 
1552 boolean_t
1553 spa_writeable(spa_t *spa)
1554 {
1555 	return (!!(spa->spa_mode & FWRITE));
1556 }
1557 
1558 int
1559 spa_mode(spa_t *spa)
1560 {
1561 	return (spa->spa_mode);
1562 }
1563 
1564 uint64_t
1565 spa_bootfs(spa_t *spa)
1566 {
1567 	return (spa->spa_bootfs);
1568 }
1569 
1570 uint64_t
1571 spa_delegation(spa_t *spa)
1572 {
1573 	return (spa->spa_delegation);
1574 }
1575 
1576 objset_t *
1577 spa_meta_objset(spa_t *spa)
1578 {
1579 	return (spa->spa_meta_objset);
1580 }
1581 
1582 enum zio_checksum
1583 spa_dedup_checksum(spa_t *spa)
1584 {
1585 	return (spa->spa_dedup_checksum);
1586 }
1587