xref: /titanic_50/usr/src/uts/common/fs/zfs/spa_misc.c (revision c3a558e7c77127215b010652905be7916ec5a080)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/arc.h>
47 #include <sys/ddt.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	int wlocks_held = 0;
314 
315 	for (int i = 0; i < SCL_LOCKS; i++) {
316 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 		if (scl->scl_writer == curthread)
318 			wlocks_held |= (1 << i);
319 		if (!(locks & (1 << i)))
320 			continue;
321 		mutex_enter(&scl->scl_lock);
322 		if (rw == RW_READER) {
323 			while (scl->scl_writer || scl->scl_write_wanted) {
324 				cv_wait(&scl->scl_cv, &scl->scl_lock);
325 			}
326 		} else {
327 			ASSERT(scl->scl_writer != curthread);
328 			while (!refcount_is_zero(&scl->scl_count)) {
329 				scl->scl_write_wanted++;
330 				cv_wait(&scl->scl_cv, &scl->scl_lock);
331 				scl->scl_write_wanted--;
332 			}
333 			scl->scl_writer = curthread;
334 		}
335 		(void) refcount_add(&scl->scl_count, tag);
336 		mutex_exit(&scl->scl_lock);
337 	}
338 	ASSERT(wlocks_held <= locks);
339 }
340 
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 		if (!(locks & (1 << i)))
347 			continue;
348 		mutex_enter(&scl->scl_lock);
349 		ASSERT(!refcount_is_zero(&scl->scl_count));
350 		if (refcount_remove(&scl->scl_count, tag) == 0) {
351 			ASSERT(scl->scl_writer == NULL ||
352 			    scl->scl_writer == curthread);
353 			scl->scl_writer = NULL;	/* OK in either case */
354 			cv_broadcast(&scl->scl_cv);
355 		}
356 		mutex_exit(&scl->scl_lock);
357 	}
358 }
359 
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 	int locks_held = 0;
364 
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		if (!(locks & (1 << i)))
368 			continue;
369 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 		    (rw == RW_WRITER && scl->scl_writer == curthread))
371 			locks_held |= 1 << i;
372 	}
373 
374 	return (locks_held);
375 }
376 
377 /*
378  * ==========================================================================
379  * SPA namespace functions
380  * ==========================================================================
381  */
382 
383 /*
384  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385  * Returns NULL if no matching spa_t is found.
386  */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 	static spa_t search;	/* spa_t is large; don't allocate on stack */
391 	spa_t *spa;
392 	avl_index_t where;
393 	char c;
394 	char *cp;
395 
396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397 
398 	/*
399 	 * If it's a full dataset name, figure out the pool name and
400 	 * just use that.
401 	 */
402 	cp = strpbrk(name, "/@");
403 	if (cp) {
404 		c = *cp;
405 		*cp = '\0';
406 	}
407 
408 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 	spa = avl_find(&spa_namespace_avl, &search, &where);
410 
411 	if (cp)
412 		*cp = c;
413 
414 	return (spa);
415 }
416 
417 /*
418  * Create an uninitialized spa_t with the given name.  Requires
419  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420  * exist by calling spa_lookup() first.
421  */
422 spa_t *
423 spa_add(const char *name, nvlist_t *config, const char *altroot)
424 {
425 	spa_t *spa;
426 	spa_config_dirent_t *dp;
427 
428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429 
430 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431 
432 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
441 
442 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
443 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
444 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
445 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
446 
447 	for (int t = 0; t < TXG_SIZE; t++)
448 		bplist_init(&spa->spa_free_bplist[t]);
449 	bplist_init(&spa->spa_deferred_bplist);
450 
451 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
452 	spa->spa_state = POOL_STATE_UNINITIALIZED;
453 	spa->spa_freeze_txg = UINT64_MAX;
454 	spa->spa_final_txg = UINT64_MAX;
455 	spa->spa_load_max_txg = UINT64_MAX;
456 	spa->spa_proc = &p0;
457 	spa->spa_proc_state = SPA_PROC_NONE;
458 
459 	refcount_create(&spa->spa_refcount);
460 	spa_config_lock_init(spa);
461 
462 	avl_add(&spa_namespace_avl, spa);
463 
464 	/*
465 	 * Set the alternate root, if there is one.
466 	 */
467 	if (altroot) {
468 		spa->spa_root = spa_strdup(altroot);
469 		spa_active_count++;
470 	}
471 
472 	/*
473 	 * Every pool starts with the default cachefile
474 	 */
475 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
476 	    offsetof(spa_config_dirent_t, scd_link));
477 
478 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
479 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
480 	list_insert_head(&spa->spa_config_list, dp);
481 
482 	if (config != NULL)
483 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
484 
485 	return (spa);
486 }
487 
488 /*
489  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
490  * spa_namespace_lock.  This is called only after the spa_t has been closed and
491  * deactivated.
492  */
493 void
494 spa_remove(spa_t *spa)
495 {
496 	spa_config_dirent_t *dp;
497 
498 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
499 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
500 
501 	nvlist_free(spa->spa_config_splitting);
502 
503 	avl_remove(&spa_namespace_avl, spa);
504 	cv_broadcast(&spa_namespace_cv);
505 
506 	if (spa->spa_root) {
507 		spa_strfree(spa->spa_root);
508 		spa_active_count--;
509 	}
510 
511 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
512 		list_remove(&spa->spa_config_list, dp);
513 		if (dp->scd_path != NULL)
514 			spa_strfree(dp->scd_path);
515 		kmem_free(dp, sizeof (spa_config_dirent_t));
516 	}
517 
518 	list_destroy(&spa->spa_config_list);
519 
520 	spa_config_set(spa, NULL);
521 
522 	refcount_destroy(&spa->spa_refcount);
523 
524 	spa_config_lock_destroy(spa);
525 
526 	for (int t = 0; t < TXG_SIZE; t++)
527 		bplist_fini(&spa->spa_free_bplist[t]);
528 	bplist_fini(&spa->spa_deferred_bplist);
529 
530 	cv_destroy(&spa->spa_async_cv);
531 	cv_destroy(&spa->spa_proc_cv);
532 	cv_destroy(&spa->spa_scrub_io_cv);
533 	cv_destroy(&spa->spa_suspend_cv);
534 
535 	mutex_destroy(&spa->spa_async_lock);
536 	mutex_destroy(&spa->spa_errlist_lock);
537 	mutex_destroy(&spa->spa_errlog_lock);
538 	mutex_destroy(&spa->spa_history_lock);
539 	mutex_destroy(&spa->spa_proc_lock);
540 	mutex_destroy(&spa->spa_props_lock);
541 	mutex_destroy(&spa->spa_scrub_lock);
542 	mutex_destroy(&spa->spa_suspend_lock);
543 	mutex_destroy(&spa->spa_vdev_top_lock);
544 
545 	kmem_free(spa, sizeof (spa_t));
546 }
547 
548 /*
549  * Given a pool, return the next pool in the namespace, or NULL if there is
550  * none.  If 'prev' is NULL, return the first pool.
551  */
552 spa_t *
553 spa_next(spa_t *prev)
554 {
555 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
556 
557 	if (prev)
558 		return (AVL_NEXT(&spa_namespace_avl, prev));
559 	else
560 		return (avl_first(&spa_namespace_avl));
561 }
562 
563 /*
564  * ==========================================================================
565  * SPA refcount functions
566  * ==========================================================================
567  */
568 
569 /*
570  * Add a reference to the given spa_t.  Must have at least one reference, or
571  * have the namespace lock held.
572  */
573 void
574 spa_open_ref(spa_t *spa, void *tag)
575 {
576 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
577 	    MUTEX_HELD(&spa_namespace_lock));
578 	(void) refcount_add(&spa->spa_refcount, tag);
579 }
580 
581 /*
582  * Remove a reference to the given spa_t.  Must have at least one reference, or
583  * have the namespace lock held.
584  */
585 void
586 spa_close(spa_t *spa, void *tag)
587 {
588 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
589 	    MUTEX_HELD(&spa_namespace_lock));
590 	(void) refcount_remove(&spa->spa_refcount, tag);
591 }
592 
593 /*
594  * Check to see if the spa refcount is zero.  Must be called with
595  * spa_namespace_lock held.  We really compare against spa_minref, which is the
596  * number of references acquired when opening a pool
597  */
598 boolean_t
599 spa_refcount_zero(spa_t *spa)
600 {
601 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
602 
603 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
604 }
605 
606 /*
607  * ==========================================================================
608  * SPA spare and l2cache tracking
609  * ==========================================================================
610  */
611 
612 /*
613  * Hot spares and cache devices are tracked using the same code below,
614  * for 'auxiliary' devices.
615  */
616 
617 typedef struct spa_aux {
618 	uint64_t	aux_guid;
619 	uint64_t	aux_pool;
620 	avl_node_t	aux_avl;
621 	int		aux_count;
622 } spa_aux_t;
623 
624 static int
625 spa_aux_compare(const void *a, const void *b)
626 {
627 	const spa_aux_t *sa = a;
628 	const spa_aux_t *sb = b;
629 
630 	if (sa->aux_guid < sb->aux_guid)
631 		return (-1);
632 	else if (sa->aux_guid > sb->aux_guid)
633 		return (1);
634 	else
635 		return (0);
636 }
637 
638 void
639 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
640 {
641 	avl_index_t where;
642 	spa_aux_t search;
643 	spa_aux_t *aux;
644 
645 	search.aux_guid = vd->vdev_guid;
646 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
647 		aux->aux_count++;
648 	} else {
649 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
650 		aux->aux_guid = vd->vdev_guid;
651 		aux->aux_count = 1;
652 		avl_insert(avl, aux, where);
653 	}
654 }
655 
656 void
657 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
658 {
659 	spa_aux_t search;
660 	spa_aux_t *aux;
661 	avl_index_t where;
662 
663 	search.aux_guid = vd->vdev_guid;
664 	aux = avl_find(avl, &search, &where);
665 
666 	ASSERT(aux != NULL);
667 
668 	if (--aux->aux_count == 0) {
669 		avl_remove(avl, aux);
670 		kmem_free(aux, sizeof (spa_aux_t));
671 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
672 		aux->aux_pool = 0ULL;
673 	}
674 }
675 
676 boolean_t
677 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
678 {
679 	spa_aux_t search, *found;
680 
681 	search.aux_guid = guid;
682 	found = avl_find(avl, &search, NULL);
683 
684 	if (pool) {
685 		if (found)
686 			*pool = found->aux_pool;
687 		else
688 			*pool = 0ULL;
689 	}
690 
691 	if (refcnt) {
692 		if (found)
693 			*refcnt = found->aux_count;
694 		else
695 			*refcnt = 0;
696 	}
697 
698 	return (found != NULL);
699 }
700 
701 void
702 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
703 {
704 	spa_aux_t search, *found;
705 	avl_index_t where;
706 
707 	search.aux_guid = vd->vdev_guid;
708 	found = avl_find(avl, &search, &where);
709 	ASSERT(found != NULL);
710 	ASSERT(found->aux_pool == 0ULL);
711 
712 	found->aux_pool = spa_guid(vd->vdev_spa);
713 }
714 
715 /*
716  * Spares are tracked globally due to the following constraints:
717  *
718  * 	- A spare may be part of multiple pools.
719  * 	- A spare may be added to a pool even if it's actively in use within
720  *	  another pool.
721  * 	- A spare in use in any pool can only be the source of a replacement if
722  *	  the target is a spare in the same pool.
723  *
724  * We keep track of all spares on the system through the use of a reference
725  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
726  * spare, then we bump the reference count in the AVL tree.  In addition, we set
727  * the 'vdev_isspare' member to indicate that the device is a spare (active or
728  * inactive).  When a spare is made active (used to replace a device in the
729  * pool), we also keep track of which pool its been made a part of.
730  *
731  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
732  * called under the spa_namespace lock as part of vdev reconfiguration.  The
733  * separate spare lock exists for the status query path, which does not need to
734  * be completely consistent with respect to other vdev configuration changes.
735  */
736 
737 static int
738 spa_spare_compare(const void *a, const void *b)
739 {
740 	return (spa_aux_compare(a, b));
741 }
742 
743 void
744 spa_spare_add(vdev_t *vd)
745 {
746 	mutex_enter(&spa_spare_lock);
747 	ASSERT(!vd->vdev_isspare);
748 	spa_aux_add(vd, &spa_spare_avl);
749 	vd->vdev_isspare = B_TRUE;
750 	mutex_exit(&spa_spare_lock);
751 }
752 
753 void
754 spa_spare_remove(vdev_t *vd)
755 {
756 	mutex_enter(&spa_spare_lock);
757 	ASSERT(vd->vdev_isspare);
758 	spa_aux_remove(vd, &spa_spare_avl);
759 	vd->vdev_isspare = B_FALSE;
760 	mutex_exit(&spa_spare_lock);
761 }
762 
763 boolean_t
764 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
765 {
766 	boolean_t found;
767 
768 	mutex_enter(&spa_spare_lock);
769 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
770 	mutex_exit(&spa_spare_lock);
771 
772 	return (found);
773 }
774 
775 void
776 spa_spare_activate(vdev_t *vd)
777 {
778 	mutex_enter(&spa_spare_lock);
779 	ASSERT(vd->vdev_isspare);
780 	spa_aux_activate(vd, &spa_spare_avl);
781 	mutex_exit(&spa_spare_lock);
782 }
783 
784 /*
785  * Level 2 ARC devices are tracked globally for the same reasons as spares.
786  * Cache devices currently only support one pool per cache device, and so
787  * for these devices the aux reference count is currently unused beyond 1.
788  */
789 
790 static int
791 spa_l2cache_compare(const void *a, const void *b)
792 {
793 	return (spa_aux_compare(a, b));
794 }
795 
796 void
797 spa_l2cache_add(vdev_t *vd)
798 {
799 	mutex_enter(&spa_l2cache_lock);
800 	ASSERT(!vd->vdev_isl2cache);
801 	spa_aux_add(vd, &spa_l2cache_avl);
802 	vd->vdev_isl2cache = B_TRUE;
803 	mutex_exit(&spa_l2cache_lock);
804 }
805 
806 void
807 spa_l2cache_remove(vdev_t *vd)
808 {
809 	mutex_enter(&spa_l2cache_lock);
810 	ASSERT(vd->vdev_isl2cache);
811 	spa_aux_remove(vd, &spa_l2cache_avl);
812 	vd->vdev_isl2cache = B_FALSE;
813 	mutex_exit(&spa_l2cache_lock);
814 }
815 
816 boolean_t
817 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
818 {
819 	boolean_t found;
820 
821 	mutex_enter(&spa_l2cache_lock);
822 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
823 	mutex_exit(&spa_l2cache_lock);
824 
825 	return (found);
826 }
827 
828 void
829 spa_l2cache_activate(vdev_t *vd)
830 {
831 	mutex_enter(&spa_l2cache_lock);
832 	ASSERT(vd->vdev_isl2cache);
833 	spa_aux_activate(vd, &spa_l2cache_avl);
834 	mutex_exit(&spa_l2cache_lock);
835 }
836 
837 /*
838  * ==========================================================================
839  * SPA vdev locking
840  * ==========================================================================
841  */
842 
843 /*
844  * Lock the given spa_t for the purpose of adding or removing a vdev.
845  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
846  * It returns the next transaction group for the spa_t.
847  */
848 uint64_t
849 spa_vdev_enter(spa_t *spa)
850 {
851 	mutex_enter(&spa->spa_vdev_top_lock);
852 	mutex_enter(&spa_namespace_lock);
853 	return (spa_vdev_config_enter(spa));
854 }
855 
856 /*
857  * Internal implementation for spa_vdev_enter().  Used when a vdev
858  * operation requires multiple syncs (i.e. removing a device) while
859  * keeping the spa_namespace_lock held.
860  */
861 uint64_t
862 spa_vdev_config_enter(spa_t *spa)
863 {
864 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
865 
866 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
867 
868 	return (spa_last_synced_txg(spa) + 1);
869 }
870 
871 /*
872  * Used in combination with spa_vdev_config_enter() to allow the syncing
873  * of multiple transactions without releasing the spa_namespace_lock.
874  */
875 void
876 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
877 {
878 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
879 
880 	int config_changed = B_FALSE;
881 
882 	ASSERT(txg > spa_last_synced_txg(spa));
883 
884 	spa->spa_pending_vdev = NULL;
885 
886 	/*
887 	 * Reassess the DTLs.
888 	 */
889 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
890 
891 	/*
892 	 * If the config changed, notify the scrub thread that it must restart.
893 	 */
894 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
895 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
896 		config_changed = B_TRUE;
897 		spa->spa_config_generation++;
898 	}
899 
900 	/*
901 	 * Verify the metaslab classes.
902 	 */
903 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
904 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
905 
906 	spa_config_exit(spa, SCL_ALL, spa);
907 
908 	/*
909 	 * Panic the system if the specified tag requires it.  This
910 	 * is useful for ensuring that configurations are updated
911 	 * transactionally.
912 	 */
913 	if (zio_injection_enabled)
914 		zio_handle_panic_injection(spa, tag, 0);
915 
916 	/*
917 	 * Note: this txg_wait_synced() is important because it ensures
918 	 * that there won't be more than one config change per txg.
919 	 * This allows us to use the txg as the generation number.
920 	 */
921 	if (error == 0)
922 		txg_wait_synced(spa->spa_dsl_pool, txg);
923 
924 	if (vd != NULL) {
925 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
926 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
927 		vdev_free(vd);
928 		spa_config_exit(spa, SCL_ALL, spa);
929 	}
930 
931 	/*
932 	 * If the config changed, update the config cache.
933 	 */
934 	if (config_changed)
935 		spa_config_sync(spa, B_FALSE, B_TRUE);
936 }
937 
938 /*
939  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
940  * locking of spa_vdev_enter(), we also want make sure the transactions have
941  * synced to disk, and then update the global configuration cache with the new
942  * information.
943  */
944 int
945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
946 {
947 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
948 	mutex_exit(&spa_namespace_lock);
949 	mutex_exit(&spa->spa_vdev_top_lock);
950 
951 	return (error);
952 }
953 
954 /*
955  * Lock the given spa_t for the purpose of changing vdev state.
956  */
957 void
958 spa_vdev_state_enter(spa_t *spa, int oplocks)
959 {
960 	int locks = SCL_STATE_ALL | oplocks;
961 
962 	/*
963 	 * Root pools may need to read of the underlying devfs filesystem
964 	 * when opening up a vdev.  Unfortunately if we're holding the
965 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
966 	 * the read from the root filesystem.  Instead we "prefetch"
967 	 * the associated vnodes that we need prior to opening the
968 	 * underlying devices and cache them so that we can prevent
969 	 * any I/O when we are doing the actual open.
970 	 */
971 	if (spa_is_root(spa)) {
972 		spa_config_enter(spa, SCL_STATE | SCL_L2ARC, spa, RW_WRITER);
973 		vdev_hold(spa->spa_root_vdev);
974 		spa_config_enter(spa, SCL_ZIO | oplocks, spa, RW_WRITER);
975 	} else {
976 		spa_config_enter(spa, locks, spa, RW_WRITER);
977 	}
978 	spa->spa_vdev_locks = locks;
979 }
980 
981 int
982 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
983 {
984 	boolean_t config_changed = B_FALSE;
985 
986 	if (vd != NULL || error == 0)
987 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
988 		    0, 0, B_FALSE);
989 
990 	if (vd != NULL) {
991 		vdev_state_dirty(vd->vdev_top);
992 		config_changed = B_TRUE;
993 		spa->spa_config_generation++;
994 	}
995 
996 	if (spa_is_root(spa))
997 		vdev_rele(spa->spa_root_vdev);
998 
999 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1000 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1001 
1002 	/*
1003 	 * If anything changed, wait for it to sync.  This ensures that,
1004 	 * from the system administrator's perspective, zpool(1M) commands
1005 	 * are synchronous.  This is important for things like zpool offline:
1006 	 * when the command completes, you expect no further I/O from ZFS.
1007 	 */
1008 	if (vd != NULL)
1009 		txg_wait_synced(spa->spa_dsl_pool, 0);
1010 
1011 	/*
1012 	 * If the config changed, update the config cache.
1013 	 */
1014 	if (config_changed) {
1015 		mutex_enter(&spa_namespace_lock);
1016 		spa_config_sync(spa, B_FALSE, B_TRUE);
1017 		mutex_exit(&spa_namespace_lock);
1018 	}
1019 
1020 	return (error);
1021 }
1022 
1023 /*
1024  * ==========================================================================
1025  * Miscellaneous functions
1026  * ==========================================================================
1027  */
1028 
1029 /*
1030  * Rename a spa_t.
1031  */
1032 int
1033 spa_rename(const char *name, const char *newname)
1034 {
1035 	spa_t *spa;
1036 	int err;
1037 
1038 	/*
1039 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1040 	 * actually open the pool so that we can sync out the necessary labels.
1041 	 * It's OK to call spa_open() with the namespace lock held because we
1042 	 * allow recursive calls for other reasons.
1043 	 */
1044 	mutex_enter(&spa_namespace_lock);
1045 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1046 		mutex_exit(&spa_namespace_lock);
1047 		return (err);
1048 	}
1049 
1050 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1051 
1052 	avl_remove(&spa_namespace_avl, spa);
1053 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1054 	avl_add(&spa_namespace_avl, spa);
1055 
1056 	/*
1057 	 * Sync all labels to disk with the new names by marking the root vdev
1058 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1059 	 * during the sync.
1060 	 */
1061 	vdev_config_dirty(spa->spa_root_vdev);
1062 
1063 	spa_config_exit(spa, SCL_ALL, FTAG);
1064 
1065 	txg_wait_synced(spa->spa_dsl_pool, 0);
1066 
1067 	/*
1068 	 * Sync the updated config cache.
1069 	 */
1070 	spa_config_sync(spa, B_FALSE, B_TRUE);
1071 
1072 	spa_close(spa, FTAG);
1073 
1074 	mutex_exit(&spa_namespace_lock);
1075 
1076 	return (0);
1077 }
1078 
1079 
1080 /*
1081  * Determine whether a pool with given pool_guid exists.  If device_guid is
1082  * non-zero, determine whether the pool exists *and* contains a device with the
1083  * specified device_guid.
1084  */
1085 boolean_t
1086 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1087 {
1088 	spa_t *spa;
1089 	avl_tree_t *t = &spa_namespace_avl;
1090 
1091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092 
1093 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1094 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1095 			continue;
1096 		if (spa->spa_root_vdev == NULL)
1097 			continue;
1098 		if (spa_guid(spa) == pool_guid) {
1099 			if (device_guid == 0)
1100 				break;
1101 
1102 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1103 			    device_guid) != NULL)
1104 				break;
1105 
1106 			/*
1107 			 * Check any devices we may be in the process of adding.
1108 			 */
1109 			if (spa->spa_pending_vdev) {
1110 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1111 				    device_guid) != NULL)
1112 					break;
1113 			}
1114 		}
1115 	}
1116 
1117 	return (spa != NULL);
1118 }
1119 
1120 char *
1121 spa_strdup(const char *s)
1122 {
1123 	size_t len;
1124 	char *new;
1125 
1126 	len = strlen(s);
1127 	new = kmem_alloc(len + 1, KM_SLEEP);
1128 	bcopy(s, new, len);
1129 	new[len] = '\0';
1130 
1131 	return (new);
1132 }
1133 
1134 void
1135 spa_strfree(char *s)
1136 {
1137 	kmem_free(s, strlen(s) + 1);
1138 }
1139 
1140 uint64_t
1141 spa_get_random(uint64_t range)
1142 {
1143 	uint64_t r;
1144 
1145 	ASSERT(range != 0);
1146 
1147 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1148 
1149 	return (r % range);
1150 }
1151 
1152 uint64_t
1153 spa_generate_guid(spa_t *spa)
1154 {
1155 	uint64_t guid = spa_get_random(-1ULL);
1156 
1157 	if (spa != NULL) {
1158 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1159 			guid = spa_get_random(-1ULL);
1160 	} else {
1161 		while (guid == 0 || spa_guid_exists(guid, 0))
1162 			guid = spa_get_random(-1ULL);
1163 	}
1164 
1165 	return (guid);
1166 }
1167 
1168 void
1169 sprintf_blkptr(char *buf, const blkptr_t *bp)
1170 {
1171 	char *type = NULL;
1172 	char *checksum = NULL;
1173 	char *compress = NULL;
1174 
1175 	if (bp != NULL) {
1176 		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1177 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1178 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1179 	}
1180 
1181 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1182 }
1183 
1184 void
1185 spa_freeze(spa_t *spa)
1186 {
1187 	uint64_t freeze_txg = 0;
1188 
1189 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1190 	if (spa->spa_freeze_txg == UINT64_MAX) {
1191 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1192 		spa->spa_freeze_txg = freeze_txg;
1193 	}
1194 	spa_config_exit(spa, SCL_ALL, FTAG);
1195 	if (freeze_txg != 0)
1196 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1197 }
1198 
1199 void
1200 zfs_panic_recover(const char *fmt, ...)
1201 {
1202 	va_list adx;
1203 
1204 	va_start(adx, fmt);
1205 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1206 	va_end(adx);
1207 }
1208 
1209 /*
1210  * ==========================================================================
1211  * Accessor functions
1212  * ==========================================================================
1213  */
1214 
1215 boolean_t
1216 spa_shutting_down(spa_t *spa)
1217 {
1218 	return (spa->spa_async_suspended);
1219 }
1220 
1221 dsl_pool_t *
1222 spa_get_dsl(spa_t *spa)
1223 {
1224 	return (spa->spa_dsl_pool);
1225 }
1226 
1227 blkptr_t *
1228 spa_get_rootblkptr(spa_t *spa)
1229 {
1230 	return (&spa->spa_ubsync.ub_rootbp);
1231 }
1232 
1233 void
1234 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1235 {
1236 	spa->spa_uberblock.ub_rootbp = *bp;
1237 }
1238 
1239 void
1240 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1241 {
1242 	if (spa->spa_root == NULL)
1243 		buf[0] = '\0';
1244 	else
1245 		(void) strncpy(buf, spa->spa_root, buflen);
1246 }
1247 
1248 int
1249 spa_sync_pass(spa_t *spa)
1250 {
1251 	return (spa->spa_sync_pass);
1252 }
1253 
1254 char *
1255 spa_name(spa_t *spa)
1256 {
1257 	return (spa->spa_name);
1258 }
1259 
1260 uint64_t
1261 spa_guid(spa_t *spa)
1262 {
1263 	/*
1264 	 * If we fail to parse the config during spa_load(), we can go through
1265 	 * the error path (which posts an ereport) and end up here with no root
1266 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1267 	 * this case.
1268 	 */
1269 	if (spa->spa_root_vdev != NULL)
1270 		return (spa->spa_root_vdev->vdev_guid);
1271 	else
1272 		return (spa->spa_load_guid);
1273 }
1274 
1275 uint64_t
1276 spa_last_synced_txg(spa_t *spa)
1277 {
1278 	return (spa->spa_ubsync.ub_txg);
1279 }
1280 
1281 uint64_t
1282 spa_first_txg(spa_t *spa)
1283 {
1284 	return (spa->spa_first_txg);
1285 }
1286 
1287 uint64_t
1288 spa_syncing_txg(spa_t *spa)
1289 {
1290 	return (spa->spa_syncing_txg);
1291 }
1292 
1293 pool_state_t
1294 spa_state(spa_t *spa)
1295 {
1296 	return (spa->spa_state);
1297 }
1298 
1299 spa_load_state_t
1300 spa_load_state(spa_t *spa)
1301 {
1302 	return (spa->spa_load_state);
1303 }
1304 
1305 uint64_t
1306 spa_freeze_txg(spa_t *spa)
1307 {
1308 	return (spa->spa_freeze_txg);
1309 }
1310 
1311 /* ARGSUSED */
1312 uint64_t
1313 spa_get_asize(spa_t *spa, uint64_t lsize)
1314 {
1315 	/*
1316 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1317 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1318 	 * times the size; so just assume that.  Add to this the fact that
1319 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1320 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1321 	 */
1322 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1323 }
1324 
1325 uint64_t
1326 spa_get_dspace(spa_t *spa)
1327 {
1328 	return (spa->spa_dspace);
1329 }
1330 
1331 void
1332 spa_update_dspace(spa_t *spa)
1333 {
1334 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1335 	    ddt_get_dedup_dspace(spa);
1336 }
1337 
1338 /*
1339  * Return the failure mode that has been set to this pool. The default
1340  * behavior will be to block all I/Os when a complete failure occurs.
1341  */
1342 uint8_t
1343 spa_get_failmode(spa_t *spa)
1344 {
1345 	return (spa->spa_failmode);
1346 }
1347 
1348 boolean_t
1349 spa_suspended(spa_t *spa)
1350 {
1351 	return (spa->spa_suspended);
1352 }
1353 
1354 uint64_t
1355 spa_version(spa_t *spa)
1356 {
1357 	return (spa->spa_ubsync.ub_version);
1358 }
1359 
1360 boolean_t
1361 spa_deflate(spa_t *spa)
1362 {
1363 	return (spa->spa_deflate);
1364 }
1365 
1366 metaslab_class_t *
1367 spa_normal_class(spa_t *spa)
1368 {
1369 	return (spa->spa_normal_class);
1370 }
1371 
1372 metaslab_class_t *
1373 spa_log_class(spa_t *spa)
1374 {
1375 	return (spa->spa_log_class);
1376 }
1377 
1378 int
1379 spa_max_replication(spa_t *spa)
1380 {
1381 	/*
1382 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1383 	 * handle BPs with more than one DVA allocated.  Set our max
1384 	 * replication level accordingly.
1385 	 */
1386 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1387 		return (1);
1388 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1389 }
1390 
1391 uint64_t
1392 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1393 {
1394 	uint64_t asize = DVA_GET_ASIZE(dva);
1395 	uint64_t dsize = asize;
1396 
1397 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1398 
1399 	if (asize != 0 && spa->spa_deflate) {
1400 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1401 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1402 	}
1403 
1404 	return (dsize);
1405 }
1406 
1407 uint64_t
1408 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1409 {
1410 	uint64_t dsize = 0;
1411 
1412 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1413 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1414 
1415 	return (dsize);
1416 }
1417 
1418 uint64_t
1419 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1420 {
1421 	uint64_t dsize = 0;
1422 
1423 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1424 
1425 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1426 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1427 
1428 	spa_config_exit(spa, SCL_VDEV, FTAG);
1429 
1430 	return (dsize);
1431 }
1432 
1433 /*
1434  * ==========================================================================
1435  * Initialization and Termination
1436  * ==========================================================================
1437  */
1438 
1439 static int
1440 spa_name_compare(const void *a1, const void *a2)
1441 {
1442 	const spa_t *s1 = a1;
1443 	const spa_t *s2 = a2;
1444 	int s;
1445 
1446 	s = strcmp(s1->spa_name, s2->spa_name);
1447 	if (s > 0)
1448 		return (1);
1449 	if (s < 0)
1450 		return (-1);
1451 	return (0);
1452 }
1453 
1454 int
1455 spa_busy(void)
1456 {
1457 	return (spa_active_count);
1458 }
1459 
1460 void
1461 spa_boot_init()
1462 {
1463 	spa_config_load();
1464 }
1465 
1466 void
1467 spa_init(int mode)
1468 {
1469 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1470 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1471 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1472 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1473 
1474 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1475 	    offsetof(spa_t, spa_avl));
1476 
1477 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1478 	    offsetof(spa_aux_t, aux_avl));
1479 
1480 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1481 	    offsetof(spa_aux_t, aux_avl));
1482 
1483 	spa_mode_global = mode;
1484 
1485 	refcount_init();
1486 	unique_init();
1487 	zio_init();
1488 	dmu_init();
1489 	zil_init();
1490 	vdev_cache_stat_init();
1491 	zfs_prop_init();
1492 	zpool_prop_init();
1493 	spa_config_load();
1494 	l2arc_start();
1495 }
1496 
1497 void
1498 spa_fini(void)
1499 {
1500 	l2arc_stop();
1501 
1502 	spa_evict_all();
1503 
1504 	vdev_cache_stat_fini();
1505 	zil_fini();
1506 	dmu_fini();
1507 	zio_fini();
1508 	unique_fini();
1509 	refcount_fini();
1510 
1511 	avl_destroy(&spa_namespace_avl);
1512 	avl_destroy(&spa_spare_avl);
1513 	avl_destroy(&spa_l2cache_avl);
1514 
1515 	cv_destroy(&spa_namespace_cv);
1516 	mutex_destroy(&spa_namespace_lock);
1517 	mutex_destroy(&spa_spare_lock);
1518 	mutex_destroy(&spa_l2cache_lock);
1519 }
1520 
1521 /*
1522  * Return whether this pool has slogs. No locking needed.
1523  * It's not a problem if the wrong answer is returned as it's only for
1524  * performance and not correctness
1525  */
1526 boolean_t
1527 spa_has_slogs(spa_t *spa)
1528 {
1529 	return (spa->spa_log_class->mc_rotor != NULL);
1530 }
1531 
1532 spa_log_state_t
1533 spa_get_log_state(spa_t *spa)
1534 {
1535 	return (spa->spa_log_state);
1536 }
1537 
1538 void
1539 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1540 {
1541 	spa->spa_log_state = state;
1542 }
1543 
1544 boolean_t
1545 spa_is_root(spa_t *spa)
1546 {
1547 	return (spa->spa_is_root);
1548 }
1549 
1550 boolean_t
1551 spa_writeable(spa_t *spa)
1552 {
1553 	return (!!(spa->spa_mode & FWRITE));
1554 }
1555 
1556 int
1557 spa_mode(spa_t *spa)
1558 {
1559 	return (spa->spa_mode);
1560 }
1561 
1562 uint64_t
1563 spa_bootfs(spa_t *spa)
1564 {
1565 	return (spa->spa_bootfs);
1566 }
1567 
1568 uint64_t
1569 spa_delegation(spa_t *spa)
1570 {
1571 	return (spa->spa_delegation);
1572 }
1573 
1574 objset_t *
1575 spa_meta_objset(spa_t *spa)
1576 {
1577 	return (spa->spa_meta_objset);
1578 }
1579 
1580 enum zio_checksum
1581 spa_dedup_checksum(spa_t *spa)
1582 {
1583 	return (spa->spa_dedup_checksum);
1584 }
1585