xref: /titanic_50/usr/src/uts/common/fs/zfs/spa_misc.c (revision 9e69d7d0feb2a0394435ca1d9746c4c3d7bf9b22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include <sys/ddt.h>
49 #include "zfs_prop.h"
50 
51 /*
52  * SPA locking
53  *
54  * There are four basic locks for managing spa_t structures:
55  *
56  * spa_namespace_lock (global mutex)
57  *
58  *	This lock must be acquired to do any of the following:
59  *
60  *		- Lookup a spa_t by name
61  *		- Add or remove a spa_t from the namespace
62  *		- Increase spa_refcount from non-zero
63  *		- Check if spa_refcount is zero
64  *		- Rename a spa_t
65  *		- add/remove/attach/detach devices
66  *		- Held for the duration of create/destroy/import/export
67  *
68  *	It does not need to handle recursion.  A create or destroy may
69  *	reference objects (files or zvols) in other pools, but by
70  *	definition they must have an existing reference, and will never need
71  *	to lookup a spa_t by name.
72  *
73  * spa_refcount (per-spa refcount_t protected by mutex)
74  *
75  *	This reference count keep track of any active users of the spa_t.  The
76  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
77  *	the refcount is never really 'zero' - opening a pool implicitly keeps
78  *	some references in the DMU.  Internally we check against spa_minref, but
79  *	present the image of a zero/non-zero value to consumers.
80  *
81  * spa_config_lock[] (per-spa array of rwlocks)
82  *
83  *	This protects the spa_t from config changes, and must be held in
84  *	the following circumstances:
85  *
86  *		- RW_READER to perform I/O to the spa
87  *		- RW_WRITER to change the vdev config
88  *
89  * The locking order is fairly straightforward:
90  *
91  *		spa_namespace_lock	->	spa_refcount
92  *
93  *	The namespace lock must be acquired to increase the refcount from 0
94  *	or to check if it is zero.
95  *
96  *		spa_refcount		->	spa_config_lock[]
97  *
98  *	There must be at least one valid reference on the spa_t to acquire
99  *	the config lock.
100  *
101  *		spa_namespace_lock	->	spa_config_lock[]
102  *
103  *	The namespace lock must always be taken before the config lock.
104  *
105  *
106  * The spa_namespace_lock can be acquired directly and is globally visible.
107  *
108  * The namespace is manipulated using the following functions, all of which
109  * require the spa_namespace_lock to be held.
110  *
111  *	spa_lookup()		Lookup a spa_t by name.
112  *
113  *	spa_add()		Create a new spa_t in the namespace.
114  *
115  *	spa_remove()		Remove a spa_t from the namespace.  This also
116  *				frees up any memory associated with the spa_t.
117  *
118  *	spa_next()		Returns the next spa_t in the system, or the
119  *				first if NULL is passed.
120  *
121  *	spa_evict_all()		Shutdown and remove all spa_t structures in
122  *				the system.
123  *
124  *	spa_guid_exists()	Determine whether a pool/device guid exists.
125  *
126  * The spa_refcount is manipulated using the following functions:
127  *
128  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
129  *				called with spa_namespace_lock held if the
130  *				refcount is currently zero.
131  *
132  *	spa_close()		Remove a reference from the spa_t.  This will
133  *				not free the spa_t or remove it from the
134  *				namespace.  No locking is required.
135  *
136  *	spa_refcount_zero()	Returns true if the refcount is currently
137  *				zero.  Must be called with spa_namespace_lock
138  *				held.
139  *
140  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
141  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
142  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
143  *
144  * To read the configuration, it suffices to hold one of these locks as reader.
145  * To modify the configuration, you must hold all locks as writer.  To modify
146  * vdev state without altering the vdev tree's topology (e.g. online/offline),
147  * you must hold SCL_STATE and SCL_ZIO as writer.
148  *
149  * We use these distinct config locks to avoid recursive lock entry.
150  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
151  * block allocations (SCL_ALLOC), which may require reading space maps
152  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
153  *
154  * The spa config locks cannot be normal rwlocks because we need the
155  * ability to hand off ownership.  For example, SCL_ZIO is acquired
156  * by the issuing thread and later released by an interrupt thread.
157  * They do, however, obey the usual write-wanted semantics to prevent
158  * writer (i.e. system administrator) starvation.
159  *
160  * The lock acquisition rules are as follows:
161  *
162  * SCL_CONFIG
163  *	Protects changes to the vdev tree topology, such as vdev
164  *	add/remove/attach/detach.  Protects the dirty config list
165  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
166  *
167  * SCL_STATE
168  *	Protects changes to pool state and vdev state, such as vdev
169  *	online/offline/fault/degrade/clear.  Protects the dirty state list
170  *	(spa_state_dirty_list) and global pool state (spa_state).
171  *
172  * SCL_ALLOC
173  *	Protects changes to metaslab groups and classes.
174  *	Held as reader by metaslab_alloc() and metaslab_claim().
175  *
176  * SCL_ZIO
177  *	Held by bp-level zios (those which have no io_vd upon entry)
178  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
179  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
180  *
181  * SCL_FREE
182  *	Protects changes to metaslab groups and classes.
183  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
184  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
185  *	blocks in zio_done() while another i/o that holds either
186  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
187  *
188  * SCL_VDEV
189  *	Held as reader to prevent changes to the vdev tree during trivial
190  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
191  *	other locks, and lower than all of them, to ensure that it's safe
192  *	to acquire regardless of caller context.
193  *
194  * In addition, the following rules apply:
195  *
196  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
197  *	The lock ordering is SCL_CONFIG > spa_props_lock.
198  *
199  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
200  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
201  *	or zio_write_phys() -- the caller must ensure that the config cannot
202  *	cannot change in the interim, and that the vdev cannot be reopened.
203  *	SCL_STATE as reader suffices for both.
204  *
205  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
206  *
207  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
208  *				for writing.
209  *
210  *	spa_vdev_exit()		Release the config lock, wait for all I/O
211  *				to complete, sync the updated configs to the
212  *				cache, and release the namespace lock.
213  *
214  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
215  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
216  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
217  *
218  * spa_rename() is also implemented within this file since is requires
219  * manipulation of the namespace.
220  */
221 
222 static avl_tree_t spa_namespace_avl;
223 kmutex_t spa_namespace_lock;
224 static kcondvar_t spa_namespace_cv;
225 static int spa_active_count;
226 int spa_max_replication_override = SPA_DVAS_PER_BP;
227 
228 static kmutex_t spa_spare_lock;
229 static avl_tree_t spa_spare_avl;
230 static kmutex_t spa_l2cache_lock;
231 static avl_tree_t spa_l2cache_avl;
232 
233 kmem_cache_t *spa_buffer_pool;
234 int spa_mode_global;
235 
236 #ifdef ZFS_DEBUG
237 /* Everything except dprintf is on by default in debug builds */
238 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
239 #else
240 int zfs_flags = 0;
241 #endif
242 
243 /*
244  * zfs_recover can be set to nonzero to attempt to recover from
245  * otherwise-fatal errors, typically caused by on-disk corruption.  When
246  * set, calls to zfs_panic_recover() will turn into warning messages.
247  */
248 int zfs_recover = 0;
249 
250 
251 /*
252  * ==========================================================================
253  * SPA config locking
254  * ==========================================================================
255  */
256 static void
257 spa_config_lock_init(spa_t *spa)
258 {
259 	for (int i = 0; i < SCL_LOCKS; i++) {
260 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
261 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
262 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
263 		refcount_create(&scl->scl_count);
264 		scl->scl_writer = NULL;
265 		scl->scl_write_wanted = 0;
266 	}
267 }
268 
269 static void
270 spa_config_lock_destroy(spa_t *spa)
271 {
272 	for (int i = 0; i < SCL_LOCKS; i++) {
273 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
274 		mutex_destroy(&scl->scl_lock);
275 		cv_destroy(&scl->scl_cv);
276 		refcount_destroy(&scl->scl_count);
277 		ASSERT(scl->scl_writer == NULL);
278 		ASSERT(scl->scl_write_wanted == 0);
279 	}
280 }
281 
282 int
283 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
284 {
285 	for (int i = 0; i < SCL_LOCKS; i++) {
286 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
287 		if (!(locks & (1 << i)))
288 			continue;
289 		mutex_enter(&scl->scl_lock);
290 		if (rw == RW_READER) {
291 			if (scl->scl_writer || scl->scl_write_wanted) {
292 				mutex_exit(&scl->scl_lock);
293 				spa_config_exit(spa, locks ^ (1 << i), tag);
294 				return (0);
295 			}
296 		} else {
297 			ASSERT(scl->scl_writer != curthread);
298 			if (!refcount_is_zero(&scl->scl_count)) {
299 				mutex_exit(&scl->scl_lock);
300 				spa_config_exit(spa, locks ^ (1 << i), tag);
301 				return (0);
302 			}
303 			scl->scl_writer = curthread;
304 		}
305 		(void) refcount_add(&scl->scl_count, tag);
306 		mutex_exit(&scl->scl_lock);
307 	}
308 	return (1);
309 }
310 
311 void
312 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
313 {
314 	int wlocks_held = 0;
315 
316 	for (int i = 0; i < SCL_LOCKS; i++) {
317 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
318 		if (scl->scl_writer == curthread)
319 			wlocks_held |= (1 << i);
320 		if (!(locks & (1 << i)))
321 			continue;
322 		mutex_enter(&scl->scl_lock);
323 		if (rw == RW_READER) {
324 			while (scl->scl_writer || scl->scl_write_wanted) {
325 				cv_wait(&scl->scl_cv, &scl->scl_lock);
326 			}
327 		} else {
328 			ASSERT(scl->scl_writer != curthread);
329 			while (!refcount_is_zero(&scl->scl_count)) {
330 				scl->scl_write_wanted++;
331 				cv_wait(&scl->scl_cv, &scl->scl_lock);
332 				scl->scl_write_wanted--;
333 			}
334 			scl->scl_writer = curthread;
335 		}
336 		(void) refcount_add(&scl->scl_count, tag);
337 		mutex_exit(&scl->scl_lock);
338 	}
339 	ASSERT(wlocks_held <= locks);
340 }
341 
342 void
343 spa_config_exit(spa_t *spa, int locks, void *tag)
344 {
345 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
346 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
347 		if (!(locks & (1 << i)))
348 			continue;
349 		mutex_enter(&scl->scl_lock);
350 		ASSERT(!refcount_is_zero(&scl->scl_count));
351 		if (refcount_remove(&scl->scl_count, tag) == 0) {
352 			ASSERT(scl->scl_writer == NULL ||
353 			    scl->scl_writer == curthread);
354 			scl->scl_writer = NULL;	/* OK in either case */
355 			cv_broadcast(&scl->scl_cv);
356 		}
357 		mutex_exit(&scl->scl_lock);
358 	}
359 }
360 
361 int
362 spa_config_held(spa_t *spa, int locks, krw_t rw)
363 {
364 	int locks_held = 0;
365 
366 	for (int i = 0; i < SCL_LOCKS; i++) {
367 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
368 		if (!(locks & (1 << i)))
369 			continue;
370 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
371 		    (rw == RW_WRITER && scl->scl_writer == curthread))
372 			locks_held |= 1 << i;
373 	}
374 
375 	return (locks_held);
376 }
377 
378 /*
379  * ==========================================================================
380  * SPA namespace functions
381  * ==========================================================================
382  */
383 
384 /*
385  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
386  * Returns NULL if no matching spa_t is found.
387  */
388 spa_t *
389 spa_lookup(const char *name)
390 {
391 	static spa_t search;	/* spa_t is large; don't allocate on stack */
392 	spa_t *spa;
393 	avl_index_t where;
394 	char c;
395 	char *cp;
396 
397 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
398 
399 	/*
400 	 * If it's a full dataset name, figure out the pool name and
401 	 * just use that.
402 	 */
403 	cp = strpbrk(name, "/@");
404 	if (cp) {
405 		c = *cp;
406 		*cp = '\0';
407 	}
408 
409 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
410 	spa = avl_find(&spa_namespace_avl, &search, &where);
411 
412 	if (cp)
413 		*cp = c;
414 
415 	return (spa);
416 }
417 
418 /*
419  * Create an uninitialized spa_t with the given name.  Requires
420  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
421  * exist by calling spa_lookup() first.
422  */
423 spa_t *
424 spa_add(const char *name, nvlist_t *config, const char *altroot)
425 {
426 	spa_t *spa;
427 	spa_config_dirent_t *dp;
428 
429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
430 
431 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
432 
433 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
441 
442 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
443 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
444 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
445 
446 	for (int t = 0; t < TXG_SIZE; t++)
447 		bplist_init(&spa->spa_free_bplist[t]);
448 	bplist_init(&spa->spa_deferred_bplist);
449 
450 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
451 	spa->spa_state = POOL_STATE_UNINITIALIZED;
452 	spa->spa_freeze_txg = UINT64_MAX;
453 	spa->spa_final_txg = UINT64_MAX;
454 	spa->spa_load_max_txg = UINT64_MAX;
455 
456 	refcount_create(&spa->spa_refcount);
457 	spa_config_lock_init(spa);
458 
459 	avl_add(&spa_namespace_avl, spa);
460 
461 	/*
462 	 * Set the alternate root, if there is one.
463 	 */
464 	if (altroot) {
465 		spa->spa_root = spa_strdup(altroot);
466 		spa_active_count++;
467 	}
468 
469 	/*
470 	 * Every pool starts with the default cachefile
471 	 */
472 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
473 	    offsetof(spa_config_dirent_t, scd_link));
474 
475 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
476 	dp->scd_path = spa_strdup(spa_config_path);
477 	list_insert_head(&spa->spa_config_list, dp);
478 
479 	if (config != NULL)
480 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
481 
482 	return (spa);
483 }
484 
485 /*
486  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
487  * spa_namespace_lock.  This is called only after the spa_t has been closed and
488  * deactivated.
489  */
490 void
491 spa_remove(spa_t *spa)
492 {
493 	spa_config_dirent_t *dp;
494 
495 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
496 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
497 
498 	avl_remove(&spa_namespace_avl, spa);
499 	cv_broadcast(&spa_namespace_cv);
500 
501 	if (spa->spa_root) {
502 		spa_strfree(spa->spa_root);
503 		spa_active_count--;
504 	}
505 
506 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
507 		list_remove(&spa->spa_config_list, dp);
508 		if (dp->scd_path != NULL)
509 			spa_strfree(dp->scd_path);
510 		kmem_free(dp, sizeof (spa_config_dirent_t));
511 	}
512 
513 	list_destroy(&spa->spa_config_list);
514 
515 	spa_config_set(spa, NULL);
516 
517 	refcount_destroy(&spa->spa_refcount);
518 
519 	spa_config_lock_destroy(spa);
520 
521 	for (int t = 0; t < TXG_SIZE; t++)
522 		bplist_fini(&spa->spa_free_bplist[t]);
523 	bplist_fini(&spa->spa_deferred_bplist);
524 
525 	cv_destroy(&spa->spa_async_cv);
526 	cv_destroy(&spa->spa_scrub_io_cv);
527 	cv_destroy(&spa->spa_suspend_cv);
528 
529 	mutex_destroy(&spa->spa_async_lock);
530 	mutex_destroy(&spa->spa_scrub_lock);
531 	mutex_destroy(&spa->spa_errlog_lock);
532 	mutex_destroy(&spa->spa_errlist_lock);
533 	mutex_destroy(&spa->spa_history_lock);
534 	mutex_destroy(&spa->spa_props_lock);
535 	mutex_destroy(&spa->spa_suspend_lock);
536 	mutex_destroy(&spa->spa_vdev_top_lock);
537 
538 	kmem_free(spa, sizeof (spa_t));
539 }
540 
541 /*
542  * Given a pool, return the next pool in the namespace, or NULL if there is
543  * none.  If 'prev' is NULL, return the first pool.
544  */
545 spa_t *
546 spa_next(spa_t *prev)
547 {
548 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
549 
550 	if (prev)
551 		return (AVL_NEXT(&spa_namespace_avl, prev));
552 	else
553 		return (avl_first(&spa_namespace_avl));
554 }
555 
556 /*
557  * ==========================================================================
558  * SPA refcount functions
559  * ==========================================================================
560  */
561 
562 /*
563  * Add a reference to the given spa_t.  Must have at least one reference, or
564  * have the namespace lock held.
565  */
566 void
567 spa_open_ref(spa_t *spa, void *tag)
568 {
569 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
570 	    MUTEX_HELD(&spa_namespace_lock));
571 	(void) refcount_add(&spa->spa_refcount, tag);
572 }
573 
574 /*
575  * Remove a reference to the given spa_t.  Must have at least one reference, or
576  * have the namespace lock held.
577  */
578 void
579 spa_close(spa_t *spa, void *tag)
580 {
581 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
582 	    MUTEX_HELD(&spa_namespace_lock));
583 	(void) refcount_remove(&spa->spa_refcount, tag);
584 }
585 
586 /*
587  * Check to see if the spa refcount is zero.  Must be called with
588  * spa_namespace_lock held.  We really compare against spa_minref, which is the
589  * number of references acquired when opening a pool
590  */
591 boolean_t
592 spa_refcount_zero(spa_t *spa)
593 {
594 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
595 
596 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
597 }
598 
599 /*
600  * ==========================================================================
601  * SPA spare and l2cache tracking
602  * ==========================================================================
603  */
604 
605 /*
606  * Hot spares and cache devices are tracked using the same code below,
607  * for 'auxiliary' devices.
608  */
609 
610 typedef struct spa_aux {
611 	uint64_t	aux_guid;
612 	uint64_t	aux_pool;
613 	avl_node_t	aux_avl;
614 	int		aux_count;
615 } spa_aux_t;
616 
617 static int
618 spa_aux_compare(const void *a, const void *b)
619 {
620 	const spa_aux_t *sa = a;
621 	const spa_aux_t *sb = b;
622 
623 	if (sa->aux_guid < sb->aux_guid)
624 		return (-1);
625 	else if (sa->aux_guid > sb->aux_guid)
626 		return (1);
627 	else
628 		return (0);
629 }
630 
631 void
632 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
633 {
634 	avl_index_t where;
635 	spa_aux_t search;
636 	spa_aux_t *aux;
637 
638 	search.aux_guid = vd->vdev_guid;
639 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
640 		aux->aux_count++;
641 	} else {
642 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
643 		aux->aux_guid = vd->vdev_guid;
644 		aux->aux_count = 1;
645 		avl_insert(avl, aux, where);
646 	}
647 }
648 
649 void
650 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
651 {
652 	spa_aux_t search;
653 	spa_aux_t *aux;
654 	avl_index_t where;
655 
656 	search.aux_guid = vd->vdev_guid;
657 	aux = avl_find(avl, &search, &where);
658 
659 	ASSERT(aux != NULL);
660 
661 	if (--aux->aux_count == 0) {
662 		avl_remove(avl, aux);
663 		kmem_free(aux, sizeof (spa_aux_t));
664 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
665 		aux->aux_pool = 0ULL;
666 	}
667 }
668 
669 boolean_t
670 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
671 {
672 	spa_aux_t search, *found;
673 
674 	search.aux_guid = guid;
675 	found = avl_find(avl, &search, NULL);
676 
677 	if (pool) {
678 		if (found)
679 			*pool = found->aux_pool;
680 		else
681 			*pool = 0ULL;
682 	}
683 
684 	if (refcnt) {
685 		if (found)
686 			*refcnt = found->aux_count;
687 		else
688 			*refcnt = 0;
689 	}
690 
691 	return (found != NULL);
692 }
693 
694 void
695 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
696 {
697 	spa_aux_t search, *found;
698 	avl_index_t where;
699 
700 	search.aux_guid = vd->vdev_guid;
701 	found = avl_find(avl, &search, &where);
702 	ASSERT(found != NULL);
703 	ASSERT(found->aux_pool == 0ULL);
704 
705 	found->aux_pool = spa_guid(vd->vdev_spa);
706 }
707 
708 /*
709  * Spares are tracked globally due to the following constraints:
710  *
711  * 	- A spare may be part of multiple pools.
712  * 	- A spare may be added to a pool even if it's actively in use within
713  *	  another pool.
714  * 	- A spare in use in any pool can only be the source of a replacement if
715  *	  the target is a spare in the same pool.
716  *
717  * We keep track of all spares on the system through the use of a reference
718  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
719  * spare, then we bump the reference count in the AVL tree.  In addition, we set
720  * the 'vdev_isspare' member to indicate that the device is a spare (active or
721  * inactive).  When a spare is made active (used to replace a device in the
722  * pool), we also keep track of which pool its been made a part of.
723  *
724  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
725  * called under the spa_namespace lock as part of vdev reconfiguration.  The
726  * separate spare lock exists for the status query path, which does not need to
727  * be completely consistent with respect to other vdev configuration changes.
728  */
729 
730 static int
731 spa_spare_compare(const void *a, const void *b)
732 {
733 	return (spa_aux_compare(a, b));
734 }
735 
736 void
737 spa_spare_add(vdev_t *vd)
738 {
739 	mutex_enter(&spa_spare_lock);
740 	ASSERT(!vd->vdev_isspare);
741 	spa_aux_add(vd, &spa_spare_avl);
742 	vd->vdev_isspare = B_TRUE;
743 	mutex_exit(&spa_spare_lock);
744 }
745 
746 void
747 spa_spare_remove(vdev_t *vd)
748 {
749 	mutex_enter(&spa_spare_lock);
750 	ASSERT(vd->vdev_isspare);
751 	spa_aux_remove(vd, &spa_spare_avl);
752 	vd->vdev_isspare = B_FALSE;
753 	mutex_exit(&spa_spare_lock);
754 }
755 
756 boolean_t
757 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
758 {
759 	boolean_t found;
760 
761 	mutex_enter(&spa_spare_lock);
762 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
763 	mutex_exit(&spa_spare_lock);
764 
765 	return (found);
766 }
767 
768 void
769 spa_spare_activate(vdev_t *vd)
770 {
771 	mutex_enter(&spa_spare_lock);
772 	ASSERT(vd->vdev_isspare);
773 	spa_aux_activate(vd, &spa_spare_avl);
774 	mutex_exit(&spa_spare_lock);
775 }
776 
777 /*
778  * Level 2 ARC devices are tracked globally for the same reasons as spares.
779  * Cache devices currently only support one pool per cache device, and so
780  * for these devices the aux reference count is currently unused beyond 1.
781  */
782 
783 static int
784 spa_l2cache_compare(const void *a, const void *b)
785 {
786 	return (spa_aux_compare(a, b));
787 }
788 
789 void
790 spa_l2cache_add(vdev_t *vd)
791 {
792 	mutex_enter(&spa_l2cache_lock);
793 	ASSERT(!vd->vdev_isl2cache);
794 	spa_aux_add(vd, &spa_l2cache_avl);
795 	vd->vdev_isl2cache = B_TRUE;
796 	mutex_exit(&spa_l2cache_lock);
797 }
798 
799 void
800 spa_l2cache_remove(vdev_t *vd)
801 {
802 	mutex_enter(&spa_l2cache_lock);
803 	ASSERT(vd->vdev_isl2cache);
804 	spa_aux_remove(vd, &spa_l2cache_avl);
805 	vd->vdev_isl2cache = B_FALSE;
806 	mutex_exit(&spa_l2cache_lock);
807 }
808 
809 boolean_t
810 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
811 {
812 	boolean_t found;
813 
814 	mutex_enter(&spa_l2cache_lock);
815 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
816 	mutex_exit(&spa_l2cache_lock);
817 
818 	return (found);
819 }
820 
821 void
822 spa_l2cache_activate(vdev_t *vd)
823 {
824 	mutex_enter(&spa_l2cache_lock);
825 	ASSERT(vd->vdev_isl2cache);
826 	spa_aux_activate(vd, &spa_l2cache_avl);
827 	mutex_exit(&spa_l2cache_lock);
828 }
829 
830 /*
831  * ==========================================================================
832  * SPA vdev locking
833  * ==========================================================================
834  */
835 
836 /*
837  * Lock the given spa_t for the purpose of adding or removing a vdev.
838  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
839  * It returns the next transaction group for the spa_t.
840  */
841 uint64_t
842 spa_vdev_enter(spa_t *spa)
843 {
844 	mutex_enter(&spa_namespace_lock);
845 	mutex_enter(&spa->spa_vdev_top_lock);
846 	return (spa_vdev_config_enter(spa));
847 }
848 
849 /*
850  * Internal implementation for spa_vdev_enter().  Used when a vdev
851  * operation requires multiple syncs (i.e. removing a device) while
852  * keeping the spa_namespace_lock held.
853  */
854 uint64_t
855 spa_vdev_config_enter(spa_t *spa)
856 {
857 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
858 
859 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
860 
861 	return (spa_last_synced_txg(spa) + 1);
862 }
863 
864 /*
865  * Used in combination with spa_vdev_config_enter() to allow the syncing
866  * of multiple transactions without releasing the spa_namespace_lock.
867  */
868 void
869 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
870 {
871 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
872 
873 	int config_changed = B_FALSE;
874 
875 	ASSERT(txg > spa_last_synced_txg(spa));
876 
877 	spa->spa_pending_vdev = NULL;
878 
879 	/*
880 	 * Reassess the DTLs.
881 	 */
882 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
883 
884 	/*
885 	 * If the config changed, notify the scrub thread that it must restart.
886 	 */
887 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
888 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
889 		config_changed = B_TRUE;
890 		spa->spa_config_generation++;
891 	}
892 
893 	/*
894 	 * Verify the metaslab classes.
895 	 */
896 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
897 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
898 
899 	spa_config_exit(spa, SCL_ALL, spa);
900 
901 	/*
902 	 * Panic the system if the specified tag requires it.  This
903 	 * is useful for ensuring that configurations are updated
904 	 * transactionally.
905 	 */
906 	if (zio_injection_enabled)
907 		zio_handle_panic_injection(spa, tag);
908 
909 	/*
910 	 * Note: this txg_wait_synced() is important because it ensures
911 	 * that there won't be more than one config change per txg.
912 	 * This allows us to use the txg as the generation number.
913 	 */
914 	if (error == 0)
915 		txg_wait_synced(spa->spa_dsl_pool, txg);
916 
917 	if (vd != NULL) {
918 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
919 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
920 		vdev_free(vd);
921 		spa_config_exit(spa, SCL_ALL, spa);
922 	}
923 
924 	/*
925 	 * If the config changed, update the config cache.
926 	 */
927 	if (config_changed)
928 		spa_config_sync(spa, B_FALSE, B_TRUE);
929 }
930 
931 /*
932  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
933  * locking of spa_vdev_enter(), we also want make sure the transactions have
934  * synced to disk, and then update the global configuration cache with the new
935  * information.
936  */
937 int
938 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
939 {
940 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
941 	mutex_exit(&spa->spa_vdev_top_lock);
942 	mutex_exit(&spa_namespace_lock);
943 
944 	return (error);
945 }
946 
947 /*
948  * Lock the given spa_t for the purpose of changing vdev state.
949  */
950 void
951 spa_vdev_state_enter(spa_t *spa, int oplocks)
952 {
953 	int locks = SCL_STATE_ALL | oplocks;
954 
955 	spa_config_enter(spa, locks, spa, RW_WRITER);
956 	spa->spa_vdev_locks = locks;
957 }
958 
959 int
960 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
961 {
962 	if (vd != NULL || error == 0)
963 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
964 		    0, 0, B_FALSE);
965 
966 	if (vd != NULL) {
967 		vdev_state_dirty(vd->vdev_top);
968 		spa->spa_config_generation++;
969 	}
970 
971 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
972 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
973 
974 	/*
975 	 * If anything changed, wait for it to sync.  This ensures that,
976 	 * from the system administrator's perspective, zpool(1M) commands
977 	 * are synchronous.  This is important for things like zpool offline:
978 	 * when the command completes, you expect no further I/O from ZFS.
979 	 */
980 	if (vd != NULL)
981 		txg_wait_synced(spa->spa_dsl_pool, 0);
982 
983 	return (error);
984 }
985 
986 /*
987  * ==========================================================================
988  * Miscellaneous functions
989  * ==========================================================================
990  */
991 
992 /*
993  * Rename a spa_t.
994  */
995 int
996 spa_rename(const char *name, const char *newname)
997 {
998 	spa_t *spa;
999 	int err;
1000 
1001 	/*
1002 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1003 	 * actually open the pool so that we can sync out the necessary labels.
1004 	 * It's OK to call spa_open() with the namespace lock held because we
1005 	 * allow recursive calls for other reasons.
1006 	 */
1007 	mutex_enter(&spa_namespace_lock);
1008 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1009 		mutex_exit(&spa_namespace_lock);
1010 		return (err);
1011 	}
1012 
1013 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1014 
1015 	avl_remove(&spa_namespace_avl, spa);
1016 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1017 	avl_add(&spa_namespace_avl, spa);
1018 
1019 	/*
1020 	 * Sync all labels to disk with the new names by marking the root vdev
1021 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1022 	 * during the sync.
1023 	 */
1024 	vdev_config_dirty(spa->spa_root_vdev);
1025 
1026 	spa_config_exit(spa, SCL_ALL, FTAG);
1027 
1028 	txg_wait_synced(spa->spa_dsl_pool, 0);
1029 
1030 	/*
1031 	 * Sync the updated config cache.
1032 	 */
1033 	spa_config_sync(spa, B_FALSE, B_TRUE);
1034 
1035 	spa_close(spa, FTAG);
1036 
1037 	mutex_exit(&spa_namespace_lock);
1038 
1039 	return (0);
1040 }
1041 
1042 
1043 /*
1044  * Determine whether a pool with given pool_guid exists.  If device_guid is
1045  * non-zero, determine whether the pool exists *and* contains a device with the
1046  * specified device_guid.
1047  */
1048 boolean_t
1049 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1050 {
1051 	spa_t *spa;
1052 	avl_tree_t *t = &spa_namespace_avl;
1053 
1054 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1055 
1056 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1057 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1058 			continue;
1059 		if (spa->spa_root_vdev == NULL)
1060 			continue;
1061 		if (spa_guid(spa) == pool_guid) {
1062 			if (device_guid == 0)
1063 				break;
1064 
1065 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1066 			    device_guid) != NULL)
1067 				break;
1068 
1069 			/*
1070 			 * Check any devices we may be in the process of adding.
1071 			 */
1072 			if (spa->spa_pending_vdev) {
1073 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1074 				    device_guid) != NULL)
1075 					break;
1076 			}
1077 		}
1078 	}
1079 
1080 	return (spa != NULL);
1081 }
1082 
1083 char *
1084 spa_strdup(const char *s)
1085 {
1086 	size_t len;
1087 	char *new;
1088 
1089 	len = strlen(s);
1090 	new = kmem_alloc(len + 1, KM_SLEEP);
1091 	bcopy(s, new, len);
1092 	new[len] = '\0';
1093 
1094 	return (new);
1095 }
1096 
1097 void
1098 spa_strfree(char *s)
1099 {
1100 	kmem_free(s, strlen(s) + 1);
1101 }
1102 
1103 uint64_t
1104 spa_get_random(uint64_t range)
1105 {
1106 	uint64_t r;
1107 
1108 	ASSERT(range != 0);
1109 
1110 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1111 
1112 	return (r % range);
1113 }
1114 
1115 void
1116 sprintf_blkptr(char *buf, const blkptr_t *bp)
1117 {
1118 	char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1119 	char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1120 	char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1121 
1122 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1123 }
1124 
1125 void
1126 spa_freeze(spa_t *spa)
1127 {
1128 	uint64_t freeze_txg = 0;
1129 
1130 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1131 	if (spa->spa_freeze_txg == UINT64_MAX) {
1132 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1133 		spa->spa_freeze_txg = freeze_txg;
1134 	}
1135 	spa_config_exit(spa, SCL_ALL, FTAG);
1136 	if (freeze_txg != 0)
1137 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1138 }
1139 
1140 void
1141 zfs_panic_recover(const char *fmt, ...)
1142 {
1143 	va_list adx;
1144 
1145 	va_start(adx, fmt);
1146 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1147 	va_end(adx);
1148 }
1149 
1150 /*
1151  * ==========================================================================
1152  * Accessor functions
1153  * ==========================================================================
1154  */
1155 
1156 boolean_t
1157 spa_shutting_down(spa_t *spa)
1158 {
1159 	return (spa->spa_async_suspended);
1160 }
1161 
1162 dsl_pool_t *
1163 spa_get_dsl(spa_t *spa)
1164 {
1165 	return (spa->spa_dsl_pool);
1166 }
1167 
1168 blkptr_t *
1169 spa_get_rootblkptr(spa_t *spa)
1170 {
1171 	return (&spa->spa_ubsync.ub_rootbp);
1172 }
1173 
1174 void
1175 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1176 {
1177 	spa->spa_uberblock.ub_rootbp = *bp;
1178 }
1179 
1180 void
1181 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1182 {
1183 	if (spa->spa_root == NULL)
1184 		buf[0] = '\0';
1185 	else
1186 		(void) strncpy(buf, spa->spa_root, buflen);
1187 }
1188 
1189 int
1190 spa_sync_pass(spa_t *spa)
1191 {
1192 	return (spa->spa_sync_pass);
1193 }
1194 
1195 char *
1196 spa_name(spa_t *spa)
1197 {
1198 	return (spa->spa_name);
1199 }
1200 
1201 uint64_t
1202 spa_guid(spa_t *spa)
1203 {
1204 	/*
1205 	 * If we fail to parse the config during spa_load(), we can go through
1206 	 * the error path (which posts an ereport) and end up here with no root
1207 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1208 	 * this case.
1209 	 */
1210 	if (spa->spa_root_vdev != NULL)
1211 		return (spa->spa_root_vdev->vdev_guid);
1212 	else
1213 		return (spa->spa_load_guid);
1214 }
1215 
1216 uint64_t
1217 spa_last_synced_txg(spa_t *spa)
1218 {
1219 	return (spa->spa_ubsync.ub_txg);
1220 }
1221 
1222 uint64_t
1223 spa_first_txg(spa_t *spa)
1224 {
1225 	return (spa->spa_first_txg);
1226 }
1227 
1228 uint64_t
1229 spa_syncing_txg(spa_t *spa)
1230 {
1231 	return (spa->spa_syncing_txg);
1232 }
1233 
1234 pool_state_t
1235 spa_state(spa_t *spa)
1236 {
1237 	return (spa->spa_state);
1238 }
1239 
1240 uint64_t
1241 spa_freeze_txg(spa_t *spa)
1242 {
1243 	return (spa->spa_freeze_txg);
1244 }
1245 
1246 /* ARGSUSED */
1247 uint64_t
1248 spa_get_asize(spa_t *spa, uint64_t lsize)
1249 {
1250 	/*
1251 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1252 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1253 	 * times the size; so just assume that.  Add to this the fact that
1254 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1255 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1256 	 */
1257 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1258 }
1259 
1260 uint64_t
1261 spa_get_dspace(spa_t *spa)
1262 {
1263 	return (spa->spa_dspace);
1264 }
1265 
1266 void
1267 spa_update_dspace(spa_t *spa)
1268 {
1269 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1270 	    ddt_get_dedup_dspace(spa);
1271 }
1272 
1273 /*
1274  * Return the failure mode that has been set to this pool. The default
1275  * behavior will be to block all I/Os when a complete failure occurs.
1276  */
1277 uint8_t
1278 spa_get_failmode(spa_t *spa)
1279 {
1280 	return (spa->spa_failmode);
1281 }
1282 
1283 boolean_t
1284 spa_suspended(spa_t *spa)
1285 {
1286 	return (spa->spa_suspended);
1287 }
1288 
1289 uint64_t
1290 spa_version(spa_t *spa)
1291 {
1292 	return (spa->spa_ubsync.ub_version);
1293 }
1294 
1295 boolean_t
1296 spa_deflate(spa_t *spa)
1297 {
1298 	return (spa->spa_deflate);
1299 }
1300 
1301 metaslab_class_t *
1302 spa_normal_class(spa_t *spa)
1303 {
1304 	return (spa->spa_normal_class);
1305 }
1306 
1307 metaslab_class_t *
1308 spa_log_class(spa_t *spa)
1309 {
1310 	return (spa->spa_log_class);
1311 }
1312 
1313 int
1314 spa_max_replication(spa_t *spa)
1315 {
1316 	/*
1317 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1318 	 * handle BPs with more than one DVA allocated.  Set our max
1319 	 * replication level accordingly.
1320 	 */
1321 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1322 		return (1);
1323 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1324 }
1325 
1326 uint64_t
1327 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1328 {
1329 	uint64_t asize = DVA_GET_ASIZE(dva);
1330 	uint64_t dsize = asize;
1331 
1332 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1333 
1334 	if (asize != 0 && spa->spa_deflate) {
1335 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1336 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1337 	}
1338 
1339 	return (dsize);
1340 }
1341 
1342 uint64_t
1343 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1344 {
1345 	uint64_t dsize = 0;
1346 
1347 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1348 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1349 
1350 	return (dsize);
1351 }
1352 
1353 uint64_t
1354 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1355 {
1356 	uint64_t dsize = 0;
1357 
1358 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1359 
1360 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1361 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1362 
1363 	spa_config_exit(spa, SCL_VDEV, FTAG);
1364 
1365 	return (dsize);
1366 }
1367 
1368 /*
1369  * ==========================================================================
1370  * Initialization and Termination
1371  * ==========================================================================
1372  */
1373 
1374 static int
1375 spa_name_compare(const void *a1, const void *a2)
1376 {
1377 	const spa_t *s1 = a1;
1378 	const spa_t *s2 = a2;
1379 	int s;
1380 
1381 	s = strcmp(s1->spa_name, s2->spa_name);
1382 	if (s > 0)
1383 		return (1);
1384 	if (s < 0)
1385 		return (-1);
1386 	return (0);
1387 }
1388 
1389 int
1390 spa_busy(void)
1391 {
1392 	return (spa_active_count);
1393 }
1394 
1395 void
1396 spa_boot_init()
1397 {
1398 	spa_config_load();
1399 }
1400 
1401 void
1402 spa_init(int mode)
1403 {
1404 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1405 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1406 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1407 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1408 
1409 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1410 	    offsetof(spa_t, spa_avl));
1411 
1412 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1413 	    offsetof(spa_aux_t, aux_avl));
1414 
1415 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1416 	    offsetof(spa_aux_t, aux_avl));
1417 
1418 	spa_mode_global = mode;
1419 
1420 	refcount_init();
1421 	unique_init();
1422 	zio_init();
1423 	dmu_init();
1424 	zil_init();
1425 	vdev_cache_stat_init();
1426 	zfs_prop_init();
1427 	zpool_prop_init();
1428 	spa_config_load();
1429 	l2arc_start();
1430 }
1431 
1432 void
1433 spa_fini(void)
1434 {
1435 	l2arc_stop();
1436 
1437 	spa_evict_all();
1438 
1439 	vdev_cache_stat_fini();
1440 	zil_fini();
1441 	dmu_fini();
1442 	zio_fini();
1443 	unique_fini();
1444 	refcount_fini();
1445 
1446 	avl_destroy(&spa_namespace_avl);
1447 	avl_destroy(&spa_spare_avl);
1448 	avl_destroy(&spa_l2cache_avl);
1449 
1450 	cv_destroy(&spa_namespace_cv);
1451 	mutex_destroy(&spa_namespace_lock);
1452 	mutex_destroy(&spa_spare_lock);
1453 	mutex_destroy(&spa_l2cache_lock);
1454 }
1455 
1456 /*
1457  * Return whether this pool has slogs. No locking needed.
1458  * It's not a problem if the wrong answer is returned as it's only for
1459  * performance and not correctness
1460  */
1461 boolean_t
1462 spa_has_slogs(spa_t *spa)
1463 {
1464 	return (spa->spa_log_class->mc_rotor != NULL);
1465 }
1466 
1467 spa_log_state_t
1468 spa_get_log_state(spa_t *spa)
1469 {
1470 	return (spa->spa_log_state);
1471 }
1472 
1473 void
1474 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1475 {
1476 	spa->spa_log_state = state;
1477 }
1478 
1479 boolean_t
1480 spa_is_root(spa_t *spa)
1481 {
1482 	return (spa->spa_is_root);
1483 }
1484 
1485 boolean_t
1486 spa_writeable(spa_t *spa)
1487 {
1488 	return (!!(spa->spa_mode & FWRITE));
1489 }
1490 
1491 int
1492 spa_mode(spa_t *spa)
1493 {
1494 	return (spa->spa_mode);
1495 }
1496 
1497 uint64_t
1498 spa_bootfs(spa_t *spa)
1499 {
1500 	return (spa->spa_bootfs);
1501 }
1502 
1503 uint64_t
1504 spa_delegation(spa_t *spa)
1505 {
1506 	return (spa->spa_delegation);
1507 }
1508 
1509 objset_t *
1510 spa_meta_objset(spa_t *spa)
1511 {
1512 	return (spa->spa_meta_objset);
1513 }
1514 
1515 enum zio_checksum
1516 spa_dedup_checksum(spa_t *spa)
1517 {
1518 	return (spa->spa_dedup_checksum);
1519 }
1520