xref: /titanic_50/usr/src/uts/common/fs/zfs/spa_misc.c (revision 546f41c465408bee9e87d051d2fdb40522350b40)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/arc.h>
49 #include <sys/ddt.h>
50 #include "zfs_prop.h"
51 
52 /*
53  * SPA locking
54  *
55  * There are four basic locks for managing spa_t structures:
56  *
57  * spa_namespace_lock (global mutex)
58  *
59  *	This lock must be acquired to do any of the following:
60  *
61  *		- Lookup a spa_t by name
62  *		- Add or remove a spa_t from the namespace
63  *		- Increase spa_refcount from non-zero
64  *		- Check if spa_refcount is zero
65  *		- Rename a spa_t
66  *		- add/remove/attach/detach devices
67  *		- Held for the duration of create/destroy/import/export
68  *
69  *	It does not need to handle recursion.  A create or destroy may
70  *	reference objects (files or zvols) in other pools, but by
71  *	definition they must have an existing reference, and will never need
72  *	to lookup a spa_t by name.
73  *
74  * spa_refcount (per-spa refcount_t protected by mutex)
75  *
76  *	This reference count keep track of any active users of the spa_t.  The
77  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
78  *	the refcount is never really 'zero' - opening a pool implicitly keeps
79  *	some references in the DMU.  Internally we check against spa_minref, but
80  *	present the image of a zero/non-zero value to consumers.
81  *
82  * spa_config_lock[] (per-spa array of rwlocks)
83  *
84  *	This protects the spa_t from config changes, and must be held in
85  *	the following circumstances:
86  *
87  *		- RW_READER to perform I/O to the spa
88  *		- RW_WRITER to change the vdev config
89  *
90  * The locking order is fairly straightforward:
91  *
92  *		spa_namespace_lock	->	spa_refcount
93  *
94  *	The namespace lock must be acquired to increase the refcount from 0
95  *	or to check if it is zero.
96  *
97  *		spa_refcount		->	spa_config_lock[]
98  *
99  *	There must be at least one valid reference on the spa_t to acquire
100  *	the config lock.
101  *
102  *		spa_namespace_lock	->	spa_config_lock[]
103  *
104  *	The namespace lock must always be taken before the config lock.
105  *
106  *
107  * The spa_namespace_lock can be acquired directly and is globally visible.
108  *
109  * The namespace is manipulated using the following functions, all of which
110  * require the spa_namespace_lock to be held.
111  *
112  *	spa_lookup()		Lookup a spa_t by name.
113  *
114  *	spa_add()		Create a new spa_t in the namespace.
115  *
116  *	spa_remove()		Remove a spa_t from the namespace.  This also
117  *				frees up any memory associated with the spa_t.
118  *
119  *	spa_next()		Returns the next spa_t in the system, or the
120  *				first if NULL is passed.
121  *
122  *	spa_evict_all()		Shutdown and remove all spa_t structures in
123  *				the system.
124  *
125  *	spa_guid_exists()	Determine whether a pool/device guid exists.
126  *
127  * The spa_refcount is manipulated using the following functions:
128  *
129  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
130  *				called with spa_namespace_lock held if the
131  *				refcount is currently zero.
132  *
133  *	spa_close()		Remove a reference from the spa_t.  This will
134  *				not free the spa_t or remove it from the
135  *				namespace.  No locking is required.
136  *
137  *	spa_refcount_zero()	Returns true if the refcount is currently
138  *				zero.  Must be called with spa_namespace_lock
139  *				held.
140  *
141  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
142  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
143  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
144  *
145  * To read the configuration, it suffices to hold one of these locks as reader.
146  * To modify the configuration, you must hold all locks as writer.  To modify
147  * vdev state without altering the vdev tree's topology (e.g. online/offline),
148  * you must hold SCL_STATE and SCL_ZIO as writer.
149  *
150  * We use these distinct config locks to avoid recursive lock entry.
151  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
152  * block allocations (SCL_ALLOC), which may require reading space maps
153  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
154  *
155  * The spa config locks cannot be normal rwlocks because we need the
156  * ability to hand off ownership.  For example, SCL_ZIO is acquired
157  * by the issuing thread and later released by an interrupt thread.
158  * They do, however, obey the usual write-wanted semantics to prevent
159  * writer (i.e. system administrator) starvation.
160  *
161  * The lock acquisition rules are as follows:
162  *
163  * SCL_CONFIG
164  *	Protects changes to the vdev tree topology, such as vdev
165  *	add/remove/attach/detach.  Protects the dirty config list
166  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
167  *
168  * SCL_STATE
169  *	Protects changes to pool state and vdev state, such as vdev
170  *	online/offline/fault/degrade/clear.  Protects the dirty state list
171  *	(spa_state_dirty_list) and global pool state (spa_state).
172  *
173  * SCL_ALLOC
174  *	Protects changes to metaslab groups and classes.
175  *	Held as reader by metaslab_alloc() and metaslab_claim().
176  *
177  * SCL_ZIO
178  *	Held by bp-level zios (those which have no io_vd upon entry)
179  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
180  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
181  *
182  * SCL_FREE
183  *	Protects changes to metaslab groups and classes.
184  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
185  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
186  *	blocks in zio_done() while another i/o that holds either
187  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
188  *
189  * SCL_VDEV
190  *	Held as reader to prevent changes to the vdev tree during trivial
191  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
192  *	other locks, and lower than all of them, to ensure that it's safe
193  *	to acquire regardless of caller context.
194  *
195  * In addition, the following rules apply:
196  *
197  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
198  *	The lock ordering is SCL_CONFIG > spa_props_lock.
199  *
200  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
201  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
202  *	or zio_write_phys() -- the caller must ensure that the config cannot
203  *	cannot change in the interim, and that the vdev cannot be reopened.
204  *	SCL_STATE as reader suffices for both.
205  *
206  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
207  *
208  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
209  *				for writing.
210  *
211  *	spa_vdev_exit()		Release the config lock, wait for all I/O
212  *				to complete, sync the updated configs to the
213  *				cache, and release the namespace lock.
214  *
215  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
216  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
217  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
218  *
219  * spa_rename() is also implemented within this file since is requires
220  * manipulation of the namespace.
221  */
222 
223 static avl_tree_t spa_namespace_avl;
224 kmutex_t spa_namespace_lock;
225 static kcondvar_t spa_namespace_cv;
226 static int spa_active_count;
227 int spa_max_replication_override = SPA_DVAS_PER_BP;
228 
229 static kmutex_t spa_spare_lock;
230 static avl_tree_t spa_spare_avl;
231 static kmutex_t spa_l2cache_lock;
232 static avl_tree_t spa_l2cache_avl;
233 
234 kmem_cache_t *spa_buffer_pool;
235 int spa_mode_global;
236 
237 #ifdef ZFS_DEBUG
238 /* Everything except dprintf is on by default in debug builds */
239 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
240 #else
241 int zfs_flags = 0;
242 #endif
243 
244 /*
245  * zfs_recover can be set to nonzero to attempt to recover from
246  * otherwise-fatal errors, typically caused by on-disk corruption.  When
247  * set, calls to zfs_panic_recover() will turn into warning messages.
248  */
249 int zfs_recover = 0;
250 
251 
252 /*
253  * ==========================================================================
254  * SPA config locking
255  * ==========================================================================
256  */
257 static void
258 spa_config_lock_init(spa_t *spa)
259 {
260 	for (int i = 0; i < SCL_LOCKS; i++) {
261 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
262 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
263 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
264 		refcount_create(&scl->scl_count);
265 		scl->scl_writer = NULL;
266 		scl->scl_write_wanted = 0;
267 	}
268 }
269 
270 static void
271 spa_config_lock_destroy(spa_t *spa)
272 {
273 	for (int i = 0; i < SCL_LOCKS; i++) {
274 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
275 		mutex_destroy(&scl->scl_lock);
276 		cv_destroy(&scl->scl_cv);
277 		refcount_destroy(&scl->scl_count);
278 		ASSERT(scl->scl_writer == NULL);
279 		ASSERT(scl->scl_write_wanted == 0);
280 	}
281 }
282 
283 int
284 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
285 {
286 	for (int i = 0; i < SCL_LOCKS; i++) {
287 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
288 		if (!(locks & (1 << i)))
289 			continue;
290 		mutex_enter(&scl->scl_lock);
291 		if (rw == RW_READER) {
292 			if (scl->scl_writer || scl->scl_write_wanted) {
293 				mutex_exit(&scl->scl_lock);
294 				spa_config_exit(spa, locks ^ (1 << i), tag);
295 				return (0);
296 			}
297 		} else {
298 			ASSERT(scl->scl_writer != curthread);
299 			if (!refcount_is_zero(&scl->scl_count)) {
300 				mutex_exit(&scl->scl_lock);
301 				spa_config_exit(spa, locks ^ (1 << i), tag);
302 				return (0);
303 			}
304 			scl->scl_writer = curthread;
305 		}
306 		(void) refcount_add(&scl->scl_count, tag);
307 		mutex_exit(&scl->scl_lock);
308 	}
309 	return (1);
310 }
311 
312 void
313 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
314 {
315 	int wlocks_held = 0;
316 
317 	for (int i = 0; i < SCL_LOCKS; i++) {
318 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
319 		if (scl->scl_writer == curthread)
320 			wlocks_held |= (1 << i);
321 		if (!(locks & (1 << i)))
322 			continue;
323 		mutex_enter(&scl->scl_lock);
324 		if (rw == RW_READER) {
325 			while (scl->scl_writer || scl->scl_write_wanted) {
326 				cv_wait(&scl->scl_cv, &scl->scl_lock);
327 			}
328 		} else {
329 			ASSERT(scl->scl_writer != curthread);
330 			while (!refcount_is_zero(&scl->scl_count)) {
331 				scl->scl_write_wanted++;
332 				cv_wait(&scl->scl_cv, &scl->scl_lock);
333 				scl->scl_write_wanted--;
334 			}
335 			scl->scl_writer = curthread;
336 		}
337 		(void) refcount_add(&scl->scl_count, tag);
338 		mutex_exit(&scl->scl_lock);
339 	}
340 	ASSERT(wlocks_held <= locks);
341 }
342 
343 void
344 spa_config_exit(spa_t *spa, int locks, void *tag)
345 {
346 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
347 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
348 		if (!(locks & (1 << i)))
349 			continue;
350 		mutex_enter(&scl->scl_lock);
351 		ASSERT(!refcount_is_zero(&scl->scl_count));
352 		if (refcount_remove(&scl->scl_count, tag) == 0) {
353 			ASSERT(scl->scl_writer == NULL ||
354 			    scl->scl_writer == curthread);
355 			scl->scl_writer = NULL;	/* OK in either case */
356 			cv_broadcast(&scl->scl_cv);
357 		}
358 		mutex_exit(&scl->scl_lock);
359 	}
360 }
361 
362 int
363 spa_config_held(spa_t *spa, int locks, krw_t rw)
364 {
365 	int locks_held = 0;
366 
367 	for (int i = 0; i < SCL_LOCKS; i++) {
368 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 		if (!(locks & (1 << i)))
370 			continue;
371 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
372 		    (rw == RW_WRITER && scl->scl_writer == curthread))
373 			locks_held |= 1 << i;
374 	}
375 
376 	return (locks_held);
377 }
378 
379 /*
380  * ==========================================================================
381  * SPA namespace functions
382  * ==========================================================================
383  */
384 
385 /*
386  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
387  * Returns NULL if no matching spa_t is found.
388  */
389 spa_t *
390 spa_lookup(const char *name)
391 {
392 	static spa_t search;	/* spa_t is large; don't allocate on stack */
393 	spa_t *spa;
394 	avl_index_t where;
395 	char c;
396 	char *cp;
397 
398 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
399 
400 	/*
401 	 * If it's a full dataset name, figure out the pool name and
402 	 * just use that.
403 	 */
404 	cp = strpbrk(name, "/@");
405 	if (cp) {
406 		c = *cp;
407 		*cp = '\0';
408 	}
409 
410 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
411 	spa = avl_find(&spa_namespace_avl, &search, &where);
412 
413 	if (cp)
414 		*cp = c;
415 
416 	return (spa);
417 }
418 
419 /*
420  * Create an uninitialized spa_t with the given name.  Requires
421  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
422  * exist by calling spa_lookup() first.
423  */
424 spa_t *
425 spa_add(const char *name, nvlist_t *config, const char *altroot)
426 {
427 	spa_t *spa;
428 	spa_config_dirent_t *dp;
429 
430 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
431 
432 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
433 
434 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
441 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
442 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
443 
444 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
445 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
446 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
447 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
448 
449 	for (int t = 0; t < TXG_SIZE; t++)
450 		bplist_create(&spa->spa_free_bplist[t]);
451 
452 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
453 	spa->spa_state = POOL_STATE_UNINITIALIZED;
454 	spa->spa_freeze_txg = UINT64_MAX;
455 	spa->spa_final_txg = UINT64_MAX;
456 	spa->spa_load_max_txg = UINT64_MAX;
457 	spa->spa_proc = &p0;
458 	spa->spa_proc_state = SPA_PROC_NONE;
459 
460 	refcount_create(&spa->spa_refcount);
461 	spa_config_lock_init(spa);
462 
463 	avl_add(&spa_namespace_avl, spa);
464 
465 	/*
466 	 * Set the alternate root, if there is one.
467 	 */
468 	if (altroot) {
469 		spa->spa_root = spa_strdup(altroot);
470 		spa_active_count++;
471 	}
472 
473 	/*
474 	 * Every pool starts with the default cachefile
475 	 */
476 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
477 	    offsetof(spa_config_dirent_t, scd_link));
478 
479 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
480 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
481 	list_insert_head(&spa->spa_config_list, dp);
482 
483 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
484 	    KM_SLEEP) == 0);
485 
486 	if (config != NULL)
487 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
488 
489 	return (spa);
490 }
491 
492 /*
493  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
494  * spa_namespace_lock.  This is called only after the spa_t has been closed and
495  * deactivated.
496  */
497 void
498 spa_remove(spa_t *spa)
499 {
500 	spa_config_dirent_t *dp;
501 
502 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
503 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
504 
505 	nvlist_free(spa->spa_config_splitting);
506 
507 	avl_remove(&spa_namespace_avl, spa);
508 	cv_broadcast(&spa_namespace_cv);
509 
510 	if (spa->spa_root) {
511 		spa_strfree(spa->spa_root);
512 		spa_active_count--;
513 	}
514 
515 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
516 		list_remove(&spa->spa_config_list, dp);
517 		if (dp->scd_path != NULL)
518 			spa_strfree(dp->scd_path);
519 		kmem_free(dp, sizeof (spa_config_dirent_t));
520 	}
521 
522 	list_destroy(&spa->spa_config_list);
523 
524 	nvlist_free(spa->spa_load_info);
525 	spa_config_set(spa, NULL);
526 
527 	refcount_destroy(&spa->spa_refcount);
528 
529 	spa_config_lock_destroy(spa);
530 
531 	for (int t = 0; t < TXG_SIZE; t++)
532 		bplist_destroy(&spa->spa_free_bplist[t]);
533 
534 	cv_destroy(&spa->spa_async_cv);
535 	cv_destroy(&spa->spa_proc_cv);
536 	cv_destroy(&spa->spa_scrub_io_cv);
537 	cv_destroy(&spa->spa_suspend_cv);
538 
539 	mutex_destroy(&spa->spa_async_lock);
540 	mutex_destroy(&spa->spa_errlist_lock);
541 	mutex_destroy(&spa->spa_errlog_lock);
542 	mutex_destroy(&spa->spa_history_lock);
543 	mutex_destroy(&spa->spa_proc_lock);
544 	mutex_destroy(&spa->spa_props_lock);
545 	mutex_destroy(&spa->spa_scrub_lock);
546 	mutex_destroy(&spa->spa_suspend_lock);
547 	mutex_destroy(&spa->spa_vdev_top_lock);
548 
549 	kmem_free(spa, sizeof (spa_t));
550 }
551 
552 /*
553  * Given a pool, return the next pool in the namespace, or NULL if there is
554  * none.  If 'prev' is NULL, return the first pool.
555  */
556 spa_t *
557 spa_next(spa_t *prev)
558 {
559 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
560 
561 	if (prev)
562 		return (AVL_NEXT(&spa_namespace_avl, prev));
563 	else
564 		return (avl_first(&spa_namespace_avl));
565 }
566 
567 /*
568  * ==========================================================================
569  * SPA refcount functions
570  * ==========================================================================
571  */
572 
573 /*
574  * Add a reference to the given spa_t.  Must have at least one reference, or
575  * have the namespace lock held.
576  */
577 void
578 spa_open_ref(spa_t *spa, void *tag)
579 {
580 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
581 	    MUTEX_HELD(&spa_namespace_lock));
582 	(void) refcount_add(&spa->spa_refcount, tag);
583 }
584 
585 /*
586  * Remove a reference to the given spa_t.  Must have at least one reference, or
587  * have the namespace lock held.
588  */
589 void
590 spa_close(spa_t *spa, void *tag)
591 {
592 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
593 	    MUTEX_HELD(&spa_namespace_lock));
594 	(void) refcount_remove(&spa->spa_refcount, tag);
595 }
596 
597 /*
598  * Check to see if the spa refcount is zero.  Must be called with
599  * spa_namespace_lock held.  We really compare against spa_minref, which is the
600  * number of references acquired when opening a pool
601  */
602 boolean_t
603 spa_refcount_zero(spa_t *spa)
604 {
605 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
606 
607 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
608 }
609 
610 /*
611  * ==========================================================================
612  * SPA spare and l2cache tracking
613  * ==========================================================================
614  */
615 
616 /*
617  * Hot spares and cache devices are tracked using the same code below,
618  * for 'auxiliary' devices.
619  */
620 
621 typedef struct spa_aux {
622 	uint64_t	aux_guid;
623 	uint64_t	aux_pool;
624 	avl_node_t	aux_avl;
625 	int		aux_count;
626 } spa_aux_t;
627 
628 static int
629 spa_aux_compare(const void *a, const void *b)
630 {
631 	const spa_aux_t *sa = a;
632 	const spa_aux_t *sb = b;
633 
634 	if (sa->aux_guid < sb->aux_guid)
635 		return (-1);
636 	else if (sa->aux_guid > sb->aux_guid)
637 		return (1);
638 	else
639 		return (0);
640 }
641 
642 void
643 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
644 {
645 	avl_index_t where;
646 	spa_aux_t search;
647 	spa_aux_t *aux;
648 
649 	search.aux_guid = vd->vdev_guid;
650 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
651 		aux->aux_count++;
652 	} else {
653 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
654 		aux->aux_guid = vd->vdev_guid;
655 		aux->aux_count = 1;
656 		avl_insert(avl, aux, where);
657 	}
658 }
659 
660 void
661 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
662 {
663 	spa_aux_t search;
664 	spa_aux_t *aux;
665 	avl_index_t where;
666 
667 	search.aux_guid = vd->vdev_guid;
668 	aux = avl_find(avl, &search, &where);
669 
670 	ASSERT(aux != NULL);
671 
672 	if (--aux->aux_count == 0) {
673 		avl_remove(avl, aux);
674 		kmem_free(aux, sizeof (spa_aux_t));
675 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
676 		aux->aux_pool = 0ULL;
677 	}
678 }
679 
680 boolean_t
681 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
682 {
683 	spa_aux_t search, *found;
684 
685 	search.aux_guid = guid;
686 	found = avl_find(avl, &search, NULL);
687 
688 	if (pool) {
689 		if (found)
690 			*pool = found->aux_pool;
691 		else
692 			*pool = 0ULL;
693 	}
694 
695 	if (refcnt) {
696 		if (found)
697 			*refcnt = found->aux_count;
698 		else
699 			*refcnt = 0;
700 	}
701 
702 	return (found != NULL);
703 }
704 
705 void
706 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
707 {
708 	spa_aux_t search, *found;
709 	avl_index_t where;
710 
711 	search.aux_guid = vd->vdev_guid;
712 	found = avl_find(avl, &search, &where);
713 	ASSERT(found != NULL);
714 	ASSERT(found->aux_pool == 0ULL);
715 
716 	found->aux_pool = spa_guid(vd->vdev_spa);
717 }
718 
719 /*
720  * Spares are tracked globally due to the following constraints:
721  *
722  * 	- A spare may be part of multiple pools.
723  * 	- A spare may be added to a pool even if it's actively in use within
724  *	  another pool.
725  * 	- A spare in use in any pool can only be the source of a replacement if
726  *	  the target is a spare in the same pool.
727  *
728  * We keep track of all spares on the system through the use of a reference
729  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
730  * spare, then we bump the reference count in the AVL tree.  In addition, we set
731  * the 'vdev_isspare' member to indicate that the device is a spare (active or
732  * inactive).  When a spare is made active (used to replace a device in the
733  * pool), we also keep track of which pool its been made a part of.
734  *
735  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
736  * called under the spa_namespace lock as part of vdev reconfiguration.  The
737  * separate spare lock exists for the status query path, which does not need to
738  * be completely consistent with respect to other vdev configuration changes.
739  */
740 
741 static int
742 spa_spare_compare(const void *a, const void *b)
743 {
744 	return (spa_aux_compare(a, b));
745 }
746 
747 void
748 spa_spare_add(vdev_t *vd)
749 {
750 	mutex_enter(&spa_spare_lock);
751 	ASSERT(!vd->vdev_isspare);
752 	spa_aux_add(vd, &spa_spare_avl);
753 	vd->vdev_isspare = B_TRUE;
754 	mutex_exit(&spa_spare_lock);
755 }
756 
757 void
758 spa_spare_remove(vdev_t *vd)
759 {
760 	mutex_enter(&spa_spare_lock);
761 	ASSERT(vd->vdev_isspare);
762 	spa_aux_remove(vd, &spa_spare_avl);
763 	vd->vdev_isspare = B_FALSE;
764 	mutex_exit(&spa_spare_lock);
765 }
766 
767 boolean_t
768 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
769 {
770 	boolean_t found;
771 
772 	mutex_enter(&spa_spare_lock);
773 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
774 	mutex_exit(&spa_spare_lock);
775 
776 	return (found);
777 }
778 
779 void
780 spa_spare_activate(vdev_t *vd)
781 {
782 	mutex_enter(&spa_spare_lock);
783 	ASSERT(vd->vdev_isspare);
784 	spa_aux_activate(vd, &spa_spare_avl);
785 	mutex_exit(&spa_spare_lock);
786 }
787 
788 /*
789  * Level 2 ARC devices are tracked globally for the same reasons as spares.
790  * Cache devices currently only support one pool per cache device, and so
791  * for these devices the aux reference count is currently unused beyond 1.
792  */
793 
794 static int
795 spa_l2cache_compare(const void *a, const void *b)
796 {
797 	return (spa_aux_compare(a, b));
798 }
799 
800 void
801 spa_l2cache_add(vdev_t *vd)
802 {
803 	mutex_enter(&spa_l2cache_lock);
804 	ASSERT(!vd->vdev_isl2cache);
805 	spa_aux_add(vd, &spa_l2cache_avl);
806 	vd->vdev_isl2cache = B_TRUE;
807 	mutex_exit(&spa_l2cache_lock);
808 }
809 
810 void
811 spa_l2cache_remove(vdev_t *vd)
812 {
813 	mutex_enter(&spa_l2cache_lock);
814 	ASSERT(vd->vdev_isl2cache);
815 	spa_aux_remove(vd, &spa_l2cache_avl);
816 	vd->vdev_isl2cache = B_FALSE;
817 	mutex_exit(&spa_l2cache_lock);
818 }
819 
820 boolean_t
821 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
822 {
823 	boolean_t found;
824 
825 	mutex_enter(&spa_l2cache_lock);
826 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
827 	mutex_exit(&spa_l2cache_lock);
828 
829 	return (found);
830 }
831 
832 void
833 spa_l2cache_activate(vdev_t *vd)
834 {
835 	mutex_enter(&spa_l2cache_lock);
836 	ASSERT(vd->vdev_isl2cache);
837 	spa_aux_activate(vd, &spa_l2cache_avl);
838 	mutex_exit(&spa_l2cache_lock);
839 }
840 
841 /*
842  * ==========================================================================
843  * SPA vdev locking
844  * ==========================================================================
845  */
846 
847 /*
848  * Lock the given spa_t for the purpose of adding or removing a vdev.
849  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
850  * It returns the next transaction group for the spa_t.
851  */
852 uint64_t
853 spa_vdev_enter(spa_t *spa)
854 {
855 	mutex_enter(&spa->spa_vdev_top_lock);
856 	mutex_enter(&spa_namespace_lock);
857 	return (spa_vdev_config_enter(spa));
858 }
859 
860 /*
861  * Internal implementation for spa_vdev_enter().  Used when a vdev
862  * operation requires multiple syncs (i.e. removing a device) while
863  * keeping the spa_namespace_lock held.
864  */
865 uint64_t
866 spa_vdev_config_enter(spa_t *spa)
867 {
868 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
869 
870 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
871 
872 	return (spa_last_synced_txg(spa) + 1);
873 }
874 
875 /*
876  * Used in combination with spa_vdev_config_enter() to allow the syncing
877  * of multiple transactions without releasing the spa_namespace_lock.
878  */
879 void
880 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
881 {
882 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
883 
884 	int config_changed = B_FALSE;
885 
886 	ASSERT(txg > spa_last_synced_txg(spa));
887 
888 	spa->spa_pending_vdev = NULL;
889 
890 	/*
891 	 * Reassess the DTLs.
892 	 */
893 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
894 
895 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
896 		config_changed = B_TRUE;
897 		spa->spa_config_generation++;
898 	}
899 
900 	/*
901 	 * Verify the metaslab classes.
902 	 */
903 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
904 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
905 
906 	spa_config_exit(spa, SCL_ALL, spa);
907 
908 	/*
909 	 * Panic the system if the specified tag requires it.  This
910 	 * is useful for ensuring that configurations are updated
911 	 * transactionally.
912 	 */
913 	if (zio_injection_enabled)
914 		zio_handle_panic_injection(spa, tag, 0);
915 
916 	/*
917 	 * Note: this txg_wait_synced() is important because it ensures
918 	 * that there won't be more than one config change per txg.
919 	 * This allows us to use the txg as the generation number.
920 	 */
921 	if (error == 0)
922 		txg_wait_synced(spa->spa_dsl_pool, txg);
923 
924 	if (vd != NULL) {
925 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
926 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
927 		vdev_free(vd);
928 		spa_config_exit(spa, SCL_ALL, spa);
929 	}
930 
931 	/*
932 	 * If the config changed, update the config cache.
933 	 */
934 	if (config_changed)
935 		spa_config_sync(spa, B_FALSE, B_TRUE);
936 }
937 
938 /*
939  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
940  * locking of spa_vdev_enter(), we also want make sure the transactions have
941  * synced to disk, and then update the global configuration cache with the new
942  * information.
943  */
944 int
945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
946 {
947 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
948 	mutex_exit(&spa_namespace_lock);
949 	mutex_exit(&spa->spa_vdev_top_lock);
950 
951 	return (error);
952 }
953 
954 /*
955  * Lock the given spa_t for the purpose of changing vdev state.
956  */
957 void
958 spa_vdev_state_enter(spa_t *spa, int oplocks)
959 {
960 	int locks = SCL_STATE_ALL | oplocks;
961 
962 	/*
963 	 * Root pools may need to read of the underlying devfs filesystem
964 	 * when opening up a vdev.  Unfortunately if we're holding the
965 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
966 	 * the read from the root filesystem.  Instead we "prefetch"
967 	 * the associated vnodes that we need prior to opening the
968 	 * underlying devices and cache them so that we can prevent
969 	 * any I/O when we are doing the actual open.
970 	 */
971 	if (spa_is_root(spa)) {
972 		int low = locks & ~(SCL_ZIO - 1);
973 		int high = locks & ~low;
974 
975 		spa_config_enter(spa, high, spa, RW_WRITER);
976 		vdev_hold(spa->spa_root_vdev);
977 		spa_config_enter(spa, low, spa, RW_WRITER);
978 	} else {
979 		spa_config_enter(spa, locks, spa, RW_WRITER);
980 	}
981 	spa->spa_vdev_locks = locks;
982 }
983 
984 int
985 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
986 {
987 	boolean_t config_changed = B_FALSE;
988 
989 	if (vd != NULL || error == 0)
990 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
991 		    0, 0, B_FALSE);
992 
993 	if (vd != NULL) {
994 		vdev_state_dirty(vd->vdev_top);
995 		config_changed = B_TRUE;
996 		spa->spa_config_generation++;
997 	}
998 
999 	if (spa_is_root(spa))
1000 		vdev_rele(spa->spa_root_vdev);
1001 
1002 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1003 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1004 
1005 	/*
1006 	 * If anything changed, wait for it to sync.  This ensures that,
1007 	 * from the system administrator's perspective, zpool(1M) commands
1008 	 * are synchronous.  This is important for things like zpool offline:
1009 	 * when the command completes, you expect no further I/O from ZFS.
1010 	 */
1011 	if (vd != NULL)
1012 		txg_wait_synced(spa->spa_dsl_pool, 0);
1013 
1014 	/*
1015 	 * If the config changed, update the config cache.
1016 	 */
1017 	if (config_changed) {
1018 		mutex_enter(&spa_namespace_lock);
1019 		spa_config_sync(spa, B_FALSE, B_TRUE);
1020 		mutex_exit(&spa_namespace_lock);
1021 	}
1022 
1023 	return (error);
1024 }
1025 
1026 /*
1027  * ==========================================================================
1028  * Miscellaneous functions
1029  * ==========================================================================
1030  */
1031 
1032 /*
1033  * Rename a spa_t.
1034  */
1035 int
1036 spa_rename(const char *name, const char *newname)
1037 {
1038 	spa_t *spa;
1039 	int err;
1040 
1041 	/*
1042 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1043 	 * actually open the pool so that we can sync out the necessary labels.
1044 	 * It's OK to call spa_open() with the namespace lock held because we
1045 	 * allow recursive calls for other reasons.
1046 	 */
1047 	mutex_enter(&spa_namespace_lock);
1048 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1049 		mutex_exit(&spa_namespace_lock);
1050 		return (err);
1051 	}
1052 
1053 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1054 
1055 	avl_remove(&spa_namespace_avl, spa);
1056 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1057 	avl_add(&spa_namespace_avl, spa);
1058 
1059 	/*
1060 	 * Sync all labels to disk with the new names by marking the root vdev
1061 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1062 	 * during the sync.
1063 	 */
1064 	vdev_config_dirty(spa->spa_root_vdev);
1065 
1066 	spa_config_exit(spa, SCL_ALL, FTAG);
1067 
1068 	txg_wait_synced(spa->spa_dsl_pool, 0);
1069 
1070 	/*
1071 	 * Sync the updated config cache.
1072 	 */
1073 	spa_config_sync(spa, B_FALSE, B_TRUE);
1074 
1075 	spa_close(spa, FTAG);
1076 
1077 	mutex_exit(&spa_namespace_lock);
1078 
1079 	return (0);
1080 }
1081 
1082 /*
1083  * Return the spa_t associated with given pool_guid, if it exists.  If
1084  * device_guid is non-zero, determine whether the pool exists *and* contains
1085  * a device with the specified device_guid.
1086  */
1087 spa_t *
1088 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1089 {
1090 	spa_t *spa;
1091 	avl_tree_t *t = &spa_namespace_avl;
1092 
1093 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1094 
1095 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1096 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1097 			continue;
1098 		if (spa->spa_root_vdev == NULL)
1099 			continue;
1100 		if (spa_guid(spa) == pool_guid) {
1101 			if (device_guid == 0)
1102 				break;
1103 
1104 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1105 			    device_guid) != NULL)
1106 				break;
1107 
1108 			/*
1109 			 * Check any devices we may be in the process of adding.
1110 			 */
1111 			if (spa->spa_pending_vdev) {
1112 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1113 				    device_guid) != NULL)
1114 					break;
1115 			}
1116 		}
1117 	}
1118 
1119 	return (spa);
1120 }
1121 
1122 /*
1123  * Determine whether a pool with the given pool_guid exists.
1124  */
1125 boolean_t
1126 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1127 {
1128 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1129 }
1130 
1131 char *
1132 spa_strdup(const char *s)
1133 {
1134 	size_t len;
1135 	char *new;
1136 
1137 	len = strlen(s);
1138 	new = kmem_alloc(len + 1, KM_SLEEP);
1139 	bcopy(s, new, len);
1140 	new[len] = '\0';
1141 
1142 	return (new);
1143 }
1144 
1145 void
1146 spa_strfree(char *s)
1147 {
1148 	kmem_free(s, strlen(s) + 1);
1149 }
1150 
1151 uint64_t
1152 spa_get_random(uint64_t range)
1153 {
1154 	uint64_t r;
1155 
1156 	ASSERT(range != 0);
1157 
1158 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1159 
1160 	return (r % range);
1161 }
1162 
1163 uint64_t
1164 spa_generate_guid(spa_t *spa)
1165 {
1166 	uint64_t guid = spa_get_random(-1ULL);
1167 
1168 	if (spa != NULL) {
1169 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1170 			guid = spa_get_random(-1ULL);
1171 	} else {
1172 		while (guid == 0 || spa_guid_exists(guid, 0))
1173 			guid = spa_get_random(-1ULL);
1174 	}
1175 
1176 	return (guid);
1177 }
1178 
1179 void
1180 sprintf_blkptr(char *buf, const blkptr_t *bp)
1181 {
1182 	char *type = NULL;
1183 	char *checksum = NULL;
1184 	char *compress = NULL;
1185 
1186 	if (bp != NULL) {
1187 		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1188 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1189 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1190 	}
1191 
1192 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1193 }
1194 
1195 void
1196 spa_freeze(spa_t *spa)
1197 {
1198 	uint64_t freeze_txg = 0;
1199 
1200 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1201 	if (spa->spa_freeze_txg == UINT64_MAX) {
1202 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1203 		spa->spa_freeze_txg = freeze_txg;
1204 	}
1205 	spa_config_exit(spa, SCL_ALL, FTAG);
1206 	if (freeze_txg != 0)
1207 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1208 }
1209 
1210 void
1211 zfs_panic_recover(const char *fmt, ...)
1212 {
1213 	va_list adx;
1214 
1215 	va_start(adx, fmt);
1216 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1217 	va_end(adx);
1218 }
1219 
1220 /*
1221  * This is a stripped-down version of strtoull, suitable only for converting
1222  * lowercase hexidecimal numbers that don't overflow.
1223  */
1224 uint64_t
1225 strtonum(const char *str, char **nptr)
1226 {
1227 	uint64_t val = 0;
1228 	char c;
1229 	int digit;
1230 
1231 	while ((c = *str) != '\0') {
1232 		if (c >= '0' && c <= '9')
1233 			digit = c - '0';
1234 		else if (c >= 'a' && c <= 'f')
1235 			digit = 10 + c - 'a';
1236 		else
1237 			break;
1238 
1239 		val *= 16;
1240 		val += digit;
1241 
1242 		str++;
1243 	}
1244 
1245 	if (nptr)
1246 		*nptr = (char *)str;
1247 
1248 	return (val);
1249 }
1250 
1251 /*
1252  * ==========================================================================
1253  * Accessor functions
1254  * ==========================================================================
1255  */
1256 
1257 boolean_t
1258 spa_shutting_down(spa_t *spa)
1259 {
1260 	return (spa->spa_async_suspended);
1261 }
1262 
1263 dsl_pool_t *
1264 spa_get_dsl(spa_t *spa)
1265 {
1266 	return (spa->spa_dsl_pool);
1267 }
1268 
1269 blkptr_t *
1270 spa_get_rootblkptr(spa_t *spa)
1271 {
1272 	return (&spa->spa_ubsync.ub_rootbp);
1273 }
1274 
1275 void
1276 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1277 {
1278 	spa->spa_uberblock.ub_rootbp = *bp;
1279 }
1280 
1281 void
1282 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1283 {
1284 	if (spa->spa_root == NULL)
1285 		buf[0] = '\0';
1286 	else
1287 		(void) strncpy(buf, spa->spa_root, buflen);
1288 }
1289 
1290 int
1291 spa_sync_pass(spa_t *spa)
1292 {
1293 	return (spa->spa_sync_pass);
1294 }
1295 
1296 char *
1297 spa_name(spa_t *spa)
1298 {
1299 	return (spa->spa_name);
1300 }
1301 
1302 uint64_t
1303 spa_guid(spa_t *spa)
1304 {
1305 	/*
1306 	 * If we fail to parse the config during spa_load(), we can go through
1307 	 * the error path (which posts an ereport) and end up here with no root
1308 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1309 	 * this case.
1310 	 */
1311 	if (spa->spa_root_vdev != NULL)
1312 		return (spa->spa_root_vdev->vdev_guid);
1313 	else
1314 		return (spa->spa_config_guid);
1315 }
1316 
1317 uint64_t
1318 spa_load_guid(spa_t *spa)
1319 {
1320 	/*
1321 	 * This is a GUID that exists solely as a reference for the
1322 	 * purposes of the arc.  It is generated at load time, and
1323 	 * is never written to persistent storage.
1324 	 */
1325 	return (spa->spa_load_guid);
1326 }
1327 
1328 uint64_t
1329 spa_last_synced_txg(spa_t *spa)
1330 {
1331 	return (spa->spa_ubsync.ub_txg);
1332 }
1333 
1334 uint64_t
1335 spa_first_txg(spa_t *spa)
1336 {
1337 	return (spa->spa_first_txg);
1338 }
1339 
1340 uint64_t
1341 spa_syncing_txg(spa_t *spa)
1342 {
1343 	return (spa->spa_syncing_txg);
1344 }
1345 
1346 pool_state_t
1347 spa_state(spa_t *spa)
1348 {
1349 	return (spa->spa_state);
1350 }
1351 
1352 spa_load_state_t
1353 spa_load_state(spa_t *spa)
1354 {
1355 	return (spa->spa_load_state);
1356 }
1357 
1358 uint64_t
1359 spa_freeze_txg(spa_t *spa)
1360 {
1361 	return (spa->spa_freeze_txg);
1362 }
1363 
1364 /* ARGSUSED */
1365 uint64_t
1366 spa_get_asize(spa_t *spa, uint64_t lsize)
1367 {
1368 	/*
1369 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1370 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1371 	 * times the size; so just assume that.  Add to this the fact that
1372 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1373 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1374 	 */
1375 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1376 }
1377 
1378 uint64_t
1379 spa_get_dspace(spa_t *spa)
1380 {
1381 	return (spa->spa_dspace);
1382 }
1383 
1384 void
1385 spa_update_dspace(spa_t *spa)
1386 {
1387 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1388 	    ddt_get_dedup_dspace(spa);
1389 }
1390 
1391 /*
1392  * Return the failure mode that has been set to this pool. The default
1393  * behavior will be to block all I/Os when a complete failure occurs.
1394  */
1395 uint8_t
1396 spa_get_failmode(spa_t *spa)
1397 {
1398 	return (spa->spa_failmode);
1399 }
1400 
1401 boolean_t
1402 spa_suspended(spa_t *spa)
1403 {
1404 	return (spa->spa_suspended);
1405 }
1406 
1407 uint64_t
1408 spa_version(spa_t *spa)
1409 {
1410 	return (spa->spa_ubsync.ub_version);
1411 }
1412 
1413 boolean_t
1414 spa_deflate(spa_t *spa)
1415 {
1416 	return (spa->spa_deflate);
1417 }
1418 
1419 metaslab_class_t *
1420 spa_normal_class(spa_t *spa)
1421 {
1422 	return (spa->spa_normal_class);
1423 }
1424 
1425 metaslab_class_t *
1426 spa_log_class(spa_t *spa)
1427 {
1428 	return (spa->spa_log_class);
1429 }
1430 
1431 int
1432 spa_max_replication(spa_t *spa)
1433 {
1434 	/*
1435 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1436 	 * handle BPs with more than one DVA allocated.  Set our max
1437 	 * replication level accordingly.
1438 	 */
1439 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1440 		return (1);
1441 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1442 }
1443 
1444 int
1445 spa_prev_software_version(spa_t *spa)
1446 {
1447 	return (spa->spa_prev_software_version);
1448 }
1449 
1450 uint64_t
1451 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1452 {
1453 	uint64_t asize = DVA_GET_ASIZE(dva);
1454 	uint64_t dsize = asize;
1455 
1456 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1457 
1458 	if (asize != 0 && spa->spa_deflate) {
1459 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1460 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1461 	}
1462 
1463 	return (dsize);
1464 }
1465 
1466 uint64_t
1467 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1468 {
1469 	uint64_t dsize = 0;
1470 
1471 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1472 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1473 
1474 	return (dsize);
1475 }
1476 
1477 uint64_t
1478 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1479 {
1480 	uint64_t dsize = 0;
1481 
1482 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1483 
1484 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1485 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1486 
1487 	spa_config_exit(spa, SCL_VDEV, FTAG);
1488 
1489 	return (dsize);
1490 }
1491 
1492 /*
1493  * ==========================================================================
1494  * Initialization and Termination
1495  * ==========================================================================
1496  */
1497 
1498 static int
1499 spa_name_compare(const void *a1, const void *a2)
1500 {
1501 	const spa_t *s1 = a1;
1502 	const spa_t *s2 = a2;
1503 	int s;
1504 
1505 	s = strcmp(s1->spa_name, s2->spa_name);
1506 	if (s > 0)
1507 		return (1);
1508 	if (s < 0)
1509 		return (-1);
1510 	return (0);
1511 }
1512 
1513 int
1514 spa_busy(void)
1515 {
1516 	return (spa_active_count);
1517 }
1518 
1519 void
1520 spa_boot_init()
1521 {
1522 	spa_config_load();
1523 }
1524 
1525 void
1526 spa_init(int mode)
1527 {
1528 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1529 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1530 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1531 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1532 
1533 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1534 	    offsetof(spa_t, spa_avl));
1535 
1536 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1537 	    offsetof(spa_aux_t, aux_avl));
1538 
1539 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1540 	    offsetof(spa_aux_t, aux_avl));
1541 
1542 	spa_mode_global = mode;
1543 
1544 	refcount_init();
1545 	unique_init();
1546 	zio_init();
1547 	dmu_init();
1548 	zil_init();
1549 	vdev_cache_stat_init();
1550 	zfs_prop_init();
1551 	zpool_prop_init();
1552 	spa_config_load();
1553 	l2arc_start();
1554 }
1555 
1556 void
1557 spa_fini(void)
1558 {
1559 	l2arc_stop();
1560 
1561 	spa_evict_all();
1562 
1563 	vdev_cache_stat_fini();
1564 	zil_fini();
1565 	dmu_fini();
1566 	zio_fini();
1567 	unique_fini();
1568 	refcount_fini();
1569 
1570 	avl_destroy(&spa_namespace_avl);
1571 	avl_destroy(&spa_spare_avl);
1572 	avl_destroy(&spa_l2cache_avl);
1573 
1574 	cv_destroy(&spa_namespace_cv);
1575 	mutex_destroy(&spa_namespace_lock);
1576 	mutex_destroy(&spa_spare_lock);
1577 	mutex_destroy(&spa_l2cache_lock);
1578 }
1579 
1580 /*
1581  * Return whether this pool has slogs. No locking needed.
1582  * It's not a problem if the wrong answer is returned as it's only for
1583  * performance and not correctness
1584  */
1585 boolean_t
1586 spa_has_slogs(spa_t *spa)
1587 {
1588 	return (spa->spa_log_class->mc_rotor != NULL);
1589 }
1590 
1591 spa_log_state_t
1592 spa_get_log_state(spa_t *spa)
1593 {
1594 	return (spa->spa_log_state);
1595 }
1596 
1597 void
1598 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1599 {
1600 	spa->spa_log_state = state;
1601 }
1602 
1603 boolean_t
1604 spa_is_root(spa_t *spa)
1605 {
1606 	return (spa->spa_is_root);
1607 }
1608 
1609 boolean_t
1610 spa_writeable(spa_t *spa)
1611 {
1612 	return (!!(spa->spa_mode & FWRITE));
1613 }
1614 
1615 int
1616 spa_mode(spa_t *spa)
1617 {
1618 	return (spa->spa_mode);
1619 }
1620 
1621 uint64_t
1622 spa_bootfs(spa_t *spa)
1623 {
1624 	return (spa->spa_bootfs);
1625 }
1626 
1627 uint64_t
1628 spa_delegation(spa_t *spa)
1629 {
1630 	return (spa->spa_delegation);
1631 }
1632 
1633 objset_t *
1634 spa_meta_objset(spa_t *spa)
1635 {
1636 	return (spa->spa_meta_objset);
1637 }
1638 
1639 enum zio_checksum
1640 spa_dedup_checksum(spa_t *spa)
1641 {
1642 	return (spa->spa_dedup_checksum);
1643 }
1644 
1645 /*
1646  * Reset pool scan stat per scan pass (or reboot).
1647  */
1648 void
1649 spa_scan_stat_init(spa_t *spa)
1650 {
1651 	/* data not stored on disk */
1652 	spa->spa_scan_pass_start = gethrestime_sec();
1653 	spa->spa_scan_pass_exam = 0;
1654 	vdev_scan_stat_init(spa->spa_root_vdev);
1655 }
1656 
1657 /*
1658  * Get scan stats for zpool status reports
1659  */
1660 int
1661 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1662 {
1663 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1664 
1665 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1666 		return (ENOENT);
1667 	bzero(ps, sizeof (pool_scan_stat_t));
1668 
1669 	/* data stored on disk */
1670 	ps->pss_func = scn->scn_phys.scn_func;
1671 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1672 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1673 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1674 	ps->pss_examined = scn->scn_phys.scn_examined;
1675 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1676 	ps->pss_processed = scn->scn_phys.scn_processed;
1677 	ps->pss_errors = scn->scn_phys.scn_errors;
1678 	ps->pss_state = scn->scn_phys.scn_state;
1679 
1680 	/* data not stored on disk */
1681 	ps->pss_pass_start = spa->spa_scan_pass_start;
1682 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1683 
1684 	return (0);
1685 }
1686 
1687 boolean_t
1688 spa_debug_enabled(spa_t *spa)
1689 {
1690 	return (spa->spa_debug);
1691 }
1692