1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against spa_minref, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock (per-spa read-priority rwlock) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * spa_config_cache_lock (per-spa mutex) 89 * 90 * This mutex prevents the spa_config nvlist from being updated. No 91 * other locks are required to obtain this lock, although implicitly you 92 * must have the namespace lock or non-zero refcount to have any kind 93 * of spa_t pointer at all. 94 * 95 * The locking order is fairly straightforward: 96 * 97 * spa_namespace_lock -> spa_refcount 98 * 99 * The namespace lock must be acquired to increase the refcount from 0 100 * or to check if it is zero. 101 * 102 * spa_refcount -> spa_config_lock 103 * 104 * There must be at least one valid reference on the spa_t to acquire 105 * the config lock. 106 * 107 * spa_namespace_lock -> spa_config_lock 108 * 109 * The namespace lock must always be taken before the config lock. 110 * 111 * 112 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 113 * are globally visible. 114 * 115 * The namespace is manipulated using the following functions, all which require 116 * the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock is a form of rwlock. It must be held as RW_READER 148 * to perform I/O to the pool, and as RW_WRITER to change the vdev config. 149 * The spa_config_lock is manipulated with spa_config_{enter,exit,held}(). 150 * 151 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 152 * 153 * spa_vdev_enter() Acquire the namespace lock and the config lock 154 * for writing. 155 * 156 * spa_vdev_exit() Release the config lock, wait for all I/O 157 * to complete, sync the updated configs to the 158 * cache, and release the namespace lock. 159 * 160 * The spa_name() function also requires either the spa_namespace_lock 161 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 162 * also implemented within this file since is requires manipulation of the 163 * namespace. 164 */ 165 166 static avl_tree_t spa_namespace_avl; 167 kmutex_t spa_namespace_lock; 168 static kcondvar_t spa_namespace_cv; 169 static int spa_active_count; 170 int spa_max_replication_override = SPA_DVAS_PER_BP; 171 172 static kmutex_t spa_spare_lock; 173 static avl_tree_t spa_spare_avl; 174 static kmutex_t spa_l2cache_lock; 175 static avl_tree_t spa_l2cache_avl; 176 177 kmem_cache_t *spa_buffer_pool; 178 int spa_mode; 179 180 #ifdef ZFS_DEBUG 181 /* Everything except dprintf is on by default in debug builds */ 182 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 183 #else 184 int zfs_flags = 0; 185 #endif 186 187 /* 188 * zfs_recover can be set to nonzero to attempt to recover from 189 * otherwise-fatal errors, typically caused by on-disk corruption. When 190 * set, calls to zfs_panic_recover() will turn into warning messages. 191 */ 192 int zfs_recover = 0; 193 194 195 /* 196 * ========================================================================== 197 * SPA config locking 198 * ========================================================================== 199 */ 200 static void 201 spa_config_lock_init(spa_config_lock_t *scl) 202 { 203 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 204 scl->scl_writer = NULL; 205 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 206 refcount_create(&scl->scl_count); 207 } 208 209 static void 210 spa_config_lock_destroy(spa_config_lock_t *scl) 211 { 212 mutex_destroy(&scl->scl_lock); 213 ASSERT(scl->scl_writer == NULL); 214 cv_destroy(&scl->scl_cv); 215 refcount_destroy(&scl->scl_count); 216 } 217 218 void 219 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 220 { 221 spa_config_lock_t *scl = &spa->spa_config_lock; 222 223 mutex_enter(&scl->scl_lock); 224 225 if (rw == RW_READER) { 226 while (scl->scl_writer != NULL && scl->scl_writer != curthread) 227 cv_wait(&scl->scl_cv, &scl->scl_lock); 228 } else { 229 while (!refcount_is_zero(&scl->scl_count) && 230 scl->scl_writer != curthread) 231 cv_wait(&scl->scl_cv, &scl->scl_lock); 232 scl->scl_writer = curthread; 233 } 234 235 (void) refcount_add(&scl->scl_count, tag); 236 237 mutex_exit(&scl->scl_lock); 238 } 239 240 void 241 spa_config_exit(spa_t *spa, void *tag) 242 { 243 spa_config_lock_t *scl = &spa->spa_config_lock; 244 245 mutex_enter(&scl->scl_lock); 246 247 ASSERT(!refcount_is_zero(&scl->scl_count)); 248 249 if (refcount_remove(&scl->scl_count, tag) == 0) { 250 cv_broadcast(&scl->scl_cv); 251 ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); 252 scl->scl_writer = NULL; /* OK in either case */ 253 } 254 255 mutex_exit(&scl->scl_lock); 256 } 257 258 boolean_t 259 spa_config_held(spa_t *spa, krw_t rw) 260 { 261 spa_config_lock_t *scl = &spa->spa_config_lock; 262 263 if (rw == RW_READER) 264 return (!refcount_is_zero(&scl->scl_count)); 265 else 266 return (scl->scl_writer == curthread); 267 } 268 269 /* 270 * ========================================================================== 271 * SPA namespace functions 272 * ========================================================================== 273 */ 274 275 /* 276 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 277 * Returns NULL if no matching spa_t is found. 278 */ 279 spa_t * 280 spa_lookup(const char *name) 281 { 282 spa_t search, *spa; 283 avl_index_t where; 284 char c; 285 char *cp; 286 287 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 288 289 /* 290 * If it's a full dataset name, figure out the pool name and 291 * just use that. 292 */ 293 cp = strpbrk(name, "/@"); 294 if (cp) { 295 c = *cp; 296 *cp = '\0'; 297 } 298 299 search.spa_name = (char *)name; 300 spa = avl_find(&spa_namespace_avl, &search, &where); 301 302 if (cp) 303 *cp = c; 304 305 return (spa); 306 } 307 308 /* 309 * Create an uninitialized spa_t with the given name. Requires 310 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 311 * exist by calling spa_lookup() first. 312 */ 313 spa_t * 314 spa_add(const char *name, const char *altroot) 315 { 316 spa_t *spa; 317 spa_config_dirent_t *dp; 318 319 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 320 321 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 322 323 rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); 324 325 mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 327 mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); 328 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 329 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 330 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 331 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 332 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 333 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 334 335 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 336 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 337 338 spa->spa_name = spa_strdup(name); 339 spa->spa_state = POOL_STATE_UNINITIALIZED; 340 spa->spa_freeze_txg = UINT64_MAX; 341 spa->spa_final_txg = UINT64_MAX; 342 343 refcount_create(&spa->spa_refcount); 344 spa_config_lock_init(&spa->spa_config_lock); 345 346 avl_add(&spa_namespace_avl, spa); 347 348 mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL); 349 350 /* 351 * Set the alternate root, if there is one. 352 */ 353 if (altroot) { 354 spa->spa_root = spa_strdup(altroot); 355 spa_active_count++; 356 } 357 358 /* 359 * Every pool starts with the default cachefile 360 */ 361 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 362 offsetof(spa_config_dirent_t, scd_link)); 363 364 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 365 dp->scd_path = spa_strdup(spa_config_path); 366 list_insert_head(&spa->spa_config_list, dp); 367 368 return (spa); 369 } 370 371 /* 372 * Removes a spa_t from the namespace, freeing up any memory used. Requires 373 * spa_namespace_lock. This is called only after the spa_t has been closed and 374 * deactivated. 375 */ 376 void 377 spa_remove(spa_t *spa) 378 { 379 spa_config_dirent_t *dp; 380 381 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 382 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 383 384 avl_remove(&spa_namespace_avl, spa); 385 cv_broadcast(&spa_namespace_cv); 386 387 if (spa->spa_root) { 388 spa_strfree(spa->spa_root); 389 spa_active_count--; 390 } 391 392 if (spa->spa_name) 393 spa_strfree(spa->spa_name); 394 395 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 396 list_remove(&spa->spa_config_list, dp); 397 if (dp->scd_path != NULL) 398 spa_strfree(dp->scd_path); 399 kmem_free(dp, sizeof (spa_config_dirent_t)); 400 } 401 402 list_destroy(&spa->spa_config_list); 403 404 spa_config_set(spa, NULL); 405 406 refcount_destroy(&spa->spa_refcount); 407 408 spa_config_lock_destroy(&spa->spa_config_lock); 409 410 rw_destroy(&spa->spa_traverse_lock); 411 412 cv_destroy(&spa->spa_async_cv); 413 cv_destroy(&spa->spa_scrub_io_cv); 414 415 mutex_destroy(&spa->spa_uberblock_lock); 416 mutex_destroy(&spa->spa_async_lock); 417 mutex_destroy(&spa->spa_config_cache_lock); 418 mutex_destroy(&spa->spa_scrub_lock); 419 mutex_destroy(&spa->spa_errlog_lock); 420 mutex_destroy(&spa->spa_errlist_lock); 421 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 422 mutex_destroy(&spa->spa_history_lock); 423 mutex_destroy(&spa->spa_props_lock); 424 mutex_destroy(&spa->spa_zio_lock); 425 426 kmem_free(spa, sizeof (spa_t)); 427 } 428 429 /* 430 * Given a pool, return the next pool in the namespace, or NULL if there is 431 * none. If 'prev' is NULL, return the first pool. 432 */ 433 spa_t * 434 spa_next(spa_t *prev) 435 { 436 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 437 438 if (prev) 439 return (AVL_NEXT(&spa_namespace_avl, prev)); 440 else 441 return (avl_first(&spa_namespace_avl)); 442 } 443 444 /* 445 * ========================================================================== 446 * SPA refcount functions 447 * ========================================================================== 448 */ 449 450 /* 451 * Add a reference to the given spa_t. Must have at least one reference, or 452 * have the namespace lock held. 453 */ 454 void 455 spa_open_ref(spa_t *spa, void *tag) 456 { 457 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 458 MUTEX_HELD(&spa_namespace_lock)); 459 (void) refcount_add(&spa->spa_refcount, tag); 460 } 461 462 /* 463 * Remove a reference to the given spa_t. Must have at least one reference, or 464 * have the namespace lock held. 465 */ 466 void 467 spa_close(spa_t *spa, void *tag) 468 { 469 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 470 MUTEX_HELD(&spa_namespace_lock)); 471 (void) refcount_remove(&spa->spa_refcount, tag); 472 } 473 474 /* 475 * Check to see if the spa refcount is zero. Must be called with 476 * spa_namespace_lock held. We really compare against spa_minref, which is the 477 * number of references acquired when opening a pool 478 */ 479 boolean_t 480 spa_refcount_zero(spa_t *spa) 481 { 482 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 483 484 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 485 } 486 487 /* 488 * ========================================================================== 489 * SPA spare and l2cache tracking 490 * ========================================================================== 491 */ 492 493 /* 494 * Hot spares and cache devices are tracked using the same code below, 495 * for 'auxiliary' devices. 496 */ 497 498 typedef struct spa_aux { 499 uint64_t aux_guid; 500 uint64_t aux_pool; 501 avl_node_t aux_avl; 502 int aux_count; 503 } spa_aux_t; 504 505 static int 506 spa_aux_compare(const void *a, const void *b) 507 { 508 const spa_aux_t *sa = a; 509 const spa_aux_t *sb = b; 510 511 if (sa->aux_guid < sb->aux_guid) 512 return (-1); 513 else if (sa->aux_guid > sb->aux_guid) 514 return (1); 515 else 516 return (0); 517 } 518 519 void 520 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 521 { 522 avl_index_t where; 523 spa_aux_t search; 524 spa_aux_t *aux; 525 526 search.aux_guid = vd->vdev_guid; 527 if ((aux = avl_find(avl, &search, &where)) != NULL) { 528 aux->aux_count++; 529 } else { 530 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 531 aux->aux_guid = vd->vdev_guid; 532 aux->aux_count = 1; 533 avl_insert(avl, aux, where); 534 } 535 } 536 537 void 538 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 539 { 540 spa_aux_t search; 541 spa_aux_t *aux; 542 avl_index_t where; 543 544 search.aux_guid = vd->vdev_guid; 545 aux = avl_find(avl, &search, &where); 546 547 ASSERT(aux != NULL); 548 549 if (--aux->aux_count == 0) { 550 avl_remove(avl, aux); 551 kmem_free(aux, sizeof (spa_aux_t)); 552 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 553 aux->aux_pool = 0ULL; 554 } 555 } 556 557 boolean_t 558 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 559 { 560 spa_aux_t search, *found; 561 562 search.aux_guid = guid; 563 found = avl_find(avl, &search, NULL); 564 565 if (pool) { 566 if (found) 567 *pool = found->aux_pool; 568 else 569 *pool = 0ULL; 570 } 571 572 if (refcnt) { 573 if (found) 574 *refcnt = found->aux_count; 575 else 576 *refcnt = 0; 577 } 578 579 return (found != NULL); 580 } 581 582 void 583 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 584 { 585 spa_aux_t search, *found; 586 avl_index_t where; 587 588 search.aux_guid = vd->vdev_guid; 589 found = avl_find(avl, &search, &where); 590 ASSERT(found != NULL); 591 ASSERT(found->aux_pool == 0ULL); 592 593 found->aux_pool = spa_guid(vd->vdev_spa); 594 } 595 596 /* 597 * Spares are tracked globally due to the following constraints: 598 * 599 * - A spare may be part of multiple pools. 600 * - A spare may be added to a pool even if it's actively in use within 601 * another pool. 602 * - A spare in use in any pool can only be the source of a replacement if 603 * the target is a spare in the same pool. 604 * 605 * We keep track of all spares on the system through the use of a reference 606 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 607 * spare, then we bump the reference count in the AVL tree. In addition, we set 608 * the 'vdev_isspare' member to indicate that the device is a spare (active or 609 * inactive). When a spare is made active (used to replace a device in the 610 * pool), we also keep track of which pool its been made a part of. 611 * 612 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 613 * called under the spa_namespace lock as part of vdev reconfiguration. The 614 * separate spare lock exists for the status query path, which does not need to 615 * be completely consistent with respect to other vdev configuration changes. 616 */ 617 618 static int 619 spa_spare_compare(const void *a, const void *b) 620 { 621 return (spa_aux_compare(a, b)); 622 } 623 624 void 625 spa_spare_add(vdev_t *vd) 626 { 627 mutex_enter(&spa_spare_lock); 628 ASSERT(!vd->vdev_isspare); 629 spa_aux_add(vd, &spa_spare_avl); 630 vd->vdev_isspare = B_TRUE; 631 mutex_exit(&spa_spare_lock); 632 } 633 634 void 635 spa_spare_remove(vdev_t *vd) 636 { 637 mutex_enter(&spa_spare_lock); 638 ASSERT(vd->vdev_isspare); 639 spa_aux_remove(vd, &spa_spare_avl); 640 vd->vdev_isspare = B_FALSE; 641 mutex_exit(&spa_spare_lock); 642 } 643 644 boolean_t 645 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 646 { 647 boolean_t found; 648 649 mutex_enter(&spa_spare_lock); 650 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 651 mutex_exit(&spa_spare_lock); 652 653 return (found); 654 } 655 656 void 657 spa_spare_activate(vdev_t *vd) 658 { 659 mutex_enter(&spa_spare_lock); 660 ASSERT(vd->vdev_isspare); 661 spa_aux_activate(vd, &spa_spare_avl); 662 mutex_exit(&spa_spare_lock); 663 } 664 665 /* 666 * Level 2 ARC devices are tracked globally for the same reasons as spares. 667 * Cache devices currently only support one pool per cache device, and so 668 * for these devices the aux reference count is currently unused beyond 1. 669 */ 670 671 static int 672 spa_l2cache_compare(const void *a, const void *b) 673 { 674 return (spa_aux_compare(a, b)); 675 } 676 677 void 678 spa_l2cache_add(vdev_t *vd) 679 { 680 mutex_enter(&spa_l2cache_lock); 681 ASSERT(!vd->vdev_isl2cache); 682 spa_aux_add(vd, &spa_l2cache_avl); 683 vd->vdev_isl2cache = B_TRUE; 684 mutex_exit(&spa_l2cache_lock); 685 } 686 687 void 688 spa_l2cache_remove(vdev_t *vd) 689 { 690 mutex_enter(&spa_l2cache_lock); 691 ASSERT(vd->vdev_isl2cache); 692 spa_aux_remove(vd, &spa_l2cache_avl); 693 vd->vdev_isl2cache = B_FALSE; 694 mutex_exit(&spa_l2cache_lock); 695 } 696 697 boolean_t 698 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 699 { 700 boolean_t found; 701 702 mutex_enter(&spa_l2cache_lock); 703 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 704 mutex_exit(&spa_l2cache_lock); 705 706 return (found); 707 } 708 709 void 710 spa_l2cache_activate(vdev_t *vd) 711 { 712 mutex_enter(&spa_l2cache_lock); 713 ASSERT(vd->vdev_isl2cache); 714 spa_aux_activate(vd, &spa_l2cache_avl); 715 mutex_exit(&spa_l2cache_lock); 716 } 717 718 void 719 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc) 720 { 721 vdev_space_update(vd, space, alloc, B_FALSE); 722 } 723 724 /* 725 * ========================================================================== 726 * SPA vdev locking 727 * ========================================================================== 728 */ 729 730 /* 731 * Lock the given spa_t for the purpose of adding or removing a vdev. 732 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 733 * It returns the next transaction group for the spa_t. 734 */ 735 uint64_t 736 spa_vdev_enter(spa_t *spa) 737 { 738 mutex_enter(&spa_namespace_lock); 739 740 spa_config_enter(spa, RW_WRITER, spa); 741 742 return (spa_last_synced_txg(spa) + 1); 743 } 744 745 /* 746 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 747 * locking of spa_vdev_enter(), we also want make sure the transactions have 748 * synced to disk, and then update the global configuration cache with the new 749 * information. 750 */ 751 int 752 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 753 { 754 int config_changed = B_FALSE; 755 756 ASSERT(txg > spa_last_synced_txg(spa)); 757 758 /* 759 * Reassess the DTLs. 760 */ 761 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 762 763 /* 764 * If the config changed, notify the scrub thread that it must restart. 765 */ 766 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 767 dsl_pool_scrub_restart(spa->spa_dsl_pool); 768 config_changed = B_TRUE; 769 } 770 771 spa_config_exit(spa, spa); 772 773 /* 774 * Note: this txg_wait_synced() is important because it ensures 775 * that there won't be more than one config change per txg. 776 * This allows us to use the txg as the generation number. 777 */ 778 if (error == 0) 779 txg_wait_synced(spa->spa_dsl_pool, txg); 780 781 if (vd != NULL) { 782 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 783 vdev_free(vd); 784 } 785 786 /* 787 * If the config changed, update the config cache. 788 */ 789 if (config_changed) 790 spa_config_sync(spa, B_FALSE, B_TRUE); 791 792 mutex_exit(&spa_namespace_lock); 793 794 return (error); 795 } 796 797 /* 798 * ========================================================================== 799 * Miscellaneous functions 800 * ========================================================================== 801 */ 802 803 /* 804 * Rename a spa_t. 805 */ 806 int 807 spa_rename(const char *name, const char *newname) 808 { 809 spa_t *spa; 810 int err; 811 812 /* 813 * Lookup the spa_t and grab the config lock for writing. We need to 814 * actually open the pool so that we can sync out the necessary labels. 815 * It's OK to call spa_open() with the namespace lock held because we 816 * allow recursive calls for other reasons. 817 */ 818 mutex_enter(&spa_namespace_lock); 819 if ((err = spa_open(name, &spa, FTAG)) != 0) { 820 mutex_exit(&spa_namespace_lock); 821 return (err); 822 } 823 824 spa_config_enter(spa, RW_WRITER, FTAG); 825 826 avl_remove(&spa_namespace_avl, spa); 827 spa_strfree(spa->spa_name); 828 spa->spa_name = spa_strdup(newname); 829 avl_add(&spa_namespace_avl, spa); 830 831 /* 832 * Sync all labels to disk with the new names by marking the root vdev 833 * dirty and waiting for it to sync. It will pick up the new pool name 834 * during the sync. 835 */ 836 vdev_config_dirty(spa->spa_root_vdev); 837 838 spa_config_exit(spa, FTAG); 839 840 txg_wait_synced(spa->spa_dsl_pool, 0); 841 842 /* 843 * Sync the updated config cache. 844 */ 845 spa_config_sync(spa, B_FALSE, B_TRUE); 846 847 spa_close(spa, FTAG); 848 849 mutex_exit(&spa_namespace_lock); 850 851 return (0); 852 } 853 854 855 /* 856 * Determine whether a pool with given pool_guid exists. If device_guid is 857 * non-zero, determine whether the pool exists *and* contains a device with the 858 * specified device_guid. 859 */ 860 boolean_t 861 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 862 { 863 spa_t *spa; 864 avl_tree_t *t = &spa_namespace_avl; 865 866 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 867 868 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 869 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 870 continue; 871 if (spa->spa_root_vdev == NULL) 872 continue; 873 if (spa_guid(spa) == pool_guid) { 874 if (device_guid == 0) 875 break; 876 877 if (vdev_lookup_by_guid(spa->spa_root_vdev, 878 device_guid) != NULL) 879 break; 880 881 /* 882 * Check any devices we may be in the process of adding. 883 */ 884 if (spa->spa_pending_vdev) { 885 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 886 device_guid) != NULL) 887 break; 888 } 889 } 890 } 891 892 return (spa != NULL); 893 } 894 895 char * 896 spa_strdup(const char *s) 897 { 898 size_t len; 899 char *new; 900 901 len = strlen(s); 902 new = kmem_alloc(len + 1, KM_SLEEP); 903 bcopy(s, new, len); 904 new[len] = '\0'; 905 906 return (new); 907 } 908 909 void 910 spa_strfree(char *s) 911 { 912 kmem_free(s, strlen(s) + 1); 913 } 914 915 uint64_t 916 spa_get_random(uint64_t range) 917 { 918 uint64_t r; 919 920 ASSERT(range != 0); 921 922 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 923 924 return (r % range); 925 } 926 927 void 928 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 929 { 930 int d; 931 932 if (bp == NULL) { 933 (void) snprintf(buf, len, "<NULL>"); 934 return; 935 } 936 937 if (BP_IS_HOLE(bp)) { 938 (void) snprintf(buf, len, "<hole>"); 939 return; 940 } 941 942 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 943 (u_longlong_t)BP_GET_LEVEL(bp), 944 dmu_ot[BP_GET_TYPE(bp)].ot_name, 945 (u_longlong_t)BP_GET_LSIZE(bp), 946 (u_longlong_t)BP_GET_PSIZE(bp)); 947 948 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 949 const dva_t *dva = &bp->blk_dva[d]; 950 (void) snprintf(buf + strlen(buf), len - strlen(buf), 951 "DVA[%d]=<%llu:%llx:%llx> ", d, 952 (u_longlong_t)DVA_GET_VDEV(dva), 953 (u_longlong_t)DVA_GET_OFFSET(dva), 954 (u_longlong_t)DVA_GET_ASIZE(dva)); 955 } 956 957 (void) snprintf(buf + strlen(buf), len - strlen(buf), 958 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 959 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 960 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 961 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 962 BP_IS_GANG(bp) ? "gang" : "contiguous", 963 (u_longlong_t)bp->blk_birth, 964 (u_longlong_t)bp->blk_fill, 965 (u_longlong_t)bp->blk_cksum.zc_word[0], 966 (u_longlong_t)bp->blk_cksum.zc_word[1], 967 (u_longlong_t)bp->blk_cksum.zc_word[2], 968 (u_longlong_t)bp->blk_cksum.zc_word[3]); 969 } 970 971 void 972 spa_freeze(spa_t *spa) 973 { 974 uint64_t freeze_txg = 0; 975 976 spa_config_enter(spa, RW_WRITER, FTAG); 977 if (spa->spa_freeze_txg == UINT64_MAX) { 978 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 979 spa->spa_freeze_txg = freeze_txg; 980 } 981 spa_config_exit(spa, FTAG); 982 if (freeze_txg != 0) 983 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 984 } 985 986 void 987 zfs_panic_recover(const char *fmt, ...) 988 { 989 va_list adx; 990 991 va_start(adx, fmt); 992 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 993 va_end(adx); 994 } 995 996 /* 997 * ========================================================================== 998 * Accessor functions 999 * ========================================================================== 1000 */ 1001 1002 krwlock_t * 1003 spa_traverse_rwlock(spa_t *spa) 1004 { 1005 return (&spa->spa_traverse_lock); 1006 } 1007 1008 boolean_t 1009 spa_traverse_wanted(spa_t *spa) 1010 { 1011 return (spa->spa_traverse_wanted); 1012 } 1013 1014 dsl_pool_t * 1015 spa_get_dsl(spa_t *spa) 1016 { 1017 return (spa->spa_dsl_pool); 1018 } 1019 1020 blkptr_t * 1021 spa_get_rootblkptr(spa_t *spa) 1022 { 1023 return (&spa->spa_ubsync.ub_rootbp); 1024 } 1025 1026 void 1027 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1028 { 1029 spa->spa_uberblock.ub_rootbp = *bp; 1030 } 1031 1032 void 1033 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1034 { 1035 if (spa->spa_root == NULL) 1036 buf[0] = '\0'; 1037 else 1038 (void) strncpy(buf, spa->spa_root, buflen); 1039 } 1040 1041 int 1042 spa_sync_pass(spa_t *spa) 1043 { 1044 return (spa->spa_sync_pass); 1045 } 1046 1047 char * 1048 spa_name(spa_t *spa) 1049 { 1050 /* 1051 * Accessing the name requires holding either the namespace lock or the 1052 * config lock, both of which are required to do a rename. 1053 */ 1054 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 1055 spa_config_held(spa, RW_READER)); 1056 1057 return (spa->spa_name); 1058 } 1059 1060 uint64_t 1061 spa_guid(spa_t *spa) 1062 { 1063 /* 1064 * If we fail to parse the config during spa_load(), we can go through 1065 * the error path (which posts an ereport) and end up here with no root 1066 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1067 * this case. 1068 */ 1069 if (spa->spa_root_vdev != NULL) 1070 return (spa->spa_root_vdev->vdev_guid); 1071 else 1072 return (spa->spa_load_guid); 1073 } 1074 1075 uint64_t 1076 spa_last_synced_txg(spa_t *spa) 1077 { 1078 return (spa->spa_ubsync.ub_txg); 1079 } 1080 1081 uint64_t 1082 spa_first_txg(spa_t *spa) 1083 { 1084 return (spa->spa_first_txg); 1085 } 1086 1087 int 1088 spa_state(spa_t *spa) 1089 { 1090 return (spa->spa_state); 1091 } 1092 1093 uint64_t 1094 spa_freeze_txg(spa_t *spa) 1095 { 1096 return (spa->spa_freeze_txg); 1097 } 1098 1099 /* 1100 * Return how much space is allocated in the pool (ie. sum of all asize) 1101 */ 1102 uint64_t 1103 spa_get_alloc(spa_t *spa) 1104 { 1105 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 1106 } 1107 1108 /* 1109 * Return how much (raid-z inflated) space there is in the pool. 1110 */ 1111 uint64_t 1112 spa_get_space(spa_t *spa) 1113 { 1114 return (spa->spa_root_vdev->vdev_stat.vs_space); 1115 } 1116 1117 /* 1118 * Return the amount of raid-z-deflated space in the pool. 1119 */ 1120 uint64_t 1121 spa_get_dspace(spa_t *spa) 1122 { 1123 if (spa->spa_deflate) 1124 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 1125 else 1126 return (spa->spa_root_vdev->vdev_stat.vs_space); 1127 } 1128 1129 /* ARGSUSED */ 1130 uint64_t 1131 spa_get_asize(spa_t *spa, uint64_t lsize) 1132 { 1133 /* 1134 * For now, the worst case is 512-byte RAID-Z blocks, in which 1135 * case the space requirement is exactly 2x; so just assume that. 1136 * Add to this the fact that we can have up to 3 DVAs per bp, and 1137 * we have to multiply by a total of 6x. 1138 */ 1139 return (lsize * 6); 1140 } 1141 1142 /* 1143 * Return the failure mode that has been set to this pool. The default 1144 * behavior will be to block all I/Os when a complete failure occurs. 1145 */ 1146 uint8_t 1147 spa_get_failmode(spa_t *spa) 1148 { 1149 return (spa->spa_failmode); 1150 } 1151 1152 uint64_t 1153 spa_version(spa_t *spa) 1154 { 1155 return (spa->spa_ubsync.ub_version); 1156 } 1157 1158 int 1159 spa_max_replication(spa_t *spa) 1160 { 1161 /* 1162 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1163 * handle BPs with more than one DVA allocated. Set our max 1164 * replication level accordingly. 1165 */ 1166 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1167 return (1); 1168 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1169 } 1170 1171 uint64_t 1172 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 1173 { 1174 int sz = 0, i; 1175 1176 if (!spa->spa_deflate) 1177 return (BP_GET_ASIZE(bp)); 1178 1179 spa_config_enter(spa, RW_READER, FTAG); 1180 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1181 vdev_t *vd = 1182 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 1183 if (vd) 1184 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> 1185 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1186 } 1187 spa_config_exit(spa, FTAG); 1188 return (sz); 1189 } 1190 1191 /* 1192 * ========================================================================== 1193 * Initialization and Termination 1194 * ========================================================================== 1195 */ 1196 1197 static int 1198 spa_name_compare(const void *a1, const void *a2) 1199 { 1200 const spa_t *s1 = a1; 1201 const spa_t *s2 = a2; 1202 int s; 1203 1204 s = strcmp(s1->spa_name, s2->spa_name); 1205 if (s > 0) 1206 return (1); 1207 if (s < 0) 1208 return (-1); 1209 return (0); 1210 } 1211 1212 int 1213 spa_busy(void) 1214 { 1215 return (spa_active_count); 1216 } 1217 1218 void 1219 spa_boot_init() 1220 { 1221 spa_config_load(); 1222 } 1223 1224 void 1225 spa_init(int mode) 1226 { 1227 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1228 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1229 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1230 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1231 1232 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1233 offsetof(spa_t, spa_avl)); 1234 1235 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1236 offsetof(spa_aux_t, aux_avl)); 1237 1238 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1239 offsetof(spa_aux_t, aux_avl)); 1240 1241 spa_mode = mode; 1242 1243 refcount_init(); 1244 unique_init(); 1245 zio_init(); 1246 dmu_init(); 1247 zil_init(); 1248 vdev_cache_stat_init(); 1249 zfs_prop_init(); 1250 zpool_prop_init(); 1251 spa_config_load(); 1252 } 1253 1254 void 1255 spa_fini(void) 1256 { 1257 spa_evict_all(); 1258 1259 vdev_cache_stat_fini(); 1260 zil_fini(); 1261 dmu_fini(); 1262 zio_fini(); 1263 unique_fini(); 1264 refcount_fini(); 1265 1266 avl_destroy(&spa_namespace_avl); 1267 avl_destroy(&spa_spare_avl); 1268 avl_destroy(&spa_l2cache_avl); 1269 1270 cv_destroy(&spa_namespace_cv); 1271 mutex_destroy(&spa_namespace_lock); 1272 mutex_destroy(&spa_spare_lock); 1273 mutex_destroy(&spa_l2cache_lock); 1274 } 1275 1276 /* 1277 * Return whether this pool has slogs. No locking needed. 1278 * It's not a problem if the wrong answer is returned as it's only for 1279 * performance and not correctness 1280 */ 1281 boolean_t 1282 spa_has_slogs(spa_t *spa) 1283 { 1284 return (spa->spa_log_class->mc_rotor != NULL); 1285 } 1286 1287 /* 1288 * Return whether this pool is the root pool. 1289 */ 1290 boolean_t 1291 spa_is_root(spa_t *spa) 1292 { 1293 return (spa->spa_is_root); 1294 } 1295