1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 /* 32 * SPA: Storage Pool Allocator 33 * 34 * This file contains all the routines used when modifying on-disk SPA state. 35 * This includes opening, importing, destroying, exporting a pool, and syncing a 36 * pool. 37 */ 38 39 #include <sys/zfs_context.h> 40 #include <sys/fm/fs/zfs.h> 41 #include <sys/spa_impl.h> 42 #include <sys/zio.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu.h> 45 #include <sys/dmu_tx.h> 46 #include <sys/zap.h> 47 #include <sys/zil.h> 48 #include <sys/ddt.h> 49 #include <sys/vdev_impl.h> 50 #include <sys/metaslab.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/uberblock_impl.h> 53 #include <sys/txg.h> 54 #include <sys/avl.h> 55 #include <sys/dmu_traverse.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/unique.h> 58 #include <sys/dsl_pool.h> 59 #include <sys/dsl_dataset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_prop.h> 62 #include <sys/dsl_synctask.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/arc.h> 65 #include <sys/callb.h> 66 #include <sys/systeminfo.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/dsl_scan.h> 70 #include <sys/zfeature.h> 71 #include <sys/dsl_destroy.h> 72 73 #ifdef _KERNEL 74 #include <sys/bootprops.h> 75 #include <sys/callb.h> 76 #include <sys/cpupart.h> 77 #include <sys/pool.h> 78 #include <sys/sysdc.h> 79 #include <sys/zone.h> 80 #endif /* _KERNEL */ 81 82 #include "zfs_prop.h" 83 #include "zfs_comutil.h" 84 85 /* 86 * The interval, in seconds, at which failed configuration cache file writes 87 * should be retried. 88 */ 89 static int zfs_ccw_retry_interval = 300; 90 91 typedef enum zti_modes { 92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 94 ZTI_MODE_NULL, /* don't create a taskq */ 95 ZTI_NMODES 96 } zti_modes_t; 97 98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 99 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 100 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 101 102 #define ZTI_N(n) ZTI_P(n, 1) 103 #define ZTI_ONE ZTI_N(1) 104 105 typedef struct zio_taskq_info { 106 zti_modes_t zti_mode; 107 uint_t zti_value; 108 uint_t zti_count; 109 } zio_taskq_info_t; 110 111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 112 "issue", "issue_high", "intr", "intr_high" 113 }; 114 115 /* 116 * This table defines the taskq settings for each ZFS I/O type. When 117 * initializing a pool, we use this table to create an appropriately sized 118 * taskq. Some operations are low volume and therefore have a small, static 119 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 120 * macros. Other operations process a large amount of data; the ZTI_BATCH 121 * macro causes us to create a taskq oriented for throughput. Some operations 122 * are so high frequency and short-lived that the taskq itself can become a a 123 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 124 * additional degree of parallelism specified by the number of threads per- 125 * taskq and the number of taskqs; when dispatching an event in this case, the 126 * particular taskq is chosen at random. 127 * 128 * The different taskq priorities are to handle the different contexts (issue 129 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 130 * need to be handled with minimum delay. 131 */ 132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 133 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 135 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 136 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 137 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 140 }; 141 142 static void spa_sync_version(void *arg, dmu_tx_t *tx); 143 static void spa_sync_props(void *arg, dmu_tx_t *tx); 144 static boolean_t spa_has_active_shared_spare(spa_t *spa); 145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 147 char **ereport); 148 static void spa_vdev_resilver_done(spa_t *spa); 149 150 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 151 id_t zio_taskq_psrset_bind = PS_NONE; 152 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 153 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 154 155 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 156 extern int zfs_sync_pass_deferred_free; 157 158 /* 159 * This (illegal) pool name is used when temporarily importing a spa_t in order 160 * to get the vdev stats associated with the imported devices. 161 */ 162 #define TRYIMPORT_NAME "$import" 163 164 /* 165 * ========================================================================== 166 * SPA properties routines 167 * ========================================================================== 168 */ 169 170 /* 171 * Add a (source=src, propname=propval) list to an nvlist. 172 */ 173 static void 174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 175 uint64_t intval, zprop_source_t src) 176 { 177 const char *propname = zpool_prop_to_name(prop); 178 nvlist_t *propval; 179 180 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 181 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 182 183 if (strval != NULL) 184 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 185 else 186 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 187 188 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 189 nvlist_free(propval); 190 } 191 192 /* 193 * Get property values from the spa configuration. 194 */ 195 static void 196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 197 { 198 vdev_t *rvd = spa->spa_root_vdev; 199 dsl_pool_t *pool = spa->spa_dsl_pool; 200 uint64_t size, alloc, cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 metaslab_class_t *mc = spa_normal_class(spa); 204 205 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 206 207 if (rvd != NULL) { 208 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 209 size = metaslab_class_get_space(spa_normal_class(spa)); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 214 size - alloc, src); 215 216 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 217 metaslab_class_fragmentation(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 219 metaslab_class_expandable_space(mc), src); 220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 221 (spa_mode(spa) == FREAD), src); 222 223 cap = (size == 0) ? 0 : (alloc * 100 / size); 224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 227 ddt_get_pool_dedup_ratio(spa), src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 230 rvd->vdev_state, src); 231 232 version = spa_version(spa); 233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 234 src = ZPROP_SRC_DEFAULT; 235 else 236 src = ZPROP_SRC_LOCAL; 237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 238 } 239 240 if (pool != NULL) { 241 /* 242 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 243 * when opening pools before this version freedir will be NULL. 244 */ 245 if (pool->dp_free_dir != NULL) { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 247 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 248 src); 249 } else { 250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 251 NULL, 0, src); 252 } 253 254 if (pool->dp_leak_dir != NULL) { 255 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 256 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 257 src); 258 } else { 259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 260 NULL, 0, src); 261 } 262 } 263 264 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 265 266 if (spa->spa_comment != NULL) { 267 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 268 0, ZPROP_SRC_LOCAL); 269 } 270 271 if (spa->spa_root != NULL) 272 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 273 0, ZPROP_SRC_LOCAL); 274 275 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 277 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 278 } else { 279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 280 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 281 } 282 283 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 284 if (dp->scd_path == NULL) { 285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 286 "none", 0, ZPROP_SRC_LOCAL); 287 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 289 dp->scd_path, 0, ZPROP_SRC_LOCAL); 290 } 291 } 292 } 293 294 /* 295 * Get zpool property values. 296 */ 297 int 298 spa_prop_get(spa_t *spa, nvlist_t **nvp) 299 { 300 objset_t *mos = spa->spa_meta_objset; 301 zap_cursor_t zc; 302 zap_attribute_t za; 303 int err; 304 305 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 306 307 mutex_enter(&spa->spa_props_lock); 308 309 /* 310 * Get properties from the spa config. 311 */ 312 spa_prop_get_config(spa, nvp); 313 314 /* If no pool property object, no more prop to get. */ 315 if (mos == NULL || spa->spa_pool_props_object == 0) { 316 mutex_exit(&spa->spa_props_lock); 317 return (0); 318 } 319 320 /* 321 * Get properties from the MOS pool property object. 322 */ 323 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 324 (err = zap_cursor_retrieve(&zc, &za)) == 0; 325 zap_cursor_advance(&zc)) { 326 uint64_t intval = 0; 327 char *strval = NULL; 328 zprop_source_t src = ZPROP_SRC_DEFAULT; 329 zpool_prop_t prop; 330 331 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 332 continue; 333 334 switch (za.za_integer_length) { 335 case 8: 336 /* integer property */ 337 if (za.za_first_integer != 338 zpool_prop_default_numeric(prop)) 339 src = ZPROP_SRC_LOCAL; 340 341 if (prop == ZPOOL_PROP_BOOTFS) { 342 dsl_pool_t *dp; 343 dsl_dataset_t *ds = NULL; 344 345 dp = spa_get_dsl(spa); 346 dsl_pool_config_enter(dp, FTAG); 347 if (err = dsl_dataset_hold_obj(dp, 348 za.za_first_integer, FTAG, &ds)) { 349 dsl_pool_config_exit(dp, FTAG); 350 break; 351 } 352 353 strval = kmem_alloc( 354 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 355 KM_SLEEP); 356 dsl_dataset_name(ds, strval); 357 dsl_dataset_rele(ds, FTAG); 358 dsl_pool_config_exit(dp, FTAG); 359 } else { 360 strval = NULL; 361 intval = za.za_first_integer; 362 } 363 364 spa_prop_add_list(*nvp, prop, strval, intval, src); 365 366 if (strval != NULL) 367 kmem_free(strval, 368 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 369 370 break; 371 372 case 1: 373 /* string property */ 374 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 375 err = zap_lookup(mos, spa->spa_pool_props_object, 376 za.za_name, 1, za.za_num_integers, strval); 377 if (err) { 378 kmem_free(strval, za.za_num_integers); 379 break; 380 } 381 spa_prop_add_list(*nvp, prop, strval, 0, src); 382 kmem_free(strval, za.za_num_integers); 383 break; 384 385 default: 386 break; 387 } 388 } 389 zap_cursor_fini(&zc); 390 mutex_exit(&spa->spa_props_lock); 391 out: 392 if (err && err != ENOENT) { 393 nvlist_free(*nvp); 394 *nvp = NULL; 395 return (err); 396 } 397 398 return (0); 399 } 400 401 /* 402 * Validate the given pool properties nvlist and modify the list 403 * for the property values to be set. 404 */ 405 static int 406 spa_prop_validate(spa_t *spa, nvlist_t *props) 407 { 408 nvpair_t *elem; 409 int error = 0, reset_bootfs = 0; 410 uint64_t objnum = 0; 411 boolean_t has_feature = B_FALSE; 412 413 elem = NULL; 414 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 415 uint64_t intval; 416 char *strval, *slash, *check, *fname; 417 const char *propname = nvpair_name(elem); 418 zpool_prop_t prop = zpool_name_to_prop(propname); 419 420 switch (prop) { 421 case ZPROP_INVAL: 422 if (!zpool_prop_feature(propname)) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 /* 428 * Sanitize the input. 429 */ 430 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 431 error = SET_ERROR(EINVAL); 432 break; 433 } 434 435 if (nvpair_value_uint64(elem, &intval) != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 if (intval != 0) { 441 error = SET_ERROR(EINVAL); 442 break; 443 } 444 445 fname = strchr(propname, '@') + 1; 446 if (zfeature_lookup_name(fname, NULL) != 0) { 447 error = SET_ERROR(EINVAL); 448 break; 449 } 450 451 has_feature = B_TRUE; 452 break; 453 454 case ZPOOL_PROP_VERSION: 455 error = nvpair_value_uint64(elem, &intval); 456 if (!error && 457 (intval < spa_version(spa) || 458 intval > SPA_VERSION_BEFORE_FEATURES || 459 has_feature)) 460 error = SET_ERROR(EINVAL); 461 break; 462 463 case ZPOOL_PROP_DELEGATION: 464 case ZPOOL_PROP_AUTOREPLACE: 465 case ZPOOL_PROP_LISTSNAPS: 466 case ZPOOL_PROP_AUTOEXPAND: 467 error = nvpair_value_uint64(elem, &intval); 468 if (!error && intval > 1) 469 error = SET_ERROR(EINVAL); 470 break; 471 472 case ZPOOL_PROP_BOOTFS: 473 /* 474 * If the pool version is less than SPA_VERSION_BOOTFS, 475 * or the pool is still being created (version == 0), 476 * the bootfs property cannot be set. 477 */ 478 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 479 error = SET_ERROR(ENOTSUP); 480 break; 481 } 482 483 /* 484 * Make sure the vdev config is bootable 485 */ 486 if (!vdev_is_bootable(spa->spa_root_vdev)) { 487 error = SET_ERROR(ENOTSUP); 488 break; 489 } 490 491 reset_bootfs = 1; 492 493 error = nvpair_value_string(elem, &strval); 494 495 if (!error) { 496 objset_t *os; 497 uint64_t propval; 498 499 if (strval == NULL || strval[0] == '\0') { 500 objnum = zpool_prop_default_numeric( 501 ZPOOL_PROP_BOOTFS); 502 break; 503 } 504 505 if (error = dmu_objset_hold(strval, FTAG, &os)) 506 break; 507 508 /* 509 * Must be ZPL, and its property settings 510 * must be supported by GRUB (compression 511 * is not gzip, and large blocks are not used). 512 */ 513 514 if (dmu_objset_type(os) != DMU_OST_ZFS) { 515 error = SET_ERROR(ENOTSUP); 516 } else if ((error = 517 dsl_prop_get_int_ds(dmu_objset_ds(os), 518 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 519 &propval)) == 0 && 520 !BOOTFS_COMPRESS_VALID(propval)) { 521 error = SET_ERROR(ENOTSUP); 522 } else if ((error = 523 dsl_prop_get_int_ds(dmu_objset_ds(os), 524 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 525 &propval)) == 0 && 526 propval > SPA_OLD_MAXBLOCKSIZE) { 527 error = SET_ERROR(ENOTSUP); 528 } else { 529 objnum = dmu_objset_id(os); 530 } 531 dmu_objset_rele(os, FTAG); 532 } 533 break; 534 535 case ZPOOL_PROP_FAILUREMODE: 536 error = nvpair_value_uint64(elem, &intval); 537 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 538 intval > ZIO_FAILURE_MODE_PANIC)) 539 error = SET_ERROR(EINVAL); 540 541 /* 542 * This is a special case which only occurs when 543 * the pool has completely failed. This allows 544 * the user to change the in-core failmode property 545 * without syncing it out to disk (I/Os might 546 * currently be blocked). We do this by returning 547 * EIO to the caller (spa_prop_set) to trick it 548 * into thinking we encountered a property validation 549 * error. 550 */ 551 if (!error && spa_suspended(spa)) { 552 spa->spa_failmode = intval; 553 error = SET_ERROR(EIO); 554 } 555 break; 556 557 case ZPOOL_PROP_CACHEFILE: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 561 if (strval[0] == '\0') 562 break; 563 564 if (strcmp(strval, "none") == 0) 565 break; 566 567 if (strval[0] != '/') { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 572 slash = strrchr(strval, '/'); 573 ASSERT(slash != NULL); 574 575 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 576 strcmp(slash, "/..") == 0) 577 error = SET_ERROR(EINVAL); 578 break; 579 580 case ZPOOL_PROP_COMMENT: 581 if ((error = nvpair_value_string(elem, &strval)) != 0) 582 break; 583 for (check = strval; *check != '\0'; check++) { 584 /* 585 * The kernel doesn't have an easy isprint() 586 * check. For this kernel check, we merely 587 * check ASCII apart from DEL. Fix this if 588 * there is an easy-to-use kernel isprint(). 589 */ 590 if (*check >= 0x7f) { 591 error = SET_ERROR(EINVAL); 592 break; 593 } 594 } 595 if (strlen(strval) > ZPROP_MAX_COMMENT) 596 error = E2BIG; 597 break; 598 599 case ZPOOL_PROP_DEDUPDITTO: 600 if (spa_version(spa) < SPA_VERSION_DEDUP) 601 error = SET_ERROR(ENOTSUP); 602 else 603 error = nvpair_value_uint64(elem, &intval); 604 if (error == 0 && 605 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 606 error = SET_ERROR(EINVAL); 607 break; 608 } 609 610 if (error) 611 break; 612 } 613 614 if (!error && reset_bootfs) { 615 error = nvlist_remove(props, 616 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 617 618 if (!error) { 619 error = nvlist_add_uint64(props, 620 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 621 } 622 } 623 624 return (error); 625 } 626 627 void 628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 629 { 630 char *cachefile; 631 spa_config_dirent_t *dp; 632 633 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 634 &cachefile) != 0) 635 return; 636 637 dp = kmem_alloc(sizeof (spa_config_dirent_t), 638 KM_SLEEP); 639 640 if (cachefile[0] == '\0') 641 dp->scd_path = spa_strdup(spa_config_path); 642 else if (strcmp(cachefile, "none") == 0) 643 dp->scd_path = NULL; 644 else 645 dp->scd_path = spa_strdup(cachefile); 646 647 list_insert_head(&spa->spa_config_list, dp); 648 if (need_sync) 649 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 650 } 651 652 int 653 spa_prop_set(spa_t *spa, nvlist_t *nvp) 654 { 655 int error; 656 nvpair_t *elem = NULL; 657 boolean_t need_sync = B_FALSE; 658 659 if ((error = spa_prop_validate(spa, nvp)) != 0) 660 return (error); 661 662 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 663 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 664 665 if (prop == ZPOOL_PROP_CACHEFILE || 666 prop == ZPOOL_PROP_ALTROOT || 667 prop == ZPOOL_PROP_READONLY) 668 continue; 669 670 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 671 uint64_t ver; 672 673 if (prop == ZPOOL_PROP_VERSION) { 674 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 675 } else { 676 ASSERT(zpool_prop_feature(nvpair_name(elem))); 677 ver = SPA_VERSION_FEATURES; 678 need_sync = B_TRUE; 679 } 680 681 /* Save time if the version is already set. */ 682 if (ver == spa_version(spa)) 683 continue; 684 685 /* 686 * In addition to the pool directory object, we might 687 * create the pool properties object, the features for 688 * read object, the features for write object, or the 689 * feature descriptions object. 690 */ 691 error = dsl_sync_task(spa->spa_name, NULL, 692 spa_sync_version, &ver, 693 6, ZFS_SPACE_CHECK_RESERVED); 694 if (error) 695 return (error); 696 continue; 697 } 698 699 need_sync = B_TRUE; 700 break; 701 } 702 703 if (need_sync) { 704 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 705 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 706 } 707 708 return (0); 709 } 710 711 /* 712 * If the bootfs property value is dsobj, clear it. 713 */ 714 void 715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 716 { 717 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 718 VERIFY(zap_remove(spa->spa_meta_objset, 719 spa->spa_pool_props_object, 720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 721 spa->spa_bootfs = 0; 722 } 723 } 724 725 /*ARGSUSED*/ 726 static int 727 spa_change_guid_check(void *arg, dmu_tx_t *tx) 728 { 729 uint64_t *newguid = arg; 730 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 731 vdev_t *rvd = spa->spa_root_vdev; 732 uint64_t vdev_state; 733 734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 735 vdev_state = rvd->vdev_state; 736 spa_config_exit(spa, SCL_STATE, FTAG); 737 738 if (vdev_state != VDEV_STATE_HEALTHY) 739 return (SET_ERROR(ENXIO)); 740 741 ASSERT3U(spa_guid(spa), !=, *newguid); 742 743 return (0); 744 } 745 746 static void 747 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 748 { 749 uint64_t *newguid = arg; 750 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 751 uint64_t oldguid; 752 vdev_t *rvd = spa->spa_root_vdev; 753 754 oldguid = spa_guid(spa); 755 756 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 757 rvd->vdev_guid = *newguid; 758 rvd->vdev_guid_sum += (*newguid - oldguid); 759 vdev_config_dirty(rvd); 760 spa_config_exit(spa, SCL_STATE, FTAG); 761 762 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 763 oldguid, *newguid); 764 } 765 766 /* 767 * Change the GUID for the pool. This is done so that we can later 768 * re-import a pool built from a clone of our own vdevs. We will modify 769 * the root vdev's guid, our own pool guid, and then mark all of our 770 * vdevs dirty. Note that we must make sure that all our vdevs are 771 * online when we do this, or else any vdevs that weren't present 772 * would be orphaned from our pool. We are also going to issue a 773 * sysevent to update any watchers. 774 */ 775 int 776 spa_change_guid(spa_t *spa) 777 { 778 int error; 779 uint64_t guid; 780 781 mutex_enter(&spa->spa_vdev_top_lock); 782 mutex_enter(&spa_namespace_lock); 783 guid = spa_generate_guid(NULL); 784 785 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 786 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 787 788 if (error == 0) { 789 spa_config_sync(spa, B_FALSE, B_TRUE); 790 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 791 } 792 793 mutex_exit(&spa_namespace_lock); 794 mutex_exit(&spa->spa_vdev_top_lock); 795 796 return (error); 797 } 798 799 /* 800 * ========================================================================== 801 * SPA state manipulation (open/create/destroy/import/export) 802 * ========================================================================== 803 */ 804 805 static int 806 spa_error_entry_compare(const void *a, const void *b) 807 { 808 spa_error_entry_t *sa = (spa_error_entry_t *)a; 809 spa_error_entry_t *sb = (spa_error_entry_t *)b; 810 int ret; 811 812 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 813 sizeof (zbookmark_phys_t)); 814 815 if (ret < 0) 816 return (-1); 817 else if (ret > 0) 818 return (1); 819 else 820 return (0); 821 } 822 823 /* 824 * Utility function which retrieves copies of the current logs and 825 * re-initializes them in the process. 826 */ 827 void 828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 829 { 830 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 831 832 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 833 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 834 835 avl_create(&spa->spa_errlist_scrub, 836 spa_error_entry_compare, sizeof (spa_error_entry_t), 837 offsetof(spa_error_entry_t, se_avl)); 838 avl_create(&spa->spa_errlist_last, 839 spa_error_entry_compare, sizeof (spa_error_entry_t), 840 offsetof(spa_error_entry_t, se_avl)); 841 } 842 843 static void 844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 845 { 846 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 847 enum zti_modes mode = ztip->zti_mode; 848 uint_t value = ztip->zti_value; 849 uint_t count = ztip->zti_count; 850 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 851 char name[32]; 852 uint_t flags = 0; 853 boolean_t batch = B_FALSE; 854 855 if (mode == ZTI_MODE_NULL) { 856 tqs->stqs_count = 0; 857 tqs->stqs_taskq = NULL; 858 return; 859 } 860 861 ASSERT3U(count, >, 0); 862 863 tqs->stqs_count = count; 864 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 865 866 switch (mode) { 867 case ZTI_MODE_FIXED: 868 ASSERT3U(value, >=, 1); 869 value = MAX(value, 1); 870 break; 871 872 case ZTI_MODE_BATCH: 873 batch = B_TRUE; 874 flags |= TASKQ_THREADS_CPU_PCT; 875 value = zio_taskq_batch_pct; 876 break; 877 878 default: 879 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 880 "spa_activate()", 881 zio_type_name[t], zio_taskq_types[q], mode, value); 882 break; 883 } 884 885 for (uint_t i = 0; i < count; i++) { 886 taskq_t *tq; 887 888 if (count > 1) { 889 (void) snprintf(name, sizeof (name), "%s_%s_%u", 890 zio_type_name[t], zio_taskq_types[q], i); 891 } else { 892 (void) snprintf(name, sizeof (name), "%s_%s", 893 zio_type_name[t], zio_taskq_types[q]); 894 } 895 896 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 897 if (batch) 898 flags |= TASKQ_DC_BATCH; 899 900 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 901 spa->spa_proc, zio_taskq_basedc, flags); 902 } else { 903 pri_t pri = maxclsyspri; 904 /* 905 * The write issue taskq can be extremely CPU 906 * intensive. Run it at slightly lower priority 907 * than the other taskqs. 908 */ 909 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 910 pri--; 911 912 tq = taskq_create_proc(name, value, pri, 50, 913 INT_MAX, spa->spa_proc, flags); 914 } 915 916 tqs->stqs_taskq[i] = tq; 917 } 918 } 919 920 static void 921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 922 { 923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 924 925 if (tqs->stqs_taskq == NULL) { 926 ASSERT0(tqs->stqs_count); 927 return; 928 } 929 930 for (uint_t i = 0; i < tqs->stqs_count; i++) { 931 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 932 taskq_destroy(tqs->stqs_taskq[i]); 933 } 934 935 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 936 tqs->stqs_taskq = NULL; 937 } 938 939 /* 940 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 941 * Note that a type may have multiple discrete taskqs to avoid lock contention 942 * on the taskq itself. In that case we choose which taskq at random by using 943 * the low bits of gethrtime(). 944 */ 945 void 946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 947 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 948 { 949 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 950 taskq_t *tq; 951 952 ASSERT3P(tqs->stqs_taskq, !=, NULL); 953 ASSERT3U(tqs->stqs_count, !=, 0); 954 955 if (tqs->stqs_count == 1) { 956 tq = tqs->stqs_taskq[0]; 957 } else { 958 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 959 } 960 961 taskq_dispatch_ent(tq, func, arg, flags, ent); 962 } 963 964 static void 965 spa_create_zio_taskqs(spa_t *spa) 966 { 967 for (int t = 0; t < ZIO_TYPES; t++) { 968 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 969 spa_taskqs_init(spa, t, q); 970 } 971 } 972 } 973 974 #ifdef _KERNEL 975 static void 976 spa_thread(void *arg) 977 { 978 callb_cpr_t cprinfo; 979 980 spa_t *spa = arg; 981 user_t *pu = PTOU(curproc); 982 983 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 984 spa->spa_name); 985 986 ASSERT(curproc != &p0); 987 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 988 "zpool-%s", spa->spa_name); 989 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 990 991 /* bind this thread to the requested psrset */ 992 if (zio_taskq_psrset_bind != PS_NONE) { 993 pool_lock(); 994 mutex_enter(&cpu_lock); 995 mutex_enter(&pidlock); 996 mutex_enter(&curproc->p_lock); 997 998 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 999 0, NULL, NULL) == 0) { 1000 curthread->t_bind_pset = zio_taskq_psrset_bind; 1001 } else { 1002 cmn_err(CE_WARN, 1003 "Couldn't bind process for zfs pool \"%s\" to " 1004 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1005 } 1006 1007 mutex_exit(&curproc->p_lock); 1008 mutex_exit(&pidlock); 1009 mutex_exit(&cpu_lock); 1010 pool_unlock(); 1011 } 1012 1013 if (zio_taskq_sysdc) { 1014 sysdc_thread_enter(curthread, 100, 0); 1015 } 1016 1017 spa->spa_proc = curproc; 1018 spa->spa_did = curthread->t_did; 1019 1020 spa_create_zio_taskqs(spa); 1021 1022 mutex_enter(&spa->spa_proc_lock); 1023 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1024 1025 spa->spa_proc_state = SPA_PROC_ACTIVE; 1026 cv_broadcast(&spa->spa_proc_cv); 1027 1028 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1029 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1030 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1031 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1032 1033 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1034 spa->spa_proc_state = SPA_PROC_GONE; 1035 spa->spa_proc = &p0; 1036 cv_broadcast(&spa->spa_proc_cv); 1037 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1038 1039 mutex_enter(&curproc->p_lock); 1040 lwp_exit(); 1041 } 1042 #endif 1043 1044 /* 1045 * Activate an uninitialized pool. 1046 */ 1047 static void 1048 spa_activate(spa_t *spa, int mode) 1049 { 1050 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1051 1052 spa->spa_state = POOL_STATE_ACTIVE; 1053 spa->spa_mode = mode; 1054 1055 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1057 1058 /* Try to create a covering process */ 1059 mutex_enter(&spa->spa_proc_lock); 1060 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1061 ASSERT(spa->spa_proc == &p0); 1062 spa->spa_did = 0; 1063 1064 /* Only create a process if we're going to be around a while. */ 1065 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1066 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1067 NULL, 0) == 0) { 1068 spa->spa_proc_state = SPA_PROC_CREATED; 1069 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1070 cv_wait(&spa->spa_proc_cv, 1071 &spa->spa_proc_lock); 1072 } 1073 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1074 ASSERT(spa->spa_proc != &p0); 1075 ASSERT(spa->spa_did != 0); 1076 } else { 1077 #ifdef _KERNEL 1078 cmn_err(CE_WARN, 1079 "Couldn't create process for zfs pool \"%s\"\n", 1080 spa->spa_name); 1081 #endif 1082 } 1083 } 1084 mutex_exit(&spa->spa_proc_lock); 1085 1086 /* If we didn't create a process, we need to create our taskqs. */ 1087 if (spa->spa_proc == &p0) { 1088 spa_create_zio_taskqs(spa); 1089 } 1090 1091 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1092 offsetof(vdev_t, vdev_config_dirty_node)); 1093 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1094 offsetof(objset_t, os_evicting_node)); 1095 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1096 offsetof(vdev_t, vdev_state_dirty_node)); 1097 1098 txg_list_create(&spa->spa_vdev_txg_list, 1099 offsetof(struct vdev, vdev_txg_node)); 1100 1101 avl_create(&spa->spa_errlist_scrub, 1102 spa_error_entry_compare, sizeof (spa_error_entry_t), 1103 offsetof(spa_error_entry_t, se_avl)); 1104 avl_create(&spa->spa_errlist_last, 1105 spa_error_entry_compare, sizeof (spa_error_entry_t), 1106 offsetof(spa_error_entry_t, se_avl)); 1107 } 1108 1109 /* 1110 * Opposite of spa_activate(). 1111 */ 1112 static void 1113 spa_deactivate(spa_t *spa) 1114 { 1115 ASSERT(spa->spa_sync_on == B_FALSE); 1116 ASSERT(spa->spa_dsl_pool == NULL); 1117 ASSERT(spa->spa_root_vdev == NULL); 1118 ASSERT(spa->spa_async_zio_root == NULL); 1119 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1120 1121 spa_evicting_os_wait(spa); 1122 1123 txg_list_destroy(&spa->spa_vdev_txg_list); 1124 1125 list_destroy(&spa->spa_config_dirty_list); 1126 list_destroy(&spa->spa_evicting_os_list); 1127 list_destroy(&spa->spa_state_dirty_list); 1128 1129 for (int t = 0; t < ZIO_TYPES; t++) { 1130 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1131 spa_taskqs_fini(spa, t, q); 1132 } 1133 } 1134 1135 metaslab_class_destroy(spa->spa_normal_class); 1136 spa->spa_normal_class = NULL; 1137 1138 metaslab_class_destroy(spa->spa_log_class); 1139 spa->spa_log_class = NULL; 1140 1141 /* 1142 * If this was part of an import or the open otherwise failed, we may 1143 * still have errors left in the queues. Empty them just in case. 1144 */ 1145 spa_errlog_drain(spa); 1146 1147 avl_destroy(&spa->spa_errlist_scrub); 1148 avl_destroy(&spa->spa_errlist_last); 1149 1150 spa->spa_state = POOL_STATE_UNINITIALIZED; 1151 1152 mutex_enter(&spa->spa_proc_lock); 1153 if (spa->spa_proc_state != SPA_PROC_NONE) { 1154 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1155 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1156 cv_broadcast(&spa->spa_proc_cv); 1157 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1158 ASSERT(spa->spa_proc != &p0); 1159 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1160 } 1161 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1162 spa->spa_proc_state = SPA_PROC_NONE; 1163 } 1164 ASSERT(spa->spa_proc == &p0); 1165 mutex_exit(&spa->spa_proc_lock); 1166 1167 /* 1168 * We want to make sure spa_thread() has actually exited the ZFS 1169 * module, so that the module can't be unloaded out from underneath 1170 * it. 1171 */ 1172 if (spa->spa_did != 0) { 1173 thread_join(spa->spa_did); 1174 spa->spa_did = 0; 1175 } 1176 } 1177 1178 /* 1179 * Verify a pool configuration, and construct the vdev tree appropriately. This 1180 * will create all the necessary vdevs in the appropriate layout, with each vdev 1181 * in the CLOSED state. This will prep the pool before open/creation/import. 1182 * All vdev validation is done by the vdev_alloc() routine. 1183 */ 1184 static int 1185 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1186 uint_t id, int atype) 1187 { 1188 nvlist_t **child; 1189 uint_t children; 1190 int error; 1191 1192 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1193 return (error); 1194 1195 if ((*vdp)->vdev_ops->vdev_op_leaf) 1196 return (0); 1197 1198 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1199 &child, &children); 1200 1201 if (error == ENOENT) 1202 return (0); 1203 1204 if (error) { 1205 vdev_free(*vdp); 1206 *vdp = NULL; 1207 return (SET_ERROR(EINVAL)); 1208 } 1209 1210 for (int c = 0; c < children; c++) { 1211 vdev_t *vd; 1212 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1213 atype)) != 0) { 1214 vdev_free(*vdp); 1215 *vdp = NULL; 1216 return (error); 1217 } 1218 } 1219 1220 ASSERT(*vdp != NULL); 1221 1222 return (0); 1223 } 1224 1225 /* 1226 * Opposite of spa_load(). 1227 */ 1228 static void 1229 spa_unload(spa_t *spa) 1230 { 1231 int i; 1232 1233 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1234 1235 /* 1236 * Stop async tasks. 1237 */ 1238 spa_async_suspend(spa); 1239 1240 /* 1241 * Stop syncing. 1242 */ 1243 if (spa->spa_sync_on) { 1244 txg_sync_stop(spa->spa_dsl_pool); 1245 spa->spa_sync_on = B_FALSE; 1246 } 1247 1248 /* 1249 * Wait for any outstanding async I/O to complete. 1250 */ 1251 if (spa->spa_async_zio_root != NULL) { 1252 for (int i = 0; i < max_ncpus; i++) 1253 (void) zio_wait(spa->spa_async_zio_root[i]); 1254 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1255 spa->spa_async_zio_root = NULL; 1256 } 1257 1258 bpobj_close(&spa->spa_deferred_bpobj); 1259 1260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1261 1262 /* 1263 * Close all vdevs. 1264 */ 1265 if (spa->spa_root_vdev) 1266 vdev_free(spa->spa_root_vdev); 1267 ASSERT(spa->spa_root_vdev == NULL); 1268 1269 /* 1270 * Close the dsl pool. 1271 */ 1272 if (spa->spa_dsl_pool) { 1273 dsl_pool_close(spa->spa_dsl_pool); 1274 spa->spa_dsl_pool = NULL; 1275 spa->spa_meta_objset = NULL; 1276 } 1277 1278 ddt_unload(spa); 1279 1280 1281 /* 1282 * Drop and purge level 2 cache 1283 */ 1284 spa_l2cache_drop(spa); 1285 1286 for (i = 0; i < spa->spa_spares.sav_count; i++) 1287 vdev_free(spa->spa_spares.sav_vdevs[i]); 1288 if (spa->spa_spares.sav_vdevs) { 1289 kmem_free(spa->spa_spares.sav_vdevs, 1290 spa->spa_spares.sav_count * sizeof (void *)); 1291 spa->spa_spares.sav_vdevs = NULL; 1292 } 1293 if (spa->spa_spares.sav_config) { 1294 nvlist_free(spa->spa_spares.sav_config); 1295 spa->spa_spares.sav_config = NULL; 1296 } 1297 spa->spa_spares.sav_count = 0; 1298 1299 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1300 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1301 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1302 } 1303 if (spa->spa_l2cache.sav_vdevs) { 1304 kmem_free(spa->spa_l2cache.sav_vdevs, 1305 spa->spa_l2cache.sav_count * sizeof (void *)); 1306 spa->spa_l2cache.sav_vdevs = NULL; 1307 } 1308 if (spa->spa_l2cache.sav_config) { 1309 nvlist_free(spa->spa_l2cache.sav_config); 1310 spa->spa_l2cache.sav_config = NULL; 1311 } 1312 spa->spa_l2cache.sav_count = 0; 1313 1314 spa->spa_async_suspended = 0; 1315 1316 if (spa->spa_comment != NULL) { 1317 spa_strfree(spa->spa_comment); 1318 spa->spa_comment = NULL; 1319 } 1320 1321 spa_config_exit(spa, SCL_ALL, FTAG); 1322 } 1323 1324 /* 1325 * Load (or re-load) the current list of vdevs describing the active spares for 1326 * this pool. When this is called, we have some form of basic information in 1327 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1328 * then re-generate a more complete list including status information. 1329 */ 1330 static void 1331 spa_load_spares(spa_t *spa) 1332 { 1333 nvlist_t **spares; 1334 uint_t nspares; 1335 int i; 1336 vdev_t *vd, *tvd; 1337 1338 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1339 1340 /* 1341 * First, close and free any existing spare vdevs. 1342 */ 1343 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1344 vd = spa->spa_spares.sav_vdevs[i]; 1345 1346 /* Undo the call to spa_activate() below */ 1347 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1348 B_FALSE)) != NULL && tvd->vdev_isspare) 1349 spa_spare_remove(tvd); 1350 vdev_close(vd); 1351 vdev_free(vd); 1352 } 1353 1354 if (spa->spa_spares.sav_vdevs) 1355 kmem_free(spa->spa_spares.sav_vdevs, 1356 spa->spa_spares.sav_count * sizeof (void *)); 1357 1358 if (spa->spa_spares.sav_config == NULL) 1359 nspares = 0; 1360 else 1361 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1362 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1363 1364 spa->spa_spares.sav_count = (int)nspares; 1365 spa->spa_spares.sav_vdevs = NULL; 1366 1367 if (nspares == 0) 1368 return; 1369 1370 /* 1371 * Construct the array of vdevs, opening them to get status in the 1372 * process. For each spare, there is potentially two different vdev_t 1373 * structures associated with it: one in the list of spares (used only 1374 * for basic validation purposes) and one in the active vdev 1375 * configuration (if it's spared in). During this phase we open and 1376 * validate each vdev on the spare list. If the vdev also exists in the 1377 * active configuration, then we also mark this vdev as an active spare. 1378 */ 1379 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1380 KM_SLEEP); 1381 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1382 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1383 VDEV_ALLOC_SPARE) == 0); 1384 ASSERT(vd != NULL); 1385 1386 spa->spa_spares.sav_vdevs[i] = vd; 1387 1388 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1389 B_FALSE)) != NULL) { 1390 if (!tvd->vdev_isspare) 1391 spa_spare_add(tvd); 1392 1393 /* 1394 * We only mark the spare active if we were successfully 1395 * able to load the vdev. Otherwise, importing a pool 1396 * with a bad active spare would result in strange 1397 * behavior, because multiple pool would think the spare 1398 * is actively in use. 1399 * 1400 * There is a vulnerability here to an equally bizarre 1401 * circumstance, where a dead active spare is later 1402 * brought back to life (onlined or otherwise). Given 1403 * the rarity of this scenario, and the extra complexity 1404 * it adds, we ignore the possibility. 1405 */ 1406 if (!vdev_is_dead(tvd)) 1407 spa_spare_activate(tvd); 1408 } 1409 1410 vd->vdev_top = vd; 1411 vd->vdev_aux = &spa->spa_spares; 1412 1413 if (vdev_open(vd) != 0) 1414 continue; 1415 1416 if (vdev_validate_aux(vd) == 0) 1417 spa_spare_add(vd); 1418 } 1419 1420 /* 1421 * Recompute the stashed list of spares, with status information 1422 * this time. 1423 */ 1424 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1425 DATA_TYPE_NVLIST_ARRAY) == 0); 1426 1427 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1428 KM_SLEEP); 1429 for (i = 0; i < spa->spa_spares.sav_count; i++) 1430 spares[i] = vdev_config_generate(spa, 1431 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1432 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1433 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1434 for (i = 0; i < spa->spa_spares.sav_count; i++) 1435 nvlist_free(spares[i]); 1436 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1437 } 1438 1439 /* 1440 * Load (or re-load) the current list of vdevs describing the active l2cache for 1441 * this pool. When this is called, we have some form of basic information in 1442 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1443 * then re-generate a more complete list including status information. 1444 * Devices which are already active have their details maintained, and are 1445 * not re-opened. 1446 */ 1447 static void 1448 spa_load_l2cache(spa_t *spa) 1449 { 1450 nvlist_t **l2cache; 1451 uint_t nl2cache; 1452 int i, j, oldnvdevs; 1453 uint64_t guid; 1454 vdev_t *vd, **oldvdevs, **newvdevs; 1455 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1456 1457 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1458 1459 if (sav->sav_config != NULL) { 1460 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1461 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1462 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1463 } else { 1464 nl2cache = 0; 1465 newvdevs = NULL; 1466 } 1467 1468 oldvdevs = sav->sav_vdevs; 1469 oldnvdevs = sav->sav_count; 1470 sav->sav_vdevs = NULL; 1471 sav->sav_count = 0; 1472 1473 /* 1474 * Process new nvlist of vdevs. 1475 */ 1476 for (i = 0; i < nl2cache; i++) { 1477 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1478 &guid) == 0); 1479 1480 newvdevs[i] = NULL; 1481 for (j = 0; j < oldnvdevs; j++) { 1482 vd = oldvdevs[j]; 1483 if (vd != NULL && guid == vd->vdev_guid) { 1484 /* 1485 * Retain previous vdev for add/remove ops. 1486 */ 1487 newvdevs[i] = vd; 1488 oldvdevs[j] = NULL; 1489 break; 1490 } 1491 } 1492 1493 if (newvdevs[i] == NULL) { 1494 /* 1495 * Create new vdev 1496 */ 1497 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1498 VDEV_ALLOC_L2CACHE) == 0); 1499 ASSERT(vd != NULL); 1500 newvdevs[i] = vd; 1501 1502 /* 1503 * Commit this vdev as an l2cache device, 1504 * even if it fails to open. 1505 */ 1506 spa_l2cache_add(vd); 1507 1508 vd->vdev_top = vd; 1509 vd->vdev_aux = sav; 1510 1511 spa_l2cache_activate(vd); 1512 1513 if (vdev_open(vd) != 0) 1514 continue; 1515 1516 (void) vdev_validate_aux(vd); 1517 1518 if (!vdev_is_dead(vd)) { 1519 boolean_t do_rebuild = B_FALSE; 1520 1521 (void) nvlist_lookup_boolean_value(l2cache[i], 1522 ZPOOL_CONFIG_L2CACHE_PERSISTENT, 1523 &do_rebuild); 1524 l2arc_add_vdev(spa, vd, do_rebuild); 1525 } 1526 } 1527 } 1528 1529 /* 1530 * Purge vdevs that were dropped 1531 */ 1532 for (i = 0; i < oldnvdevs; i++) { 1533 uint64_t pool; 1534 1535 vd = oldvdevs[i]; 1536 if (vd != NULL) { 1537 ASSERT(vd->vdev_isl2cache); 1538 1539 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1540 pool != 0ULL && l2arc_vdev_present(vd)) 1541 l2arc_remove_vdev(vd); 1542 vdev_clear_stats(vd); 1543 vdev_free(vd); 1544 } 1545 } 1546 1547 if (oldvdevs) 1548 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1549 1550 if (sav->sav_config == NULL) 1551 goto out; 1552 1553 sav->sav_vdevs = newvdevs; 1554 sav->sav_count = (int)nl2cache; 1555 1556 /* 1557 * Recompute the stashed list of l2cache devices, with status 1558 * information this time. 1559 */ 1560 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1561 DATA_TYPE_NVLIST_ARRAY) == 0); 1562 1563 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1564 for (i = 0; i < sav->sav_count; i++) 1565 l2cache[i] = vdev_config_generate(spa, 1566 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1567 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1568 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1569 out: 1570 for (i = 0; i < sav->sav_count; i++) 1571 nvlist_free(l2cache[i]); 1572 if (sav->sav_count) 1573 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1574 } 1575 1576 static int 1577 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1578 { 1579 dmu_buf_t *db; 1580 char *packed = NULL; 1581 size_t nvsize = 0; 1582 int error; 1583 *value = NULL; 1584 1585 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1586 if (error != 0) 1587 return (error); 1588 1589 nvsize = *(uint64_t *)db->db_data; 1590 dmu_buf_rele(db, FTAG); 1591 1592 packed = kmem_alloc(nvsize, KM_SLEEP); 1593 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1594 DMU_READ_PREFETCH); 1595 if (error == 0) 1596 error = nvlist_unpack(packed, nvsize, value, 0); 1597 kmem_free(packed, nvsize); 1598 1599 return (error); 1600 } 1601 1602 /* 1603 * Checks to see if the given vdev could not be opened, in which case we post a 1604 * sysevent to notify the autoreplace code that the device has been removed. 1605 */ 1606 static void 1607 spa_check_removed(vdev_t *vd) 1608 { 1609 for (int c = 0; c < vd->vdev_children; c++) 1610 spa_check_removed(vd->vdev_child[c]); 1611 1612 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1613 !vd->vdev_ishole) { 1614 zfs_post_autoreplace(vd->vdev_spa, vd); 1615 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1616 } 1617 } 1618 1619 /* 1620 * Validate the current config against the MOS config 1621 */ 1622 static boolean_t 1623 spa_config_valid(spa_t *spa, nvlist_t *config) 1624 { 1625 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1626 nvlist_t *nv; 1627 1628 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1629 1630 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1631 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1632 1633 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1634 1635 /* 1636 * If we're doing a normal import, then build up any additional 1637 * diagnostic information about missing devices in this config. 1638 * We'll pass this up to the user for further processing. 1639 */ 1640 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1641 nvlist_t **child, *nv; 1642 uint64_t idx = 0; 1643 1644 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1645 KM_SLEEP); 1646 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1647 1648 for (int c = 0; c < rvd->vdev_children; c++) { 1649 vdev_t *tvd = rvd->vdev_child[c]; 1650 vdev_t *mtvd = mrvd->vdev_child[c]; 1651 1652 if (tvd->vdev_ops == &vdev_missing_ops && 1653 mtvd->vdev_ops != &vdev_missing_ops && 1654 mtvd->vdev_islog) 1655 child[idx++] = vdev_config_generate(spa, mtvd, 1656 B_FALSE, 0); 1657 } 1658 1659 if (idx) { 1660 VERIFY(nvlist_add_nvlist_array(nv, 1661 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1662 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1663 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1664 1665 for (int i = 0; i < idx; i++) 1666 nvlist_free(child[i]); 1667 } 1668 nvlist_free(nv); 1669 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1670 } 1671 1672 /* 1673 * Compare the root vdev tree with the information we have 1674 * from the MOS config (mrvd). Check each top-level vdev 1675 * with the corresponding MOS config top-level (mtvd). 1676 */ 1677 for (int c = 0; c < rvd->vdev_children; c++) { 1678 vdev_t *tvd = rvd->vdev_child[c]; 1679 vdev_t *mtvd = mrvd->vdev_child[c]; 1680 1681 /* 1682 * Resolve any "missing" vdevs in the current configuration. 1683 * If we find that the MOS config has more accurate information 1684 * about the top-level vdev then use that vdev instead. 1685 */ 1686 if (tvd->vdev_ops == &vdev_missing_ops && 1687 mtvd->vdev_ops != &vdev_missing_ops) { 1688 1689 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1690 continue; 1691 1692 /* 1693 * Device specific actions. 1694 */ 1695 if (mtvd->vdev_islog) { 1696 spa_set_log_state(spa, SPA_LOG_CLEAR); 1697 } else { 1698 /* 1699 * XXX - once we have 'readonly' pool 1700 * support we should be able to handle 1701 * missing data devices by transitioning 1702 * the pool to readonly. 1703 */ 1704 continue; 1705 } 1706 1707 /* 1708 * Swap the missing vdev with the data we were 1709 * able to obtain from the MOS config. 1710 */ 1711 vdev_remove_child(rvd, tvd); 1712 vdev_remove_child(mrvd, mtvd); 1713 1714 vdev_add_child(rvd, mtvd); 1715 vdev_add_child(mrvd, tvd); 1716 1717 spa_config_exit(spa, SCL_ALL, FTAG); 1718 vdev_load(mtvd); 1719 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1720 1721 vdev_reopen(rvd); 1722 } else if (mtvd->vdev_islog) { 1723 /* 1724 * Load the slog device's state from the MOS config 1725 * since it's possible that the label does not 1726 * contain the most up-to-date information. 1727 */ 1728 vdev_load_log_state(tvd, mtvd); 1729 vdev_reopen(tvd); 1730 } 1731 } 1732 vdev_free(mrvd); 1733 spa_config_exit(spa, SCL_ALL, FTAG); 1734 1735 /* 1736 * Ensure we were able to validate the config. 1737 */ 1738 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1739 } 1740 1741 /* 1742 * Check for missing log devices 1743 */ 1744 static boolean_t 1745 spa_check_logs(spa_t *spa) 1746 { 1747 boolean_t rv = B_FALSE; 1748 dsl_pool_t *dp = spa_get_dsl(spa); 1749 1750 switch (spa->spa_log_state) { 1751 case SPA_LOG_MISSING: 1752 /* need to recheck in case slog has been restored */ 1753 case SPA_LOG_UNKNOWN: 1754 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1755 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1756 if (rv) 1757 spa_set_log_state(spa, SPA_LOG_MISSING); 1758 break; 1759 } 1760 return (rv); 1761 } 1762 1763 static boolean_t 1764 spa_passivate_log(spa_t *spa) 1765 { 1766 vdev_t *rvd = spa->spa_root_vdev; 1767 boolean_t slog_found = B_FALSE; 1768 1769 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1770 1771 if (!spa_has_slogs(spa)) 1772 return (B_FALSE); 1773 1774 for (int c = 0; c < rvd->vdev_children; c++) { 1775 vdev_t *tvd = rvd->vdev_child[c]; 1776 metaslab_group_t *mg = tvd->vdev_mg; 1777 1778 if (tvd->vdev_islog) { 1779 metaslab_group_passivate(mg); 1780 slog_found = B_TRUE; 1781 } 1782 } 1783 1784 return (slog_found); 1785 } 1786 1787 static void 1788 spa_activate_log(spa_t *spa) 1789 { 1790 vdev_t *rvd = spa->spa_root_vdev; 1791 1792 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1793 1794 for (int c = 0; c < rvd->vdev_children; c++) { 1795 vdev_t *tvd = rvd->vdev_child[c]; 1796 metaslab_group_t *mg = tvd->vdev_mg; 1797 1798 if (tvd->vdev_islog) 1799 metaslab_group_activate(mg); 1800 } 1801 } 1802 1803 int 1804 spa_offline_log(spa_t *spa) 1805 { 1806 int error; 1807 1808 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1809 NULL, DS_FIND_CHILDREN); 1810 if (error == 0) { 1811 /* 1812 * We successfully offlined the log device, sync out the 1813 * current txg so that the "stubby" block can be removed 1814 * by zil_sync(). 1815 */ 1816 txg_wait_synced(spa->spa_dsl_pool, 0); 1817 } 1818 return (error); 1819 } 1820 1821 static void 1822 spa_aux_check_removed(spa_aux_vdev_t *sav) 1823 { 1824 for (int i = 0; i < sav->sav_count; i++) 1825 spa_check_removed(sav->sav_vdevs[i]); 1826 } 1827 1828 void 1829 spa_claim_notify(zio_t *zio) 1830 { 1831 spa_t *spa = zio->io_spa; 1832 1833 if (zio->io_error) 1834 return; 1835 1836 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1837 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1838 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1839 mutex_exit(&spa->spa_props_lock); 1840 } 1841 1842 typedef struct spa_load_error { 1843 uint64_t sle_meta_count; 1844 uint64_t sle_data_count; 1845 } spa_load_error_t; 1846 1847 static void 1848 spa_load_verify_done(zio_t *zio) 1849 { 1850 blkptr_t *bp = zio->io_bp; 1851 spa_load_error_t *sle = zio->io_private; 1852 dmu_object_type_t type = BP_GET_TYPE(bp); 1853 int error = zio->io_error; 1854 spa_t *spa = zio->io_spa; 1855 1856 if (error) { 1857 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1858 type != DMU_OT_INTENT_LOG) 1859 atomic_inc_64(&sle->sle_meta_count); 1860 else 1861 atomic_inc_64(&sle->sle_data_count); 1862 } 1863 zio_data_buf_free(zio->io_data, zio->io_size); 1864 1865 mutex_enter(&spa->spa_scrub_lock); 1866 spa->spa_scrub_inflight--; 1867 cv_broadcast(&spa->spa_scrub_io_cv); 1868 mutex_exit(&spa->spa_scrub_lock); 1869 } 1870 1871 /* 1872 * Maximum number of concurrent scrub i/os to create while verifying 1873 * a pool while importing it. 1874 */ 1875 int spa_load_verify_maxinflight = 10000; 1876 boolean_t spa_load_verify_metadata = B_TRUE; 1877 boolean_t spa_load_verify_data = B_TRUE; 1878 1879 /*ARGSUSED*/ 1880 static int 1881 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1882 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1883 { 1884 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1885 return (0); 1886 /* 1887 * Note: normally this routine will not be called if 1888 * spa_load_verify_metadata is not set. However, it may be useful 1889 * to manually set the flag after the traversal has begun. 1890 */ 1891 if (!spa_load_verify_metadata) 1892 return (0); 1893 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1894 return (0); 1895 1896 zio_t *rio = arg; 1897 size_t size = BP_GET_PSIZE(bp); 1898 void *data = zio_data_buf_alloc(size); 1899 1900 mutex_enter(&spa->spa_scrub_lock); 1901 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1902 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1903 spa->spa_scrub_inflight++; 1904 mutex_exit(&spa->spa_scrub_lock); 1905 1906 zio_nowait(zio_read(rio, spa, bp, data, size, 1907 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1908 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1909 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1910 return (0); 1911 } 1912 1913 static int 1914 spa_load_verify(spa_t *spa) 1915 { 1916 zio_t *rio; 1917 spa_load_error_t sle = { 0 }; 1918 zpool_rewind_policy_t policy; 1919 boolean_t verify_ok = B_FALSE; 1920 int error = 0; 1921 1922 zpool_get_rewind_policy(spa->spa_config, &policy); 1923 1924 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1925 return (0); 1926 1927 rio = zio_root(spa, NULL, &sle, 1928 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1929 1930 if (spa_load_verify_metadata) { 1931 error = traverse_pool(spa, spa->spa_verify_min_txg, 1932 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1933 spa_load_verify_cb, rio); 1934 } 1935 1936 (void) zio_wait(rio); 1937 1938 spa->spa_load_meta_errors = sle.sle_meta_count; 1939 spa->spa_load_data_errors = sle.sle_data_count; 1940 1941 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1942 sle.sle_data_count <= policy.zrp_maxdata) { 1943 int64_t loss = 0; 1944 1945 verify_ok = B_TRUE; 1946 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1947 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1948 1949 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1950 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1951 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1952 VERIFY(nvlist_add_int64(spa->spa_load_info, 1953 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1954 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1955 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1956 } else { 1957 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1958 } 1959 1960 if (error) { 1961 if (error != ENXIO && error != EIO) 1962 error = SET_ERROR(EIO); 1963 return (error); 1964 } 1965 1966 return (verify_ok ? 0 : EIO); 1967 } 1968 1969 /* 1970 * Find a value in the pool props object. 1971 */ 1972 static void 1973 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1974 { 1975 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1976 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1977 } 1978 1979 /* 1980 * Find a value in the pool directory object. 1981 */ 1982 static int 1983 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1984 { 1985 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1986 name, sizeof (uint64_t), 1, val)); 1987 } 1988 1989 static int 1990 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1991 { 1992 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1993 return (err); 1994 } 1995 1996 /* 1997 * Fix up config after a partly-completed split. This is done with the 1998 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1999 * pool have that entry in their config, but only the splitting one contains 2000 * a list of all the guids of the vdevs that are being split off. 2001 * 2002 * This function determines what to do with that list: either rejoin 2003 * all the disks to the pool, or complete the splitting process. To attempt 2004 * the rejoin, each disk that is offlined is marked online again, and 2005 * we do a reopen() call. If the vdev label for every disk that was 2006 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2007 * then we call vdev_split() on each disk, and complete the split. 2008 * 2009 * Otherwise we leave the config alone, with all the vdevs in place in 2010 * the original pool. 2011 */ 2012 static void 2013 spa_try_repair(spa_t *spa, nvlist_t *config) 2014 { 2015 uint_t extracted; 2016 uint64_t *glist; 2017 uint_t i, gcount; 2018 nvlist_t *nvl; 2019 vdev_t **vd; 2020 boolean_t attempt_reopen; 2021 2022 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2023 return; 2024 2025 /* check that the config is complete */ 2026 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2027 &glist, &gcount) != 0) 2028 return; 2029 2030 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2031 2032 /* attempt to online all the vdevs & validate */ 2033 attempt_reopen = B_TRUE; 2034 for (i = 0; i < gcount; i++) { 2035 if (glist[i] == 0) /* vdev is hole */ 2036 continue; 2037 2038 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2039 if (vd[i] == NULL) { 2040 /* 2041 * Don't bother attempting to reopen the disks; 2042 * just do the split. 2043 */ 2044 attempt_reopen = B_FALSE; 2045 } else { 2046 /* attempt to re-online it */ 2047 vd[i]->vdev_offline = B_FALSE; 2048 } 2049 } 2050 2051 if (attempt_reopen) { 2052 vdev_reopen(spa->spa_root_vdev); 2053 2054 /* check each device to see what state it's in */ 2055 for (extracted = 0, i = 0; i < gcount; i++) { 2056 if (vd[i] != NULL && 2057 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2058 break; 2059 ++extracted; 2060 } 2061 } 2062 2063 /* 2064 * If every disk has been moved to the new pool, or if we never 2065 * even attempted to look at them, then we split them off for 2066 * good. 2067 */ 2068 if (!attempt_reopen || gcount == extracted) { 2069 for (i = 0; i < gcount; i++) 2070 if (vd[i] != NULL) 2071 vdev_split(vd[i]); 2072 vdev_reopen(spa->spa_root_vdev); 2073 } 2074 2075 kmem_free(vd, gcount * sizeof (vdev_t *)); 2076 } 2077 2078 static int 2079 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2080 boolean_t mosconfig) 2081 { 2082 nvlist_t *config = spa->spa_config; 2083 char *ereport = FM_EREPORT_ZFS_POOL; 2084 char *comment; 2085 int error; 2086 uint64_t pool_guid; 2087 nvlist_t *nvl; 2088 2089 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2090 return (SET_ERROR(EINVAL)); 2091 2092 ASSERT(spa->spa_comment == NULL); 2093 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2094 spa->spa_comment = spa_strdup(comment); 2095 2096 /* 2097 * Versioning wasn't explicitly added to the label until later, so if 2098 * it's not present treat it as the initial version. 2099 */ 2100 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2101 &spa->spa_ubsync.ub_version) != 0) 2102 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2103 2104 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2105 &spa->spa_config_txg); 2106 2107 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2108 spa_guid_exists(pool_guid, 0)) { 2109 error = SET_ERROR(EEXIST); 2110 } else { 2111 spa->spa_config_guid = pool_guid; 2112 2113 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2114 &nvl) == 0) { 2115 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2116 KM_SLEEP) == 0); 2117 } 2118 2119 nvlist_free(spa->spa_load_info); 2120 spa->spa_load_info = fnvlist_alloc(); 2121 2122 gethrestime(&spa->spa_loaded_ts); 2123 error = spa_load_impl(spa, pool_guid, config, state, type, 2124 mosconfig, &ereport); 2125 } 2126 2127 /* 2128 * Don't count references from objsets that are already closed 2129 * and are making their way through the eviction process. 2130 */ 2131 spa_evicting_os_wait(spa); 2132 spa->spa_minref = refcount_count(&spa->spa_refcount); 2133 if (error) { 2134 if (error != EEXIST) { 2135 spa->spa_loaded_ts.tv_sec = 0; 2136 spa->spa_loaded_ts.tv_nsec = 0; 2137 } 2138 if (error != EBADF) { 2139 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2140 } 2141 } 2142 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2143 spa->spa_ena = 0; 2144 2145 return (error); 2146 } 2147 2148 /* 2149 * Load an existing storage pool, using the pool's builtin spa_config as a 2150 * source of configuration information. 2151 */ 2152 static int 2153 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2154 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2155 char **ereport) 2156 { 2157 int error = 0; 2158 nvlist_t *nvroot = NULL; 2159 nvlist_t *label; 2160 vdev_t *rvd; 2161 uberblock_t *ub = &spa->spa_uberblock; 2162 uint64_t children, config_cache_txg = spa->spa_config_txg; 2163 int orig_mode = spa->spa_mode; 2164 int parse; 2165 uint64_t obj; 2166 boolean_t missing_feat_write = B_FALSE; 2167 2168 /* 2169 * If this is an untrusted config, access the pool in read-only mode. 2170 * This prevents things like resilvering recently removed devices. 2171 */ 2172 if (!mosconfig) 2173 spa->spa_mode = FREAD; 2174 2175 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2176 2177 spa->spa_load_state = state; 2178 2179 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2180 return (SET_ERROR(EINVAL)); 2181 2182 parse = (type == SPA_IMPORT_EXISTING ? 2183 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2184 2185 /* 2186 * Create "The Godfather" zio to hold all async IOs 2187 */ 2188 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2189 KM_SLEEP); 2190 for (int i = 0; i < max_ncpus; i++) { 2191 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2192 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2193 ZIO_FLAG_GODFATHER); 2194 } 2195 2196 /* 2197 * Parse the configuration into a vdev tree. We explicitly set the 2198 * value that will be returned by spa_version() since parsing the 2199 * configuration requires knowing the version number. 2200 */ 2201 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2202 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2203 spa_config_exit(spa, SCL_ALL, FTAG); 2204 2205 if (error != 0) 2206 return (error); 2207 2208 ASSERT(spa->spa_root_vdev == rvd); 2209 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2210 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2211 2212 if (type != SPA_IMPORT_ASSEMBLE) { 2213 ASSERT(spa_guid(spa) == pool_guid); 2214 } 2215 2216 /* 2217 * Try to open all vdevs, loading each label in the process. 2218 */ 2219 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2220 error = vdev_open(rvd); 2221 spa_config_exit(spa, SCL_ALL, FTAG); 2222 if (error != 0) 2223 return (error); 2224 2225 /* 2226 * We need to validate the vdev labels against the configuration that 2227 * we have in hand, which is dependent on the setting of mosconfig. If 2228 * mosconfig is true then we're validating the vdev labels based on 2229 * that config. Otherwise, we're validating against the cached config 2230 * (zpool.cache) that was read when we loaded the zfs module, and then 2231 * later we will recursively call spa_load() and validate against 2232 * the vdev config. 2233 * 2234 * If we're assembling a new pool that's been split off from an 2235 * existing pool, the labels haven't yet been updated so we skip 2236 * validation for now. 2237 */ 2238 if (type != SPA_IMPORT_ASSEMBLE) { 2239 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2240 error = vdev_validate(rvd, mosconfig); 2241 spa_config_exit(spa, SCL_ALL, FTAG); 2242 2243 if (error != 0) 2244 return (error); 2245 2246 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2247 return (SET_ERROR(ENXIO)); 2248 } 2249 2250 /* 2251 * Find the best uberblock. 2252 */ 2253 vdev_uberblock_load(rvd, ub, &label); 2254 2255 /* 2256 * If we weren't able to find a single valid uberblock, return failure. 2257 */ 2258 if (ub->ub_txg == 0) { 2259 nvlist_free(label); 2260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2261 } 2262 2263 /* 2264 * If the pool has an unsupported version we can't open it. 2265 */ 2266 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2267 nvlist_free(label); 2268 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2269 } 2270 2271 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2272 nvlist_t *features; 2273 2274 /* 2275 * If we weren't able to find what's necessary for reading the 2276 * MOS in the label, return failure. 2277 */ 2278 if (label == NULL || nvlist_lookup_nvlist(label, 2279 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2280 nvlist_free(label); 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2282 ENXIO)); 2283 } 2284 2285 /* 2286 * Update our in-core representation with the definitive values 2287 * from the label. 2288 */ 2289 nvlist_free(spa->spa_label_features); 2290 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2291 } 2292 2293 nvlist_free(label); 2294 2295 /* 2296 * Look through entries in the label nvlist's features_for_read. If 2297 * there is a feature listed there which we don't understand then we 2298 * cannot open a pool. 2299 */ 2300 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2301 nvlist_t *unsup_feat; 2302 2303 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2304 0); 2305 2306 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2307 NULL); nvp != NULL; 2308 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2309 if (!zfeature_is_supported(nvpair_name(nvp))) { 2310 VERIFY(nvlist_add_string(unsup_feat, 2311 nvpair_name(nvp), "") == 0); 2312 } 2313 } 2314 2315 if (!nvlist_empty(unsup_feat)) { 2316 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2317 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2318 nvlist_free(unsup_feat); 2319 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2320 ENOTSUP)); 2321 } 2322 2323 nvlist_free(unsup_feat); 2324 } 2325 2326 /* 2327 * If the vdev guid sum doesn't match the uberblock, we have an 2328 * incomplete configuration. We first check to see if the pool 2329 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2330 * If it is, defer the vdev_guid_sum check till later so we 2331 * can handle missing vdevs. 2332 */ 2333 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2334 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2335 rvd->vdev_guid_sum != ub->ub_guid_sum) 2336 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2337 2338 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2339 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2340 spa_try_repair(spa, config); 2341 spa_config_exit(spa, SCL_ALL, FTAG); 2342 nvlist_free(spa->spa_config_splitting); 2343 spa->spa_config_splitting = NULL; 2344 } 2345 2346 /* 2347 * Initialize internal SPA structures. 2348 */ 2349 spa->spa_state = POOL_STATE_ACTIVE; 2350 spa->spa_ubsync = spa->spa_uberblock; 2351 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2352 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2353 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2354 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2355 spa->spa_claim_max_txg = spa->spa_first_txg; 2356 spa->spa_prev_software_version = ub->ub_software_version; 2357 2358 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2359 if (error) 2360 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2361 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2362 2363 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2365 2366 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2367 boolean_t missing_feat_read = B_FALSE; 2368 nvlist_t *unsup_feat, *enabled_feat; 2369 2370 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2371 &spa->spa_feat_for_read_obj) != 0) { 2372 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2373 } 2374 2375 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2376 &spa->spa_feat_for_write_obj) != 0) { 2377 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2378 } 2379 2380 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2381 &spa->spa_feat_desc_obj) != 0) { 2382 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2383 } 2384 2385 enabled_feat = fnvlist_alloc(); 2386 unsup_feat = fnvlist_alloc(); 2387 2388 if (!spa_features_check(spa, B_FALSE, 2389 unsup_feat, enabled_feat)) 2390 missing_feat_read = B_TRUE; 2391 2392 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2393 if (!spa_features_check(spa, B_TRUE, 2394 unsup_feat, enabled_feat)) { 2395 missing_feat_write = B_TRUE; 2396 } 2397 } 2398 2399 fnvlist_add_nvlist(spa->spa_load_info, 2400 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2401 2402 if (!nvlist_empty(unsup_feat)) { 2403 fnvlist_add_nvlist(spa->spa_load_info, 2404 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2405 } 2406 2407 fnvlist_free(enabled_feat); 2408 fnvlist_free(unsup_feat); 2409 2410 if (!missing_feat_read) { 2411 fnvlist_add_boolean(spa->spa_load_info, 2412 ZPOOL_CONFIG_CAN_RDONLY); 2413 } 2414 2415 /* 2416 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2417 * twofold: to determine whether the pool is available for 2418 * import in read-write mode and (if it is not) whether the 2419 * pool is available for import in read-only mode. If the pool 2420 * is available for import in read-write mode, it is displayed 2421 * as available in userland; if it is not available for import 2422 * in read-only mode, it is displayed as unavailable in 2423 * userland. If the pool is available for import in read-only 2424 * mode but not read-write mode, it is displayed as unavailable 2425 * in userland with a special note that the pool is actually 2426 * available for open in read-only mode. 2427 * 2428 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2429 * missing a feature for write, we must first determine whether 2430 * the pool can be opened read-only before returning to 2431 * userland in order to know whether to display the 2432 * abovementioned note. 2433 */ 2434 if (missing_feat_read || (missing_feat_write && 2435 spa_writeable(spa))) { 2436 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2437 ENOTSUP)); 2438 } 2439 2440 /* 2441 * Load refcounts for ZFS features from disk into an in-memory 2442 * cache during SPA initialization. 2443 */ 2444 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2445 uint64_t refcount; 2446 2447 error = feature_get_refcount_from_disk(spa, 2448 &spa_feature_table[i], &refcount); 2449 if (error == 0) { 2450 spa->spa_feat_refcount_cache[i] = refcount; 2451 } else if (error == ENOTSUP) { 2452 spa->spa_feat_refcount_cache[i] = 2453 SPA_FEATURE_DISABLED; 2454 } else { 2455 return (spa_vdev_err(rvd, 2456 VDEV_AUX_CORRUPT_DATA, EIO)); 2457 } 2458 } 2459 } 2460 2461 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2462 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2463 &spa->spa_feat_enabled_txg_obj) != 0) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 } 2466 2467 spa->spa_is_initializing = B_TRUE; 2468 error = dsl_pool_open(spa->spa_dsl_pool); 2469 spa->spa_is_initializing = B_FALSE; 2470 if (error != 0) 2471 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2472 2473 if (!mosconfig) { 2474 uint64_t hostid; 2475 nvlist_t *policy = NULL, *nvconfig; 2476 2477 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2478 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2479 2480 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2481 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2482 char *hostname; 2483 unsigned long myhostid = 0; 2484 2485 VERIFY(nvlist_lookup_string(nvconfig, 2486 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2487 2488 #ifdef _KERNEL 2489 myhostid = zone_get_hostid(NULL); 2490 #else /* _KERNEL */ 2491 /* 2492 * We're emulating the system's hostid in userland, so 2493 * we can't use zone_get_hostid(). 2494 */ 2495 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2496 #endif /* _KERNEL */ 2497 if (hostid != 0 && myhostid != 0 && 2498 hostid != myhostid) { 2499 nvlist_free(nvconfig); 2500 cmn_err(CE_WARN, "pool '%s' could not be " 2501 "loaded as it was last accessed by " 2502 "another system (host: %s hostid: 0x%lx). " 2503 "See: http://illumos.org/msg/ZFS-8000-EY", 2504 spa_name(spa), hostname, 2505 (unsigned long)hostid); 2506 return (SET_ERROR(EBADF)); 2507 } 2508 } 2509 if (nvlist_lookup_nvlist(spa->spa_config, 2510 ZPOOL_REWIND_POLICY, &policy) == 0) 2511 VERIFY(nvlist_add_nvlist(nvconfig, 2512 ZPOOL_REWIND_POLICY, policy) == 0); 2513 2514 spa_config_set(spa, nvconfig); 2515 spa_unload(spa); 2516 spa_deactivate(spa); 2517 spa_activate(spa, orig_mode); 2518 2519 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2520 } 2521 2522 /* Grab the secret checksum salt from the MOS. */ 2523 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2524 DMU_POOL_CHECKSUM_SALT, 1, 2525 sizeof (spa->spa_cksum_salt.zcs_bytes), 2526 spa->spa_cksum_salt.zcs_bytes); 2527 if (error == ENOENT) { 2528 /* Generate a new salt for subsequent use */ 2529 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2530 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2531 } else if (error != 0) { 2532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2533 } 2534 2535 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2536 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2537 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2538 if (error != 0) 2539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2540 2541 /* 2542 * Load the bit that tells us to use the new accounting function 2543 * (raid-z deflation). If we have an older pool, this will not 2544 * be present. 2545 */ 2546 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2547 if (error != 0 && error != ENOENT) 2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2549 2550 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2551 &spa->spa_creation_version); 2552 if (error != 0 && error != ENOENT) 2553 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2554 2555 /* 2556 * Load the persistent error log. If we have an older pool, this will 2557 * not be present. 2558 */ 2559 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2560 if (error != 0 && error != ENOENT) 2561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2562 2563 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2564 &spa->spa_errlog_scrub); 2565 if (error != 0 && error != ENOENT) 2566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2567 2568 /* 2569 * Load the history object. If we have an older pool, this 2570 * will not be present. 2571 */ 2572 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2573 if (error != 0 && error != ENOENT) 2574 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2575 2576 /* 2577 * If we're assembling the pool from the split-off vdevs of 2578 * an existing pool, we don't want to attach the spares & cache 2579 * devices. 2580 */ 2581 2582 /* 2583 * Load any hot spares for this pool. 2584 */ 2585 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2586 if (error != 0 && error != ENOENT) 2587 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2588 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2589 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2590 if (load_nvlist(spa, spa->spa_spares.sav_object, 2591 &spa->spa_spares.sav_config) != 0) 2592 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2593 2594 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2595 spa_load_spares(spa); 2596 spa_config_exit(spa, SCL_ALL, FTAG); 2597 } else if (error == 0) { 2598 spa->spa_spares.sav_sync = B_TRUE; 2599 } 2600 2601 /* 2602 * Load any level 2 ARC devices for this pool. 2603 */ 2604 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2605 &spa->spa_l2cache.sav_object); 2606 if (error != 0 && error != ENOENT) 2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2608 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2609 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2610 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2611 &spa->spa_l2cache.sav_config) != 0) 2612 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2613 2614 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2615 spa_load_l2cache(spa); 2616 spa_config_exit(spa, SCL_ALL, FTAG); 2617 } else if (error == 0) { 2618 spa->spa_l2cache.sav_sync = B_TRUE; 2619 } 2620 2621 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2622 2623 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2624 if (error && error != ENOENT) 2625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2626 2627 if (error == 0) { 2628 uint64_t autoreplace; 2629 2630 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2631 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2632 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2633 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2634 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2635 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2636 &spa->spa_dedup_ditto); 2637 2638 spa->spa_autoreplace = (autoreplace != 0); 2639 } 2640 2641 /* 2642 * If the 'autoreplace' property is set, then post a resource notifying 2643 * the ZFS DE that it should not issue any faults for unopenable 2644 * devices. We also iterate over the vdevs, and post a sysevent for any 2645 * unopenable vdevs so that the normal autoreplace handler can take 2646 * over. 2647 */ 2648 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2649 spa_check_removed(spa->spa_root_vdev); 2650 /* 2651 * For the import case, this is done in spa_import(), because 2652 * at this point we're using the spare definitions from 2653 * the MOS config, not necessarily from the userland config. 2654 */ 2655 if (state != SPA_LOAD_IMPORT) { 2656 spa_aux_check_removed(&spa->spa_spares); 2657 spa_aux_check_removed(&spa->spa_l2cache); 2658 } 2659 } 2660 2661 /* 2662 * Load the vdev state for all toplevel vdevs. 2663 */ 2664 vdev_load(rvd); 2665 2666 /* 2667 * Propagate the leaf DTLs we just loaded all the way up the tree. 2668 */ 2669 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2670 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2671 spa_config_exit(spa, SCL_ALL, FTAG); 2672 2673 /* 2674 * Load the DDTs (dedup tables). 2675 */ 2676 error = ddt_load(spa); 2677 if (error != 0) 2678 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2679 2680 spa_update_dspace(spa); 2681 2682 /* 2683 * Validate the config, using the MOS config to fill in any 2684 * information which might be missing. If we fail to validate 2685 * the config then declare the pool unfit for use. If we're 2686 * assembling a pool from a split, the log is not transferred 2687 * over. 2688 */ 2689 if (type != SPA_IMPORT_ASSEMBLE) { 2690 nvlist_t *nvconfig; 2691 2692 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2693 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2694 2695 if (!spa_config_valid(spa, nvconfig)) { 2696 nvlist_free(nvconfig); 2697 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2698 ENXIO)); 2699 } 2700 nvlist_free(nvconfig); 2701 2702 /* 2703 * Now that we've validated the config, check the state of the 2704 * root vdev. If it can't be opened, it indicates one or 2705 * more toplevel vdevs are faulted. 2706 */ 2707 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2708 return (SET_ERROR(ENXIO)); 2709 2710 if (spa_writeable(spa) && spa_check_logs(spa)) { 2711 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2712 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2713 } 2714 } 2715 2716 if (missing_feat_write) { 2717 ASSERT(state == SPA_LOAD_TRYIMPORT); 2718 2719 /* 2720 * At this point, we know that we can open the pool in 2721 * read-only mode but not read-write mode. We now have enough 2722 * information and can return to userland. 2723 */ 2724 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2725 } 2726 2727 /* 2728 * We've successfully opened the pool, verify that we're ready 2729 * to start pushing transactions. 2730 */ 2731 if (state != SPA_LOAD_TRYIMPORT) { 2732 if (error = spa_load_verify(spa)) 2733 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2734 error)); 2735 } 2736 2737 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2738 spa->spa_load_max_txg == UINT64_MAX)) { 2739 dmu_tx_t *tx; 2740 int need_update = B_FALSE; 2741 dsl_pool_t *dp = spa_get_dsl(spa); 2742 2743 ASSERT(state != SPA_LOAD_TRYIMPORT); 2744 2745 /* 2746 * Claim log blocks that haven't been committed yet. 2747 * This must all happen in a single txg. 2748 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2749 * invoked from zil_claim_log_block()'s i/o done callback. 2750 * Price of rollback is that we abandon the log. 2751 */ 2752 spa->spa_claiming = B_TRUE; 2753 2754 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2755 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2756 zil_claim, tx, DS_FIND_CHILDREN); 2757 dmu_tx_commit(tx); 2758 2759 spa->spa_claiming = B_FALSE; 2760 2761 spa_set_log_state(spa, SPA_LOG_GOOD); 2762 spa->spa_sync_on = B_TRUE; 2763 txg_sync_start(spa->spa_dsl_pool); 2764 2765 /* 2766 * Wait for all claims to sync. We sync up to the highest 2767 * claimed log block birth time so that claimed log blocks 2768 * don't appear to be from the future. spa_claim_max_txg 2769 * will have been set for us by either zil_check_log_chain() 2770 * (invoked from spa_check_logs()) or zil_claim() above. 2771 */ 2772 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2773 2774 /* 2775 * If the config cache is stale, or we have uninitialized 2776 * metaslabs (see spa_vdev_add()), then update the config. 2777 * 2778 * If this is a verbatim import, trust the current 2779 * in-core spa_config and update the disk labels. 2780 */ 2781 if (config_cache_txg != spa->spa_config_txg || 2782 state == SPA_LOAD_IMPORT || 2783 state == SPA_LOAD_RECOVER || 2784 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2785 need_update = B_TRUE; 2786 2787 for (int c = 0; c < rvd->vdev_children; c++) 2788 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2789 need_update = B_TRUE; 2790 2791 /* 2792 * Update the config cache asychronously in case we're the 2793 * root pool, in which case the config cache isn't writable yet. 2794 */ 2795 if (need_update) 2796 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2797 2798 /* 2799 * Check all DTLs to see if anything needs resilvering. 2800 */ 2801 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2802 vdev_resilver_needed(rvd, NULL, NULL)) 2803 spa_async_request(spa, SPA_ASYNC_RESILVER); 2804 2805 /* 2806 * Log the fact that we booted up (so that we can detect if 2807 * we rebooted in the middle of an operation). 2808 */ 2809 spa_history_log_version(spa, "open"); 2810 2811 /* 2812 * Delete any inconsistent datasets. 2813 */ 2814 (void) dmu_objset_find(spa_name(spa), 2815 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2816 2817 /* 2818 * Clean up any stale temporary dataset userrefs. 2819 */ 2820 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2821 } 2822 2823 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2824 2825 return (0); 2826 } 2827 2828 static int 2829 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2830 { 2831 int mode = spa->spa_mode; 2832 2833 spa_unload(spa); 2834 spa_deactivate(spa); 2835 2836 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2837 2838 spa_activate(spa, mode); 2839 spa_async_suspend(spa); 2840 2841 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2842 } 2843 2844 /* 2845 * If spa_load() fails this function will try loading prior txg's. If 2846 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2847 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2848 * function will not rewind the pool and will return the same error as 2849 * spa_load(). 2850 */ 2851 static int 2852 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2853 uint64_t max_request, int rewind_flags) 2854 { 2855 nvlist_t *loadinfo = NULL; 2856 nvlist_t *config = NULL; 2857 int load_error, rewind_error; 2858 uint64_t safe_rewind_txg; 2859 uint64_t min_txg; 2860 2861 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2862 spa->spa_load_max_txg = spa->spa_load_txg; 2863 spa_set_log_state(spa, SPA_LOG_CLEAR); 2864 } else { 2865 spa->spa_load_max_txg = max_request; 2866 if (max_request != UINT64_MAX) 2867 spa->spa_extreme_rewind = B_TRUE; 2868 } 2869 2870 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2871 mosconfig); 2872 if (load_error == 0) 2873 return (0); 2874 2875 if (spa->spa_root_vdev != NULL) 2876 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2877 2878 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2879 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2880 2881 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2882 nvlist_free(config); 2883 return (load_error); 2884 } 2885 2886 if (state == SPA_LOAD_RECOVER) { 2887 /* Price of rolling back is discarding txgs, including log */ 2888 spa_set_log_state(spa, SPA_LOG_CLEAR); 2889 } else { 2890 /* 2891 * If we aren't rolling back save the load info from our first 2892 * import attempt so that we can restore it after attempting 2893 * to rewind. 2894 */ 2895 loadinfo = spa->spa_load_info; 2896 spa->spa_load_info = fnvlist_alloc(); 2897 } 2898 2899 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2900 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2901 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2902 TXG_INITIAL : safe_rewind_txg; 2903 2904 /* 2905 * Continue as long as we're finding errors, we're still within 2906 * the acceptable rewind range, and we're still finding uberblocks 2907 */ 2908 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2909 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2910 if (spa->spa_load_max_txg < safe_rewind_txg) 2911 spa->spa_extreme_rewind = B_TRUE; 2912 rewind_error = spa_load_retry(spa, state, mosconfig); 2913 } 2914 2915 spa->spa_extreme_rewind = B_FALSE; 2916 spa->spa_load_max_txg = UINT64_MAX; 2917 2918 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2919 spa_config_set(spa, config); 2920 2921 if (state == SPA_LOAD_RECOVER) { 2922 ASSERT3P(loadinfo, ==, NULL); 2923 return (rewind_error); 2924 } else { 2925 /* Store the rewind info as part of the initial load info */ 2926 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2927 spa->spa_load_info); 2928 2929 /* Restore the initial load info */ 2930 fnvlist_free(spa->spa_load_info); 2931 spa->spa_load_info = loadinfo; 2932 2933 return (load_error); 2934 } 2935 } 2936 2937 /* 2938 * Pool Open/Import 2939 * 2940 * The import case is identical to an open except that the configuration is sent 2941 * down from userland, instead of grabbed from the configuration cache. For the 2942 * case of an open, the pool configuration will exist in the 2943 * POOL_STATE_UNINITIALIZED state. 2944 * 2945 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2946 * the same time open the pool, without having to keep around the spa_t in some 2947 * ambiguous state. 2948 */ 2949 static int 2950 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2951 nvlist_t **config) 2952 { 2953 spa_t *spa; 2954 spa_load_state_t state = SPA_LOAD_OPEN; 2955 int error; 2956 int locked = B_FALSE; 2957 2958 *spapp = NULL; 2959 2960 /* 2961 * As disgusting as this is, we need to support recursive calls to this 2962 * function because dsl_dir_open() is called during spa_load(), and ends 2963 * up calling spa_open() again. The real fix is to figure out how to 2964 * avoid dsl_dir_open() calling this in the first place. 2965 */ 2966 if (mutex_owner(&spa_namespace_lock) != curthread) { 2967 mutex_enter(&spa_namespace_lock); 2968 locked = B_TRUE; 2969 } 2970 2971 if ((spa = spa_lookup(pool)) == NULL) { 2972 if (locked) 2973 mutex_exit(&spa_namespace_lock); 2974 return (SET_ERROR(ENOENT)); 2975 } 2976 2977 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2978 zpool_rewind_policy_t policy; 2979 2980 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2981 &policy); 2982 if (policy.zrp_request & ZPOOL_DO_REWIND) 2983 state = SPA_LOAD_RECOVER; 2984 2985 spa_activate(spa, spa_mode_global); 2986 2987 if (state != SPA_LOAD_RECOVER) 2988 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2989 2990 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2991 policy.zrp_request); 2992 2993 if (error == EBADF) { 2994 /* 2995 * If vdev_validate() returns failure (indicated by 2996 * EBADF), it indicates that one of the vdevs indicates 2997 * that the pool has been exported or destroyed. If 2998 * this is the case, the config cache is out of sync and 2999 * we should remove the pool from the namespace. 3000 */ 3001 spa_unload(spa); 3002 spa_deactivate(spa); 3003 spa_config_sync(spa, B_TRUE, B_TRUE); 3004 spa_remove(spa); 3005 if (locked) 3006 mutex_exit(&spa_namespace_lock); 3007 return (SET_ERROR(ENOENT)); 3008 } 3009 3010 if (error) { 3011 /* 3012 * We can't open the pool, but we still have useful 3013 * information: the state of each vdev after the 3014 * attempted vdev_open(). Return this to the user. 3015 */ 3016 if (config != NULL && spa->spa_config) { 3017 VERIFY(nvlist_dup(spa->spa_config, config, 3018 KM_SLEEP) == 0); 3019 VERIFY(nvlist_add_nvlist(*config, 3020 ZPOOL_CONFIG_LOAD_INFO, 3021 spa->spa_load_info) == 0); 3022 } 3023 spa_unload(spa); 3024 spa_deactivate(spa); 3025 spa->spa_last_open_failed = error; 3026 if (locked) 3027 mutex_exit(&spa_namespace_lock); 3028 *spapp = NULL; 3029 return (error); 3030 } 3031 } 3032 3033 spa_open_ref(spa, tag); 3034 3035 if (config != NULL) 3036 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3037 3038 /* 3039 * If we've recovered the pool, pass back any information we 3040 * gathered while doing the load. 3041 */ 3042 if (state == SPA_LOAD_RECOVER) { 3043 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3044 spa->spa_load_info) == 0); 3045 } 3046 3047 if (locked) { 3048 spa->spa_last_open_failed = 0; 3049 spa->spa_last_ubsync_txg = 0; 3050 spa->spa_load_txg = 0; 3051 mutex_exit(&spa_namespace_lock); 3052 } 3053 3054 *spapp = spa; 3055 3056 return (0); 3057 } 3058 3059 int 3060 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3061 nvlist_t **config) 3062 { 3063 return (spa_open_common(name, spapp, tag, policy, config)); 3064 } 3065 3066 int 3067 spa_open(const char *name, spa_t **spapp, void *tag) 3068 { 3069 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3070 } 3071 3072 /* 3073 * Lookup the given spa_t, incrementing the inject count in the process, 3074 * preventing it from being exported or destroyed. 3075 */ 3076 spa_t * 3077 spa_inject_addref(char *name) 3078 { 3079 spa_t *spa; 3080 3081 mutex_enter(&spa_namespace_lock); 3082 if ((spa = spa_lookup(name)) == NULL) { 3083 mutex_exit(&spa_namespace_lock); 3084 return (NULL); 3085 } 3086 spa->spa_inject_ref++; 3087 mutex_exit(&spa_namespace_lock); 3088 3089 return (spa); 3090 } 3091 3092 void 3093 spa_inject_delref(spa_t *spa) 3094 { 3095 mutex_enter(&spa_namespace_lock); 3096 spa->spa_inject_ref--; 3097 mutex_exit(&spa_namespace_lock); 3098 } 3099 3100 /* 3101 * Add spares device information to the nvlist. 3102 */ 3103 static void 3104 spa_add_spares(spa_t *spa, nvlist_t *config) 3105 { 3106 nvlist_t **spares; 3107 uint_t i, nspares; 3108 nvlist_t *nvroot; 3109 uint64_t guid; 3110 vdev_stat_t *vs; 3111 uint_t vsc; 3112 uint64_t pool; 3113 3114 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3115 3116 if (spa->spa_spares.sav_count == 0) 3117 return; 3118 3119 VERIFY(nvlist_lookup_nvlist(config, 3120 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3121 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3122 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3123 if (nspares != 0) { 3124 VERIFY(nvlist_add_nvlist_array(nvroot, 3125 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3126 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3127 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3128 3129 /* 3130 * Go through and find any spares which have since been 3131 * repurposed as an active spare. If this is the case, update 3132 * their status appropriately. 3133 */ 3134 for (i = 0; i < nspares; i++) { 3135 VERIFY(nvlist_lookup_uint64(spares[i], 3136 ZPOOL_CONFIG_GUID, &guid) == 0); 3137 if (spa_spare_exists(guid, &pool, NULL) && 3138 pool != 0ULL) { 3139 VERIFY(nvlist_lookup_uint64_array( 3140 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3141 (uint64_t **)&vs, &vsc) == 0); 3142 vs->vs_state = VDEV_STATE_CANT_OPEN; 3143 vs->vs_aux = VDEV_AUX_SPARED; 3144 } 3145 } 3146 } 3147 } 3148 3149 /* 3150 * Add l2cache device information to the nvlist, including vdev stats. 3151 */ 3152 static void 3153 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3154 { 3155 nvlist_t **l2cache; 3156 uint_t i, j, nl2cache; 3157 nvlist_t *nvroot; 3158 uint64_t guid; 3159 vdev_t *vd; 3160 vdev_stat_t *vs; 3161 uint_t vsc; 3162 3163 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3164 3165 if (spa->spa_l2cache.sav_count == 0) 3166 return; 3167 3168 VERIFY(nvlist_lookup_nvlist(config, 3169 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3170 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3171 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3172 if (nl2cache != 0) { 3173 VERIFY(nvlist_add_nvlist_array(nvroot, 3174 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3175 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3176 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3177 3178 /* 3179 * Update level 2 cache device stats. 3180 */ 3181 3182 for (i = 0; i < nl2cache; i++) { 3183 VERIFY(nvlist_lookup_uint64(l2cache[i], 3184 ZPOOL_CONFIG_GUID, &guid) == 0); 3185 3186 vd = NULL; 3187 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3188 if (guid == 3189 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3190 vd = spa->spa_l2cache.sav_vdevs[j]; 3191 break; 3192 } 3193 } 3194 ASSERT(vd != NULL); 3195 3196 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3197 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3198 == 0); 3199 vdev_get_stats(vd, vs); 3200 } 3201 } 3202 } 3203 3204 static void 3205 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3206 { 3207 nvlist_t *features; 3208 zap_cursor_t zc; 3209 zap_attribute_t za; 3210 3211 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3212 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3213 3214 if (spa->spa_feat_for_read_obj != 0) { 3215 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3216 spa->spa_feat_for_read_obj); 3217 zap_cursor_retrieve(&zc, &za) == 0; 3218 zap_cursor_advance(&zc)) { 3219 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3220 za.za_num_integers == 1); 3221 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3222 za.za_first_integer)); 3223 } 3224 zap_cursor_fini(&zc); 3225 } 3226 3227 if (spa->spa_feat_for_write_obj != 0) { 3228 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3229 spa->spa_feat_for_write_obj); 3230 zap_cursor_retrieve(&zc, &za) == 0; 3231 zap_cursor_advance(&zc)) { 3232 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3233 za.za_num_integers == 1); 3234 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3235 za.za_first_integer)); 3236 } 3237 zap_cursor_fini(&zc); 3238 } 3239 3240 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3241 features) == 0); 3242 nvlist_free(features); 3243 } 3244 3245 int 3246 spa_get_stats(const char *name, nvlist_t **config, 3247 char *altroot, size_t buflen) 3248 { 3249 int error; 3250 spa_t *spa; 3251 3252 *config = NULL; 3253 error = spa_open_common(name, &spa, FTAG, NULL, config); 3254 3255 if (spa != NULL) { 3256 /* 3257 * This still leaves a window of inconsistency where the spares 3258 * or l2cache devices could change and the config would be 3259 * self-inconsistent. 3260 */ 3261 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3262 3263 if (*config != NULL) { 3264 uint64_t loadtimes[2]; 3265 3266 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3267 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3268 VERIFY(nvlist_add_uint64_array(*config, 3269 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3270 3271 VERIFY(nvlist_add_uint64(*config, 3272 ZPOOL_CONFIG_ERRCOUNT, 3273 spa_get_errlog_size(spa)) == 0); 3274 3275 if (spa_suspended(spa)) 3276 VERIFY(nvlist_add_uint64(*config, 3277 ZPOOL_CONFIG_SUSPENDED, 3278 spa->spa_failmode) == 0); 3279 3280 spa_add_spares(spa, *config); 3281 spa_add_l2cache(spa, *config); 3282 spa_add_feature_stats(spa, *config); 3283 } 3284 } 3285 3286 /* 3287 * We want to get the alternate root even for faulted pools, so we cheat 3288 * and call spa_lookup() directly. 3289 */ 3290 if (altroot) { 3291 if (spa == NULL) { 3292 mutex_enter(&spa_namespace_lock); 3293 spa = spa_lookup(name); 3294 if (spa) 3295 spa_altroot(spa, altroot, buflen); 3296 else 3297 altroot[0] = '\0'; 3298 spa = NULL; 3299 mutex_exit(&spa_namespace_lock); 3300 } else { 3301 spa_altroot(spa, altroot, buflen); 3302 } 3303 } 3304 3305 if (spa != NULL) { 3306 spa_config_exit(spa, SCL_CONFIG, FTAG); 3307 spa_close(spa, FTAG); 3308 } 3309 3310 return (error); 3311 } 3312 3313 /* 3314 * Validate that the auxiliary device array is well formed. We must have an 3315 * array of nvlists, each which describes a valid leaf vdev. If this is an 3316 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3317 * specified, as long as they are well-formed. 3318 */ 3319 static int 3320 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3321 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3322 vdev_labeltype_t label) 3323 { 3324 nvlist_t **dev; 3325 uint_t i, ndev; 3326 vdev_t *vd; 3327 int error; 3328 3329 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3330 3331 /* 3332 * It's acceptable to have no devs specified. 3333 */ 3334 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3335 return (0); 3336 3337 if (ndev == 0) 3338 return (SET_ERROR(EINVAL)); 3339 3340 /* 3341 * Make sure the pool is formatted with a version that supports this 3342 * device type. 3343 */ 3344 if (spa_version(spa) < version) 3345 return (SET_ERROR(ENOTSUP)); 3346 3347 /* 3348 * Set the pending device list so we correctly handle device in-use 3349 * checking. 3350 */ 3351 sav->sav_pending = dev; 3352 sav->sav_npending = ndev; 3353 3354 for (i = 0; i < ndev; i++) { 3355 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3356 mode)) != 0) 3357 goto out; 3358 3359 if (!vd->vdev_ops->vdev_op_leaf) { 3360 vdev_free(vd); 3361 error = SET_ERROR(EINVAL); 3362 goto out; 3363 } 3364 3365 /* 3366 * The L2ARC currently only supports disk devices in 3367 * kernel context. For user-level testing, we allow it. 3368 */ 3369 #ifdef _KERNEL 3370 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3371 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3372 error = SET_ERROR(ENOTBLK); 3373 vdev_free(vd); 3374 goto out; 3375 } 3376 #endif 3377 vd->vdev_top = vd; 3378 3379 if ((error = vdev_open(vd)) == 0 && 3380 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3381 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3382 vd->vdev_guid) == 0); 3383 } 3384 3385 vdev_free(vd); 3386 3387 if (error && 3388 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3389 goto out; 3390 else 3391 error = 0; 3392 } 3393 3394 out: 3395 sav->sav_pending = NULL; 3396 sav->sav_npending = 0; 3397 return (error); 3398 } 3399 3400 static int 3401 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3402 { 3403 int error; 3404 3405 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3406 3407 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3408 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3409 VDEV_LABEL_SPARE)) != 0) { 3410 return (error); 3411 } 3412 3413 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3414 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3415 VDEV_LABEL_L2CACHE)); 3416 } 3417 3418 static void 3419 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3420 const char *config) 3421 { 3422 int i; 3423 3424 if (sav->sav_config != NULL) { 3425 nvlist_t **olddevs; 3426 uint_t oldndevs; 3427 nvlist_t **newdevs; 3428 3429 /* 3430 * Generate new dev list by concatentating with the 3431 * current dev list. 3432 */ 3433 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3434 &olddevs, &oldndevs) == 0); 3435 3436 newdevs = kmem_alloc(sizeof (void *) * 3437 (ndevs + oldndevs), KM_SLEEP); 3438 for (i = 0; i < oldndevs; i++) 3439 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3440 KM_SLEEP) == 0); 3441 for (i = 0; i < ndevs; i++) 3442 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3443 KM_SLEEP) == 0); 3444 3445 VERIFY(nvlist_remove(sav->sav_config, config, 3446 DATA_TYPE_NVLIST_ARRAY) == 0); 3447 3448 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3449 config, newdevs, ndevs + oldndevs) == 0); 3450 for (i = 0; i < oldndevs + ndevs; i++) 3451 nvlist_free(newdevs[i]); 3452 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3453 } else { 3454 /* 3455 * Generate a new dev list. 3456 */ 3457 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3458 KM_SLEEP) == 0); 3459 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3460 devs, ndevs) == 0); 3461 } 3462 } 3463 3464 /* 3465 * Stop and drop level 2 ARC devices 3466 */ 3467 void 3468 spa_l2cache_drop(spa_t *spa) 3469 { 3470 vdev_t *vd; 3471 int i; 3472 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3473 3474 for (i = 0; i < sav->sav_count; i++) { 3475 uint64_t pool; 3476 3477 vd = sav->sav_vdevs[i]; 3478 ASSERT(vd != NULL); 3479 3480 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3481 pool != 0ULL && l2arc_vdev_present(vd)) 3482 l2arc_remove_vdev(vd); 3483 } 3484 } 3485 3486 /* 3487 * Pool Creation 3488 */ 3489 int 3490 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3491 nvlist_t *zplprops) 3492 { 3493 spa_t *spa; 3494 char *altroot = NULL; 3495 vdev_t *rvd; 3496 dsl_pool_t *dp; 3497 dmu_tx_t *tx; 3498 int error = 0; 3499 uint64_t txg = TXG_INITIAL; 3500 nvlist_t **spares, **l2cache; 3501 uint_t nspares, nl2cache; 3502 uint64_t version, obj; 3503 boolean_t has_features; 3504 3505 /* 3506 * If this pool already exists, return failure. 3507 */ 3508 mutex_enter(&spa_namespace_lock); 3509 if (spa_lookup(pool) != NULL) { 3510 mutex_exit(&spa_namespace_lock); 3511 return (SET_ERROR(EEXIST)); 3512 } 3513 3514 /* 3515 * Allocate a new spa_t structure. 3516 */ 3517 (void) nvlist_lookup_string(props, 3518 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3519 spa = spa_add(pool, NULL, altroot); 3520 spa_activate(spa, spa_mode_global); 3521 3522 if (props && (error = spa_prop_validate(spa, props))) { 3523 spa_deactivate(spa); 3524 spa_remove(spa); 3525 mutex_exit(&spa_namespace_lock); 3526 return (error); 3527 } 3528 3529 has_features = B_FALSE; 3530 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3531 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3532 if (zpool_prop_feature(nvpair_name(elem))) 3533 has_features = B_TRUE; 3534 } 3535 3536 if (has_features || nvlist_lookup_uint64(props, 3537 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3538 version = SPA_VERSION; 3539 } 3540 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3541 3542 spa->spa_first_txg = txg; 3543 spa->spa_uberblock.ub_txg = txg - 1; 3544 spa->spa_uberblock.ub_version = version; 3545 spa->spa_ubsync = spa->spa_uberblock; 3546 3547 /* 3548 * Create "The Godfather" zio to hold all async IOs 3549 */ 3550 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3551 KM_SLEEP); 3552 for (int i = 0; i < max_ncpus; i++) { 3553 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3554 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3555 ZIO_FLAG_GODFATHER); 3556 } 3557 3558 /* 3559 * Create the root vdev. 3560 */ 3561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3562 3563 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3564 3565 ASSERT(error != 0 || rvd != NULL); 3566 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3567 3568 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3569 error = SET_ERROR(EINVAL); 3570 3571 if (error == 0 && 3572 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3573 (error = spa_validate_aux(spa, nvroot, txg, 3574 VDEV_ALLOC_ADD)) == 0) { 3575 for (int c = 0; c < rvd->vdev_children; c++) { 3576 vdev_metaslab_set_size(rvd->vdev_child[c]); 3577 vdev_expand(rvd->vdev_child[c], txg); 3578 } 3579 } 3580 3581 spa_config_exit(spa, SCL_ALL, FTAG); 3582 3583 if (error != 0) { 3584 spa_unload(spa); 3585 spa_deactivate(spa); 3586 spa_remove(spa); 3587 mutex_exit(&spa_namespace_lock); 3588 return (error); 3589 } 3590 3591 /* 3592 * Get the list of spares, if specified. 3593 */ 3594 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3595 &spares, &nspares) == 0) { 3596 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3597 KM_SLEEP) == 0); 3598 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3599 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3600 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3601 spa_load_spares(spa); 3602 spa_config_exit(spa, SCL_ALL, FTAG); 3603 spa->spa_spares.sav_sync = B_TRUE; 3604 } 3605 3606 /* 3607 * Get the list of level 2 cache devices, if specified. 3608 */ 3609 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3610 &l2cache, &nl2cache) == 0) { 3611 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3612 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3613 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3614 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3615 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3616 spa_load_l2cache(spa); 3617 spa_config_exit(spa, SCL_ALL, FTAG); 3618 spa->spa_l2cache.sav_sync = B_TRUE; 3619 } 3620 3621 spa->spa_is_initializing = B_TRUE; 3622 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3623 spa->spa_meta_objset = dp->dp_meta_objset; 3624 spa->spa_is_initializing = B_FALSE; 3625 3626 /* 3627 * Create DDTs (dedup tables). 3628 */ 3629 ddt_create(spa); 3630 3631 spa_update_dspace(spa); 3632 3633 tx = dmu_tx_create_assigned(dp, txg); 3634 3635 /* 3636 * Create the pool config object. 3637 */ 3638 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3639 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3640 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3641 3642 if (zap_add(spa->spa_meta_objset, 3643 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3644 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3645 cmn_err(CE_PANIC, "failed to add pool config"); 3646 } 3647 3648 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3649 spa_feature_create_zap_objects(spa, tx); 3650 3651 if (zap_add(spa->spa_meta_objset, 3652 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3653 sizeof (uint64_t), 1, &version, tx) != 0) { 3654 cmn_err(CE_PANIC, "failed to add pool version"); 3655 } 3656 3657 /* Newly created pools with the right version are always deflated. */ 3658 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3659 spa->spa_deflate = TRUE; 3660 if (zap_add(spa->spa_meta_objset, 3661 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3662 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3663 cmn_err(CE_PANIC, "failed to add deflate"); 3664 } 3665 } 3666 3667 /* 3668 * Create the deferred-free bpobj. Turn off compression 3669 * because sync-to-convergence takes longer if the blocksize 3670 * keeps changing. 3671 */ 3672 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3673 dmu_object_set_compress(spa->spa_meta_objset, obj, 3674 ZIO_COMPRESS_OFF, tx); 3675 if (zap_add(spa->spa_meta_objset, 3676 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3677 sizeof (uint64_t), 1, &obj, tx) != 0) { 3678 cmn_err(CE_PANIC, "failed to add bpobj"); 3679 } 3680 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3681 spa->spa_meta_objset, obj)); 3682 3683 /* 3684 * Create the pool's history object. 3685 */ 3686 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3687 spa_history_create_obj(spa, tx); 3688 3689 /* 3690 * Generate some random noise for salted checksums to operate on. 3691 */ 3692 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3693 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3694 3695 /* 3696 * Set pool properties. 3697 */ 3698 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3699 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3700 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3701 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3702 3703 if (props != NULL) { 3704 spa_configfile_set(spa, props, B_FALSE); 3705 spa_sync_props(props, tx); 3706 } 3707 3708 dmu_tx_commit(tx); 3709 3710 spa->spa_sync_on = B_TRUE; 3711 txg_sync_start(spa->spa_dsl_pool); 3712 3713 /* 3714 * We explicitly wait for the first transaction to complete so that our 3715 * bean counters are appropriately updated. 3716 */ 3717 txg_wait_synced(spa->spa_dsl_pool, txg); 3718 3719 spa_config_sync(spa, B_FALSE, B_TRUE); 3720 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3721 3722 spa_history_log_version(spa, "create"); 3723 3724 /* 3725 * Don't count references from objsets that are already closed 3726 * and are making their way through the eviction process. 3727 */ 3728 spa_evicting_os_wait(spa); 3729 spa->spa_minref = refcount_count(&spa->spa_refcount); 3730 3731 mutex_exit(&spa_namespace_lock); 3732 3733 return (0); 3734 } 3735 3736 #ifdef _KERNEL 3737 /* 3738 * Get the root pool information from the root disk, then import the root pool 3739 * during the system boot up time. 3740 */ 3741 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3742 3743 static nvlist_t * 3744 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3745 { 3746 nvlist_t *config; 3747 nvlist_t *nvtop, *nvroot; 3748 uint64_t pgid; 3749 3750 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3751 return (NULL); 3752 3753 /* 3754 * Add this top-level vdev to the child array. 3755 */ 3756 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3757 &nvtop) == 0); 3758 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3759 &pgid) == 0); 3760 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3761 3762 /* 3763 * Put this pool's top-level vdevs into a root vdev. 3764 */ 3765 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3766 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3767 VDEV_TYPE_ROOT) == 0); 3768 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3769 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3770 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3771 &nvtop, 1) == 0); 3772 3773 /* 3774 * Replace the existing vdev_tree with the new root vdev in 3775 * this pool's configuration (remove the old, add the new). 3776 */ 3777 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3778 nvlist_free(nvroot); 3779 return (config); 3780 } 3781 3782 /* 3783 * Walk the vdev tree and see if we can find a device with "better" 3784 * configuration. A configuration is "better" if the label on that 3785 * device has a more recent txg. 3786 */ 3787 static void 3788 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3789 { 3790 for (int c = 0; c < vd->vdev_children; c++) 3791 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3792 3793 if (vd->vdev_ops->vdev_op_leaf) { 3794 nvlist_t *label; 3795 uint64_t label_txg; 3796 3797 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3798 &label) != 0) 3799 return; 3800 3801 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3802 &label_txg) == 0); 3803 3804 /* 3805 * Do we have a better boot device? 3806 */ 3807 if (label_txg > *txg) { 3808 *txg = label_txg; 3809 *avd = vd; 3810 } 3811 nvlist_free(label); 3812 } 3813 } 3814 3815 /* 3816 * Import a root pool. 3817 * 3818 * For x86. devpath_list will consist of devid and/or physpath name of 3819 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3820 * The GRUB "findroot" command will return the vdev we should boot. 3821 * 3822 * For Sparc, devpath_list consists the physpath name of the booting device 3823 * no matter the rootpool is a single device pool or a mirrored pool. 3824 * e.g. 3825 * "/pci@1f,0/ide@d/disk@0,0:a" 3826 */ 3827 int 3828 spa_import_rootpool(char *devpath, char *devid) 3829 { 3830 spa_t *spa; 3831 vdev_t *rvd, *bvd, *avd = NULL; 3832 nvlist_t *config, *nvtop; 3833 uint64_t guid, txg; 3834 char *pname; 3835 int error; 3836 3837 /* 3838 * Read the label from the boot device and generate a configuration. 3839 */ 3840 config = spa_generate_rootconf(devpath, devid, &guid); 3841 #if defined(_OBP) && defined(_KERNEL) 3842 if (config == NULL) { 3843 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3844 /* iscsi boot */ 3845 get_iscsi_bootpath_phy(devpath); 3846 config = spa_generate_rootconf(devpath, devid, &guid); 3847 } 3848 } 3849 #endif 3850 if (config == NULL) { 3851 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3852 devpath); 3853 return (SET_ERROR(EIO)); 3854 } 3855 3856 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3857 &pname) == 0); 3858 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3859 3860 mutex_enter(&spa_namespace_lock); 3861 if ((spa = spa_lookup(pname)) != NULL) { 3862 /* 3863 * Remove the existing root pool from the namespace so that we 3864 * can replace it with the correct config we just read in. 3865 */ 3866 spa_remove(spa); 3867 } 3868 3869 spa = spa_add(pname, config, NULL); 3870 spa->spa_is_root = B_TRUE; 3871 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3872 3873 /* 3874 * Build up a vdev tree based on the boot device's label config. 3875 */ 3876 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3877 &nvtop) == 0); 3878 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3879 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3880 VDEV_ALLOC_ROOTPOOL); 3881 spa_config_exit(spa, SCL_ALL, FTAG); 3882 if (error) { 3883 mutex_exit(&spa_namespace_lock); 3884 nvlist_free(config); 3885 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3886 pname); 3887 return (error); 3888 } 3889 3890 /* 3891 * Get the boot vdev. 3892 */ 3893 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3894 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3895 (u_longlong_t)guid); 3896 error = SET_ERROR(ENOENT); 3897 goto out; 3898 } 3899 3900 /* 3901 * Determine if there is a better boot device. 3902 */ 3903 avd = bvd; 3904 spa_alt_rootvdev(rvd, &avd, &txg); 3905 if (avd != bvd) { 3906 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3907 "try booting from '%s'", avd->vdev_path); 3908 error = SET_ERROR(EINVAL); 3909 goto out; 3910 } 3911 3912 /* 3913 * If the boot device is part of a spare vdev then ensure that 3914 * we're booting off the active spare. 3915 */ 3916 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3917 !bvd->vdev_isspare) { 3918 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3919 "try booting from '%s'", 3920 bvd->vdev_parent-> 3921 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3922 error = SET_ERROR(EINVAL); 3923 goto out; 3924 } 3925 3926 error = 0; 3927 out: 3928 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3929 vdev_free(rvd); 3930 spa_config_exit(spa, SCL_ALL, FTAG); 3931 mutex_exit(&spa_namespace_lock); 3932 3933 nvlist_free(config); 3934 return (error); 3935 } 3936 3937 #endif 3938 3939 /* 3940 * Import a non-root pool into the system. 3941 */ 3942 int 3943 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3944 { 3945 spa_t *spa; 3946 char *altroot = NULL; 3947 spa_load_state_t state = SPA_LOAD_IMPORT; 3948 zpool_rewind_policy_t policy; 3949 uint64_t mode = spa_mode_global; 3950 uint64_t readonly = B_FALSE; 3951 int error; 3952 nvlist_t *nvroot; 3953 nvlist_t **spares, **l2cache; 3954 uint_t nspares, nl2cache; 3955 3956 /* 3957 * If a pool with this name exists, return failure. 3958 */ 3959 mutex_enter(&spa_namespace_lock); 3960 if (spa_lookup(pool) != NULL) { 3961 mutex_exit(&spa_namespace_lock); 3962 return (SET_ERROR(EEXIST)); 3963 } 3964 3965 /* 3966 * Create and initialize the spa structure. 3967 */ 3968 (void) nvlist_lookup_string(props, 3969 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3970 (void) nvlist_lookup_uint64(props, 3971 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3972 if (readonly) 3973 mode = FREAD; 3974 spa = spa_add(pool, config, altroot); 3975 spa->spa_import_flags = flags; 3976 3977 /* 3978 * Verbatim import - Take a pool and insert it into the namespace 3979 * as if it had been loaded at boot. 3980 */ 3981 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3982 if (props != NULL) 3983 spa_configfile_set(spa, props, B_FALSE); 3984 3985 spa_config_sync(spa, B_FALSE, B_TRUE); 3986 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 3987 3988 mutex_exit(&spa_namespace_lock); 3989 return (0); 3990 } 3991 3992 spa_activate(spa, mode); 3993 3994 /* 3995 * Don't start async tasks until we know everything is healthy. 3996 */ 3997 spa_async_suspend(spa); 3998 3999 zpool_get_rewind_policy(config, &policy); 4000 if (policy.zrp_request & ZPOOL_DO_REWIND) 4001 state = SPA_LOAD_RECOVER; 4002 4003 /* 4004 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4005 * because the user-supplied config is actually the one to trust when 4006 * doing an import. 4007 */ 4008 if (state != SPA_LOAD_RECOVER) 4009 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4010 4011 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4012 policy.zrp_request); 4013 4014 /* 4015 * Propagate anything learned while loading the pool and pass it 4016 * back to caller (i.e. rewind info, missing devices, etc). 4017 */ 4018 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4019 spa->spa_load_info) == 0); 4020 4021 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4022 /* 4023 * Toss any existing sparelist, as it doesn't have any validity 4024 * anymore, and conflicts with spa_has_spare(). 4025 */ 4026 if (spa->spa_spares.sav_config) { 4027 nvlist_free(spa->spa_spares.sav_config); 4028 spa->spa_spares.sav_config = NULL; 4029 spa_load_spares(spa); 4030 } 4031 if (spa->spa_l2cache.sav_config) { 4032 nvlist_free(spa->spa_l2cache.sav_config); 4033 spa->spa_l2cache.sav_config = NULL; 4034 spa_load_l2cache(spa); 4035 } 4036 4037 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4038 &nvroot) == 0); 4039 if (error == 0) 4040 error = spa_validate_aux(spa, nvroot, -1ULL, 4041 VDEV_ALLOC_SPARE); 4042 if (error == 0) 4043 error = spa_validate_aux(spa, nvroot, -1ULL, 4044 VDEV_ALLOC_L2CACHE); 4045 spa_config_exit(spa, SCL_ALL, FTAG); 4046 4047 if (props != NULL) 4048 spa_configfile_set(spa, props, B_FALSE); 4049 4050 if (error != 0 || (props && spa_writeable(spa) && 4051 (error = spa_prop_set(spa, props)))) { 4052 spa_unload(spa); 4053 spa_deactivate(spa); 4054 spa_remove(spa); 4055 mutex_exit(&spa_namespace_lock); 4056 return (error); 4057 } 4058 4059 spa_async_resume(spa); 4060 4061 /* 4062 * Override any spares and level 2 cache devices as specified by 4063 * the user, as these may have correct device names/devids, etc. 4064 */ 4065 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4066 &spares, &nspares) == 0) { 4067 if (spa->spa_spares.sav_config) 4068 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4069 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4070 else 4071 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4072 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4073 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4074 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4075 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4076 spa_load_spares(spa); 4077 spa_config_exit(spa, SCL_ALL, FTAG); 4078 spa->spa_spares.sav_sync = B_TRUE; 4079 } 4080 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4081 &l2cache, &nl2cache) == 0) { 4082 if (spa->spa_l2cache.sav_config) 4083 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4084 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4085 else 4086 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4087 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4088 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4089 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4090 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4091 spa_load_l2cache(spa); 4092 spa_config_exit(spa, SCL_ALL, FTAG); 4093 spa->spa_l2cache.sav_sync = B_TRUE; 4094 } 4095 4096 /* 4097 * Check for any removed devices. 4098 */ 4099 if (spa->spa_autoreplace) { 4100 spa_aux_check_removed(&spa->spa_spares); 4101 spa_aux_check_removed(&spa->spa_l2cache); 4102 } 4103 4104 if (spa_writeable(spa)) { 4105 /* 4106 * Update the config cache to include the newly-imported pool. 4107 */ 4108 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4109 } 4110 4111 /* 4112 * It's possible that the pool was expanded while it was exported. 4113 * We kick off an async task to handle this for us. 4114 */ 4115 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4116 4117 spa_history_log_version(spa, "import"); 4118 4119 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4120 4121 mutex_exit(&spa_namespace_lock); 4122 4123 return (0); 4124 } 4125 4126 nvlist_t * 4127 spa_tryimport(nvlist_t *tryconfig) 4128 { 4129 nvlist_t *config = NULL; 4130 char *poolname; 4131 spa_t *spa; 4132 uint64_t state; 4133 int error; 4134 4135 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4136 return (NULL); 4137 4138 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4139 return (NULL); 4140 4141 /* 4142 * Create and initialize the spa structure. 4143 */ 4144 mutex_enter(&spa_namespace_lock); 4145 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4146 spa_activate(spa, FREAD); 4147 4148 /* 4149 * Pass off the heavy lifting to spa_load(). 4150 * Pass TRUE for mosconfig because the user-supplied config 4151 * is actually the one to trust when doing an import. 4152 */ 4153 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4154 4155 /* 4156 * If 'tryconfig' was at least parsable, return the current config. 4157 */ 4158 if (spa->spa_root_vdev != NULL) { 4159 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4160 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4161 poolname) == 0); 4162 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4163 state) == 0); 4164 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4165 spa->spa_uberblock.ub_timestamp) == 0); 4166 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4167 spa->spa_load_info) == 0); 4168 4169 /* 4170 * If the bootfs property exists on this pool then we 4171 * copy it out so that external consumers can tell which 4172 * pools are bootable. 4173 */ 4174 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4175 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4176 4177 /* 4178 * We have to play games with the name since the 4179 * pool was opened as TRYIMPORT_NAME. 4180 */ 4181 if (dsl_dsobj_to_dsname(spa_name(spa), 4182 spa->spa_bootfs, tmpname) == 0) { 4183 char *cp; 4184 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4185 4186 cp = strchr(tmpname, '/'); 4187 if (cp == NULL) { 4188 (void) strlcpy(dsname, tmpname, 4189 MAXPATHLEN); 4190 } else { 4191 (void) snprintf(dsname, MAXPATHLEN, 4192 "%s/%s", poolname, ++cp); 4193 } 4194 VERIFY(nvlist_add_string(config, 4195 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4196 kmem_free(dsname, MAXPATHLEN); 4197 } 4198 kmem_free(tmpname, MAXPATHLEN); 4199 } 4200 4201 /* 4202 * Add the list of hot spares and level 2 cache devices. 4203 */ 4204 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4205 spa_add_spares(spa, config); 4206 spa_add_l2cache(spa, config); 4207 spa_config_exit(spa, SCL_CONFIG, FTAG); 4208 } 4209 4210 spa_unload(spa); 4211 spa_deactivate(spa); 4212 spa_remove(spa); 4213 mutex_exit(&spa_namespace_lock); 4214 4215 return (config); 4216 } 4217 4218 /* 4219 * Pool export/destroy 4220 * 4221 * The act of destroying or exporting a pool is very simple. We make sure there 4222 * is no more pending I/O and any references to the pool are gone. Then, we 4223 * update the pool state and sync all the labels to disk, removing the 4224 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4225 * we don't sync the labels or remove the configuration cache. 4226 */ 4227 static int 4228 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4229 boolean_t force, boolean_t hardforce) 4230 { 4231 spa_t *spa; 4232 4233 if (oldconfig) 4234 *oldconfig = NULL; 4235 4236 if (!(spa_mode_global & FWRITE)) 4237 return (SET_ERROR(EROFS)); 4238 4239 mutex_enter(&spa_namespace_lock); 4240 if ((spa = spa_lookup(pool)) == NULL) { 4241 mutex_exit(&spa_namespace_lock); 4242 return (SET_ERROR(ENOENT)); 4243 } 4244 4245 /* 4246 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4247 * reacquire the namespace lock, and see if we can export. 4248 */ 4249 spa_open_ref(spa, FTAG); 4250 mutex_exit(&spa_namespace_lock); 4251 spa_async_suspend(spa); 4252 mutex_enter(&spa_namespace_lock); 4253 spa_close(spa, FTAG); 4254 4255 /* 4256 * The pool will be in core if it's openable, 4257 * in which case we can modify its state. 4258 */ 4259 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4260 /* 4261 * Objsets may be open only because they're dirty, so we 4262 * have to force it to sync before checking spa_refcnt. 4263 */ 4264 txg_wait_synced(spa->spa_dsl_pool, 0); 4265 spa_evicting_os_wait(spa); 4266 4267 /* 4268 * A pool cannot be exported or destroyed if there are active 4269 * references. If we are resetting a pool, allow references by 4270 * fault injection handlers. 4271 */ 4272 if (!spa_refcount_zero(spa) || 4273 (spa->spa_inject_ref != 0 && 4274 new_state != POOL_STATE_UNINITIALIZED)) { 4275 spa_async_resume(spa); 4276 mutex_exit(&spa_namespace_lock); 4277 return (SET_ERROR(EBUSY)); 4278 } 4279 4280 /* 4281 * A pool cannot be exported if it has an active shared spare. 4282 * This is to prevent other pools stealing the active spare 4283 * from an exported pool. At user's own will, such pool can 4284 * be forcedly exported. 4285 */ 4286 if (!force && new_state == POOL_STATE_EXPORTED && 4287 spa_has_active_shared_spare(spa)) { 4288 spa_async_resume(spa); 4289 mutex_exit(&spa_namespace_lock); 4290 return (SET_ERROR(EXDEV)); 4291 } 4292 4293 /* 4294 * We want this to be reflected on every label, 4295 * so mark them all dirty. spa_unload() will do the 4296 * final sync that pushes these changes out. 4297 */ 4298 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4299 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4300 spa->spa_state = new_state; 4301 spa->spa_final_txg = spa_last_synced_txg(spa) + 4302 TXG_DEFER_SIZE + 1; 4303 vdev_config_dirty(spa->spa_root_vdev); 4304 spa_config_exit(spa, SCL_ALL, FTAG); 4305 } 4306 } 4307 4308 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4309 4310 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4311 spa_unload(spa); 4312 spa_deactivate(spa); 4313 } 4314 4315 if (oldconfig && spa->spa_config) 4316 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4317 4318 if (new_state != POOL_STATE_UNINITIALIZED) { 4319 if (!hardforce) 4320 spa_config_sync(spa, B_TRUE, B_TRUE); 4321 spa_remove(spa); 4322 } 4323 mutex_exit(&spa_namespace_lock); 4324 4325 return (0); 4326 } 4327 4328 /* 4329 * Destroy a storage pool. 4330 */ 4331 int 4332 spa_destroy(char *pool) 4333 { 4334 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4335 B_FALSE, B_FALSE)); 4336 } 4337 4338 /* 4339 * Export a storage pool. 4340 */ 4341 int 4342 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4343 boolean_t hardforce) 4344 { 4345 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4346 force, hardforce)); 4347 } 4348 4349 /* 4350 * Similar to spa_export(), this unloads the spa_t without actually removing it 4351 * from the namespace in any way. 4352 */ 4353 int 4354 spa_reset(char *pool) 4355 { 4356 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4357 B_FALSE, B_FALSE)); 4358 } 4359 4360 /* 4361 * ========================================================================== 4362 * Device manipulation 4363 * ========================================================================== 4364 */ 4365 4366 /* 4367 * Add a device to a storage pool. 4368 */ 4369 int 4370 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4371 { 4372 uint64_t txg, id; 4373 int error; 4374 vdev_t *rvd = spa->spa_root_vdev; 4375 vdev_t *vd, *tvd; 4376 nvlist_t **spares, **l2cache; 4377 uint_t nspares, nl2cache; 4378 4379 ASSERT(spa_writeable(spa)); 4380 4381 txg = spa_vdev_enter(spa); 4382 4383 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4384 VDEV_ALLOC_ADD)) != 0) 4385 return (spa_vdev_exit(spa, NULL, txg, error)); 4386 4387 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4388 4389 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4390 &nspares) != 0) 4391 nspares = 0; 4392 4393 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4394 &nl2cache) != 0) 4395 nl2cache = 0; 4396 4397 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4398 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4399 4400 if (vd->vdev_children != 0 && 4401 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4402 return (spa_vdev_exit(spa, vd, txg, error)); 4403 4404 /* 4405 * We must validate the spares and l2cache devices after checking the 4406 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4407 */ 4408 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4409 return (spa_vdev_exit(spa, vd, txg, error)); 4410 4411 /* 4412 * Transfer each new top-level vdev from vd to rvd. 4413 */ 4414 for (int c = 0; c < vd->vdev_children; c++) { 4415 4416 /* 4417 * Set the vdev id to the first hole, if one exists. 4418 */ 4419 for (id = 0; id < rvd->vdev_children; id++) { 4420 if (rvd->vdev_child[id]->vdev_ishole) { 4421 vdev_free(rvd->vdev_child[id]); 4422 break; 4423 } 4424 } 4425 tvd = vd->vdev_child[c]; 4426 vdev_remove_child(vd, tvd); 4427 tvd->vdev_id = id; 4428 vdev_add_child(rvd, tvd); 4429 vdev_config_dirty(tvd); 4430 } 4431 4432 if (nspares != 0) { 4433 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4434 ZPOOL_CONFIG_SPARES); 4435 spa_load_spares(spa); 4436 spa->spa_spares.sav_sync = B_TRUE; 4437 } 4438 4439 if (nl2cache != 0) { 4440 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4441 ZPOOL_CONFIG_L2CACHE); 4442 spa_load_l2cache(spa); 4443 spa->spa_l2cache.sav_sync = B_TRUE; 4444 } 4445 4446 /* 4447 * We have to be careful when adding new vdevs to an existing pool. 4448 * If other threads start allocating from these vdevs before we 4449 * sync the config cache, and we lose power, then upon reboot we may 4450 * fail to open the pool because there are DVAs that the config cache 4451 * can't translate. Therefore, we first add the vdevs without 4452 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4453 * and then let spa_config_update() initialize the new metaslabs. 4454 * 4455 * spa_load() checks for added-but-not-initialized vdevs, so that 4456 * if we lose power at any point in this sequence, the remaining 4457 * steps will be completed the next time we load the pool. 4458 */ 4459 (void) spa_vdev_exit(spa, vd, txg, 0); 4460 4461 mutex_enter(&spa_namespace_lock); 4462 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4463 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4464 mutex_exit(&spa_namespace_lock); 4465 4466 return (0); 4467 } 4468 4469 /* 4470 * Attach a device to a mirror. The arguments are the path to any device 4471 * in the mirror, and the nvroot for the new device. If the path specifies 4472 * a device that is not mirrored, we automatically insert the mirror vdev. 4473 * 4474 * If 'replacing' is specified, the new device is intended to replace the 4475 * existing device; in this case the two devices are made into their own 4476 * mirror using the 'replacing' vdev, which is functionally identical to 4477 * the mirror vdev (it actually reuses all the same ops) but has a few 4478 * extra rules: you can't attach to it after it's been created, and upon 4479 * completion of resilvering, the first disk (the one being replaced) 4480 * is automatically detached. 4481 */ 4482 int 4483 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4484 { 4485 uint64_t txg, dtl_max_txg; 4486 vdev_t *rvd = spa->spa_root_vdev; 4487 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4488 vdev_ops_t *pvops; 4489 char *oldvdpath, *newvdpath; 4490 int newvd_isspare; 4491 int error; 4492 4493 ASSERT(spa_writeable(spa)); 4494 4495 txg = spa_vdev_enter(spa); 4496 4497 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4498 4499 if (oldvd == NULL) 4500 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4501 4502 if (!oldvd->vdev_ops->vdev_op_leaf) 4503 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4504 4505 pvd = oldvd->vdev_parent; 4506 4507 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4508 VDEV_ALLOC_ATTACH)) != 0) 4509 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4510 4511 if (newrootvd->vdev_children != 1) 4512 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4513 4514 newvd = newrootvd->vdev_child[0]; 4515 4516 if (!newvd->vdev_ops->vdev_op_leaf) 4517 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4518 4519 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4520 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4521 4522 /* 4523 * Spares can't replace logs 4524 */ 4525 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4526 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4527 4528 if (!replacing) { 4529 /* 4530 * For attach, the only allowable parent is a mirror or the root 4531 * vdev. 4532 */ 4533 if (pvd->vdev_ops != &vdev_mirror_ops && 4534 pvd->vdev_ops != &vdev_root_ops) 4535 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4536 4537 pvops = &vdev_mirror_ops; 4538 } else { 4539 /* 4540 * Active hot spares can only be replaced by inactive hot 4541 * spares. 4542 */ 4543 if (pvd->vdev_ops == &vdev_spare_ops && 4544 oldvd->vdev_isspare && 4545 !spa_has_spare(spa, newvd->vdev_guid)) 4546 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4547 4548 /* 4549 * If the source is a hot spare, and the parent isn't already a 4550 * spare, then we want to create a new hot spare. Otherwise, we 4551 * want to create a replacing vdev. The user is not allowed to 4552 * attach to a spared vdev child unless the 'isspare' state is 4553 * the same (spare replaces spare, non-spare replaces 4554 * non-spare). 4555 */ 4556 if (pvd->vdev_ops == &vdev_replacing_ops && 4557 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4558 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4559 } else if (pvd->vdev_ops == &vdev_spare_ops && 4560 newvd->vdev_isspare != oldvd->vdev_isspare) { 4561 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4562 } 4563 4564 if (newvd->vdev_isspare) 4565 pvops = &vdev_spare_ops; 4566 else 4567 pvops = &vdev_replacing_ops; 4568 } 4569 4570 /* 4571 * Make sure the new device is big enough. 4572 */ 4573 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4574 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4575 4576 /* 4577 * The new device cannot have a higher alignment requirement 4578 * than the top-level vdev. 4579 */ 4580 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4581 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4582 4583 /* 4584 * If this is an in-place replacement, update oldvd's path and devid 4585 * to make it distinguishable from newvd, and unopenable from now on. 4586 */ 4587 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4588 spa_strfree(oldvd->vdev_path); 4589 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4590 KM_SLEEP); 4591 (void) sprintf(oldvd->vdev_path, "%s/%s", 4592 newvd->vdev_path, "old"); 4593 if (oldvd->vdev_devid != NULL) { 4594 spa_strfree(oldvd->vdev_devid); 4595 oldvd->vdev_devid = NULL; 4596 } 4597 } 4598 4599 /* mark the device being resilvered */ 4600 newvd->vdev_resilver_txg = txg; 4601 4602 /* 4603 * If the parent is not a mirror, or if we're replacing, insert the new 4604 * mirror/replacing/spare vdev above oldvd. 4605 */ 4606 if (pvd->vdev_ops != pvops) 4607 pvd = vdev_add_parent(oldvd, pvops); 4608 4609 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4610 ASSERT(pvd->vdev_ops == pvops); 4611 ASSERT(oldvd->vdev_parent == pvd); 4612 4613 /* 4614 * Extract the new device from its root and add it to pvd. 4615 */ 4616 vdev_remove_child(newrootvd, newvd); 4617 newvd->vdev_id = pvd->vdev_children; 4618 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4619 vdev_add_child(pvd, newvd); 4620 4621 tvd = newvd->vdev_top; 4622 ASSERT(pvd->vdev_top == tvd); 4623 ASSERT(tvd->vdev_parent == rvd); 4624 4625 vdev_config_dirty(tvd); 4626 4627 /* 4628 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4629 * for any dmu_sync-ed blocks. It will propagate upward when 4630 * spa_vdev_exit() calls vdev_dtl_reassess(). 4631 */ 4632 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4633 4634 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4635 dtl_max_txg - TXG_INITIAL); 4636 4637 if (newvd->vdev_isspare) { 4638 spa_spare_activate(newvd); 4639 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4640 } 4641 4642 oldvdpath = spa_strdup(oldvd->vdev_path); 4643 newvdpath = spa_strdup(newvd->vdev_path); 4644 newvd_isspare = newvd->vdev_isspare; 4645 4646 /* 4647 * Mark newvd's DTL dirty in this txg. 4648 */ 4649 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4650 4651 /* 4652 * Schedule the resilver to restart in the future. We do this to 4653 * ensure that dmu_sync-ed blocks have been stitched into the 4654 * respective datasets. 4655 */ 4656 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4657 4658 if (spa->spa_bootfs) 4659 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4660 4661 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4662 4663 /* 4664 * Commit the config 4665 */ 4666 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4667 4668 spa_history_log_internal(spa, "vdev attach", NULL, 4669 "%s vdev=%s %s vdev=%s", 4670 replacing && newvd_isspare ? "spare in" : 4671 replacing ? "replace" : "attach", newvdpath, 4672 replacing ? "for" : "to", oldvdpath); 4673 4674 spa_strfree(oldvdpath); 4675 spa_strfree(newvdpath); 4676 4677 return (0); 4678 } 4679 4680 /* 4681 * Detach a device from a mirror or replacing vdev. 4682 * 4683 * If 'replace_done' is specified, only detach if the parent 4684 * is a replacing vdev. 4685 */ 4686 int 4687 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4688 { 4689 uint64_t txg; 4690 int error; 4691 vdev_t *rvd = spa->spa_root_vdev; 4692 vdev_t *vd, *pvd, *cvd, *tvd; 4693 boolean_t unspare = B_FALSE; 4694 uint64_t unspare_guid = 0; 4695 char *vdpath; 4696 4697 ASSERT(spa_writeable(spa)); 4698 4699 txg = spa_vdev_enter(spa); 4700 4701 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4702 4703 if (vd == NULL) 4704 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4705 4706 if (!vd->vdev_ops->vdev_op_leaf) 4707 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4708 4709 pvd = vd->vdev_parent; 4710 4711 /* 4712 * If the parent/child relationship is not as expected, don't do it. 4713 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4714 * vdev that's replacing B with C. The user's intent in replacing 4715 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4716 * the replace by detaching C, the expected behavior is to end up 4717 * M(A,B). But suppose that right after deciding to detach C, 4718 * the replacement of B completes. We would have M(A,C), and then 4719 * ask to detach C, which would leave us with just A -- not what 4720 * the user wanted. To prevent this, we make sure that the 4721 * parent/child relationship hasn't changed -- in this example, 4722 * that C's parent is still the replacing vdev R. 4723 */ 4724 if (pvd->vdev_guid != pguid && pguid != 0) 4725 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4726 4727 /* 4728 * Only 'replacing' or 'spare' vdevs can be replaced. 4729 */ 4730 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4731 pvd->vdev_ops != &vdev_spare_ops) 4732 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4733 4734 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4735 spa_version(spa) >= SPA_VERSION_SPARES); 4736 4737 /* 4738 * Only mirror, replacing, and spare vdevs support detach. 4739 */ 4740 if (pvd->vdev_ops != &vdev_replacing_ops && 4741 pvd->vdev_ops != &vdev_mirror_ops && 4742 pvd->vdev_ops != &vdev_spare_ops) 4743 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4744 4745 /* 4746 * If this device has the only valid copy of some data, 4747 * we cannot safely detach it. 4748 */ 4749 if (vdev_dtl_required(vd)) 4750 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4751 4752 ASSERT(pvd->vdev_children >= 2); 4753 4754 /* 4755 * If we are detaching the second disk from a replacing vdev, then 4756 * check to see if we changed the original vdev's path to have "/old" 4757 * at the end in spa_vdev_attach(). If so, undo that change now. 4758 */ 4759 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4760 vd->vdev_path != NULL) { 4761 size_t len = strlen(vd->vdev_path); 4762 4763 for (int c = 0; c < pvd->vdev_children; c++) { 4764 cvd = pvd->vdev_child[c]; 4765 4766 if (cvd == vd || cvd->vdev_path == NULL) 4767 continue; 4768 4769 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4770 strcmp(cvd->vdev_path + len, "/old") == 0) { 4771 spa_strfree(cvd->vdev_path); 4772 cvd->vdev_path = spa_strdup(vd->vdev_path); 4773 break; 4774 } 4775 } 4776 } 4777 4778 /* 4779 * If we are detaching the original disk from a spare, then it implies 4780 * that the spare should become a real disk, and be removed from the 4781 * active spare list for the pool. 4782 */ 4783 if (pvd->vdev_ops == &vdev_spare_ops && 4784 vd->vdev_id == 0 && 4785 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4786 unspare = B_TRUE; 4787 4788 /* 4789 * Erase the disk labels so the disk can be used for other things. 4790 * This must be done after all other error cases are handled, 4791 * but before we disembowel vd (so we can still do I/O to it). 4792 * But if we can't do it, don't treat the error as fatal -- 4793 * it may be that the unwritability of the disk is the reason 4794 * it's being detached! 4795 */ 4796 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4797 4798 /* 4799 * Remove vd from its parent and compact the parent's children. 4800 */ 4801 vdev_remove_child(pvd, vd); 4802 vdev_compact_children(pvd); 4803 4804 /* 4805 * Remember one of the remaining children so we can get tvd below. 4806 */ 4807 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4808 4809 /* 4810 * If we need to remove the remaining child from the list of hot spares, 4811 * do it now, marking the vdev as no longer a spare in the process. 4812 * We must do this before vdev_remove_parent(), because that can 4813 * change the GUID if it creates a new toplevel GUID. For a similar 4814 * reason, we must remove the spare now, in the same txg as the detach; 4815 * otherwise someone could attach a new sibling, change the GUID, and 4816 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4817 */ 4818 if (unspare) { 4819 ASSERT(cvd->vdev_isspare); 4820 spa_spare_remove(cvd); 4821 unspare_guid = cvd->vdev_guid; 4822 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4823 cvd->vdev_unspare = B_TRUE; 4824 } 4825 4826 /* 4827 * If the parent mirror/replacing vdev only has one child, 4828 * the parent is no longer needed. Remove it from the tree. 4829 */ 4830 if (pvd->vdev_children == 1) { 4831 if (pvd->vdev_ops == &vdev_spare_ops) 4832 cvd->vdev_unspare = B_FALSE; 4833 vdev_remove_parent(cvd); 4834 } 4835 4836 4837 /* 4838 * We don't set tvd until now because the parent we just removed 4839 * may have been the previous top-level vdev. 4840 */ 4841 tvd = cvd->vdev_top; 4842 ASSERT(tvd->vdev_parent == rvd); 4843 4844 /* 4845 * Reevaluate the parent vdev state. 4846 */ 4847 vdev_propagate_state(cvd); 4848 4849 /* 4850 * If the 'autoexpand' property is set on the pool then automatically 4851 * try to expand the size of the pool. For example if the device we 4852 * just detached was smaller than the others, it may be possible to 4853 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4854 * first so that we can obtain the updated sizes of the leaf vdevs. 4855 */ 4856 if (spa->spa_autoexpand) { 4857 vdev_reopen(tvd); 4858 vdev_expand(tvd, txg); 4859 } 4860 4861 vdev_config_dirty(tvd); 4862 4863 /* 4864 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4865 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4866 * But first make sure we're not on any *other* txg's DTL list, to 4867 * prevent vd from being accessed after it's freed. 4868 */ 4869 vdpath = spa_strdup(vd->vdev_path); 4870 for (int t = 0; t < TXG_SIZE; t++) 4871 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4872 vd->vdev_detached = B_TRUE; 4873 vdev_dirty(tvd, VDD_DTL, vd, txg); 4874 4875 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4876 4877 /* hang on to the spa before we release the lock */ 4878 spa_open_ref(spa, FTAG); 4879 4880 error = spa_vdev_exit(spa, vd, txg, 0); 4881 4882 spa_history_log_internal(spa, "detach", NULL, 4883 "vdev=%s", vdpath); 4884 spa_strfree(vdpath); 4885 4886 /* 4887 * If this was the removal of the original device in a hot spare vdev, 4888 * then we want to go through and remove the device from the hot spare 4889 * list of every other pool. 4890 */ 4891 if (unspare) { 4892 spa_t *altspa = NULL; 4893 4894 mutex_enter(&spa_namespace_lock); 4895 while ((altspa = spa_next(altspa)) != NULL) { 4896 if (altspa->spa_state != POOL_STATE_ACTIVE || 4897 altspa == spa) 4898 continue; 4899 4900 spa_open_ref(altspa, FTAG); 4901 mutex_exit(&spa_namespace_lock); 4902 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4903 mutex_enter(&spa_namespace_lock); 4904 spa_close(altspa, FTAG); 4905 } 4906 mutex_exit(&spa_namespace_lock); 4907 4908 /* search the rest of the vdevs for spares to remove */ 4909 spa_vdev_resilver_done(spa); 4910 } 4911 4912 /* all done with the spa; OK to release */ 4913 mutex_enter(&spa_namespace_lock); 4914 spa_close(spa, FTAG); 4915 mutex_exit(&spa_namespace_lock); 4916 4917 return (error); 4918 } 4919 4920 /* 4921 * Split a set of devices from their mirrors, and create a new pool from them. 4922 */ 4923 int 4924 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4925 nvlist_t *props, boolean_t exp) 4926 { 4927 int error = 0; 4928 uint64_t txg, *glist; 4929 spa_t *newspa; 4930 uint_t c, children, lastlog; 4931 nvlist_t **child, *nvl, *tmp; 4932 dmu_tx_t *tx; 4933 char *altroot = NULL; 4934 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4935 boolean_t activate_slog; 4936 4937 ASSERT(spa_writeable(spa)); 4938 4939 txg = spa_vdev_enter(spa); 4940 4941 /* clear the log and flush everything up to now */ 4942 activate_slog = spa_passivate_log(spa); 4943 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4944 error = spa_offline_log(spa); 4945 txg = spa_vdev_config_enter(spa); 4946 4947 if (activate_slog) 4948 spa_activate_log(spa); 4949 4950 if (error != 0) 4951 return (spa_vdev_exit(spa, NULL, txg, error)); 4952 4953 /* check new spa name before going any further */ 4954 if (spa_lookup(newname) != NULL) 4955 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4956 4957 /* 4958 * scan through all the children to ensure they're all mirrors 4959 */ 4960 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4961 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4962 &children) != 0) 4963 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4964 4965 /* first, check to ensure we've got the right child count */ 4966 rvd = spa->spa_root_vdev; 4967 lastlog = 0; 4968 for (c = 0; c < rvd->vdev_children; c++) { 4969 vdev_t *vd = rvd->vdev_child[c]; 4970 4971 /* don't count the holes & logs as children */ 4972 if (vd->vdev_islog || vd->vdev_ishole) { 4973 if (lastlog == 0) 4974 lastlog = c; 4975 continue; 4976 } 4977 4978 lastlog = 0; 4979 } 4980 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4981 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4982 4983 /* next, ensure no spare or cache devices are part of the split */ 4984 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4985 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4986 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4987 4988 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4989 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4990 4991 /* then, loop over each vdev and validate it */ 4992 for (c = 0; c < children; c++) { 4993 uint64_t is_hole = 0; 4994 4995 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4996 &is_hole); 4997 4998 if (is_hole != 0) { 4999 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5000 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5001 continue; 5002 } else { 5003 error = SET_ERROR(EINVAL); 5004 break; 5005 } 5006 } 5007 5008 /* which disk is going to be split? */ 5009 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5010 &glist[c]) != 0) { 5011 error = SET_ERROR(EINVAL); 5012 break; 5013 } 5014 5015 /* look it up in the spa */ 5016 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5017 if (vml[c] == NULL) { 5018 error = SET_ERROR(ENODEV); 5019 break; 5020 } 5021 5022 /* make sure there's nothing stopping the split */ 5023 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5024 vml[c]->vdev_islog || 5025 vml[c]->vdev_ishole || 5026 vml[c]->vdev_isspare || 5027 vml[c]->vdev_isl2cache || 5028 !vdev_writeable(vml[c]) || 5029 vml[c]->vdev_children != 0 || 5030 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5031 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5032 error = SET_ERROR(EINVAL); 5033 break; 5034 } 5035 5036 if (vdev_dtl_required(vml[c])) { 5037 error = SET_ERROR(EBUSY); 5038 break; 5039 } 5040 5041 /* we need certain info from the top level */ 5042 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5043 vml[c]->vdev_top->vdev_ms_array) == 0); 5044 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5045 vml[c]->vdev_top->vdev_ms_shift) == 0); 5046 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5047 vml[c]->vdev_top->vdev_asize) == 0); 5048 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5049 vml[c]->vdev_top->vdev_ashift) == 0); 5050 } 5051 5052 if (error != 0) { 5053 kmem_free(vml, children * sizeof (vdev_t *)); 5054 kmem_free(glist, children * sizeof (uint64_t)); 5055 return (spa_vdev_exit(spa, NULL, txg, error)); 5056 } 5057 5058 /* stop writers from using the disks */ 5059 for (c = 0; c < children; c++) { 5060 if (vml[c] != NULL) 5061 vml[c]->vdev_offline = B_TRUE; 5062 } 5063 vdev_reopen(spa->spa_root_vdev); 5064 5065 /* 5066 * Temporarily record the splitting vdevs in the spa config. This 5067 * will disappear once the config is regenerated. 5068 */ 5069 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5070 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5071 glist, children) == 0); 5072 kmem_free(glist, children * sizeof (uint64_t)); 5073 5074 mutex_enter(&spa->spa_props_lock); 5075 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5076 nvl) == 0); 5077 mutex_exit(&spa->spa_props_lock); 5078 spa->spa_config_splitting = nvl; 5079 vdev_config_dirty(spa->spa_root_vdev); 5080 5081 /* configure and create the new pool */ 5082 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5083 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5084 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5085 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5086 spa_version(spa)) == 0); 5087 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5088 spa->spa_config_txg) == 0); 5089 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5090 spa_generate_guid(NULL)) == 0); 5091 (void) nvlist_lookup_string(props, 5092 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5093 5094 /* add the new pool to the namespace */ 5095 newspa = spa_add(newname, config, altroot); 5096 newspa->spa_config_txg = spa->spa_config_txg; 5097 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5098 5099 /* release the spa config lock, retaining the namespace lock */ 5100 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5101 5102 if (zio_injection_enabled) 5103 zio_handle_panic_injection(spa, FTAG, 1); 5104 5105 spa_activate(newspa, spa_mode_global); 5106 spa_async_suspend(newspa); 5107 5108 /* create the new pool from the disks of the original pool */ 5109 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5110 if (error) 5111 goto out; 5112 5113 /* if that worked, generate a real config for the new pool */ 5114 if (newspa->spa_root_vdev != NULL) { 5115 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5116 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5117 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5118 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5119 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5120 B_TRUE)); 5121 } 5122 5123 /* set the props */ 5124 if (props != NULL) { 5125 spa_configfile_set(newspa, props, B_FALSE); 5126 error = spa_prop_set(newspa, props); 5127 if (error) 5128 goto out; 5129 } 5130 5131 /* flush everything */ 5132 txg = spa_vdev_config_enter(newspa); 5133 vdev_config_dirty(newspa->spa_root_vdev); 5134 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5135 5136 if (zio_injection_enabled) 5137 zio_handle_panic_injection(spa, FTAG, 2); 5138 5139 spa_async_resume(newspa); 5140 5141 /* finally, update the original pool's config */ 5142 txg = spa_vdev_config_enter(spa); 5143 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5144 error = dmu_tx_assign(tx, TXG_WAIT); 5145 if (error != 0) 5146 dmu_tx_abort(tx); 5147 for (c = 0; c < children; c++) { 5148 if (vml[c] != NULL) { 5149 vdev_split(vml[c]); 5150 if (error == 0) 5151 spa_history_log_internal(spa, "detach", tx, 5152 "vdev=%s", vml[c]->vdev_path); 5153 vdev_free(vml[c]); 5154 } 5155 } 5156 vdev_config_dirty(spa->spa_root_vdev); 5157 spa->spa_config_splitting = NULL; 5158 nvlist_free(nvl); 5159 if (error == 0) 5160 dmu_tx_commit(tx); 5161 (void) spa_vdev_exit(spa, NULL, txg, 0); 5162 5163 if (zio_injection_enabled) 5164 zio_handle_panic_injection(spa, FTAG, 3); 5165 5166 /* split is complete; log a history record */ 5167 spa_history_log_internal(newspa, "split", NULL, 5168 "from pool %s", spa_name(spa)); 5169 5170 kmem_free(vml, children * sizeof (vdev_t *)); 5171 5172 /* if we're not going to mount the filesystems in userland, export */ 5173 if (exp) 5174 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5175 B_FALSE, B_FALSE); 5176 5177 return (error); 5178 5179 out: 5180 spa_unload(newspa); 5181 spa_deactivate(newspa); 5182 spa_remove(newspa); 5183 5184 txg = spa_vdev_config_enter(spa); 5185 5186 /* re-online all offlined disks */ 5187 for (c = 0; c < children; c++) { 5188 if (vml[c] != NULL) 5189 vml[c]->vdev_offline = B_FALSE; 5190 } 5191 vdev_reopen(spa->spa_root_vdev); 5192 5193 nvlist_free(spa->spa_config_splitting); 5194 spa->spa_config_splitting = NULL; 5195 (void) spa_vdev_exit(spa, NULL, txg, error); 5196 5197 kmem_free(vml, children * sizeof (vdev_t *)); 5198 return (error); 5199 } 5200 5201 static nvlist_t * 5202 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5203 { 5204 for (int i = 0; i < count; i++) { 5205 uint64_t guid; 5206 5207 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5208 &guid) == 0); 5209 5210 if (guid == target_guid) 5211 return (nvpp[i]); 5212 } 5213 5214 return (NULL); 5215 } 5216 5217 static void 5218 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5219 nvlist_t *dev_to_remove) 5220 { 5221 nvlist_t **newdev = NULL; 5222 5223 if (count > 1) 5224 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5225 5226 for (int i = 0, j = 0; i < count; i++) { 5227 if (dev[i] == dev_to_remove) 5228 continue; 5229 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5230 } 5231 5232 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5233 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5234 5235 for (int i = 0; i < count - 1; i++) 5236 nvlist_free(newdev[i]); 5237 5238 if (count > 1) 5239 kmem_free(newdev, (count - 1) * sizeof (void *)); 5240 } 5241 5242 /* 5243 * Evacuate the device. 5244 */ 5245 static int 5246 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5247 { 5248 uint64_t txg; 5249 int error = 0; 5250 5251 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5252 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5253 ASSERT(vd == vd->vdev_top); 5254 5255 /* 5256 * Evacuate the device. We don't hold the config lock as writer 5257 * since we need to do I/O but we do keep the 5258 * spa_namespace_lock held. Once this completes the device 5259 * should no longer have any blocks allocated on it. 5260 */ 5261 if (vd->vdev_islog) { 5262 if (vd->vdev_stat.vs_alloc != 0) 5263 error = spa_offline_log(spa); 5264 } else { 5265 error = SET_ERROR(ENOTSUP); 5266 } 5267 5268 if (error) 5269 return (error); 5270 5271 /* 5272 * The evacuation succeeded. Remove any remaining MOS metadata 5273 * associated with this vdev, and wait for these changes to sync. 5274 */ 5275 ASSERT0(vd->vdev_stat.vs_alloc); 5276 txg = spa_vdev_config_enter(spa); 5277 vd->vdev_removing = B_TRUE; 5278 vdev_dirty_leaves(vd, VDD_DTL, txg); 5279 vdev_config_dirty(vd); 5280 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5281 5282 return (0); 5283 } 5284 5285 /* 5286 * Complete the removal by cleaning up the namespace. 5287 */ 5288 static void 5289 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5290 { 5291 vdev_t *rvd = spa->spa_root_vdev; 5292 uint64_t id = vd->vdev_id; 5293 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5294 5295 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5296 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5297 ASSERT(vd == vd->vdev_top); 5298 5299 /* 5300 * Only remove any devices which are empty. 5301 */ 5302 if (vd->vdev_stat.vs_alloc != 0) 5303 return; 5304 5305 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5306 5307 if (list_link_active(&vd->vdev_state_dirty_node)) 5308 vdev_state_clean(vd); 5309 if (list_link_active(&vd->vdev_config_dirty_node)) 5310 vdev_config_clean(vd); 5311 5312 vdev_free(vd); 5313 5314 if (last_vdev) { 5315 vdev_compact_children(rvd); 5316 } else { 5317 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5318 vdev_add_child(rvd, vd); 5319 } 5320 vdev_config_dirty(rvd); 5321 5322 /* 5323 * Reassess the health of our root vdev. 5324 */ 5325 vdev_reopen(rvd); 5326 } 5327 5328 /* 5329 * Remove a device from the pool - 5330 * 5331 * Removing a device from the vdev namespace requires several steps 5332 * and can take a significant amount of time. As a result we use 5333 * the spa_vdev_config_[enter/exit] functions which allow us to 5334 * grab and release the spa_config_lock while still holding the namespace 5335 * lock. During each step the configuration is synced out. 5336 * 5337 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5338 * devices. 5339 */ 5340 int 5341 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5342 { 5343 vdev_t *vd; 5344 metaslab_group_t *mg; 5345 nvlist_t **spares, **l2cache, *nv; 5346 uint64_t txg = 0; 5347 uint_t nspares, nl2cache; 5348 int error = 0; 5349 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5350 5351 ASSERT(spa_writeable(spa)); 5352 5353 if (!locked) 5354 txg = spa_vdev_enter(spa); 5355 5356 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5357 5358 if (spa->spa_spares.sav_vdevs != NULL && 5359 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5360 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5361 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5362 /* 5363 * Only remove the hot spare if it's not currently in use 5364 * in this pool. 5365 */ 5366 if (vd == NULL || unspare) { 5367 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5368 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5369 spa_load_spares(spa); 5370 spa->spa_spares.sav_sync = B_TRUE; 5371 } else { 5372 error = SET_ERROR(EBUSY); 5373 } 5374 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5375 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5376 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5377 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5378 /* 5379 * Cache devices can always be removed. 5380 */ 5381 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5382 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5383 spa_load_l2cache(spa); 5384 spa->spa_l2cache.sav_sync = B_TRUE; 5385 } else if (vd != NULL && vd->vdev_islog) { 5386 ASSERT(!locked); 5387 ASSERT(vd == vd->vdev_top); 5388 5389 mg = vd->vdev_mg; 5390 5391 /* 5392 * Stop allocating from this vdev. 5393 */ 5394 metaslab_group_passivate(mg); 5395 5396 /* 5397 * Wait for the youngest allocations and frees to sync, 5398 * and then wait for the deferral of those frees to finish. 5399 */ 5400 spa_vdev_config_exit(spa, NULL, 5401 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5402 5403 /* 5404 * Attempt to evacuate the vdev. 5405 */ 5406 error = spa_vdev_remove_evacuate(spa, vd); 5407 5408 txg = spa_vdev_config_enter(spa); 5409 5410 /* 5411 * If we couldn't evacuate the vdev, unwind. 5412 */ 5413 if (error) { 5414 metaslab_group_activate(mg); 5415 return (spa_vdev_exit(spa, NULL, txg, error)); 5416 } 5417 5418 /* 5419 * Clean up the vdev namespace. 5420 */ 5421 spa_vdev_remove_from_namespace(spa, vd); 5422 5423 } else if (vd != NULL) { 5424 /* 5425 * Normal vdevs cannot be removed (yet). 5426 */ 5427 error = SET_ERROR(ENOTSUP); 5428 } else { 5429 /* 5430 * There is no vdev of any kind with the specified guid. 5431 */ 5432 error = SET_ERROR(ENOENT); 5433 } 5434 5435 if (!locked) 5436 return (spa_vdev_exit(spa, NULL, txg, error)); 5437 5438 return (error); 5439 } 5440 5441 /* 5442 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5443 * currently spared, so we can detach it. 5444 */ 5445 static vdev_t * 5446 spa_vdev_resilver_done_hunt(vdev_t *vd) 5447 { 5448 vdev_t *newvd, *oldvd; 5449 5450 for (int c = 0; c < vd->vdev_children; c++) { 5451 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5452 if (oldvd != NULL) 5453 return (oldvd); 5454 } 5455 5456 /* 5457 * Check for a completed replacement. We always consider the first 5458 * vdev in the list to be the oldest vdev, and the last one to be 5459 * the newest (see spa_vdev_attach() for how that works). In 5460 * the case where the newest vdev is faulted, we will not automatically 5461 * remove it after a resilver completes. This is OK as it will require 5462 * user intervention to determine which disk the admin wishes to keep. 5463 */ 5464 if (vd->vdev_ops == &vdev_replacing_ops) { 5465 ASSERT(vd->vdev_children > 1); 5466 5467 newvd = vd->vdev_child[vd->vdev_children - 1]; 5468 oldvd = vd->vdev_child[0]; 5469 5470 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5471 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5472 !vdev_dtl_required(oldvd)) 5473 return (oldvd); 5474 } 5475 5476 /* 5477 * Check for a completed resilver with the 'unspare' flag set. 5478 */ 5479 if (vd->vdev_ops == &vdev_spare_ops) { 5480 vdev_t *first = vd->vdev_child[0]; 5481 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5482 5483 if (last->vdev_unspare) { 5484 oldvd = first; 5485 newvd = last; 5486 } else if (first->vdev_unspare) { 5487 oldvd = last; 5488 newvd = first; 5489 } else { 5490 oldvd = NULL; 5491 } 5492 5493 if (oldvd != NULL && 5494 vdev_dtl_empty(newvd, DTL_MISSING) && 5495 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5496 !vdev_dtl_required(oldvd)) 5497 return (oldvd); 5498 5499 /* 5500 * If there are more than two spares attached to a disk, 5501 * and those spares are not required, then we want to 5502 * attempt to free them up now so that they can be used 5503 * by other pools. Once we're back down to a single 5504 * disk+spare, we stop removing them. 5505 */ 5506 if (vd->vdev_children > 2) { 5507 newvd = vd->vdev_child[1]; 5508 5509 if (newvd->vdev_isspare && last->vdev_isspare && 5510 vdev_dtl_empty(last, DTL_MISSING) && 5511 vdev_dtl_empty(last, DTL_OUTAGE) && 5512 !vdev_dtl_required(newvd)) 5513 return (newvd); 5514 } 5515 } 5516 5517 return (NULL); 5518 } 5519 5520 static void 5521 spa_vdev_resilver_done(spa_t *spa) 5522 { 5523 vdev_t *vd, *pvd, *ppvd; 5524 uint64_t guid, sguid, pguid, ppguid; 5525 5526 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5527 5528 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5529 pvd = vd->vdev_parent; 5530 ppvd = pvd->vdev_parent; 5531 guid = vd->vdev_guid; 5532 pguid = pvd->vdev_guid; 5533 ppguid = ppvd->vdev_guid; 5534 sguid = 0; 5535 /* 5536 * If we have just finished replacing a hot spared device, then 5537 * we need to detach the parent's first child (the original hot 5538 * spare) as well. 5539 */ 5540 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5541 ppvd->vdev_children == 2) { 5542 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5543 sguid = ppvd->vdev_child[1]->vdev_guid; 5544 } 5545 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5546 5547 spa_config_exit(spa, SCL_ALL, FTAG); 5548 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5549 return; 5550 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5551 return; 5552 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5553 } 5554 5555 spa_config_exit(spa, SCL_ALL, FTAG); 5556 } 5557 5558 /* 5559 * Update the stored path or FRU for this vdev. 5560 */ 5561 int 5562 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5563 boolean_t ispath) 5564 { 5565 vdev_t *vd; 5566 boolean_t sync = B_FALSE; 5567 5568 ASSERT(spa_writeable(spa)); 5569 5570 spa_vdev_state_enter(spa, SCL_ALL); 5571 5572 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5573 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5574 5575 if (!vd->vdev_ops->vdev_op_leaf) 5576 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5577 5578 if (ispath) { 5579 if (strcmp(value, vd->vdev_path) != 0) { 5580 spa_strfree(vd->vdev_path); 5581 vd->vdev_path = spa_strdup(value); 5582 sync = B_TRUE; 5583 } 5584 } else { 5585 if (vd->vdev_fru == NULL) { 5586 vd->vdev_fru = spa_strdup(value); 5587 sync = B_TRUE; 5588 } else if (strcmp(value, vd->vdev_fru) != 0) { 5589 spa_strfree(vd->vdev_fru); 5590 vd->vdev_fru = spa_strdup(value); 5591 sync = B_TRUE; 5592 } 5593 } 5594 5595 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5596 } 5597 5598 int 5599 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5600 { 5601 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5602 } 5603 5604 int 5605 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5606 { 5607 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5608 } 5609 5610 /* 5611 * ========================================================================== 5612 * SPA Scanning 5613 * ========================================================================== 5614 */ 5615 5616 int 5617 spa_scan_stop(spa_t *spa) 5618 { 5619 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5620 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5621 return (SET_ERROR(EBUSY)); 5622 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5623 } 5624 5625 int 5626 spa_scan(spa_t *spa, pool_scan_func_t func) 5627 { 5628 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5629 5630 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5631 return (SET_ERROR(ENOTSUP)); 5632 5633 /* 5634 * If a resilver was requested, but there is no DTL on a 5635 * writeable leaf device, we have nothing to do. 5636 */ 5637 if (func == POOL_SCAN_RESILVER && 5638 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5639 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5640 return (0); 5641 } 5642 5643 return (dsl_scan(spa->spa_dsl_pool, func)); 5644 } 5645 5646 /* 5647 * ========================================================================== 5648 * SPA async task processing 5649 * ========================================================================== 5650 */ 5651 5652 static void 5653 spa_async_remove(spa_t *spa, vdev_t *vd) 5654 { 5655 if (vd->vdev_remove_wanted) { 5656 vd->vdev_remove_wanted = B_FALSE; 5657 vd->vdev_delayed_close = B_FALSE; 5658 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5659 5660 /* 5661 * We want to clear the stats, but we don't want to do a full 5662 * vdev_clear() as that will cause us to throw away 5663 * degraded/faulted state as well as attempt to reopen the 5664 * device, all of which is a waste. 5665 */ 5666 vd->vdev_stat.vs_read_errors = 0; 5667 vd->vdev_stat.vs_write_errors = 0; 5668 vd->vdev_stat.vs_checksum_errors = 0; 5669 5670 vdev_state_dirty(vd->vdev_top); 5671 } 5672 5673 for (int c = 0; c < vd->vdev_children; c++) 5674 spa_async_remove(spa, vd->vdev_child[c]); 5675 } 5676 5677 static void 5678 spa_async_probe(spa_t *spa, vdev_t *vd) 5679 { 5680 if (vd->vdev_probe_wanted) { 5681 vd->vdev_probe_wanted = B_FALSE; 5682 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5683 } 5684 5685 for (int c = 0; c < vd->vdev_children; c++) 5686 spa_async_probe(spa, vd->vdev_child[c]); 5687 } 5688 5689 static void 5690 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5691 { 5692 sysevent_id_t eid; 5693 nvlist_t *attr; 5694 char *physpath; 5695 5696 if (!spa->spa_autoexpand) 5697 return; 5698 5699 for (int c = 0; c < vd->vdev_children; c++) { 5700 vdev_t *cvd = vd->vdev_child[c]; 5701 spa_async_autoexpand(spa, cvd); 5702 } 5703 5704 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5705 return; 5706 5707 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5708 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5709 5710 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5711 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5712 5713 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5714 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5715 5716 nvlist_free(attr); 5717 kmem_free(physpath, MAXPATHLEN); 5718 } 5719 5720 static void 5721 spa_async_thread(spa_t *spa) 5722 { 5723 int tasks; 5724 5725 ASSERT(spa->spa_sync_on); 5726 5727 mutex_enter(&spa->spa_async_lock); 5728 tasks = spa->spa_async_tasks; 5729 spa->spa_async_tasks = 0; 5730 mutex_exit(&spa->spa_async_lock); 5731 5732 /* 5733 * See if the config needs to be updated. 5734 */ 5735 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5736 uint64_t old_space, new_space; 5737 5738 mutex_enter(&spa_namespace_lock); 5739 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5740 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5741 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5742 mutex_exit(&spa_namespace_lock); 5743 5744 /* 5745 * If the pool grew as a result of the config update, 5746 * then log an internal history event. 5747 */ 5748 if (new_space != old_space) { 5749 spa_history_log_internal(spa, "vdev online", NULL, 5750 "pool '%s' size: %llu(+%llu)", 5751 spa_name(spa), new_space, new_space - old_space); 5752 } 5753 } 5754 5755 /* 5756 * See if any devices need to be marked REMOVED. 5757 */ 5758 if (tasks & SPA_ASYNC_REMOVE) { 5759 spa_vdev_state_enter(spa, SCL_NONE); 5760 spa_async_remove(spa, spa->spa_root_vdev); 5761 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5762 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5763 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5764 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5765 (void) spa_vdev_state_exit(spa, NULL, 0); 5766 } 5767 5768 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5769 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5770 spa_async_autoexpand(spa, spa->spa_root_vdev); 5771 spa_config_exit(spa, SCL_CONFIG, FTAG); 5772 } 5773 5774 /* 5775 * See if any devices need to be probed. 5776 */ 5777 if (tasks & SPA_ASYNC_PROBE) { 5778 spa_vdev_state_enter(spa, SCL_NONE); 5779 spa_async_probe(spa, spa->spa_root_vdev); 5780 (void) spa_vdev_state_exit(spa, NULL, 0); 5781 } 5782 5783 /* 5784 * If any devices are done replacing, detach them. 5785 */ 5786 if (tasks & SPA_ASYNC_RESILVER_DONE) 5787 spa_vdev_resilver_done(spa); 5788 5789 /* 5790 * Kick off a resilver. 5791 */ 5792 if (tasks & SPA_ASYNC_RESILVER) 5793 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5794 5795 /* 5796 * Kick off L2 cache rebuilding. 5797 */ 5798 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) 5799 l2arc_spa_rebuild_start(spa); 5800 5801 /* 5802 * Let the world know that we're done. 5803 */ 5804 mutex_enter(&spa->spa_async_lock); 5805 spa->spa_async_thread = NULL; 5806 cv_broadcast(&spa->spa_async_cv); 5807 mutex_exit(&spa->spa_async_lock); 5808 thread_exit(); 5809 } 5810 5811 void 5812 spa_async_suspend(spa_t *spa) 5813 { 5814 mutex_enter(&spa->spa_async_lock); 5815 spa->spa_async_suspended++; 5816 while (spa->spa_async_thread != NULL) 5817 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5818 mutex_exit(&spa->spa_async_lock); 5819 } 5820 5821 void 5822 spa_async_resume(spa_t *spa) 5823 { 5824 mutex_enter(&spa->spa_async_lock); 5825 ASSERT(spa->spa_async_suspended != 0); 5826 spa->spa_async_suspended--; 5827 mutex_exit(&spa->spa_async_lock); 5828 } 5829 5830 static boolean_t 5831 spa_async_tasks_pending(spa_t *spa) 5832 { 5833 uint_t non_config_tasks; 5834 uint_t config_task; 5835 boolean_t config_task_suspended; 5836 5837 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5838 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5839 if (spa->spa_ccw_fail_time == 0) { 5840 config_task_suspended = B_FALSE; 5841 } else { 5842 config_task_suspended = 5843 (gethrtime() - spa->spa_ccw_fail_time) < 5844 (zfs_ccw_retry_interval * NANOSEC); 5845 } 5846 5847 return (non_config_tasks || (config_task && !config_task_suspended)); 5848 } 5849 5850 static void 5851 spa_async_dispatch(spa_t *spa) 5852 { 5853 mutex_enter(&spa->spa_async_lock); 5854 if (spa_async_tasks_pending(spa) && 5855 !spa->spa_async_suspended && 5856 spa->spa_async_thread == NULL && 5857 rootdir != NULL) 5858 spa->spa_async_thread = thread_create(NULL, 0, 5859 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5860 mutex_exit(&spa->spa_async_lock); 5861 } 5862 5863 void 5864 spa_async_request(spa_t *spa, int task) 5865 { 5866 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5867 mutex_enter(&spa->spa_async_lock); 5868 spa->spa_async_tasks |= task; 5869 mutex_exit(&spa->spa_async_lock); 5870 } 5871 5872 /* 5873 * ========================================================================== 5874 * SPA syncing routines 5875 * ========================================================================== 5876 */ 5877 5878 static int 5879 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5880 { 5881 bpobj_t *bpo = arg; 5882 bpobj_enqueue(bpo, bp, tx); 5883 return (0); 5884 } 5885 5886 static int 5887 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5888 { 5889 zio_t *zio = arg; 5890 5891 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5892 zio->io_flags)); 5893 return (0); 5894 } 5895 5896 /* 5897 * Note: this simple function is not inlined to make it easier to dtrace the 5898 * amount of time spent syncing frees. 5899 */ 5900 static void 5901 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5902 { 5903 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5904 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5905 VERIFY(zio_wait(zio) == 0); 5906 } 5907 5908 /* 5909 * Note: this simple function is not inlined to make it easier to dtrace the 5910 * amount of time spent syncing deferred frees. 5911 */ 5912 static void 5913 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5914 { 5915 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5916 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5917 spa_free_sync_cb, zio, tx), ==, 0); 5918 VERIFY0(zio_wait(zio)); 5919 } 5920 5921 5922 static void 5923 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5924 { 5925 char *packed = NULL; 5926 size_t bufsize; 5927 size_t nvsize = 0; 5928 dmu_buf_t *db; 5929 5930 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5931 5932 /* 5933 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5934 * information. This avoids the dmu_buf_will_dirty() path and 5935 * saves us a pre-read to get data we don't actually care about. 5936 */ 5937 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5938 packed = kmem_alloc(bufsize, KM_SLEEP); 5939 5940 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5941 KM_SLEEP) == 0); 5942 bzero(packed + nvsize, bufsize - nvsize); 5943 5944 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5945 5946 kmem_free(packed, bufsize); 5947 5948 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5949 dmu_buf_will_dirty(db, tx); 5950 *(uint64_t *)db->db_data = nvsize; 5951 dmu_buf_rele(db, FTAG); 5952 } 5953 5954 static void 5955 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5956 const char *config, const char *entry) 5957 { 5958 nvlist_t *nvroot; 5959 nvlist_t **list; 5960 int i; 5961 5962 if (!sav->sav_sync) 5963 return; 5964 5965 /* 5966 * Update the MOS nvlist describing the list of available devices. 5967 * spa_validate_aux() will have already made sure this nvlist is 5968 * valid and the vdevs are labeled appropriately. 5969 */ 5970 if (sav->sav_object == 0) { 5971 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5972 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5973 sizeof (uint64_t), tx); 5974 VERIFY(zap_update(spa->spa_meta_objset, 5975 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5976 &sav->sav_object, tx) == 0); 5977 } 5978 5979 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5980 if (sav->sav_count == 0) { 5981 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5982 } else { 5983 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5984 for (i = 0; i < sav->sav_count; i++) 5985 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5986 B_FALSE, VDEV_CONFIG_L2CACHE); 5987 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5988 sav->sav_count) == 0); 5989 for (i = 0; i < sav->sav_count; i++) 5990 nvlist_free(list[i]); 5991 kmem_free(list, sav->sav_count * sizeof (void *)); 5992 } 5993 5994 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5995 nvlist_free(nvroot); 5996 5997 sav->sav_sync = B_FALSE; 5998 } 5999 6000 static void 6001 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6002 { 6003 nvlist_t *config; 6004 6005 if (list_is_empty(&spa->spa_config_dirty_list)) 6006 return; 6007 6008 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6009 6010 config = spa_config_generate(spa, spa->spa_root_vdev, 6011 dmu_tx_get_txg(tx), B_FALSE); 6012 6013 /* 6014 * If we're upgrading the spa version then make sure that 6015 * the config object gets updated with the correct version. 6016 */ 6017 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6018 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6019 spa->spa_uberblock.ub_version); 6020 6021 spa_config_exit(spa, SCL_STATE, FTAG); 6022 6023 nvlist_free(spa->spa_config_syncing); 6024 spa->spa_config_syncing = config; 6025 6026 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6027 } 6028 6029 static void 6030 spa_sync_version(void *arg, dmu_tx_t *tx) 6031 { 6032 uint64_t *versionp = arg; 6033 uint64_t version = *versionp; 6034 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6035 6036 /* 6037 * Setting the version is special cased when first creating the pool. 6038 */ 6039 ASSERT(tx->tx_txg != TXG_INITIAL); 6040 6041 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6042 ASSERT(version >= spa_version(spa)); 6043 6044 spa->spa_uberblock.ub_version = version; 6045 vdev_config_dirty(spa->spa_root_vdev); 6046 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6047 } 6048 6049 /* 6050 * Set zpool properties. 6051 */ 6052 static void 6053 spa_sync_props(void *arg, dmu_tx_t *tx) 6054 { 6055 nvlist_t *nvp = arg; 6056 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6057 objset_t *mos = spa->spa_meta_objset; 6058 nvpair_t *elem = NULL; 6059 6060 mutex_enter(&spa->spa_props_lock); 6061 6062 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6063 uint64_t intval; 6064 char *strval, *fname; 6065 zpool_prop_t prop; 6066 const char *propname; 6067 zprop_type_t proptype; 6068 spa_feature_t fid; 6069 6070 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6071 case ZPROP_INVAL: 6072 /* 6073 * We checked this earlier in spa_prop_validate(). 6074 */ 6075 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6076 6077 fname = strchr(nvpair_name(elem), '@') + 1; 6078 VERIFY0(zfeature_lookup_name(fname, &fid)); 6079 6080 spa_feature_enable(spa, fid, tx); 6081 spa_history_log_internal(spa, "set", tx, 6082 "%s=enabled", nvpair_name(elem)); 6083 break; 6084 6085 case ZPOOL_PROP_VERSION: 6086 intval = fnvpair_value_uint64(elem); 6087 /* 6088 * The version is synced seperatly before other 6089 * properties and should be correct by now. 6090 */ 6091 ASSERT3U(spa_version(spa), >=, intval); 6092 break; 6093 6094 case ZPOOL_PROP_ALTROOT: 6095 /* 6096 * 'altroot' is a non-persistent property. It should 6097 * have been set temporarily at creation or import time. 6098 */ 6099 ASSERT(spa->spa_root != NULL); 6100 break; 6101 6102 case ZPOOL_PROP_READONLY: 6103 case ZPOOL_PROP_CACHEFILE: 6104 /* 6105 * 'readonly' and 'cachefile' are also non-persisitent 6106 * properties. 6107 */ 6108 break; 6109 case ZPOOL_PROP_COMMENT: 6110 strval = fnvpair_value_string(elem); 6111 if (spa->spa_comment != NULL) 6112 spa_strfree(spa->spa_comment); 6113 spa->spa_comment = spa_strdup(strval); 6114 /* 6115 * We need to dirty the configuration on all the vdevs 6116 * so that their labels get updated. It's unnecessary 6117 * to do this for pool creation since the vdev's 6118 * configuratoin has already been dirtied. 6119 */ 6120 if (tx->tx_txg != TXG_INITIAL) 6121 vdev_config_dirty(spa->spa_root_vdev); 6122 spa_history_log_internal(spa, "set", tx, 6123 "%s=%s", nvpair_name(elem), strval); 6124 break; 6125 default: 6126 /* 6127 * Set pool property values in the poolprops mos object. 6128 */ 6129 if (spa->spa_pool_props_object == 0) { 6130 spa->spa_pool_props_object = 6131 zap_create_link(mos, DMU_OT_POOL_PROPS, 6132 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6133 tx); 6134 } 6135 6136 /* normalize the property name */ 6137 propname = zpool_prop_to_name(prop); 6138 proptype = zpool_prop_get_type(prop); 6139 6140 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6141 ASSERT(proptype == PROP_TYPE_STRING); 6142 strval = fnvpair_value_string(elem); 6143 VERIFY0(zap_update(mos, 6144 spa->spa_pool_props_object, propname, 6145 1, strlen(strval) + 1, strval, tx)); 6146 spa_history_log_internal(spa, "set", tx, 6147 "%s=%s", nvpair_name(elem), strval); 6148 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6149 intval = fnvpair_value_uint64(elem); 6150 6151 if (proptype == PROP_TYPE_INDEX) { 6152 const char *unused; 6153 VERIFY0(zpool_prop_index_to_string( 6154 prop, intval, &unused)); 6155 } 6156 VERIFY0(zap_update(mos, 6157 spa->spa_pool_props_object, propname, 6158 8, 1, &intval, tx)); 6159 spa_history_log_internal(spa, "set", tx, 6160 "%s=%lld", nvpair_name(elem), intval); 6161 } else { 6162 ASSERT(0); /* not allowed */ 6163 } 6164 6165 switch (prop) { 6166 case ZPOOL_PROP_DELEGATION: 6167 spa->spa_delegation = intval; 6168 break; 6169 case ZPOOL_PROP_BOOTFS: 6170 spa->spa_bootfs = intval; 6171 break; 6172 case ZPOOL_PROP_FAILUREMODE: 6173 spa->spa_failmode = intval; 6174 break; 6175 case ZPOOL_PROP_AUTOEXPAND: 6176 spa->spa_autoexpand = intval; 6177 if (tx->tx_txg != TXG_INITIAL) 6178 spa_async_request(spa, 6179 SPA_ASYNC_AUTOEXPAND); 6180 break; 6181 case ZPOOL_PROP_DEDUPDITTO: 6182 spa->spa_dedup_ditto = intval; 6183 break; 6184 default: 6185 break; 6186 } 6187 } 6188 6189 } 6190 6191 mutex_exit(&spa->spa_props_lock); 6192 } 6193 6194 /* 6195 * Perform one-time upgrade on-disk changes. spa_version() does not 6196 * reflect the new version this txg, so there must be no changes this 6197 * txg to anything that the upgrade code depends on after it executes. 6198 * Therefore this must be called after dsl_pool_sync() does the sync 6199 * tasks. 6200 */ 6201 static void 6202 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6203 { 6204 dsl_pool_t *dp = spa->spa_dsl_pool; 6205 6206 ASSERT(spa->spa_sync_pass == 1); 6207 6208 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6209 6210 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6211 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6212 dsl_pool_create_origin(dp, tx); 6213 6214 /* Keeping the origin open increases spa_minref */ 6215 spa->spa_minref += 3; 6216 } 6217 6218 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6219 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6220 dsl_pool_upgrade_clones(dp, tx); 6221 } 6222 6223 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6224 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6225 dsl_pool_upgrade_dir_clones(dp, tx); 6226 6227 /* Keeping the freedir open increases spa_minref */ 6228 spa->spa_minref += 3; 6229 } 6230 6231 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6232 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6233 spa_feature_create_zap_objects(spa, tx); 6234 } 6235 6236 /* 6237 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6238 * when possibility to use lz4 compression for metadata was added 6239 * Old pools that have this feature enabled must be upgraded to have 6240 * this feature active 6241 */ 6242 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6243 boolean_t lz4_en = spa_feature_is_enabled(spa, 6244 SPA_FEATURE_LZ4_COMPRESS); 6245 boolean_t lz4_ac = spa_feature_is_active(spa, 6246 SPA_FEATURE_LZ4_COMPRESS); 6247 6248 if (lz4_en && !lz4_ac) 6249 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6250 } 6251 6252 /* 6253 * If we haven't written the salt, do so now. Note that the 6254 * feature may not be activated yet, but that's fine since 6255 * the presence of this ZAP entry is backwards compatible. 6256 */ 6257 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6258 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6259 VERIFY0(zap_add(spa->spa_meta_objset, 6260 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6261 sizeof (spa->spa_cksum_salt.zcs_bytes), 6262 spa->spa_cksum_salt.zcs_bytes, tx)); 6263 } 6264 6265 rrw_exit(&dp->dp_config_rwlock, FTAG); 6266 } 6267 6268 /* 6269 * Sync the specified transaction group. New blocks may be dirtied as 6270 * part of the process, so we iterate until it converges. 6271 */ 6272 void 6273 spa_sync(spa_t *spa, uint64_t txg) 6274 { 6275 dsl_pool_t *dp = spa->spa_dsl_pool; 6276 objset_t *mos = spa->spa_meta_objset; 6277 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6278 vdev_t *rvd = spa->spa_root_vdev; 6279 vdev_t *vd; 6280 dmu_tx_t *tx; 6281 int error; 6282 6283 VERIFY(spa_writeable(spa)); 6284 6285 /* 6286 * Lock out configuration changes. 6287 */ 6288 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6289 6290 spa->spa_syncing_txg = txg; 6291 spa->spa_sync_pass = 0; 6292 6293 /* 6294 * If there are any pending vdev state changes, convert them 6295 * into config changes that go out with this transaction group. 6296 */ 6297 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6298 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6299 /* 6300 * We need the write lock here because, for aux vdevs, 6301 * calling vdev_config_dirty() modifies sav_config. 6302 * This is ugly and will become unnecessary when we 6303 * eliminate the aux vdev wart by integrating all vdevs 6304 * into the root vdev tree. 6305 */ 6306 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6307 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6308 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6309 vdev_state_clean(vd); 6310 vdev_config_dirty(vd); 6311 } 6312 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6313 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6314 } 6315 spa_config_exit(spa, SCL_STATE, FTAG); 6316 6317 tx = dmu_tx_create_assigned(dp, txg); 6318 6319 spa->spa_sync_starttime = gethrtime(); 6320 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6321 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6322 6323 /* 6324 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6325 * set spa_deflate if we have no raid-z vdevs. 6326 */ 6327 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6328 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6329 int i; 6330 6331 for (i = 0; i < rvd->vdev_children; i++) { 6332 vd = rvd->vdev_child[i]; 6333 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6334 break; 6335 } 6336 if (i == rvd->vdev_children) { 6337 spa->spa_deflate = TRUE; 6338 VERIFY(0 == zap_add(spa->spa_meta_objset, 6339 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6340 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6341 } 6342 } 6343 6344 /* 6345 * Iterate to convergence. 6346 */ 6347 do { 6348 int pass = ++spa->spa_sync_pass; 6349 6350 spa_sync_config_object(spa, tx); 6351 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6352 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6353 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6354 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6355 spa_errlog_sync(spa, txg); 6356 dsl_pool_sync(dp, txg); 6357 6358 if (pass < zfs_sync_pass_deferred_free) { 6359 spa_sync_frees(spa, free_bpl, tx); 6360 } else { 6361 /* 6362 * We can not defer frees in pass 1, because 6363 * we sync the deferred frees later in pass 1. 6364 */ 6365 ASSERT3U(pass, >, 1); 6366 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6367 &spa->spa_deferred_bpobj, tx); 6368 } 6369 6370 ddt_sync(spa, txg); 6371 dsl_scan_sync(dp, tx); 6372 6373 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6374 vdev_sync(vd, txg); 6375 6376 if (pass == 1) { 6377 spa_sync_upgrades(spa, tx); 6378 ASSERT3U(txg, >=, 6379 spa->spa_uberblock.ub_rootbp.blk_birth); 6380 /* 6381 * Note: We need to check if the MOS is dirty 6382 * because we could have marked the MOS dirty 6383 * without updating the uberblock (e.g. if we 6384 * have sync tasks but no dirty user data). We 6385 * need to check the uberblock's rootbp because 6386 * it is updated if we have synced out dirty 6387 * data (though in this case the MOS will most 6388 * likely also be dirty due to second order 6389 * effects, we don't want to rely on that here). 6390 */ 6391 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6392 !dmu_objset_is_dirty(mos, txg)) { 6393 /* 6394 * Nothing changed on the first pass, 6395 * therefore this TXG is a no-op. Avoid 6396 * syncing deferred frees, so that we 6397 * can keep this TXG as a no-op. 6398 */ 6399 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6400 txg)); 6401 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6402 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6403 break; 6404 } 6405 spa_sync_deferred_frees(spa, tx); 6406 } 6407 6408 } while (dmu_objset_is_dirty(mos, txg)); 6409 6410 /* 6411 * Rewrite the vdev configuration (which includes the uberblock) 6412 * to commit the transaction group. 6413 * 6414 * If there are no dirty vdevs, we sync the uberblock to a few 6415 * random top-level vdevs that are known to be visible in the 6416 * config cache (see spa_vdev_add() for a complete description). 6417 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6418 */ 6419 for (;;) { 6420 /* 6421 * We hold SCL_STATE to prevent vdev open/close/etc. 6422 * while we're attempting to write the vdev labels. 6423 */ 6424 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6425 6426 if (list_is_empty(&spa->spa_config_dirty_list)) { 6427 vdev_t *svd[SPA_DVAS_PER_BP]; 6428 int svdcount = 0; 6429 int children = rvd->vdev_children; 6430 int c0 = spa_get_random(children); 6431 6432 for (int c = 0; c < children; c++) { 6433 vd = rvd->vdev_child[(c0 + c) % children]; 6434 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6435 continue; 6436 svd[svdcount++] = vd; 6437 if (svdcount == SPA_DVAS_PER_BP) 6438 break; 6439 } 6440 error = vdev_config_sync(svd, svdcount, txg); 6441 } else { 6442 error = vdev_config_sync(rvd->vdev_child, 6443 rvd->vdev_children, txg); 6444 } 6445 6446 if (error == 0) 6447 spa->spa_last_synced_guid = rvd->vdev_guid; 6448 6449 spa_config_exit(spa, SCL_STATE, FTAG); 6450 6451 if (error == 0) 6452 break; 6453 zio_suspend(spa, NULL); 6454 zio_resume_wait(spa); 6455 } 6456 dmu_tx_commit(tx); 6457 6458 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6459 6460 /* 6461 * Clear the dirty config list. 6462 */ 6463 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6464 vdev_config_clean(vd); 6465 6466 /* 6467 * Now that the new config has synced transactionally, 6468 * let it become visible to the config cache. 6469 */ 6470 if (spa->spa_config_syncing != NULL) { 6471 spa_config_set(spa, spa->spa_config_syncing); 6472 spa->spa_config_txg = txg; 6473 spa->spa_config_syncing = NULL; 6474 } 6475 6476 spa->spa_ubsync = spa->spa_uberblock; 6477 6478 dsl_pool_sync_done(dp, txg); 6479 6480 /* 6481 * Update usable space statistics. 6482 */ 6483 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6484 vdev_sync_done(vd, txg); 6485 6486 spa_update_dspace(spa); 6487 6488 /* 6489 * It had better be the case that we didn't dirty anything 6490 * since vdev_config_sync(). 6491 */ 6492 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6493 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6494 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6495 6496 spa->spa_sync_pass = 0; 6497 6498 spa_config_exit(spa, SCL_CONFIG, FTAG); 6499 6500 spa_handle_ignored_writes(spa); 6501 6502 /* 6503 * If any async tasks have been requested, kick them off. 6504 */ 6505 spa_async_dispatch(spa); 6506 } 6507 6508 /* 6509 * Sync all pools. We don't want to hold the namespace lock across these 6510 * operations, so we take a reference on the spa_t and drop the lock during the 6511 * sync. 6512 */ 6513 void 6514 spa_sync_allpools(void) 6515 { 6516 spa_t *spa = NULL; 6517 mutex_enter(&spa_namespace_lock); 6518 while ((spa = spa_next(spa)) != NULL) { 6519 if (spa_state(spa) != POOL_STATE_ACTIVE || 6520 !spa_writeable(spa) || spa_suspended(spa)) 6521 continue; 6522 spa_open_ref(spa, FTAG); 6523 mutex_exit(&spa_namespace_lock); 6524 txg_wait_synced(spa_get_dsl(spa), 0); 6525 mutex_enter(&spa_namespace_lock); 6526 spa_close(spa, FTAG); 6527 } 6528 mutex_exit(&spa_namespace_lock); 6529 } 6530 6531 /* 6532 * ========================================================================== 6533 * Miscellaneous routines 6534 * ========================================================================== 6535 */ 6536 6537 /* 6538 * Remove all pools in the system. 6539 */ 6540 void 6541 spa_evict_all(void) 6542 { 6543 spa_t *spa; 6544 6545 /* 6546 * Remove all cached state. All pools should be closed now, 6547 * so every spa in the AVL tree should be unreferenced. 6548 */ 6549 mutex_enter(&spa_namespace_lock); 6550 while ((spa = spa_next(NULL)) != NULL) { 6551 /* 6552 * Stop async tasks. The async thread may need to detach 6553 * a device that's been replaced, which requires grabbing 6554 * spa_namespace_lock, so we must drop it here. 6555 */ 6556 spa_open_ref(spa, FTAG); 6557 mutex_exit(&spa_namespace_lock); 6558 spa_async_suspend(spa); 6559 mutex_enter(&spa_namespace_lock); 6560 spa_close(spa, FTAG); 6561 6562 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6563 spa_unload(spa); 6564 spa_deactivate(spa); 6565 } 6566 spa_remove(spa); 6567 } 6568 mutex_exit(&spa_namespace_lock); 6569 } 6570 6571 vdev_t * 6572 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6573 { 6574 vdev_t *vd; 6575 int i; 6576 6577 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6578 return (vd); 6579 6580 if (aux) { 6581 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6582 vd = spa->spa_l2cache.sav_vdevs[i]; 6583 if (vd->vdev_guid == guid) 6584 return (vd); 6585 } 6586 6587 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6588 vd = spa->spa_spares.sav_vdevs[i]; 6589 if (vd->vdev_guid == guid) 6590 return (vd); 6591 } 6592 } 6593 6594 return (NULL); 6595 } 6596 6597 void 6598 spa_upgrade(spa_t *spa, uint64_t version) 6599 { 6600 ASSERT(spa_writeable(spa)); 6601 6602 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6603 6604 /* 6605 * This should only be called for a non-faulted pool, and since a 6606 * future version would result in an unopenable pool, this shouldn't be 6607 * possible. 6608 */ 6609 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6610 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6611 6612 spa->spa_uberblock.ub_version = version; 6613 vdev_config_dirty(spa->spa_root_vdev); 6614 6615 spa_config_exit(spa, SCL_ALL, FTAG); 6616 6617 txg_wait_synced(spa_get_dsl(spa), 0); 6618 } 6619 6620 boolean_t 6621 spa_has_spare(spa_t *spa, uint64_t guid) 6622 { 6623 int i; 6624 uint64_t spareguid; 6625 spa_aux_vdev_t *sav = &spa->spa_spares; 6626 6627 for (i = 0; i < sav->sav_count; i++) 6628 if (sav->sav_vdevs[i]->vdev_guid == guid) 6629 return (B_TRUE); 6630 6631 for (i = 0; i < sav->sav_npending; i++) { 6632 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6633 &spareguid) == 0 && spareguid == guid) 6634 return (B_TRUE); 6635 } 6636 6637 return (B_FALSE); 6638 } 6639 6640 /* 6641 * Check if a pool has an active shared spare device. 6642 * Note: reference count of an active spare is 2, as a spare and as a replace 6643 */ 6644 static boolean_t 6645 spa_has_active_shared_spare(spa_t *spa) 6646 { 6647 int i, refcnt; 6648 uint64_t pool; 6649 spa_aux_vdev_t *sav = &spa->spa_spares; 6650 6651 for (i = 0; i < sav->sav_count; i++) { 6652 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6653 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6654 refcnt > 2) 6655 return (B_TRUE); 6656 } 6657 6658 return (B_FALSE); 6659 } 6660 6661 /* 6662 * Post a sysevent corresponding to the given event. The 'name' must be one of 6663 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6664 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6665 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6666 * or zdb as real changes. 6667 */ 6668 void 6669 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6670 { 6671 #ifdef _KERNEL 6672 sysevent_t *ev; 6673 sysevent_attr_list_t *attr = NULL; 6674 sysevent_value_t value; 6675 sysevent_id_t eid; 6676 6677 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6678 SE_SLEEP); 6679 6680 value.value_type = SE_DATA_TYPE_STRING; 6681 value.value.sv_string = spa_name(spa); 6682 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6683 goto done; 6684 6685 value.value_type = SE_DATA_TYPE_UINT64; 6686 value.value.sv_uint64 = spa_guid(spa); 6687 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6688 goto done; 6689 6690 if (vd) { 6691 value.value_type = SE_DATA_TYPE_UINT64; 6692 value.value.sv_uint64 = vd->vdev_guid; 6693 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6694 SE_SLEEP) != 0) 6695 goto done; 6696 6697 if (vd->vdev_path) { 6698 value.value_type = SE_DATA_TYPE_STRING; 6699 value.value.sv_string = vd->vdev_path; 6700 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6701 &value, SE_SLEEP) != 0) 6702 goto done; 6703 } 6704 } 6705 6706 if (sysevent_attach_attributes(ev, attr) != 0) 6707 goto done; 6708 attr = NULL; 6709 6710 (void) log_sysevent(ev, SE_SLEEP, &eid); 6711 6712 done: 6713 if (attr) 6714 sysevent_free_attr(attr); 6715 sysevent_free(ev); 6716 #endif 6717 } 6718