xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision e5bf75e3506992298daf0ecb416bef20349e5d19)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 /*
58  * ==========================================================================
59  * SPA state manipulation (open/create/destroy/import/export)
60  * ==========================================================================
61  */
62 
63 static int
64 spa_error_entry_compare(const void *a, const void *b)
65 {
66 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
67 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
68 	int ret;
69 
70 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
71 	    sizeof (zbookmark_t));
72 
73 	if (ret < 0)
74 		return (-1);
75 	else if (ret > 0)
76 		return (1);
77 	else
78 		return (0);
79 }
80 
81 /*
82  * Utility function which retrieves copies of the current logs and
83  * re-initializes them in the process.
84  */
85 void
86 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
87 {
88 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
89 
90 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
91 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
92 
93 	avl_create(&spa->spa_errlist_scrub,
94 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
95 	    offsetof(spa_error_entry_t, se_avl));
96 	avl_create(&spa->spa_errlist_last,
97 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
98 	    offsetof(spa_error_entry_t, se_avl));
99 }
100 
101 /*
102  * Activate an uninitialized pool.
103  */
104 static void
105 spa_activate(spa_t *spa)
106 {
107 	int t;
108 
109 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
110 
111 	spa->spa_state = POOL_STATE_ACTIVE;
112 
113 	spa->spa_normal_class = metaslab_class_create();
114 
115 	for (t = 0; t < ZIO_TYPES; t++) {
116 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
117 		    8, maxclsyspri, 50, INT_MAX,
118 		    TASKQ_PREPOPULATE);
119 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
120 		    8, maxclsyspri, 50, INT_MAX,
121 		    TASKQ_PREPOPULATE);
122 	}
123 
124 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
125 
126 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
127 	    offsetof(vdev_t, vdev_dirty_node));
128 
129 	txg_list_create(&spa->spa_vdev_txg_list,
130 	    offsetof(struct vdev, vdev_txg_node));
131 
132 	avl_create(&spa->spa_errlist_scrub,
133 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
134 	    offsetof(spa_error_entry_t, se_avl));
135 	avl_create(&spa->spa_errlist_last,
136 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
137 	    offsetof(spa_error_entry_t, se_avl));
138 }
139 
140 /*
141  * Opposite of spa_activate().
142  */
143 static void
144 spa_deactivate(spa_t *spa)
145 {
146 	int t;
147 
148 	ASSERT(spa->spa_sync_on == B_FALSE);
149 	ASSERT(spa->spa_dsl_pool == NULL);
150 	ASSERT(spa->spa_root_vdev == NULL);
151 
152 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
153 
154 	txg_list_destroy(&spa->spa_vdev_txg_list);
155 
156 	list_destroy(&spa->spa_dirty_list);
157 
158 	rw_destroy(&spa->spa_traverse_lock);
159 
160 	for (t = 0; t < ZIO_TYPES; t++) {
161 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
162 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
163 		spa->spa_zio_issue_taskq[t] = NULL;
164 		spa->spa_zio_intr_taskq[t] = NULL;
165 	}
166 
167 	metaslab_class_destroy(spa->spa_normal_class);
168 	spa->spa_normal_class = NULL;
169 
170 	/*
171 	 * If this was part of an import or the open otherwise failed, we may
172 	 * still have errors left in the queues.  Empty them just in case.
173 	 */
174 	spa_errlog_drain(spa);
175 
176 	avl_destroy(&spa->spa_errlist_scrub);
177 	avl_destroy(&spa->spa_errlist_last);
178 
179 	spa->spa_state = POOL_STATE_UNINITIALIZED;
180 }
181 
182 /*
183  * Verify a pool configuration, and construct the vdev tree appropriately.  This
184  * will create all the necessary vdevs in the appropriate layout, with each vdev
185  * in the CLOSED state.  This will prep the pool before open/creation/import.
186  * All vdev validation is done by the vdev_alloc() routine.
187  */
188 static vdev_t *
189 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
190 {
191 	nvlist_t **child;
192 	uint_t c, children;
193 	vdev_t *vd;
194 
195 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
196 		return (NULL);
197 
198 	if (vd->vdev_ops->vdev_op_leaf)
199 		return (vd);
200 
201 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
202 	    &child, &children) != 0) {
203 		vdev_free(vd);
204 		return (NULL);
205 	}
206 
207 	for (c = 0; c < children; c++) {
208 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
209 			vdev_free(vd);
210 			return (NULL);
211 		}
212 	}
213 
214 	return (vd);
215 }
216 
217 /*
218  * Opposite of spa_load().
219  */
220 static void
221 spa_unload(spa_t *spa)
222 {
223 	/*
224 	 * Stop async tasks.
225 	 */
226 	spa_async_suspend(spa);
227 
228 	/*
229 	 * Stop syncing.
230 	 */
231 	if (spa->spa_sync_on) {
232 		txg_sync_stop(spa->spa_dsl_pool);
233 		spa->spa_sync_on = B_FALSE;
234 	}
235 
236 	/*
237 	 * Wait for any outstanding prefetch I/O to complete.
238 	 */
239 	spa_config_enter(spa, RW_WRITER, FTAG);
240 	spa_config_exit(spa, FTAG);
241 
242 	/*
243 	 * Close the dsl pool.
244 	 */
245 	if (spa->spa_dsl_pool) {
246 		dsl_pool_close(spa->spa_dsl_pool);
247 		spa->spa_dsl_pool = NULL;
248 	}
249 
250 	/*
251 	 * Close all vdevs.
252 	 */
253 	if (spa->spa_root_vdev)
254 		vdev_free(spa->spa_root_vdev);
255 	ASSERT(spa->spa_root_vdev == NULL);
256 
257 	spa->spa_async_suspended = 0;
258 }
259 
260 /*
261  * Load an existing storage pool, using the pool's builtin spa_config as a
262  * source of configuration information.
263  */
264 static int
265 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
266 {
267 	int error = 0;
268 	nvlist_t *nvroot = NULL;
269 	vdev_t *rvd;
270 	uberblock_t *ub = &spa->spa_uberblock;
271 	uint64_t config_cache_txg = spa->spa_config_txg;
272 	uint64_t pool_guid;
273 	zio_t *zio;
274 
275 	spa->spa_load_state = state;
276 
277 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
278 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
279 		error = EINVAL;
280 		goto out;
281 	}
282 
283 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
284 	    &spa->spa_config_txg);
285 
286 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
287 	    spa_guid_exists(pool_guid, 0)) {
288 		error = EEXIST;
289 		goto out;
290 	}
291 
292 	/*
293 	 * Parse the configuration into a vdev tree.
294 	 */
295 	spa_config_enter(spa, RW_WRITER, FTAG);
296 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
297 	spa_config_exit(spa, FTAG);
298 
299 	if (rvd == NULL) {
300 		error = EINVAL;
301 		goto out;
302 	}
303 
304 	ASSERT(spa->spa_root_vdev == rvd);
305 	ASSERT(spa_guid(spa) == pool_guid);
306 
307 	/*
308 	 * Try to open all vdevs, loading each label in the process.
309 	 */
310 	if (vdev_open(rvd) != 0) {
311 		error = ENXIO;
312 		goto out;
313 	}
314 
315 	/*
316 	 * Find the best uberblock.
317 	 */
318 	bzero(ub, sizeof (uberblock_t));
319 
320 	zio = zio_root(spa, NULL, NULL,
321 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
322 	vdev_uberblock_load(zio, rvd, ub);
323 	error = zio_wait(zio);
324 
325 	/*
326 	 * If we weren't able to find a single valid uberblock, return failure.
327 	 */
328 	if (ub->ub_txg == 0) {
329 		error = ENXIO;
330 		goto out;
331 	}
332 
333 	/*
334 	 * If the pool is newer than the code, we can't open it.
335 	 */
336 	if (ub->ub_version > UBERBLOCK_VERSION) {
337 		error = ENOTSUP;
338 		goto out;
339 	}
340 
341 	/*
342 	 * If the vdev guid sum doesn't match the uberblock, we have an
343 	 * incomplete configuration.
344 	 */
345 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
346 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
347 		    VDEV_AUX_BAD_GUID_SUM);
348 		error = ENXIO;
349 		goto out;
350 	}
351 
352 	/*
353 	 * Initialize internal SPA structures.
354 	 */
355 	spa->spa_state = POOL_STATE_ACTIVE;
356 	spa->spa_ubsync = spa->spa_uberblock;
357 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
358 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
359 	if (error) {
360 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
361 		    VDEV_AUX_CORRUPT_DATA);
362 		goto out;
363 	}
364 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
365 
366 	if (zap_lookup(spa->spa_meta_objset,
367 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
368 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
369 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
370 		    VDEV_AUX_CORRUPT_DATA);
371 		error = EIO;
372 		goto out;
373 	}
374 
375 	if (!mosconfig) {
376 		dmu_buf_t *db;
377 		char *packed = NULL;
378 		size_t nvsize = 0;
379 		nvlist_t *newconfig = NULL;
380 
381 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
382 		    spa->spa_config_object, FTAG, &db));
383 		nvsize = *(uint64_t *)db->db_data;
384 		dmu_buf_rele(db, FTAG);
385 
386 		packed = kmem_alloc(nvsize, KM_SLEEP);
387 		error = dmu_read(spa->spa_meta_objset,
388 		    spa->spa_config_object, 0, nvsize, packed);
389 		if (error == 0)
390 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
391 		kmem_free(packed, nvsize);
392 
393 		if (error) {
394 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
395 			    VDEV_AUX_CORRUPT_DATA);
396 			error = EIO;
397 			goto out;
398 		}
399 
400 		spa_config_set(spa, newconfig);
401 
402 		spa_unload(spa);
403 		spa_deactivate(spa);
404 		spa_activate(spa);
405 
406 		return (spa_load(spa, newconfig, state, B_TRUE));
407 	}
408 
409 	if (zap_lookup(spa->spa_meta_objset,
410 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
411 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
412 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
413 		    VDEV_AUX_CORRUPT_DATA);
414 		error = EIO;
415 		goto out;
416 	}
417 
418 	/*
419 	 * Load the persistent error log.  If we have an older pool, this will
420 	 * not be present.
421 	 */
422 	error = zap_lookup(spa->spa_meta_objset,
423 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
424 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
425 	if (error != 0 &&error != ENOENT) {
426 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
427 		    VDEV_AUX_CORRUPT_DATA);
428 		error = EIO;
429 		goto out;
430 	}
431 
432 	error = zap_lookup(spa->spa_meta_objset,
433 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
434 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
435 	if (error != 0 && error != ENOENT) {
436 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
437 		    VDEV_AUX_CORRUPT_DATA);
438 		error = EIO;
439 		goto out;
440 	}
441 
442 	/*
443 	 * Load the vdev state for all top level vdevs.  We need to grab the
444 	 * config lock because all label I/O is done with the
445 	 * ZIO_FLAG_CONFIG_HELD flag.
446 	 */
447 	spa_config_enter(spa, RW_READER, FTAG);
448 	error = vdev_load(rvd);
449 	spa_config_exit(spa, FTAG);
450 
451 	if (error)
452 		goto out;
453 
454 	/*
455 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
456 	 */
457 	spa_config_enter(spa, RW_WRITER, FTAG);
458 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
459 	spa_config_exit(spa, FTAG);
460 
461 	/*
462 	 * Check the state of the root vdev.  If it can't be opened, it
463 	 * indicates one or more toplevel vdevs are faulted.
464 	 */
465 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
466 		error = ENXIO;
467 		goto out;
468 	}
469 
470 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
471 		dmu_tx_t *tx;
472 		int need_update = B_FALSE;
473 		int c;
474 
475 		/*
476 		 * Claim log blocks that haven't been committed yet.
477 		 * This must all happen in a single txg.
478 		 */
479 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
480 		    spa_first_txg(spa));
481 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
482 		dmu_tx_commit(tx);
483 
484 		spa->spa_sync_on = B_TRUE;
485 		txg_sync_start(spa->spa_dsl_pool);
486 
487 		/*
488 		 * Wait for all claims to sync.
489 		 */
490 		txg_wait_synced(spa->spa_dsl_pool, 0);
491 
492 		/*
493 		 * If the config cache is stale, or we have uninitialized
494 		 * metaslabs (see spa_vdev_add()), then update the config.
495 		 */
496 		if (config_cache_txg != spa->spa_config_txg ||
497 		    state == SPA_LOAD_IMPORT)
498 			need_update = B_TRUE;
499 
500 		for (c = 0; c < rvd->vdev_children; c++)
501 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
502 				need_update = B_TRUE;
503 
504 		/*
505 		 * Update the config cache asychronously in case we're the
506 		 * root pool, in which case the config cache isn't writable yet.
507 		 */
508 		if (need_update)
509 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
510 	}
511 
512 	error = 0;
513 out:
514 	if (error)
515 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
516 	spa->spa_load_state = SPA_LOAD_NONE;
517 	spa->spa_ena = 0;
518 
519 	return (error);
520 }
521 
522 /*
523  * Pool Open/Import
524  *
525  * The import case is identical to an open except that the configuration is sent
526  * down from userland, instead of grabbed from the configuration cache.  For the
527  * case of an open, the pool configuration will exist in the
528  * POOL_STATE_UNITIALIZED state.
529  *
530  * The stats information (gen/count/ustats) is used to gather vdev statistics at
531  * the same time open the pool, without having to keep around the spa_t in some
532  * ambiguous state.
533  */
534 static int
535 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
536 {
537 	spa_t *spa;
538 	int error;
539 	int loaded = B_FALSE;
540 	int locked = B_FALSE;
541 
542 	*spapp = NULL;
543 
544 	/*
545 	 * As disgusting as this is, we need to support recursive calls to this
546 	 * function because dsl_dir_open() is called during spa_load(), and ends
547 	 * up calling spa_open() again.  The real fix is to figure out how to
548 	 * avoid dsl_dir_open() calling this in the first place.
549 	 */
550 	if (mutex_owner(&spa_namespace_lock) != curthread) {
551 		mutex_enter(&spa_namespace_lock);
552 		locked = B_TRUE;
553 	}
554 
555 	if ((spa = spa_lookup(pool)) == NULL) {
556 		if (locked)
557 			mutex_exit(&spa_namespace_lock);
558 		return (ENOENT);
559 	}
560 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
561 
562 		spa_activate(spa);
563 
564 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
565 
566 		if (error == EBADF) {
567 			/*
568 			 * If vdev_load() returns EBADF, it indicates that one
569 			 * of the vdevs indicates that the pool has been
570 			 * exported or destroyed.  If this is the case, the
571 			 * config cache is out of sync and we should remove the
572 			 * pool from the namespace.
573 			 */
574 			spa_unload(spa);
575 			spa_deactivate(spa);
576 			spa_remove(spa);
577 			spa_config_sync();
578 			if (locked)
579 				mutex_exit(&spa_namespace_lock);
580 			return (ENOENT);
581 		}
582 
583 		if (error) {
584 			/*
585 			 * We can't open the pool, but we still have useful
586 			 * information: the state of each vdev after the
587 			 * attempted vdev_open().  Return this to the user.
588 			 */
589 			if (config != NULL && spa->spa_root_vdev != NULL) {
590 				spa_config_enter(spa, RW_READER, FTAG);
591 				*config = spa_config_generate(spa, NULL, -1ULL,
592 				    B_TRUE);
593 				spa_config_exit(spa, FTAG);
594 			}
595 			spa_unload(spa);
596 			spa_deactivate(spa);
597 			spa->spa_last_open_failed = B_TRUE;
598 			if (locked)
599 				mutex_exit(&spa_namespace_lock);
600 			*spapp = NULL;
601 			return (error);
602 		} else {
603 			zfs_post_ok(spa, NULL);
604 			spa->spa_last_open_failed = B_FALSE;
605 		}
606 
607 		loaded = B_TRUE;
608 	}
609 
610 	spa_open_ref(spa, tag);
611 	if (locked)
612 		mutex_exit(&spa_namespace_lock);
613 
614 	*spapp = spa;
615 
616 	if (config != NULL) {
617 		spa_config_enter(spa, RW_READER, FTAG);
618 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
619 		spa_config_exit(spa, FTAG);
620 	}
621 
622 	/*
623 	 * If we just loaded the pool, resilver anything that's out of date.
624 	 */
625 	if (loaded && (spa_mode & FWRITE))
626 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
627 
628 	return (0);
629 }
630 
631 int
632 spa_open(const char *name, spa_t **spapp, void *tag)
633 {
634 	return (spa_open_common(name, spapp, tag, NULL));
635 }
636 
637 /*
638  * Lookup the given spa_t, incrementing the inject count in the process,
639  * preventing it from being exported or destroyed.
640  */
641 spa_t *
642 spa_inject_addref(char *name)
643 {
644 	spa_t *spa;
645 
646 	mutex_enter(&spa_namespace_lock);
647 	if ((spa = spa_lookup(name)) == NULL) {
648 		mutex_exit(&spa_namespace_lock);
649 		return (NULL);
650 	}
651 	spa->spa_inject_ref++;
652 	mutex_exit(&spa_namespace_lock);
653 
654 	return (spa);
655 }
656 
657 void
658 spa_inject_delref(spa_t *spa)
659 {
660 	mutex_enter(&spa_namespace_lock);
661 	spa->spa_inject_ref--;
662 	mutex_exit(&spa_namespace_lock);
663 }
664 
665 int
666 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
667 {
668 	int error;
669 	spa_t *spa;
670 
671 	*config = NULL;
672 	error = spa_open_common(name, &spa, FTAG, config);
673 
674 	if (spa && *config != NULL)
675 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
676 		    spa_get_errlog_size(spa)) == 0);
677 
678 	/*
679 	 * We want to get the alternate root even for faulted pools, so we cheat
680 	 * and call spa_lookup() directly.
681 	 */
682 	if (altroot) {
683 		if (spa == NULL) {
684 			mutex_enter(&spa_namespace_lock);
685 			spa = spa_lookup(name);
686 			if (spa)
687 				spa_altroot(spa, altroot, buflen);
688 			else
689 				altroot[0] = '\0';
690 			spa = NULL;
691 			mutex_exit(&spa_namespace_lock);
692 		} else {
693 			spa_altroot(spa, altroot, buflen);
694 		}
695 	}
696 
697 	if (spa != NULL)
698 		spa_close(spa, FTAG);
699 
700 	return (error);
701 }
702 
703 /*
704  * Pool Creation
705  */
706 int
707 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
708 {
709 	spa_t *spa;
710 	vdev_t *rvd;
711 	dsl_pool_t *dp;
712 	dmu_tx_t *tx;
713 	int c, error;
714 	uint64_t txg = TXG_INITIAL;
715 
716 	/*
717 	 * If this pool already exists, return failure.
718 	 */
719 	mutex_enter(&spa_namespace_lock);
720 	if (spa_lookup(pool) != NULL) {
721 		mutex_exit(&spa_namespace_lock);
722 		return (EEXIST);
723 	}
724 
725 	/*
726 	 * Allocate a new spa_t structure.
727 	 */
728 	spa = spa_add(pool, altroot);
729 	spa_activate(spa);
730 
731 	spa->spa_uberblock.ub_txg = txg - 1;
732 	spa->spa_ubsync = spa->spa_uberblock;
733 
734 	/*
735 	 * Create the root vdev.
736 	 */
737 	spa_config_enter(spa, RW_WRITER, FTAG);
738 
739 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
740 
741 	ASSERT(spa->spa_root_vdev == rvd);
742 
743 	if (rvd == NULL) {
744 		error = EINVAL;
745 	} else {
746 		if ((error = vdev_create(rvd, txg)) == 0) {
747 			for (c = 0; c < rvd->vdev_children; c++)
748 				vdev_init(rvd->vdev_child[c], txg);
749 			vdev_config_dirty(rvd);
750 		}
751 	}
752 
753 	spa_config_exit(spa, FTAG);
754 
755 	if (error) {
756 		spa_unload(spa);
757 		spa_deactivate(spa);
758 		spa_remove(spa);
759 		mutex_exit(&spa_namespace_lock);
760 		return (error);
761 	}
762 
763 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
764 	spa->spa_meta_objset = dp->dp_meta_objset;
765 
766 	tx = dmu_tx_create_assigned(dp, txg);
767 
768 	/*
769 	 * Create the pool config object.
770 	 */
771 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
772 	    DMU_OT_PACKED_NVLIST, 1 << 14,
773 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
774 
775 	if (zap_add(spa->spa_meta_objset,
776 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
777 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
778 		cmn_err(CE_PANIC, "failed to add pool config");
779 	}
780 
781 	/*
782 	 * Create the deferred-free bplist object.  Turn off compression
783 	 * because sync-to-convergence takes longer if the blocksize
784 	 * keeps changing.
785 	 */
786 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
787 	    1 << 14, tx);
788 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
789 	    ZIO_COMPRESS_OFF, tx);
790 
791 	if (zap_add(spa->spa_meta_objset,
792 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
793 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
794 		cmn_err(CE_PANIC, "failed to add bplist");
795 	}
796 
797 	dmu_tx_commit(tx);
798 
799 	spa->spa_sync_on = B_TRUE;
800 	txg_sync_start(spa->spa_dsl_pool);
801 
802 	/*
803 	 * We explicitly wait for the first transaction to complete so that our
804 	 * bean counters are appropriately updated.
805 	 */
806 	txg_wait_synced(spa->spa_dsl_pool, txg);
807 
808 	spa_config_sync();
809 
810 	mutex_exit(&spa_namespace_lock);
811 
812 	return (0);
813 }
814 
815 /*
816  * Import the given pool into the system.  We set up the necessary spa_t and
817  * then call spa_load() to do the dirty work.
818  */
819 int
820 spa_import(const char *pool, nvlist_t *config, const char *altroot)
821 {
822 	spa_t *spa;
823 	int error;
824 
825 	if (!(spa_mode & FWRITE))
826 		return (EROFS);
827 
828 	/*
829 	 * If a pool with this name exists, return failure.
830 	 */
831 	mutex_enter(&spa_namespace_lock);
832 	if (spa_lookup(pool) != NULL) {
833 		mutex_exit(&spa_namespace_lock);
834 		return (EEXIST);
835 	}
836 
837 	/*
838 	 * Create and initialize the spa structure.
839 	 */
840 	spa = spa_add(pool, altroot);
841 	spa_activate(spa);
842 
843 	/*
844 	 * Pass off the heavy lifting to spa_load().
845 	 * Pass TRUE for mosconfig because the user-supplied config
846 	 * is actually the one to trust when doing an import.
847 	 */
848 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
849 
850 	if (error) {
851 		spa_unload(spa);
852 		spa_deactivate(spa);
853 		spa_remove(spa);
854 		mutex_exit(&spa_namespace_lock);
855 		return (error);
856 	}
857 
858 	/*
859 	 * Update the config cache to include the newly-imported pool.
860 	 */
861 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
862 
863 	mutex_exit(&spa_namespace_lock);
864 
865 	/*
866 	 * Resilver anything that's out of date.
867 	 */
868 	if (spa_mode & FWRITE)
869 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
870 
871 	return (0);
872 }
873 
874 /*
875  * This (illegal) pool name is used when temporarily importing a spa_t in order
876  * to get the vdev stats associated with the imported devices.
877  */
878 #define	TRYIMPORT_NAME	"$import"
879 
880 nvlist_t *
881 spa_tryimport(nvlist_t *tryconfig)
882 {
883 	nvlist_t *config = NULL;
884 	char *poolname;
885 	spa_t *spa;
886 	uint64_t state;
887 
888 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
889 		return (NULL);
890 
891 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
892 		return (NULL);
893 
894 	/*
895 	 * Create and initialize the spa structure.
896 	 */
897 	mutex_enter(&spa_namespace_lock);
898 	spa = spa_add(TRYIMPORT_NAME, NULL);
899 	spa_activate(spa);
900 
901 	/*
902 	 * Pass off the heavy lifting to spa_load().
903 	 * Pass TRUE for mosconfig because the user-supplied config
904 	 * is actually the one to trust when doing an import.
905 	 */
906 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
907 
908 	/*
909 	 * If 'tryconfig' was at least parsable, return the current config.
910 	 */
911 	if (spa->spa_root_vdev != NULL) {
912 		spa_config_enter(spa, RW_READER, FTAG);
913 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
914 		spa_config_exit(spa, FTAG);
915 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
916 		    poolname) == 0);
917 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
918 		    state) == 0);
919 	}
920 
921 	spa_unload(spa);
922 	spa_deactivate(spa);
923 	spa_remove(spa);
924 	mutex_exit(&spa_namespace_lock);
925 
926 	return (config);
927 }
928 
929 /*
930  * Pool export/destroy
931  *
932  * The act of destroying or exporting a pool is very simple.  We make sure there
933  * is no more pending I/O and any references to the pool are gone.  Then, we
934  * update the pool state and sync all the labels to disk, removing the
935  * configuration from the cache afterwards.
936  */
937 static int
938 spa_export_common(char *pool, int new_state)
939 {
940 	spa_t *spa;
941 
942 	if (!(spa_mode & FWRITE))
943 		return (EROFS);
944 
945 	mutex_enter(&spa_namespace_lock);
946 	if ((spa = spa_lookup(pool)) == NULL) {
947 		mutex_exit(&spa_namespace_lock);
948 		return (ENOENT);
949 	}
950 
951 	/*
952 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
953 	 * reacquire the namespace lock, and see if we can export.
954 	 */
955 	spa_open_ref(spa, FTAG);
956 	mutex_exit(&spa_namespace_lock);
957 	spa_async_suspend(spa);
958 	mutex_enter(&spa_namespace_lock);
959 	spa_close(spa, FTAG);
960 
961 	/*
962 	 * The pool will be in core if it's openable,
963 	 * in which case we can modify its state.
964 	 */
965 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
966 		/*
967 		 * Objsets may be open only because they're dirty, so we
968 		 * have to force it to sync before checking spa_refcnt.
969 		 */
970 		spa_scrub_suspend(spa);
971 		txg_wait_synced(spa->spa_dsl_pool, 0);
972 
973 		/*
974 		 * A pool cannot be exported or destroyed if there are active
975 		 * references.  If we are resetting a pool, allow references by
976 		 * fault injection handlers.
977 		 */
978 		if (!spa_refcount_zero(spa) ||
979 		    (spa->spa_inject_ref != 0 &&
980 		    new_state != POOL_STATE_UNINITIALIZED)) {
981 			spa_scrub_resume(spa);
982 			spa_async_resume(spa);
983 			mutex_exit(&spa_namespace_lock);
984 			return (EBUSY);
985 		}
986 
987 		spa_scrub_resume(spa);
988 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
989 
990 		/*
991 		 * We want this to be reflected on every label,
992 		 * so mark them all dirty.  spa_unload() will do the
993 		 * final sync that pushes these changes out.
994 		 */
995 		if (new_state != POOL_STATE_UNINITIALIZED) {
996 			spa_config_enter(spa, RW_WRITER, FTAG);
997 			spa->spa_state = new_state;
998 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
999 			vdev_config_dirty(spa->spa_root_vdev);
1000 			spa_config_exit(spa, FTAG);
1001 		}
1002 	}
1003 
1004 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1005 		spa_unload(spa);
1006 		spa_deactivate(spa);
1007 	}
1008 
1009 	if (new_state != POOL_STATE_UNINITIALIZED) {
1010 		spa_remove(spa);
1011 		spa_config_sync();
1012 	}
1013 	mutex_exit(&spa_namespace_lock);
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Destroy a storage pool.
1020  */
1021 int
1022 spa_destroy(char *pool)
1023 {
1024 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
1025 }
1026 
1027 /*
1028  * Export a storage pool.
1029  */
1030 int
1031 spa_export(char *pool)
1032 {
1033 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
1034 }
1035 
1036 /*
1037  * Similar to spa_export(), this unloads the spa_t without actually removing it
1038  * from the namespace in any way.
1039  */
1040 int
1041 spa_reset(char *pool)
1042 {
1043 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED));
1044 }
1045 
1046 
1047 /*
1048  * ==========================================================================
1049  * Device manipulation
1050  * ==========================================================================
1051  */
1052 
1053 /*
1054  * Add capacity to a storage pool.
1055  */
1056 int
1057 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1058 {
1059 	uint64_t txg;
1060 	int c, error;
1061 	vdev_t *rvd = spa->spa_root_vdev;
1062 	vdev_t *vd, *tvd;
1063 
1064 	txg = spa_vdev_enter(spa);
1065 
1066 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1067 
1068 	if (vd == NULL)
1069 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1070 
1071 	if ((error = vdev_create(vd, txg)) != 0)
1072 		return (spa_vdev_exit(spa, vd, txg, error));
1073 
1074 	/*
1075 	 * Transfer each new top-level vdev from vd to rvd.
1076 	 */
1077 	for (c = 0; c < vd->vdev_children; c++) {
1078 		tvd = vd->vdev_child[c];
1079 		vdev_remove_child(vd, tvd);
1080 		tvd->vdev_id = rvd->vdev_children;
1081 		vdev_add_child(rvd, tvd);
1082 		vdev_config_dirty(tvd);
1083 	}
1084 
1085 	/*
1086 	 * We have to be careful when adding new vdevs to an existing pool.
1087 	 * If other threads start allocating from these vdevs before we
1088 	 * sync the config cache, and we lose power, then upon reboot we may
1089 	 * fail to open the pool because there are DVAs that the config cache
1090 	 * can't translate.  Therefore, we first add the vdevs without
1091 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1092 	 * and then let spa_config_update() initialize the new metaslabs.
1093 	 *
1094 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1095 	 * if we lose power at any point in this sequence, the remaining
1096 	 * steps will be completed the next time we load the pool.
1097 	 */
1098 	(void) spa_vdev_exit(spa, vd, txg, 0);
1099 
1100 	mutex_enter(&spa_namespace_lock);
1101 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1102 	mutex_exit(&spa_namespace_lock);
1103 
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Attach a device to a mirror.  The arguments are the path to any device
1109  * in the mirror, and the nvroot for the new device.  If the path specifies
1110  * a device that is not mirrored, we automatically insert the mirror vdev.
1111  *
1112  * If 'replacing' is specified, the new device is intended to replace the
1113  * existing device; in this case the two devices are made into their own
1114  * mirror using the 'replacing' vdev, which is functionally idendical to
1115  * the mirror vdev (it actually reuses all the same ops) but has a few
1116  * extra rules: you can't attach to it after it's been created, and upon
1117  * completion of resilvering, the first disk (the one being replaced)
1118  * is automatically detached.
1119  */
1120 int
1121 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1122 {
1123 	uint64_t txg, open_txg;
1124 	int error;
1125 	vdev_t *rvd = spa->spa_root_vdev;
1126 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1127 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1128 
1129 	txg = spa_vdev_enter(spa);
1130 
1131 	oldvd = vdev_lookup_by_guid(rvd, guid);
1132 
1133 	if (oldvd == NULL)
1134 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1135 
1136 	if (!oldvd->vdev_ops->vdev_op_leaf)
1137 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1138 
1139 	pvd = oldvd->vdev_parent;
1140 
1141 	/*
1142 	 * The parent must be a mirror or the root, unless we're replacing;
1143 	 * in that case, the parent can be anything but another replacing vdev.
1144 	 */
1145 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1146 	    pvd->vdev_ops != &vdev_root_ops &&
1147 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1148 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1149 
1150 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1151 
1152 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1153 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1154 
1155 	newvd = newrootvd->vdev_child[0];
1156 
1157 	if (!newvd->vdev_ops->vdev_op_leaf)
1158 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1159 
1160 	if ((error = vdev_create(newrootvd, txg)) != 0)
1161 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1162 
1163 	/*
1164 	 * Compare the new device size with the replaceable/attachable
1165 	 * device size.
1166 	 */
1167 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1168 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1169 
1170 	/*
1171 	 * The new device cannot have a higher alignment requirement
1172 	 * than the top-level vdev.
1173 	 */
1174 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1175 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1176 
1177 	/*
1178 	 * If this is an in-place replacement, update oldvd's path and devid
1179 	 * to make it distinguishable from newvd, and unopenable from now on.
1180 	 */
1181 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1182 		spa_strfree(oldvd->vdev_path);
1183 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1184 		    KM_SLEEP);
1185 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1186 		    newvd->vdev_path, "old");
1187 		if (oldvd->vdev_devid != NULL) {
1188 			spa_strfree(oldvd->vdev_devid);
1189 			oldvd->vdev_devid = NULL;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * If the parent is not a mirror, or if we're replacing,
1195 	 * insert the new mirror/replacing vdev above oldvd.
1196 	 */
1197 	if (pvd->vdev_ops != pvops)
1198 		pvd = vdev_add_parent(oldvd, pvops);
1199 
1200 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1201 	ASSERT(pvd->vdev_ops == pvops);
1202 	ASSERT(oldvd->vdev_parent == pvd);
1203 
1204 	/*
1205 	 * Extract the new device from its root and add it to pvd.
1206 	 */
1207 	vdev_remove_child(newrootvd, newvd);
1208 	newvd->vdev_id = pvd->vdev_children;
1209 	vdev_add_child(pvd, newvd);
1210 
1211 	/*
1212 	 * If newvd is smaller than oldvd, but larger than its rsize,
1213 	 * the addition of newvd may have decreased our parent's asize.
1214 	 */
1215 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1216 
1217 	tvd = newvd->vdev_top;
1218 	ASSERT(pvd->vdev_top == tvd);
1219 	ASSERT(tvd->vdev_parent == rvd);
1220 
1221 	vdev_config_dirty(tvd);
1222 
1223 	/*
1224 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1225 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1226 	 */
1227 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1228 
1229 	mutex_enter(&newvd->vdev_dtl_lock);
1230 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1231 	    open_txg - TXG_INITIAL + 1);
1232 	mutex_exit(&newvd->vdev_dtl_lock);
1233 
1234 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1235 
1236 	/*
1237 	 * Mark newvd's DTL dirty in this txg.
1238 	 */
1239 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1240 
1241 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1242 
1243 	/*
1244 	 * Kick off a resilver to update newvd.
1245 	 */
1246 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1247 
1248 	return (0);
1249 }
1250 
1251 /*
1252  * Detach a device from a mirror or replacing vdev.
1253  * If 'replace_done' is specified, only detach if the parent
1254  * is a replacing vdev.
1255  */
1256 int
1257 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1258 {
1259 	uint64_t txg;
1260 	int c, t, error;
1261 	vdev_t *rvd = spa->spa_root_vdev;
1262 	vdev_t *vd, *pvd, *cvd, *tvd;
1263 
1264 	txg = spa_vdev_enter(spa);
1265 
1266 	vd = vdev_lookup_by_guid(rvd, guid);
1267 
1268 	if (vd == NULL)
1269 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1270 
1271 	if (!vd->vdev_ops->vdev_op_leaf)
1272 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1273 
1274 	pvd = vd->vdev_parent;
1275 
1276 	/*
1277 	 * If replace_done is specified, only remove this device if it's
1278 	 * the first child of a replacing vdev.
1279 	 */
1280 	if (replace_done &&
1281 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1282 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1283 
1284 	/*
1285 	 * Only mirror and replacing vdevs support detach.
1286 	 */
1287 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1288 	    pvd->vdev_ops != &vdev_mirror_ops)
1289 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1290 
1291 	/*
1292 	 * If there's only one replica, you can't detach it.
1293 	 */
1294 	if (pvd->vdev_children <= 1)
1295 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1296 
1297 	/*
1298 	 * If all siblings have non-empty DTLs, this device may have the only
1299 	 * valid copy of the data, which means we cannot safely detach it.
1300 	 *
1301 	 * XXX -- as in the vdev_offline() case, we really want a more
1302 	 * precise DTL check.
1303 	 */
1304 	for (c = 0; c < pvd->vdev_children; c++) {
1305 		uint64_t dirty;
1306 
1307 		cvd = pvd->vdev_child[c];
1308 		if (cvd == vd)
1309 			continue;
1310 		if (vdev_is_dead(cvd))
1311 			continue;
1312 		mutex_enter(&cvd->vdev_dtl_lock);
1313 		dirty = cvd->vdev_dtl_map.sm_space |
1314 		    cvd->vdev_dtl_scrub.sm_space;
1315 		mutex_exit(&cvd->vdev_dtl_lock);
1316 		if (!dirty)
1317 			break;
1318 	}
1319 	if (c == pvd->vdev_children)
1320 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1321 
1322 	/*
1323 	 * Erase the disk labels so the disk can be used for other things.
1324 	 * This must be done after all other error cases are handled,
1325 	 * but before we disembowel vd (so we can still do I/O to it).
1326 	 * But if we can't do it, don't treat the error as fatal --
1327 	 * it may be that the unwritability of the disk is the reason
1328 	 * it's being detached!
1329 	 */
1330 	error = vdev_label_init(vd, 0);
1331 	if (error)
1332 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1333 
1334 	/*
1335 	 * Remove vd from its parent and compact the parent's children.
1336 	 */
1337 	vdev_remove_child(pvd, vd);
1338 	vdev_compact_children(pvd);
1339 
1340 	/*
1341 	 * Remember one of the remaining children so we can get tvd below.
1342 	 */
1343 	cvd = pvd->vdev_child[0];
1344 
1345 	/*
1346 	 * If the parent mirror/replacing vdev only has one child,
1347 	 * the parent is no longer needed.  Remove it from the tree.
1348 	 */
1349 	if (pvd->vdev_children == 1)
1350 		vdev_remove_parent(cvd);
1351 
1352 	/*
1353 	 * We don't set tvd until now because the parent we just removed
1354 	 * may have been the previous top-level vdev.
1355 	 */
1356 	tvd = cvd->vdev_top;
1357 	ASSERT(tvd->vdev_parent == rvd);
1358 
1359 	/*
1360 	 * Reopen this top-level vdev to reassess health after detach.
1361 	 */
1362 	vdev_reopen(tvd);
1363 
1364 	/*
1365 	 * If the device we just detached was smaller than the others,
1366 	 * it may be possible to add metaslabs (i.e. grow the pool).
1367 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1368 	 * are already in core, so there's nothing to read from disk.
1369 	 */
1370 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1371 
1372 	vdev_config_dirty(tvd);
1373 
1374 	/*
1375 	 * Mark vd's DTL as dirty in this txg.
1376 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1377 	 * and free vd's DTL object in syncing context.
1378 	 * But first make sure we're not on any *other* txg's DTL list,
1379 	 * to prevent vd from being accessed after it's freed.
1380 	 */
1381 	for (t = 0; t < TXG_SIZE; t++)
1382 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1383 	vd->vdev_detached = B_TRUE;
1384 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1385 
1386 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1387 
1388 	return (spa_vdev_exit(spa, vd, txg, 0));
1389 }
1390 
1391 /*
1392  * Find any device that's done replacing, so we can detach it.
1393  */
1394 static vdev_t *
1395 spa_vdev_replace_done_hunt(vdev_t *vd)
1396 {
1397 	vdev_t *newvd, *oldvd;
1398 	int c;
1399 
1400 	for (c = 0; c < vd->vdev_children; c++) {
1401 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1402 		if (oldvd != NULL)
1403 			return (oldvd);
1404 	}
1405 
1406 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1407 		oldvd = vd->vdev_child[0];
1408 		newvd = vd->vdev_child[1];
1409 
1410 		mutex_enter(&newvd->vdev_dtl_lock);
1411 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1412 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1413 			mutex_exit(&newvd->vdev_dtl_lock);
1414 			return (oldvd);
1415 		}
1416 		mutex_exit(&newvd->vdev_dtl_lock);
1417 	}
1418 
1419 	return (NULL);
1420 }
1421 
1422 static void
1423 spa_vdev_replace_done(spa_t *spa)
1424 {
1425 	vdev_t *vd;
1426 	uint64_t guid;
1427 
1428 	spa_config_enter(spa, RW_READER, FTAG);
1429 
1430 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1431 		guid = vd->vdev_guid;
1432 		spa_config_exit(spa, FTAG);
1433 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1434 			return;
1435 		spa_config_enter(spa, RW_READER, FTAG);
1436 	}
1437 
1438 	spa_config_exit(spa, FTAG);
1439 }
1440 
1441 /*
1442  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1443  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1444  */
1445 int
1446 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1447 {
1448 	vdev_t *rvd, *vd;
1449 	uint64_t txg;
1450 
1451 	rvd = spa->spa_root_vdev;
1452 
1453 	txg = spa_vdev_enter(spa);
1454 
1455 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1456 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1457 
1458 	if (!vd->vdev_ops->vdev_op_leaf)
1459 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1460 
1461 	spa_strfree(vd->vdev_path);
1462 	vd->vdev_path = spa_strdup(newpath);
1463 
1464 	vdev_config_dirty(vd->vdev_top);
1465 
1466 	return (spa_vdev_exit(spa, NULL, txg, 0));
1467 }
1468 
1469 /*
1470  * ==========================================================================
1471  * SPA Scrubbing
1472  * ==========================================================================
1473  */
1474 
1475 void
1476 spa_scrub_throttle(spa_t *spa, int direction)
1477 {
1478 	mutex_enter(&spa->spa_scrub_lock);
1479 	spa->spa_scrub_throttled += direction;
1480 	ASSERT(spa->spa_scrub_throttled >= 0);
1481 	if (spa->spa_scrub_throttled == 0)
1482 		cv_broadcast(&spa->spa_scrub_io_cv);
1483 	mutex_exit(&spa->spa_scrub_lock);
1484 }
1485 
1486 static void
1487 spa_scrub_io_done(zio_t *zio)
1488 {
1489 	spa_t *spa = zio->io_spa;
1490 
1491 	zio_buf_free(zio->io_data, zio->io_size);
1492 
1493 	mutex_enter(&spa->spa_scrub_lock);
1494 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1495 		vdev_t *vd = zio->io_vd;
1496 		spa->spa_scrub_errors++;
1497 		mutex_enter(&vd->vdev_stat_lock);
1498 		vd->vdev_stat.vs_scrub_errors++;
1499 		mutex_exit(&vd->vdev_stat_lock);
1500 	}
1501 	if (--spa->spa_scrub_inflight == 0) {
1502 		cv_broadcast(&spa->spa_scrub_io_cv);
1503 		ASSERT(spa->spa_scrub_throttled == 0);
1504 	}
1505 	mutex_exit(&spa->spa_scrub_lock);
1506 }
1507 
1508 static void
1509 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1510     zbookmark_t *zb)
1511 {
1512 	size_t size = BP_GET_LSIZE(bp);
1513 	void *data = zio_buf_alloc(size);
1514 
1515 	mutex_enter(&spa->spa_scrub_lock);
1516 	spa->spa_scrub_inflight++;
1517 	mutex_exit(&spa->spa_scrub_lock);
1518 
1519 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1520 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1521 
1522 	flags |= ZIO_FLAG_CANFAIL;
1523 
1524 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1525 	    spa_scrub_io_done, NULL, priority, flags, zb));
1526 }
1527 
1528 /* ARGSUSED */
1529 static int
1530 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1531 {
1532 	blkptr_t *bp = &bc->bc_blkptr;
1533 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1534 
1535 	if (bc->bc_errno || vd == NULL) {
1536 		/*
1537 		 * We can't scrub this block, but we can continue to scrub
1538 		 * the rest of the pool.  Note the error and move along.
1539 		 */
1540 		mutex_enter(&spa->spa_scrub_lock);
1541 		spa->spa_scrub_errors++;
1542 		mutex_exit(&spa->spa_scrub_lock);
1543 
1544 		if (vd != NULL) {
1545 			mutex_enter(&vd->vdev_stat_lock);
1546 			vd->vdev_stat.vs_scrub_errors++;
1547 			mutex_exit(&vd->vdev_stat_lock);
1548 		}
1549 
1550 		return (ERESTART);
1551 	}
1552 
1553 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1554 
1555 	/*
1556 	 * Keep track of how much data we've examined so that
1557 	 * zpool(1M) status can make useful progress reports.
1558 	 */
1559 	mutex_enter(&vd->vdev_stat_lock);
1560 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1561 	mutex_exit(&vd->vdev_stat_lock);
1562 
1563 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1564 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1565 			/*
1566 			 * Gang members may be spread across multiple vdevs,
1567 			 * so the best we can do is look at the pool-wide DTL.
1568 			 * XXX -- it would be better to change our allocation
1569 			 * policy to ensure that this can't happen.
1570 			 */
1571 			vd = spa->spa_root_vdev;
1572 		}
1573 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1574 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1575 			    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1576 		}
1577 	} else {
1578 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1579 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1580 	}
1581 
1582 	return (0);
1583 }
1584 
1585 static void
1586 spa_scrub_thread(spa_t *spa)
1587 {
1588 	callb_cpr_t cprinfo;
1589 	traverse_handle_t *th = spa->spa_scrub_th;
1590 	vdev_t *rvd = spa->spa_root_vdev;
1591 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1592 	int error = 0;
1593 	boolean_t complete;
1594 
1595 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1596 
1597 	/*
1598 	 * If we're restarting due to a snapshot create/delete,
1599 	 * wait for that to complete.
1600 	 */
1601 	txg_wait_synced(spa_get_dsl(spa), 0);
1602 
1603 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1604 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1605 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1606 
1607 	spa_config_enter(spa, RW_WRITER, FTAG);
1608 	vdev_reopen(rvd);		/* purge all vdev caches */
1609 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1610 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1611 	spa_config_exit(spa, FTAG);
1612 
1613 	mutex_enter(&spa->spa_scrub_lock);
1614 	spa->spa_scrub_errors = 0;
1615 	spa->spa_scrub_active = 1;
1616 	ASSERT(spa->spa_scrub_inflight == 0);
1617 	ASSERT(spa->spa_scrub_throttled == 0);
1618 
1619 	while (!spa->spa_scrub_stop) {
1620 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1621 		while (spa->spa_scrub_suspended) {
1622 			spa->spa_scrub_active = 0;
1623 			cv_broadcast(&spa->spa_scrub_cv);
1624 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1625 			spa->spa_scrub_active = 1;
1626 		}
1627 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1628 
1629 		if (spa->spa_scrub_restart_txg != 0)
1630 			break;
1631 
1632 		mutex_exit(&spa->spa_scrub_lock);
1633 		error = traverse_more(th);
1634 		mutex_enter(&spa->spa_scrub_lock);
1635 		if (error != EAGAIN)
1636 			break;
1637 
1638 		while (spa->spa_scrub_throttled > 0)
1639 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1640 	}
1641 
1642 	while (spa->spa_scrub_inflight)
1643 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1644 
1645 	spa->spa_scrub_active = 0;
1646 	cv_broadcast(&spa->spa_scrub_cv);
1647 
1648 	mutex_exit(&spa->spa_scrub_lock);
1649 
1650 	spa_config_enter(spa, RW_WRITER, FTAG);
1651 
1652 	mutex_enter(&spa->spa_scrub_lock);
1653 
1654 	/*
1655 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
1656 	 * AND the spa config lock to synchronize with any config changes
1657 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
1658 	 */
1659 	if (spa->spa_scrub_restart_txg != 0)
1660 		error = ERESTART;
1661 
1662 	if (spa->spa_scrub_stop)
1663 		error = EINTR;
1664 
1665 	/*
1666 	 * Even if there were uncorrectable errors, we consider the scrub
1667 	 * completed.  The downside is that if there is a transient error during
1668 	 * a resilver, we won't resilver the data properly to the target.  But
1669 	 * if the damage is permanent (more likely) we will resilver forever,
1670 	 * which isn't really acceptable.  Since there is enough information for
1671 	 * the user to know what has failed and why, this seems like a more
1672 	 * tractable approach.
1673 	 */
1674 	complete = (error == 0);
1675 
1676 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1677 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1678 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1679 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1680 
1681 	mutex_exit(&spa->spa_scrub_lock);
1682 
1683 	/*
1684 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1685 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1686 	 */
1687 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1688 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1689 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1690 	spa_errlog_rotate(spa);
1691 
1692 	spa_config_exit(spa, FTAG);
1693 
1694 	mutex_enter(&spa->spa_scrub_lock);
1695 
1696 	/*
1697 	 * We may have finished replacing a device.
1698 	 * Let the async thread assess this and handle the detach.
1699 	 */
1700 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1701 
1702 	/*
1703 	 * If we were told to restart, our final act is to start a new scrub.
1704 	 */
1705 	if (error == ERESTART)
1706 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1707 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1708 
1709 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1710 	spa->spa_scrub_active = 0;
1711 	spa->spa_scrub_thread = NULL;
1712 	cv_broadcast(&spa->spa_scrub_cv);
1713 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1714 	thread_exit();
1715 }
1716 
1717 void
1718 spa_scrub_suspend(spa_t *spa)
1719 {
1720 	mutex_enter(&spa->spa_scrub_lock);
1721 	spa->spa_scrub_suspended++;
1722 	while (spa->spa_scrub_active) {
1723 		cv_broadcast(&spa->spa_scrub_cv);
1724 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1725 	}
1726 	while (spa->spa_scrub_inflight)
1727 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1728 	mutex_exit(&spa->spa_scrub_lock);
1729 }
1730 
1731 void
1732 spa_scrub_resume(spa_t *spa)
1733 {
1734 	mutex_enter(&spa->spa_scrub_lock);
1735 	ASSERT(spa->spa_scrub_suspended != 0);
1736 	if (--spa->spa_scrub_suspended == 0)
1737 		cv_broadcast(&spa->spa_scrub_cv);
1738 	mutex_exit(&spa->spa_scrub_lock);
1739 }
1740 
1741 void
1742 spa_scrub_restart(spa_t *spa, uint64_t txg)
1743 {
1744 	/*
1745 	 * Something happened (e.g. snapshot create/delete) that means
1746 	 * we must restart any in-progress scrubs.  The itinerary will
1747 	 * fix this properly.
1748 	 */
1749 	mutex_enter(&spa->spa_scrub_lock);
1750 	spa->spa_scrub_restart_txg = txg;
1751 	mutex_exit(&spa->spa_scrub_lock);
1752 }
1753 
1754 int
1755 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1756 {
1757 	space_seg_t *ss;
1758 	uint64_t mintxg, maxtxg;
1759 	vdev_t *rvd = spa->spa_root_vdev;
1760 
1761 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1762 		return (ENOTSUP);
1763 
1764 	mutex_enter(&spa->spa_scrub_lock);
1765 
1766 	/*
1767 	 * If there's a scrub or resilver already in progress, stop it.
1768 	 */
1769 	while (spa->spa_scrub_thread != NULL) {
1770 		/*
1771 		 * Don't stop a resilver unless forced.
1772 		 */
1773 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1774 			mutex_exit(&spa->spa_scrub_lock);
1775 			return (EBUSY);
1776 		}
1777 		spa->spa_scrub_stop = 1;
1778 		cv_broadcast(&spa->spa_scrub_cv);
1779 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1780 	}
1781 
1782 	/*
1783 	 * Terminate the previous traverse.
1784 	 */
1785 	if (spa->spa_scrub_th != NULL) {
1786 		traverse_fini(spa->spa_scrub_th);
1787 		spa->spa_scrub_th = NULL;
1788 	}
1789 
1790 	if (rvd == NULL) {
1791 		ASSERT(spa->spa_scrub_stop == 0);
1792 		ASSERT(spa->spa_scrub_type == type);
1793 		ASSERT(spa->spa_scrub_restart_txg == 0);
1794 		mutex_exit(&spa->spa_scrub_lock);
1795 		return (0);
1796 	}
1797 
1798 	mintxg = TXG_INITIAL - 1;
1799 	maxtxg = spa_last_synced_txg(spa) + 1;
1800 
1801 	mutex_enter(&rvd->vdev_dtl_lock);
1802 
1803 	if (rvd->vdev_dtl_map.sm_space == 0) {
1804 		/*
1805 		 * The pool-wide DTL is empty.
1806 		 * If this is a resilver, there's nothing to do except
1807 		 * check whether any in-progress replacements have completed.
1808 		 */
1809 		if (type == POOL_SCRUB_RESILVER) {
1810 			type = POOL_SCRUB_NONE;
1811 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1812 		}
1813 	} else {
1814 		/*
1815 		 * The pool-wide DTL is non-empty.
1816 		 * If this is a normal scrub, upgrade to a resilver instead.
1817 		 */
1818 		if (type == POOL_SCRUB_EVERYTHING)
1819 			type = POOL_SCRUB_RESILVER;
1820 	}
1821 
1822 	if (type == POOL_SCRUB_RESILVER) {
1823 		/*
1824 		 * Determine the resilvering boundaries.
1825 		 *
1826 		 * Note: (mintxg, maxtxg) is an open interval,
1827 		 * i.e. mintxg and maxtxg themselves are not included.
1828 		 *
1829 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1830 		 * so we don't claim to resilver a txg that's still changing.
1831 		 */
1832 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1833 		mintxg = ss->ss_start - 1;
1834 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1835 		maxtxg = MIN(ss->ss_end, maxtxg);
1836 	}
1837 
1838 	mutex_exit(&rvd->vdev_dtl_lock);
1839 
1840 	spa->spa_scrub_stop = 0;
1841 	spa->spa_scrub_type = type;
1842 	spa->spa_scrub_restart_txg = 0;
1843 
1844 	if (type != POOL_SCRUB_NONE) {
1845 		spa->spa_scrub_mintxg = mintxg;
1846 		spa->spa_scrub_maxtxg = maxtxg;
1847 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1848 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
1849 		    ZIO_FLAG_CANFAIL);
1850 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1851 		spa->spa_scrub_thread = thread_create(NULL, 0,
1852 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1853 	}
1854 
1855 	mutex_exit(&spa->spa_scrub_lock);
1856 
1857 	return (0);
1858 }
1859 
1860 /*
1861  * ==========================================================================
1862  * SPA async task processing
1863  * ==========================================================================
1864  */
1865 
1866 static void
1867 spa_async_reopen(spa_t *spa)
1868 {
1869 	vdev_t *rvd = spa->spa_root_vdev;
1870 	vdev_t *tvd;
1871 	int c;
1872 
1873 	spa_config_enter(spa, RW_WRITER, FTAG);
1874 
1875 	for (c = 0; c < rvd->vdev_children; c++) {
1876 		tvd = rvd->vdev_child[c];
1877 		if (tvd->vdev_reopen_wanted) {
1878 			tvd->vdev_reopen_wanted = 0;
1879 			vdev_reopen(tvd);
1880 		}
1881 	}
1882 
1883 	spa_config_exit(spa, FTAG);
1884 }
1885 
1886 static void
1887 spa_async_thread(spa_t *spa)
1888 {
1889 	int tasks;
1890 
1891 	ASSERT(spa->spa_sync_on);
1892 
1893 	mutex_enter(&spa->spa_async_lock);
1894 	tasks = spa->spa_async_tasks;
1895 	spa->spa_async_tasks = 0;
1896 	mutex_exit(&spa->spa_async_lock);
1897 
1898 	/*
1899 	 * See if the config needs to be updated.
1900 	 */
1901 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
1902 		mutex_enter(&spa_namespace_lock);
1903 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1904 		mutex_exit(&spa_namespace_lock);
1905 	}
1906 
1907 	/*
1908 	 * See if any devices need to be reopened.
1909 	 */
1910 	if (tasks & SPA_ASYNC_REOPEN)
1911 		spa_async_reopen(spa);
1912 
1913 	/*
1914 	 * If any devices are done replacing, detach them.
1915 	 */
1916 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1917 		spa_vdev_replace_done(spa);
1918 
1919 	/*
1920 	 * Kick off a scrub.
1921 	 */
1922 	if (tasks & SPA_ASYNC_SCRUB)
1923 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1924 
1925 	/*
1926 	 * Kick off a resilver.
1927 	 */
1928 	if (tasks & SPA_ASYNC_RESILVER)
1929 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1930 
1931 	/*
1932 	 * Let the world know that we're done.
1933 	 */
1934 	mutex_enter(&spa->spa_async_lock);
1935 	spa->spa_async_thread = NULL;
1936 	cv_broadcast(&spa->spa_async_cv);
1937 	mutex_exit(&spa->spa_async_lock);
1938 	thread_exit();
1939 }
1940 
1941 void
1942 spa_async_suspend(spa_t *spa)
1943 {
1944 	mutex_enter(&spa->spa_async_lock);
1945 	spa->spa_async_suspended++;
1946 	while (spa->spa_async_thread != NULL)
1947 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1948 	mutex_exit(&spa->spa_async_lock);
1949 }
1950 
1951 void
1952 spa_async_resume(spa_t *spa)
1953 {
1954 	mutex_enter(&spa->spa_async_lock);
1955 	ASSERT(spa->spa_async_suspended != 0);
1956 	spa->spa_async_suspended--;
1957 	mutex_exit(&spa->spa_async_lock);
1958 }
1959 
1960 static void
1961 spa_async_dispatch(spa_t *spa)
1962 {
1963 	mutex_enter(&spa->spa_async_lock);
1964 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1965 	    spa->spa_async_thread == NULL &&
1966 	    rootdir != NULL && !vn_is_readonly(rootdir))
1967 		spa->spa_async_thread = thread_create(NULL, 0,
1968 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1969 	mutex_exit(&spa->spa_async_lock);
1970 }
1971 
1972 void
1973 spa_async_request(spa_t *spa, int task)
1974 {
1975 	mutex_enter(&spa->spa_async_lock);
1976 	spa->spa_async_tasks |= task;
1977 	mutex_exit(&spa->spa_async_lock);
1978 }
1979 
1980 /*
1981  * ==========================================================================
1982  * SPA syncing routines
1983  * ==========================================================================
1984  */
1985 
1986 static void
1987 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
1988 {
1989 	bplist_t *bpl = &spa->spa_sync_bplist;
1990 	dmu_tx_t *tx;
1991 	blkptr_t blk;
1992 	uint64_t itor = 0;
1993 	zio_t *zio;
1994 	int error;
1995 	uint8_t c = 1;
1996 
1997 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
1998 
1999 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2000 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2001 
2002 	error = zio_wait(zio);
2003 	ASSERT3U(error, ==, 0);
2004 
2005 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2006 	bplist_vacate(bpl, tx);
2007 
2008 	/*
2009 	 * Pre-dirty the first block so we sync to convergence faster.
2010 	 * (Usually only the first block is needed.)
2011 	 */
2012 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2013 	dmu_tx_commit(tx);
2014 }
2015 
2016 static void
2017 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2018 {
2019 	nvlist_t *config;
2020 	char *packed = NULL;
2021 	size_t nvsize = 0;
2022 	dmu_buf_t *db;
2023 
2024 	if (list_is_empty(&spa->spa_dirty_list))
2025 		return;
2026 
2027 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2028 
2029 	if (spa->spa_config_syncing)
2030 		nvlist_free(spa->spa_config_syncing);
2031 	spa->spa_config_syncing = config;
2032 
2033 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2034 
2035 	packed = kmem_alloc(nvsize, KM_SLEEP);
2036 
2037 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2038 	    KM_SLEEP) == 0);
2039 
2040 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2041 	    packed, tx);
2042 
2043 	kmem_free(packed, nvsize);
2044 
2045 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2046 	    spa->spa_config_object, FTAG, &db));
2047 	dmu_buf_will_dirty(db, tx);
2048 	*(uint64_t *)db->db_data = nvsize;
2049 	dmu_buf_rele(db, FTAG);
2050 }
2051 
2052 /*
2053  * Sync the specified transaction group.  New blocks may be dirtied as
2054  * part of the process, so we iterate until it converges.
2055  */
2056 void
2057 spa_sync(spa_t *spa, uint64_t txg)
2058 {
2059 	dsl_pool_t *dp = spa->spa_dsl_pool;
2060 	objset_t *mos = spa->spa_meta_objset;
2061 	bplist_t *bpl = &spa->spa_sync_bplist;
2062 	vdev_t *rvd = spa->spa_root_vdev;
2063 	vdev_t *vd;
2064 	dmu_tx_t *tx;
2065 	int dirty_vdevs;
2066 
2067 	/*
2068 	 * Lock out configuration changes.
2069 	 */
2070 	spa_config_enter(spa, RW_READER, FTAG);
2071 
2072 	spa->spa_syncing_txg = txg;
2073 	spa->spa_sync_pass = 0;
2074 
2075 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2076 
2077 	/*
2078 	 * If anything has changed in this txg, push the deferred frees
2079 	 * from the previous txg.  If not, leave them alone so that we
2080 	 * don't generate work on an otherwise idle system.
2081 	 */
2082 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2083 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2084 		spa_sync_deferred_frees(spa, txg);
2085 
2086 	/*
2087 	 * Iterate to convergence.
2088 	 */
2089 	do {
2090 		spa->spa_sync_pass++;
2091 
2092 		tx = dmu_tx_create_assigned(dp, txg);
2093 		spa_sync_config_object(spa, tx);
2094 		dmu_tx_commit(tx);
2095 
2096 		spa_errlog_sync(spa, txg);
2097 
2098 		dsl_pool_sync(dp, txg);
2099 
2100 		dirty_vdevs = 0;
2101 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2102 			vdev_sync(vd, txg);
2103 			dirty_vdevs++;
2104 		}
2105 
2106 		tx = dmu_tx_create_assigned(dp, txg);
2107 		bplist_sync(bpl, tx);
2108 		dmu_tx_commit(tx);
2109 
2110 	} while (dirty_vdevs);
2111 
2112 	bplist_close(bpl);
2113 
2114 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2115 
2116 	/*
2117 	 * Rewrite the vdev configuration (which includes the uberblock)
2118 	 * to commit the transaction group.
2119 	 *
2120 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2121 	 * Otherwise, pick a random top-level vdev that's known to be
2122 	 * visible in the config cache (see spa_vdev_add() for details).
2123 	 * If the write fails, try the next vdev until we're tried them all.
2124 	 */
2125 	if (!list_is_empty(&spa->spa_dirty_list)) {
2126 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2127 	} else {
2128 		int children = rvd->vdev_children;
2129 		int c0 = spa_get_random(children);
2130 		int c;
2131 
2132 		for (c = 0; c < children; c++) {
2133 			vd = rvd->vdev_child[(c0 + c) % children];
2134 			if (vd->vdev_ms_array == 0)
2135 				continue;
2136 			if (vdev_config_sync(vd, txg) == 0)
2137 				break;
2138 		}
2139 		if (c == children)
2140 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2141 	}
2142 
2143 	/*
2144 	 * Clear the dirty config list.
2145 	 */
2146 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2147 		vdev_config_clean(vd);
2148 
2149 	/*
2150 	 * Now that the new config has synced transactionally,
2151 	 * let it become visible to the config cache.
2152 	 */
2153 	if (spa->spa_config_syncing != NULL) {
2154 		spa_config_set(spa, spa->spa_config_syncing);
2155 		spa->spa_config_txg = txg;
2156 		spa->spa_config_syncing = NULL;
2157 	}
2158 
2159 	/*
2160 	 * Make a stable copy of the fully synced uberblock.
2161 	 * We use this as the root for pool traversals.
2162 	 */
2163 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2164 
2165 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2166 
2167 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2168 	spa->spa_traverse_wanted = 0;
2169 	spa->spa_ubsync = spa->spa_uberblock;
2170 	rw_exit(&spa->spa_traverse_lock);
2171 
2172 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2173 
2174 	/*
2175 	 * Clean up the ZIL records for the synced txg.
2176 	 */
2177 	dsl_pool_zil_clean(dp);
2178 
2179 	/*
2180 	 * Update usable space statistics.
2181 	 */
2182 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2183 		vdev_sync_done(vd, txg);
2184 
2185 	/*
2186 	 * It had better be the case that we didn't dirty anything
2187 	 * since spa_sync_labels().
2188 	 */
2189 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2190 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2191 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2192 	ASSERT(bpl->bpl_queue == NULL);
2193 
2194 	spa_config_exit(spa, FTAG);
2195 
2196 	/*
2197 	 * If any async tasks have been requested, kick them off.
2198 	 */
2199 	spa_async_dispatch(spa);
2200 }
2201 
2202 /*
2203  * Sync all pools.  We don't want to hold the namespace lock across these
2204  * operations, so we take a reference on the spa_t and drop the lock during the
2205  * sync.
2206  */
2207 void
2208 spa_sync_allpools(void)
2209 {
2210 	spa_t *spa = NULL;
2211 	mutex_enter(&spa_namespace_lock);
2212 	while ((spa = spa_next(spa)) != NULL) {
2213 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2214 			continue;
2215 		spa_open_ref(spa, FTAG);
2216 		mutex_exit(&spa_namespace_lock);
2217 		txg_wait_synced(spa_get_dsl(spa), 0);
2218 		mutex_enter(&spa_namespace_lock);
2219 		spa_close(spa, FTAG);
2220 	}
2221 	mutex_exit(&spa_namespace_lock);
2222 }
2223 
2224 /*
2225  * ==========================================================================
2226  * Miscellaneous routines
2227  * ==========================================================================
2228  */
2229 
2230 /*
2231  * Remove all pools in the system.
2232  */
2233 void
2234 spa_evict_all(void)
2235 {
2236 	spa_t *spa;
2237 
2238 	/*
2239 	 * Remove all cached state.  All pools should be closed now,
2240 	 * so every spa in the AVL tree should be unreferenced.
2241 	 */
2242 	mutex_enter(&spa_namespace_lock);
2243 	while ((spa = spa_next(NULL)) != NULL) {
2244 		/*
2245 		 * Stop async tasks.  The async thread may need to detach
2246 		 * a device that's been replaced, which requires grabbing
2247 		 * spa_namespace_lock, so we must drop it here.
2248 		 */
2249 		spa_open_ref(spa, FTAG);
2250 		mutex_exit(&spa_namespace_lock);
2251 		spa_async_suspend(spa);
2252 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2253 		mutex_enter(&spa_namespace_lock);
2254 		spa_close(spa, FTAG);
2255 
2256 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2257 			spa_unload(spa);
2258 			spa_deactivate(spa);
2259 		}
2260 		spa_remove(spa);
2261 	}
2262 	mutex_exit(&spa_namespace_lock);
2263 }
2264 
2265 vdev_t *
2266 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2267 {
2268 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2269 }
2270