1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains all the routines used when modifying on-disk SPA state. 31 * This includes opening, importing, destroying, exporting a pool, and syncing a 32 * pool. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/sunddi.h> 62 63 int zio_taskq_threads = 8; 64 65 /* 66 * ========================================================================== 67 * SPA state manipulation (open/create/destroy/import/export) 68 * ========================================================================== 69 */ 70 71 static int 72 spa_error_entry_compare(const void *a, const void *b) 73 { 74 spa_error_entry_t *sa = (spa_error_entry_t *)a; 75 spa_error_entry_t *sb = (spa_error_entry_t *)b; 76 int ret; 77 78 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 79 sizeof (zbookmark_t)); 80 81 if (ret < 0) 82 return (-1); 83 else if (ret > 0) 84 return (1); 85 else 86 return (0); 87 } 88 89 /* 90 * Utility function which retrieves copies of the current logs and 91 * re-initializes them in the process. 92 */ 93 void 94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 95 { 96 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 97 98 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 99 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 100 101 avl_create(&spa->spa_errlist_scrub, 102 spa_error_entry_compare, sizeof (spa_error_entry_t), 103 offsetof(spa_error_entry_t, se_avl)); 104 avl_create(&spa->spa_errlist_last, 105 spa_error_entry_compare, sizeof (spa_error_entry_t), 106 offsetof(spa_error_entry_t, se_avl)); 107 } 108 109 /* 110 * Activate an uninitialized pool. 111 */ 112 static void 113 spa_activate(spa_t *spa) 114 { 115 int t; 116 117 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 118 119 spa->spa_state = POOL_STATE_ACTIVE; 120 121 spa->spa_normal_class = metaslab_class_create(); 122 spa->spa_log_class = metaslab_class_create(); 123 124 for (t = 0; t < ZIO_TYPES; t++) { 125 spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 126 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 127 TASKQ_PREPOPULATE); 128 spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 129 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 130 TASKQ_PREPOPULATE); 131 } 132 133 list_create(&spa->spa_dirty_list, sizeof (vdev_t), 134 offsetof(vdev_t, vdev_dirty_node)); 135 136 txg_list_create(&spa->spa_vdev_txg_list, 137 offsetof(struct vdev, vdev_txg_node)); 138 139 avl_create(&spa->spa_errlist_scrub, 140 spa_error_entry_compare, sizeof (spa_error_entry_t), 141 offsetof(spa_error_entry_t, se_avl)); 142 avl_create(&spa->spa_errlist_last, 143 spa_error_entry_compare, sizeof (spa_error_entry_t), 144 offsetof(spa_error_entry_t, se_avl)); 145 } 146 147 /* 148 * Opposite of spa_activate(). 149 */ 150 static void 151 spa_deactivate(spa_t *spa) 152 { 153 int t; 154 155 ASSERT(spa->spa_sync_on == B_FALSE); 156 ASSERT(spa->spa_dsl_pool == NULL); 157 ASSERT(spa->spa_root_vdev == NULL); 158 159 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 160 161 txg_list_destroy(&spa->spa_vdev_txg_list); 162 163 list_destroy(&spa->spa_dirty_list); 164 165 for (t = 0; t < ZIO_TYPES; t++) { 166 taskq_destroy(spa->spa_zio_issue_taskq[t]); 167 taskq_destroy(spa->spa_zio_intr_taskq[t]); 168 spa->spa_zio_issue_taskq[t] = NULL; 169 spa->spa_zio_intr_taskq[t] = NULL; 170 } 171 172 metaslab_class_destroy(spa->spa_normal_class); 173 spa->spa_normal_class = NULL; 174 175 metaslab_class_destroy(spa->spa_log_class); 176 spa->spa_log_class = NULL; 177 178 /* 179 * If this was part of an import or the open otherwise failed, we may 180 * still have errors left in the queues. Empty them just in case. 181 */ 182 spa_errlog_drain(spa); 183 184 avl_destroy(&spa->spa_errlist_scrub); 185 avl_destroy(&spa->spa_errlist_last); 186 187 spa->spa_state = POOL_STATE_UNINITIALIZED; 188 } 189 190 /* 191 * Verify a pool configuration, and construct the vdev tree appropriately. This 192 * will create all the necessary vdevs in the appropriate layout, with each vdev 193 * in the CLOSED state. This will prep the pool before open/creation/import. 194 * All vdev validation is done by the vdev_alloc() routine. 195 */ 196 static int 197 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 198 uint_t id, int atype) 199 { 200 nvlist_t **child; 201 uint_t c, children; 202 int error; 203 204 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 205 return (error); 206 207 if ((*vdp)->vdev_ops->vdev_op_leaf) 208 return (0); 209 210 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 211 &child, &children) != 0) { 212 vdev_free(*vdp); 213 *vdp = NULL; 214 return (EINVAL); 215 } 216 217 for (c = 0; c < children; c++) { 218 vdev_t *vd; 219 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 220 atype)) != 0) { 221 vdev_free(*vdp); 222 *vdp = NULL; 223 return (error); 224 } 225 } 226 227 ASSERT(*vdp != NULL); 228 229 return (0); 230 } 231 232 /* 233 * Opposite of spa_load(). 234 */ 235 static void 236 spa_unload(spa_t *spa) 237 { 238 int i; 239 240 /* 241 * Stop async tasks. 242 */ 243 spa_async_suspend(spa); 244 245 /* 246 * Stop syncing. 247 */ 248 if (spa->spa_sync_on) { 249 txg_sync_stop(spa->spa_dsl_pool); 250 spa->spa_sync_on = B_FALSE; 251 } 252 253 /* 254 * Wait for any outstanding prefetch I/O to complete. 255 */ 256 spa_config_enter(spa, RW_WRITER, FTAG); 257 spa_config_exit(spa, FTAG); 258 259 /* 260 * Close the dsl pool. 261 */ 262 if (spa->spa_dsl_pool) { 263 dsl_pool_close(spa->spa_dsl_pool); 264 spa->spa_dsl_pool = NULL; 265 } 266 267 /* 268 * Close all vdevs. 269 */ 270 if (spa->spa_root_vdev) 271 vdev_free(spa->spa_root_vdev); 272 ASSERT(spa->spa_root_vdev == NULL); 273 274 for (i = 0; i < spa->spa_nspares; i++) 275 vdev_free(spa->spa_spares[i]); 276 if (spa->spa_spares) { 277 kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); 278 spa->spa_spares = NULL; 279 } 280 if (spa->spa_sparelist) { 281 nvlist_free(spa->spa_sparelist); 282 spa->spa_sparelist = NULL; 283 } 284 285 spa->spa_async_suspended = 0; 286 } 287 288 /* 289 * Load (or re-load) the current list of vdevs describing the active spares for 290 * this pool. When this is called, we have some form of basic information in 291 * 'spa_sparelist'. We parse this into vdevs, try to open them, and then 292 * re-generate a more complete list including status information. 293 */ 294 static void 295 spa_load_spares(spa_t *spa) 296 { 297 nvlist_t **spares; 298 uint_t nspares; 299 int i; 300 vdev_t *vd, *tvd; 301 302 /* 303 * First, close and free any existing spare vdevs. 304 */ 305 for (i = 0; i < spa->spa_nspares; i++) { 306 vd = spa->spa_spares[i]; 307 308 /* Undo the call to spa_activate() below */ 309 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL && 310 tvd->vdev_isspare) 311 spa_spare_remove(tvd); 312 vdev_close(vd); 313 vdev_free(vd); 314 } 315 316 if (spa->spa_spares) 317 kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); 318 319 if (spa->spa_sparelist == NULL) 320 nspares = 0; 321 else 322 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 323 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 324 325 spa->spa_nspares = (int)nspares; 326 spa->spa_spares = NULL; 327 328 if (nspares == 0) 329 return; 330 331 /* 332 * Construct the array of vdevs, opening them to get status in the 333 * process. For each spare, there is potentially two different vdev_t 334 * structures associated with it: one in the list of spares (used only 335 * for basic validation purposes) and one in the active vdev 336 * configuration (if it's spared in). During this phase we open and 337 * validate each vdev on the spare list. If the vdev also exists in the 338 * active configuration, then we also mark this vdev as an active spare. 339 */ 340 spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); 341 for (i = 0; i < spa->spa_nspares; i++) { 342 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 343 VDEV_ALLOC_SPARE) == 0); 344 ASSERT(vd != NULL); 345 346 spa->spa_spares[i] = vd; 347 348 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) { 349 if (!tvd->vdev_isspare) 350 spa_spare_add(tvd); 351 352 /* 353 * We only mark the spare active if we were successfully 354 * able to load the vdev. Otherwise, importing a pool 355 * with a bad active spare would result in strange 356 * behavior, because multiple pool would think the spare 357 * is actively in use. 358 * 359 * There is a vulnerability here to an equally bizarre 360 * circumstance, where a dead active spare is later 361 * brought back to life (onlined or otherwise). Given 362 * the rarity of this scenario, and the extra complexity 363 * it adds, we ignore the possibility. 364 */ 365 if (!vdev_is_dead(tvd)) 366 spa_spare_activate(tvd); 367 } 368 369 if (vdev_open(vd) != 0) 370 continue; 371 372 vd->vdev_top = vd; 373 (void) vdev_validate_spare(vd); 374 } 375 376 /* 377 * Recompute the stashed list of spares, with status information 378 * this time. 379 */ 380 VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 381 DATA_TYPE_NVLIST_ARRAY) == 0); 382 383 spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP); 384 for (i = 0; i < spa->spa_nspares; i++) 385 spares[i] = vdev_config_generate(spa, spa->spa_spares[i], 386 B_TRUE, B_TRUE); 387 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 388 spares, spa->spa_nspares) == 0); 389 for (i = 0; i < spa->spa_nspares; i++) 390 nvlist_free(spares[i]); 391 kmem_free(spares, spa->spa_nspares * sizeof (void *)); 392 } 393 394 static int 395 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 396 { 397 dmu_buf_t *db; 398 char *packed = NULL; 399 size_t nvsize = 0; 400 int error; 401 *value = NULL; 402 403 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 404 nvsize = *(uint64_t *)db->db_data; 405 dmu_buf_rele(db, FTAG); 406 407 packed = kmem_alloc(nvsize, KM_SLEEP); 408 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); 409 if (error == 0) 410 error = nvlist_unpack(packed, nvsize, value, 0); 411 kmem_free(packed, nvsize); 412 413 return (error); 414 } 415 416 /* 417 * Checks to see if the given vdev could not be opened, in which case we post a 418 * sysevent to notify the autoreplace code that the device has been removed. 419 */ 420 static void 421 spa_check_removed(vdev_t *vd) 422 { 423 int c; 424 425 for (c = 0; c < vd->vdev_children; c++) 426 spa_check_removed(vd->vdev_child[c]); 427 428 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 429 zfs_post_autoreplace(vd->vdev_spa, vd); 430 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 431 } 432 } 433 434 /* 435 * Load an existing storage pool, using the pool's builtin spa_config as a 436 * source of configuration information. 437 */ 438 static int 439 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 440 { 441 int error = 0; 442 nvlist_t *nvroot = NULL; 443 vdev_t *rvd; 444 uberblock_t *ub = &spa->spa_uberblock; 445 uint64_t config_cache_txg = spa->spa_config_txg; 446 uint64_t pool_guid; 447 uint64_t version; 448 zio_t *zio; 449 uint64_t autoreplace = 0; 450 451 spa->spa_load_state = state; 452 453 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 454 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 455 error = EINVAL; 456 goto out; 457 } 458 459 /* 460 * Versioning wasn't explicitly added to the label until later, so if 461 * it's not present treat it as the initial version. 462 */ 463 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 464 version = SPA_VERSION_INITIAL; 465 466 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 467 &spa->spa_config_txg); 468 469 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 470 spa_guid_exists(pool_guid, 0)) { 471 error = EEXIST; 472 goto out; 473 } 474 475 spa->spa_load_guid = pool_guid; 476 477 /* 478 * Parse the configuration into a vdev tree. We explicitly set the 479 * value that will be returned by spa_version() since parsing the 480 * configuration requires knowing the version number. 481 */ 482 spa_config_enter(spa, RW_WRITER, FTAG); 483 spa->spa_ubsync.ub_version = version; 484 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 485 spa_config_exit(spa, FTAG); 486 487 if (error != 0) 488 goto out; 489 490 ASSERT(spa->spa_root_vdev == rvd); 491 ASSERT(spa_guid(spa) == pool_guid); 492 493 /* 494 * Try to open all vdevs, loading each label in the process. 495 */ 496 error = vdev_open(rvd); 497 if (error != 0) 498 goto out; 499 500 /* 501 * Validate the labels for all leaf vdevs. We need to grab the config 502 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD 503 * flag. 504 */ 505 spa_config_enter(spa, RW_READER, FTAG); 506 error = vdev_validate(rvd); 507 spa_config_exit(spa, FTAG); 508 509 if (error != 0) 510 goto out; 511 512 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 513 error = ENXIO; 514 goto out; 515 } 516 517 /* 518 * Find the best uberblock. 519 */ 520 bzero(ub, sizeof (uberblock_t)); 521 522 zio = zio_root(spa, NULL, NULL, 523 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 524 vdev_uberblock_load(zio, rvd, ub); 525 error = zio_wait(zio); 526 527 /* 528 * If we weren't able to find a single valid uberblock, return failure. 529 */ 530 if (ub->ub_txg == 0) { 531 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 532 VDEV_AUX_CORRUPT_DATA); 533 error = ENXIO; 534 goto out; 535 } 536 537 /* 538 * If the pool is newer than the code, we can't open it. 539 */ 540 if (ub->ub_version > SPA_VERSION) { 541 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 542 VDEV_AUX_VERSION_NEWER); 543 error = ENOTSUP; 544 goto out; 545 } 546 547 /* 548 * If the vdev guid sum doesn't match the uberblock, we have an 549 * incomplete configuration. 550 */ 551 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 552 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 553 VDEV_AUX_BAD_GUID_SUM); 554 error = ENXIO; 555 goto out; 556 } 557 558 /* 559 * Initialize internal SPA structures. 560 */ 561 spa->spa_state = POOL_STATE_ACTIVE; 562 spa->spa_ubsync = spa->spa_uberblock; 563 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 564 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 565 if (error) { 566 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 567 VDEV_AUX_CORRUPT_DATA); 568 goto out; 569 } 570 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 571 572 if (zap_lookup(spa->spa_meta_objset, 573 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 574 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 575 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 576 VDEV_AUX_CORRUPT_DATA); 577 error = EIO; 578 goto out; 579 } 580 581 if (!mosconfig) { 582 nvlist_t *newconfig; 583 uint64_t hostid; 584 585 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 586 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 587 VDEV_AUX_CORRUPT_DATA); 588 error = EIO; 589 goto out; 590 } 591 592 if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, 593 &hostid) == 0) { 594 char *hostname; 595 unsigned long myhostid = 0; 596 597 VERIFY(nvlist_lookup_string(newconfig, 598 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 599 600 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 601 if (hostid != 0 && myhostid != 0 && 602 (unsigned long)hostid != myhostid) { 603 cmn_err(CE_WARN, "pool '%s' could not be " 604 "loaded as it was last accessed by " 605 "another system (host: %s hostid: 0x%lx). " 606 "See: http://www.sun.com/msg/ZFS-8000-EY", 607 spa->spa_name, hostname, 608 (unsigned long)hostid); 609 error = EBADF; 610 goto out; 611 } 612 } 613 614 spa_config_set(spa, newconfig); 615 spa_unload(spa); 616 spa_deactivate(spa); 617 spa_activate(spa); 618 619 return (spa_load(spa, newconfig, state, B_TRUE)); 620 } 621 622 if (zap_lookup(spa->spa_meta_objset, 623 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 624 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 625 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 626 VDEV_AUX_CORRUPT_DATA); 627 error = EIO; 628 goto out; 629 } 630 631 /* 632 * Load the bit that tells us to use the new accounting function 633 * (raid-z deflation). If we have an older pool, this will not 634 * be present. 635 */ 636 error = zap_lookup(spa->spa_meta_objset, 637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 638 sizeof (uint64_t), 1, &spa->spa_deflate); 639 if (error != 0 && error != ENOENT) { 640 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 641 VDEV_AUX_CORRUPT_DATA); 642 error = EIO; 643 goto out; 644 } 645 646 /* 647 * Load the persistent error log. If we have an older pool, this will 648 * not be present. 649 */ 650 error = zap_lookup(spa->spa_meta_objset, 651 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 652 sizeof (uint64_t), 1, &spa->spa_errlog_last); 653 if (error != 0 && error != ENOENT) { 654 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 655 VDEV_AUX_CORRUPT_DATA); 656 error = EIO; 657 goto out; 658 } 659 660 error = zap_lookup(spa->spa_meta_objset, 661 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 662 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 663 if (error != 0 && error != ENOENT) { 664 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 665 VDEV_AUX_CORRUPT_DATA); 666 error = EIO; 667 goto out; 668 } 669 670 /* 671 * Load the history object. If we have an older pool, this 672 * will not be present. 673 */ 674 error = zap_lookup(spa->spa_meta_objset, 675 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 676 sizeof (uint64_t), 1, &spa->spa_history); 677 if (error != 0 && error != ENOENT) { 678 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 679 VDEV_AUX_CORRUPT_DATA); 680 error = EIO; 681 goto out; 682 } 683 684 /* 685 * Load any hot spares for this pool. 686 */ 687 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 688 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object); 689 if (error != 0 && error != ENOENT) { 690 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 691 VDEV_AUX_CORRUPT_DATA); 692 error = EIO; 693 goto out; 694 } 695 if (error == 0) { 696 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 697 if (load_nvlist(spa, spa->spa_spares_object, 698 &spa->spa_sparelist) != 0) { 699 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 700 VDEV_AUX_CORRUPT_DATA); 701 error = EIO; 702 goto out; 703 } 704 705 spa_config_enter(spa, RW_WRITER, FTAG); 706 spa_load_spares(spa); 707 spa_config_exit(spa, FTAG); 708 } 709 710 spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION); 711 712 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 713 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 714 715 if (error && error != ENOENT) { 716 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 717 VDEV_AUX_CORRUPT_DATA); 718 error = EIO; 719 goto out; 720 } 721 722 if (error == 0) { 723 (void) zap_lookup(spa->spa_meta_objset, 724 spa->spa_pool_props_object, 725 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 726 sizeof (uint64_t), 1, &spa->spa_bootfs); 727 (void) zap_lookup(spa->spa_meta_objset, 728 spa->spa_pool_props_object, 729 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 730 sizeof (uint64_t), 1, &autoreplace); 731 (void) zap_lookup(spa->spa_meta_objset, 732 spa->spa_pool_props_object, 733 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 734 sizeof (uint64_t), 1, &spa->spa_delegation); 735 } 736 737 /* 738 * If the 'autoreplace' property is set, then post a resource notifying 739 * the ZFS DE that it should not issue any faults for unopenable 740 * devices. We also iterate over the vdevs, and post a sysevent for any 741 * unopenable vdevs so that the normal autoreplace handler can take 742 * over. 743 */ 744 if (autoreplace) 745 spa_check_removed(spa->spa_root_vdev); 746 747 /* 748 * Load the vdev state for all toplevel vdevs. 749 */ 750 vdev_load(rvd); 751 752 /* 753 * Propagate the leaf DTLs we just loaded all the way up the tree. 754 */ 755 spa_config_enter(spa, RW_WRITER, FTAG); 756 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 757 spa_config_exit(spa, FTAG); 758 759 /* 760 * Check the state of the root vdev. If it can't be opened, it 761 * indicates one or more toplevel vdevs are faulted. 762 */ 763 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 764 error = ENXIO; 765 goto out; 766 } 767 768 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { 769 dmu_tx_t *tx; 770 int need_update = B_FALSE; 771 int c; 772 773 /* 774 * Claim log blocks that haven't been committed yet. 775 * This must all happen in a single txg. 776 */ 777 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 778 spa_first_txg(spa)); 779 (void) dmu_objset_find(spa->spa_name, 780 zil_claim, tx, DS_FIND_CHILDREN); 781 dmu_tx_commit(tx); 782 783 spa->spa_sync_on = B_TRUE; 784 txg_sync_start(spa->spa_dsl_pool); 785 786 /* 787 * Wait for all claims to sync. 788 */ 789 txg_wait_synced(spa->spa_dsl_pool, 0); 790 791 /* 792 * If the config cache is stale, or we have uninitialized 793 * metaslabs (see spa_vdev_add()), then update the config. 794 */ 795 if (config_cache_txg != spa->spa_config_txg || 796 state == SPA_LOAD_IMPORT) 797 need_update = B_TRUE; 798 799 for (c = 0; c < rvd->vdev_children; c++) 800 if (rvd->vdev_child[c]->vdev_ms_array == 0) 801 need_update = B_TRUE; 802 803 /* 804 * Update the config cache asychronously in case we're the 805 * root pool, in which case the config cache isn't writable yet. 806 */ 807 if (need_update) 808 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 809 } 810 811 error = 0; 812 out: 813 if (error && error != EBADF) 814 zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0); 815 spa->spa_load_state = SPA_LOAD_NONE; 816 spa->spa_ena = 0; 817 818 return (error); 819 } 820 821 /* 822 * Pool Open/Import 823 * 824 * The import case is identical to an open except that the configuration is sent 825 * down from userland, instead of grabbed from the configuration cache. For the 826 * case of an open, the pool configuration will exist in the 827 * POOL_STATE_UNINITIALIZED state. 828 * 829 * The stats information (gen/count/ustats) is used to gather vdev statistics at 830 * the same time open the pool, without having to keep around the spa_t in some 831 * ambiguous state. 832 */ 833 static int 834 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 835 { 836 spa_t *spa; 837 int error; 838 int loaded = B_FALSE; 839 int locked = B_FALSE; 840 841 *spapp = NULL; 842 843 /* 844 * As disgusting as this is, we need to support recursive calls to this 845 * function because dsl_dir_open() is called during spa_load(), and ends 846 * up calling spa_open() again. The real fix is to figure out how to 847 * avoid dsl_dir_open() calling this in the first place. 848 */ 849 if (mutex_owner(&spa_namespace_lock) != curthread) { 850 mutex_enter(&spa_namespace_lock); 851 locked = B_TRUE; 852 } 853 854 if ((spa = spa_lookup(pool)) == NULL) { 855 if (locked) 856 mutex_exit(&spa_namespace_lock); 857 return (ENOENT); 858 } 859 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 860 861 spa_activate(spa); 862 863 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 864 865 if (error == EBADF) { 866 /* 867 * If vdev_validate() returns failure (indicated by 868 * EBADF), it indicates that one of the vdevs indicates 869 * that the pool has been exported or destroyed. If 870 * this is the case, the config cache is out of sync and 871 * we should remove the pool from the namespace. 872 */ 873 zfs_post_ok(spa, NULL); 874 spa_unload(spa); 875 spa_deactivate(spa); 876 spa_remove(spa); 877 spa_config_sync(); 878 if (locked) 879 mutex_exit(&spa_namespace_lock); 880 return (ENOENT); 881 } 882 883 if (error) { 884 /* 885 * We can't open the pool, but we still have useful 886 * information: the state of each vdev after the 887 * attempted vdev_open(). Return this to the user. 888 */ 889 if (config != NULL && spa->spa_root_vdev != NULL) { 890 spa_config_enter(spa, RW_READER, FTAG); 891 *config = spa_config_generate(spa, NULL, -1ULL, 892 B_TRUE); 893 spa_config_exit(spa, FTAG); 894 } 895 spa_unload(spa); 896 spa_deactivate(spa); 897 spa->spa_last_open_failed = B_TRUE; 898 if (locked) 899 mutex_exit(&spa_namespace_lock); 900 *spapp = NULL; 901 return (error); 902 } else { 903 zfs_post_ok(spa, NULL); 904 spa->spa_last_open_failed = B_FALSE; 905 } 906 907 loaded = B_TRUE; 908 } 909 910 spa_open_ref(spa, tag); 911 912 /* 913 * If we just loaded the pool, resilver anything that's out of date. 914 */ 915 if (loaded && (spa_mode & FWRITE)) 916 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 917 918 if (locked) 919 mutex_exit(&spa_namespace_lock); 920 921 *spapp = spa; 922 923 if (config != NULL) { 924 spa_config_enter(spa, RW_READER, FTAG); 925 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 926 spa_config_exit(spa, FTAG); 927 } 928 929 return (0); 930 } 931 932 int 933 spa_open(const char *name, spa_t **spapp, void *tag) 934 { 935 return (spa_open_common(name, spapp, tag, NULL)); 936 } 937 938 /* 939 * Lookup the given spa_t, incrementing the inject count in the process, 940 * preventing it from being exported or destroyed. 941 */ 942 spa_t * 943 spa_inject_addref(char *name) 944 { 945 spa_t *spa; 946 947 mutex_enter(&spa_namespace_lock); 948 if ((spa = spa_lookup(name)) == NULL) { 949 mutex_exit(&spa_namespace_lock); 950 return (NULL); 951 } 952 spa->spa_inject_ref++; 953 mutex_exit(&spa_namespace_lock); 954 955 return (spa); 956 } 957 958 void 959 spa_inject_delref(spa_t *spa) 960 { 961 mutex_enter(&spa_namespace_lock); 962 spa->spa_inject_ref--; 963 mutex_exit(&spa_namespace_lock); 964 } 965 966 static void 967 spa_add_spares(spa_t *spa, nvlist_t *config) 968 { 969 nvlist_t **spares; 970 uint_t i, nspares; 971 nvlist_t *nvroot; 972 uint64_t guid; 973 vdev_stat_t *vs; 974 uint_t vsc; 975 uint64_t pool; 976 977 if (spa->spa_nspares == 0) 978 return; 979 980 VERIFY(nvlist_lookup_nvlist(config, 981 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 982 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 983 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 984 if (nspares != 0) { 985 VERIFY(nvlist_add_nvlist_array(nvroot, 986 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 987 VERIFY(nvlist_lookup_nvlist_array(nvroot, 988 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 989 990 /* 991 * Go through and find any spares which have since been 992 * repurposed as an active spare. If this is the case, update 993 * their status appropriately. 994 */ 995 for (i = 0; i < nspares; i++) { 996 VERIFY(nvlist_lookup_uint64(spares[i], 997 ZPOOL_CONFIG_GUID, &guid) == 0); 998 if (spa_spare_exists(guid, &pool) && pool != 0ULL) { 999 VERIFY(nvlist_lookup_uint64_array( 1000 spares[i], ZPOOL_CONFIG_STATS, 1001 (uint64_t **)&vs, &vsc) == 0); 1002 vs->vs_state = VDEV_STATE_CANT_OPEN; 1003 vs->vs_aux = VDEV_AUX_SPARED; 1004 } 1005 } 1006 } 1007 } 1008 1009 int 1010 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1011 { 1012 int error; 1013 spa_t *spa; 1014 1015 *config = NULL; 1016 error = spa_open_common(name, &spa, FTAG, config); 1017 1018 if (spa && *config != NULL) { 1019 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, 1020 spa_get_errlog_size(spa)) == 0); 1021 1022 spa_add_spares(spa, *config); 1023 } 1024 1025 /* 1026 * We want to get the alternate root even for faulted pools, so we cheat 1027 * and call spa_lookup() directly. 1028 */ 1029 if (altroot) { 1030 if (spa == NULL) { 1031 mutex_enter(&spa_namespace_lock); 1032 spa = spa_lookup(name); 1033 if (spa) 1034 spa_altroot(spa, altroot, buflen); 1035 else 1036 altroot[0] = '\0'; 1037 spa = NULL; 1038 mutex_exit(&spa_namespace_lock); 1039 } else { 1040 spa_altroot(spa, altroot, buflen); 1041 } 1042 } 1043 1044 if (spa != NULL) 1045 spa_close(spa, FTAG); 1046 1047 return (error); 1048 } 1049 1050 /* 1051 * Validate that the 'spares' array is well formed. We must have an array of 1052 * nvlists, each which describes a valid leaf vdev. If this is an import (mode 1053 * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long 1054 * as they are well-formed. 1055 */ 1056 static int 1057 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1058 { 1059 nvlist_t **spares; 1060 uint_t i, nspares; 1061 vdev_t *vd; 1062 int error; 1063 1064 /* 1065 * It's acceptable to have no spares specified. 1066 */ 1067 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1068 &spares, &nspares) != 0) 1069 return (0); 1070 1071 if (nspares == 0) 1072 return (EINVAL); 1073 1074 /* 1075 * Make sure the pool is formatted with a version that supports hot 1076 * spares. 1077 */ 1078 if (spa_version(spa) < SPA_VERSION_SPARES) 1079 return (ENOTSUP); 1080 1081 /* 1082 * Set the pending spare list so we correctly handle device in-use 1083 * checking. 1084 */ 1085 spa->spa_pending_spares = spares; 1086 spa->spa_pending_nspares = nspares; 1087 1088 for (i = 0; i < nspares; i++) { 1089 if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0, 1090 mode)) != 0) 1091 goto out; 1092 1093 if (!vd->vdev_ops->vdev_op_leaf) { 1094 vdev_free(vd); 1095 error = EINVAL; 1096 goto out; 1097 } 1098 1099 vd->vdev_top = vd; 1100 1101 if ((error = vdev_open(vd)) == 0 && 1102 (error = vdev_label_init(vd, crtxg, 1103 VDEV_LABEL_SPARE)) == 0) { 1104 VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID, 1105 vd->vdev_guid) == 0); 1106 } 1107 1108 vdev_free(vd); 1109 1110 if (error && mode != VDEV_ALLOC_SPARE) 1111 goto out; 1112 else 1113 error = 0; 1114 } 1115 1116 out: 1117 spa->spa_pending_spares = NULL; 1118 spa->spa_pending_nspares = 0; 1119 return (error); 1120 } 1121 1122 /* 1123 * Pool Creation 1124 */ 1125 int 1126 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot, 1127 const char *history_str) 1128 { 1129 spa_t *spa; 1130 vdev_t *rvd; 1131 dsl_pool_t *dp; 1132 dmu_tx_t *tx; 1133 int c, error = 0; 1134 uint64_t txg = TXG_INITIAL; 1135 nvlist_t **spares; 1136 uint_t nspares; 1137 1138 /* 1139 * If this pool already exists, return failure. 1140 */ 1141 mutex_enter(&spa_namespace_lock); 1142 if (spa_lookup(pool) != NULL) { 1143 mutex_exit(&spa_namespace_lock); 1144 return (EEXIST); 1145 } 1146 1147 /* 1148 * Allocate a new spa_t structure. 1149 */ 1150 spa = spa_add(pool, altroot); 1151 spa_activate(spa); 1152 1153 spa->spa_uberblock.ub_txg = txg - 1; 1154 spa->spa_uberblock.ub_version = SPA_VERSION; 1155 spa->spa_ubsync = spa->spa_uberblock; 1156 1157 /* 1158 * Create the root vdev. 1159 */ 1160 spa_config_enter(spa, RW_WRITER, FTAG); 1161 1162 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 1163 1164 ASSERT(error != 0 || rvd != NULL); 1165 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 1166 1167 if (error == 0 && rvd->vdev_children == 0) 1168 error = EINVAL; 1169 1170 if (error == 0 && 1171 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 1172 (error = spa_validate_spares(spa, nvroot, txg, 1173 VDEV_ALLOC_ADD)) == 0) { 1174 for (c = 0; c < rvd->vdev_children; c++) 1175 vdev_init(rvd->vdev_child[c], txg); 1176 vdev_config_dirty(rvd); 1177 } 1178 1179 spa_config_exit(spa, FTAG); 1180 1181 if (error != 0) { 1182 spa_unload(spa); 1183 spa_deactivate(spa); 1184 spa_remove(spa); 1185 mutex_exit(&spa_namespace_lock); 1186 return (error); 1187 } 1188 1189 /* 1190 * Get the list of spares, if specified. 1191 */ 1192 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1193 &spares, &nspares) == 0) { 1194 VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME, 1195 KM_SLEEP) == 0); 1196 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1197 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1198 spa_config_enter(spa, RW_WRITER, FTAG); 1199 spa_load_spares(spa); 1200 spa_config_exit(spa, FTAG); 1201 spa->spa_sync_spares = B_TRUE; 1202 } 1203 1204 spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg); 1205 spa->spa_meta_objset = dp->dp_meta_objset; 1206 1207 tx = dmu_tx_create_assigned(dp, txg); 1208 1209 /* 1210 * Create the pool config object. 1211 */ 1212 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 1213 DMU_OT_PACKED_NVLIST, 1 << 14, 1214 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 1215 1216 if (zap_add(spa->spa_meta_objset, 1217 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1218 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 1219 cmn_err(CE_PANIC, "failed to add pool config"); 1220 } 1221 1222 /* Newly created pools are always deflated. */ 1223 spa->spa_deflate = TRUE; 1224 if (zap_add(spa->spa_meta_objset, 1225 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1226 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 1227 cmn_err(CE_PANIC, "failed to add deflate"); 1228 } 1229 1230 /* 1231 * Create the deferred-free bplist object. Turn off compression 1232 * because sync-to-convergence takes longer if the blocksize 1233 * keeps changing. 1234 */ 1235 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1236 1 << 14, tx); 1237 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 1238 ZIO_COMPRESS_OFF, tx); 1239 1240 if (zap_add(spa->spa_meta_objset, 1241 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1242 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 1243 cmn_err(CE_PANIC, "failed to add bplist"); 1244 } 1245 1246 /* 1247 * Create the pool's history object. 1248 */ 1249 spa_history_create_obj(spa, tx); 1250 1251 dmu_tx_commit(tx); 1252 1253 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 1254 spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1255 spa->spa_sync_on = B_TRUE; 1256 txg_sync_start(spa->spa_dsl_pool); 1257 1258 /* 1259 * We explicitly wait for the first transaction to complete so that our 1260 * bean counters are appropriately updated. 1261 */ 1262 txg_wait_synced(spa->spa_dsl_pool, txg); 1263 1264 spa_config_sync(); 1265 1266 if (history_str != NULL) 1267 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 1268 1269 mutex_exit(&spa_namespace_lock); 1270 1271 return (0); 1272 } 1273 1274 /* 1275 * Import the given pool into the system. We set up the necessary spa_t and 1276 * then call spa_load() to do the dirty work. 1277 */ 1278 int 1279 spa_import(const char *pool, nvlist_t *config, const char *altroot) 1280 { 1281 spa_t *spa; 1282 int error; 1283 nvlist_t *nvroot; 1284 nvlist_t **spares; 1285 uint_t nspares; 1286 1287 /* 1288 * If a pool with this name exists, return failure. 1289 */ 1290 mutex_enter(&spa_namespace_lock); 1291 if (spa_lookup(pool) != NULL) { 1292 mutex_exit(&spa_namespace_lock); 1293 return (EEXIST); 1294 } 1295 1296 /* 1297 * Create and initialize the spa structure. 1298 */ 1299 spa = spa_add(pool, altroot); 1300 spa_activate(spa); 1301 1302 /* 1303 * Pass off the heavy lifting to spa_load(). 1304 * Pass TRUE for mosconfig because the user-supplied config 1305 * is actually the one to trust when doing an import. 1306 */ 1307 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 1308 1309 spa_config_enter(spa, RW_WRITER, FTAG); 1310 /* 1311 * Toss any existing sparelist, as it doesn't have any validity anymore, 1312 * and conflicts with spa_has_spare(). 1313 */ 1314 if (spa->spa_sparelist) { 1315 nvlist_free(spa->spa_sparelist); 1316 spa->spa_sparelist = NULL; 1317 spa_load_spares(spa); 1318 } 1319 1320 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1321 &nvroot) == 0); 1322 if (error == 0) 1323 error = spa_validate_spares(spa, nvroot, -1ULL, 1324 VDEV_ALLOC_SPARE); 1325 spa_config_exit(spa, FTAG); 1326 1327 if (error != 0) { 1328 spa_unload(spa); 1329 spa_deactivate(spa); 1330 spa_remove(spa); 1331 mutex_exit(&spa_namespace_lock); 1332 return (error); 1333 } 1334 1335 /* 1336 * Override any spares as specified by the user, as these may have 1337 * correct device names/devids, etc. 1338 */ 1339 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1340 &spares, &nspares) == 0) { 1341 if (spa->spa_sparelist) 1342 VERIFY(nvlist_remove(spa->spa_sparelist, 1343 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 1344 else 1345 VERIFY(nvlist_alloc(&spa->spa_sparelist, 1346 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1347 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1348 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1349 spa_config_enter(spa, RW_WRITER, FTAG); 1350 spa_load_spares(spa); 1351 spa_config_exit(spa, FTAG); 1352 spa->spa_sync_spares = B_TRUE; 1353 } 1354 1355 /* 1356 * Update the config cache to include the newly-imported pool. 1357 */ 1358 if (spa_mode & FWRITE) 1359 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 1360 1361 /* 1362 * Resilver anything that's out of date. 1363 */ 1364 if (spa_mode & FWRITE) 1365 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1366 1367 mutex_exit(&spa_namespace_lock); 1368 1369 return (0); 1370 } 1371 1372 /* 1373 * This (illegal) pool name is used when temporarily importing a spa_t in order 1374 * to get the vdev stats associated with the imported devices. 1375 */ 1376 #define TRYIMPORT_NAME "$import" 1377 1378 nvlist_t * 1379 spa_tryimport(nvlist_t *tryconfig) 1380 { 1381 nvlist_t *config = NULL; 1382 char *poolname; 1383 spa_t *spa; 1384 uint64_t state; 1385 1386 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 1387 return (NULL); 1388 1389 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 1390 return (NULL); 1391 1392 /* 1393 * Create and initialize the spa structure. 1394 */ 1395 mutex_enter(&spa_namespace_lock); 1396 spa = spa_add(TRYIMPORT_NAME, NULL); 1397 spa_activate(spa); 1398 1399 /* 1400 * Pass off the heavy lifting to spa_load(). 1401 * Pass TRUE for mosconfig because the user-supplied config 1402 * is actually the one to trust when doing an import. 1403 */ 1404 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 1405 1406 /* 1407 * If 'tryconfig' was at least parsable, return the current config. 1408 */ 1409 if (spa->spa_root_vdev != NULL) { 1410 spa_config_enter(spa, RW_READER, FTAG); 1411 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1412 spa_config_exit(spa, FTAG); 1413 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 1414 poolname) == 0); 1415 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1416 state) == 0); 1417 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 1418 spa->spa_uberblock.ub_timestamp) == 0); 1419 1420 /* 1421 * Add the list of hot spares. 1422 */ 1423 spa_add_spares(spa, config); 1424 } 1425 1426 spa_unload(spa); 1427 spa_deactivate(spa); 1428 spa_remove(spa); 1429 mutex_exit(&spa_namespace_lock); 1430 1431 return (config); 1432 } 1433 1434 /* 1435 * Pool export/destroy 1436 * 1437 * The act of destroying or exporting a pool is very simple. We make sure there 1438 * is no more pending I/O and any references to the pool are gone. Then, we 1439 * update the pool state and sync all the labels to disk, removing the 1440 * configuration from the cache afterwards. 1441 */ 1442 static int 1443 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig) 1444 { 1445 spa_t *spa; 1446 1447 if (oldconfig) 1448 *oldconfig = NULL; 1449 1450 if (!(spa_mode & FWRITE)) 1451 return (EROFS); 1452 1453 mutex_enter(&spa_namespace_lock); 1454 if ((spa = spa_lookup(pool)) == NULL) { 1455 mutex_exit(&spa_namespace_lock); 1456 return (ENOENT); 1457 } 1458 1459 /* 1460 * Put a hold on the pool, drop the namespace lock, stop async tasks, 1461 * reacquire the namespace lock, and see if we can export. 1462 */ 1463 spa_open_ref(spa, FTAG); 1464 mutex_exit(&spa_namespace_lock); 1465 spa_async_suspend(spa); 1466 mutex_enter(&spa_namespace_lock); 1467 spa_close(spa, FTAG); 1468 1469 /* 1470 * The pool will be in core if it's openable, 1471 * in which case we can modify its state. 1472 */ 1473 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 1474 /* 1475 * Objsets may be open only because they're dirty, so we 1476 * have to force it to sync before checking spa_refcnt. 1477 */ 1478 spa_scrub_suspend(spa); 1479 txg_wait_synced(spa->spa_dsl_pool, 0); 1480 1481 /* 1482 * A pool cannot be exported or destroyed if there are active 1483 * references. If we are resetting a pool, allow references by 1484 * fault injection handlers. 1485 */ 1486 if (!spa_refcount_zero(spa) || 1487 (spa->spa_inject_ref != 0 && 1488 new_state != POOL_STATE_UNINITIALIZED)) { 1489 spa_scrub_resume(spa); 1490 spa_async_resume(spa); 1491 mutex_exit(&spa_namespace_lock); 1492 return (EBUSY); 1493 } 1494 1495 spa_scrub_resume(spa); 1496 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 1497 1498 /* 1499 * We want this to be reflected on every label, 1500 * so mark them all dirty. spa_unload() will do the 1501 * final sync that pushes these changes out. 1502 */ 1503 if (new_state != POOL_STATE_UNINITIALIZED) { 1504 spa_config_enter(spa, RW_WRITER, FTAG); 1505 spa->spa_state = new_state; 1506 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 1507 vdev_config_dirty(spa->spa_root_vdev); 1508 spa_config_exit(spa, FTAG); 1509 } 1510 } 1511 1512 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 1513 1514 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 1515 spa_unload(spa); 1516 spa_deactivate(spa); 1517 } 1518 1519 if (oldconfig && spa->spa_config) 1520 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 1521 1522 if (new_state != POOL_STATE_UNINITIALIZED) { 1523 spa_remove(spa); 1524 spa_config_sync(); 1525 } 1526 mutex_exit(&spa_namespace_lock); 1527 1528 return (0); 1529 } 1530 1531 /* 1532 * Destroy a storage pool. 1533 */ 1534 int 1535 spa_destroy(char *pool) 1536 { 1537 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL)); 1538 } 1539 1540 /* 1541 * Export a storage pool. 1542 */ 1543 int 1544 spa_export(char *pool, nvlist_t **oldconfig) 1545 { 1546 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig)); 1547 } 1548 1549 /* 1550 * Similar to spa_export(), this unloads the spa_t without actually removing it 1551 * from the namespace in any way. 1552 */ 1553 int 1554 spa_reset(char *pool) 1555 { 1556 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL)); 1557 } 1558 1559 1560 /* 1561 * ========================================================================== 1562 * Device manipulation 1563 * ========================================================================== 1564 */ 1565 1566 /* 1567 * Add a device to a storage pool. 1568 */ 1569 int 1570 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 1571 { 1572 uint64_t txg; 1573 int c, error; 1574 vdev_t *rvd = spa->spa_root_vdev; 1575 vdev_t *vd, *tvd; 1576 nvlist_t **spares; 1577 uint_t i, nspares; 1578 1579 txg = spa_vdev_enter(spa); 1580 1581 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 1582 VDEV_ALLOC_ADD)) != 0) 1583 return (spa_vdev_exit(spa, NULL, txg, error)); 1584 1585 spa->spa_pending_vdev = vd; 1586 1587 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1588 &spares, &nspares) != 0) 1589 nspares = 0; 1590 1591 if (vd->vdev_children == 0 && nspares == 0) { 1592 spa->spa_pending_vdev = NULL; 1593 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 1594 } 1595 1596 if (vd->vdev_children != 0) { 1597 if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { 1598 spa->spa_pending_vdev = NULL; 1599 return (spa_vdev_exit(spa, vd, txg, error)); 1600 } 1601 } 1602 1603 /* 1604 * We must validate the spares after checking the children. Otherwise, 1605 * vdev_inuse() will blindly overwrite the spare. 1606 */ 1607 if ((error = spa_validate_spares(spa, nvroot, txg, 1608 VDEV_ALLOC_ADD)) != 0) { 1609 spa->spa_pending_vdev = NULL; 1610 return (spa_vdev_exit(spa, vd, txg, error)); 1611 } 1612 1613 spa->spa_pending_vdev = NULL; 1614 1615 /* 1616 * Transfer each new top-level vdev from vd to rvd. 1617 */ 1618 for (c = 0; c < vd->vdev_children; c++) { 1619 tvd = vd->vdev_child[c]; 1620 vdev_remove_child(vd, tvd); 1621 tvd->vdev_id = rvd->vdev_children; 1622 vdev_add_child(rvd, tvd); 1623 vdev_config_dirty(tvd); 1624 } 1625 1626 if (nspares != 0) { 1627 if (spa->spa_sparelist != NULL) { 1628 nvlist_t **oldspares; 1629 uint_t oldnspares; 1630 nvlist_t **newspares; 1631 1632 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 1633 ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0); 1634 1635 newspares = kmem_alloc(sizeof (void *) * 1636 (nspares + oldnspares), KM_SLEEP); 1637 for (i = 0; i < oldnspares; i++) 1638 VERIFY(nvlist_dup(oldspares[i], 1639 &newspares[i], KM_SLEEP) == 0); 1640 for (i = 0; i < nspares; i++) 1641 VERIFY(nvlist_dup(spares[i], 1642 &newspares[i + oldnspares], 1643 KM_SLEEP) == 0); 1644 1645 VERIFY(nvlist_remove(spa->spa_sparelist, 1646 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 1647 1648 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1649 ZPOOL_CONFIG_SPARES, newspares, 1650 nspares + oldnspares) == 0); 1651 for (i = 0; i < oldnspares + nspares; i++) 1652 nvlist_free(newspares[i]); 1653 kmem_free(newspares, (oldnspares + nspares) * 1654 sizeof (void *)); 1655 } else { 1656 VERIFY(nvlist_alloc(&spa->spa_sparelist, 1657 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1658 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1659 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1660 } 1661 1662 spa_load_spares(spa); 1663 spa->spa_sync_spares = B_TRUE; 1664 } 1665 1666 /* 1667 * We have to be careful when adding new vdevs to an existing pool. 1668 * If other threads start allocating from these vdevs before we 1669 * sync the config cache, and we lose power, then upon reboot we may 1670 * fail to open the pool because there are DVAs that the config cache 1671 * can't translate. Therefore, we first add the vdevs without 1672 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 1673 * and then let spa_config_update() initialize the new metaslabs. 1674 * 1675 * spa_load() checks for added-but-not-initialized vdevs, so that 1676 * if we lose power at any point in this sequence, the remaining 1677 * steps will be completed the next time we load the pool. 1678 */ 1679 (void) spa_vdev_exit(spa, vd, txg, 0); 1680 1681 mutex_enter(&spa_namespace_lock); 1682 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 1683 mutex_exit(&spa_namespace_lock); 1684 1685 return (0); 1686 } 1687 1688 /* 1689 * Attach a device to a mirror. The arguments are the path to any device 1690 * in the mirror, and the nvroot for the new device. If the path specifies 1691 * a device that is not mirrored, we automatically insert the mirror vdev. 1692 * 1693 * If 'replacing' is specified, the new device is intended to replace the 1694 * existing device; in this case the two devices are made into their own 1695 * mirror using the 'replacing' vdev, which is functionally identical to 1696 * the mirror vdev (it actually reuses all the same ops) but has a few 1697 * extra rules: you can't attach to it after it's been created, and upon 1698 * completion of resilvering, the first disk (the one being replaced) 1699 * is automatically detached. 1700 */ 1701 int 1702 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 1703 { 1704 uint64_t txg, open_txg; 1705 int error; 1706 vdev_t *rvd = spa->spa_root_vdev; 1707 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 1708 vdev_ops_t *pvops; 1709 int is_log; 1710 1711 txg = spa_vdev_enter(spa); 1712 1713 oldvd = vdev_lookup_by_guid(rvd, guid); 1714 1715 if (oldvd == NULL) 1716 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1717 1718 if (!oldvd->vdev_ops->vdev_op_leaf) 1719 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1720 1721 pvd = oldvd->vdev_parent; 1722 1723 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 1724 VDEV_ALLOC_ADD)) != 0) 1725 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 1726 1727 if (newrootvd->vdev_children != 1) 1728 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 1729 1730 newvd = newrootvd->vdev_child[0]; 1731 1732 if (!newvd->vdev_ops->vdev_op_leaf) 1733 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 1734 1735 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 1736 return (spa_vdev_exit(spa, newrootvd, txg, error)); 1737 1738 /* 1739 * Spares can't replace logs 1740 */ 1741 is_log = oldvd->vdev_islog; 1742 if (is_log && newvd->vdev_isspare) 1743 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1744 1745 if (!replacing) { 1746 /* 1747 * For attach, the only allowable parent is a mirror or the root 1748 * vdev. 1749 */ 1750 if (pvd->vdev_ops != &vdev_mirror_ops && 1751 pvd->vdev_ops != &vdev_root_ops) 1752 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1753 1754 pvops = &vdev_mirror_ops; 1755 } else { 1756 /* 1757 * Active hot spares can only be replaced by inactive hot 1758 * spares. 1759 */ 1760 if (pvd->vdev_ops == &vdev_spare_ops && 1761 pvd->vdev_child[1] == oldvd && 1762 !spa_has_spare(spa, newvd->vdev_guid)) 1763 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1764 1765 /* 1766 * If the source is a hot spare, and the parent isn't already a 1767 * spare, then we want to create a new hot spare. Otherwise, we 1768 * want to create a replacing vdev. The user is not allowed to 1769 * attach to a spared vdev child unless the 'isspare' state is 1770 * the same (spare replaces spare, non-spare replaces 1771 * non-spare). 1772 */ 1773 if (pvd->vdev_ops == &vdev_replacing_ops) 1774 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1775 else if (pvd->vdev_ops == &vdev_spare_ops && 1776 newvd->vdev_isspare != oldvd->vdev_isspare) 1777 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1778 else if (pvd->vdev_ops != &vdev_spare_ops && 1779 newvd->vdev_isspare) 1780 pvops = &vdev_spare_ops; 1781 else 1782 pvops = &vdev_replacing_ops; 1783 } 1784 1785 /* 1786 * Compare the new device size with the replaceable/attachable 1787 * device size. 1788 */ 1789 if (newvd->vdev_psize < vdev_get_rsize(oldvd)) 1790 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 1791 1792 /* 1793 * The new device cannot have a higher alignment requirement 1794 * than the top-level vdev. 1795 */ 1796 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 1797 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 1798 1799 /* 1800 * If this is an in-place replacement, update oldvd's path and devid 1801 * to make it distinguishable from newvd, and unopenable from now on. 1802 */ 1803 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 1804 spa_strfree(oldvd->vdev_path); 1805 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 1806 KM_SLEEP); 1807 (void) sprintf(oldvd->vdev_path, "%s/%s", 1808 newvd->vdev_path, "old"); 1809 if (oldvd->vdev_devid != NULL) { 1810 spa_strfree(oldvd->vdev_devid); 1811 oldvd->vdev_devid = NULL; 1812 } 1813 } 1814 1815 /* 1816 * If the parent is not a mirror, or if we're replacing, insert the new 1817 * mirror/replacing/spare vdev above oldvd. 1818 */ 1819 if (pvd->vdev_ops != pvops) 1820 pvd = vdev_add_parent(oldvd, pvops); 1821 1822 ASSERT(pvd->vdev_top->vdev_parent == rvd); 1823 ASSERT(pvd->vdev_ops == pvops); 1824 ASSERT(oldvd->vdev_parent == pvd); 1825 1826 /* 1827 * Extract the new device from its root and add it to pvd. 1828 */ 1829 vdev_remove_child(newrootvd, newvd); 1830 newvd->vdev_id = pvd->vdev_children; 1831 vdev_add_child(pvd, newvd); 1832 1833 /* 1834 * If newvd is smaller than oldvd, but larger than its rsize, 1835 * the addition of newvd may have decreased our parent's asize. 1836 */ 1837 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); 1838 1839 tvd = newvd->vdev_top; 1840 ASSERT(pvd->vdev_top == tvd); 1841 ASSERT(tvd->vdev_parent == rvd); 1842 1843 vdev_config_dirty(tvd); 1844 1845 /* 1846 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 1847 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 1848 */ 1849 open_txg = txg + TXG_CONCURRENT_STATES - 1; 1850 1851 mutex_enter(&newvd->vdev_dtl_lock); 1852 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, 1853 open_txg - TXG_INITIAL + 1); 1854 mutex_exit(&newvd->vdev_dtl_lock); 1855 1856 if (newvd->vdev_isspare) 1857 spa_spare_activate(newvd); 1858 1859 /* 1860 * Mark newvd's DTL dirty in this txg. 1861 */ 1862 vdev_dirty(tvd, VDD_DTL, newvd, txg); 1863 1864 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 1865 1866 /* 1867 * Kick off a resilver to update newvd. We need to grab the namespace 1868 * lock because spa_scrub() needs to post a sysevent with the pool name. 1869 */ 1870 mutex_enter(&spa_namespace_lock); 1871 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1872 mutex_exit(&spa_namespace_lock); 1873 1874 return (0); 1875 } 1876 1877 /* 1878 * Detach a device from a mirror or replacing vdev. 1879 * If 'replace_done' is specified, only detach if the parent 1880 * is a replacing vdev. 1881 */ 1882 int 1883 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) 1884 { 1885 uint64_t txg; 1886 int c, t, error; 1887 vdev_t *rvd = spa->spa_root_vdev; 1888 vdev_t *vd, *pvd, *cvd, *tvd; 1889 boolean_t unspare = B_FALSE; 1890 uint64_t unspare_guid; 1891 1892 txg = spa_vdev_enter(spa); 1893 1894 vd = vdev_lookup_by_guid(rvd, guid); 1895 1896 if (vd == NULL) 1897 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1898 1899 if (!vd->vdev_ops->vdev_op_leaf) 1900 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1901 1902 pvd = vd->vdev_parent; 1903 1904 /* 1905 * If replace_done is specified, only remove this device if it's 1906 * the first child of a replacing vdev. For the 'spare' vdev, either 1907 * disk can be removed. 1908 */ 1909 if (replace_done) { 1910 if (pvd->vdev_ops == &vdev_replacing_ops) { 1911 if (vd->vdev_id != 0) 1912 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1913 } else if (pvd->vdev_ops != &vdev_spare_ops) { 1914 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1915 } 1916 } 1917 1918 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 1919 spa_version(spa) >= SPA_VERSION_SPARES); 1920 1921 /* 1922 * Only mirror, replacing, and spare vdevs support detach. 1923 */ 1924 if (pvd->vdev_ops != &vdev_replacing_ops && 1925 pvd->vdev_ops != &vdev_mirror_ops && 1926 pvd->vdev_ops != &vdev_spare_ops) 1927 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1928 1929 /* 1930 * If there's only one replica, you can't detach it. 1931 */ 1932 if (pvd->vdev_children <= 1) 1933 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1934 1935 /* 1936 * If all siblings have non-empty DTLs, this device may have the only 1937 * valid copy of the data, which means we cannot safely detach it. 1938 * 1939 * XXX -- as in the vdev_offline() case, we really want a more 1940 * precise DTL check. 1941 */ 1942 for (c = 0; c < pvd->vdev_children; c++) { 1943 uint64_t dirty; 1944 1945 cvd = pvd->vdev_child[c]; 1946 if (cvd == vd) 1947 continue; 1948 if (vdev_is_dead(cvd)) 1949 continue; 1950 mutex_enter(&cvd->vdev_dtl_lock); 1951 dirty = cvd->vdev_dtl_map.sm_space | 1952 cvd->vdev_dtl_scrub.sm_space; 1953 mutex_exit(&cvd->vdev_dtl_lock); 1954 if (!dirty) 1955 break; 1956 } 1957 1958 /* 1959 * If we are a replacing or spare vdev, then we can always detach the 1960 * latter child, as that is how one cancels the operation. 1961 */ 1962 if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && 1963 c == pvd->vdev_children) 1964 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1965 1966 /* 1967 * If we are detaching the original disk from a spare, then it implies 1968 * that the spare should become a real disk, and be removed from the 1969 * active spare list for the pool. 1970 */ 1971 if (pvd->vdev_ops == &vdev_spare_ops && 1972 vd->vdev_id == 0) 1973 unspare = B_TRUE; 1974 1975 /* 1976 * Erase the disk labels so the disk can be used for other things. 1977 * This must be done after all other error cases are handled, 1978 * but before we disembowel vd (so we can still do I/O to it). 1979 * But if we can't do it, don't treat the error as fatal -- 1980 * it may be that the unwritability of the disk is the reason 1981 * it's being detached! 1982 */ 1983 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1984 1985 /* 1986 * Remove vd from its parent and compact the parent's children. 1987 */ 1988 vdev_remove_child(pvd, vd); 1989 vdev_compact_children(pvd); 1990 1991 /* 1992 * Remember one of the remaining children so we can get tvd below. 1993 */ 1994 cvd = pvd->vdev_child[0]; 1995 1996 /* 1997 * If we need to remove the remaining child from the list of hot spares, 1998 * do it now, marking the vdev as no longer a spare in the process. We 1999 * must do this before vdev_remove_parent(), because that can change the 2000 * GUID if it creates a new toplevel GUID. 2001 */ 2002 if (unspare) { 2003 ASSERT(cvd->vdev_isspare); 2004 spa_spare_remove(cvd); 2005 unspare_guid = cvd->vdev_guid; 2006 } 2007 2008 /* 2009 * If the parent mirror/replacing vdev only has one child, 2010 * the parent is no longer needed. Remove it from the tree. 2011 */ 2012 if (pvd->vdev_children == 1) 2013 vdev_remove_parent(cvd); 2014 2015 /* 2016 * We don't set tvd until now because the parent we just removed 2017 * may have been the previous top-level vdev. 2018 */ 2019 tvd = cvd->vdev_top; 2020 ASSERT(tvd->vdev_parent == rvd); 2021 2022 /* 2023 * Reevaluate the parent vdev state. 2024 */ 2025 vdev_propagate_state(cvd); 2026 2027 /* 2028 * If the device we just detached was smaller than the others, it may be 2029 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() 2030 * can't fail because the existing metaslabs are already in core, so 2031 * there's nothing to read from disk. 2032 */ 2033 VERIFY(vdev_metaslab_init(tvd, txg) == 0); 2034 2035 vdev_config_dirty(tvd); 2036 2037 /* 2038 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 2039 * vd->vdev_detached is set and free vd's DTL object in syncing context. 2040 * But first make sure we're not on any *other* txg's DTL list, to 2041 * prevent vd from being accessed after it's freed. 2042 */ 2043 for (t = 0; t < TXG_SIZE; t++) 2044 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 2045 vd->vdev_detached = B_TRUE; 2046 vdev_dirty(tvd, VDD_DTL, vd, txg); 2047 2048 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 2049 2050 error = spa_vdev_exit(spa, vd, txg, 0); 2051 2052 /* 2053 * If this was the removal of the original device in a hot spare vdev, 2054 * then we want to go through and remove the device from the hot spare 2055 * list of every other pool. 2056 */ 2057 if (unspare) { 2058 spa = NULL; 2059 mutex_enter(&spa_namespace_lock); 2060 while ((spa = spa_next(spa)) != NULL) { 2061 if (spa->spa_state != POOL_STATE_ACTIVE) 2062 continue; 2063 2064 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 2065 } 2066 mutex_exit(&spa_namespace_lock); 2067 } 2068 2069 return (error); 2070 } 2071 2072 /* 2073 * Remove a device from the pool. Currently, this supports removing only hot 2074 * spares. 2075 */ 2076 int 2077 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2078 { 2079 vdev_t *vd; 2080 nvlist_t **spares, *nv, **newspares; 2081 uint_t i, j, nspares; 2082 int ret = 0; 2083 2084 spa_config_enter(spa, RW_WRITER, FTAG); 2085 2086 vd = spa_lookup_by_guid(spa, guid); 2087 2088 nv = NULL; 2089 if (spa->spa_spares != NULL && 2090 nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2091 &spares, &nspares) == 0) { 2092 for (i = 0; i < nspares; i++) { 2093 uint64_t theguid; 2094 2095 VERIFY(nvlist_lookup_uint64(spares[i], 2096 ZPOOL_CONFIG_GUID, &theguid) == 0); 2097 if (theguid == guid) { 2098 nv = spares[i]; 2099 break; 2100 } 2101 } 2102 } 2103 2104 /* 2105 * We only support removing a hot spare, and only if it's not currently 2106 * in use in this pool. 2107 */ 2108 if (nv == NULL && vd == NULL) { 2109 ret = ENOENT; 2110 goto out; 2111 } 2112 2113 if (nv == NULL && vd != NULL) { 2114 ret = ENOTSUP; 2115 goto out; 2116 } 2117 2118 if (!unspare && nv != NULL && vd != NULL) { 2119 ret = EBUSY; 2120 goto out; 2121 } 2122 2123 if (nspares == 1) { 2124 newspares = NULL; 2125 } else { 2126 newspares = kmem_alloc((nspares - 1) * sizeof (void *), 2127 KM_SLEEP); 2128 for (i = 0, j = 0; i < nspares; i++) { 2129 if (spares[i] != nv) 2130 VERIFY(nvlist_dup(spares[i], 2131 &newspares[j++], KM_SLEEP) == 0); 2132 } 2133 } 2134 2135 VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2136 DATA_TYPE_NVLIST_ARRAY) == 0); 2137 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2138 newspares, nspares - 1) == 0); 2139 for (i = 0; i < nspares - 1; i++) 2140 nvlist_free(newspares[i]); 2141 kmem_free(newspares, (nspares - 1) * sizeof (void *)); 2142 spa_load_spares(spa); 2143 spa->spa_sync_spares = B_TRUE; 2144 2145 out: 2146 spa_config_exit(spa, FTAG); 2147 2148 return (ret); 2149 } 2150 2151 /* 2152 * Find any device that's done replacing, or a vdev marked 'unspare' that's 2153 * current spared, so we can detach it. 2154 */ 2155 static vdev_t * 2156 spa_vdev_resilver_done_hunt(vdev_t *vd) 2157 { 2158 vdev_t *newvd, *oldvd; 2159 int c; 2160 2161 for (c = 0; c < vd->vdev_children; c++) { 2162 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 2163 if (oldvd != NULL) 2164 return (oldvd); 2165 } 2166 2167 /* 2168 * Check for a completed replacement. 2169 */ 2170 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 2171 oldvd = vd->vdev_child[0]; 2172 newvd = vd->vdev_child[1]; 2173 2174 mutex_enter(&newvd->vdev_dtl_lock); 2175 if (newvd->vdev_dtl_map.sm_space == 0 && 2176 newvd->vdev_dtl_scrub.sm_space == 0) { 2177 mutex_exit(&newvd->vdev_dtl_lock); 2178 return (oldvd); 2179 } 2180 mutex_exit(&newvd->vdev_dtl_lock); 2181 } 2182 2183 /* 2184 * Check for a completed resilver with the 'unspare' flag set. 2185 */ 2186 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 2187 newvd = vd->vdev_child[0]; 2188 oldvd = vd->vdev_child[1]; 2189 2190 mutex_enter(&newvd->vdev_dtl_lock); 2191 if (newvd->vdev_unspare && 2192 newvd->vdev_dtl_map.sm_space == 0 && 2193 newvd->vdev_dtl_scrub.sm_space == 0) { 2194 newvd->vdev_unspare = 0; 2195 mutex_exit(&newvd->vdev_dtl_lock); 2196 return (oldvd); 2197 } 2198 mutex_exit(&newvd->vdev_dtl_lock); 2199 } 2200 2201 return (NULL); 2202 } 2203 2204 static void 2205 spa_vdev_resilver_done(spa_t *spa) 2206 { 2207 vdev_t *vd; 2208 vdev_t *pvd; 2209 uint64_t guid; 2210 uint64_t pguid = 0; 2211 2212 spa_config_enter(spa, RW_READER, FTAG); 2213 2214 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 2215 guid = vd->vdev_guid; 2216 /* 2217 * If we have just finished replacing a hot spared device, then 2218 * we need to detach the parent's first child (the original hot 2219 * spare) as well. 2220 */ 2221 pvd = vd->vdev_parent; 2222 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2223 pvd->vdev_id == 0) { 2224 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 2225 ASSERT(pvd->vdev_parent->vdev_children == 2); 2226 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; 2227 } 2228 spa_config_exit(spa, FTAG); 2229 if (spa_vdev_detach(spa, guid, B_TRUE) != 0) 2230 return; 2231 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) 2232 return; 2233 spa_config_enter(spa, RW_READER, FTAG); 2234 } 2235 2236 spa_config_exit(spa, FTAG); 2237 } 2238 2239 /* 2240 * Update the stored path for this vdev. Dirty the vdev configuration, relying 2241 * on spa_vdev_enter/exit() to synchronize the labels and cache. 2242 */ 2243 int 2244 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 2245 { 2246 vdev_t *rvd, *vd; 2247 uint64_t txg; 2248 2249 rvd = spa->spa_root_vdev; 2250 2251 txg = spa_vdev_enter(spa); 2252 2253 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2254 /* 2255 * Determine if this is a reference to a hot spare. In that 2256 * case, update the path as stored in the spare list. 2257 */ 2258 nvlist_t **spares; 2259 uint_t i, nspares; 2260 if (spa->spa_sparelist != NULL) { 2261 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 2262 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2263 for (i = 0; i < nspares; i++) { 2264 uint64_t theguid; 2265 VERIFY(nvlist_lookup_uint64(spares[i], 2266 ZPOOL_CONFIG_GUID, &theguid) == 0); 2267 if (theguid == guid) 2268 break; 2269 } 2270 2271 if (i == nspares) 2272 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 2273 2274 VERIFY(nvlist_add_string(spares[i], 2275 ZPOOL_CONFIG_PATH, newpath) == 0); 2276 spa_load_spares(spa); 2277 spa->spa_sync_spares = B_TRUE; 2278 return (spa_vdev_exit(spa, NULL, txg, 0)); 2279 } else { 2280 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 2281 } 2282 } 2283 2284 if (!vd->vdev_ops->vdev_op_leaf) 2285 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2286 2287 spa_strfree(vd->vdev_path); 2288 vd->vdev_path = spa_strdup(newpath); 2289 2290 vdev_config_dirty(vd->vdev_top); 2291 2292 return (spa_vdev_exit(spa, NULL, txg, 0)); 2293 } 2294 2295 /* 2296 * ========================================================================== 2297 * SPA Scrubbing 2298 * ========================================================================== 2299 */ 2300 2301 static void 2302 spa_scrub_io_done(zio_t *zio) 2303 { 2304 spa_t *spa = zio->io_spa; 2305 2306 arc_data_buf_free(zio->io_data, zio->io_size); 2307 2308 mutex_enter(&spa->spa_scrub_lock); 2309 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2310 vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev; 2311 spa->spa_scrub_errors++; 2312 mutex_enter(&vd->vdev_stat_lock); 2313 vd->vdev_stat.vs_scrub_errors++; 2314 mutex_exit(&vd->vdev_stat_lock); 2315 } 2316 2317 if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight) 2318 cv_broadcast(&spa->spa_scrub_io_cv); 2319 2320 ASSERT(spa->spa_scrub_inflight >= 0); 2321 2322 mutex_exit(&spa->spa_scrub_lock); 2323 } 2324 2325 static void 2326 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags, 2327 zbookmark_t *zb) 2328 { 2329 size_t size = BP_GET_LSIZE(bp); 2330 void *data; 2331 2332 mutex_enter(&spa->spa_scrub_lock); 2333 /* 2334 * Do not give too much work to vdev(s). 2335 */ 2336 while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) { 2337 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2338 } 2339 spa->spa_scrub_inflight++; 2340 mutex_exit(&spa->spa_scrub_lock); 2341 2342 data = arc_data_buf_alloc(size); 2343 2344 if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2345 flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */ 2346 2347 flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL; 2348 2349 zio_nowait(zio_read(NULL, spa, bp, data, size, 2350 spa_scrub_io_done, NULL, priority, flags, zb)); 2351 } 2352 2353 /* ARGSUSED */ 2354 static int 2355 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a) 2356 { 2357 blkptr_t *bp = &bc->bc_blkptr; 2358 vdev_t *vd = spa->spa_root_vdev; 2359 dva_t *dva = bp->blk_dva; 2360 int needs_resilver = B_FALSE; 2361 int d; 2362 2363 if (bc->bc_errno) { 2364 /* 2365 * We can't scrub this block, but we can continue to scrub 2366 * the rest of the pool. Note the error and move along. 2367 */ 2368 mutex_enter(&spa->spa_scrub_lock); 2369 spa->spa_scrub_errors++; 2370 mutex_exit(&spa->spa_scrub_lock); 2371 2372 mutex_enter(&vd->vdev_stat_lock); 2373 vd->vdev_stat.vs_scrub_errors++; 2374 mutex_exit(&vd->vdev_stat_lock); 2375 2376 return (ERESTART); 2377 } 2378 2379 ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg); 2380 2381 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 2382 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d])); 2383 2384 ASSERT(vd != NULL); 2385 2386 /* 2387 * Keep track of how much data we've examined so that 2388 * zpool(1M) status can make useful progress reports. 2389 */ 2390 mutex_enter(&vd->vdev_stat_lock); 2391 vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]); 2392 mutex_exit(&vd->vdev_stat_lock); 2393 2394 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) { 2395 if (DVA_GET_GANG(&dva[d])) { 2396 /* 2397 * Gang members may be spread across multiple 2398 * vdevs, so the best we can do is look at the 2399 * pool-wide DTL. 2400 * XXX -- it would be better to change our 2401 * allocation policy to ensure that this can't 2402 * happen. 2403 */ 2404 vd = spa->spa_root_vdev; 2405 } 2406 if (vdev_dtl_contains(&vd->vdev_dtl_map, 2407 bp->blk_birth, 1)) 2408 needs_resilver = B_TRUE; 2409 } 2410 } 2411 2412 if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING) 2413 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB, 2414 ZIO_FLAG_SCRUB, &bc->bc_bookmark); 2415 else if (needs_resilver) 2416 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER, 2417 ZIO_FLAG_RESILVER, &bc->bc_bookmark); 2418 2419 return (0); 2420 } 2421 2422 static void 2423 spa_scrub_thread(spa_t *spa) 2424 { 2425 callb_cpr_t cprinfo; 2426 traverse_handle_t *th = spa->spa_scrub_th; 2427 vdev_t *rvd = spa->spa_root_vdev; 2428 pool_scrub_type_t scrub_type = spa->spa_scrub_type; 2429 int error = 0; 2430 boolean_t complete; 2431 2432 CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG); 2433 2434 /* 2435 * If we're restarting due to a snapshot create/delete, 2436 * wait for that to complete. 2437 */ 2438 txg_wait_synced(spa_get_dsl(spa), 0); 2439 2440 dprintf("start %s mintxg=%llu maxtxg=%llu\n", 2441 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 2442 spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg); 2443 2444 spa_config_enter(spa, RW_WRITER, FTAG); 2445 vdev_reopen(rvd); /* purge all vdev caches */ 2446 vdev_config_dirty(rvd); /* rewrite all disk labels */ 2447 vdev_scrub_stat_update(rvd, scrub_type, B_FALSE); 2448 spa_config_exit(spa, FTAG); 2449 2450 mutex_enter(&spa->spa_scrub_lock); 2451 spa->spa_scrub_errors = 0; 2452 spa->spa_scrub_active = 1; 2453 ASSERT(spa->spa_scrub_inflight == 0); 2454 2455 while (!spa->spa_scrub_stop) { 2456 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2457 while (spa->spa_scrub_suspended) { 2458 spa->spa_scrub_active = 0; 2459 cv_broadcast(&spa->spa_scrub_cv); 2460 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2461 spa->spa_scrub_active = 1; 2462 } 2463 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock); 2464 2465 if (spa->spa_scrub_restart_txg != 0) 2466 break; 2467 2468 mutex_exit(&spa->spa_scrub_lock); 2469 error = traverse_more(th); 2470 mutex_enter(&spa->spa_scrub_lock); 2471 if (error != EAGAIN) 2472 break; 2473 } 2474 2475 while (spa->spa_scrub_inflight) 2476 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2477 2478 spa->spa_scrub_active = 0; 2479 cv_broadcast(&spa->spa_scrub_cv); 2480 2481 mutex_exit(&spa->spa_scrub_lock); 2482 2483 spa_config_enter(spa, RW_WRITER, FTAG); 2484 2485 mutex_enter(&spa->spa_scrub_lock); 2486 2487 /* 2488 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock 2489 * AND the spa config lock to synchronize with any config changes 2490 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit(). 2491 */ 2492 if (spa->spa_scrub_restart_txg != 0) 2493 error = ERESTART; 2494 2495 if (spa->spa_scrub_stop) 2496 error = EINTR; 2497 2498 /* 2499 * Even if there were uncorrectable errors, we consider the scrub 2500 * completed. The downside is that if there is a transient error during 2501 * a resilver, we won't resilver the data properly to the target. But 2502 * if the damage is permanent (more likely) we will resilver forever, 2503 * which isn't really acceptable. Since there is enough information for 2504 * the user to know what has failed and why, this seems like a more 2505 * tractable approach. 2506 */ 2507 complete = (error == 0); 2508 2509 dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n", 2510 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 2511 spa->spa_scrub_maxtxg, complete ? "done" : "FAILED", 2512 error, spa->spa_scrub_errors, spa->spa_scrub_stop); 2513 2514 mutex_exit(&spa->spa_scrub_lock); 2515 2516 /* 2517 * If the scrub/resilver completed, update all DTLs to reflect this. 2518 * Whether it succeeded or not, vacate all temporary scrub DTLs. 2519 */ 2520 vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1, 2521 complete ? spa->spa_scrub_maxtxg : 0, B_TRUE); 2522 vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete); 2523 spa_errlog_rotate(spa); 2524 2525 if (scrub_type == POOL_SCRUB_RESILVER && complete) 2526 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH); 2527 2528 spa_config_exit(spa, FTAG); 2529 2530 mutex_enter(&spa->spa_scrub_lock); 2531 2532 /* 2533 * We may have finished replacing a device. 2534 * Let the async thread assess this and handle the detach. 2535 */ 2536 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 2537 2538 /* 2539 * If we were told to restart, our final act is to start a new scrub. 2540 */ 2541 if (error == ERESTART) 2542 spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ? 2543 SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB); 2544 2545 spa->spa_scrub_type = POOL_SCRUB_NONE; 2546 spa->spa_scrub_active = 0; 2547 spa->spa_scrub_thread = NULL; 2548 cv_broadcast(&spa->spa_scrub_cv); 2549 CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */ 2550 thread_exit(); 2551 } 2552 2553 void 2554 spa_scrub_suspend(spa_t *spa) 2555 { 2556 mutex_enter(&spa->spa_scrub_lock); 2557 spa->spa_scrub_suspended++; 2558 while (spa->spa_scrub_active) { 2559 cv_broadcast(&spa->spa_scrub_cv); 2560 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2561 } 2562 while (spa->spa_scrub_inflight) 2563 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2564 mutex_exit(&spa->spa_scrub_lock); 2565 } 2566 2567 void 2568 spa_scrub_resume(spa_t *spa) 2569 { 2570 mutex_enter(&spa->spa_scrub_lock); 2571 ASSERT(spa->spa_scrub_suspended != 0); 2572 if (--spa->spa_scrub_suspended == 0) 2573 cv_broadcast(&spa->spa_scrub_cv); 2574 mutex_exit(&spa->spa_scrub_lock); 2575 } 2576 2577 void 2578 spa_scrub_restart(spa_t *spa, uint64_t txg) 2579 { 2580 /* 2581 * Something happened (e.g. snapshot create/delete) that means 2582 * we must restart any in-progress scrubs. The itinerary will 2583 * fix this properly. 2584 */ 2585 mutex_enter(&spa->spa_scrub_lock); 2586 spa->spa_scrub_restart_txg = txg; 2587 mutex_exit(&spa->spa_scrub_lock); 2588 } 2589 2590 int 2591 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force) 2592 { 2593 space_seg_t *ss; 2594 uint64_t mintxg, maxtxg; 2595 vdev_t *rvd = spa->spa_root_vdev; 2596 2597 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2598 ASSERT(!spa_config_held(spa, RW_WRITER)); 2599 2600 if ((uint_t)type >= POOL_SCRUB_TYPES) 2601 return (ENOTSUP); 2602 2603 mutex_enter(&spa->spa_scrub_lock); 2604 2605 /* 2606 * If there's a scrub or resilver already in progress, stop it. 2607 */ 2608 while (spa->spa_scrub_thread != NULL) { 2609 /* 2610 * Don't stop a resilver unless forced. 2611 */ 2612 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) { 2613 mutex_exit(&spa->spa_scrub_lock); 2614 return (EBUSY); 2615 } 2616 spa->spa_scrub_stop = 1; 2617 cv_broadcast(&spa->spa_scrub_cv); 2618 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2619 } 2620 2621 /* 2622 * Terminate the previous traverse. 2623 */ 2624 if (spa->spa_scrub_th != NULL) { 2625 traverse_fini(spa->spa_scrub_th); 2626 spa->spa_scrub_th = NULL; 2627 } 2628 2629 if (rvd == NULL) { 2630 ASSERT(spa->spa_scrub_stop == 0); 2631 ASSERT(spa->spa_scrub_type == type); 2632 ASSERT(spa->spa_scrub_restart_txg == 0); 2633 mutex_exit(&spa->spa_scrub_lock); 2634 return (0); 2635 } 2636 2637 mintxg = TXG_INITIAL - 1; 2638 maxtxg = spa_last_synced_txg(spa) + 1; 2639 2640 mutex_enter(&rvd->vdev_dtl_lock); 2641 2642 if (rvd->vdev_dtl_map.sm_space == 0) { 2643 /* 2644 * The pool-wide DTL is empty. 2645 * If this is a resilver, there's nothing to do except 2646 * check whether any in-progress replacements have completed. 2647 */ 2648 if (type == POOL_SCRUB_RESILVER) { 2649 type = POOL_SCRUB_NONE; 2650 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 2651 } 2652 } else { 2653 /* 2654 * The pool-wide DTL is non-empty. 2655 * If this is a normal scrub, upgrade to a resilver instead. 2656 */ 2657 if (type == POOL_SCRUB_EVERYTHING) 2658 type = POOL_SCRUB_RESILVER; 2659 } 2660 2661 if (type == POOL_SCRUB_RESILVER) { 2662 /* 2663 * Determine the resilvering boundaries. 2664 * 2665 * Note: (mintxg, maxtxg) is an open interval, 2666 * i.e. mintxg and maxtxg themselves are not included. 2667 * 2668 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1 2669 * so we don't claim to resilver a txg that's still changing. 2670 */ 2671 ss = avl_first(&rvd->vdev_dtl_map.sm_root); 2672 mintxg = ss->ss_start - 1; 2673 ss = avl_last(&rvd->vdev_dtl_map.sm_root); 2674 maxtxg = MIN(ss->ss_end, maxtxg); 2675 2676 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START); 2677 } 2678 2679 mutex_exit(&rvd->vdev_dtl_lock); 2680 2681 spa->spa_scrub_stop = 0; 2682 spa->spa_scrub_type = type; 2683 spa->spa_scrub_restart_txg = 0; 2684 2685 if (type != POOL_SCRUB_NONE) { 2686 spa->spa_scrub_mintxg = mintxg; 2687 spa->spa_scrub_maxtxg = maxtxg; 2688 spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL, 2689 ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL, 2690 ZIO_FLAG_CANFAIL); 2691 traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg); 2692 spa->spa_scrub_thread = thread_create(NULL, 0, 2693 spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri); 2694 } 2695 2696 mutex_exit(&spa->spa_scrub_lock); 2697 2698 return (0); 2699 } 2700 2701 /* 2702 * ========================================================================== 2703 * SPA async task processing 2704 * ========================================================================== 2705 */ 2706 2707 static void 2708 spa_async_remove(spa_t *spa, vdev_t *vd) 2709 { 2710 vdev_t *tvd; 2711 int c; 2712 2713 for (c = 0; c < vd->vdev_children; c++) { 2714 tvd = vd->vdev_child[c]; 2715 if (tvd->vdev_remove_wanted) { 2716 tvd->vdev_remove_wanted = 0; 2717 vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED, 2718 VDEV_AUX_NONE); 2719 vdev_clear(spa, tvd); 2720 vdev_config_dirty(tvd->vdev_top); 2721 } 2722 spa_async_remove(spa, tvd); 2723 } 2724 } 2725 2726 static void 2727 spa_async_thread(spa_t *spa) 2728 { 2729 int tasks; 2730 uint64_t txg; 2731 2732 ASSERT(spa->spa_sync_on); 2733 2734 mutex_enter(&spa->spa_async_lock); 2735 tasks = spa->spa_async_tasks; 2736 spa->spa_async_tasks = 0; 2737 mutex_exit(&spa->spa_async_lock); 2738 2739 /* 2740 * See if the config needs to be updated. 2741 */ 2742 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 2743 mutex_enter(&spa_namespace_lock); 2744 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2745 mutex_exit(&spa_namespace_lock); 2746 } 2747 2748 /* 2749 * See if any devices need to be marked REMOVED. 2750 */ 2751 if (tasks & SPA_ASYNC_REMOVE) { 2752 txg = spa_vdev_enter(spa); 2753 spa_async_remove(spa, spa->spa_root_vdev); 2754 (void) spa_vdev_exit(spa, NULL, txg, 0); 2755 } 2756 2757 /* 2758 * If any devices are done replacing, detach them. 2759 */ 2760 if (tasks & SPA_ASYNC_RESILVER_DONE) 2761 spa_vdev_resilver_done(spa); 2762 2763 /* 2764 * Kick off a scrub. When starting a RESILVER scrub (or an EVERYTHING 2765 * scrub which can become a resilver), we need to hold 2766 * spa_namespace_lock() because the sysevent we post via 2767 * spa_event_notify() needs to get the name of the pool. 2768 */ 2769 if (tasks & SPA_ASYNC_SCRUB) { 2770 mutex_enter(&spa_namespace_lock); 2771 VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0); 2772 mutex_exit(&spa_namespace_lock); 2773 } 2774 2775 /* 2776 * Kick off a resilver. 2777 */ 2778 if (tasks & SPA_ASYNC_RESILVER) { 2779 mutex_enter(&spa_namespace_lock); 2780 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 2781 mutex_exit(&spa_namespace_lock); 2782 } 2783 2784 /* 2785 * Let the world know that we're done. 2786 */ 2787 mutex_enter(&spa->spa_async_lock); 2788 spa->spa_async_thread = NULL; 2789 cv_broadcast(&spa->spa_async_cv); 2790 mutex_exit(&spa->spa_async_lock); 2791 thread_exit(); 2792 } 2793 2794 void 2795 spa_async_suspend(spa_t *spa) 2796 { 2797 mutex_enter(&spa->spa_async_lock); 2798 spa->spa_async_suspended++; 2799 while (spa->spa_async_thread != NULL) 2800 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 2801 mutex_exit(&spa->spa_async_lock); 2802 } 2803 2804 void 2805 spa_async_resume(spa_t *spa) 2806 { 2807 mutex_enter(&spa->spa_async_lock); 2808 ASSERT(spa->spa_async_suspended != 0); 2809 spa->spa_async_suspended--; 2810 mutex_exit(&spa->spa_async_lock); 2811 } 2812 2813 static void 2814 spa_async_dispatch(spa_t *spa) 2815 { 2816 mutex_enter(&spa->spa_async_lock); 2817 if (spa->spa_async_tasks && !spa->spa_async_suspended && 2818 spa->spa_async_thread == NULL && 2819 rootdir != NULL && !vn_is_readonly(rootdir)) 2820 spa->spa_async_thread = thread_create(NULL, 0, 2821 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 2822 mutex_exit(&spa->spa_async_lock); 2823 } 2824 2825 void 2826 spa_async_request(spa_t *spa, int task) 2827 { 2828 mutex_enter(&spa->spa_async_lock); 2829 spa->spa_async_tasks |= task; 2830 mutex_exit(&spa->spa_async_lock); 2831 } 2832 2833 /* 2834 * ========================================================================== 2835 * SPA syncing routines 2836 * ========================================================================== 2837 */ 2838 2839 static void 2840 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 2841 { 2842 bplist_t *bpl = &spa->spa_sync_bplist; 2843 dmu_tx_t *tx; 2844 blkptr_t blk; 2845 uint64_t itor = 0; 2846 zio_t *zio; 2847 int error; 2848 uint8_t c = 1; 2849 2850 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); 2851 2852 while (bplist_iterate(bpl, &itor, &blk) == 0) 2853 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); 2854 2855 error = zio_wait(zio); 2856 ASSERT3U(error, ==, 0); 2857 2858 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2859 bplist_vacate(bpl, tx); 2860 2861 /* 2862 * Pre-dirty the first block so we sync to convergence faster. 2863 * (Usually only the first block is needed.) 2864 */ 2865 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 2866 dmu_tx_commit(tx); 2867 } 2868 2869 static void 2870 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 2871 { 2872 char *packed = NULL; 2873 size_t nvsize = 0; 2874 dmu_buf_t *db; 2875 2876 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 2877 2878 packed = kmem_alloc(nvsize, KM_SLEEP); 2879 2880 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 2881 KM_SLEEP) == 0); 2882 2883 dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); 2884 2885 kmem_free(packed, nvsize); 2886 2887 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 2888 dmu_buf_will_dirty(db, tx); 2889 *(uint64_t *)db->db_data = nvsize; 2890 dmu_buf_rele(db, FTAG); 2891 } 2892 2893 static void 2894 spa_sync_spares(spa_t *spa, dmu_tx_t *tx) 2895 { 2896 nvlist_t *nvroot; 2897 nvlist_t **spares; 2898 int i; 2899 2900 if (!spa->spa_sync_spares) 2901 return; 2902 2903 /* 2904 * Update the MOS nvlist describing the list of available spares. 2905 * spa_validate_spares() will have already made sure this nvlist is 2906 * valid and the vdevs are labeled appropriately. 2907 */ 2908 if (spa->spa_spares_object == 0) { 2909 spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset, 2910 DMU_OT_PACKED_NVLIST, 1 << 14, 2911 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2912 VERIFY(zap_update(spa->spa_meta_objset, 2913 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES, 2914 sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0); 2915 } 2916 2917 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2918 if (spa->spa_nspares == 0) { 2919 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2920 NULL, 0) == 0); 2921 } else { 2922 spares = kmem_alloc(spa->spa_nspares * sizeof (void *), 2923 KM_SLEEP); 2924 for (i = 0; i < spa->spa_nspares; i++) 2925 spares[i] = vdev_config_generate(spa, 2926 spa->spa_spares[i], B_FALSE, B_TRUE); 2927 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2928 spares, spa->spa_nspares) == 0); 2929 for (i = 0; i < spa->spa_nspares; i++) 2930 nvlist_free(spares[i]); 2931 kmem_free(spares, spa->spa_nspares * sizeof (void *)); 2932 } 2933 2934 spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx); 2935 nvlist_free(nvroot); 2936 2937 spa->spa_sync_spares = B_FALSE; 2938 } 2939 2940 static void 2941 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 2942 { 2943 nvlist_t *config; 2944 2945 if (list_is_empty(&spa->spa_dirty_list)) 2946 return; 2947 2948 config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); 2949 2950 if (spa->spa_config_syncing) 2951 nvlist_free(spa->spa_config_syncing); 2952 spa->spa_config_syncing = config; 2953 2954 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 2955 } 2956 2957 static void 2958 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 2959 { 2960 spa_t *spa = arg1; 2961 nvlist_t *nvp = arg2; 2962 nvpair_t *nvpair; 2963 objset_t *mos = spa->spa_meta_objset; 2964 uint64_t zapobj; 2965 uint64_t intval; 2966 2967 mutex_enter(&spa->spa_props_lock); 2968 if (spa->spa_pool_props_object == 0) { 2969 zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx); 2970 VERIFY(zapobj > 0); 2971 2972 spa->spa_pool_props_object = zapobj; 2973 2974 VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT, 2975 DMU_POOL_PROPS, 8, 1, 2976 &spa->spa_pool_props_object, tx) == 0); 2977 } 2978 mutex_exit(&spa->spa_props_lock); 2979 2980 nvpair = NULL; 2981 while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) { 2982 switch (zpool_name_to_prop(nvpair_name(nvpair))) { 2983 case ZPOOL_PROP_DELEGATION: 2984 VERIFY(nvlist_lookup_uint64(nvp, 2985 nvpair_name(nvpair), &intval) == 0); 2986 VERIFY(zap_update(mos, 2987 spa->spa_pool_props_object, 2988 nvpair_name(nvpair), 8, 1, 2989 &intval, tx) == 0); 2990 spa->spa_delegation = intval; 2991 break; 2992 case ZPOOL_PROP_BOOTFS: 2993 VERIFY(nvlist_lookup_uint64(nvp, 2994 nvpair_name(nvpair), &spa->spa_bootfs) == 0); 2995 intval = spa->spa_bootfs; 2996 VERIFY(zap_update(mos, 2997 spa->spa_pool_props_object, 2998 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1, 2999 &intval, tx) == 0); 3000 break; 3001 3002 case ZPOOL_PROP_AUTOREPLACE: 3003 VERIFY(nvlist_lookup_uint64(nvp, 3004 nvpair_name(nvpair), &intval) == 0); 3005 VERIFY(zap_update(mos, 3006 spa->spa_pool_props_object, 3007 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1, 3008 &intval, tx) == 0); 3009 break; 3010 } 3011 spa_history_internal_log(LOG_POOL_PROPSET, 3012 spa, tx, cr, "%s %lld %s", 3013 nvpair_name(nvpair), intval, 3014 spa->spa_name); 3015 } 3016 } 3017 3018 /* 3019 * Sync the specified transaction group. New blocks may be dirtied as 3020 * part of the process, so we iterate until it converges. 3021 */ 3022 void 3023 spa_sync(spa_t *spa, uint64_t txg) 3024 { 3025 dsl_pool_t *dp = spa->spa_dsl_pool; 3026 objset_t *mos = spa->spa_meta_objset; 3027 bplist_t *bpl = &spa->spa_sync_bplist; 3028 vdev_t *rvd = spa->spa_root_vdev; 3029 vdev_t *vd; 3030 dmu_tx_t *tx; 3031 int dirty_vdevs; 3032 3033 /* 3034 * Lock out configuration changes. 3035 */ 3036 spa_config_enter(spa, RW_READER, FTAG); 3037 3038 spa->spa_syncing_txg = txg; 3039 spa->spa_sync_pass = 0; 3040 3041 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 3042 3043 tx = dmu_tx_create_assigned(dp, txg); 3044 3045 /* 3046 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 3047 * set spa_deflate if we have no raid-z vdevs. 3048 */ 3049 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 3050 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 3051 int i; 3052 3053 for (i = 0; i < rvd->vdev_children; i++) { 3054 vd = rvd->vdev_child[i]; 3055 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 3056 break; 3057 } 3058 if (i == rvd->vdev_children) { 3059 spa->spa_deflate = TRUE; 3060 VERIFY(0 == zap_add(spa->spa_meta_objset, 3061 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3062 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 3063 } 3064 } 3065 3066 /* 3067 * If anything has changed in this txg, push the deferred frees 3068 * from the previous txg. If not, leave them alone so that we 3069 * don't generate work on an otherwise idle system. 3070 */ 3071 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 3072 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 3073 !txg_list_empty(&dp->dp_sync_tasks, txg)) 3074 spa_sync_deferred_frees(spa, txg); 3075 3076 /* 3077 * Iterate to convergence. 3078 */ 3079 do { 3080 spa->spa_sync_pass++; 3081 3082 spa_sync_config_object(spa, tx); 3083 spa_sync_spares(spa, tx); 3084 spa_errlog_sync(spa, txg); 3085 dsl_pool_sync(dp, txg); 3086 3087 dirty_vdevs = 0; 3088 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 3089 vdev_sync(vd, txg); 3090 dirty_vdevs++; 3091 } 3092 3093 bplist_sync(bpl, tx); 3094 } while (dirty_vdevs); 3095 3096 bplist_close(bpl); 3097 3098 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 3099 3100 /* 3101 * Rewrite the vdev configuration (which includes the uberblock) 3102 * to commit the transaction group. 3103 * 3104 * If there are any dirty vdevs, sync the uberblock to all vdevs. 3105 * Otherwise, pick a random top-level vdev that's known to be 3106 * visible in the config cache (see spa_vdev_add() for details). 3107 * If the write fails, try the next vdev until we're tried them all. 3108 */ 3109 if (!list_is_empty(&spa->spa_dirty_list)) { 3110 VERIFY(vdev_config_sync(rvd, txg) == 0); 3111 } else { 3112 int children = rvd->vdev_children; 3113 int c0 = spa_get_random(children); 3114 int c; 3115 3116 for (c = 0; c < children; c++) { 3117 vd = rvd->vdev_child[(c0 + c) % children]; 3118 if (vd->vdev_ms_array == 0) 3119 continue; 3120 if (vdev_config_sync(vd, txg) == 0) 3121 break; 3122 } 3123 if (c == children) 3124 VERIFY(vdev_config_sync(rvd, txg) == 0); 3125 } 3126 3127 dmu_tx_commit(tx); 3128 3129 /* 3130 * Clear the dirty config list. 3131 */ 3132 while ((vd = list_head(&spa->spa_dirty_list)) != NULL) 3133 vdev_config_clean(vd); 3134 3135 /* 3136 * Now that the new config has synced transactionally, 3137 * let it become visible to the config cache. 3138 */ 3139 if (spa->spa_config_syncing != NULL) { 3140 spa_config_set(spa, spa->spa_config_syncing); 3141 spa->spa_config_txg = txg; 3142 spa->spa_config_syncing = NULL; 3143 } 3144 3145 /* 3146 * Make a stable copy of the fully synced uberblock. 3147 * We use this as the root for pool traversals. 3148 */ 3149 spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */ 3150 3151 spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */ 3152 3153 rw_enter(&spa->spa_traverse_lock, RW_WRITER); 3154 spa->spa_traverse_wanted = 0; 3155 spa->spa_ubsync = spa->spa_uberblock; 3156 rw_exit(&spa->spa_traverse_lock); 3157 3158 spa_scrub_resume(spa); /* resume scrub with new ubsync */ 3159 3160 /* 3161 * Clean up the ZIL records for the synced txg. 3162 */ 3163 dsl_pool_zil_clean(dp); 3164 3165 /* 3166 * Update usable space statistics. 3167 */ 3168 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 3169 vdev_sync_done(vd, txg); 3170 3171 /* 3172 * It had better be the case that we didn't dirty anything 3173 * since vdev_config_sync(). 3174 */ 3175 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 3176 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 3177 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 3178 ASSERT(bpl->bpl_queue == NULL); 3179 3180 spa_config_exit(spa, FTAG); 3181 3182 /* 3183 * If any async tasks have been requested, kick them off. 3184 */ 3185 spa_async_dispatch(spa); 3186 } 3187 3188 /* 3189 * Sync all pools. We don't want to hold the namespace lock across these 3190 * operations, so we take a reference on the spa_t and drop the lock during the 3191 * sync. 3192 */ 3193 void 3194 spa_sync_allpools(void) 3195 { 3196 spa_t *spa = NULL; 3197 mutex_enter(&spa_namespace_lock); 3198 while ((spa = spa_next(spa)) != NULL) { 3199 if (spa_state(spa) != POOL_STATE_ACTIVE) 3200 continue; 3201 spa_open_ref(spa, FTAG); 3202 mutex_exit(&spa_namespace_lock); 3203 txg_wait_synced(spa_get_dsl(spa), 0); 3204 mutex_enter(&spa_namespace_lock); 3205 spa_close(spa, FTAG); 3206 } 3207 mutex_exit(&spa_namespace_lock); 3208 } 3209 3210 /* 3211 * ========================================================================== 3212 * Miscellaneous routines 3213 * ========================================================================== 3214 */ 3215 3216 /* 3217 * Remove all pools in the system. 3218 */ 3219 void 3220 spa_evict_all(void) 3221 { 3222 spa_t *spa; 3223 3224 /* 3225 * Remove all cached state. All pools should be closed now, 3226 * so every spa in the AVL tree should be unreferenced. 3227 */ 3228 mutex_enter(&spa_namespace_lock); 3229 while ((spa = spa_next(NULL)) != NULL) { 3230 /* 3231 * Stop async tasks. The async thread may need to detach 3232 * a device that's been replaced, which requires grabbing 3233 * spa_namespace_lock, so we must drop it here. 3234 */ 3235 spa_open_ref(spa, FTAG); 3236 mutex_exit(&spa_namespace_lock); 3237 spa_async_suspend(spa); 3238 mutex_enter(&spa_namespace_lock); 3239 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 3240 spa_close(spa, FTAG); 3241 3242 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3243 spa_unload(spa); 3244 spa_deactivate(spa); 3245 } 3246 spa_remove(spa); 3247 } 3248 mutex_exit(&spa_namespace_lock); 3249 } 3250 3251 vdev_t * 3252 spa_lookup_by_guid(spa_t *spa, uint64_t guid) 3253 { 3254 return (vdev_lookup_by_guid(spa->spa_root_vdev, guid)); 3255 } 3256 3257 void 3258 spa_upgrade(spa_t *spa) 3259 { 3260 spa_config_enter(spa, RW_WRITER, FTAG); 3261 3262 /* 3263 * This should only be called for a non-faulted pool, and since a 3264 * future version would result in an unopenable pool, this shouldn't be 3265 * possible. 3266 */ 3267 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 3268 3269 spa->spa_uberblock.ub_version = SPA_VERSION; 3270 vdev_config_dirty(spa->spa_root_vdev); 3271 3272 spa_config_exit(spa, FTAG); 3273 3274 txg_wait_synced(spa_get_dsl(spa), 0); 3275 } 3276 3277 boolean_t 3278 spa_has_spare(spa_t *spa, uint64_t guid) 3279 { 3280 int i; 3281 uint64_t spareguid; 3282 3283 for (i = 0; i < spa->spa_nspares; i++) 3284 if (spa->spa_spares[i]->vdev_guid == guid) 3285 return (B_TRUE); 3286 3287 for (i = 0; i < spa->spa_pending_nspares; i++) { 3288 if (nvlist_lookup_uint64(spa->spa_pending_spares[i], 3289 ZPOOL_CONFIG_GUID, &spareguid) == 0 && 3290 spareguid == guid) 3291 return (B_TRUE); 3292 } 3293 3294 return (B_FALSE); 3295 } 3296 3297 int 3298 spa_set_props(spa_t *spa, nvlist_t *nvp) 3299 { 3300 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 3301 spa, nvp, 3)); 3302 } 3303 3304 int 3305 spa_get_props(spa_t *spa, nvlist_t **nvp) 3306 { 3307 zap_cursor_t zc; 3308 zap_attribute_t za; 3309 objset_t *mos = spa->spa_meta_objset; 3310 zfs_source_t src; 3311 zpool_prop_t prop; 3312 nvlist_t *propval; 3313 uint64_t value; 3314 int err; 3315 3316 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3317 3318 mutex_enter(&spa->spa_props_lock); 3319 /* If no props object, then just return empty nvlist */ 3320 if (spa->spa_pool_props_object == 0) { 3321 mutex_exit(&spa->spa_props_lock); 3322 return (0); 3323 } 3324 3325 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 3326 (err = zap_cursor_retrieve(&zc, &za)) == 0; 3327 zap_cursor_advance(&zc)) { 3328 3329 if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL) 3330 continue; 3331 3332 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3333 switch (za.za_integer_length) { 3334 case 8: 3335 if (zpool_prop_default_numeric(prop) == 3336 za.za_first_integer) 3337 src = ZFS_SRC_DEFAULT; 3338 else 3339 src = ZFS_SRC_LOCAL; 3340 value = za.za_first_integer; 3341 3342 if (prop == ZPOOL_PROP_BOOTFS) { 3343 dsl_pool_t *dp; 3344 dsl_dataset_t *ds = NULL; 3345 char strval[MAXPATHLEN]; 3346 3347 dp = spa_get_dsl(spa); 3348 rw_enter(&dp->dp_config_rwlock, RW_READER); 3349 if ((err = dsl_dataset_open_obj(dp, 3350 za.za_first_integer, NULL, DS_MODE_NONE, 3351 FTAG, &ds)) != 0) { 3352 rw_exit(&dp->dp_config_rwlock); 3353 break; 3354 } 3355 dsl_dataset_name(ds, strval); 3356 dsl_dataset_close(ds, DS_MODE_NONE, FTAG); 3357 rw_exit(&dp->dp_config_rwlock); 3358 3359 VERIFY(nvlist_add_uint64(propval, 3360 ZFS_PROP_SOURCE, src) == 0); 3361 VERIFY(nvlist_add_string(propval, 3362 ZFS_PROP_VALUE, strval) == 0); 3363 } else { 3364 VERIFY(nvlist_add_uint64(propval, 3365 ZFS_PROP_SOURCE, src) == 0); 3366 VERIFY(nvlist_add_uint64(propval, 3367 ZFS_PROP_VALUE, value) == 0); 3368 } 3369 VERIFY(nvlist_add_nvlist(*nvp, za.za_name, 3370 propval) == 0); 3371 break; 3372 } 3373 nvlist_free(propval); 3374 } 3375 zap_cursor_fini(&zc); 3376 mutex_exit(&spa->spa_props_lock); 3377 if (err && err != ENOENT) { 3378 nvlist_free(*nvp); 3379 return (err); 3380 } 3381 3382 return (0); 3383 } 3384 3385 /* 3386 * If the bootfs property value is dsobj, clear it. 3387 */ 3388 void 3389 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 3390 { 3391 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 3392 VERIFY(zap_remove(spa->spa_meta_objset, 3393 spa->spa_pool_props_object, 3394 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 3395 spa->spa_bootfs = 0; 3396 } 3397 } 3398 3399 /* 3400 * Post a sysevent corresponding to the given event. The 'name' must be one of 3401 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 3402 * filled in from the spa and (optionally) the vdev. This doesn't do anything 3403 * in the userland libzpool, as we don't want consumers to misinterpret ztest 3404 * or zdb as real changes. 3405 */ 3406 void 3407 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 3408 { 3409 #ifdef _KERNEL 3410 sysevent_t *ev; 3411 sysevent_attr_list_t *attr = NULL; 3412 sysevent_value_t value; 3413 sysevent_id_t eid; 3414 3415 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 3416 SE_SLEEP); 3417 3418 value.value_type = SE_DATA_TYPE_STRING; 3419 value.value.sv_string = spa_name(spa); 3420 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 3421 goto done; 3422 3423 value.value_type = SE_DATA_TYPE_UINT64; 3424 value.value.sv_uint64 = spa_guid(spa); 3425 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 3426 goto done; 3427 3428 if (vd) { 3429 value.value_type = SE_DATA_TYPE_UINT64; 3430 value.value.sv_uint64 = vd->vdev_guid; 3431 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 3432 SE_SLEEP) != 0) 3433 goto done; 3434 3435 if (vd->vdev_path) { 3436 value.value_type = SE_DATA_TYPE_STRING; 3437 value.value.sv_string = vd->vdev_path; 3438 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 3439 &value, SE_SLEEP) != 0) 3440 goto done; 3441 } 3442 } 3443 3444 (void) log_sysevent(ev, SE_SLEEP, &eid); 3445 3446 done: 3447 if (attr) 3448 sysevent_free_attr(attr); 3449 sysevent_free(ev); 3450 #endif 3451 } 3452