1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 67 #ifdef _KERNEL 68 #include <sys/bootprops.h> 69 #include <sys/callb.h> 70 #include <sys/cpupart.h> 71 #include <sys/pool.h> 72 #include <sys/sysdc.h> 73 #include <sys/zone.h> 74 #endif /* _KERNEL */ 75 76 #include "zfs_prop.h" 77 #include "zfs_comutil.h" 78 79 typedef enum zti_modes { 80 zti_mode_fixed, /* value is # of threads (min 1) */ 81 zti_mode_online_percent, /* value is % of online CPUs */ 82 zti_mode_batch, /* cpu-intensive; value is ignored */ 83 zti_mode_null, /* don't create a taskq */ 84 zti_nmodes 85 } zti_modes_t; 86 87 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 89 #define ZTI_BATCH { zti_mode_batch, 0 } 90 #define ZTI_NULL { zti_mode_null, 0 } 91 92 #define ZTI_ONE ZTI_FIX(1) 93 94 typedef struct zio_taskq_info { 95 enum zti_modes zti_mode; 96 uint_t zti_value; 97 } zio_taskq_info_t; 98 99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 100 "issue", "issue_high", "intr", "intr_high" 101 }; 102 103 /* 104 * Define the taskq threads for the following I/O types: 105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 106 */ 107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 115 }; 116 117 static dsl_syncfunc_t spa_sync_version; 118 static dsl_syncfunc_t spa_sync_props; 119 static dsl_checkfunc_t spa_change_guid_check; 120 static dsl_syncfunc_t spa_change_guid_sync; 121 static boolean_t spa_has_active_shared_spare(spa_t *spa); 122 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 123 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 124 char **ereport); 125 static void spa_vdev_resilver_done(spa_t *spa); 126 127 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 128 id_t zio_taskq_psrset_bind = PS_NONE; 129 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 130 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 131 132 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 133 extern int zfs_sync_pass_deferred_free; 134 135 /* 136 * This (illegal) pool name is used when temporarily importing a spa_t in order 137 * to get the vdev stats associated with the imported devices. 138 */ 139 #define TRYIMPORT_NAME "$import" 140 141 /* 142 * ========================================================================== 143 * SPA properties routines 144 * ========================================================================== 145 */ 146 147 /* 148 * Add a (source=src, propname=propval) list to an nvlist. 149 */ 150 static void 151 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 152 uint64_t intval, zprop_source_t src) 153 { 154 const char *propname = zpool_prop_to_name(prop); 155 nvlist_t *propval; 156 157 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 158 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 159 160 if (strval != NULL) 161 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 162 else 163 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 164 165 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 166 nvlist_free(propval); 167 } 168 169 /* 170 * Get property values from the spa configuration. 171 */ 172 static void 173 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 174 { 175 vdev_t *rvd = spa->spa_root_vdev; 176 dsl_pool_t *pool = spa->spa_dsl_pool; 177 uint64_t size; 178 uint64_t alloc; 179 uint64_t space; 180 uint64_t cap, version; 181 zprop_source_t src = ZPROP_SRC_NONE; 182 spa_config_dirent_t *dp; 183 184 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 185 186 if (rvd != NULL) { 187 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 188 size = metaslab_class_get_space(spa_normal_class(spa)); 189 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 190 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 191 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 192 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 193 size - alloc, src); 194 195 space = 0; 196 for (int c = 0; c < rvd->vdev_children; c++) { 197 vdev_t *tvd = rvd->vdev_child[c]; 198 space += tvd->vdev_max_asize - tvd->vdev_asize; 199 } 200 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 201 src); 202 203 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 204 (spa_mode(spa) == FREAD), src); 205 206 cap = (size == 0) ? 0 : (alloc * 100 / size); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 208 209 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 210 ddt_get_pool_dedup_ratio(spa), src); 211 212 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 213 rvd->vdev_state, src); 214 215 version = spa_version(spa); 216 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 217 src = ZPROP_SRC_DEFAULT; 218 else 219 src = ZPROP_SRC_LOCAL; 220 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 221 } 222 223 if (pool != NULL) { 224 dsl_dir_t *freedir = pool->dp_free_dir; 225 226 /* 227 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 228 * when opening pools before this version freedir will be NULL. 229 */ 230 if (freedir != NULL) { 231 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 232 freedir->dd_phys->dd_used_bytes, src); 233 } else { 234 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 235 NULL, 0, src); 236 } 237 } 238 239 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 240 241 if (spa->spa_comment != NULL) { 242 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 243 0, ZPROP_SRC_LOCAL); 244 } 245 246 if (spa->spa_root != NULL) 247 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 248 0, ZPROP_SRC_LOCAL); 249 250 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 251 if (dp->scd_path == NULL) { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 253 "none", 0, ZPROP_SRC_LOCAL); 254 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 255 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 256 dp->scd_path, 0, ZPROP_SRC_LOCAL); 257 } 258 } 259 } 260 261 /* 262 * Get zpool property values. 263 */ 264 int 265 spa_prop_get(spa_t *spa, nvlist_t **nvp) 266 { 267 objset_t *mos = spa->spa_meta_objset; 268 zap_cursor_t zc; 269 zap_attribute_t za; 270 int err; 271 272 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 273 274 mutex_enter(&spa->spa_props_lock); 275 276 /* 277 * Get properties from the spa config. 278 */ 279 spa_prop_get_config(spa, nvp); 280 281 /* If no pool property object, no more prop to get. */ 282 if (mos == NULL || spa->spa_pool_props_object == 0) { 283 mutex_exit(&spa->spa_props_lock); 284 return (0); 285 } 286 287 /* 288 * Get properties from the MOS pool property object. 289 */ 290 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 291 (err = zap_cursor_retrieve(&zc, &za)) == 0; 292 zap_cursor_advance(&zc)) { 293 uint64_t intval = 0; 294 char *strval = NULL; 295 zprop_source_t src = ZPROP_SRC_DEFAULT; 296 zpool_prop_t prop; 297 298 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 299 continue; 300 301 switch (za.za_integer_length) { 302 case 8: 303 /* integer property */ 304 if (za.za_first_integer != 305 zpool_prop_default_numeric(prop)) 306 src = ZPROP_SRC_LOCAL; 307 308 if (prop == ZPOOL_PROP_BOOTFS) { 309 dsl_pool_t *dp; 310 dsl_dataset_t *ds = NULL; 311 312 dp = spa_get_dsl(spa); 313 rw_enter(&dp->dp_config_rwlock, RW_READER); 314 if (err = dsl_dataset_hold_obj(dp, 315 za.za_first_integer, FTAG, &ds)) { 316 rw_exit(&dp->dp_config_rwlock); 317 break; 318 } 319 320 strval = kmem_alloc( 321 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 322 KM_SLEEP); 323 dsl_dataset_name(ds, strval); 324 dsl_dataset_rele(ds, FTAG); 325 rw_exit(&dp->dp_config_rwlock); 326 } else { 327 strval = NULL; 328 intval = za.za_first_integer; 329 } 330 331 spa_prop_add_list(*nvp, prop, strval, intval, src); 332 333 if (strval != NULL) 334 kmem_free(strval, 335 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 336 337 break; 338 339 case 1: 340 /* string property */ 341 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 342 err = zap_lookup(mos, spa->spa_pool_props_object, 343 za.za_name, 1, za.za_num_integers, strval); 344 if (err) { 345 kmem_free(strval, za.za_num_integers); 346 break; 347 } 348 spa_prop_add_list(*nvp, prop, strval, 0, src); 349 kmem_free(strval, za.za_num_integers); 350 break; 351 352 default: 353 break; 354 } 355 } 356 zap_cursor_fini(&zc); 357 mutex_exit(&spa->spa_props_lock); 358 out: 359 if (err && err != ENOENT) { 360 nvlist_free(*nvp); 361 *nvp = NULL; 362 return (err); 363 } 364 365 return (0); 366 } 367 368 /* 369 * Validate the given pool properties nvlist and modify the list 370 * for the property values to be set. 371 */ 372 static int 373 spa_prop_validate(spa_t *spa, nvlist_t *props) 374 { 375 nvpair_t *elem; 376 int error = 0, reset_bootfs = 0; 377 uint64_t objnum = 0; 378 boolean_t has_feature = B_FALSE; 379 380 elem = NULL; 381 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 382 uint64_t intval; 383 char *strval, *slash, *check, *fname; 384 const char *propname = nvpair_name(elem); 385 zpool_prop_t prop = zpool_name_to_prop(propname); 386 387 switch (prop) { 388 case ZPROP_INVAL: 389 if (!zpool_prop_feature(propname)) { 390 error = EINVAL; 391 break; 392 } 393 394 /* 395 * Sanitize the input. 396 */ 397 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 398 error = EINVAL; 399 break; 400 } 401 402 if (nvpair_value_uint64(elem, &intval) != 0) { 403 error = EINVAL; 404 break; 405 } 406 407 if (intval != 0) { 408 error = EINVAL; 409 break; 410 } 411 412 fname = strchr(propname, '@') + 1; 413 if (zfeature_lookup_name(fname, NULL) != 0) { 414 error = EINVAL; 415 break; 416 } 417 418 has_feature = B_TRUE; 419 break; 420 421 case ZPOOL_PROP_VERSION: 422 error = nvpair_value_uint64(elem, &intval); 423 if (!error && 424 (intval < spa_version(spa) || 425 intval > SPA_VERSION_BEFORE_FEATURES || 426 has_feature)) 427 error = EINVAL; 428 break; 429 430 case ZPOOL_PROP_DELEGATION: 431 case ZPOOL_PROP_AUTOREPLACE: 432 case ZPOOL_PROP_LISTSNAPS: 433 case ZPOOL_PROP_AUTOEXPAND: 434 error = nvpair_value_uint64(elem, &intval); 435 if (!error && intval > 1) 436 error = EINVAL; 437 break; 438 439 case ZPOOL_PROP_BOOTFS: 440 /* 441 * If the pool version is less than SPA_VERSION_BOOTFS, 442 * or the pool is still being created (version == 0), 443 * the bootfs property cannot be set. 444 */ 445 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 446 error = ENOTSUP; 447 break; 448 } 449 450 /* 451 * Make sure the vdev config is bootable 452 */ 453 if (!vdev_is_bootable(spa->spa_root_vdev)) { 454 error = ENOTSUP; 455 break; 456 } 457 458 reset_bootfs = 1; 459 460 error = nvpair_value_string(elem, &strval); 461 462 if (!error) { 463 objset_t *os; 464 uint64_t compress; 465 466 if (strval == NULL || strval[0] == '\0') { 467 objnum = zpool_prop_default_numeric( 468 ZPOOL_PROP_BOOTFS); 469 break; 470 } 471 472 if (error = dmu_objset_hold(strval, FTAG, &os)) 473 break; 474 475 /* Must be ZPL and not gzip compressed. */ 476 477 if (dmu_objset_type(os) != DMU_OST_ZFS) { 478 error = ENOTSUP; 479 } else if ((error = dsl_prop_get_integer(strval, 480 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 481 &compress, NULL)) == 0 && 482 !BOOTFS_COMPRESS_VALID(compress)) { 483 error = ENOTSUP; 484 } else { 485 objnum = dmu_objset_id(os); 486 } 487 dmu_objset_rele(os, FTAG); 488 } 489 break; 490 491 case ZPOOL_PROP_FAILUREMODE: 492 error = nvpair_value_uint64(elem, &intval); 493 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 494 intval > ZIO_FAILURE_MODE_PANIC)) 495 error = EINVAL; 496 497 /* 498 * This is a special case which only occurs when 499 * the pool has completely failed. This allows 500 * the user to change the in-core failmode property 501 * without syncing it out to disk (I/Os might 502 * currently be blocked). We do this by returning 503 * EIO to the caller (spa_prop_set) to trick it 504 * into thinking we encountered a property validation 505 * error. 506 */ 507 if (!error && spa_suspended(spa)) { 508 spa->spa_failmode = intval; 509 error = EIO; 510 } 511 break; 512 513 case ZPOOL_PROP_CACHEFILE: 514 if ((error = nvpair_value_string(elem, &strval)) != 0) 515 break; 516 517 if (strval[0] == '\0') 518 break; 519 520 if (strcmp(strval, "none") == 0) 521 break; 522 523 if (strval[0] != '/') { 524 error = EINVAL; 525 break; 526 } 527 528 slash = strrchr(strval, '/'); 529 ASSERT(slash != NULL); 530 531 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 532 strcmp(slash, "/..") == 0) 533 error = EINVAL; 534 break; 535 536 case ZPOOL_PROP_COMMENT: 537 if ((error = nvpair_value_string(elem, &strval)) != 0) 538 break; 539 for (check = strval; *check != '\0'; check++) { 540 /* 541 * The kernel doesn't have an easy isprint() 542 * check. For this kernel check, we merely 543 * check ASCII apart from DEL. Fix this if 544 * there is an easy-to-use kernel isprint(). 545 */ 546 if (*check >= 0x7f) { 547 error = EINVAL; 548 break; 549 } 550 check++; 551 } 552 if (strlen(strval) > ZPROP_MAX_COMMENT) 553 error = E2BIG; 554 break; 555 556 case ZPOOL_PROP_DEDUPDITTO: 557 if (spa_version(spa) < SPA_VERSION_DEDUP) 558 error = ENOTSUP; 559 else 560 error = nvpair_value_uint64(elem, &intval); 561 if (error == 0 && 562 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 563 error = EINVAL; 564 break; 565 } 566 567 if (error) 568 break; 569 } 570 571 if (!error && reset_bootfs) { 572 error = nvlist_remove(props, 573 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 574 575 if (!error) { 576 error = nvlist_add_uint64(props, 577 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 578 } 579 } 580 581 return (error); 582 } 583 584 void 585 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 586 { 587 char *cachefile; 588 spa_config_dirent_t *dp; 589 590 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 591 &cachefile) != 0) 592 return; 593 594 dp = kmem_alloc(sizeof (spa_config_dirent_t), 595 KM_SLEEP); 596 597 if (cachefile[0] == '\0') 598 dp->scd_path = spa_strdup(spa_config_path); 599 else if (strcmp(cachefile, "none") == 0) 600 dp->scd_path = NULL; 601 else 602 dp->scd_path = spa_strdup(cachefile); 603 604 list_insert_head(&spa->spa_config_list, dp); 605 if (need_sync) 606 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 607 } 608 609 int 610 spa_prop_set(spa_t *spa, nvlist_t *nvp) 611 { 612 int error; 613 nvpair_t *elem = NULL; 614 boolean_t need_sync = B_FALSE; 615 616 if ((error = spa_prop_validate(spa, nvp)) != 0) 617 return (error); 618 619 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 620 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 621 622 if (prop == ZPOOL_PROP_CACHEFILE || 623 prop == ZPOOL_PROP_ALTROOT || 624 prop == ZPOOL_PROP_READONLY) 625 continue; 626 627 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 628 uint64_t ver; 629 630 if (prop == ZPOOL_PROP_VERSION) { 631 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 632 } else { 633 ASSERT(zpool_prop_feature(nvpair_name(elem))); 634 ver = SPA_VERSION_FEATURES; 635 need_sync = B_TRUE; 636 } 637 638 /* Save time if the version is already set. */ 639 if (ver == spa_version(spa)) 640 continue; 641 642 /* 643 * In addition to the pool directory object, we might 644 * create the pool properties object, the features for 645 * read object, the features for write object, or the 646 * feature descriptions object. 647 */ 648 error = dsl_sync_task_do(spa_get_dsl(spa), NULL, 649 spa_sync_version, spa, &ver, 6); 650 if (error) 651 return (error); 652 continue; 653 } 654 655 need_sync = B_TRUE; 656 break; 657 } 658 659 if (need_sync) { 660 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 661 spa, nvp, 6)); 662 } 663 664 return (0); 665 } 666 667 /* 668 * If the bootfs property value is dsobj, clear it. 669 */ 670 void 671 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 672 { 673 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 674 VERIFY(zap_remove(spa->spa_meta_objset, 675 spa->spa_pool_props_object, 676 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 677 spa->spa_bootfs = 0; 678 } 679 } 680 681 /*ARGSUSED*/ 682 static int 683 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx) 684 { 685 spa_t *spa = arg1; 686 uint64_t *newguid = arg2; 687 vdev_t *rvd = spa->spa_root_vdev; 688 uint64_t vdev_state; 689 690 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 691 vdev_state = rvd->vdev_state; 692 spa_config_exit(spa, SCL_STATE, FTAG); 693 694 if (vdev_state != VDEV_STATE_HEALTHY) 695 return (ENXIO); 696 697 ASSERT3U(spa_guid(spa), !=, *newguid); 698 699 return (0); 700 } 701 702 static void 703 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx) 704 { 705 spa_t *spa = arg1; 706 uint64_t *newguid = arg2; 707 uint64_t oldguid; 708 vdev_t *rvd = spa->spa_root_vdev; 709 710 oldguid = spa_guid(spa); 711 712 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 713 rvd->vdev_guid = *newguid; 714 rvd->vdev_guid_sum += (*newguid - oldguid); 715 vdev_config_dirty(rvd); 716 spa_config_exit(spa, SCL_STATE, FTAG); 717 718 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 719 oldguid, *newguid); 720 } 721 722 /* 723 * Change the GUID for the pool. This is done so that we can later 724 * re-import a pool built from a clone of our own vdevs. We will modify 725 * the root vdev's guid, our own pool guid, and then mark all of our 726 * vdevs dirty. Note that we must make sure that all our vdevs are 727 * online when we do this, or else any vdevs that weren't present 728 * would be orphaned from our pool. We are also going to issue a 729 * sysevent to update any watchers. 730 */ 731 int 732 spa_change_guid(spa_t *spa) 733 { 734 int error; 735 uint64_t guid; 736 737 mutex_enter(&spa_namespace_lock); 738 guid = spa_generate_guid(NULL); 739 740 error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check, 741 spa_change_guid_sync, spa, &guid, 5); 742 743 if (error == 0) { 744 spa_config_sync(spa, B_FALSE, B_TRUE); 745 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 746 } 747 748 mutex_exit(&spa_namespace_lock); 749 750 return (error); 751 } 752 753 /* 754 * ========================================================================== 755 * SPA state manipulation (open/create/destroy/import/export) 756 * ========================================================================== 757 */ 758 759 static int 760 spa_error_entry_compare(const void *a, const void *b) 761 { 762 spa_error_entry_t *sa = (spa_error_entry_t *)a; 763 spa_error_entry_t *sb = (spa_error_entry_t *)b; 764 int ret; 765 766 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 767 sizeof (zbookmark_t)); 768 769 if (ret < 0) 770 return (-1); 771 else if (ret > 0) 772 return (1); 773 else 774 return (0); 775 } 776 777 /* 778 * Utility function which retrieves copies of the current logs and 779 * re-initializes them in the process. 780 */ 781 void 782 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 783 { 784 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 785 786 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 787 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 788 789 avl_create(&spa->spa_errlist_scrub, 790 spa_error_entry_compare, sizeof (spa_error_entry_t), 791 offsetof(spa_error_entry_t, se_avl)); 792 avl_create(&spa->spa_errlist_last, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 } 796 797 static taskq_t * 798 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 799 uint_t value) 800 { 801 uint_t flags = 0; 802 boolean_t batch = B_FALSE; 803 804 switch (mode) { 805 case zti_mode_null: 806 return (NULL); /* no taskq needed */ 807 808 case zti_mode_fixed: 809 ASSERT3U(value, >=, 1); 810 value = MAX(value, 1); 811 break; 812 813 case zti_mode_batch: 814 batch = B_TRUE; 815 flags |= TASKQ_THREADS_CPU_PCT; 816 value = zio_taskq_batch_pct; 817 break; 818 819 case zti_mode_online_percent: 820 flags |= TASKQ_THREADS_CPU_PCT; 821 break; 822 823 default: 824 panic("unrecognized mode for %s taskq (%u:%u) in " 825 "spa_activate()", 826 name, mode, value); 827 break; 828 } 829 830 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 831 if (batch) 832 flags |= TASKQ_DC_BATCH; 833 834 return (taskq_create_sysdc(name, value, 50, INT_MAX, 835 spa->spa_proc, zio_taskq_basedc, flags)); 836 } 837 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 838 spa->spa_proc, flags)); 839 } 840 841 static void 842 spa_create_zio_taskqs(spa_t *spa) 843 { 844 for (int t = 0; t < ZIO_TYPES; t++) { 845 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 846 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 847 enum zti_modes mode = ztip->zti_mode; 848 uint_t value = ztip->zti_value; 849 char name[32]; 850 851 (void) snprintf(name, sizeof (name), 852 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 853 854 spa->spa_zio_taskq[t][q] = 855 spa_taskq_create(spa, name, mode, value); 856 } 857 } 858 } 859 860 #ifdef _KERNEL 861 static void 862 spa_thread(void *arg) 863 { 864 callb_cpr_t cprinfo; 865 866 spa_t *spa = arg; 867 user_t *pu = PTOU(curproc); 868 869 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 870 spa->spa_name); 871 872 ASSERT(curproc != &p0); 873 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 874 "zpool-%s", spa->spa_name); 875 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 876 877 /* bind this thread to the requested psrset */ 878 if (zio_taskq_psrset_bind != PS_NONE) { 879 pool_lock(); 880 mutex_enter(&cpu_lock); 881 mutex_enter(&pidlock); 882 mutex_enter(&curproc->p_lock); 883 884 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 885 0, NULL, NULL) == 0) { 886 curthread->t_bind_pset = zio_taskq_psrset_bind; 887 } else { 888 cmn_err(CE_WARN, 889 "Couldn't bind process for zfs pool \"%s\" to " 890 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 891 } 892 893 mutex_exit(&curproc->p_lock); 894 mutex_exit(&pidlock); 895 mutex_exit(&cpu_lock); 896 pool_unlock(); 897 } 898 899 if (zio_taskq_sysdc) { 900 sysdc_thread_enter(curthread, 100, 0); 901 } 902 903 spa->spa_proc = curproc; 904 spa->spa_did = curthread->t_did; 905 906 spa_create_zio_taskqs(spa); 907 908 mutex_enter(&spa->spa_proc_lock); 909 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 910 911 spa->spa_proc_state = SPA_PROC_ACTIVE; 912 cv_broadcast(&spa->spa_proc_cv); 913 914 CALLB_CPR_SAFE_BEGIN(&cprinfo); 915 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 916 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 917 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 918 919 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 920 spa->spa_proc_state = SPA_PROC_GONE; 921 spa->spa_proc = &p0; 922 cv_broadcast(&spa->spa_proc_cv); 923 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 924 925 mutex_enter(&curproc->p_lock); 926 lwp_exit(); 927 } 928 #endif 929 930 /* 931 * Activate an uninitialized pool. 932 */ 933 static void 934 spa_activate(spa_t *spa, int mode) 935 { 936 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 937 938 spa->spa_state = POOL_STATE_ACTIVE; 939 spa->spa_mode = mode; 940 941 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 942 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 943 944 /* Try to create a covering process */ 945 mutex_enter(&spa->spa_proc_lock); 946 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 947 ASSERT(spa->spa_proc == &p0); 948 spa->spa_did = 0; 949 950 /* Only create a process if we're going to be around a while. */ 951 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 952 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 953 NULL, 0) == 0) { 954 spa->spa_proc_state = SPA_PROC_CREATED; 955 while (spa->spa_proc_state == SPA_PROC_CREATED) { 956 cv_wait(&spa->spa_proc_cv, 957 &spa->spa_proc_lock); 958 } 959 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 960 ASSERT(spa->spa_proc != &p0); 961 ASSERT(spa->spa_did != 0); 962 } else { 963 #ifdef _KERNEL 964 cmn_err(CE_WARN, 965 "Couldn't create process for zfs pool \"%s\"\n", 966 spa->spa_name); 967 #endif 968 } 969 } 970 mutex_exit(&spa->spa_proc_lock); 971 972 /* If we didn't create a process, we need to create our taskqs. */ 973 if (spa->spa_proc == &p0) { 974 spa_create_zio_taskqs(spa); 975 } 976 977 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 978 offsetof(vdev_t, vdev_config_dirty_node)); 979 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 980 offsetof(vdev_t, vdev_state_dirty_node)); 981 982 txg_list_create(&spa->spa_vdev_txg_list, 983 offsetof(struct vdev, vdev_txg_node)); 984 985 avl_create(&spa->spa_errlist_scrub, 986 spa_error_entry_compare, sizeof (spa_error_entry_t), 987 offsetof(spa_error_entry_t, se_avl)); 988 avl_create(&spa->spa_errlist_last, 989 spa_error_entry_compare, sizeof (spa_error_entry_t), 990 offsetof(spa_error_entry_t, se_avl)); 991 } 992 993 /* 994 * Opposite of spa_activate(). 995 */ 996 static void 997 spa_deactivate(spa_t *spa) 998 { 999 ASSERT(spa->spa_sync_on == B_FALSE); 1000 ASSERT(spa->spa_dsl_pool == NULL); 1001 ASSERT(spa->spa_root_vdev == NULL); 1002 ASSERT(spa->spa_async_zio_root == NULL); 1003 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1004 1005 txg_list_destroy(&spa->spa_vdev_txg_list); 1006 1007 list_destroy(&spa->spa_config_dirty_list); 1008 list_destroy(&spa->spa_state_dirty_list); 1009 1010 for (int t = 0; t < ZIO_TYPES; t++) { 1011 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1012 if (spa->spa_zio_taskq[t][q] != NULL) 1013 taskq_destroy(spa->spa_zio_taskq[t][q]); 1014 spa->spa_zio_taskq[t][q] = NULL; 1015 } 1016 } 1017 1018 metaslab_class_destroy(spa->spa_normal_class); 1019 spa->spa_normal_class = NULL; 1020 1021 metaslab_class_destroy(spa->spa_log_class); 1022 spa->spa_log_class = NULL; 1023 1024 /* 1025 * If this was part of an import or the open otherwise failed, we may 1026 * still have errors left in the queues. Empty them just in case. 1027 */ 1028 spa_errlog_drain(spa); 1029 1030 avl_destroy(&spa->spa_errlist_scrub); 1031 avl_destroy(&spa->spa_errlist_last); 1032 1033 spa->spa_state = POOL_STATE_UNINITIALIZED; 1034 1035 mutex_enter(&spa->spa_proc_lock); 1036 if (spa->spa_proc_state != SPA_PROC_NONE) { 1037 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1038 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1039 cv_broadcast(&spa->spa_proc_cv); 1040 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1041 ASSERT(spa->spa_proc != &p0); 1042 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1043 } 1044 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1045 spa->spa_proc_state = SPA_PROC_NONE; 1046 } 1047 ASSERT(spa->spa_proc == &p0); 1048 mutex_exit(&spa->spa_proc_lock); 1049 1050 /* 1051 * We want to make sure spa_thread() has actually exited the ZFS 1052 * module, so that the module can't be unloaded out from underneath 1053 * it. 1054 */ 1055 if (spa->spa_did != 0) { 1056 thread_join(spa->spa_did); 1057 spa->spa_did = 0; 1058 } 1059 } 1060 1061 /* 1062 * Verify a pool configuration, and construct the vdev tree appropriately. This 1063 * will create all the necessary vdevs in the appropriate layout, with each vdev 1064 * in the CLOSED state. This will prep the pool before open/creation/import. 1065 * All vdev validation is done by the vdev_alloc() routine. 1066 */ 1067 static int 1068 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1069 uint_t id, int atype) 1070 { 1071 nvlist_t **child; 1072 uint_t children; 1073 int error; 1074 1075 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1076 return (error); 1077 1078 if ((*vdp)->vdev_ops->vdev_op_leaf) 1079 return (0); 1080 1081 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1082 &child, &children); 1083 1084 if (error == ENOENT) 1085 return (0); 1086 1087 if (error) { 1088 vdev_free(*vdp); 1089 *vdp = NULL; 1090 return (EINVAL); 1091 } 1092 1093 for (int c = 0; c < children; c++) { 1094 vdev_t *vd; 1095 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1096 atype)) != 0) { 1097 vdev_free(*vdp); 1098 *vdp = NULL; 1099 return (error); 1100 } 1101 } 1102 1103 ASSERT(*vdp != NULL); 1104 1105 return (0); 1106 } 1107 1108 /* 1109 * Opposite of spa_load(). 1110 */ 1111 static void 1112 spa_unload(spa_t *spa) 1113 { 1114 int i; 1115 1116 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1117 1118 /* 1119 * Stop async tasks. 1120 */ 1121 spa_async_suspend(spa); 1122 1123 /* 1124 * Stop syncing. 1125 */ 1126 if (spa->spa_sync_on) { 1127 txg_sync_stop(spa->spa_dsl_pool); 1128 spa->spa_sync_on = B_FALSE; 1129 } 1130 1131 /* 1132 * Wait for any outstanding async I/O to complete. 1133 */ 1134 if (spa->spa_async_zio_root != NULL) { 1135 (void) zio_wait(spa->spa_async_zio_root); 1136 spa->spa_async_zio_root = NULL; 1137 } 1138 1139 bpobj_close(&spa->spa_deferred_bpobj); 1140 1141 /* 1142 * Close the dsl pool. 1143 */ 1144 if (spa->spa_dsl_pool) { 1145 dsl_pool_close(spa->spa_dsl_pool); 1146 spa->spa_dsl_pool = NULL; 1147 spa->spa_meta_objset = NULL; 1148 } 1149 1150 ddt_unload(spa); 1151 1152 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1153 1154 /* 1155 * Drop and purge level 2 cache 1156 */ 1157 spa_l2cache_drop(spa); 1158 1159 /* 1160 * Close all vdevs. 1161 */ 1162 if (spa->spa_root_vdev) 1163 vdev_free(spa->spa_root_vdev); 1164 ASSERT(spa->spa_root_vdev == NULL); 1165 1166 for (i = 0; i < spa->spa_spares.sav_count; i++) 1167 vdev_free(spa->spa_spares.sav_vdevs[i]); 1168 if (spa->spa_spares.sav_vdevs) { 1169 kmem_free(spa->spa_spares.sav_vdevs, 1170 spa->spa_spares.sav_count * sizeof (void *)); 1171 spa->spa_spares.sav_vdevs = NULL; 1172 } 1173 if (spa->spa_spares.sav_config) { 1174 nvlist_free(spa->spa_spares.sav_config); 1175 spa->spa_spares.sav_config = NULL; 1176 } 1177 spa->spa_spares.sav_count = 0; 1178 1179 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1180 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1181 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1182 } 1183 if (spa->spa_l2cache.sav_vdevs) { 1184 kmem_free(spa->spa_l2cache.sav_vdevs, 1185 spa->spa_l2cache.sav_count * sizeof (void *)); 1186 spa->spa_l2cache.sav_vdevs = NULL; 1187 } 1188 if (spa->spa_l2cache.sav_config) { 1189 nvlist_free(spa->spa_l2cache.sav_config); 1190 spa->spa_l2cache.sav_config = NULL; 1191 } 1192 spa->spa_l2cache.sav_count = 0; 1193 1194 spa->spa_async_suspended = 0; 1195 1196 if (spa->spa_comment != NULL) { 1197 spa_strfree(spa->spa_comment); 1198 spa->spa_comment = NULL; 1199 } 1200 1201 spa_config_exit(spa, SCL_ALL, FTAG); 1202 } 1203 1204 /* 1205 * Load (or re-load) the current list of vdevs describing the active spares for 1206 * this pool. When this is called, we have some form of basic information in 1207 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1208 * then re-generate a more complete list including status information. 1209 */ 1210 static void 1211 spa_load_spares(spa_t *spa) 1212 { 1213 nvlist_t **spares; 1214 uint_t nspares; 1215 int i; 1216 vdev_t *vd, *tvd; 1217 1218 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1219 1220 /* 1221 * First, close and free any existing spare vdevs. 1222 */ 1223 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1224 vd = spa->spa_spares.sav_vdevs[i]; 1225 1226 /* Undo the call to spa_activate() below */ 1227 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1228 B_FALSE)) != NULL && tvd->vdev_isspare) 1229 spa_spare_remove(tvd); 1230 vdev_close(vd); 1231 vdev_free(vd); 1232 } 1233 1234 if (spa->spa_spares.sav_vdevs) 1235 kmem_free(spa->spa_spares.sav_vdevs, 1236 spa->spa_spares.sav_count * sizeof (void *)); 1237 1238 if (spa->spa_spares.sav_config == NULL) 1239 nspares = 0; 1240 else 1241 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1242 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1243 1244 spa->spa_spares.sav_count = (int)nspares; 1245 spa->spa_spares.sav_vdevs = NULL; 1246 1247 if (nspares == 0) 1248 return; 1249 1250 /* 1251 * Construct the array of vdevs, opening them to get status in the 1252 * process. For each spare, there is potentially two different vdev_t 1253 * structures associated with it: one in the list of spares (used only 1254 * for basic validation purposes) and one in the active vdev 1255 * configuration (if it's spared in). During this phase we open and 1256 * validate each vdev on the spare list. If the vdev also exists in the 1257 * active configuration, then we also mark this vdev as an active spare. 1258 */ 1259 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1260 KM_SLEEP); 1261 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1262 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1263 VDEV_ALLOC_SPARE) == 0); 1264 ASSERT(vd != NULL); 1265 1266 spa->spa_spares.sav_vdevs[i] = vd; 1267 1268 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1269 B_FALSE)) != NULL) { 1270 if (!tvd->vdev_isspare) 1271 spa_spare_add(tvd); 1272 1273 /* 1274 * We only mark the spare active if we were successfully 1275 * able to load the vdev. Otherwise, importing a pool 1276 * with a bad active spare would result in strange 1277 * behavior, because multiple pool would think the spare 1278 * is actively in use. 1279 * 1280 * There is a vulnerability here to an equally bizarre 1281 * circumstance, where a dead active spare is later 1282 * brought back to life (onlined or otherwise). Given 1283 * the rarity of this scenario, and the extra complexity 1284 * it adds, we ignore the possibility. 1285 */ 1286 if (!vdev_is_dead(tvd)) 1287 spa_spare_activate(tvd); 1288 } 1289 1290 vd->vdev_top = vd; 1291 vd->vdev_aux = &spa->spa_spares; 1292 1293 if (vdev_open(vd) != 0) 1294 continue; 1295 1296 if (vdev_validate_aux(vd) == 0) 1297 spa_spare_add(vd); 1298 } 1299 1300 /* 1301 * Recompute the stashed list of spares, with status information 1302 * this time. 1303 */ 1304 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1305 DATA_TYPE_NVLIST_ARRAY) == 0); 1306 1307 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1308 KM_SLEEP); 1309 for (i = 0; i < spa->spa_spares.sav_count; i++) 1310 spares[i] = vdev_config_generate(spa, 1311 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1312 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1313 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1314 for (i = 0; i < spa->spa_spares.sav_count; i++) 1315 nvlist_free(spares[i]); 1316 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1317 } 1318 1319 /* 1320 * Load (or re-load) the current list of vdevs describing the active l2cache for 1321 * this pool. When this is called, we have some form of basic information in 1322 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1323 * then re-generate a more complete list including status information. 1324 * Devices which are already active have their details maintained, and are 1325 * not re-opened. 1326 */ 1327 static void 1328 spa_load_l2cache(spa_t *spa) 1329 { 1330 nvlist_t **l2cache; 1331 uint_t nl2cache; 1332 int i, j, oldnvdevs; 1333 uint64_t guid; 1334 vdev_t *vd, **oldvdevs, **newvdevs; 1335 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1336 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 if (sav->sav_config != NULL) { 1340 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1341 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1342 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1343 } else { 1344 nl2cache = 0; 1345 newvdevs = NULL; 1346 } 1347 1348 oldvdevs = sav->sav_vdevs; 1349 oldnvdevs = sav->sav_count; 1350 sav->sav_vdevs = NULL; 1351 sav->sav_count = 0; 1352 1353 /* 1354 * Process new nvlist of vdevs. 1355 */ 1356 for (i = 0; i < nl2cache; i++) { 1357 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1358 &guid) == 0); 1359 1360 newvdevs[i] = NULL; 1361 for (j = 0; j < oldnvdevs; j++) { 1362 vd = oldvdevs[j]; 1363 if (vd != NULL && guid == vd->vdev_guid) { 1364 /* 1365 * Retain previous vdev for add/remove ops. 1366 */ 1367 newvdevs[i] = vd; 1368 oldvdevs[j] = NULL; 1369 break; 1370 } 1371 } 1372 1373 if (newvdevs[i] == NULL) { 1374 /* 1375 * Create new vdev 1376 */ 1377 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1378 VDEV_ALLOC_L2CACHE) == 0); 1379 ASSERT(vd != NULL); 1380 newvdevs[i] = vd; 1381 1382 /* 1383 * Commit this vdev as an l2cache device, 1384 * even if it fails to open. 1385 */ 1386 spa_l2cache_add(vd); 1387 1388 vd->vdev_top = vd; 1389 vd->vdev_aux = sav; 1390 1391 spa_l2cache_activate(vd); 1392 1393 if (vdev_open(vd) != 0) 1394 continue; 1395 1396 (void) vdev_validate_aux(vd); 1397 1398 if (!vdev_is_dead(vd)) 1399 l2arc_add_vdev(spa, vd); 1400 } 1401 } 1402 1403 /* 1404 * Purge vdevs that were dropped 1405 */ 1406 for (i = 0; i < oldnvdevs; i++) { 1407 uint64_t pool; 1408 1409 vd = oldvdevs[i]; 1410 if (vd != NULL) { 1411 ASSERT(vd->vdev_isl2cache); 1412 1413 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1414 pool != 0ULL && l2arc_vdev_present(vd)) 1415 l2arc_remove_vdev(vd); 1416 vdev_clear_stats(vd); 1417 vdev_free(vd); 1418 } 1419 } 1420 1421 if (oldvdevs) 1422 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1423 1424 if (sav->sav_config == NULL) 1425 goto out; 1426 1427 sav->sav_vdevs = newvdevs; 1428 sav->sav_count = (int)nl2cache; 1429 1430 /* 1431 * Recompute the stashed list of l2cache devices, with status 1432 * information this time. 1433 */ 1434 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1435 DATA_TYPE_NVLIST_ARRAY) == 0); 1436 1437 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1438 for (i = 0; i < sav->sav_count; i++) 1439 l2cache[i] = vdev_config_generate(spa, 1440 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1441 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1442 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1443 out: 1444 for (i = 0; i < sav->sav_count; i++) 1445 nvlist_free(l2cache[i]); 1446 if (sav->sav_count) 1447 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1448 } 1449 1450 static int 1451 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1452 { 1453 dmu_buf_t *db; 1454 char *packed = NULL; 1455 size_t nvsize = 0; 1456 int error; 1457 *value = NULL; 1458 1459 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1460 nvsize = *(uint64_t *)db->db_data; 1461 dmu_buf_rele(db, FTAG); 1462 1463 packed = kmem_alloc(nvsize, KM_SLEEP); 1464 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1465 DMU_READ_PREFETCH); 1466 if (error == 0) 1467 error = nvlist_unpack(packed, nvsize, value, 0); 1468 kmem_free(packed, nvsize); 1469 1470 return (error); 1471 } 1472 1473 /* 1474 * Checks to see if the given vdev could not be opened, in which case we post a 1475 * sysevent to notify the autoreplace code that the device has been removed. 1476 */ 1477 static void 1478 spa_check_removed(vdev_t *vd) 1479 { 1480 for (int c = 0; c < vd->vdev_children; c++) 1481 spa_check_removed(vd->vdev_child[c]); 1482 1483 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1484 zfs_post_autoreplace(vd->vdev_spa, vd); 1485 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1486 } 1487 } 1488 1489 /* 1490 * Validate the current config against the MOS config 1491 */ 1492 static boolean_t 1493 spa_config_valid(spa_t *spa, nvlist_t *config) 1494 { 1495 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1496 nvlist_t *nv; 1497 1498 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1499 1500 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1501 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1502 1503 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1504 1505 /* 1506 * If we're doing a normal import, then build up any additional 1507 * diagnostic information about missing devices in this config. 1508 * We'll pass this up to the user for further processing. 1509 */ 1510 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1511 nvlist_t **child, *nv; 1512 uint64_t idx = 0; 1513 1514 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1515 KM_SLEEP); 1516 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1517 1518 for (int c = 0; c < rvd->vdev_children; c++) { 1519 vdev_t *tvd = rvd->vdev_child[c]; 1520 vdev_t *mtvd = mrvd->vdev_child[c]; 1521 1522 if (tvd->vdev_ops == &vdev_missing_ops && 1523 mtvd->vdev_ops != &vdev_missing_ops && 1524 mtvd->vdev_islog) 1525 child[idx++] = vdev_config_generate(spa, mtvd, 1526 B_FALSE, 0); 1527 } 1528 1529 if (idx) { 1530 VERIFY(nvlist_add_nvlist_array(nv, 1531 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1532 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1533 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1534 1535 for (int i = 0; i < idx; i++) 1536 nvlist_free(child[i]); 1537 } 1538 nvlist_free(nv); 1539 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1540 } 1541 1542 /* 1543 * Compare the root vdev tree with the information we have 1544 * from the MOS config (mrvd). Check each top-level vdev 1545 * with the corresponding MOS config top-level (mtvd). 1546 */ 1547 for (int c = 0; c < rvd->vdev_children; c++) { 1548 vdev_t *tvd = rvd->vdev_child[c]; 1549 vdev_t *mtvd = mrvd->vdev_child[c]; 1550 1551 /* 1552 * Resolve any "missing" vdevs in the current configuration. 1553 * If we find that the MOS config has more accurate information 1554 * about the top-level vdev then use that vdev instead. 1555 */ 1556 if (tvd->vdev_ops == &vdev_missing_ops && 1557 mtvd->vdev_ops != &vdev_missing_ops) { 1558 1559 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1560 continue; 1561 1562 /* 1563 * Device specific actions. 1564 */ 1565 if (mtvd->vdev_islog) { 1566 spa_set_log_state(spa, SPA_LOG_CLEAR); 1567 } else { 1568 /* 1569 * XXX - once we have 'readonly' pool 1570 * support we should be able to handle 1571 * missing data devices by transitioning 1572 * the pool to readonly. 1573 */ 1574 continue; 1575 } 1576 1577 /* 1578 * Swap the missing vdev with the data we were 1579 * able to obtain from the MOS config. 1580 */ 1581 vdev_remove_child(rvd, tvd); 1582 vdev_remove_child(mrvd, mtvd); 1583 1584 vdev_add_child(rvd, mtvd); 1585 vdev_add_child(mrvd, tvd); 1586 1587 spa_config_exit(spa, SCL_ALL, FTAG); 1588 vdev_load(mtvd); 1589 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1590 1591 vdev_reopen(rvd); 1592 } else if (mtvd->vdev_islog) { 1593 /* 1594 * Load the slog device's state from the MOS config 1595 * since it's possible that the label does not 1596 * contain the most up-to-date information. 1597 */ 1598 vdev_load_log_state(tvd, mtvd); 1599 vdev_reopen(tvd); 1600 } 1601 } 1602 vdev_free(mrvd); 1603 spa_config_exit(spa, SCL_ALL, FTAG); 1604 1605 /* 1606 * Ensure we were able to validate the config. 1607 */ 1608 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1609 } 1610 1611 /* 1612 * Check for missing log devices 1613 */ 1614 static int 1615 spa_check_logs(spa_t *spa) 1616 { 1617 switch (spa->spa_log_state) { 1618 case SPA_LOG_MISSING: 1619 /* need to recheck in case slog has been restored */ 1620 case SPA_LOG_UNKNOWN: 1621 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1622 DS_FIND_CHILDREN)) { 1623 spa_set_log_state(spa, SPA_LOG_MISSING); 1624 return (1); 1625 } 1626 break; 1627 } 1628 return (0); 1629 } 1630 1631 static boolean_t 1632 spa_passivate_log(spa_t *spa) 1633 { 1634 vdev_t *rvd = spa->spa_root_vdev; 1635 boolean_t slog_found = B_FALSE; 1636 1637 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1638 1639 if (!spa_has_slogs(spa)) 1640 return (B_FALSE); 1641 1642 for (int c = 0; c < rvd->vdev_children; c++) { 1643 vdev_t *tvd = rvd->vdev_child[c]; 1644 metaslab_group_t *mg = tvd->vdev_mg; 1645 1646 if (tvd->vdev_islog) { 1647 metaslab_group_passivate(mg); 1648 slog_found = B_TRUE; 1649 } 1650 } 1651 1652 return (slog_found); 1653 } 1654 1655 static void 1656 spa_activate_log(spa_t *spa) 1657 { 1658 vdev_t *rvd = spa->spa_root_vdev; 1659 1660 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1661 1662 for (int c = 0; c < rvd->vdev_children; c++) { 1663 vdev_t *tvd = rvd->vdev_child[c]; 1664 metaslab_group_t *mg = tvd->vdev_mg; 1665 1666 if (tvd->vdev_islog) 1667 metaslab_group_activate(mg); 1668 } 1669 } 1670 1671 int 1672 spa_offline_log(spa_t *spa) 1673 { 1674 int error = 0; 1675 1676 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1677 NULL, DS_FIND_CHILDREN)) == 0) { 1678 1679 /* 1680 * We successfully offlined the log device, sync out the 1681 * current txg so that the "stubby" block can be removed 1682 * by zil_sync(). 1683 */ 1684 txg_wait_synced(spa->spa_dsl_pool, 0); 1685 } 1686 return (error); 1687 } 1688 1689 static void 1690 spa_aux_check_removed(spa_aux_vdev_t *sav) 1691 { 1692 for (int i = 0; i < sav->sav_count; i++) 1693 spa_check_removed(sav->sav_vdevs[i]); 1694 } 1695 1696 void 1697 spa_claim_notify(zio_t *zio) 1698 { 1699 spa_t *spa = zio->io_spa; 1700 1701 if (zio->io_error) 1702 return; 1703 1704 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1705 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1706 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1707 mutex_exit(&spa->spa_props_lock); 1708 } 1709 1710 typedef struct spa_load_error { 1711 uint64_t sle_meta_count; 1712 uint64_t sle_data_count; 1713 } spa_load_error_t; 1714 1715 static void 1716 spa_load_verify_done(zio_t *zio) 1717 { 1718 blkptr_t *bp = zio->io_bp; 1719 spa_load_error_t *sle = zio->io_private; 1720 dmu_object_type_t type = BP_GET_TYPE(bp); 1721 int error = zio->io_error; 1722 1723 if (error) { 1724 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1725 type != DMU_OT_INTENT_LOG) 1726 atomic_add_64(&sle->sle_meta_count, 1); 1727 else 1728 atomic_add_64(&sle->sle_data_count, 1); 1729 } 1730 zio_data_buf_free(zio->io_data, zio->io_size); 1731 } 1732 1733 /*ARGSUSED*/ 1734 static int 1735 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1736 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1737 { 1738 if (bp != NULL) { 1739 zio_t *rio = arg; 1740 size_t size = BP_GET_PSIZE(bp); 1741 void *data = zio_data_buf_alloc(size); 1742 1743 zio_nowait(zio_read(rio, spa, bp, data, size, 1744 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1745 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1746 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1747 } 1748 return (0); 1749 } 1750 1751 static int 1752 spa_load_verify(spa_t *spa) 1753 { 1754 zio_t *rio; 1755 spa_load_error_t sle = { 0 }; 1756 zpool_rewind_policy_t policy; 1757 boolean_t verify_ok = B_FALSE; 1758 int error; 1759 1760 zpool_get_rewind_policy(spa->spa_config, &policy); 1761 1762 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1763 return (0); 1764 1765 rio = zio_root(spa, NULL, &sle, 1766 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1767 1768 error = traverse_pool(spa, spa->spa_verify_min_txg, 1769 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1770 1771 (void) zio_wait(rio); 1772 1773 spa->spa_load_meta_errors = sle.sle_meta_count; 1774 spa->spa_load_data_errors = sle.sle_data_count; 1775 1776 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1777 sle.sle_data_count <= policy.zrp_maxdata) { 1778 int64_t loss = 0; 1779 1780 verify_ok = B_TRUE; 1781 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1782 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1783 1784 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1785 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1786 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1787 VERIFY(nvlist_add_int64(spa->spa_load_info, 1788 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1789 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1790 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1791 } else { 1792 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1793 } 1794 1795 if (error) { 1796 if (error != ENXIO && error != EIO) 1797 error = EIO; 1798 return (error); 1799 } 1800 1801 return (verify_ok ? 0 : EIO); 1802 } 1803 1804 /* 1805 * Find a value in the pool props object. 1806 */ 1807 static void 1808 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1809 { 1810 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1811 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1812 } 1813 1814 /* 1815 * Find a value in the pool directory object. 1816 */ 1817 static int 1818 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1819 { 1820 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1821 name, sizeof (uint64_t), 1, val)); 1822 } 1823 1824 static int 1825 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1826 { 1827 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1828 return (err); 1829 } 1830 1831 /* 1832 * Fix up config after a partly-completed split. This is done with the 1833 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1834 * pool have that entry in their config, but only the splitting one contains 1835 * a list of all the guids of the vdevs that are being split off. 1836 * 1837 * This function determines what to do with that list: either rejoin 1838 * all the disks to the pool, or complete the splitting process. To attempt 1839 * the rejoin, each disk that is offlined is marked online again, and 1840 * we do a reopen() call. If the vdev label for every disk that was 1841 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1842 * then we call vdev_split() on each disk, and complete the split. 1843 * 1844 * Otherwise we leave the config alone, with all the vdevs in place in 1845 * the original pool. 1846 */ 1847 static void 1848 spa_try_repair(spa_t *spa, nvlist_t *config) 1849 { 1850 uint_t extracted; 1851 uint64_t *glist; 1852 uint_t i, gcount; 1853 nvlist_t *nvl; 1854 vdev_t **vd; 1855 boolean_t attempt_reopen; 1856 1857 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1858 return; 1859 1860 /* check that the config is complete */ 1861 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1862 &glist, &gcount) != 0) 1863 return; 1864 1865 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1866 1867 /* attempt to online all the vdevs & validate */ 1868 attempt_reopen = B_TRUE; 1869 for (i = 0; i < gcount; i++) { 1870 if (glist[i] == 0) /* vdev is hole */ 1871 continue; 1872 1873 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1874 if (vd[i] == NULL) { 1875 /* 1876 * Don't bother attempting to reopen the disks; 1877 * just do the split. 1878 */ 1879 attempt_reopen = B_FALSE; 1880 } else { 1881 /* attempt to re-online it */ 1882 vd[i]->vdev_offline = B_FALSE; 1883 } 1884 } 1885 1886 if (attempt_reopen) { 1887 vdev_reopen(spa->spa_root_vdev); 1888 1889 /* check each device to see what state it's in */ 1890 for (extracted = 0, i = 0; i < gcount; i++) { 1891 if (vd[i] != NULL && 1892 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1893 break; 1894 ++extracted; 1895 } 1896 } 1897 1898 /* 1899 * If every disk has been moved to the new pool, or if we never 1900 * even attempted to look at them, then we split them off for 1901 * good. 1902 */ 1903 if (!attempt_reopen || gcount == extracted) { 1904 for (i = 0; i < gcount; i++) 1905 if (vd[i] != NULL) 1906 vdev_split(vd[i]); 1907 vdev_reopen(spa->spa_root_vdev); 1908 } 1909 1910 kmem_free(vd, gcount * sizeof (vdev_t *)); 1911 } 1912 1913 static int 1914 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1915 boolean_t mosconfig) 1916 { 1917 nvlist_t *config = spa->spa_config; 1918 char *ereport = FM_EREPORT_ZFS_POOL; 1919 char *comment; 1920 int error; 1921 uint64_t pool_guid; 1922 nvlist_t *nvl; 1923 1924 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1925 return (EINVAL); 1926 1927 ASSERT(spa->spa_comment == NULL); 1928 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 1929 spa->spa_comment = spa_strdup(comment); 1930 1931 /* 1932 * Versioning wasn't explicitly added to the label until later, so if 1933 * it's not present treat it as the initial version. 1934 */ 1935 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1936 &spa->spa_ubsync.ub_version) != 0) 1937 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1938 1939 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1940 &spa->spa_config_txg); 1941 1942 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1943 spa_guid_exists(pool_guid, 0)) { 1944 error = EEXIST; 1945 } else { 1946 spa->spa_config_guid = pool_guid; 1947 1948 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1949 &nvl) == 0) { 1950 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1951 KM_SLEEP) == 0); 1952 } 1953 1954 nvlist_free(spa->spa_load_info); 1955 spa->spa_load_info = fnvlist_alloc(); 1956 1957 gethrestime(&spa->spa_loaded_ts); 1958 error = spa_load_impl(spa, pool_guid, config, state, type, 1959 mosconfig, &ereport); 1960 } 1961 1962 spa->spa_minref = refcount_count(&spa->spa_refcount); 1963 if (error) { 1964 if (error != EEXIST) { 1965 spa->spa_loaded_ts.tv_sec = 0; 1966 spa->spa_loaded_ts.tv_nsec = 0; 1967 } 1968 if (error != EBADF) { 1969 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1970 } 1971 } 1972 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1973 spa->spa_ena = 0; 1974 1975 return (error); 1976 } 1977 1978 /* 1979 * Load an existing storage pool, using the pool's builtin spa_config as a 1980 * source of configuration information. 1981 */ 1982 static int 1983 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1984 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1985 char **ereport) 1986 { 1987 int error = 0; 1988 nvlist_t *nvroot = NULL; 1989 nvlist_t *label; 1990 vdev_t *rvd; 1991 uberblock_t *ub = &spa->spa_uberblock; 1992 uint64_t children, config_cache_txg = spa->spa_config_txg; 1993 int orig_mode = spa->spa_mode; 1994 int parse; 1995 uint64_t obj; 1996 boolean_t missing_feat_write = B_FALSE; 1997 1998 /* 1999 * If this is an untrusted config, access the pool in read-only mode. 2000 * This prevents things like resilvering recently removed devices. 2001 */ 2002 if (!mosconfig) 2003 spa->spa_mode = FREAD; 2004 2005 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2006 2007 spa->spa_load_state = state; 2008 2009 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2010 return (EINVAL); 2011 2012 parse = (type == SPA_IMPORT_EXISTING ? 2013 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2014 2015 /* 2016 * Create "The Godfather" zio to hold all async IOs 2017 */ 2018 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2019 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2020 2021 /* 2022 * Parse the configuration into a vdev tree. We explicitly set the 2023 * value that will be returned by spa_version() since parsing the 2024 * configuration requires knowing the version number. 2025 */ 2026 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2027 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2028 spa_config_exit(spa, SCL_ALL, FTAG); 2029 2030 if (error != 0) 2031 return (error); 2032 2033 ASSERT(spa->spa_root_vdev == rvd); 2034 2035 if (type != SPA_IMPORT_ASSEMBLE) { 2036 ASSERT(spa_guid(spa) == pool_guid); 2037 } 2038 2039 /* 2040 * Try to open all vdevs, loading each label in the process. 2041 */ 2042 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2043 error = vdev_open(rvd); 2044 spa_config_exit(spa, SCL_ALL, FTAG); 2045 if (error != 0) 2046 return (error); 2047 2048 /* 2049 * We need to validate the vdev labels against the configuration that 2050 * we have in hand, which is dependent on the setting of mosconfig. If 2051 * mosconfig is true then we're validating the vdev labels based on 2052 * that config. Otherwise, we're validating against the cached config 2053 * (zpool.cache) that was read when we loaded the zfs module, and then 2054 * later we will recursively call spa_load() and validate against 2055 * the vdev config. 2056 * 2057 * If we're assembling a new pool that's been split off from an 2058 * existing pool, the labels haven't yet been updated so we skip 2059 * validation for now. 2060 */ 2061 if (type != SPA_IMPORT_ASSEMBLE) { 2062 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2063 error = vdev_validate(rvd, mosconfig); 2064 spa_config_exit(spa, SCL_ALL, FTAG); 2065 2066 if (error != 0) 2067 return (error); 2068 2069 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2070 return (ENXIO); 2071 } 2072 2073 /* 2074 * Find the best uberblock. 2075 */ 2076 vdev_uberblock_load(rvd, ub, &label); 2077 2078 /* 2079 * If we weren't able to find a single valid uberblock, return failure. 2080 */ 2081 if (ub->ub_txg == 0) { 2082 nvlist_free(label); 2083 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2084 } 2085 2086 /* 2087 * If the pool has an unsupported version we can't open it. 2088 */ 2089 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2090 nvlist_free(label); 2091 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2092 } 2093 2094 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2095 nvlist_t *features; 2096 2097 /* 2098 * If we weren't able to find what's necessary for reading the 2099 * MOS in the label, return failure. 2100 */ 2101 if (label == NULL || nvlist_lookup_nvlist(label, 2102 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2103 nvlist_free(label); 2104 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2105 ENXIO)); 2106 } 2107 2108 /* 2109 * Update our in-core representation with the definitive values 2110 * from the label. 2111 */ 2112 nvlist_free(spa->spa_label_features); 2113 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2114 } 2115 2116 nvlist_free(label); 2117 2118 /* 2119 * Look through entries in the label nvlist's features_for_read. If 2120 * there is a feature listed there which we don't understand then we 2121 * cannot open a pool. 2122 */ 2123 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2124 nvlist_t *unsup_feat; 2125 2126 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2127 0); 2128 2129 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2130 NULL); nvp != NULL; 2131 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2132 if (!zfeature_is_supported(nvpair_name(nvp))) { 2133 VERIFY(nvlist_add_string(unsup_feat, 2134 nvpair_name(nvp), "") == 0); 2135 } 2136 } 2137 2138 if (!nvlist_empty(unsup_feat)) { 2139 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2140 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2141 nvlist_free(unsup_feat); 2142 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2143 ENOTSUP)); 2144 } 2145 2146 nvlist_free(unsup_feat); 2147 } 2148 2149 /* 2150 * If the vdev guid sum doesn't match the uberblock, we have an 2151 * incomplete configuration. We first check to see if the pool 2152 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2153 * If it is, defer the vdev_guid_sum check till later so we 2154 * can handle missing vdevs. 2155 */ 2156 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2157 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2158 rvd->vdev_guid_sum != ub->ub_guid_sum) 2159 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2160 2161 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2162 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2163 spa_try_repair(spa, config); 2164 spa_config_exit(spa, SCL_ALL, FTAG); 2165 nvlist_free(spa->spa_config_splitting); 2166 spa->spa_config_splitting = NULL; 2167 } 2168 2169 /* 2170 * Initialize internal SPA structures. 2171 */ 2172 spa->spa_state = POOL_STATE_ACTIVE; 2173 spa->spa_ubsync = spa->spa_uberblock; 2174 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2175 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2176 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2177 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2178 spa->spa_claim_max_txg = spa->spa_first_txg; 2179 spa->spa_prev_software_version = ub->ub_software_version; 2180 2181 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2182 if (error) 2183 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2184 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2185 2186 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2187 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2188 2189 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2190 boolean_t missing_feat_read = B_FALSE; 2191 nvlist_t *unsup_feat, *enabled_feat; 2192 2193 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2194 &spa->spa_feat_for_read_obj) != 0) { 2195 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2196 } 2197 2198 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2199 &spa->spa_feat_for_write_obj) != 0) { 2200 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2201 } 2202 2203 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2204 &spa->spa_feat_desc_obj) != 0) { 2205 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2206 } 2207 2208 enabled_feat = fnvlist_alloc(); 2209 unsup_feat = fnvlist_alloc(); 2210 2211 if (!feature_is_supported(spa->spa_meta_objset, 2212 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2213 unsup_feat, enabled_feat)) 2214 missing_feat_read = B_TRUE; 2215 2216 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2217 if (!feature_is_supported(spa->spa_meta_objset, 2218 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2219 unsup_feat, enabled_feat)) { 2220 missing_feat_write = B_TRUE; 2221 } 2222 } 2223 2224 fnvlist_add_nvlist(spa->spa_load_info, 2225 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2226 2227 if (!nvlist_empty(unsup_feat)) { 2228 fnvlist_add_nvlist(spa->spa_load_info, 2229 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2230 } 2231 2232 fnvlist_free(enabled_feat); 2233 fnvlist_free(unsup_feat); 2234 2235 if (!missing_feat_read) { 2236 fnvlist_add_boolean(spa->spa_load_info, 2237 ZPOOL_CONFIG_CAN_RDONLY); 2238 } 2239 2240 /* 2241 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2242 * twofold: to determine whether the pool is available for 2243 * import in read-write mode and (if it is not) whether the 2244 * pool is available for import in read-only mode. If the pool 2245 * is available for import in read-write mode, it is displayed 2246 * as available in userland; if it is not available for import 2247 * in read-only mode, it is displayed as unavailable in 2248 * userland. If the pool is available for import in read-only 2249 * mode but not read-write mode, it is displayed as unavailable 2250 * in userland with a special note that the pool is actually 2251 * available for open in read-only mode. 2252 * 2253 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2254 * missing a feature for write, we must first determine whether 2255 * the pool can be opened read-only before returning to 2256 * userland in order to know whether to display the 2257 * abovementioned note. 2258 */ 2259 if (missing_feat_read || (missing_feat_write && 2260 spa_writeable(spa))) { 2261 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2262 ENOTSUP)); 2263 } 2264 } 2265 2266 spa->spa_is_initializing = B_TRUE; 2267 error = dsl_pool_open(spa->spa_dsl_pool); 2268 spa->spa_is_initializing = B_FALSE; 2269 if (error != 0) 2270 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2271 2272 if (!mosconfig) { 2273 uint64_t hostid; 2274 nvlist_t *policy = NULL, *nvconfig; 2275 2276 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2277 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2278 2279 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2280 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2281 char *hostname; 2282 unsigned long myhostid = 0; 2283 2284 VERIFY(nvlist_lookup_string(nvconfig, 2285 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2286 2287 #ifdef _KERNEL 2288 myhostid = zone_get_hostid(NULL); 2289 #else /* _KERNEL */ 2290 /* 2291 * We're emulating the system's hostid in userland, so 2292 * we can't use zone_get_hostid(). 2293 */ 2294 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2295 #endif /* _KERNEL */ 2296 if (hostid != 0 && myhostid != 0 && 2297 hostid != myhostid) { 2298 nvlist_free(nvconfig); 2299 cmn_err(CE_WARN, "pool '%s' could not be " 2300 "loaded as it was last accessed by " 2301 "another system (host: %s hostid: 0x%lx). " 2302 "See: http://illumos.org/msg/ZFS-8000-EY", 2303 spa_name(spa), hostname, 2304 (unsigned long)hostid); 2305 return (EBADF); 2306 } 2307 } 2308 if (nvlist_lookup_nvlist(spa->spa_config, 2309 ZPOOL_REWIND_POLICY, &policy) == 0) 2310 VERIFY(nvlist_add_nvlist(nvconfig, 2311 ZPOOL_REWIND_POLICY, policy) == 0); 2312 2313 spa_config_set(spa, nvconfig); 2314 spa_unload(spa); 2315 spa_deactivate(spa); 2316 spa_activate(spa, orig_mode); 2317 2318 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2319 } 2320 2321 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2322 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2323 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2324 if (error != 0) 2325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2326 2327 /* 2328 * Load the bit that tells us to use the new accounting function 2329 * (raid-z deflation). If we have an older pool, this will not 2330 * be present. 2331 */ 2332 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2333 if (error != 0 && error != ENOENT) 2334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2335 2336 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2337 &spa->spa_creation_version); 2338 if (error != 0 && error != ENOENT) 2339 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2340 2341 /* 2342 * Load the persistent error log. If we have an older pool, this will 2343 * not be present. 2344 */ 2345 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2346 if (error != 0 && error != ENOENT) 2347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2348 2349 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2350 &spa->spa_errlog_scrub); 2351 if (error != 0 && error != ENOENT) 2352 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2353 2354 /* 2355 * Load the history object. If we have an older pool, this 2356 * will not be present. 2357 */ 2358 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2359 if (error != 0 && error != ENOENT) 2360 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2361 2362 /* 2363 * If we're assembling the pool from the split-off vdevs of 2364 * an existing pool, we don't want to attach the spares & cache 2365 * devices. 2366 */ 2367 2368 /* 2369 * Load any hot spares for this pool. 2370 */ 2371 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2372 if (error != 0 && error != ENOENT) 2373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2374 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2375 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2376 if (load_nvlist(spa, spa->spa_spares.sav_object, 2377 &spa->spa_spares.sav_config) != 0) 2378 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2379 2380 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2381 spa_load_spares(spa); 2382 spa_config_exit(spa, SCL_ALL, FTAG); 2383 } else if (error == 0) { 2384 spa->spa_spares.sav_sync = B_TRUE; 2385 } 2386 2387 /* 2388 * Load any level 2 ARC devices for this pool. 2389 */ 2390 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2391 &spa->spa_l2cache.sav_object); 2392 if (error != 0 && error != ENOENT) 2393 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2394 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2395 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2396 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2397 &spa->spa_l2cache.sav_config) != 0) 2398 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2399 2400 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2401 spa_load_l2cache(spa); 2402 spa_config_exit(spa, SCL_ALL, FTAG); 2403 } else if (error == 0) { 2404 spa->spa_l2cache.sav_sync = B_TRUE; 2405 } 2406 2407 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2408 2409 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2410 if (error && error != ENOENT) 2411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2412 2413 if (error == 0) { 2414 uint64_t autoreplace; 2415 2416 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2417 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2418 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2419 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2420 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2421 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2422 &spa->spa_dedup_ditto); 2423 2424 spa->spa_autoreplace = (autoreplace != 0); 2425 } 2426 2427 /* 2428 * If the 'autoreplace' property is set, then post a resource notifying 2429 * the ZFS DE that it should not issue any faults for unopenable 2430 * devices. We also iterate over the vdevs, and post a sysevent for any 2431 * unopenable vdevs so that the normal autoreplace handler can take 2432 * over. 2433 */ 2434 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2435 spa_check_removed(spa->spa_root_vdev); 2436 /* 2437 * For the import case, this is done in spa_import(), because 2438 * at this point we're using the spare definitions from 2439 * the MOS config, not necessarily from the userland config. 2440 */ 2441 if (state != SPA_LOAD_IMPORT) { 2442 spa_aux_check_removed(&spa->spa_spares); 2443 spa_aux_check_removed(&spa->spa_l2cache); 2444 } 2445 } 2446 2447 /* 2448 * Load the vdev state for all toplevel vdevs. 2449 */ 2450 vdev_load(rvd); 2451 2452 /* 2453 * Propagate the leaf DTLs we just loaded all the way up the tree. 2454 */ 2455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2456 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2457 spa_config_exit(spa, SCL_ALL, FTAG); 2458 2459 /* 2460 * Load the DDTs (dedup tables). 2461 */ 2462 error = ddt_load(spa); 2463 if (error != 0) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 2466 spa_update_dspace(spa); 2467 2468 /* 2469 * Validate the config, using the MOS config to fill in any 2470 * information which might be missing. If we fail to validate 2471 * the config then declare the pool unfit for use. If we're 2472 * assembling a pool from a split, the log is not transferred 2473 * over. 2474 */ 2475 if (type != SPA_IMPORT_ASSEMBLE) { 2476 nvlist_t *nvconfig; 2477 2478 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2480 2481 if (!spa_config_valid(spa, nvconfig)) { 2482 nvlist_free(nvconfig); 2483 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2484 ENXIO)); 2485 } 2486 nvlist_free(nvconfig); 2487 2488 /* 2489 * Now that we've validated the config, check the state of the 2490 * root vdev. If it can't be opened, it indicates one or 2491 * more toplevel vdevs are faulted. 2492 */ 2493 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2494 return (ENXIO); 2495 2496 if (spa_check_logs(spa)) { 2497 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2498 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2499 } 2500 } 2501 2502 if (missing_feat_write) { 2503 ASSERT(state == SPA_LOAD_TRYIMPORT); 2504 2505 /* 2506 * At this point, we know that we can open the pool in 2507 * read-only mode but not read-write mode. We now have enough 2508 * information and can return to userland. 2509 */ 2510 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2511 } 2512 2513 /* 2514 * We've successfully opened the pool, verify that we're ready 2515 * to start pushing transactions. 2516 */ 2517 if (state != SPA_LOAD_TRYIMPORT) { 2518 if (error = spa_load_verify(spa)) 2519 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2520 error)); 2521 } 2522 2523 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2524 spa->spa_load_max_txg == UINT64_MAX)) { 2525 dmu_tx_t *tx; 2526 int need_update = B_FALSE; 2527 2528 ASSERT(state != SPA_LOAD_TRYIMPORT); 2529 2530 /* 2531 * Claim log blocks that haven't been committed yet. 2532 * This must all happen in a single txg. 2533 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2534 * invoked from zil_claim_log_block()'s i/o done callback. 2535 * Price of rollback is that we abandon the log. 2536 */ 2537 spa->spa_claiming = B_TRUE; 2538 2539 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2540 spa_first_txg(spa)); 2541 (void) dmu_objset_find(spa_name(spa), 2542 zil_claim, tx, DS_FIND_CHILDREN); 2543 dmu_tx_commit(tx); 2544 2545 spa->spa_claiming = B_FALSE; 2546 2547 spa_set_log_state(spa, SPA_LOG_GOOD); 2548 spa->spa_sync_on = B_TRUE; 2549 txg_sync_start(spa->spa_dsl_pool); 2550 2551 /* 2552 * Wait for all claims to sync. We sync up to the highest 2553 * claimed log block birth time so that claimed log blocks 2554 * don't appear to be from the future. spa_claim_max_txg 2555 * will have been set for us by either zil_check_log_chain() 2556 * (invoked from spa_check_logs()) or zil_claim() above. 2557 */ 2558 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2559 2560 /* 2561 * If the config cache is stale, or we have uninitialized 2562 * metaslabs (see spa_vdev_add()), then update the config. 2563 * 2564 * If this is a verbatim import, trust the current 2565 * in-core spa_config and update the disk labels. 2566 */ 2567 if (config_cache_txg != spa->spa_config_txg || 2568 state == SPA_LOAD_IMPORT || 2569 state == SPA_LOAD_RECOVER || 2570 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2571 need_update = B_TRUE; 2572 2573 for (int c = 0; c < rvd->vdev_children; c++) 2574 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2575 need_update = B_TRUE; 2576 2577 /* 2578 * Update the config cache asychronously in case we're the 2579 * root pool, in which case the config cache isn't writable yet. 2580 */ 2581 if (need_update) 2582 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2583 2584 /* 2585 * Check all DTLs to see if anything needs resilvering. 2586 */ 2587 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2588 vdev_resilver_needed(rvd, NULL, NULL)) 2589 spa_async_request(spa, SPA_ASYNC_RESILVER); 2590 2591 /* 2592 * Log the fact that we booted up (so that we can detect if 2593 * we rebooted in the middle of an operation). 2594 */ 2595 spa_history_log_version(spa, "open"); 2596 2597 /* 2598 * Delete any inconsistent datasets. 2599 */ 2600 (void) dmu_objset_find(spa_name(spa), 2601 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2602 2603 /* 2604 * Clean up any stale temporary dataset userrefs. 2605 */ 2606 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2607 } 2608 2609 return (0); 2610 } 2611 2612 static int 2613 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2614 { 2615 int mode = spa->spa_mode; 2616 2617 spa_unload(spa); 2618 spa_deactivate(spa); 2619 2620 spa->spa_load_max_txg--; 2621 2622 spa_activate(spa, mode); 2623 spa_async_suspend(spa); 2624 2625 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2626 } 2627 2628 /* 2629 * If spa_load() fails this function will try loading prior txg's. If 2630 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2631 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2632 * function will not rewind the pool and will return the same error as 2633 * spa_load(). 2634 */ 2635 static int 2636 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2637 uint64_t max_request, int rewind_flags) 2638 { 2639 nvlist_t *loadinfo = NULL; 2640 nvlist_t *config = NULL; 2641 int load_error, rewind_error; 2642 uint64_t safe_rewind_txg; 2643 uint64_t min_txg; 2644 2645 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2646 spa->spa_load_max_txg = spa->spa_load_txg; 2647 spa_set_log_state(spa, SPA_LOG_CLEAR); 2648 } else { 2649 spa->spa_load_max_txg = max_request; 2650 } 2651 2652 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2653 mosconfig); 2654 if (load_error == 0) 2655 return (0); 2656 2657 if (spa->spa_root_vdev != NULL) 2658 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2659 2660 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2661 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2662 2663 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2664 nvlist_free(config); 2665 return (load_error); 2666 } 2667 2668 if (state == SPA_LOAD_RECOVER) { 2669 /* Price of rolling back is discarding txgs, including log */ 2670 spa_set_log_state(spa, SPA_LOG_CLEAR); 2671 } else { 2672 /* 2673 * If we aren't rolling back save the load info from our first 2674 * import attempt so that we can restore it after attempting 2675 * to rewind. 2676 */ 2677 loadinfo = spa->spa_load_info; 2678 spa->spa_load_info = fnvlist_alloc(); 2679 } 2680 2681 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2682 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2683 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2684 TXG_INITIAL : safe_rewind_txg; 2685 2686 /* 2687 * Continue as long as we're finding errors, we're still within 2688 * the acceptable rewind range, and we're still finding uberblocks 2689 */ 2690 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2691 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2692 if (spa->spa_load_max_txg < safe_rewind_txg) 2693 spa->spa_extreme_rewind = B_TRUE; 2694 rewind_error = spa_load_retry(spa, state, mosconfig); 2695 } 2696 2697 spa->spa_extreme_rewind = B_FALSE; 2698 spa->spa_load_max_txg = UINT64_MAX; 2699 2700 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2701 spa_config_set(spa, config); 2702 2703 if (state == SPA_LOAD_RECOVER) { 2704 ASSERT3P(loadinfo, ==, NULL); 2705 return (rewind_error); 2706 } else { 2707 /* Store the rewind info as part of the initial load info */ 2708 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2709 spa->spa_load_info); 2710 2711 /* Restore the initial load info */ 2712 fnvlist_free(spa->spa_load_info); 2713 spa->spa_load_info = loadinfo; 2714 2715 return (load_error); 2716 } 2717 } 2718 2719 /* 2720 * Pool Open/Import 2721 * 2722 * The import case is identical to an open except that the configuration is sent 2723 * down from userland, instead of grabbed from the configuration cache. For the 2724 * case of an open, the pool configuration will exist in the 2725 * POOL_STATE_UNINITIALIZED state. 2726 * 2727 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2728 * the same time open the pool, without having to keep around the spa_t in some 2729 * ambiguous state. 2730 */ 2731 static int 2732 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2733 nvlist_t **config) 2734 { 2735 spa_t *spa; 2736 spa_load_state_t state = SPA_LOAD_OPEN; 2737 int error; 2738 int locked = B_FALSE; 2739 2740 *spapp = NULL; 2741 2742 /* 2743 * As disgusting as this is, we need to support recursive calls to this 2744 * function because dsl_dir_open() is called during spa_load(), and ends 2745 * up calling spa_open() again. The real fix is to figure out how to 2746 * avoid dsl_dir_open() calling this in the first place. 2747 */ 2748 if (mutex_owner(&spa_namespace_lock) != curthread) { 2749 mutex_enter(&spa_namespace_lock); 2750 locked = B_TRUE; 2751 } 2752 2753 if ((spa = spa_lookup(pool)) == NULL) { 2754 if (locked) 2755 mutex_exit(&spa_namespace_lock); 2756 return (ENOENT); 2757 } 2758 2759 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2760 zpool_rewind_policy_t policy; 2761 2762 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2763 &policy); 2764 if (policy.zrp_request & ZPOOL_DO_REWIND) 2765 state = SPA_LOAD_RECOVER; 2766 2767 spa_activate(spa, spa_mode_global); 2768 2769 if (state != SPA_LOAD_RECOVER) 2770 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2771 2772 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2773 policy.zrp_request); 2774 2775 if (error == EBADF) { 2776 /* 2777 * If vdev_validate() returns failure (indicated by 2778 * EBADF), it indicates that one of the vdevs indicates 2779 * that the pool has been exported or destroyed. If 2780 * this is the case, the config cache is out of sync and 2781 * we should remove the pool from the namespace. 2782 */ 2783 spa_unload(spa); 2784 spa_deactivate(spa); 2785 spa_config_sync(spa, B_TRUE, B_TRUE); 2786 spa_remove(spa); 2787 if (locked) 2788 mutex_exit(&spa_namespace_lock); 2789 return (ENOENT); 2790 } 2791 2792 if (error) { 2793 /* 2794 * We can't open the pool, but we still have useful 2795 * information: the state of each vdev after the 2796 * attempted vdev_open(). Return this to the user. 2797 */ 2798 if (config != NULL && spa->spa_config) { 2799 VERIFY(nvlist_dup(spa->spa_config, config, 2800 KM_SLEEP) == 0); 2801 VERIFY(nvlist_add_nvlist(*config, 2802 ZPOOL_CONFIG_LOAD_INFO, 2803 spa->spa_load_info) == 0); 2804 } 2805 spa_unload(spa); 2806 spa_deactivate(spa); 2807 spa->spa_last_open_failed = error; 2808 if (locked) 2809 mutex_exit(&spa_namespace_lock); 2810 *spapp = NULL; 2811 return (error); 2812 } 2813 } 2814 2815 spa_open_ref(spa, tag); 2816 2817 if (config != NULL) 2818 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2819 2820 /* 2821 * If we've recovered the pool, pass back any information we 2822 * gathered while doing the load. 2823 */ 2824 if (state == SPA_LOAD_RECOVER) { 2825 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2826 spa->spa_load_info) == 0); 2827 } 2828 2829 if (locked) { 2830 spa->spa_last_open_failed = 0; 2831 spa->spa_last_ubsync_txg = 0; 2832 spa->spa_load_txg = 0; 2833 mutex_exit(&spa_namespace_lock); 2834 } 2835 2836 *spapp = spa; 2837 2838 return (0); 2839 } 2840 2841 int 2842 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2843 nvlist_t **config) 2844 { 2845 return (spa_open_common(name, spapp, tag, policy, config)); 2846 } 2847 2848 int 2849 spa_open(const char *name, spa_t **spapp, void *tag) 2850 { 2851 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2852 } 2853 2854 /* 2855 * Lookup the given spa_t, incrementing the inject count in the process, 2856 * preventing it from being exported or destroyed. 2857 */ 2858 spa_t * 2859 spa_inject_addref(char *name) 2860 { 2861 spa_t *spa; 2862 2863 mutex_enter(&spa_namespace_lock); 2864 if ((spa = spa_lookup(name)) == NULL) { 2865 mutex_exit(&spa_namespace_lock); 2866 return (NULL); 2867 } 2868 spa->spa_inject_ref++; 2869 mutex_exit(&spa_namespace_lock); 2870 2871 return (spa); 2872 } 2873 2874 void 2875 spa_inject_delref(spa_t *spa) 2876 { 2877 mutex_enter(&spa_namespace_lock); 2878 spa->spa_inject_ref--; 2879 mutex_exit(&spa_namespace_lock); 2880 } 2881 2882 /* 2883 * Add spares device information to the nvlist. 2884 */ 2885 static void 2886 spa_add_spares(spa_t *spa, nvlist_t *config) 2887 { 2888 nvlist_t **spares; 2889 uint_t i, nspares; 2890 nvlist_t *nvroot; 2891 uint64_t guid; 2892 vdev_stat_t *vs; 2893 uint_t vsc; 2894 uint64_t pool; 2895 2896 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2897 2898 if (spa->spa_spares.sav_count == 0) 2899 return; 2900 2901 VERIFY(nvlist_lookup_nvlist(config, 2902 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2903 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2904 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2905 if (nspares != 0) { 2906 VERIFY(nvlist_add_nvlist_array(nvroot, 2907 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2908 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2909 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2910 2911 /* 2912 * Go through and find any spares which have since been 2913 * repurposed as an active spare. If this is the case, update 2914 * their status appropriately. 2915 */ 2916 for (i = 0; i < nspares; i++) { 2917 VERIFY(nvlist_lookup_uint64(spares[i], 2918 ZPOOL_CONFIG_GUID, &guid) == 0); 2919 if (spa_spare_exists(guid, &pool, NULL) && 2920 pool != 0ULL) { 2921 VERIFY(nvlist_lookup_uint64_array( 2922 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2923 (uint64_t **)&vs, &vsc) == 0); 2924 vs->vs_state = VDEV_STATE_CANT_OPEN; 2925 vs->vs_aux = VDEV_AUX_SPARED; 2926 } 2927 } 2928 } 2929 } 2930 2931 /* 2932 * Add l2cache device information to the nvlist, including vdev stats. 2933 */ 2934 static void 2935 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2936 { 2937 nvlist_t **l2cache; 2938 uint_t i, j, nl2cache; 2939 nvlist_t *nvroot; 2940 uint64_t guid; 2941 vdev_t *vd; 2942 vdev_stat_t *vs; 2943 uint_t vsc; 2944 2945 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2946 2947 if (spa->spa_l2cache.sav_count == 0) 2948 return; 2949 2950 VERIFY(nvlist_lookup_nvlist(config, 2951 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2952 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2953 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2954 if (nl2cache != 0) { 2955 VERIFY(nvlist_add_nvlist_array(nvroot, 2956 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2957 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2958 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2959 2960 /* 2961 * Update level 2 cache device stats. 2962 */ 2963 2964 for (i = 0; i < nl2cache; i++) { 2965 VERIFY(nvlist_lookup_uint64(l2cache[i], 2966 ZPOOL_CONFIG_GUID, &guid) == 0); 2967 2968 vd = NULL; 2969 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2970 if (guid == 2971 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2972 vd = spa->spa_l2cache.sav_vdevs[j]; 2973 break; 2974 } 2975 } 2976 ASSERT(vd != NULL); 2977 2978 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2979 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2980 == 0); 2981 vdev_get_stats(vd, vs); 2982 } 2983 } 2984 } 2985 2986 static void 2987 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 2988 { 2989 nvlist_t *features; 2990 zap_cursor_t zc; 2991 zap_attribute_t za; 2992 2993 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2994 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2995 2996 if (spa->spa_feat_for_read_obj != 0) { 2997 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2998 spa->spa_feat_for_read_obj); 2999 zap_cursor_retrieve(&zc, &za) == 0; 3000 zap_cursor_advance(&zc)) { 3001 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3002 za.za_num_integers == 1); 3003 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3004 za.za_first_integer)); 3005 } 3006 zap_cursor_fini(&zc); 3007 } 3008 3009 if (spa->spa_feat_for_write_obj != 0) { 3010 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3011 spa->spa_feat_for_write_obj); 3012 zap_cursor_retrieve(&zc, &za) == 0; 3013 zap_cursor_advance(&zc)) { 3014 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3015 za.za_num_integers == 1); 3016 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3017 za.za_first_integer)); 3018 } 3019 zap_cursor_fini(&zc); 3020 } 3021 3022 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3023 features) == 0); 3024 nvlist_free(features); 3025 } 3026 3027 int 3028 spa_get_stats(const char *name, nvlist_t **config, 3029 char *altroot, size_t buflen) 3030 { 3031 int error; 3032 spa_t *spa; 3033 3034 *config = NULL; 3035 error = spa_open_common(name, &spa, FTAG, NULL, config); 3036 3037 if (spa != NULL) { 3038 /* 3039 * This still leaves a window of inconsistency where the spares 3040 * or l2cache devices could change and the config would be 3041 * self-inconsistent. 3042 */ 3043 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3044 3045 if (*config != NULL) { 3046 uint64_t loadtimes[2]; 3047 3048 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3049 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3050 VERIFY(nvlist_add_uint64_array(*config, 3051 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3052 3053 VERIFY(nvlist_add_uint64(*config, 3054 ZPOOL_CONFIG_ERRCOUNT, 3055 spa_get_errlog_size(spa)) == 0); 3056 3057 if (spa_suspended(spa)) 3058 VERIFY(nvlist_add_uint64(*config, 3059 ZPOOL_CONFIG_SUSPENDED, 3060 spa->spa_failmode) == 0); 3061 3062 spa_add_spares(spa, *config); 3063 spa_add_l2cache(spa, *config); 3064 spa_add_feature_stats(spa, *config); 3065 } 3066 } 3067 3068 /* 3069 * We want to get the alternate root even for faulted pools, so we cheat 3070 * and call spa_lookup() directly. 3071 */ 3072 if (altroot) { 3073 if (spa == NULL) { 3074 mutex_enter(&spa_namespace_lock); 3075 spa = spa_lookup(name); 3076 if (spa) 3077 spa_altroot(spa, altroot, buflen); 3078 else 3079 altroot[0] = '\0'; 3080 spa = NULL; 3081 mutex_exit(&spa_namespace_lock); 3082 } else { 3083 spa_altroot(spa, altroot, buflen); 3084 } 3085 } 3086 3087 if (spa != NULL) { 3088 spa_config_exit(spa, SCL_CONFIG, FTAG); 3089 spa_close(spa, FTAG); 3090 } 3091 3092 return (error); 3093 } 3094 3095 /* 3096 * Validate that the auxiliary device array is well formed. We must have an 3097 * array of nvlists, each which describes a valid leaf vdev. If this is an 3098 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3099 * specified, as long as they are well-formed. 3100 */ 3101 static int 3102 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3103 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3104 vdev_labeltype_t label) 3105 { 3106 nvlist_t **dev; 3107 uint_t i, ndev; 3108 vdev_t *vd; 3109 int error; 3110 3111 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3112 3113 /* 3114 * It's acceptable to have no devs specified. 3115 */ 3116 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3117 return (0); 3118 3119 if (ndev == 0) 3120 return (EINVAL); 3121 3122 /* 3123 * Make sure the pool is formatted with a version that supports this 3124 * device type. 3125 */ 3126 if (spa_version(spa) < version) 3127 return (ENOTSUP); 3128 3129 /* 3130 * Set the pending device list so we correctly handle device in-use 3131 * checking. 3132 */ 3133 sav->sav_pending = dev; 3134 sav->sav_npending = ndev; 3135 3136 for (i = 0; i < ndev; i++) { 3137 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3138 mode)) != 0) 3139 goto out; 3140 3141 if (!vd->vdev_ops->vdev_op_leaf) { 3142 vdev_free(vd); 3143 error = EINVAL; 3144 goto out; 3145 } 3146 3147 /* 3148 * The L2ARC currently only supports disk devices in 3149 * kernel context. For user-level testing, we allow it. 3150 */ 3151 #ifdef _KERNEL 3152 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3153 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3154 error = ENOTBLK; 3155 vdev_free(vd); 3156 goto out; 3157 } 3158 #endif 3159 vd->vdev_top = vd; 3160 3161 if ((error = vdev_open(vd)) == 0 && 3162 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3163 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3164 vd->vdev_guid) == 0); 3165 } 3166 3167 vdev_free(vd); 3168 3169 if (error && 3170 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3171 goto out; 3172 else 3173 error = 0; 3174 } 3175 3176 out: 3177 sav->sav_pending = NULL; 3178 sav->sav_npending = 0; 3179 return (error); 3180 } 3181 3182 static int 3183 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3184 { 3185 int error; 3186 3187 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3188 3189 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3190 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3191 VDEV_LABEL_SPARE)) != 0) { 3192 return (error); 3193 } 3194 3195 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3196 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3197 VDEV_LABEL_L2CACHE)); 3198 } 3199 3200 static void 3201 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3202 const char *config) 3203 { 3204 int i; 3205 3206 if (sav->sav_config != NULL) { 3207 nvlist_t **olddevs; 3208 uint_t oldndevs; 3209 nvlist_t **newdevs; 3210 3211 /* 3212 * Generate new dev list by concatentating with the 3213 * current dev list. 3214 */ 3215 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3216 &olddevs, &oldndevs) == 0); 3217 3218 newdevs = kmem_alloc(sizeof (void *) * 3219 (ndevs + oldndevs), KM_SLEEP); 3220 for (i = 0; i < oldndevs; i++) 3221 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3222 KM_SLEEP) == 0); 3223 for (i = 0; i < ndevs; i++) 3224 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3225 KM_SLEEP) == 0); 3226 3227 VERIFY(nvlist_remove(sav->sav_config, config, 3228 DATA_TYPE_NVLIST_ARRAY) == 0); 3229 3230 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3231 config, newdevs, ndevs + oldndevs) == 0); 3232 for (i = 0; i < oldndevs + ndevs; i++) 3233 nvlist_free(newdevs[i]); 3234 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3235 } else { 3236 /* 3237 * Generate a new dev list. 3238 */ 3239 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3240 KM_SLEEP) == 0); 3241 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3242 devs, ndevs) == 0); 3243 } 3244 } 3245 3246 /* 3247 * Stop and drop level 2 ARC devices 3248 */ 3249 void 3250 spa_l2cache_drop(spa_t *spa) 3251 { 3252 vdev_t *vd; 3253 int i; 3254 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3255 3256 for (i = 0; i < sav->sav_count; i++) { 3257 uint64_t pool; 3258 3259 vd = sav->sav_vdevs[i]; 3260 ASSERT(vd != NULL); 3261 3262 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3263 pool != 0ULL && l2arc_vdev_present(vd)) 3264 l2arc_remove_vdev(vd); 3265 } 3266 } 3267 3268 /* 3269 * Pool Creation 3270 */ 3271 int 3272 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3273 nvlist_t *zplprops) 3274 { 3275 spa_t *spa; 3276 char *altroot = NULL; 3277 vdev_t *rvd; 3278 dsl_pool_t *dp; 3279 dmu_tx_t *tx; 3280 int error = 0; 3281 uint64_t txg = TXG_INITIAL; 3282 nvlist_t **spares, **l2cache; 3283 uint_t nspares, nl2cache; 3284 uint64_t version, obj; 3285 boolean_t has_features; 3286 3287 /* 3288 * If this pool already exists, return failure. 3289 */ 3290 mutex_enter(&spa_namespace_lock); 3291 if (spa_lookup(pool) != NULL) { 3292 mutex_exit(&spa_namespace_lock); 3293 return (EEXIST); 3294 } 3295 3296 /* 3297 * Allocate a new spa_t structure. 3298 */ 3299 (void) nvlist_lookup_string(props, 3300 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3301 spa = spa_add(pool, NULL, altroot); 3302 spa_activate(spa, spa_mode_global); 3303 3304 if (props && (error = spa_prop_validate(spa, props))) { 3305 spa_deactivate(spa); 3306 spa_remove(spa); 3307 mutex_exit(&spa_namespace_lock); 3308 return (error); 3309 } 3310 3311 has_features = B_FALSE; 3312 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3313 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3314 if (zpool_prop_feature(nvpair_name(elem))) 3315 has_features = B_TRUE; 3316 } 3317 3318 if (has_features || nvlist_lookup_uint64(props, 3319 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3320 version = SPA_VERSION; 3321 } 3322 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3323 3324 spa->spa_first_txg = txg; 3325 spa->spa_uberblock.ub_txg = txg - 1; 3326 spa->spa_uberblock.ub_version = version; 3327 spa->spa_ubsync = spa->spa_uberblock; 3328 3329 /* 3330 * Create "The Godfather" zio to hold all async IOs 3331 */ 3332 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3333 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3334 3335 /* 3336 * Create the root vdev. 3337 */ 3338 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3339 3340 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3341 3342 ASSERT(error != 0 || rvd != NULL); 3343 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3344 3345 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3346 error = EINVAL; 3347 3348 if (error == 0 && 3349 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3350 (error = spa_validate_aux(spa, nvroot, txg, 3351 VDEV_ALLOC_ADD)) == 0) { 3352 for (int c = 0; c < rvd->vdev_children; c++) { 3353 vdev_metaslab_set_size(rvd->vdev_child[c]); 3354 vdev_expand(rvd->vdev_child[c], txg); 3355 } 3356 } 3357 3358 spa_config_exit(spa, SCL_ALL, FTAG); 3359 3360 if (error != 0) { 3361 spa_unload(spa); 3362 spa_deactivate(spa); 3363 spa_remove(spa); 3364 mutex_exit(&spa_namespace_lock); 3365 return (error); 3366 } 3367 3368 /* 3369 * Get the list of spares, if specified. 3370 */ 3371 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3372 &spares, &nspares) == 0) { 3373 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3374 KM_SLEEP) == 0); 3375 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3376 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3377 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3378 spa_load_spares(spa); 3379 spa_config_exit(spa, SCL_ALL, FTAG); 3380 spa->spa_spares.sav_sync = B_TRUE; 3381 } 3382 3383 /* 3384 * Get the list of level 2 cache devices, if specified. 3385 */ 3386 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3387 &l2cache, &nl2cache) == 0) { 3388 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3389 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3390 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3391 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3392 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3393 spa_load_l2cache(spa); 3394 spa_config_exit(spa, SCL_ALL, FTAG); 3395 spa->spa_l2cache.sav_sync = B_TRUE; 3396 } 3397 3398 spa->spa_is_initializing = B_TRUE; 3399 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3400 spa->spa_meta_objset = dp->dp_meta_objset; 3401 spa->spa_is_initializing = B_FALSE; 3402 3403 /* 3404 * Create DDTs (dedup tables). 3405 */ 3406 ddt_create(spa); 3407 3408 spa_update_dspace(spa); 3409 3410 tx = dmu_tx_create_assigned(dp, txg); 3411 3412 /* 3413 * Create the pool config object. 3414 */ 3415 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3416 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3417 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3418 3419 if (zap_add(spa->spa_meta_objset, 3420 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3421 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3422 cmn_err(CE_PANIC, "failed to add pool config"); 3423 } 3424 3425 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3426 spa_feature_create_zap_objects(spa, tx); 3427 3428 if (zap_add(spa->spa_meta_objset, 3429 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3430 sizeof (uint64_t), 1, &version, tx) != 0) { 3431 cmn_err(CE_PANIC, "failed to add pool version"); 3432 } 3433 3434 /* Newly created pools with the right version are always deflated. */ 3435 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3436 spa->spa_deflate = TRUE; 3437 if (zap_add(spa->spa_meta_objset, 3438 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3439 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3440 cmn_err(CE_PANIC, "failed to add deflate"); 3441 } 3442 } 3443 3444 /* 3445 * Create the deferred-free bpobj. Turn off compression 3446 * because sync-to-convergence takes longer if the blocksize 3447 * keeps changing. 3448 */ 3449 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3450 dmu_object_set_compress(spa->spa_meta_objset, obj, 3451 ZIO_COMPRESS_OFF, tx); 3452 if (zap_add(spa->spa_meta_objset, 3453 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3454 sizeof (uint64_t), 1, &obj, tx) != 0) { 3455 cmn_err(CE_PANIC, "failed to add bpobj"); 3456 } 3457 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3458 spa->spa_meta_objset, obj)); 3459 3460 /* 3461 * Create the pool's history object. 3462 */ 3463 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3464 spa_history_create_obj(spa, tx); 3465 3466 /* 3467 * Set pool properties. 3468 */ 3469 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3470 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3471 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3472 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3473 3474 if (props != NULL) { 3475 spa_configfile_set(spa, props, B_FALSE); 3476 spa_sync_props(spa, props, tx); 3477 } 3478 3479 dmu_tx_commit(tx); 3480 3481 spa->spa_sync_on = B_TRUE; 3482 txg_sync_start(spa->spa_dsl_pool); 3483 3484 /* 3485 * We explicitly wait for the first transaction to complete so that our 3486 * bean counters are appropriately updated. 3487 */ 3488 txg_wait_synced(spa->spa_dsl_pool, txg); 3489 3490 spa_config_sync(spa, B_FALSE, B_TRUE); 3491 3492 spa_history_log_version(spa, "create"); 3493 3494 spa->spa_minref = refcount_count(&spa->spa_refcount); 3495 3496 mutex_exit(&spa_namespace_lock); 3497 3498 return (0); 3499 } 3500 3501 #ifdef _KERNEL 3502 /* 3503 * Get the root pool information from the root disk, then import the root pool 3504 * during the system boot up time. 3505 */ 3506 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3507 3508 static nvlist_t * 3509 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3510 { 3511 nvlist_t *config; 3512 nvlist_t *nvtop, *nvroot; 3513 uint64_t pgid; 3514 3515 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3516 return (NULL); 3517 3518 /* 3519 * Add this top-level vdev to the child array. 3520 */ 3521 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3522 &nvtop) == 0); 3523 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3524 &pgid) == 0); 3525 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3526 3527 /* 3528 * Put this pool's top-level vdevs into a root vdev. 3529 */ 3530 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3531 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3532 VDEV_TYPE_ROOT) == 0); 3533 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3534 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3535 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3536 &nvtop, 1) == 0); 3537 3538 /* 3539 * Replace the existing vdev_tree with the new root vdev in 3540 * this pool's configuration (remove the old, add the new). 3541 */ 3542 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3543 nvlist_free(nvroot); 3544 return (config); 3545 } 3546 3547 /* 3548 * Walk the vdev tree and see if we can find a device with "better" 3549 * configuration. A configuration is "better" if the label on that 3550 * device has a more recent txg. 3551 */ 3552 static void 3553 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3554 { 3555 for (int c = 0; c < vd->vdev_children; c++) 3556 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3557 3558 if (vd->vdev_ops->vdev_op_leaf) { 3559 nvlist_t *label; 3560 uint64_t label_txg; 3561 3562 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3563 &label) != 0) 3564 return; 3565 3566 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3567 &label_txg) == 0); 3568 3569 /* 3570 * Do we have a better boot device? 3571 */ 3572 if (label_txg > *txg) { 3573 *txg = label_txg; 3574 *avd = vd; 3575 } 3576 nvlist_free(label); 3577 } 3578 } 3579 3580 /* 3581 * Import a root pool. 3582 * 3583 * For x86. devpath_list will consist of devid and/or physpath name of 3584 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3585 * The GRUB "findroot" command will return the vdev we should boot. 3586 * 3587 * For Sparc, devpath_list consists the physpath name of the booting device 3588 * no matter the rootpool is a single device pool or a mirrored pool. 3589 * e.g. 3590 * "/pci@1f,0/ide@d/disk@0,0:a" 3591 */ 3592 int 3593 spa_import_rootpool(char *devpath, char *devid) 3594 { 3595 spa_t *spa; 3596 vdev_t *rvd, *bvd, *avd = NULL; 3597 nvlist_t *config, *nvtop; 3598 uint64_t guid, txg; 3599 char *pname; 3600 int error; 3601 3602 /* 3603 * Read the label from the boot device and generate a configuration. 3604 */ 3605 config = spa_generate_rootconf(devpath, devid, &guid); 3606 #if defined(_OBP) && defined(_KERNEL) 3607 if (config == NULL) { 3608 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3609 /* iscsi boot */ 3610 get_iscsi_bootpath_phy(devpath); 3611 config = spa_generate_rootconf(devpath, devid, &guid); 3612 } 3613 } 3614 #endif 3615 if (config == NULL) { 3616 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3617 devpath); 3618 return (EIO); 3619 } 3620 3621 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3622 &pname) == 0); 3623 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3624 3625 mutex_enter(&spa_namespace_lock); 3626 if ((spa = spa_lookup(pname)) != NULL) { 3627 /* 3628 * Remove the existing root pool from the namespace so that we 3629 * can replace it with the correct config we just read in. 3630 */ 3631 spa_remove(spa); 3632 } 3633 3634 spa = spa_add(pname, config, NULL); 3635 spa->spa_is_root = B_TRUE; 3636 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3637 3638 /* 3639 * Build up a vdev tree based on the boot device's label config. 3640 */ 3641 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3642 &nvtop) == 0); 3643 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3644 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3645 VDEV_ALLOC_ROOTPOOL); 3646 spa_config_exit(spa, SCL_ALL, FTAG); 3647 if (error) { 3648 mutex_exit(&spa_namespace_lock); 3649 nvlist_free(config); 3650 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3651 pname); 3652 return (error); 3653 } 3654 3655 /* 3656 * Get the boot vdev. 3657 */ 3658 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3659 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3660 (u_longlong_t)guid); 3661 error = ENOENT; 3662 goto out; 3663 } 3664 3665 /* 3666 * Determine if there is a better boot device. 3667 */ 3668 avd = bvd; 3669 spa_alt_rootvdev(rvd, &avd, &txg); 3670 if (avd != bvd) { 3671 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3672 "try booting from '%s'", avd->vdev_path); 3673 error = EINVAL; 3674 goto out; 3675 } 3676 3677 /* 3678 * If the boot device is part of a spare vdev then ensure that 3679 * we're booting off the active spare. 3680 */ 3681 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3682 !bvd->vdev_isspare) { 3683 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3684 "try booting from '%s'", 3685 bvd->vdev_parent-> 3686 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3687 error = EINVAL; 3688 goto out; 3689 } 3690 3691 error = 0; 3692 out: 3693 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3694 vdev_free(rvd); 3695 spa_config_exit(spa, SCL_ALL, FTAG); 3696 mutex_exit(&spa_namespace_lock); 3697 3698 nvlist_free(config); 3699 return (error); 3700 } 3701 3702 #endif 3703 3704 /* 3705 * Import a non-root pool into the system. 3706 */ 3707 int 3708 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3709 { 3710 spa_t *spa; 3711 char *altroot = NULL; 3712 spa_load_state_t state = SPA_LOAD_IMPORT; 3713 zpool_rewind_policy_t policy; 3714 uint64_t mode = spa_mode_global; 3715 uint64_t readonly = B_FALSE; 3716 int error; 3717 nvlist_t *nvroot; 3718 nvlist_t **spares, **l2cache; 3719 uint_t nspares, nl2cache; 3720 3721 /* 3722 * If a pool with this name exists, return failure. 3723 */ 3724 mutex_enter(&spa_namespace_lock); 3725 if (spa_lookup(pool) != NULL) { 3726 mutex_exit(&spa_namespace_lock); 3727 return (EEXIST); 3728 } 3729 3730 /* 3731 * Create and initialize the spa structure. 3732 */ 3733 (void) nvlist_lookup_string(props, 3734 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3735 (void) nvlist_lookup_uint64(props, 3736 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3737 if (readonly) 3738 mode = FREAD; 3739 spa = spa_add(pool, config, altroot); 3740 spa->spa_import_flags = flags; 3741 3742 /* 3743 * Verbatim import - Take a pool and insert it into the namespace 3744 * as if it had been loaded at boot. 3745 */ 3746 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3747 if (props != NULL) 3748 spa_configfile_set(spa, props, B_FALSE); 3749 3750 spa_config_sync(spa, B_FALSE, B_TRUE); 3751 3752 mutex_exit(&spa_namespace_lock); 3753 spa_history_log_version(spa, "import"); 3754 3755 return (0); 3756 } 3757 3758 spa_activate(spa, mode); 3759 3760 /* 3761 * Don't start async tasks until we know everything is healthy. 3762 */ 3763 spa_async_suspend(spa); 3764 3765 zpool_get_rewind_policy(config, &policy); 3766 if (policy.zrp_request & ZPOOL_DO_REWIND) 3767 state = SPA_LOAD_RECOVER; 3768 3769 /* 3770 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3771 * because the user-supplied config is actually the one to trust when 3772 * doing an import. 3773 */ 3774 if (state != SPA_LOAD_RECOVER) 3775 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3776 3777 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3778 policy.zrp_request); 3779 3780 /* 3781 * Propagate anything learned while loading the pool and pass it 3782 * back to caller (i.e. rewind info, missing devices, etc). 3783 */ 3784 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3785 spa->spa_load_info) == 0); 3786 3787 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3788 /* 3789 * Toss any existing sparelist, as it doesn't have any validity 3790 * anymore, and conflicts with spa_has_spare(). 3791 */ 3792 if (spa->spa_spares.sav_config) { 3793 nvlist_free(spa->spa_spares.sav_config); 3794 spa->spa_spares.sav_config = NULL; 3795 spa_load_spares(spa); 3796 } 3797 if (spa->spa_l2cache.sav_config) { 3798 nvlist_free(spa->spa_l2cache.sav_config); 3799 spa->spa_l2cache.sav_config = NULL; 3800 spa_load_l2cache(spa); 3801 } 3802 3803 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3804 &nvroot) == 0); 3805 if (error == 0) 3806 error = spa_validate_aux(spa, nvroot, -1ULL, 3807 VDEV_ALLOC_SPARE); 3808 if (error == 0) 3809 error = spa_validate_aux(spa, nvroot, -1ULL, 3810 VDEV_ALLOC_L2CACHE); 3811 spa_config_exit(spa, SCL_ALL, FTAG); 3812 3813 if (props != NULL) 3814 spa_configfile_set(spa, props, B_FALSE); 3815 3816 if (error != 0 || (props && spa_writeable(spa) && 3817 (error = spa_prop_set(spa, props)))) { 3818 spa_unload(spa); 3819 spa_deactivate(spa); 3820 spa_remove(spa); 3821 mutex_exit(&spa_namespace_lock); 3822 return (error); 3823 } 3824 3825 spa_async_resume(spa); 3826 3827 /* 3828 * Override any spares and level 2 cache devices as specified by 3829 * the user, as these may have correct device names/devids, etc. 3830 */ 3831 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3832 &spares, &nspares) == 0) { 3833 if (spa->spa_spares.sav_config) 3834 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3835 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3836 else 3837 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3838 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3839 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3840 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3841 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3842 spa_load_spares(spa); 3843 spa_config_exit(spa, SCL_ALL, FTAG); 3844 spa->spa_spares.sav_sync = B_TRUE; 3845 } 3846 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3847 &l2cache, &nl2cache) == 0) { 3848 if (spa->spa_l2cache.sav_config) 3849 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3850 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3851 else 3852 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3853 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3854 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3855 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3856 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3857 spa_load_l2cache(spa); 3858 spa_config_exit(spa, SCL_ALL, FTAG); 3859 spa->spa_l2cache.sav_sync = B_TRUE; 3860 } 3861 3862 /* 3863 * Check for any removed devices. 3864 */ 3865 if (spa->spa_autoreplace) { 3866 spa_aux_check_removed(&spa->spa_spares); 3867 spa_aux_check_removed(&spa->spa_l2cache); 3868 } 3869 3870 if (spa_writeable(spa)) { 3871 /* 3872 * Update the config cache to include the newly-imported pool. 3873 */ 3874 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3875 } 3876 3877 /* 3878 * It's possible that the pool was expanded while it was exported. 3879 * We kick off an async task to handle this for us. 3880 */ 3881 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3882 3883 mutex_exit(&spa_namespace_lock); 3884 spa_history_log_version(spa, "import"); 3885 3886 return (0); 3887 } 3888 3889 nvlist_t * 3890 spa_tryimport(nvlist_t *tryconfig) 3891 { 3892 nvlist_t *config = NULL; 3893 char *poolname; 3894 spa_t *spa; 3895 uint64_t state; 3896 int error; 3897 3898 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3899 return (NULL); 3900 3901 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3902 return (NULL); 3903 3904 /* 3905 * Create and initialize the spa structure. 3906 */ 3907 mutex_enter(&spa_namespace_lock); 3908 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3909 spa_activate(spa, FREAD); 3910 3911 /* 3912 * Pass off the heavy lifting to spa_load(). 3913 * Pass TRUE for mosconfig because the user-supplied config 3914 * is actually the one to trust when doing an import. 3915 */ 3916 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3917 3918 /* 3919 * If 'tryconfig' was at least parsable, return the current config. 3920 */ 3921 if (spa->spa_root_vdev != NULL) { 3922 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3923 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3924 poolname) == 0); 3925 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3926 state) == 0); 3927 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3928 spa->spa_uberblock.ub_timestamp) == 0); 3929 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3930 spa->spa_load_info) == 0); 3931 3932 /* 3933 * If the bootfs property exists on this pool then we 3934 * copy it out so that external consumers can tell which 3935 * pools are bootable. 3936 */ 3937 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3938 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3939 3940 /* 3941 * We have to play games with the name since the 3942 * pool was opened as TRYIMPORT_NAME. 3943 */ 3944 if (dsl_dsobj_to_dsname(spa_name(spa), 3945 spa->spa_bootfs, tmpname) == 0) { 3946 char *cp; 3947 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3948 3949 cp = strchr(tmpname, '/'); 3950 if (cp == NULL) { 3951 (void) strlcpy(dsname, tmpname, 3952 MAXPATHLEN); 3953 } else { 3954 (void) snprintf(dsname, MAXPATHLEN, 3955 "%s/%s", poolname, ++cp); 3956 } 3957 VERIFY(nvlist_add_string(config, 3958 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3959 kmem_free(dsname, MAXPATHLEN); 3960 } 3961 kmem_free(tmpname, MAXPATHLEN); 3962 } 3963 3964 /* 3965 * Add the list of hot spares and level 2 cache devices. 3966 */ 3967 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3968 spa_add_spares(spa, config); 3969 spa_add_l2cache(spa, config); 3970 spa_config_exit(spa, SCL_CONFIG, FTAG); 3971 } 3972 3973 spa_unload(spa); 3974 spa_deactivate(spa); 3975 spa_remove(spa); 3976 mutex_exit(&spa_namespace_lock); 3977 3978 return (config); 3979 } 3980 3981 /* 3982 * Pool export/destroy 3983 * 3984 * The act of destroying or exporting a pool is very simple. We make sure there 3985 * is no more pending I/O and any references to the pool are gone. Then, we 3986 * update the pool state and sync all the labels to disk, removing the 3987 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3988 * we don't sync the labels or remove the configuration cache. 3989 */ 3990 static int 3991 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3992 boolean_t force, boolean_t hardforce) 3993 { 3994 spa_t *spa; 3995 3996 if (oldconfig) 3997 *oldconfig = NULL; 3998 3999 if (!(spa_mode_global & FWRITE)) 4000 return (EROFS); 4001 4002 mutex_enter(&spa_namespace_lock); 4003 if ((spa = spa_lookup(pool)) == NULL) { 4004 mutex_exit(&spa_namespace_lock); 4005 return (ENOENT); 4006 } 4007 4008 /* 4009 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4010 * reacquire the namespace lock, and see if we can export. 4011 */ 4012 spa_open_ref(spa, FTAG); 4013 mutex_exit(&spa_namespace_lock); 4014 spa_async_suspend(spa); 4015 mutex_enter(&spa_namespace_lock); 4016 spa_close(spa, FTAG); 4017 4018 /* 4019 * The pool will be in core if it's openable, 4020 * in which case we can modify its state. 4021 */ 4022 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4023 /* 4024 * Objsets may be open only because they're dirty, so we 4025 * have to force it to sync before checking spa_refcnt. 4026 */ 4027 txg_wait_synced(spa->spa_dsl_pool, 0); 4028 4029 /* 4030 * A pool cannot be exported or destroyed if there are active 4031 * references. If we are resetting a pool, allow references by 4032 * fault injection handlers. 4033 */ 4034 if (!spa_refcount_zero(spa) || 4035 (spa->spa_inject_ref != 0 && 4036 new_state != POOL_STATE_UNINITIALIZED)) { 4037 spa_async_resume(spa); 4038 mutex_exit(&spa_namespace_lock); 4039 return (EBUSY); 4040 } 4041 4042 /* 4043 * A pool cannot be exported if it has an active shared spare. 4044 * This is to prevent other pools stealing the active spare 4045 * from an exported pool. At user's own will, such pool can 4046 * be forcedly exported. 4047 */ 4048 if (!force && new_state == POOL_STATE_EXPORTED && 4049 spa_has_active_shared_spare(spa)) { 4050 spa_async_resume(spa); 4051 mutex_exit(&spa_namespace_lock); 4052 return (EXDEV); 4053 } 4054 4055 /* 4056 * We want this to be reflected on every label, 4057 * so mark them all dirty. spa_unload() will do the 4058 * final sync that pushes these changes out. 4059 */ 4060 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4061 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4062 spa->spa_state = new_state; 4063 spa->spa_final_txg = spa_last_synced_txg(spa) + 4064 TXG_DEFER_SIZE + 1; 4065 vdev_config_dirty(spa->spa_root_vdev); 4066 spa_config_exit(spa, SCL_ALL, FTAG); 4067 } 4068 } 4069 4070 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4071 4072 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4073 spa_unload(spa); 4074 spa_deactivate(spa); 4075 } 4076 4077 if (oldconfig && spa->spa_config) 4078 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4079 4080 if (new_state != POOL_STATE_UNINITIALIZED) { 4081 if (!hardforce) 4082 spa_config_sync(spa, B_TRUE, B_TRUE); 4083 spa_remove(spa); 4084 } 4085 mutex_exit(&spa_namespace_lock); 4086 4087 return (0); 4088 } 4089 4090 /* 4091 * Destroy a storage pool. 4092 */ 4093 int 4094 spa_destroy(char *pool) 4095 { 4096 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4097 B_FALSE, B_FALSE)); 4098 } 4099 4100 /* 4101 * Export a storage pool. 4102 */ 4103 int 4104 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4105 boolean_t hardforce) 4106 { 4107 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4108 force, hardforce)); 4109 } 4110 4111 /* 4112 * Similar to spa_export(), this unloads the spa_t without actually removing it 4113 * from the namespace in any way. 4114 */ 4115 int 4116 spa_reset(char *pool) 4117 { 4118 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4119 B_FALSE, B_FALSE)); 4120 } 4121 4122 /* 4123 * ========================================================================== 4124 * Device manipulation 4125 * ========================================================================== 4126 */ 4127 4128 /* 4129 * Add a device to a storage pool. 4130 */ 4131 int 4132 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4133 { 4134 uint64_t txg, id; 4135 int error; 4136 vdev_t *rvd = spa->spa_root_vdev; 4137 vdev_t *vd, *tvd; 4138 nvlist_t **spares, **l2cache; 4139 uint_t nspares, nl2cache; 4140 4141 ASSERT(spa_writeable(spa)); 4142 4143 txg = spa_vdev_enter(spa); 4144 4145 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4146 VDEV_ALLOC_ADD)) != 0) 4147 return (spa_vdev_exit(spa, NULL, txg, error)); 4148 4149 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4150 4151 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4152 &nspares) != 0) 4153 nspares = 0; 4154 4155 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4156 &nl2cache) != 0) 4157 nl2cache = 0; 4158 4159 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4160 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4161 4162 if (vd->vdev_children != 0 && 4163 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4164 return (spa_vdev_exit(spa, vd, txg, error)); 4165 4166 /* 4167 * We must validate the spares and l2cache devices after checking the 4168 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4169 */ 4170 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4171 return (spa_vdev_exit(spa, vd, txg, error)); 4172 4173 /* 4174 * Transfer each new top-level vdev from vd to rvd. 4175 */ 4176 for (int c = 0; c < vd->vdev_children; c++) { 4177 4178 /* 4179 * Set the vdev id to the first hole, if one exists. 4180 */ 4181 for (id = 0; id < rvd->vdev_children; id++) { 4182 if (rvd->vdev_child[id]->vdev_ishole) { 4183 vdev_free(rvd->vdev_child[id]); 4184 break; 4185 } 4186 } 4187 tvd = vd->vdev_child[c]; 4188 vdev_remove_child(vd, tvd); 4189 tvd->vdev_id = id; 4190 vdev_add_child(rvd, tvd); 4191 vdev_config_dirty(tvd); 4192 } 4193 4194 if (nspares != 0) { 4195 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4196 ZPOOL_CONFIG_SPARES); 4197 spa_load_spares(spa); 4198 spa->spa_spares.sav_sync = B_TRUE; 4199 } 4200 4201 if (nl2cache != 0) { 4202 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4203 ZPOOL_CONFIG_L2CACHE); 4204 spa_load_l2cache(spa); 4205 spa->spa_l2cache.sav_sync = B_TRUE; 4206 } 4207 4208 /* 4209 * We have to be careful when adding new vdevs to an existing pool. 4210 * If other threads start allocating from these vdevs before we 4211 * sync the config cache, and we lose power, then upon reboot we may 4212 * fail to open the pool because there are DVAs that the config cache 4213 * can't translate. Therefore, we first add the vdevs without 4214 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4215 * and then let spa_config_update() initialize the new metaslabs. 4216 * 4217 * spa_load() checks for added-but-not-initialized vdevs, so that 4218 * if we lose power at any point in this sequence, the remaining 4219 * steps will be completed the next time we load the pool. 4220 */ 4221 (void) spa_vdev_exit(spa, vd, txg, 0); 4222 4223 mutex_enter(&spa_namespace_lock); 4224 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4225 mutex_exit(&spa_namespace_lock); 4226 4227 return (0); 4228 } 4229 4230 /* 4231 * Attach a device to a mirror. The arguments are the path to any device 4232 * in the mirror, and the nvroot for the new device. If the path specifies 4233 * a device that is not mirrored, we automatically insert the mirror vdev. 4234 * 4235 * If 'replacing' is specified, the new device is intended to replace the 4236 * existing device; in this case the two devices are made into their own 4237 * mirror using the 'replacing' vdev, which is functionally identical to 4238 * the mirror vdev (it actually reuses all the same ops) but has a few 4239 * extra rules: you can't attach to it after it's been created, and upon 4240 * completion of resilvering, the first disk (the one being replaced) 4241 * is automatically detached. 4242 */ 4243 int 4244 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4245 { 4246 uint64_t txg, dtl_max_txg; 4247 vdev_t *rvd = spa->spa_root_vdev; 4248 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4249 vdev_ops_t *pvops; 4250 char *oldvdpath, *newvdpath; 4251 int newvd_isspare; 4252 int error; 4253 4254 ASSERT(spa_writeable(spa)); 4255 4256 txg = spa_vdev_enter(spa); 4257 4258 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4259 4260 if (oldvd == NULL) 4261 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4262 4263 if (!oldvd->vdev_ops->vdev_op_leaf) 4264 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4265 4266 pvd = oldvd->vdev_parent; 4267 4268 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4269 VDEV_ALLOC_ATTACH)) != 0) 4270 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4271 4272 if (newrootvd->vdev_children != 1) 4273 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4274 4275 newvd = newrootvd->vdev_child[0]; 4276 4277 if (!newvd->vdev_ops->vdev_op_leaf) 4278 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4279 4280 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4281 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4282 4283 /* 4284 * Spares can't replace logs 4285 */ 4286 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4287 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4288 4289 if (!replacing) { 4290 /* 4291 * For attach, the only allowable parent is a mirror or the root 4292 * vdev. 4293 */ 4294 if (pvd->vdev_ops != &vdev_mirror_ops && 4295 pvd->vdev_ops != &vdev_root_ops) 4296 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4297 4298 pvops = &vdev_mirror_ops; 4299 } else { 4300 /* 4301 * Active hot spares can only be replaced by inactive hot 4302 * spares. 4303 */ 4304 if (pvd->vdev_ops == &vdev_spare_ops && 4305 oldvd->vdev_isspare && 4306 !spa_has_spare(spa, newvd->vdev_guid)) 4307 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4308 4309 /* 4310 * If the source is a hot spare, and the parent isn't already a 4311 * spare, then we want to create a new hot spare. Otherwise, we 4312 * want to create a replacing vdev. The user is not allowed to 4313 * attach to a spared vdev child unless the 'isspare' state is 4314 * the same (spare replaces spare, non-spare replaces 4315 * non-spare). 4316 */ 4317 if (pvd->vdev_ops == &vdev_replacing_ops && 4318 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4319 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4320 } else if (pvd->vdev_ops == &vdev_spare_ops && 4321 newvd->vdev_isspare != oldvd->vdev_isspare) { 4322 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4323 } 4324 4325 if (newvd->vdev_isspare) 4326 pvops = &vdev_spare_ops; 4327 else 4328 pvops = &vdev_replacing_ops; 4329 } 4330 4331 /* 4332 * Make sure the new device is big enough. 4333 */ 4334 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4335 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4336 4337 /* 4338 * The new device cannot have a higher alignment requirement 4339 * than the top-level vdev. 4340 */ 4341 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4342 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4343 4344 /* 4345 * If this is an in-place replacement, update oldvd's path and devid 4346 * to make it distinguishable from newvd, and unopenable from now on. 4347 */ 4348 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4349 spa_strfree(oldvd->vdev_path); 4350 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4351 KM_SLEEP); 4352 (void) sprintf(oldvd->vdev_path, "%s/%s", 4353 newvd->vdev_path, "old"); 4354 if (oldvd->vdev_devid != NULL) { 4355 spa_strfree(oldvd->vdev_devid); 4356 oldvd->vdev_devid = NULL; 4357 } 4358 } 4359 4360 /* mark the device being resilvered */ 4361 newvd->vdev_resilvering = B_TRUE; 4362 4363 /* 4364 * If the parent is not a mirror, or if we're replacing, insert the new 4365 * mirror/replacing/spare vdev above oldvd. 4366 */ 4367 if (pvd->vdev_ops != pvops) 4368 pvd = vdev_add_parent(oldvd, pvops); 4369 4370 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4371 ASSERT(pvd->vdev_ops == pvops); 4372 ASSERT(oldvd->vdev_parent == pvd); 4373 4374 /* 4375 * Extract the new device from its root and add it to pvd. 4376 */ 4377 vdev_remove_child(newrootvd, newvd); 4378 newvd->vdev_id = pvd->vdev_children; 4379 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4380 vdev_add_child(pvd, newvd); 4381 4382 tvd = newvd->vdev_top; 4383 ASSERT(pvd->vdev_top == tvd); 4384 ASSERT(tvd->vdev_parent == rvd); 4385 4386 vdev_config_dirty(tvd); 4387 4388 /* 4389 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4390 * for any dmu_sync-ed blocks. It will propagate upward when 4391 * spa_vdev_exit() calls vdev_dtl_reassess(). 4392 */ 4393 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4394 4395 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4396 dtl_max_txg - TXG_INITIAL); 4397 4398 if (newvd->vdev_isspare) { 4399 spa_spare_activate(newvd); 4400 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4401 } 4402 4403 oldvdpath = spa_strdup(oldvd->vdev_path); 4404 newvdpath = spa_strdup(newvd->vdev_path); 4405 newvd_isspare = newvd->vdev_isspare; 4406 4407 /* 4408 * Mark newvd's DTL dirty in this txg. 4409 */ 4410 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4411 4412 /* 4413 * Restart the resilver 4414 */ 4415 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4416 4417 /* 4418 * Commit the config 4419 */ 4420 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4421 4422 spa_history_log_internal(spa, "vdev attach", NULL, 4423 "%s vdev=%s %s vdev=%s", 4424 replacing && newvd_isspare ? "spare in" : 4425 replacing ? "replace" : "attach", newvdpath, 4426 replacing ? "for" : "to", oldvdpath); 4427 4428 spa_strfree(oldvdpath); 4429 spa_strfree(newvdpath); 4430 4431 if (spa->spa_bootfs) 4432 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4433 4434 return (0); 4435 } 4436 4437 /* 4438 * Detach a device from a mirror or replacing vdev. 4439 * If 'replace_done' is specified, only detach if the parent 4440 * is a replacing vdev. 4441 */ 4442 int 4443 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4444 { 4445 uint64_t txg; 4446 int error; 4447 vdev_t *rvd = spa->spa_root_vdev; 4448 vdev_t *vd, *pvd, *cvd, *tvd; 4449 boolean_t unspare = B_FALSE; 4450 uint64_t unspare_guid = 0; 4451 char *vdpath; 4452 4453 ASSERT(spa_writeable(spa)); 4454 4455 txg = spa_vdev_enter(spa); 4456 4457 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4458 4459 if (vd == NULL) 4460 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4461 4462 if (!vd->vdev_ops->vdev_op_leaf) 4463 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4464 4465 pvd = vd->vdev_parent; 4466 4467 /* 4468 * If the parent/child relationship is not as expected, don't do it. 4469 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4470 * vdev that's replacing B with C. The user's intent in replacing 4471 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4472 * the replace by detaching C, the expected behavior is to end up 4473 * M(A,B). But suppose that right after deciding to detach C, 4474 * the replacement of B completes. We would have M(A,C), and then 4475 * ask to detach C, which would leave us with just A -- not what 4476 * the user wanted. To prevent this, we make sure that the 4477 * parent/child relationship hasn't changed -- in this example, 4478 * that C's parent is still the replacing vdev R. 4479 */ 4480 if (pvd->vdev_guid != pguid && pguid != 0) 4481 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4482 4483 /* 4484 * Only 'replacing' or 'spare' vdevs can be replaced. 4485 */ 4486 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4487 pvd->vdev_ops != &vdev_spare_ops) 4488 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4489 4490 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4491 spa_version(spa) >= SPA_VERSION_SPARES); 4492 4493 /* 4494 * Only mirror, replacing, and spare vdevs support detach. 4495 */ 4496 if (pvd->vdev_ops != &vdev_replacing_ops && 4497 pvd->vdev_ops != &vdev_mirror_ops && 4498 pvd->vdev_ops != &vdev_spare_ops) 4499 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4500 4501 /* 4502 * If this device has the only valid copy of some data, 4503 * we cannot safely detach it. 4504 */ 4505 if (vdev_dtl_required(vd)) 4506 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4507 4508 ASSERT(pvd->vdev_children >= 2); 4509 4510 /* 4511 * If we are detaching the second disk from a replacing vdev, then 4512 * check to see if we changed the original vdev's path to have "/old" 4513 * at the end in spa_vdev_attach(). If so, undo that change now. 4514 */ 4515 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4516 vd->vdev_path != NULL) { 4517 size_t len = strlen(vd->vdev_path); 4518 4519 for (int c = 0; c < pvd->vdev_children; c++) { 4520 cvd = pvd->vdev_child[c]; 4521 4522 if (cvd == vd || cvd->vdev_path == NULL) 4523 continue; 4524 4525 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4526 strcmp(cvd->vdev_path + len, "/old") == 0) { 4527 spa_strfree(cvd->vdev_path); 4528 cvd->vdev_path = spa_strdup(vd->vdev_path); 4529 break; 4530 } 4531 } 4532 } 4533 4534 /* 4535 * If we are detaching the original disk from a spare, then it implies 4536 * that the spare should become a real disk, and be removed from the 4537 * active spare list for the pool. 4538 */ 4539 if (pvd->vdev_ops == &vdev_spare_ops && 4540 vd->vdev_id == 0 && 4541 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4542 unspare = B_TRUE; 4543 4544 /* 4545 * Erase the disk labels so the disk can be used for other things. 4546 * This must be done after all other error cases are handled, 4547 * but before we disembowel vd (so we can still do I/O to it). 4548 * But if we can't do it, don't treat the error as fatal -- 4549 * it may be that the unwritability of the disk is the reason 4550 * it's being detached! 4551 */ 4552 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4553 4554 /* 4555 * Remove vd from its parent and compact the parent's children. 4556 */ 4557 vdev_remove_child(pvd, vd); 4558 vdev_compact_children(pvd); 4559 4560 /* 4561 * Remember one of the remaining children so we can get tvd below. 4562 */ 4563 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4564 4565 /* 4566 * If we need to remove the remaining child from the list of hot spares, 4567 * do it now, marking the vdev as no longer a spare in the process. 4568 * We must do this before vdev_remove_parent(), because that can 4569 * change the GUID if it creates a new toplevel GUID. For a similar 4570 * reason, we must remove the spare now, in the same txg as the detach; 4571 * otherwise someone could attach a new sibling, change the GUID, and 4572 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4573 */ 4574 if (unspare) { 4575 ASSERT(cvd->vdev_isspare); 4576 spa_spare_remove(cvd); 4577 unspare_guid = cvd->vdev_guid; 4578 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4579 cvd->vdev_unspare = B_TRUE; 4580 } 4581 4582 /* 4583 * If the parent mirror/replacing vdev only has one child, 4584 * the parent is no longer needed. Remove it from the tree. 4585 */ 4586 if (pvd->vdev_children == 1) { 4587 if (pvd->vdev_ops == &vdev_spare_ops) 4588 cvd->vdev_unspare = B_FALSE; 4589 vdev_remove_parent(cvd); 4590 cvd->vdev_resilvering = B_FALSE; 4591 } 4592 4593 4594 /* 4595 * We don't set tvd until now because the parent we just removed 4596 * may have been the previous top-level vdev. 4597 */ 4598 tvd = cvd->vdev_top; 4599 ASSERT(tvd->vdev_parent == rvd); 4600 4601 /* 4602 * Reevaluate the parent vdev state. 4603 */ 4604 vdev_propagate_state(cvd); 4605 4606 /* 4607 * If the 'autoexpand' property is set on the pool then automatically 4608 * try to expand the size of the pool. For example if the device we 4609 * just detached was smaller than the others, it may be possible to 4610 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4611 * first so that we can obtain the updated sizes of the leaf vdevs. 4612 */ 4613 if (spa->spa_autoexpand) { 4614 vdev_reopen(tvd); 4615 vdev_expand(tvd, txg); 4616 } 4617 4618 vdev_config_dirty(tvd); 4619 4620 /* 4621 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4622 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4623 * But first make sure we're not on any *other* txg's DTL list, to 4624 * prevent vd from being accessed after it's freed. 4625 */ 4626 vdpath = spa_strdup(vd->vdev_path); 4627 for (int t = 0; t < TXG_SIZE; t++) 4628 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4629 vd->vdev_detached = B_TRUE; 4630 vdev_dirty(tvd, VDD_DTL, vd, txg); 4631 4632 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4633 4634 /* hang on to the spa before we release the lock */ 4635 spa_open_ref(spa, FTAG); 4636 4637 error = spa_vdev_exit(spa, vd, txg, 0); 4638 4639 spa_history_log_internal(spa, "detach", NULL, 4640 "vdev=%s", vdpath); 4641 spa_strfree(vdpath); 4642 4643 /* 4644 * If this was the removal of the original device in a hot spare vdev, 4645 * then we want to go through and remove the device from the hot spare 4646 * list of every other pool. 4647 */ 4648 if (unspare) { 4649 spa_t *altspa = NULL; 4650 4651 mutex_enter(&spa_namespace_lock); 4652 while ((altspa = spa_next(altspa)) != NULL) { 4653 if (altspa->spa_state != POOL_STATE_ACTIVE || 4654 altspa == spa) 4655 continue; 4656 4657 spa_open_ref(altspa, FTAG); 4658 mutex_exit(&spa_namespace_lock); 4659 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4660 mutex_enter(&spa_namespace_lock); 4661 spa_close(altspa, FTAG); 4662 } 4663 mutex_exit(&spa_namespace_lock); 4664 4665 /* search the rest of the vdevs for spares to remove */ 4666 spa_vdev_resilver_done(spa); 4667 } 4668 4669 /* all done with the spa; OK to release */ 4670 mutex_enter(&spa_namespace_lock); 4671 spa_close(spa, FTAG); 4672 mutex_exit(&spa_namespace_lock); 4673 4674 return (error); 4675 } 4676 4677 /* 4678 * Split a set of devices from their mirrors, and create a new pool from them. 4679 */ 4680 int 4681 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4682 nvlist_t *props, boolean_t exp) 4683 { 4684 int error = 0; 4685 uint64_t txg, *glist; 4686 spa_t *newspa; 4687 uint_t c, children, lastlog; 4688 nvlist_t **child, *nvl, *tmp; 4689 dmu_tx_t *tx; 4690 char *altroot = NULL; 4691 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4692 boolean_t activate_slog; 4693 4694 ASSERT(spa_writeable(spa)); 4695 4696 txg = spa_vdev_enter(spa); 4697 4698 /* clear the log and flush everything up to now */ 4699 activate_slog = spa_passivate_log(spa); 4700 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4701 error = spa_offline_log(spa); 4702 txg = spa_vdev_config_enter(spa); 4703 4704 if (activate_slog) 4705 spa_activate_log(spa); 4706 4707 if (error != 0) 4708 return (spa_vdev_exit(spa, NULL, txg, error)); 4709 4710 /* check new spa name before going any further */ 4711 if (spa_lookup(newname) != NULL) 4712 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4713 4714 /* 4715 * scan through all the children to ensure they're all mirrors 4716 */ 4717 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4718 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4719 &children) != 0) 4720 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4721 4722 /* first, check to ensure we've got the right child count */ 4723 rvd = spa->spa_root_vdev; 4724 lastlog = 0; 4725 for (c = 0; c < rvd->vdev_children; c++) { 4726 vdev_t *vd = rvd->vdev_child[c]; 4727 4728 /* don't count the holes & logs as children */ 4729 if (vd->vdev_islog || vd->vdev_ishole) { 4730 if (lastlog == 0) 4731 lastlog = c; 4732 continue; 4733 } 4734 4735 lastlog = 0; 4736 } 4737 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4738 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4739 4740 /* next, ensure no spare or cache devices are part of the split */ 4741 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4742 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4743 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4744 4745 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4746 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4747 4748 /* then, loop over each vdev and validate it */ 4749 for (c = 0; c < children; c++) { 4750 uint64_t is_hole = 0; 4751 4752 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4753 &is_hole); 4754 4755 if (is_hole != 0) { 4756 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4757 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4758 continue; 4759 } else { 4760 error = EINVAL; 4761 break; 4762 } 4763 } 4764 4765 /* which disk is going to be split? */ 4766 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4767 &glist[c]) != 0) { 4768 error = EINVAL; 4769 break; 4770 } 4771 4772 /* look it up in the spa */ 4773 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4774 if (vml[c] == NULL) { 4775 error = ENODEV; 4776 break; 4777 } 4778 4779 /* make sure there's nothing stopping the split */ 4780 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4781 vml[c]->vdev_islog || 4782 vml[c]->vdev_ishole || 4783 vml[c]->vdev_isspare || 4784 vml[c]->vdev_isl2cache || 4785 !vdev_writeable(vml[c]) || 4786 vml[c]->vdev_children != 0 || 4787 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4788 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4789 error = EINVAL; 4790 break; 4791 } 4792 4793 if (vdev_dtl_required(vml[c])) { 4794 error = EBUSY; 4795 break; 4796 } 4797 4798 /* we need certain info from the top level */ 4799 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4800 vml[c]->vdev_top->vdev_ms_array) == 0); 4801 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4802 vml[c]->vdev_top->vdev_ms_shift) == 0); 4803 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4804 vml[c]->vdev_top->vdev_asize) == 0); 4805 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4806 vml[c]->vdev_top->vdev_ashift) == 0); 4807 } 4808 4809 if (error != 0) { 4810 kmem_free(vml, children * sizeof (vdev_t *)); 4811 kmem_free(glist, children * sizeof (uint64_t)); 4812 return (spa_vdev_exit(spa, NULL, txg, error)); 4813 } 4814 4815 /* stop writers from using the disks */ 4816 for (c = 0; c < children; c++) { 4817 if (vml[c] != NULL) 4818 vml[c]->vdev_offline = B_TRUE; 4819 } 4820 vdev_reopen(spa->spa_root_vdev); 4821 4822 /* 4823 * Temporarily record the splitting vdevs in the spa config. This 4824 * will disappear once the config is regenerated. 4825 */ 4826 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4827 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4828 glist, children) == 0); 4829 kmem_free(glist, children * sizeof (uint64_t)); 4830 4831 mutex_enter(&spa->spa_props_lock); 4832 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4833 nvl) == 0); 4834 mutex_exit(&spa->spa_props_lock); 4835 spa->spa_config_splitting = nvl; 4836 vdev_config_dirty(spa->spa_root_vdev); 4837 4838 /* configure and create the new pool */ 4839 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4840 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4841 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4842 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4843 spa_version(spa)) == 0); 4844 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4845 spa->spa_config_txg) == 0); 4846 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4847 spa_generate_guid(NULL)) == 0); 4848 (void) nvlist_lookup_string(props, 4849 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4850 4851 /* add the new pool to the namespace */ 4852 newspa = spa_add(newname, config, altroot); 4853 newspa->spa_config_txg = spa->spa_config_txg; 4854 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4855 4856 /* release the spa config lock, retaining the namespace lock */ 4857 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4858 4859 if (zio_injection_enabled) 4860 zio_handle_panic_injection(spa, FTAG, 1); 4861 4862 spa_activate(newspa, spa_mode_global); 4863 spa_async_suspend(newspa); 4864 4865 /* create the new pool from the disks of the original pool */ 4866 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4867 if (error) 4868 goto out; 4869 4870 /* if that worked, generate a real config for the new pool */ 4871 if (newspa->spa_root_vdev != NULL) { 4872 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4873 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4874 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4875 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4876 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4877 B_TRUE)); 4878 } 4879 4880 /* set the props */ 4881 if (props != NULL) { 4882 spa_configfile_set(newspa, props, B_FALSE); 4883 error = spa_prop_set(newspa, props); 4884 if (error) 4885 goto out; 4886 } 4887 4888 /* flush everything */ 4889 txg = spa_vdev_config_enter(newspa); 4890 vdev_config_dirty(newspa->spa_root_vdev); 4891 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4892 4893 if (zio_injection_enabled) 4894 zio_handle_panic_injection(spa, FTAG, 2); 4895 4896 spa_async_resume(newspa); 4897 4898 /* finally, update the original pool's config */ 4899 txg = spa_vdev_config_enter(spa); 4900 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4901 error = dmu_tx_assign(tx, TXG_WAIT); 4902 if (error != 0) 4903 dmu_tx_abort(tx); 4904 for (c = 0; c < children; c++) { 4905 if (vml[c] != NULL) { 4906 vdev_split(vml[c]); 4907 if (error == 0) 4908 spa_history_log_internal(spa, "detach", tx, 4909 "vdev=%s", vml[c]->vdev_path); 4910 vdev_free(vml[c]); 4911 } 4912 } 4913 vdev_config_dirty(spa->spa_root_vdev); 4914 spa->spa_config_splitting = NULL; 4915 nvlist_free(nvl); 4916 if (error == 0) 4917 dmu_tx_commit(tx); 4918 (void) spa_vdev_exit(spa, NULL, txg, 0); 4919 4920 if (zio_injection_enabled) 4921 zio_handle_panic_injection(spa, FTAG, 3); 4922 4923 /* split is complete; log a history record */ 4924 spa_history_log_internal(newspa, "split", NULL, 4925 "from pool %s", spa_name(spa)); 4926 4927 kmem_free(vml, children * sizeof (vdev_t *)); 4928 4929 /* if we're not going to mount the filesystems in userland, export */ 4930 if (exp) 4931 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4932 B_FALSE, B_FALSE); 4933 4934 return (error); 4935 4936 out: 4937 spa_unload(newspa); 4938 spa_deactivate(newspa); 4939 spa_remove(newspa); 4940 4941 txg = spa_vdev_config_enter(spa); 4942 4943 /* re-online all offlined disks */ 4944 for (c = 0; c < children; c++) { 4945 if (vml[c] != NULL) 4946 vml[c]->vdev_offline = B_FALSE; 4947 } 4948 vdev_reopen(spa->spa_root_vdev); 4949 4950 nvlist_free(spa->spa_config_splitting); 4951 spa->spa_config_splitting = NULL; 4952 (void) spa_vdev_exit(spa, NULL, txg, error); 4953 4954 kmem_free(vml, children * sizeof (vdev_t *)); 4955 return (error); 4956 } 4957 4958 static nvlist_t * 4959 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4960 { 4961 for (int i = 0; i < count; i++) { 4962 uint64_t guid; 4963 4964 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4965 &guid) == 0); 4966 4967 if (guid == target_guid) 4968 return (nvpp[i]); 4969 } 4970 4971 return (NULL); 4972 } 4973 4974 static void 4975 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4976 nvlist_t *dev_to_remove) 4977 { 4978 nvlist_t **newdev = NULL; 4979 4980 if (count > 1) 4981 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4982 4983 for (int i = 0, j = 0; i < count; i++) { 4984 if (dev[i] == dev_to_remove) 4985 continue; 4986 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4987 } 4988 4989 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4990 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4991 4992 for (int i = 0; i < count - 1; i++) 4993 nvlist_free(newdev[i]); 4994 4995 if (count > 1) 4996 kmem_free(newdev, (count - 1) * sizeof (void *)); 4997 } 4998 4999 /* 5000 * Evacuate the device. 5001 */ 5002 static int 5003 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5004 { 5005 uint64_t txg; 5006 int error = 0; 5007 5008 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5009 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5010 ASSERT(vd == vd->vdev_top); 5011 5012 /* 5013 * Evacuate the device. We don't hold the config lock as writer 5014 * since we need to do I/O but we do keep the 5015 * spa_namespace_lock held. Once this completes the device 5016 * should no longer have any blocks allocated on it. 5017 */ 5018 if (vd->vdev_islog) { 5019 if (vd->vdev_stat.vs_alloc != 0) 5020 error = spa_offline_log(spa); 5021 } else { 5022 error = ENOTSUP; 5023 } 5024 5025 if (error) 5026 return (error); 5027 5028 /* 5029 * The evacuation succeeded. Remove any remaining MOS metadata 5030 * associated with this vdev, and wait for these changes to sync. 5031 */ 5032 ASSERT0(vd->vdev_stat.vs_alloc); 5033 txg = spa_vdev_config_enter(spa); 5034 vd->vdev_removing = B_TRUE; 5035 vdev_dirty(vd, 0, NULL, txg); 5036 vdev_config_dirty(vd); 5037 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5038 5039 return (0); 5040 } 5041 5042 /* 5043 * Complete the removal by cleaning up the namespace. 5044 */ 5045 static void 5046 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5047 { 5048 vdev_t *rvd = spa->spa_root_vdev; 5049 uint64_t id = vd->vdev_id; 5050 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5051 5052 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5053 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5054 ASSERT(vd == vd->vdev_top); 5055 5056 /* 5057 * Only remove any devices which are empty. 5058 */ 5059 if (vd->vdev_stat.vs_alloc != 0) 5060 return; 5061 5062 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5063 5064 if (list_link_active(&vd->vdev_state_dirty_node)) 5065 vdev_state_clean(vd); 5066 if (list_link_active(&vd->vdev_config_dirty_node)) 5067 vdev_config_clean(vd); 5068 5069 vdev_free(vd); 5070 5071 if (last_vdev) { 5072 vdev_compact_children(rvd); 5073 } else { 5074 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5075 vdev_add_child(rvd, vd); 5076 } 5077 vdev_config_dirty(rvd); 5078 5079 /* 5080 * Reassess the health of our root vdev. 5081 */ 5082 vdev_reopen(rvd); 5083 } 5084 5085 /* 5086 * Remove a device from the pool - 5087 * 5088 * Removing a device from the vdev namespace requires several steps 5089 * and can take a significant amount of time. As a result we use 5090 * the spa_vdev_config_[enter/exit] functions which allow us to 5091 * grab and release the spa_config_lock while still holding the namespace 5092 * lock. During each step the configuration is synced out. 5093 */ 5094 5095 /* 5096 * Remove a device from the pool. Currently, this supports removing only hot 5097 * spares, slogs, and level 2 ARC devices. 5098 */ 5099 int 5100 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5101 { 5102 vdev_t *vd; 5103 metaslab_group_t *mg; 5104 nvlist_t **spares, **l2cache, *nv; 5105 uint64_t txg = 0; 5106 uint_t nspares, nl2cache; 5107 int error = 0; 5108 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5109 5110 ASSERT(spa_writeable(spa)); 5111 5112 if (!locked) 5113 txg = spa_vdev_enter(spa); 5114 5115 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5116 5117 if (spa->spa_spares.sav_vdevs != NULL && 5118 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5119 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5120 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5121 /* 5122 * Only remove the hot spare if it's not currently in use 5123 * in this pool. 5124 */ 5125 if (vd == NULL || unspare) { 5126 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5127 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5128 spa_load_spares(spa); 5129 spa->spa_spares.sav_sync = B_TRUE; 5130 } else { 5131 error = EBUSY; 5132 } 5133 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5134 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5135 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5136 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5137 /* 5138 * Cache devices can always be removed. 5139 */ 5140 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5141 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5142 spa_load_l2cache(spa); 5143 spa->spa_l2cache.sav_sync = B_TRUE; 5144 } else if (vd != NULL && vd->vdev_islog) { 5145 ASSERT(!locked); 5146 ASSERT(vd == vd->vdev_top); 5147 5148 /* 5149 * XXX - Once we have bp-rewrite this should 5150 * become the common case. 5151 */ 5152 5153 mg = vd->vdev_mg; 5154 5155 /* 5156 * Stop allocating from this vdev. 5157 */ 5158 metaslab_group_passivate(mg); 5159 5160 /* 5161 * Wait for the youngest allocations and frees to sync, 5162 * and then wait for the deferral of those frees to finish. 5163 */ 5164 spa_vdev_config_exit(spa, NULL, 5165 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5166 5167 /* 5168 * Attempt to evacuate the vdev. 5169 */ 5170 error = spa_vdev_remove_evacuate(spa, vd); 5171 5172 txg = spa_vdev_config_enter(spa); 5173 5174 /* 5175 * If we couldn't evacuate the vdev, unwind. 5176 */ 5177 if (error) { 5178 metaslab_group_activate(mg); 5179 return (spa_vdev_exit(spa, NULL, txg, error)); 5180 } 5181 5182 /* 5183 * Clean up the vdev namespace. 5184 */ 5185 spa_vdev_remove_from_namespace(spa, vd); 5186 5187 } else if (vd != NULL) { 5188 /* 5189 * Normal vdevs cannot be removed (yet). 5190 */ 5191 error = ENOTSUP; 5192 } else { 5193 /* 5194 * There is no vdev of any kind with the specified guid. 5195 */ 5196 error = ENOENT; 5197 } 5198 5199 if (!locked) 5200 return (spa_vdev_exit(spa, NULL, txg, error)); 5201 5202 return (error); 5203 } 5204 5205 /* 5206 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5207 * current spared, so we can detach it. 5208 */ 5209 static vdev_t * 5210 spa_vdev_resilver_done_hunt(vdev_t *vd) 5211 { 5212 vdev_t *newvd, *oldvd; 5213 5214 for (int c = 0; c < vd->vdev_children; c++) { 5215 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5216 if (oldvd != NULL) 5217 return (oldvd); 5218 } 5219 5220 /* 5221 * Check for a completed replacement. We always consider the first 5222 * vdev in the list to be the oldest vdev, and the last one to be 5223 * the newest (see spa_vdev_attach() for how that works). In 5224 * the case where the newest vdev is faulted, we will not automatically 5225 * remove it after a resilver completes. This is OK as it will require 5226 * user intervention to determine which disk the admin wishes to keep. 5227 */ 5228 if (vd->vdev_ops == &vdev_replacing_ops) { 5229 ASSERT(vd->vdev_children > 1); 5230 5231 newvd = vd->vdev_child[vd->vdev_children - 1]; 5232 oldvd = vd->vdev_child[0]; 5233 5234 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5235 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5236 !vdev_dtl_required(oldvd)) 5237 return (oldvd); 5238 } 5239 5240 /* 5241 * Check for a completed resilver with the 'unspare' flag set. 5242 */ 5243 if (vd->vdev_ops == &vdev_spare_ops) { 5244 vdev_t *first = vd->vdev_child[0]; 5245 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5246 5247 if (last->vdev_unspare) { 5248 oldvd = first; 5249 newvd = last; 5250 } else if (first->vdev_unspare) { 5251 oldvd = last; 5252 newvd = first; 5253 } else { 5254 oldvd = NULL; 5255 } 5256 5257 if (oldvd != NULL && 5258 vdev_dtl_empty(newvd, DTL_MISSING) && 5259 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5260 !vdev_dtl_required(oldvd)) 5261 return (oldvd); 5262 5263 /* 5264 * If there are more than two spares attached to a disk, 5265 * and those spares are not required, then we want to 5266 * attempt to free them up now so that they can be used 5267 * by other pools. Once we're back down to a single 5268 * disk+spare, we stop removing them. 5269 */ 5270 if (vd->vdev_children > 2) { 5271 newvd = vd->vdev_child[1]; 5272 5273 if (newvd->vdev_isspare && last->vdev_isspare && 5274 vdev_dtl_empty(last, DTL_MISSING) && 5275 vdev_dtl_empty(last, DTL_OUTAGE) && 5276 !vdev_dtl_required(newvd)) 5277 return (newvd); 5278 } 5279 } 5280 5281 return (NULL); 5282 } 5283 5284 static void 5285 spa_vdev_resilver_done(spa_t *spa) 5286 { 5287 vdev_t *vd, *pvd, *ppvd; 5288 uint64_t guid, sguid, pguid, ppguid; 5289 5290 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5291 5292 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5293 pvd = vd->vdev_parent; 5294 ppvd = pvd->vdev_parent; 5295 guid = vd->vdev_guid; 5296 pguid = pvd->vdev_guid; 5297 ppguid = ppvd->vdev_guid; 5298 sguid = 0; 5299 /* 5300 * If we have just finished replacing a hot spared device, then 5301 * we need to detach the parent's first child (the original hot 5302 * spare) as well. 5303 */ 5304 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5305 ppvd->vdev_children == 2) { 5306 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5307 sguid = ppvd->vdev_child[1]->vdev_guid; 5308 } 5309 spa_config_exit(spa, SCL_ALL, FTAG); 5310 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5311 return; 5312 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5313 return; 5314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5315 } 5316 5317 spa_config_exit(spa, SCL_ALL, FTAG); 5318 } 5319 5320 /* 5321 * Update the stored path or FRU for this vdev. 5322 */ 5323 int 5324 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5325 boolean_t ispath) 5326 { 5327 vdev_t *vd; 5328 boolean_t sync = B_FALSE; 5329 5330 ASSERT(spa_writeable(spa)); 5331 5332 spa_vdev_state_enter(spa, SCL_ALL); 5333 5334 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5335 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5336 5337 if (!vd->vdev_ops->vdev_op_leaf) 5338 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5339 5340 if (ispath) { 5341 if (strcmp(value, vd->vdev_path) != 0) { 5342 spa_strfree(vd->vdev_path); 5343 vd->vdev_path = spa_strdup(value); 5344 sync = B_TRUE; 5345 } 5346 } else { 5347 if (vd->vdev_fru == NULL) { 5348 vd->vdev_fru = spa_strdup(value); 5349 sync = B_TRUE; 5350 } else if (strcmp(value, vd->vdev_fru) != 0) { 5351 spa_strfree(vd->vdev_fru); 5352 vd->vdev_fru = spa_strdup(value); 5353 sync = B_TRUE; 5354 } 5355 } 5356 5357 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5358 } 5359 5360 int 5361 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5362 { 5363 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5364 } 5365 5366 int 5367 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5368 { 5369 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5370 } 5371 5372 /* 5373 * ========================================================================== 5374 * SPA Scanning 5375 * ========================================================================== 5376 */ 5377 5378 int 5379 spa_scan_stop(spa_t *spa) 5380 { 5381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5382 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5383 return (EBUSY); 5384 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5385 } 5386 5387 int 5388 spa_scan(spa_t *spa, pool_scan_func_t func) 5389 { 5390 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5391 5392 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5393 return (ENOTSUP); 5394 5395 /* 5396 * If a resilver was requested, but there is no DTL on a 5397 * writeable leaf device, we have nothing to do. 5398 */ 5399 if (func == POOL_SCAN_RESILVER && 5400 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5401 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5402 return (0); 5403 } 5404 5405 return (dsl_scan(spa->spa_dsl_pool, func)); 5406 } 5407 5408 /* 5409 * ========================================================================== 5410 * SPA async task processing 5411 * ========================================================================== 5412 */ 5413 5414 static void 5415 spa_async_remove(spa_t *spa, vdev_t *vd) 5416 { 5417 if (vd->vdev_remove_wanted) { 5418 vd->vdev_remove_wanted = B_FALSE; 5419 vd->vdev_delayed_close = B_FALSE; 5420 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5421 5422 /* 5423 * We want to clear the stats, but we don't want to do a full 5424 * vdev_clear() as that will cause us to throw away 5425 * degraded/faulted state as well as attempt to reopen the 5426 * device, all of which is a waste. 5427 */ 5428 vd->vdev_stat.vs_read_errors = 0; 5429 vd->vdev_stat.vs_write_errors = 0; 5430 vd->vdev_stat.vs_checksum_errors = 0; 5431 5432 vdev_state_dirty(vd->vdev_top); 5433 } 5434 5435 for (int c = 0; c < vd->vdev_children; c++) 5436 spa_async_remove(spa, vd->vdev_child[c]); 5437 } 5438 5439 static void 5440 spa_async_probe(spa_t *spa, vdev_t *vd) 5441 { 5442 if (vd->vdev_probe_wanted) { 5443 vd->vdev_probe_wanted = B_FALSE; 5444 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5445 } 5446 5447 for (int c = 0; c < vd->vdev_children; c++) 5448 spa_async_probe(spa, vd->vdev_child[c]); 5449 } 5450 5451 static void 5452 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5453 { 5454 sysevent_id_t eid; 5455 nvlist_t *attr; 5456 char *physpath; 5457 5458 if (!spa->spa_autoexpand) 5459 return; 5460 5461 for (int c = 0; c < vd->vdev_children; c++) { 5462 vdev_t *cvd = vd->vdev_child[c]; 5463 spa_async_autoexpand(spa, cvd); 5464 } 5465 5466 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5467 return; 5468 5469 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5470 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5471 5472 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5473 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5474 5475 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5476 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5477 5478 nvlist_free(attr); 5479 kmem_free(physpath, MAXPATHLEN); 5480 } 5481 5482 static void 5483 spa_async_thread(spa_t *spa) 5484 { 5485 int tasks; 5486 5487 ASSERT(spa->spa_sync_on); 5488 5489 mutex_enter(&spa->spa_async_lock); 5490 tasks = spa->spa_async_tasks; 5491 spa->spa_async_tasks = 0; 5492 mutex_exit(&spa->spa_async_lock); 5493 5494 /* 5495 * See if the config needs to be updated. 5496 */ 5497 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5498 uint64_t old_space, new_space; 5499 5500 mutex_enter(&spa_namespace_lock); 5501 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5502 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5503 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5504 mutex_exit(&spa_namespace_lock); 5505 5506 /* 5507 * If the pool grew as a result of the config update, 5508 * then log an internal history event. 5509 */ 5510 if (new_space != old_space) { 5511 spa_history_log_internal(spa, "vdev online", NULL, 5512 "pool '%s' size: %llu(+%llu)", 5513 spa_name(spa), new_space, new_space - old_space); 5514 } 5515 } 5516 5517 /* 5518 * See if any devices need to be marked REMOVED. 5519 */ 5520 if (tasks & SPA_ASYNC_REMOVE) { 5521 spa_vdev_state_enter(spa, SCL_NONE); 5522 spa_async_remove(spa, spa->spa_root_vdev); 5523 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5524 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5525 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5526 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5527 (void) spa_vdev_state_exit(spa, NULL, 0); 5528 } 5529 5530 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5531 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5532 spa_async_autoexpand(spa, spa->spa_root_vdev); 5533 spa_config_exit(spa, SCL_CONFIG, FTAG); 5534 } 5535 5536 /* 5537 * See if any devices need to be probed. 5538 */ 5539 if (tasks & SPA_ASYNC_PROBE) { 5540 spa_vdev_state_enter(spa, SCL_NONE); 5541 spa_async_probe(spa, spa->spa_root_vdev); 5542 (void) spa_vdev_state_exit(spa, NULL, 0); 5543 } 5544 5545 /* 5546 * If any devices are done replacing, detach them. 5547 */ 5548 if (tasks & SPA_ASYNC_RESILVER_DONE) 5549 spa_vdev_resilver_done(spa); 5550 5551 /* 5552 * Kick off a resilver. 5553 */ 5554 if (tasks & SPA_ASYNC_RESILVER) 5555 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5556 5557 /* 5558 * Let the world know that we're done. 5559 */ 5560 mutex_enter(&spa->spa_async_lock); 5561 spa->spa_async_thread = NULL; 5562 cv_broadcast(&spa->spa_async_cv); 5563 mutex_exit(&spa->spa_async_lock); 5564 thread_exit(); 5565 } 5566 5567 void 5568 spa_async_suspend(spa_t *spa) 5569 { 5570 mutex_enter(&spa->spa_async_lock); 5571 spa->spa_async_suspended++; 5572 while (spa->spa_async_thread != NULL) 5573 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5574 mutex_exit(&spa->spa_async_lock); 5575 } 5576 5577 void 5578 spa_async_resume(spa_t *spa) 5579 { 5580 mutex_enter(&spa->spa_async_lock); 5581 ASSERT(spa->spa_async_suspended != 0); 5582 spa->spa_async_suspended--; 5583 mutex_exit(&spa->spa_async_lock); 5584 } 5585 5586 static void 5587 spa_async_dispatch(spa_t *spa) 5588 { 5589 mutex_enter(&spa->spa_async_lock); 5590 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5591 spa->spa_async_thread == NULL && 5592 rootdir != NULL && !vn_is_readonly(rootdir)) 5593 spa->spa_async_thread = thread_create(NULL, 0, 5594 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5595 mutex_exit(&spa->spa_async_lock); 5596 } 5597 5598 void 5599 spa_async_request(spa_t *spa, int task) 5600 { 5601 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5602 mutex_enter(&spa->spa_async_lock); 5603 spa->spa_async_tasks |= task; 5604 mutex_exit(&spa->spa_async_lock); 5605 } 5606 5607 /* 5608 * ========================================================================== 5609 * SPA syncing routines 5610 * ========================================================================== 5611 */ 5612 5613 static int 5614 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5615 { 5616 bpobj_t *bpo = arg; 5617 bpobj_enqueue(bpo, bp, tx); 5618 return (0); 5619 } 5620 5621 static int 5622 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5623 { 5624 zio_t *zio = arg; 5625 5626 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5627 zio->io_flags)); 5628 return (0); 5629 } 5630 5631 static void 5632 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5633 { 5634 char *packed = NULL; 5635 size_t bufsize; 5636 size_t nvsize = 0; 5637 dmu_buf_t *db; 5638 5639 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5640 5641 /* 5642 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5643 * information. This avoids the dbuf_will_dirty() path and 5644 * saves us a pre-read to get data we don't actually care about. 5645 */ 5646 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5647 packed = kmem_alloc(bufsize, KM_SLEEP); 5648 5649 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5650 KM_SLEEP) == 0); 5651 bzero(packed + nvsize, bufsize - nvsize); 5652 5653 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5654 5655 kmem_free(packed, bufsize); 5656 5657 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5658 dmu_buf_will_dirty(db, tx); 5659 *(uint64_t *)db->db_data = nvsize; 5660 dmu_buf_rele(db, FTAG); 5661 } 5662 5663 static void 5664 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5665 const char *config, const char *entry) 5666 { 5667 nvlist_t *nvroot; 5668 nvlist_t **list; 5669 int i; 5670 5671 if (!sav->sav_sync) 5672 return; 5673 5674 /* 5675 * Update the MOS nvlist describing the list of available devices. 5676 * spa_validate_aux() will have already made sure this nvlist is 5677 * valid and the vdevs are labeled appropriately. 5678 */ 5679 if (sav->sav_object == 0) { 5680 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5681 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5682 sizeof (uint64_t), tx); 5683 VERIFY(zap_update(spa->spa_meta_objset, 5684 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5685 &sav->sav_object, tx) == 0); 5686 } 5687 5688 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5689 if (sav->sav_count == 0) { 5690 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5691 } else { 5692 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5693 for (i = 0; i < sav->sav_count; i++) 5694 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5695 B_FALSE, VDEV_CONFIG_L2CACHE); 5696 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5697 sav->sav_count) == 0); 5698 for (i = 0; i < sav->sav_count; i++) 5699 nvlist_free(list[i]); 5700 kmem_free(list, sav->sav_count * sizeof (void *)); 5701 } 5702 5703 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5704 nvlist_free(nvroot); 5705 5706 sav->sav_sync = B_FALSE; 5707 } 5708 5709 static void 5710 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5711 { 5712 nvlist_t *config; 5713 5714 if (list_is_empty(&spa->spa_config_dirty_list)) 5715 return; 5716 5717 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5718 5719 config = spa_config_generate(spa, spa->spa_root_vdev, 5720 dmu_tx_get_txg(tx), B_FALSE); 5721 5722 /* 5723 * If we're upgrading the spa version then make sure that 5724 * the config object gets updated with the correct version. 5725 */ 5726 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5727 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5728 spa->spa_uberblock.ub_version); 5729 5730 spa_config_exit(spa, SCL_STATE, FTAG); 5731 5732 if (spa->spa_config_syncing) 5733 nvlist_free(spa->spa_config_syncing); 5734 spa->spa_config_syncing = config; 5735 5736 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5737 } 5738 5739 static void 5740 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx) 5741 { 5742 spa_t *spa = arg1; 5743 uint64_t version = *(uint64_t *)arg2; 5744 5745 /* 5746 * Setting the version is special cased when first creating the pool. 5747 */ 5748 ASSERT(tx->tx_txg != TXG_INITIAL); 5749 5750 ASSERT(version <= SPA_VERSION); 5751 ASSERT(version >= spa_version(spa)); 5752 5753 spa->spa_uberblock.ub_version = version; 5754 vdev_config_dirty(spa->spa_root_vdev); 5755 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5756 } 5757 5758 /* 5759 * Set zpool properties. 5760 */ 5761 static void 5762 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5763 { 5764 spa_t *spa = arg1; 5765 objset_t *mos = spa->spa_meta_objset; 5766 nvlist_t *nvp = arg2; 5767 nvpair_t *elem = NULL; 5768 5769 mutex_enter(&spa->spa_props_lock); 5770 5771 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5772 uint64_t intval; 5773 char *strval, *fname; 5774 zpool_prop_t prop; 5775 const char *propname; 5776 zprop_type_t proptype; 5777 zfeature_info_t *feature; 5778 5779 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5780 case ZPROP_INVAL: 5781 /* 5782 * We checked this earlier in spa_prop_validate(). 5783 */ 5784 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5785 5786 fname = strchr(nvpair_name(elem), '@') + 1; 5787 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5788 5789 spa_feature_enable(spa, feature, tx); 5790 spa_history_log_internal(spa, "set", tx, 5791 "%s=enabled", nvpair_name(elem)); 5792 break; 5793 5794 case ZPOOL_PROP_VERSION: 5795 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5796 /* 5797 * The version is synced seperatly before other 5798 * properties and should be correct by now. 5799 */ 5800 ASSERT3U(spa_version(spa), >=, intval); 5801 break; 5802 5803 case ZPOOL_PROP_ALTROOT: 5804 /* 5805 * 'altroot' is a non-persistent property. It should 5806 * have been set temporarily at creation or import time. 5807 */ 5808 ASSERT(spa->spa_root != NULL); 5809 break; 5810 5811 case ZPOOL_PROP_READONLY: 5812 case ZPOOL_PROP_CACHEFILE: 5813 /* 5814 * 'readonly' and 'cachefile' are also non-persisitent 5815 * properties. 5816 */ 5817 break; 5818 case ZPOOL_PROP_COMMENT: 5819 VERIFY(nvpair_value_string(elem, &strval) == 0); 5820 if (spa->spa_comment != NULL) 5821 spa_strfree(spa->spa_comment); 5822 spa->spa_comment = spa_strdup(strval); 5823 /* 5824 * We need to dirty the configuration on all the vdevs 5825 * so that their labels get updated. It's unnecessary 5826 * to do this for pool creation since the vdev's 5827 * configuratoin has already been dirtied. 5828 */ 5829 if (tx->tx_txg != TXG_INITIAL) 5830 vdev_config_dirty(spa->spa_root_vdev); 5831 spa_history_log_internal(spa, "set", tx, 5832 "%s=%s", nvpair_name(elem), strval); 5833 break; 5834 default: 5835 /* 5836 * Set pool property values in the poolprops mos object. 5837 */ 5838 if (spa->spa_pool_props_object == 0) { 5839 spa->spa_pool_props_object = 5840 zap_create_link(mos, DMU_OT_POOL_PROPS, 5841 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5842 tx); 5843 } 5844 5845 /* normalize the property name */ 5846 propname = zpool_prop_to_name(prop); 5847 proptype = zpool_prop_get_type(prop); 5848 5849 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5850 ASSERT(proptype == PROP_TYPE_STRING); 5851 VERIFY(nvpair_value_string(elem, &strval) == 0); 5852 VERIFY(zap_update(mos, 5853 spa->spa_pool_props_object, propname, 5854 1, strlen(strval) + 1, strval, tx) == 0); 5855 spa_history_log_internal(spa, "set", tx, 5856 "%s=%s", nvpair_name(elem), strval); 5857 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5858 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5859 5860 if (proptype == PROP_TYPE_INDEX) { 5861 const char *unused; 5862 VERIFY(zpool_prop_index_to_string( 5863 prop, intval, &unused) == 0); 5864 } 5865 VERIFY(zap_update(mos, 5866 spa->spa_pool_props_object, propname, 5867 8, 1, &intval, tx) == 0); 5868 spa_history_log_internal(spa, "set", tx, 5869 "%s=%lld", nvpair_name(elem), intval); 5870 } else { 5871 ASSERT(0); /* not allowed */ 5872 } 5873 5874 switch (prop) { 5875 case ZPOOL_PROP_DELEGATION: 5876 spa->spa_delegation = intval; 5877 break; 5878 case ZPOOL_PROP_BOOTFS: 5879 spa->spa_bootfs = intval; 5880 break; 5881 case ZPOOL_PROP_FAILUREMODE: 5882 spa->spa_failmode = intval; 5883 break; 5884 case ZPOOL_PROP_AUTOEXPAND: 5885 spa->spa_autoexpand = intval; 5886 if (tx->tx_txg != TXG_INITIAL) 5887 spa_async_request(spa, 5888 SPA_ASYNC_AUTOEXPAND); 5889 break; 5890 case ZPOOL_PROP_DEDUPDITTO: 5891 spa->spa_dedup_ditto = intval; 5892 break; 5893 default: 5894 break; 5895 } 5896 } 5897 5898 } 5899 5900 mutex_exit(&spa->spa_props_lock); 5901 } 5902 5903 /* 5904 * Perform one-time upgrade on-disk changes. spa_version() does not 5905 * reflect the new version this txg, so there must be no changes this 5906 * txg to anything that the upgrade code depends on after it executes. 5907 * Therefore this must be called after dsl_pool_sync() does the sync 5908 * tasks. 5909 */ 5910 static void 5911 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5912 { 5913 dsl_pool_t *dp = spa->spa_dsl_pool; 5914 5915 ASSERT(spa->spa_sync_pass == 1); 5916 5917 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5918 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5919 dsl_pool_create_origin(dp, tx); 5920 5921 /* Keeping the origin open increases spa_minref */ 5922 spa->spa_minref += 3; 5923 } 5924 5925 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5926 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5927 dsl_pool_upgrade_clones(dp, tx); 5928 } 5929 5930 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5931 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5932 dsl_pool_upgrade_dir_clones(dp, tx); 5933 5934 /* Keeping the freedir open increases spa_minref */ 5935 spa->spa_minref += 3; 5936 } 5937 5938 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 5939 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 5940 spa_feature_create_zap_objects(spa, tx); 5941 } 5942 } 5943 5944 /* 5945 * Sync the specified transaction group. New blocks may be dirtied as 5946 * part of the process, so we iterate until it converges. 5947 */ 5948 void 5949 spa_sync(spa_t *spa, uint64_t txg) 5950 { 5951 dsl_pool_t *dp = spa->spa_dsl_pool; 5952 objset_t *mos = spa->spa_meta_objset; 5953 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5954 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5955 vdev_t *rvd = spa->spa_root_vdev; 5956 vdev_t *vd; 5957 dmu_tx_t *tx; 5958 int error; 5959 5960 VERIFY(spa_writeable(spa)); 5961 5962 /* 5963 * Lock out configuration changes. 5964 */ 5965 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5966 5967 spa->spa_syncing_txg = txg; 5968 spa->spa_sync_pass = 0; 5969 5970 /* 5971 * If there are any pending vdev state changes, convert them 5972 * into config changes that go out with this transaction group. 5973 */ 5974 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5975 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5976 /* 5977 * We need the write lock here because, for aux vdevs, 5978 * calling vdev_config_dirty() modifies sav_config. 5979 * This is ugly and will become unnecessary when we 5980 * eliminate the aux vdev wart by integrating all vdevs 5981 * into the root vdev tree. 5982 */ 5983 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5984 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5985 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5986 vdev_state_clean(vd); 5987 vdev_config_dirty(vd); 5988 } 5989 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5990 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5991 } 5992 spa_config_exit(spa, SCL_STATE, FTAG); 5993 5994 tx = dmu_tx_create_assigned(dp, txg); 5995 5996 spa->spa_sync_starttime = gethrtime(); 5997 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 5998 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 5999 6000 /* 6001 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6002 * set spa_deflate if we have no raid-z vdevs. 6003 */ 6004 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6005 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6006 int i; 6007 6008 for (i = 0; i < rvd->vdev_children; i++) { 6009 vd = rvd->vdev_child[i]; 6010 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6011 break; 6012 } 6013 if (i == rvd->vdev_children) { 6014 spa->spa_deflate = TRUE; 6015 VERIFY(0 == zap_add(spa->spa_meta_objset, 6016 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6017 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6018 } 6019 } 6020 6021 /* 6022 * If anything has changed in this txg, or if someone is waiting 6023 * for this txg to sync (eg, spa_vdev_remove()), push the 6024 * deferred frees from the previous txg. If not, leave them 6025 * alone so that we don't generate work on an otherwise idle 6026 * system. 6027 */ 6028 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6029 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6030 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6031 ((dsl_scan_active(dp->dp_scan) || 6032 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6033 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6034 VERIFY3U(bpobj_iterate(defer_bpo, 6035 spa_free_sync_cb, zio, tx), ==, 0); 6036 VERIFY0(zio_wait(zio)); 6037 } 6038 6039 /* 6040 * Iterate to convergence. 6041 */ 6042 do { 6043 int pass = ++spa->spa_sync_pass; 6044 6045 spa_sync_config_object(spa, tx); 6046 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6047 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6048 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6049 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6050 spa_errlog_sync(spa, txg); 6051 dsl_pool_sync(dp, txg); 6052 6053 if (pass < zfs_sync_pass_deferred_free) { 6054 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6055 bplist_iterate(free_bpl, spa_free_sync_cb, 6056 zio, tx); 6057 VERIFY(zio_wait(zio) == 0); 6058 } else { 6059 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6060 defer_bpo, tx); 6061 } 6062 6063 ddt_sync(spa, txg); 6064 dsl_scan_sync(dp, tx); 6065 6066 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6067 vdev_sync(vd, txg); 6068 6069 if (pass == 1) 6070 spa_sync_upgrades(spa, tx); 6071 6072 } while (dmu_objset_is_dirty(mos, txg)); 6073 6074 /* 6075 * Rewrite the vdev configuration (which includes the uberblock) 6076 * to commit the transaction group. 6077 * 6078 * If there are no dirty vdevs, we sync the uberblock to a few 6079 * random top-level vdevs that are known to be visible in the 6080 * config cache (see spa_vdev_add() for a complete description). 6081 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6082 */ 6083 for (;;) { 6084 /* 6085 * We hold SCL_STATE to prevent vdev open/close/etc. 6086 * while we're attempting to write the vdev labels. 6087 */ 6088 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6089 6090 if (list_is_empty(&spa->spa_config_dirty_list)) { 6091 vdev_t *svd[SPA_DVAS_PER_BP]; 6092 int svdcount = 0; 6093 int children = rvd->vdev_children; 6094 int c0 = spa_get_random(children); 6095 6096 for (int c = 0; c < children; c++) { 6097 vd = rvd->vdev_child[(c0 + c) % children]; 6098 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6099 continue; 6100 svd[svdcount++] = vd; 6101 if (svdcount == SPA_DVAS_PER_BP) 6102 break; 6103 } 6104 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6105 if (error != 0) 6106 error = vdev_config_sync(svd, svdcount, txg, 6107 B_TRUE); 6108 } else { 6109 error = vdev_config_sync(rvd->vdev_child, 6110 rvd->vdev_children, txg, B_FALSE); 6111 if (error != 0) 6112 error = vdev_config_sync(rvd->vdev_child, 6113 rvd->vdev_children, txg, B_TRUE); 6114 } 6115 6116 if (error == 0) 6117 spa->spa_last_synced_guid = rvd->vdev_guid; 6118 6119 spa_config_exit(spa, SCL_STATE, FTAG); 6120 6121 if (error == 0) 6122 break; 6123 zio_suspend(spa, NULL); 6124 zio_resume_wait(spa); 6125 } 6126 dmu_tx_commit(tx); 6127 6128 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6129 6130 /* 6131 * Clear the dirty config list. 6132 */ 6133 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6134 vdev_config_clean(vd); 6135 6136 /* 6137 * Now that the new config has synced transactionally, 6138 * let it become visible to the config cache. 6139 */ 6140 if (spa->spa_config_syncing != NULL) { 6141 spa_config_set(spa, spa->spa_config_syncing); 6142 spa->spa_config_txg = txg; 6143 spa->spa_config_syncing = NULL; 6144 } 6145 6146 spa->spa_ubsync = spa->spa_uberblock; 6147 6148 dsl_pool_sync_done(dp, txg); 6149 6150 /* 6151 * Update usable space statistics. 6152 */ 6153 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6154 vdev_sync_done(vd, txg); 6155 6156 spa_update_dspace(spa); 6157 6158 /* 6159 * It had better be the case that we didn't dirty anything 6160 * since vdev_config_sync(). 6161 */ 6162 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6163 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6164 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6165 6166 spa->spa_sync_pass = 0; 6167 6168 spa_config_exit(spa, SCL_CONFIG, FTAG); 6169 6170 spa_handle_ignored_writes(spa); 6171 6172 /* 6173 * If any async tasks have been requested, kick them off. 6174 */ 6175 spa_async_dispatch(spa); 6176 } 6177 6178 /* 6179 * Sync all pools. We don't want to hold the namespace lock across these 6180 * operations, so we take a reference on the spa_t and drop the lock during the 6181 * sync. 6182 */ 6183 void 6184 spa_sync_allpools(void) 6185 { 6186 spa_t *spa = NULL; 6187 mutex_enter(&spa_namespace_lock); 6188 while ((spa = spa_next(spa)) != NULL) { 6189 if (spa_state(spa) != POOL_STATE_ACTIVE || 6190 !spa_writeable(spa) || spa_suspended(spa)) 6191 continue; 6192 spa_open_ref(spa, FTAG); 6193 mutex_exit(&spa_namespace_lock); 6194 txg_wait_synced(spa_get_dsl(spa), 0); 6195 mutex_enter(&spa_namespace_lock); 6196 spa_close(spa, FTAG); 6197 } 6198 mutex_exit(&spa_namespace_lock); 6199 } 6200 6201 /* 6202 * ========================================================================== 6203 * Miscellaneous routines 6204 * ========================================================================== 6205 */ 6206 6207 /* 6208 * Remove all pools in the system. 6209 */ 6210 void 6211 spa_evict_all(void) 6212 { 6213 spa_t *spa; 6214 6215 /* 6216 * Remove all cached state. All pools should be closed now, 6217 * so every spa in the AVL tree should be unreferenced. 6218 */ 6219 mutex_enter(&spa_namespace_lock); 6220 while ((spa = spa_next(NULL)) != NULL) { 6221 /* 6222 * Stop async tasks. The async thread may need to detach 6223 * a device that's been replaced, which requires grabbing 6224 * spa_namespace_lock, so we must drop it here. 6225 */ 6226 spa_open_ref(spa, FTAG); 6227 mutex_exit(&spa_namespace_lock); 6228 spa_async_suspend(spa); 6229 mutex_enter(&spa_namespace_lock); 6230 spa_close(spa, FTAG); 6231 6232 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6233 spa_unload(spa); 6234 spa_deactivate(spa); 6235 } 6236 spa_remove(spa); 6237 } 6238 mutex_exit(&spa_namespace_lock); 6239 } 6240 6241 vdev_t * 6242 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6243 { 6244 vdev_t *vd; 6245 int i; 6246 6247 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6248 return (vd); 6249 6250 if (aux) { 6251 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6252 vd = spa->spa_l2cache.sav_vdevs[i]; 6253 if (vd->vdev_guid == guid) 6254 return (vd); 6255 } 6256 6257 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6258 vd = spa->spa_spares.sav_vdevs[i]; 6259 if (vd->vdev_guid == guid) 6260 return (vd); 6261 } 6262 } 6263 6264 return (NULL); 6265 } 6266 6267 void 6268 spa_upgrade(spa_t *spa, uint64_t version) 6269 { 6270 ASSERT(spa_writeable(spa)); 6271 6272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6273 6274 /* 6275 * This should only be called for a non-faulted pool, and since a 6276 * future version would result in an unopenable pool, this shouldn't be 6277 * possible. 6278 */ 6279 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 6280 ASSERT(version >= spa->spa_uberblock.ub_version); 6281 6282 spa->spa_uberblock.ub_version = version; 6283 vdev_config_dirty(spa->spa_root_vdev); 6284 6285 spa_config_exit(spa, SCL_ALL, FTAG); 6286 6287 txg_wait_synced(spa_get_dsl(spa), 0); 6288 } 6289 6290 boolean_t 6291 spa_has_spare(spa_t *spa, uint64_t guid) 6292 { 6293 int i; 6294 uint64_t spareguid; 6295 spa_aux_vdev_t *sav = &spa->spa_spares; 6296 6297 for (i = 0; i < sav->sav_count; i++) 6298 if (sav->sav_vdevs[i]->vdev_guid == guid) 6299 return (B_TRUE); 6300 6301 for (i = 0; i < sav->sav_npending; i++) { 6302 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6303 &spareguid) == 0 && spareguid == guid) 6304 return (B_TRUE); 6305 } 6306 6307 return (B_FALSE); 6308 } 6309 6310 /* 6311 * Check if a pool has an active shared spare device. 6312 * Note: reference count of an active spare is 2, as a spare and as a replace 6313 */ 6314 static boolean_t 6315 spa_has_active_shared_spare(spa_t *spa) 6316 { 6317 int i, refcnt; 6318 uint64_t pool; 6319 spa_aux_vdev_t *sav = &spa->spa_spares; 6320 6321 for (i = 0; i < sav->sav_count; i++) { 6322 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6323 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6324 refcnt > 2) 6325 return (B_TRUE); 6326 } 6327 6328 return (B_FALSE); 6329 } 6330 6331 /* 6332 * Post a sysevent corresponding to the given event. The 'name' must be one of 6333 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6334 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6335 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6336 * or zdb as real changes. 6337 */ 6338 void 6339 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6340 { 6341 #ifdef _KERNEL 6342 sysevent_t *ev; 6343 sysevent_attr_list_t *attr = NULL; 6344 sysevent_value_t value; 6345 sysevent_id_t eid; 6346 6347 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6348 SE_SLEEP); 6349 6350 value.value_type = SE_DATA_TYPE_STRING; 6351 value.value.sv_string = spa_name(spa); 6352 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6353 goto done; 6354 6355 value.value_type = SE_DATA_TYPE_UINT64; 6356 value.value.sv_uint64 = spa_guid(spa); 6357 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6358 goto done; 6359 6360 if (vd) { 6361 value.value_type = SE_DATA_TYPE_UINT64; 6362 value.value.sv_uint64 = vd->vdev_guid; 6363 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6364 SE_SLEEP) != 0) 6365 goto done; 6366 6367 if (vd->vdev_path) { 6368 value.value_type = SE_DATA_TYPE_STRING; 6369 value.value.sv_string = vd->vdev_path; 6370 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6371 &value, SE_SLEEP) != 0) 6372 goto done; 6373 } 6374 } 6375 6376 if (sysevent_attach_attributes(ev, attr) != 0) 6377 goto done; 6378 attr = NULL; 6379 6380 (void) log_sysevent(ev, SE_SLEEP, &eid); 6381 6382 done: 6383 if (attr) 6384 sysevent_free_attr(attr); 6385 sysevent_free(ev); 6386 #endif 6387 } 6388