xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision b54157c1b1bf9673e4da8b526477d59202cd08a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/sunddi.h>
63 #include <sys/spa_boot.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 int zio_taskq_threads = 8;
69 
70 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
71 
72 /*
73  * ==========================================================================
74  * SPA properties routines
75  * ==========================================================================
76  */
77 
78 /*
79  * Add a (source=src, propname=propval) list to an nvlist.
80  */
81 static void
82 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
83     uint64_t intval, zprop_source_t src)
84 {
85 	const char *propname = zpool_prop_to_name(prop);
86 	nvlist_t *propval;
87 
88 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
89 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
90 
91 	if (strval != NULL)
92 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
93 	else
94 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
95 
96 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
97 	nvlist_free(propval);
98 }
99 
100 /*
101  * Get property values from the spa configuration.
102  */
103 static void
104 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
105 {
106 	uint64_t size = spa_get_space(spa);
107 	uint64_t used = spa_get_alloc(spa);
108 	uint64_t cap, version;
109 	zprop_source_t src = ZPROP_SRC_NONE;
110 	char *cachefile;
111 	size_t len;
112 
113 	/*
114 	 * readonly properties
115 	 */
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
118 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
119 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
120 
121 	cap = (size == 0) ? 0 : (used * 100 / size);
122 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
123 
124 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
125 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
126 	    spa->spa_root_vdev->vdev_state, src);
127 
128 	/*
129 	 * settable properties that are not stored in the pool property object.
130 	 */
131 	version = spa_version(spa);
132 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
133 		src = ZPROP_SRC_DEFAULT;
134 	else
135 		src = ZPROP_SRC_LOCAL;
136 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
137 
138 	if (spa->spa_root != NULL)
139 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
140 		    0, ZPROP_SRC_LOCAL);
141 
142 	if (spa->spa_config_dir != NULL) {
143 		if (strcmp(spa->spa_config_dir, "none") == 0) {
144 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
145 			    spa->spa_config_dir, 0, ZPROP_SRC_LOCAL);
146 		} else {
147 			len = strlen(spa->spa_config_dir) +
148 			    strlen(spa->spa_config_file) + 2;
149 			cachefile = kmem_alloc(len, KM_SLEEP);
150 			(void) snprintf(cachefile, len, "%s/%s",
151 			    spa->spa_config_dir, spa->spa_config_file);
152 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
153 			    cachefile, 0, ZPROP_SRC_LOCAL);
154 			kmem_free(cachefile, len);
155 		}
156 	}
157 }
158 
159 /*
160  * Get zpool property values.
161  */
162 int
163 spa_prop_get(spa_t *spa, nvlist_t **nvp)
164 {
165 	zap_cursor_t zc;
166 	zap_attribute_t za;
167 	objset_t *mos = spa->spa_meta_objset;
168 	int err;
169 
170 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
171 
172 	/*
173 	 * Get properties from the spa config.
174 	 */
175 	spa_prop_get_config(spa, nvp);
176 
177 	mutex_enter(&spa->spa_props_lock);
178 	/* If no pool property object, no more prop to get. */
179 	if (spa->spa_pool_props_object == 0) {
180 		mutex_exit(&spa->spa_props_lock);
181 		return (0);
182 	}
183 
184 	/*
185 	 * Get properties from the MOS pool property object.
186 	 */
187 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
188 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
189 	    zap_cursor_advance(&zc)) {
190 		uint64_t intval = 0;
191 		char *strval = NULL;
192 		zprop_source_t src = ZPROP_SRC_DEFAULT;
193 		zpool_prop_t prop;
194 
195 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
196 			continue;
197 
198 		switch (za.za_integer_length) {
199 		case 8:
200 			/* integer property */
201 			if (za.za_first_integer !=
202 			    zpool_prop_default_numeric(prop))
203 				src = ZPROP_SRC_LOCAL;
204 
205 			if (prop == ZPOOL_PROP_BOOTFS) {
206 				dsl_pool_t *dp;
207 				dsl_dataset_t *ds = NULL;
208 
209 				dp = spa_get_dsl(spa);
210 				rw_enter(&dp->dp_config_rwlock, RW_READER);
211 				if (err = dsl_dataset_open_obj(dp,
212 				    za.za_first_integer, NULL, DS_MODE_NONE,
213 				    FTAG, &ds)) {
214 					rw_exit(&dp->dp_config_rwlock);
215 					break;
216 				}
217 
218 				strval = kmem_alloc(
219 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
220 				    KM_SLEEP);
221 				dsl_dataset_name(ds, strval);
222 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
223 				rw_exit(&dp->dp_config_rwlock);
224 			} else {
225 				strval = NULL;
226 				intval = za.za_first_integer;
227 			}
228 
229 			spa_prop_add_list(*nvp, prop, strval, intval, src);
230 
231 			if (strval != NULL)
232 				kmem_free(strval,
233 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
234 
235 			break;
236 
237 		case 1:
238 			/* string property */
239 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
240 			err = zap_lookup(mos, spa->spa_pool_props_object,
241 			    za.za_name, 1, za.za_num_integers, strval);
242 			if (err) {
243 				kmem_free(strval, za.za_num_integers);
244 				break;
245 			}
246 			spa_prop_add_list(*nvp, prop, strval, 0, src);
247 			kmem_free(strval, za.za_num_integers);
248 			break;
249 
250 		default:
251 			break;
252 		}
253 	}
254 	zap_cursor_fini(&zc);
255 	mutex_exit(&spa->spa_props_lock);
256 out:
257 	if (err && err != ENOENT) {
258 		nvlist_free(*nvp);
259 		*nvp = NULL;
260 		return (err);
261 	}
262 
263 	return (0);
264 }
265 
266 /*
267  * Validate the given pool properties nvlist and modify the list
268  * for the property values to be set.
269  */
270 static int
271 spa_prop_validate(spa_t *spa, nvlist_t *props)
272 {
273 	nvpair_t *elem;
274 	int error = 0, reset_bootfs = 0;
275 	uint64_t objnum;
276 
277 	elem = NULL;
278 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
279 		zpool_prop_t prop;
280 		char *propname, *strval;
281 		uint64_t intval;
282 		vdev_t *rvdev;
283 		char *vdev_type;
284 		objset_t *os;
285 		char *slash;
286 
287 		propname = nvpair_name(elem);
288 
289 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
290 			return (EINVAL);
291 
292 		switch (prop) {
293 		case ZPOOL_PROP_VERSION:
294 			error = nvpair_value_uint64(elem, &intval);
295 			if (!error &&
296 			    (intval < spa_version(spa) || intval > SPA_VERSION))
297 				error = EINVAL;
298 			break;
299 
300 		case ZPOOL_PROP_DELEGATION:
301 		case ZPOOL_PROP_AUTOREPLACE:
302 			error = nvpair_value_uint64(elem, &intval);
303 			if (!error && intval > 1)
304 				error = EINVAL;
305 			break;
306 
307 		case ZPOOL_PROP_BOOTFS:
308 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
309 				error = ENOTSUP;
310 				break;
311 			}
312 
313 			/*
314 			 * A bootable filesystem can not be on a RAIDZ pool
315 			 * nor a striped pool with more than 1 device.
316 			 */
317 			rvdev = spa->spa_root_vdev;
318 			vdev_type =
319 			    rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
320 			if (rvdev->vdev_children > 1 ||
321 			    strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
322 			    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
323 				error = ENOTSUP;
324 				break;
325 			}
326 
327 			reset_bootfs = 1;
328 
329 			error = nvpair_value_string(elem, &strval);
330 
331 			if (!error) {
332 				if (strval == NULL || strval[0] == '\0') {
333 					objnum = zpool_prop_default_numeric(
334 					    ZPOOL_PROP_BOOTFS);
335 					break;
336 				}
337 
338 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
339 				    DS_MODE_STANDARD | DS_MODE_READONLY, &os))
340 					break;
341 				objnum = dmu_objset_id(os);
342 				dmu_objset_close(os);
343 			}
344 			break;
345 		case ZPOOL_PROP_FAILUREMODE:
346 			error = nvpair_value_uint64(elem, &intval);
347 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
348 			    intval > ZIO_FAILURE_MODE_PANIC))
349 				error = EINVAL;
350 
351 			/*
352 			 * This is a special case which only occurs when
353 			 * the pool has completely failed. This allows
354 			 * the user to change the in-core failmode property
355 			 * without syncing it out to disk (I/Os might
356 			 * currently be blocked). We do this by returning
357 			 * EIO to the caller (spa_prop_set) to trick it
358 			 * into thinking we encountered a property validation
359 			 * error.
360 			 */
361 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
362 				spa->spa_failmode = intval;
363 				error = EIO;
364 			}
365 			break;
366 
367 		case ZPOOL_PROP_CACHEFILE:
368 			if ((error = nvpair_value_string(elem, &strval)) != 0)
369 				break;
370 
371 			if (strval[0] == '\0')
372 				break;
373 
374 			if (strcmp(strval, "none") == 0)
375 				break;
376 
377 			if (strval[0] != '/') {
378 				error = EINVAL;
379 				break;
380 			}
381 
382 			slash = strrchr(strval, '/');
383 			ASSERT(slash != NULL);
384 
385 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
386 			    strcmp(slash, "/..") == 0)
387 				error = EINVAL;
388 			break;
389 		}
390 
391 		if (error)
392 			break;
393 	}
394 
395 	if (!error && reset_bootfs) {
396 		error = nvlist_remove(props,
397 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
398 
399 		if (!error) {
400 			error = nvlist_add_uint64(props,
401 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
402 		}
403 	}
404 
405 	return (error);
406 }
407 
408 int
409 spa_prop_set(spa_t *spa, nvlist_t *nvp)
410 {
411 	int error;
412 
413 	if ((error = spa_prop_validate(spa, nvp)) != 0)
414 		return (error);
415 
416 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
417 	    spa, nvp, 3));
418 }
419 
420 /*
421  * If the bootfs property value is dsobj, clear it.
422  */
423 void
424 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
425 {
426 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
427 		VERIFY(zap_remove(spa->spa_meta_objset,
428 		    spa->spa_pool_props_object,
429 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
430 		spa->spa_bootfs = 0;
431 	}
432 }
433 
434 /*
435  * ==========================================================================
436  * SPA state manipulation (open/create/destroy/import/export)
437  * ==========================================================================
438  */
439 
440 static int
441 spa_error_entry_compare(const void *a, const void *b)
442 {
443 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
444 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
445 	int ret;
446 
447 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
448 	    sizeof (zbookmark_t));
449 
450 	if (ret < 0)
451 		return (-1);
452 	else if (ret > 0)
453 		return (1);
454 	else
455 		return (0);
456 }
457 
458 /*
459  * Utility function which retrieves copies of the current logs and
460  * re-initializes them in the process.
461  */
462 void
463 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
464 {
465 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
466 
467 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
468 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
469 
470 	avl_create(&spa->spa_errlist_scrub,
471 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
472 	    offsetof(spa_error_entry_t, se_avl));
473 	avl_create(&spa->spa_errlist_last,
474 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
475 	    offsetof(spa_error_entry_t, se_avl));
476 }
477 
478 /*
479  * Activate an uninitialized pool.
480  */
481 static void
482 spa_activate(spa_t *spa)
483 {
484 	int t;
485 
486 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
487 
488 	spa->spa_state = POOL_STATE_ACTIVE;
489 
490 	spa->spa_normal_class = metaslab_class_create();
491 	spa->spa_log_class = metaslab_class_create();
492 
493 	for (t = 0; t < ZIO_TYPES; t++) {
494 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
495 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
496 		    TASKQ_PREPOPULATE);
497 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
498 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
499 		    TASKQ_PREPOPULATE);
500 	}
501 
502 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
503 	    offsetof(vdev_t, vdev_dirty_node));
504 	list_create(&spa->spa_zio_list, sizeof (zio_t),
505 	    offsetof(zio_t, zio_link_node));
506 
507 	txg_list_create(&spa->spa_vdev_txg_list,
508 	    offsetof(struct vdev, vdev_txg_node));
509 
510 	avl_create(&spa->spa_errlist_scrub,
511 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
512 	    offsetof(spa_error_entry_t, se_avl));
513 	avl_create(&spa->spa_errlist_last,
514 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
515 	    offsetof(spa_error_entry_t, se_avl));
516 }
517 
518 /*
519  * Opposite of spa_activate().
520  */
521 static void
522 spa_deactivate(spa_t *spa)
523 {
524 	int t;
525 
526 	ASSERT(spa->spa_sync_on == B_FALSE);
527 	ASSERT(spa->spa_dsl_pool == NULL);
528 	ASSERT(spa->spa_root_vdev == NULL);
529 
530 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
531 
532 	txg_list_destroy(&spa->spa_vdev_txg_list);
533 
534 	list_destroy(&spa->spa_dirty_list);
535 	list_destroy(&spa->spa_zio_list);
536 
537 	for (t = 0; t < ZIO_TYPES; t++) {
538 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
539 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
540 		spa->spa_zio_issue_taskq[t] = NULL;
541 		spa->spa_zio_intr_taskq[t] = NULL;
542 	}
543 
544 	metaslab_class_destroy(spa->spa_normal_class);
545 	spa->spa_normal_class = NULL;
546 
547 	metaslab_class_destroy(spa->spa_log_class);
548 	spa->spa_log_class = NULL;
549 
550 	/*
551 	 * If this was part of an import or the open otherwise failed, we may
552 	 * still have errors left in the queues.  Empty them just in case.
553 	 */
554 	spa_errlog_drain(spa);
555 
556 	avl_destroy(&spa->spa_errlist_scrub);
557 	avl_destroy(&spa->spa_errlist_last);
558 
559 	spa->spa_state = POOL_STATE_UNINITIALIZED;
560 }
561 
562 /*
563  * Verify a pool configuration, and construct the vdev tree appropriately.  This
564  * will create all the necessary vdevs in the appropriate layout, with each vdev
565  * in the CLOSED state.  This will prep the pool before open/creation/import.
566  * All vdev validation is done by the vdev_alloc() routine.
567  */
568 static int
569 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
570     uint_t id, int atype)
571 {
572 	nvlist_t **child;
573 	uint_t c, children;
574 	int error;
575 
576 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
577 		return (error);
578 
579 	if ((*vdp)->vdev_ops->vdev_op_leaf)
580 		return (0);
581 
582 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
583 	    &child, &children) != 0) {
584 		vdev_free(*vdp);
585 		*vdp = NULL;
586 		return (EINVAL);
587 	}
588 
589 	for (c = 0; c < children; c++) {
590 		vdev_t *vd;
591 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
592 		    atype)) != 0) {
593 			vdev_free(*vdp);
594 			*vdp = NULL;
595 			return (error);
596 		}
597 	}
598 
599 	ASSERT(*vdp != NULL);
600 
601 	return (0);
602 }
603 
604 /*
605  * Opposite of spa_load().
606  */
607 static void
608 spa_unload(spa_t *spa)
609 {
610 	int i;
611 
612 	/*
613 	 * Stop async tasks.
614 	 */
615 	spa_async_suspend(spa);
616 
617 	/*
618 	 * Stop syncing.
619 	 */
620 	if (spa->spa_sync_on) {
621 		txg_sync_stop(spa->spa_dsl_pool);
622 		spa->spa_sync_on = B_FALSE;
623 	}
624 
625 	/*
626 	 * Wait for any outstanding prefetch I/O to complete.
627 	 */
628 	spa_config_enter(spa, RW_WRITER, FTAG);
629 	spa_config_exit(spa, FTAG);
630 
631 	/*
632 	 * Drop and purge level 2 cache
633 	 */
634 	spa_l2cache_drop(spa);
635 
636 	/*
637 	 * Close the dsl pool.
638 	 */
639 	if (spa->spa_dsl_pool) {
640 		dsl_pool_close(spa->spa_dsl_pool);
641 		spa->spa_dsl_pool = NULL;
642 	}
643 
644 	/*
645 	 * Close all vdevs.
646 	 */
647 	if (spa->spa_root_vdev)
648 		vdev_free(spa->spa_root_vdev);
649 	ASSERT(spa->spa_root_vdev == NULL);
650 
651 	for (i = 0; i < spa->spa_spares.sav_count; i++)
652 		vdev_free(spa->spa_spares.sav_vdevs[i]);
653 	if (spa->spa_spares.sav_vdevs) {
654 		kmem_free(spa->spa_spares.sav_vdevs,
655 		    spa->spa_spares.sav_count * sizeof (void *));
656 		spa->spa_spares.sav_vdevs = NULL;
657 	}
658 	if (spa->spa_spares.sav_config) {
659 		nvlist_free(spa->spa_spares.sav_config);
660 		spa->spa_spares.sav_config = NULL;
661 	}
662 
663 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
664 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
665 	if (spa->spa_l2cache.sav_vdevs) {
666 		kmem_free(spa->spa_l2cache.sav_vdevs,
667 		    spa->spa_l2cache.sav_count * sizeof (void *));
668 		spa->spa_l2cache.sav_vdevs = NULL;
669 	}
670 	if (spa->spa_l2cache.sav_config) {
671 		nvlist_free(spa->spa_l2cache.sav_config);
672 		spa->spa_l2cache.sav_config = NULL;
673 	}
674 
675 	spa->spa_async_suspended = 0;
676 }
677 
678 /*
679  * Load (or re-load) the current list of vdevs describing the active spares for
680  * this pool.  When this is called, we have some form of basic information in
681  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
682  * then re-generate a more complete list including status information.
683  */
684 static void
685 spa_load_spares(spa_t *spa)
686 {
687 	nvlist_t **spares;
688 	uint_t nspares;
689 	int i;
690 	vdev_t *vd, *tvd;
691 
692 	/*
693 	 * First, close and free any existing spare vdevs.
694 	 */
695 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
696 		vd = spa->spa_spares.sav_vdevs[i];
697 
698 		/* Undo the call to spa_activate() below */
699 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
700 		    tvd->vdev_isspare)
701 			spa_spare_remove(tvd);
702 		vdev_close(vd);
703 		vdev_free(vd);
704 	}
705 
706 	if (spa->spa_spares.sav_vdevs)
707 		kmem_free(spa->spa_spares.sav_vdevs,
708 		    spa->spa_spares.sav_count * sizeof (void *));
709 
710 	if (spa->spa_spares.sav_config == NULL)
711 		nspares = 0;
712 	else
713 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
714 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
715 
716 	spa->spa_spares.sav_count = (int)nspares;
717 	spa->spa_spares.sav_vdevs = NULL;
718 
719 	if (nspares == 0)
720 		return;
721 
722 	/*
723 	 * Construct the array of vdevs, opening them to get status in the
724 	 * process.   For each spare, there is potentially two different vdev_t
725 	 * structures associated with it: one in the list of spares (used only
726 	 * for basic validation purposes) and one in the active vdev
727 	 * configuration (if it's spared in).  During this phase we open and
728 	 * validate each vdev on the spare list.  If the vdev also exists in the
729 	 * active configuration, then we also mark this vdev as an active spare.
730 	 */
731 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
732 	    KM_SLEEP);
733 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
734 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
735 		    VDEV_ALLOC_SPARE) == 0);
736 		ASSERT(vd != NULL);
737 
738 		spa->spa_spares.sav_vdevs[i] = vd;
739 
740 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
741 			if (!tvd->vdev_isspare)
742 				spa_spare_add(tvd);
743 
744 			/*
745 			 * We only mark the spare active if we were successfully
746 			 * able to load the vdev.  Otherwise, importing a pool
747 			 * with a bad active spare would result in strange
748 			 * behavior, because multiple pool would think the spare
749 			 * is actively in use.
750 			 *
751 			 * There is a vulnerability here to an equally bizarre
752 			 * circumstance, where a dead active spare is later
753 			 * brought back to life (onlined or otherwise).  Given
754 			 * the rarity of this scenario, and the extra complexity
755 			 * it adds, we ignore the possibility.
756 			 */
757 			if (!vdev_is_dead(tvd))
758 				spa_spare_activate(tvd);
759 		}
760 
761 		if (vdev_open(vd) != 0)
762 			continue;
763 
764 		vd->vdev_top = vd;
765 		if (vdev_validate_aux(vd) == 0)
766 			spa_spare_add(vd);
767 	}
768 
769 	/*
770 	 * Recompute the stashed list of spares, with status information
771 	 * this time.
772 	 */
773 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
774 	    DATA_TYPE_NVLIST_ARRAY) == 0);
775 
776 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
777 	    KM_SLEEP);
778 	for (i = 0; i < spa->spa_spares.sav_count; i++)
779 		spares[i] = vdev_config_generate(spa,
780 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
781 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
782 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
783 	for (i = 0; i < spa->spa_spares.sav_count; i++)
784 		nvlist_free(spares[i]);
785 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
786 }
787 
788 /*
789  * Load (or re-load) the current list of vdevs describing the active l2cache for
790  * this pool.  When this is called, we have some form of basic information in
791  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
792  * then re-generate a more complete list including status information.
793  * Devices which are already active have their details maintained, and are
794  * not re-opened.
795  */
796 static void
797 spa_load_l2cache(spa_t *spa)
798 {
799 	nvlist_t **l2cache;
800 	uint_t nl2cache;
801 	int i, j, oldnvdevs;
802 	uint64_t guid;
803 	vdev_t *vd, **oldvdevs, **newvdevs;
804 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
805 
806 	if (sav->sav_config != NULL) {
807 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
808 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
809 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
810 	} else {
811 		nl2cache = 0;
812 	}
813 
814 	oldvdevs = sav->sav_vdevs;
815 	oldnvdevs = sav->sav_count;
816 	sav->sav_vdevs = NULL;
817 	sav->sav_count = 0;
818 
819 	/*
820 	 * Process new nvlist of vdevs.
821 	 */
822 	for (i = 0; i < nl2cache; i++) {
823 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
824 		    &guid) == 0);
825 
826 		newvdevs[i] = NULL;
827 		for (j = 0; j < oldnvdevs; j++) {
828 			vd = oldvdevs[j];
829 			if (vd != NULL && guid == vd->vdev_guid) {
830 				/*
831 				 * Retain previous vdev for add/remove ops.
832 				 */
833 				newvdevs[i] = vd;
834 				oldvdevs[j] = NULL;
835 				break;
836 			}
837 		}
838 
839 		if (newvdevs[i] == NULL) {
840 			/*
841 			 * Create new vdev
842 			 */
843 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
844 			    VDEV_ALLOC_L2CACHE) == 0);
845 			ASSERT(vd != NULL);
846 			newvdevs[i] = vd;
847 
848 			/*
849 			 * Commit this vdev as an l2cache device,
850 			 * even if it fails to open.
851 			 */
852 			spa_l2cache_add(vd);
853 
854 			if (vdev_open(vd) != 0)
855 				continue;
856 
857 			vd->vdev_top = vd;
858 			(void) vdev_validate_aux(vd);
859 
860 			if (!vdev_is_dead(vd)) {
861 				uint64_t size;
862 				size = vdev_get_rsize(vd);
863 				ASSERT3U(size, >, 0);
864 				if (spa_mode & FWRITE) {
865 					l2arc_add_vdev(spa, vd,
866 					    VDEV_LABEL_START_SIZE,
867 					    size - VDEV_LABEL_START_SIZE);
868 				}
869 				spa_l2cache_activate(vd);
870 			}
871 		}
872 	}
873 
874 	/*
875 	 * Purge vdevs that were dropped
876 	 */
877 	for (i = 0; i < oldnvdevs; i++) {
878 		uint64_t pool;
879 
880 		vd = oldvdevs[i];
881 		if (vd != NULL) {
882 			if (spa_mode & FWRITE &&
883 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
884 			    pool != 0ULL) {
885 				l2arc_remove_vdev(vd);
886 			}
887 			(void) vdev_close(vd);
888 			spa_l2cache_remove(vd);
889 		}
890 	}
891 
892 	if (oldvdevs)
893 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
894 
895 	if (sav->sav_config == NULL)
896 		goto out;
897 
898 	sav->sav_vdevs = newvdevs;
899 	sav->sav_count = (int)nl2cache;
900 
901 	/*
902 	 * Recompute the stashed list of l2cache devices, with status
903 	 * information this time.
904 	 */
905 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
906 	    DATA_TYPE_NVLIST_ARRAY) == 0);
907 
908 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
909 	for (i = 0; i < sav->sav_count; i++)
910 		l2cache[i] = vdev_config_generate(spa,
911 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
912 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
913 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
914 out:
915 	for (i = 0; i < sav->sav_count; i++)
916 		nvlist_free(l2cache[i]);
917 	if (sav->sav_count)
918 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
919 }
920 
921 static int
922 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
923 {
924 	dmu_buf_t *db;
925 	char *packed = NULL;
926 	size_t nvsize = 0;
927 	int error;
928 	*value = NULL;
929 
930 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
931 	nvsize = *(uint64_t *)db->db_data;
932 	dmu_buf_rele(db, FTAG);
933 
934 	packed = kmem_alloc(nvsize, KM_SLEEP);
935 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
936 	if (error == 0)
937 		error = nvlist_unpack(packed, nvsize, value, 0);
938 	kmem_free(packed, nvsize);
939 
940 	return (error);
941 }
942 
943 /*
944  * Checks to see if the given vdev could not be opened, in which case we post a
945  * sysevent to notify the autoreplace code that the device has been removed.
946  */
947 static void
948 spa_check_removed(vdev_t *vd)
949 {
950 	int c;
951 
952 	for (c = 0; c < vd->vdev_children; c++)
953 		spa_check_removed(vd->vdev_child[c]);
954 
955 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
956 		zfs_post_autoreplace(vd->vdev_spa, vd);
957 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
958 	}
959 }
960 
961 /*
962  * Load an existing storage pool, using the pool's builtin spa_config as a
963  * source of configuration information.
964  */
965 static int
966 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
967 {
968 	int error = 0;
969 	nvlist_t *nvroot = NULL;
970 	vdev_t *rvd;
971 	uberblock_t *ub = &spa->spa_uberblock;
972 	uint64_t config_cache_txg = spa->spa_config_txg;
973 	uint64_t pool_guid;
974 	uint64_t version;
975 	zio_t *zio;
976 	uint64_t autoreplace = 0;
977 
978 	spa->spa_load_state = state;
979 
980 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
981 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
982 		error = EINVAL;
983 		goto out;
984 	}
985 
986 	/*
987 	 * Versioning wasn't explicitly added to the label until later, so if
988 	 * it's not present treat it as the initial version.
989 	 */
990 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
991 		version = SPA_VERSION_INITIAL;
992 
993 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
994 	    &spa->spa_config_txg);
995 
996 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
997 	    spa_guid_exists(pool_guid, 0)) {
998 		error = EEXIST;
999 		goto out;
1000 	}
1001 
1002 	spa->spa_load_guid = pool_guid;
1003 
1004 	/*
1005 	 * Parse the configuration into a vdev tree.  We explicitly set the
1006 	 * value that will be returned by spa_version() since parsing the
1007 	 * configuration requires knowing the version number.
1008 	 */
1009 	spa_config_enter(spa, RW_WRITER, FTAG);
1010 	spa->spa_ubsync.ub_version = version;
1011 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1012 	spa_config_exit(spa, FTAG);
1013 
1014 	if (error != 0)
1015 		goto out;
1016 
1017 	ASSERT(spa->spa_root_vdev == rvd);
1018 	ASSERT(spa_guid(spa) == pool_guid);
1019 
1020 	/*
1021 	 * Try to open all vdevs, loading each label in the process.
1022 	 */
1023 	error = vdev_open(rvd);
1024 	if (error != 0)
1025 		goto out;
1026 
1027 	/*
1028 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1029 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1030 	 * flag.
1031 	 */
1032 	spa_config_enter(spa, RW_READER, FTAG);
1033 	error = vdev_validate(rvd);
1034 	spa_config_exit(spa, FTAG);
1035 
1036 	if (error != 0)
1037 		goto out;
1038 
1039 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1040 		error = ENXIO;
1041 		goto out;
1042 	}
1043 
1044 	/*
1045 	 * Find the best uberblock.
1046 	 */
1047 	bzero(ub, sizeof (uberblock_t));
1048 
1049 	zio = zio_root(spa, NULL, NULL,
1050 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1051 	vdev_uberblock_load(zio, rvd, ub);
1052 	error = zio_wait(zio);
1053 
1054 	/*
1055 	 * If we weren't able to find a single valid uberblock, return failure.
1056 	 */
1057 	if (ub->ub_txg == 0) {
1058 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1059 		    VDEV_AUX_CORRUPT_DATA);
1060 		error = ENXIO;
1061 		goto out;
1062 	}
1063 
1064 	/*
1065 	 * If the pool is newer than the code, we can't open it.
1066 	 */
1067 	if (ub->ub_version > SPA_VERSION) {
1068 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1069 		    VDEV_AUX_VERSION_NEWER);
1070 		error = ENOTSUP;
1071 		goto out;
1072 	}
1073 
1074 	/*
1075 	 * If the vdev guid sum doesn't match the uberblock, we have an
1076 	 * incomplete configuration.
1077 	 */
1078 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1079 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1080 		    VDEV_AUX_BAD_GUID_SUM);
1081 		error = ENXIO;
1082 		goto out;
1083 	}
1084 
1085 	/*
1086 	 * Initialize internal SPA structures.
1087 	 */
1088 	spa->spa_state = POOL_STATE_ACTIVE;
1089 	spa->spa_ubsync = spa->spa_uberblock;
1090 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1091 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1092 	if (error) {
1093 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1094 		    VDEV_AUX_CORRUPT_DATA);
1095 		goto out;
1096 	}
1097 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1098 
1099 	if (zap_lookup(spa->spa_meta_objset,
1100 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1101 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1102 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1103 		    VDEV_AUX_CORRUPT_DATA);
1104 		error = EIO;
1105 		goto out;
1106 	}
1107 
1108 	if (!mosconfig) {
1109 		nvlist_t *newconfig;
1110 		uint64_t hostid;
1111 
1112 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1113 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1114 			    VDEV_AUX_CORRUPT_DATA);
1115 			error = EIO;
1116 			goto out;
1117 		}
1118 
1119 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
1120 		    &hostid) == 0) {
1121 			char *hostname;
1122 			unsigned long myhostid = 0;
1123 
1124 			VERIFY(nvlist_lookup_string(newconfig,
1125 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1126 
1127 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1128 			if (hostid != 0 && myhostid != 0 &&
1129 			    (unsigned long)hostid != myhostid) {
1130 				cmn_err(CE_WARN, "pool '%s' could not be "
1131 				    "loaded as it was last accessed by "
1132 				    "another system (host: %s hostid: 0x%lx).  "
1133 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1134 				    spa->spa_name, hostname,
1135 				    (unsigned long)hostid);
1136 				error = EBADF;
1137 				goto out;
1138 			}
1139 		}
1140 
1141 		spa_config_set(spa, newconfig);
1142 		spa_unload(spa);
1143 		spa_deactivate(spa);
1144 		spa_activate(spa);
1145 
1146 		return (spa_load(spa, newconfig, state, B_TRUE));
1147 	}
1148 
1149 	if (zap_lookup(spa->spa_meta_objset,
1150 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1151 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1152 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1153 		    VDEV_AUX_CORRUPT_DATA);
1154 		error = EIO;
1155 		goto out;
1156 	}
1157 
1158 	/*
1159 	 * Load the bit that tells us to use the new accounting function
1160 	 * (raid-z deflation).  If we have an older pool, this will not
1161 	 * be present.
1162 	 */
1163 	error = zap_lookup(spa->spa_meta_objset,
1164 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1165 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1166 	if (error != 0 && error != ENOENT) {
1167 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1168 		    VDEV_AUX_CORRUPT_DATA);
1169 		error = EIO;
1170 		goto out;
1171 	}
1172 
1173 	/*
1174 	 * Load the persistent error log.  If we have an older pool, this will
1175 	 * not be present.
1176 	 */
1177 	error = zap_lookup(spa->spa_meta_objset,
1178 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1179 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1180 	if (error != 0 && error != ENOENT) {
1181 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1182 		    VDEV_AUX_CORRUPT_DATA);
1183 		error = EIO;
1184 		goto out;
1185 	}
1186 
1187 	error = zap_lookup(spa->spa_meta_objset,
1188 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1189 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1190 	if (error != 0 && error != ENOENT) {
1191 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1192 		    VDEV_AUX_CORRUPT_DATA);
1193 		error = EIO;
1194 		goto out;
1195 	}
1196 
1197 	/*
1198 	 * Load the history object.  If we have an older pool, this
1199 	 * will not be present.
1200 	 */
1201 	error = zap_lookup(spa->spa_meta_objset,
1202 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1203 	    sizeof (uint64_t), 1, &spa->spa_history);
1204 	if (error != 0 && error != ENOENT) {
1205 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1206 		    VDEV_AUX_CORRUPT_DATA);
1207 		error = EIO;
1208 		goto out;
1209 	}
1210 
1211 	/*
1212 	 * Load any hot spares for this pool.
1213 	 */
1214 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1215 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1216 	if (error != 0 && error != ENOENT) {
1217 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 		    VDEV_AUX_CORRUPT_DATA);
1219 		error = EIO;
1220 		goto out;
1221 	}
1222 	if (error == 0) {
1223 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1224 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1225 		    &spa->spa_spares.sav_config) != 0) {
1226 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1227 			    VDEV_AUX_CORRUPT_DATA);
1228 			error = EIO;
1229 			goto out;
1230 		}
1231 
1232 		spa_config_enter(spa, RW_WRITER, FTAG);
1233 		spa_load_spares(spa);
1234 		spa_config_exit(spa, FTAG);
1235 	}
1236 
1237 	/*
1238 	 * Load any level 2 ARC devices for this pool.
1239 	 */
1240 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1241 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1242 	    &spa->spa_l2cache.sav_object);
1243 	if (error != 0 && error != ENOENT) {
1244 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1245 		    VDEV_AUX_CORRUPT_DATA);
1246 		error = EIO;
1247 		goto out;
1248 	}
1249 	if (error == 0) {
1250 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1251 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1252 		    &spa->spa_l2cache.sav_config) != 0) {
1253 			vdev_set_state(rvd, B_TRUE,
1254 			    VDEV_STATE_CANT_OPEN,
1255 			    VDEV_AUX_CORRUPT_DATA);
1256 			error = EIO;
1257 			goto out;
1258 		}
1259 
1260 		spa_config_enter(spa, RW_WRITER, FTAG);
1261 		spa_load_l2cache(spa);
1262 		spa_config_exit(spa, FTAG);
1263 	}
1264 
1265 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1266 
1267 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1268 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1269 
1270 	if (error && error != ENOENT) {
1271 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1272 		    VDEV_AUX_CORRUPT_DATA);
1273 		error = EIO;
1274 		goto out;
1275 	}
1276 
1277 	if (error == 0) {
1278 		(void) zap_lookup(spa->spa_meta_objset,
1279 		    spa->spa_pool_props_object,
1280 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1281 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1282 		(void) zap_lookup(spa->spa_meta_objset,
1283 		    spa->spa_pool_props_object,
1284 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1285 		    sizeof (uint64_t), 1, &autoreplace);
1286 		(void) zap_lookup(spa->spa_meta_objset,
1287 		    spa->spa_pool_props_object,
1288 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1289 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1290 		(void) zap_lookup(spa->spa_meta_objset,
1291 		    spa->spa_pool_props_object,
1292 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1293 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1294 	}
1295 
1296 	/*
1297 	 * If the 'autoreplace' property is set, then post a resource notifying
1298 	 * the ZFS DE that it should not issue any faults for unopenable
1299 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1300 	 * unopenable vdevs so that the normal autoreplace handler can take
1301 	 * over.
1302 	 */
1303 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1304 		spa_check_removed(spa->spa_root_vdev);
1305 
1306 	/*
1307 	 * Load the vdev state for all toplevel vdevs.
1308 	 */
1309 	vdev_load(rvd);
1310 
1311 	/*
1312 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1313 	 */
1314 	spa_config_enter(spa, RW_WRITER, FTAG);
1315 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1316 	spa_config_exit(spa, FTAG);
1317 
1318 	/*
1319 	 * Check the state of the root vdev.  If it can't be opened, it
1320 	 * indicates one or more toplevel vdevs are faulted.
1321 	 */
1322 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1323 		error = ENXIO;
1324 		goto out;
1325 	}
1326 
1327 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1328 		dmu_tx_t *tx;
1329 		int need_update = B_FALSE;
1330 		int c;
1331 
1332 		/*
1333 		 * Claim log blocks that haven't been committed yet.
1334 		 * This must all happen in a single txg.
1335 		 */
1336 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1337 		    spa_first_txg(spa));
1338 		(void) dmu_objset_find(spa->spa_name,
1339 		    zil_claim, tx, DS_FIND_CHILDREN);
1340 		dmu_tx_commit(tx);
1341 
1342 		spa->spa_sync_on = B_TRUE;
1343 		txg_sync_start(spa->spa_dsl_pool);
1344 
1345 		/*
1346 		 * Wait for all claims to sync.
1347 		 */
1348 		txg_wait_synced(spa->spa_dsl_pool, 0);
1349 
1350 		/*
1351 		 * If the config cache is stale, or we have uninitialized
1352 		 * metaslabs (see spa_vdev_add()), then update the config.
1353 		 */
1354 		if (config_cache_txg != spa->spa_config_txg ||
1355 		    state == SPA_LOAD_IMPORT)
1356 			need_update = B_TRUE;
1357 
1358 		for (c = 0; c < rvd->vdev_children; c++)
1359 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1360 				need_update = B_TRUE;
1361 
1362 		/*
1363 		 * Update the config cache asychronously in case we're the
1364 		 * root pool, in which case the config cache isn't writable yet.
1365 		 */
1366 		if (need_update)
1367 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1368 	}
1369 
1370 	error = 0;
1371 out:
1372 	if (error && error != EBADF)
1373 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1374 	spa->spa_load_state = SPA_LOAD_NONE;
1375 	spa->spa_ena = 0;
1376 
1377 	return (error);
1378 }
1379 
1380 /*
1381  * Pool Open/Import
1382  *
1383  * The import case is identical to an open except that the configuration is sent
1384  * down from userland, instead of grabbed from the configuration cache.  For the
1385  * case of an open, the pool configuration will exist in the
1386  * POOL_STATE_UNINITIALIZED state.
1387  *
1388  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1389  * the same time open the pool, without having to keep around the spa_t in some
1390  * ambiguous state.
1391  */
1392 static int
1393 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1394 {
1395 	spa_t *spa;
1396 	int error;
1397 	int loaded = B_FALSE;
1398 	int locked = B_FALSE;
1399 
1400 	*spapp = NULL;
1401 
1402 	/*
1403 	 * As disgusting as this is, we need to support recursive calls to this
1404 	 * function because dsl_dir_open() is called during spa_load(), and ends
1405 	 * up calling spa_open() again.  The real fix is to figure out how to
1406 	 * avoid dsl_dir_open() calling this in the first place.
1407 	 */
1408 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1409 		mutex_enter(&spa_namespace_lock);
1410 		locked = B_TRUE;
1411 	}
1412 
1413 	if ((spa = spa_lookup(pool)) == NULL) {
1414 		if (locked)
1415 			mutex_exit(&spa_namespace_lock);
1416 		return (ENOENT);
1417 	}
1418 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1419 
1420 		spa_activate(spa);
1421 
1422 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1423 
1424 		if (error == EBADF) {
1425 			/*
1426 			 * If vdev_validate() returns failure (indicated by
1427 			 * EBADF), it indicates that one of the vdevs indicates
1428 			 * that the pool has been exported or destroyed.  If
1429 			 * this is the case, the config cache is out of sync and
1430 			 * we should remove the pool from the namespace.
1431 			 */
1432 			zfs_post_ok(spa, NULL);
1433 			spa_unload(spa);
1434 			spa_deactivate(spa);
1435 			spa_remove(spa);
1436 			spa_config_sync();
1437 			if (locked)
1438 				mutex_exit(&spa_namespace_lock);
1439 			return (ENOENT);
1440 		}
1441 
1442 		if (error) {
1443 			/*
1444 			 * We can't open the pool, but we still have useful
1445 			 * information: the state of each vdev after the
1446 			 * attempted vdev_open().  Return this to the user.
1447 			 */
1448 			if (config != NULL && spa->spa_root_vdev != NULL) {
1449 				spa_config_enter(spa, RW_READER, FTAG);
1450 				*config = spa_config_generate(spa, NULL, -1ULL,
1451 				    B_TRUE);
1452 				spa_config_exit(spa, FTAG);
1453 			}
1454 			spa_unload(spa);
1455 			spa_deactivate(spa);
1456 			spa->spa_last_open_failed = B_TRUE;
1457 			if (locked)
1458 				mutex_exit(&spa_namespace_lock);
1459 			*spapp = NULL;
1460 			return (error);
1461 		} else {
1462 			zfs_post_ok(spa, NULL);
1463 			spa->spa_last_open_failed = B_FALSE;
1464 		}
1465 
1466 		loaded = B_TRUE;
1467 	}
1468 
1469 	spa_open_ref(spa, tag);
1470 
1471 	/*
1472 	 * If we just loaded the pool, resilver anything that's out of date.
1473 	 */
1474 	if (loaded && (spa_mode & FWRITE))
1475 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1476 
1477 	if (locked)
1478 		mutex_exit(&spa_namespace_lock);
1479 
1480 	*spapp = spa;
1481 
1482 	if (config != NULL) {
1483 		spa_config_enter(spa, RW_READER, FTAG);
1484 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1485 		spa_config_exit(spa, FTAG);
1486 	}
1487 
1488 	return (0);
1489 }
1490 
1491 int
1492 spa_open(const char *name, spa_t **spapp, void *tag)
1493 {
1494 	return (spa_open_common(name, spapp, tag, NULL));
1495 }
1496 
1497 /*
1498  * Lookup the given spa_t, incrementing the inject count in the process,
1499  * preventing it from being exported or destroyed.
1500  */
1501 spa_t *
1502 spa_inject_addref(char *name)
1503 {
1504 	spa_t *spa;
1505 
1506 	mutex_enter(&spa_namespace_lock);
1507 	if ((spa = spa_lookup(name)) == NULL) {
1508 		mutex_exit(&spa_namespace_lock);
1509 		return (NULL);
1510 	}
1511 	spa->spa_inject_ref++;
1512 	mutex_exit(&spa_namespace_lock);
1513 
1514 	return (spa);
1515 }
1516 
1517 void
1518 spa_inject_delref(spa_t *spa)
1519 {
1520 	mutex_enter(&spa_namespace_lock);
1521 	spa->spa_inject_ref--;
1522 	mutex_exit(&spa_namespace_lock);
1523 }
1524 
1525 /*
1526  * Add spares device information to the nvlist.
1527  */
1528 static void
1529 spa_add_spares(spa_t *spa, nvlist_t *config)
1530 {
1531 	nvlist_t **spares;
1532 	uint_t i, nspares;
1533 	nvlist_t *nvroot;
1534 	uint64_t guid;
1535 	vdev_stat_t *vs;
1536 	uint_t vsc;
1537 	uint64_t pool;
1538 
1539 	if (spa->spa_spares.sav_count == 0)
1540 		return;
1541 
1542 	VERIFY(nvlist_lookup_nvlist(config,
1543 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1544 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1545 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1546 	if (nspares != 0) {
1547 		VERIFY(nvlist_add_nvlist_array(nvroot,
1548 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1549 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1550 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1551 
1552 		/*
1553 		 * Go through and find any spares which have since been
1554 		 * repurposed as an active spare.  If this is the case, update
1555 		 * their status appropriately.
1556 		 */
1557 		for (i = 0; i < nspares; i++) {
1558 			VERIFY(nvlist_lookup_uint64(spares[i],
1559 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1560 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1561 				VERIFY(nvlist_lookup_uint64_array(
1562 				    spares[i], ZPOOL_CONFIG_STATS,
1563 				    (uint64_t **)&vs, &vsc) == 0);
1564 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1565 				vs->vs_aux = VDEV_AUX_SPARED;
1566 			}
1567 		}
1568 	}
1569 }
1570 
1571 /*
1572  * Add l2cache device information to the nvlist, including vdev stats.
1573  */
1574 static void
1575 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1576 {
1577 	nvlist_t **l2cache;
1578 	uint_t i, j, nl2cache;
1579 	nvlist_t *nvroot;
1580 	uint64_t guid;
1581 	vdev_t *vd;
1582 	vdev_stat_t *vs;
1583 	uint_t vsc;
1584 
1585 	if (spa->spa_l2cache.sav_count == 0)
1586 		return;
1587 
1588 	spa_config_enter(spa, RW_READER, FTAG);
1589 
1590 	VERIFY(nvlist_lookup_nvlist(config,
1591 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1592 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1593 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1594 	if (nl2cache != 0) {
1595 		VERIFY(nvlist_add_nvlist_array(nvroot,
1596 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1597 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1598 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1599 
1600 		/*
1601 		 * Update level 2 cache device stats.
1602 		 */
1603 
1604 		for (i = 0; i < nl2cache; i++) {
1605 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1606 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1607 
1608 			vd = NULL;
1609 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1610 				if (guid ==
1611 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1612 					vd = spa->spa_l2cache.sav_vdevs[j];
1613 					break;
1614 				}
1615 			}
1616 			ASSERT(vd != NULL);
1617 
1618 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1619 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1620 			vdev_get_stats(vd, vs);
1621 		}
1622 	}
1623 
1624 	spa_config_exit(spa, FTAG);
1625 }
1626 
1627 int
1628 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1629 {
1630 	int error;
1631 	spa_t *spa;
1632 
1633 	*config = NULL;
1634 	error = spa_open_common(name, &spa, FTAG, config);
1635 
1636 	if (spa && *config != NULL) {
1637 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1638 		    spa_get_errlog_size(spa)) == 0);
1639 
1640 		spa_add_spares(spa, *config);
1641 		spa_add_l2cache(spa, *config);
1642 	}
1643 
1644 	/*
1645 	 * We want to get the alternate root even for faulted pools, so we cheat
1646 	 * and call spa_lookup() directly.
1647 	 */
1648 	if (altroot) {
1649 		if (spa == NULL) {
1650 			mutex_enter(&spa_namespace_lock);
1651 			spa = spa_lookup(name);
1652 			if (spa)
1653 				spa_altroot(spa, altroot, buflen);
1654 			else
1655 				altroot[0] = '\0';
1656 			spa = NULL;
1657 			mutex_exit(&spa_namespace_lock);
1658 		} else {
1659 			spa_altroot(spa, altroot, buflen);
1660 		}
1661 	}
1662 
1663 	if (spa != NULL)
1664 		spa_close(spa, FTAG);
1665 
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Validate that the auxiliary device array is well formed.  We must have an
1671  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1672  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1673  * specified, as long as they are well-formed.
1674  */
1675 static int
1676 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1677     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1678     vdev_labeltype_t label)
1679 {
1680 	nvlist_t **dev;
1681 	uint_t i, ndev;
1682 	vdev_t *vd;
1683 	int error;
1684 
1685 	/*
1686 	 * It's acceptable to have no devs specified.
1687 	 */
1688 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1689 		return (0);
1690 
1691 	if (ndev == 0)
1692 		return (EINVAL);
1693 
1694 	/*
1695 	 * Make sure the pool is formatted with a version that supports this
1696 	 * device type.
1697 	 */
1698 	if (spa_version(spa) < version)
1699 		return (ENOTSUP);
1700 
1701 	/*
1702 	 * Set the pending device list so we correctly handle device in-use
1703 	 * checking.
1704 	 */
1705 	sav->sav_pending = dev;
1706 	sav->sav_npending = ndev;
1707 
1708 	for (i = 0; i < ndev; i++) {
1709 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1710 		    mode)) != 0)
1711 			goto out;
1712 
1713 		if (!vd->vdev_ops->vdev_op_leaf) {
1714 			vdev_free(vd);
1715 			error = EINVAL;
1716 			goto out;
1717 		}
1718 
1719 		/*
1720 		 * The L2ARC currently only supports disk devices.
1721 		 */
1722 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1723 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1724 			error = ENOTBLK;
1725 			goto out;
1726 		}
1727 
1728 		vd->vdev_top = vd;
1729 
1730 		if ((error = vdev_open(vd)) == 0 &&
1731 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1732 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1733 			    vd->vdev_guid) == 0);
1734 		}
1735 
1736 		vdev_free(vd);
1737 
1738 		if (error &&
1739 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1740 			goto out;
1741 		else
1742 			error = 0;
1743 	}
1744 
1745 out:
1746 	sav->sav_pending = NULL;
1747 	sav->sav_npending = 0;
1748 	return (error);
1749 }
1750 
1751 static int
1752 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1753 {
1754 	int error;
1755 
1756 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1757 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1758 	    VDEV_LABEL_SPARE)) != 0) {
1759 		return (error);
1760 	}
1761 
1762 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1763 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1764 	    VDEV_LABEL_L2CACHE));
1765 }
1766 
1767 static void
1768 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1769     const char *config)
1770 {
1771 	int i;
1772 
1773 	if (sav->sav_config != NULL) {
1774 		nvlist_t **olddevs;
1775 		uint_t oldndevs;
1776 		nvlist_t **newdevs;
1777 
1778 		/*
1779 		 * Generate new dev list by concatentating with the
1780 		 * current dev list.
1781 		 */
1782 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1783 		    &olddevs, &oldndevs) == 0);
1784 
1785 		newdevs = kmem_alloc(sizeof (void *) *
1786 		    (ndevs + oldndevs), KM_SLEEP);
1787 		for (i = 0; i < oldndevs; i++)
1788 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1789 			    KM_SLEEP) == 0);
1790 		for (i = 0; i < ndevs; i++)
1791 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1792 			    KM_SLEEP) == 0);
1793 
1794 		VERIFY(nvlist_remove(sav->sav_config, config,
1795 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1796 
1797 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1798 		    config, newdevs, ndevs + oldndevs) == 0);
1799 		for (i = 0; i < oldndevs + ndevs; i++)
1800 			nvlist_free(newdevs[i]);
1801 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1802 	} else {
1803 		/*
1804 		 * Generate a new dev list.
1805 		 */
1806 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1807 		    KM_SLEEP) == 0);
1808 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1809 		    devs, ndevs) == 0);
1810 	}
1811 }
1812 
1813 /*
1814  * Stop and drop level 2 ARC devices
1815  */
1816 void
1817 spa_l2cache_drop(spa_t *spa)
1818 {
1819 	vdev_t *vd;
1820 	int i;
1821 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1822 
1823 	for (i = 0; i < sav->sav_count; i++) {
1824 		uint64_t pool;
1825 
1826 		vd = sav->sav_vdevs[i];
1827 		ASSERT(vd != NULL);
1828 
1829 		if (spa_mode & FWRITE &&
1830 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL) {
1831 			l2arc_remove_vdev(vd);
1832 		}
1833 		if (vd->vdev_isl2cache)
1834 			spa_l2cache_remove(vd);
1835 		vdev_clear_stats(vd);
1836 		(void) vdev_close(vd);
1837 	}
1838 }
1839 
1840 /*
1841  * Pool Creation
1842  */
1843 int
1844 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1845     const char *history_str)
1846 {
1847 	spa_t *spa;
1848 	char *altroot = NULL;
1849 	vdev_t *rvd;
1850 	dsl_pool_t *dp;
1851 	dmu_tx_t *tx;
1852 	int c, error = 0;
1853 	uint64_t txg = TXG_INITIAL;
1854 	nvlist_t **spares, **l2cache;
1855 	uint_t nspares, nl2cache;
1856 	uint64_t version;
1857 
1858 	/*
1859 	 * If this pool already exists, return failure.
1860 	 */
1861 	mutex_enter(&spa_namespace_lock);
1862 	if (spa_lookup(pool) != NULL) {
1863 		mutex_exit(&spa_namespace_lock);
1864 		return (EEXIST);
1865 	}
1866 
1867 	/*
1868 	 * Allocate a new spa_t structure.
1869 	 */
1870 	(void) nvlist_lookup_string(props,
1871 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1872 	spa = spa_add(pool, altroot);
1873 	spa_activate(spa);
1874 
1875 	spa->spa_uberblock.ub_txg = txg - 1;
1876 
1877 	if (props && (error = spa_prop_validate(spa, props))) {
1878 		spa_unload(spa);
1879 		spa_deactivate(spa);
1880 		spa_remove(spa);
1881 		return (error);
1882 	}
1883 
1884 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1885 	    &version) != 0)
1886 		version = SPA_VERSION;
1887 	ASSERT(version <= SPA_VERSION);
1888 	spa->spa_uberblock.ub_version = version;
1889 	spa->spa_ubsync = spa->spa_uberblock;
1890 
1891 	/*
1892 	 * Create the root vdev.
1893 	 */
1894 	spa_config_enter(spa, RW_WRITER, FTAG);
1895 
1896 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1897 
1898 	ASSERT(error != 0 || rvd != NULL);
1899 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1900 
1901 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1902 		error = EINVAL;
1903 
1904 	if (error == 0 &&
1905 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1906 	    (error = spa_validate_aux(spa, nvroot, txg,
1907 	    VDEV_ALLOC_ADD)) == 0) {
1908 		for (c = 0; c < rvd->vdev_children; c++)
1909 			vdev_init(rvd->vdev_child[c], txg);
1910 		vdev_config_dirty(rvd);
1911 	}
1912 
1913 	spa_config_exit(spa, FTAG);
1914 
1915 	if (error != 0) {
1916 		spa_unload(spa);
1917 		spa_deactivate(spa);
1918 		spa_remove(spa);
1919 		mutex_exit(&spa_namespace_lock);
1920 		return (error);
1921 	}
1922 
1923 	/*
1924 	 * Get the list of spares, if specified.
1925 	 */
1926 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1927 	    &spares, &nspares) == 0) {
1928 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1929 		    KM_SLEEP) == 0);
1930 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1931 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1932 		spa_config_enter(spa, RW_WRITER, FTAG);
1933 		spa_load_spares(spa);
1934 		spa_config_exit(spa, FTAG);
1935 		spa->spa_spares.sav_sync = B_TRUE;
1936 	}
1937 
1938 	/*
1939 	 * Get the list of level 2 cache devices, if specified.
1940 	 */
1941 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1942 	    &l2cache, &nl2cache) == 0) {
1943 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1944 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1945 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1946 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1947 		spa_config_enter(spa, RW_WRITER, FTAG);
1948 		spa_load_l2cache(spa);
1949 		spa_config_exit(spa, FTAG);
1950 		spa->spa_l2cache.sav_sync = B_TRUE;
1951 	}
1952 
1953 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1954 	spa->spa_meta_objset = dp->dp_meta_objset;
1955 
1956 	tx = dmu_tx_create_assigned(dp, txg);
1957 
1958 	/*
1959 	 * Create the pool config object.
1960 	 */
1961 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1962 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1963 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1964 
1965 	if (zap_add(spa->spa_meta_objset,
1966 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1967 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1968 		cmn_err(CE_PANIC, "failed to add pool config");
1969 	}
1970 
1971 	/* Newly created pools with the right version are always deflated. */
1972 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1973 		spa->spa_deflate = TRUE;
1974 		if (zap_add(spa->spa_meta_objset,
1975 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1976 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1977 			cmn_err(CE_PANIC, "failed to add deflate");
1978 		}
1979 	}
1980 
1981 	/*
1982 	 * Create the deferred-free bplist object.  Turn off compression
1983 	 * because sync-to-convergence takes longer if the blocksize
1984 	 * keeps changing.
1985 	 */
1986 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1987 	    1 << 14, tx);
1988 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1989 	    ZIO_COMPRESS_OFF, tx);
1990 
1991 	if (zap_add(spa->spa_meta_objset,
1992 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1993 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1994 		cmn_err(CE_PANIC, "failed to add bplist");
1995 	}
1996 
1997 	/*
1998 	 * Create the pool's history object.
1999 	 */
2000 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2001 		spa_history_create_obj(spa, tx);
2002 
2003 	/*
2004 	 * Set pool properties.
2005 	 */
2006 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2007 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2008 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2009 	if (props)
2010 		spa_sync_props(spa, props, CRED(), tx);
2011 
2012 	dmu_tx_commit(tx);
2013 
2014 	spa->spa_sync_on = B_TRUE;
2015 	txg_sync_start(spa->spa_dsl_pool);
2016 
2017 	/*
2018 	 * We explicitly wait for the first transaction to complete so that our
2019 	 * bean counters are appropriately updated.
2020 	 */
2021 	txg_wait_synced(spa->spa_dsl_pool, txg);
2022 
2023 	spa_config_sync();
2024 
2025 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2026 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2027 
2028 	mutex_exit(&spa_namespace_lock);
2029 
2030 	return (0);
2031 }
2032 
2033 /*
2034  * Import the given pool into the system.  We set up the necessary spa_t and
2035  * then call spa_load() to do the dirty work.
2036  */
2037 static int
2038 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2039     boolean_t isroot)
2040 {
2041 	spa_t *spa;
2042 	char *altroot = NULL;
2043 	int error;
2044 	nvlist_t *nvroot;
2045 	nvlist_t **spares, **l2cache;
2046 	uint_t nspares, nl2cache;
2047 	int mosconfig = isroot? B_FALSE : B_TRUE;
2048 
2049 	/*
2050 	 * If a pool with this name exists, return failure.
2051 	 */
2052 	mutex_enter(&spa_namespace_lock);
2053 	if (spa_lookup(pool) != NULL) {
2054 		mutex_exit(&spa_namespace_lock);
2055 		return (EEXIST);
2056 	}
2057 
2058 	/*
2059 	 * Create and initialize the spa structure.
2060 	 */
2061 	(void) nvlist_lookup_string(props,
2062 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2063 	spa = spa_add(pool, altroot);
2064 	spa_activate(spa);
2065 
2066 	/*
2067 	 * Pass off the heavy lifting to spa_load().
2068 	 * Pass TRUE for mosconfig because the user-supplied config
2069 	 * is actually the one to trust when doing an import.
2070 	 */
2071 	error = spa_load(spa, config, SPA_LOAD_IMPORT, mosconfig);
2072 
2073 	spa_config_enter(spa, RW_WRITER, FTAG);
2074 	/*
2075 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2076 	 * and conflicts with spa_has_spare().
2077 	 */
2078 	if (!isroot && spa->spa_spares.sav_config) {
2079 		nvlist_free(spa->spa_spares.sav_config);
2080 		spa->spa_spares.sav_config = NULL;
2081 		spa_load_spares(spa);
2082 	}
2083 	if (!isroot && spa->spa_l2cache.sav_config) {
2084 		nvlist_free(spa->spa_l2cache.sav_config);
2085 		spa->spa_l2cache.sav_config = NULL;
2086 		spa_load_l2cache(spa);
2087 	}
2088 
2089 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2090 	    &nvroot) == 0);
2091 	if (error == 0)
2092 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2093 	if (error == 0)
2094 		error = spa_validate_aux(spa, nvroot, -1ULL,
2095 		    VDEV_ALLOC_L2CACHE);
2096 	spa_config_exit(spa, FTAG);
2097 
2098 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2099 		spa_unload(spa);
2100 		spa_deactivate(spa);
2101 		spa_remove(spa);
2102 		mutex_exit(&spa_namespace_lock);
2103 		return (error);
2104 	}
2105 
2106 	/*
2107 	 * Override any spares and level 2 cache devices as specified by
2108 	 * the user, as these may have correct device names/devids, etc.
2109 	 */
2110 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2111 	    &spares, &nspares) == 0) {
2112 		if (spa->spa_spares.sav_config)
2113 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2114 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2115 		else
2116 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2117 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2118 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2119 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2120 		spa_config_enter(spa, RW_WRITER, FTAG);
2121 		spa_load_spares(spa);
2122 		spa_config_exit(spa, FTAG);
2123 		spa->spa_spares.sav_sync = B_TRUE;
2124 	}
2125 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2126 	    &l2cache, &nl2cache) == 0) {
2127 		if (spa->spa_l2cache.sav_config)
2128 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2129 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2130 		else
2131 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2132 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2133 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2134 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2135 		spa_config_enter(spa, RW_WRITER, FTAG);
2136 		spa_load_l2cache(spa);
2137 		spa_config_exit(spa, FTAG);
2138 		spa->spa_l2cache.sav_sync = B_TRUE;
2139 	}
2140 
2141 	/*
2142 	 * Update the config cache to include the newly-imported pool.
2143 	 */
2144 	if (spa_mode & FWRITE)
2145 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2146 
2147 	/*
2148 	 * Resilver anything that's out of date.
2149 	 */
2150 	if (!isroot && (spa_mode & FWRITE))
2151 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2152 
2153 	mutex_exit(&spa_namespace_lock);
2154 
2155 	return (0);
2156 }
2157 
2158 #ifdef _KERNEL
2159 /*
2160  * Build a "root" vdev for a top level vdev read in from a rootpool
2161  * device label.
2162  */
2163 static void
2164 spa_build_rootpool_config(nvlist_t *config)
2165 {
2166 	nvlist_t *nvtop, *nvroot;
2167 	uint64_t pgid;
2168 
2169 	/*
2170 	 * Add this top-level vdev to the child array.
2171 	 */
2172 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2173 	    == 0);
2174 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2175 	    == 0);
2176 
2177 	/*
2178 	 * Put this pool's top-level vdevs into a root vdev.
2179 	 */
2180 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2181 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2182 	    == 0);
2183 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2184 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2185 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2186 	    &nvtop, 1) == 0);
2187 
2188 	/*
2189 	 * Replace the existing vdev_tree with the new root vdev in
2190 	 * this pool's configuration (remove the old, add the new).
2191 	 */
2192 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2193 	nvlist_free(nvroot);
2194 }
2195 
2196 /*
2197  * Get the root pool information from the root disk, then import the root pool
2198  * during the system boot up time.
2199  */
2200 extern nvlist_t *vdev_disk_read_rootlabel(char *);
2201 
2202 void
2203 spa_check_rootconf(char *devpath, char **bestdev, nvlist_t **bestconf,
2204     uint64_t *besttxg)
2205 {
2206 	nvlist_t *config;
2207 	uint64_t txg;
2208 
2209 	if ((config = vdev_disk_read_rootlabel(devpath)) == NULL)
2210 		return;
2211 
2212 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2213 
2214 	if (txg > *besttxg) {
2215 		*besttxg = txg;
2216 		if (*bestconf != NULL)
2217 			nvlist_free(*bestconf);
2218 		*bestconf = config;
2219 		*bestdev = devpath;
2220 	}
2221 }
2222 
2223 boolean_t
2224 spa_rootdev_validate(nvlist_t *nv)
2225 {
2226 	uint64_t ival;
2227 
2228 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2229 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2230 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &ival) == 0 ||
2231 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2232 		return (B_FALSE);
2233 
2234 	return (B_TRUE);
2235 }
2236 
2237 /*
2238  * Import a root pool.
2239  *
2240  * For x86. devpath_list will consist the physpath name of the vdev in a single
2241  * disk root pool or a list of physnames for the vdevs in a mirrored rootpool.
2242  * e.g.
2243  *	"/pci@1f,0/ide@d/disk@0,0:a /pci@1f,o/ide@d/disk@2,0:a"
2244  *
2245  * For Sparc, devpath_list consists the physpath name of the booting device
2246  * no matter the rootpool is a single device pool or a mirrored pool.
2247  * e.g.
2248  *	"/pci@1f,0/ide@d/disk@0,0:a"
2249  */
2250 int
2251 spa_import_rootpool(char *devpath_list)
2252 {
2253 	nvlist_t *conf = NULL;
2254 	char *dev = NULL;
2255 	char *pname;
2256 	int error;
2257 
2258 	/*
2259 	 * Get the vdev pathname and configuation from the most
2260 	 * recently updated vdev (highest txg).
2261 	 */
2262 	if (error = spa_get_rootconf(devpath_list, &dev, &conf))
2263 		goto msg_out;
2264 
2265 	/*
2266 	 * Add type "root" vdev to the config.
2267 	 */
2268 	spa_build_rootpool_config(conf);
2269 
2270 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2271 
2272 	error = spa_import_common(pname, conf, NULL, TRUE);
2273 	if (error == EEXIST)
2274 		error = 0;
2275 
2276 	nvlist_free(conf);
2277 	return (error);
2278 
2279 msg_out:
2280 	cmn_err(CE_NOTE, "\n\n"
2281 	    "  ***************************************************  \n"
2282 	    "  *  This device is not bootable!                   *  \n"
2283 	    "  *  It is either offlined or detached or faulted.  *  \n"
2284 	    "  *  Please try to boot from a different device.    *  \n"
2285 	    "  ***************************************************  \n\n");
2286 
2287 	return (error);
2288 }
2289 #endif
2290 
2291 /*
2292  * Import a non-root pool into the system.
2293  */
2294 int
2295 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2296 {
2297 	return (spa_import_common(pool, config, props, FALSE));
2298 }
2299 
2300 /*
2301  * This (illegal) pool name is used when temporarily importing a spa_t in order
2302  * to get the vdev stats associated with the imported devices.
2303  */
2304 #define	TRYIMPORT_NAME	"$import"
2305 
2306 nvlist_t *
2307 spa_tryimport(nvlist_t *tryconfig)
2308 {
2309 	nvlist_t *config = NULL;
2310 	char *poolname;
2311 	spa_t *spa;
2312 	uint64_t state;
2313 
2314 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2315 		return (NULL);
2316 
2317 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2318 		return (NULL);
2319 
2320 	/*
2321 	 * Create and initialize the spa structure.
2322 	 */
2323 	mutex_enter(&spa_namespace_lock);
2324 	spa = spa_add(TRYIMPORT_NAME, NULL);
2325 	spa_activate(spa);
2326 
2327 	/*
2328 	 * Pass off the heavy lifting to spa_load().
2329 	 * Pass TRUE for mosconfig because the user-supplied config
2330 	 * is actually the one to trust when doing an import.
2331 	 */
2332 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2333 
2334 	/*
2335 	 * If 'tryconfig' was at least parsable, return the current config.
2336 	 */
2337 	if (spa->spa_root_vdev != NULL) {
2338 		spa_config_enter(spa, RW_READER, FTAG);
2339 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2340 		spa_config_exit(spa, FTAG);
2341 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2342 		    poolname) == 0);
2343 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2344 		    state) == 0);
2345 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2346 		    spa->spa_uberblock.ub_timestamp) == 0);
2347 
2348 		/*
2349 		 * If the bootfs property exists on this pool then we
2350 		 * copy it out so that external consumers can tell which
2351 		 * pools are bootable.
2352 		 */
2353 		if (spa->spa_bootfs) {
2354 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2355 
2356 			/*
2357 			 * We have to play games with the name since the
2358 			 * pool was opened as TRYIMPORT_NAME.
2359 			 */
2360 			if (dsl_dsobj_to_dsname(spa->spa_name,
2361 			    spa->spa_bootfs, tmpname) == 0) {
2362 				char *cp;
2363 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2364 
2365 				cp = strchr(tmpname, '/');
2366 				if (cp == NULL) {
2367 					(void) strlcpy(dsname, tmpname,
2368 					    MAXPATHLEN);
2369 				} else {
2370 					(void) snprintf(dsname, MAXPATHLEN,
2371 					    "%s/%s", poolname, ++cp);
2372 				}
2373 				VERIFY(nvlist_add_string(config,
2374 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2375 				kmem_free(dsname, MAXPATHLEN);
2376 			}
2377 			kmem_free(tmpname, MAXPATHLEN);
2378 		}
2379 
2380 		/*
2381 		 * Add the list of hot spares and level 2 cache devices.
2382 		 */
2383 		spa_add_spares(spa, config);
2384 		spa_add_l2cache(spa, config);
2385 	}
2386 
2387 	spa_unload(spa);
2388 	spa_deactivate(spa);
2389 	spa_remove(spa);
2390 	mutex_exit(&spa_namespace_lock);
2391 
2392 	return (config);
2393 }
2394 
2395 /*
2396  * Pool export/destroy
2397  *
2398  * The act of destroying or exporting a pool is very simple.  We make sure there
2399  * is no more pending I/O and any references to the pool are gone.  Then, we
2400  * update the pool state and sync all the labels to disk, removing the
2401  * configuration from the cache afterwards.
2402  */
2403 static int
2404 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
2405 {
2406 	spa_t *spa;
2407 
2408 	if (oldconfig)
2409 		*oldconfig = NULL;
2410 
2411 	if (!(spa_mode & FWRITE))
2412 		return (EROFS);
2413 
2414 	mutex_enter(&spa_namespace_lock);
2415 	if ((spa = spa_lookup(pool)) == NULL) {
2416 		mutex_exit(&spa_namespace_lock);
2417 		return (ENOENT);
2418 	}
2419 
2420 	/*
2421 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2422 	 * reacquire the namespace lock, and see if we can export.
2423 	 */
2424 	spa_open_ref(spa, FTAG);
2425 	mutex_exit(&spa_namespace_lock);
2426 	spa_async_suspend(spa);
2427 	mutex_enter(&spa_namespace_lock);
2428 	spa_close(spa, FTAG);
2429 
2430 	/*
2431 	 * The pool will be in core if it's openable,
2432 	 * in which case we can modify its state.
2433 	 */
2434 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2435 		/*
2436 		 * Objsets may be open only because they're dirty, so we
2437 		 * have to force it to sync before checking spa_refcnt.
2438 		 */
2439 		spa_scrub_suspend(spa);
2440 		txg_wait_synced(spa->spa_dsl_pool, 0);
2441 
2442 		/*
2443 		 * A pool cannot be exported or destroyed if there are active
2444 		 * references.  If we are resetting a pool, allow references by
2445 		 * fault injection handlers.
2446 		 */
2447 		if (!spa_refcount_zero(spa) ||
2448 		    (spa->spa_inject_ref != 0 &&
2449 		    new_state != POOL_STATE_UNINITIALIZED)) {
2450 			spa_scrub_resume(spa);
2451 			spa_async_resume(spa);
2452 			mutex_exit(&spa_namespace_lock);
2453 			return (EBUSY);
2454 		}
2455 
2456 		spa_scrub_resume(spa);
2457 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2458 
2459 		/*
2460 		 * We want this to be reflected on every label,
2461 		 * so mark them all dirty.  spa_unload() will do the
2462 		 * final sync that pushes these changes out.
2463 		 */
2464 		if (new_state != POOL_STATE_UNINITIALIZED) {
2465 			spa_config_enter(spa, RW_WRITER, FTAG);
2466 			spa->spa_state = new_state;
2467 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2468 			vdev_config_dirty(spa->spa_root_vdev);
2469 			spa_config_exit(spa, FTAG);
2470 		}
2471 	}
2472 
2473 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2474 
2475 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2476 		spa_unload(spa);
2477 		spa_deactivate(spa);
2478 	}
2479 
2480 	if (oldconfig && spa->spa_config)
2481 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2482 
2483 	if (new_state != POOL_STATE_UNINITIALIZED) {
2484 		spa_config_check(spa->spa_config_dir,
2485 		    spa->spa_config_file);
2486 		spa_remove(spa);
2487 		spa_config_sync();
2488 	}
2489 	mutex_exit(&spa_namespace_lock);
2490 
2491 	return (0);
2492 }
2493 
2494 /*
2495  * Destroy a storage pool.
2496  */
2497 int
2498 spa_destroy(char *pool)
2499 {
2500 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
2501 }
2502 
2503 /*
2504  * Export a storage pool.
2505  */
2506 int
2507 spa_export(char *pool, nvlist_t **oldconfig)
2508 {
2509 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
2510 }
2511 
2512 /*
2513  * Similar to spa_export(), this unloads the spa_t without actually removing it
2514  * from the namespace in any way.
2515  */
2516 int
2517 spa_reset(char *pool)
2518 {
2519 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
2520 }
2521 
2522 
2523 /*
2524  * ==========================================================================
2525  * Device manipulation
2526  * ==========================================================================
2527  */
2528 
2529 /*
2530  * Add a device to a storage pool.
2531  */
2532 int
2533 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2534 {
2535 	uint64_t txg;
2536 	int c, error;
2537 	vdev_t *rvd = spa->spa_root_vdev;
2538 	vdev_t *vd, *tvd;
2539 	nvlist_t **spares, **l2cache;
2540 	uint_t nspares, nl2cache;
2541 
2542 	txg = spa_vdev_enter(spa);
2543 
2544 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2545 	    VDEV_ALLOC_ADD)) != 0)
2546 		return (spa_vdev_exit(spa, NULL, txg, error));
2547 
2548 	spa->spa_pending_vdev = vd;
2549 
2550 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2551 	    &nspares) != 0)
2552 		nspares = 0;
2553 
2554 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2555 	    &nl2cache) != 0)
2556 		nl2cache = 0;
2557 
2558 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2559 		spa->spa_pending_vdev = NULL;
2560 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2561 	}
2562 
2563 	if (vd->vdev_children != 0) {
2564 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2565 			spa->spa_pending_vdev = NULL;
2566 			return (spa_vdev_exit(spa, vd, txg, error));
2567 		}
2568 	}
2569 
2570 	/*
2571 	 * We must validate the spares and l2cache devices after checking the
2572 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2573 	 */
2574 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2575 		spa->spa_pending_vdev = NULL;
2576 		return (spa_vdev_exit(spa, vd, txg, error));
2577 	}
2578 
2579 	spa->spa_pending_vdev = NULL;
2580 
2581 	/*
2582 	 * Transfer each new top-level vdev from vd to rvd.
2583 	 */
2584 	for (c = 0; c < vd->vdev_children; c++) {
2585 		tvd = vd->vdev_child[c];
2586 		vdev_remove_child(vd, tvd);
2587 		tvd->vdev_id = rvd->vdev_children;
2588 		vdev_add_child(rvd, tvd);
2589 		vdev_config_dirty(tvd);
2590 	}
2591 
2592 	if (nspares != 0) {
2593 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2594 		    ZPOOL_CONFIG_SPARES);
2595 		spa_load_spares(spa);
2596 		spa->spa_spares.sav_sync = B_TRUE;
2597 	}
2598 
2599 	if (nl2cache != 0) {
2600 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2601 		    ZPOOL_CONFIG_L2CACHE);
2602 		spa_load_l2cache(spa);
2603 		spa->spa_l2cache.sav_sync = B_TRUE;
2604 	}
2605 
2606 	/*
2607 	 * We have to be careful when adding new vdevs to an existing pool.
2608 	 * If other threads start allocating from these vdevs before we
2609 	 * sync the config cache, and we lose power, then upon reboot we may
2610 	 * fail to open the pool because there are DVAs that the config cache
2611 	 * can't translate.  Therefore, we first add the vdevs without
2612 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2613 	 * and then let spa_config_update() initialize the new metaslabs.
2614 	 *
2615 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2616 	 * if we lose power at any point in this sequence, the remaining
2617 	 * steps will be completed the next time we load the pool.
2618 	 */
2619 	(void) spa_vdev_exit(spa, vd, txg, 0);
2620 
2621 	mutex_enter(&spa_namespace_lock);
2622 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2623 	mutex_exit(&spa_namespace_lock);
2624 
2625 	return (0);
2626 }
2627 
2628 /*
2629  * Attach a device to a mirror.  The arguments are the path to any device
2630  * in the mirror, and the nvroot for the new device.  If the path specifies
2631  * a device that is not mirrored, we automatically insert the mirror vdev.
2632  *
2633  * If 'replacing' is specified, the new device is intended to replace the
2634  * existing device; in this case the two devices are made into their own
2635  * mirror using the 'replacing' vdev, which is functionally identical to
2636  * the mirror vdev (it actually reuses all the same ops) but has a few
2637  * extra rules: you can't attach to it after it's been created, and upon
2638  * completion of resilvering, the first disk (the one being replaced)
2639  * is automatically detached.
2640  */
2641 int
2642 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2643 {
2644 	uint64_t txg, open_txg;
2645 	int error;
2646 	vdev_t *rvd = spa->spa_root_vdev;
2647 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2648 	vdev_ops_t *pvops;
2649 	int is_log;
2650 
2651 	txg = spa_vdev_enter(spa);
2652 
2653 	oldvd = vdev_lookup_by_guid(rvd, guid);
2654 
2655 	if (oldvd == NULL)
2656 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2657 
2658 	if (!oldvd->vdev_ops->vdev_op_leaf)
2659 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2660 
2661 	pvd = oldvd->vdev_parent;
2662 
2663 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2664 	    VDEV_ALLOC_ADD)) != 0)
2665 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2666 
2667 	if (newrootvd->vdev_children != 1)
2668 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2669 
2670 	newvd = newrootvd->vdev_child[0];
2671 
2672 	if (!newvd->vdev_ops->vdev_op_leaf)
2673 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2674 
2675 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2676 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2677 
2678 	/*
2679 	 * Spares can't replace logs
2680 	 */
2681 	is_log = oldvd->vdev_islog;
2682 	if (is_log && newvd->vdev_isspare)
2683 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2684 
2685 	if (!replacing) {
2686 		/*
2687 		 * For attach, the only allowable parent is a mirror or the root
2688 		 * vdev.
2689 		 */
2690 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2691 		    pvd->vdev_ops != &vdev_root_ops)
2692 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2693 
2694 		pvops = &vdev_mirror_ops;
2695 	} else {
2696 		/*
2697 		 * Active hot spares can only be replaced by inactive hot
2698 		 * spares.
2699 		 */
2700 		if (pvd->vdev_ops == &vdev_spare_ops &&
2701 		    pvd->vdev_child[1] == oldvd &&
2702 		    !spa_has_spare(spa, newvd->vdev_guid))
2703 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2704 
2705 		/*
2706 		 * If the source is a hot spare, and the parent isn't already a
2707 		 * spare, then we want to create a new hot spare.  Otherwise, we
2708 		 * want to create a replacing vdev.  The user is not allowed to
2709 		 * attach to a spared vdev child unless the 'isspare' state is
2710 		 * the same (spare replaces spare, non-spare replaces
2711 		 * non-spare).
2712 		 */
2713 		if (pvd->vdev_ops == &vdev_replacing_ops)
2714 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2715 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2716 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2717 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2718 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2719 		    newvd->vdev_isspare)
2720 			pvops = &vdev_spare_ops;
2721 		else
2722 			pvops = &vdev_replacing_ops;
2723 	}
2724 
2725 	/*
2726 	 * Compare the new device size with the replaceable/attachable
2727 	 * device size.
2728 	 */
2729 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2730 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2731 
2732 	/*
2733 	 * The new device cannot have a higher alignment requirement
2734 	 * than the top-level vdev.
2735 	 */
2736 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2737 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2738 
2739 	/*
2740 	 * If this is an in-place replacement, update oldvd's path and devid
2741 	 * to make it distinguishable from newvd, and unopenable from now on.
2742 	 */
2743 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2744 		spa_strfree(oldvd->vdev_path);
2745 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2746 		    KM_SLEEP);
2747 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2748 		    newvd->vdev_path, "old");
2749 		if (oldvd->vdev_devid != NULL) {
2750 			spa_strfree(oldvd->vdev_devid);
2751 			oldvd->vdev_devid = NULL;
2752 		}
2753 	}
2754 
2755 	/*
2756 	 * If the parent is not a mirror, or if we're replacing, insert the new
2757 	 * mirror/replacing/spare vdev above oldvd.
2758 	 */
2759 	if (pvd->vdev_ops != pvops)
2760 		pvd = vdev_add_parent(oldvd, pvops);
2761 
2762 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2763 	ASSERT(pvd->vdev_ops == pvops);
2764 	ASSERT(oldvd->vdev_parent == pvd);
2765 
2766 	/*
2767 	 * Extract the new device from its root and add it to pvd.
2768 	 */
2769 	vdev_remove_child(newrootvd, newvd);
2770 	newvd->vdev_id = pvd->vdev_children;
2771 	vdev_add_child(pvd, newvd);
2772 
2773 	/*
2774 	 * If newvd is smaller than oldvd, but larger than its rsize,
2775 	 * the addition of newvd may have decreased our parent's asize.
2776 	 */
2777 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2778 
2779 	tvd = newvd->vdev_top;
2780 	ASSERT(pvd->vdev_top == tvd);
2781 	ASSERT(tvd->vdev_parent == rvd);
2782 
2783 	vdev_config_dirty(tvd);
2784 
2785 	/*
2786 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2787 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2788 	 */
2789 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2790 
2791 	mutex_enter(&newvd->vdev_dtl_lock);
2792 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2793 	    open_txg - TXG_INITIAL + 1);
2794 	mutex_exit(&newvd->vdev_dtl_lock);
2795 
2796 	if (newvd->vdev_isspare)
2797 		spa_spare_activate(newvd);
2798 
2799 	/*
2800 	 * Mark newvd's DTL dirty in this txg.
2801 	 */
2802 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2803 
2804 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2805 
2806 	/*
2807 	 * Kick off a resilver to update newvd.  We need to grab the namespace
2808 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
2809 	 */
2810 	mutex_enter(&spa_namespace_lock);
2811 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2812 	mutex_exit(&spa_namespace_lock);
2813 
2814 	return (0);
2815 }
2816 
2817 /*
2818  * Detach a device from a mirror or replacing vdev.
2819  * If 'replace_done' is specified, only detach if the parent
2820  * is a replacing vdev.
2821  */
2822 int
2823 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2824 {
2825 	uint64_t txg;
2826 	int c, t, error;
2827 	vdev_t *rvd = spa->spa_root_vdev;
2828 	vdev_t *vd, *pvd, *cvd, *tvd;
2829 	boolean_t unspare = B_FALSE;
2830 	uint64_t unspare_guid;
2831 
2832 	txg = spa_vdev_enter(spa);
2833 
2834 	vd = vdev_lookup_by_guid(rvd, guid);
2835 
2836 	if (vd == NULL)
2837 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2838 
2839 	if (!vd->vdev_ops->vdev_op_leaf)
2840 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2841 
2842 	pvd = vd->vdev_parent;
2843 
2844 	/*
2845 	 * If replace_done is specified, only remove this device if it's
2846 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2847 	 * disk can be removed.
2848 	 */
2849 	if (replace_done) {
2850 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2851 			if (vd->vdev_id != 0)
2852 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2853 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2854 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2855 		}
2856 	}
2857 
2858 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2859 	    spa_version(spa) >= SPA_VERSION_SPARES);
2860 
2861 	/*
2862 	 * Only mirror, replacing, and spare vdevs support detach.
2863 	 */
2864 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2865 	    pvd->vdev_ops != &vdev_mirror_ops &&
2866 	    pvd->vdev_ops != &vdev_spare_ops)
2867 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2868 
2869 	/*
2870 	 * If there's only one replica, you can't detach it.
2871 	 */
2872 	if (pvd->vdev_children <= 1)
2873 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2874 
2875 	/*
2876 	 * If all siblings have non-empty DTLs, this device may have the only
2877 	 * valid copy of the data, which means we cannot safely detach it.
2878 	 *
2879 	 * XXX -- as in the vdev_offline() case, we really want a more
2880 	 * precise DTL check.
2881 	 */
2882 	for (c = 0; c < pvd->vdev_children; c++) {
2883 		uint64_t dirty;
2884 
2885 		cvd = pvd->vdev_child[c];
2886 		if (cvd == vd)
2887 			continue;
2888 		if (vdev_is_dead(cvd))
2889 			continue;
2890 		mutex_enter(&cvd->vdev_dtl_lock);
2891 		dirty = cvd->vdev_dtl_map.sm_space |
2892 		    cvd->vdev_dtl_scrub.sm_space;
2893 		mutex_exit(&cvd->vdev_dtl_lock);
2894 		if (!dirty)
2895 			break;
2896 	}
2897 
2898 	/*
2899 	 * If we are a replacing or spare vdev, then we can always detach the
2900 	 * latter child, as that is how one cancels the operation.
2901 	 */
2902 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
2903 	    c == pvd->vdev_children)
2904 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2905 
2906 	/*
2907 	 * If we are detaching the original disk from a spare, then it implies
2908 	 * that the spare should become a real disk, and be removed from the
2909 	 * active spare list for the pool.
2910 	 */
2911 	if (pvd->vdev_ops == &vdev_spare_ops &&
2912 	    vd->vdev_id == 0)
2913 		unspare = B_TRUE;
2914 
2915 	/*
2916 	 * Erase the disk labels so the disk can be used for other things.
2917 	 * This must be done after all other error cases are handled,
2918 	 * but before we disembowel vd (so we can still do I/O to it).
2919 	 * But if we can't do it, don't treat the error as fatal --
2920 	 * it may be that the unwritability of the disk is the reason
2921 	 * it's being detached!
2922 	 */
2923 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2924 
2925 	/*
2926 	 * Remove vd from its parent and compact the parent's children.
2927 	 */
2928 	vdev_remove_child(pvd, vd);
2929 	vdev_compact_children(pvd);
2930 
2931 	/*
2932 	 * Remember one of the remaining children so we can get tvd below.
2933 	 */
2934 	cvd = pvd->vdev_child[0];
2935 
2936 	/*
2937 	 * If we need to remove the remaining child from the list of hot spares,
2938 	 * do it now, marking the vdev as no longer a spare in the process.  We
2939 	 * must do this before vdev_remove_parent(), because that can change the
2940 	 * GUID if it creates a new toplevel GUID.
2941 	 */
2942 	if (unspare) {
2943 		ASSERT(cvd->vdev_isspare);
2944 		spa_spare_remove(cvd);
2945 		unspare_guid = cvd->vdev_guid;
2946 	}
2947 
2948 	/*
2949 	 * If the parent mirror/replacing vdev only has one child,
2950 	 * the parent is no longer needed.  Remove it from the tree.
2951 	 */
2952 	if (pvd->vdev_children == 1)
2953 		vdev_remove_parent(cvd);
2954 
2955 	/*
2956 	 * We don't set tvd until now because the parent we just removed
2957 	 * may have been the previous top-level vdev.
2958 	 */
2959 	tvd = cvd->vdev_top;
2960 	ASSERT(tvd->vdev_parent == rvd);
2961 
2962 	/*
2963 	 * Reevaluate the parent vdev state.
2964 	 */
2965 	vdev_propagate_state(cvd);
2966 
2967 	/*
2968 	 * If the device we just detached was smaller than the others, it may be
2969 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2970 	 * can't fail because the existing metaslabs are already in core, so
2971 	 * there's nothing to read from disk.
2972 	 */
2973 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2974 
2975 	vdev_config_dirty(tvd);
2976 
2977 	/*
2978 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2979 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2980 	 * But first make sure we're not on any *other* txg's DTL list, to
2981 	 * prevent vd from being accessed after it's freed.
2982 	 */
2983 	for (t = 0; t < TXG_SIZE; t++)
2984 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2985 	vd->vdev_detached = B_TRUE;
2986 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2987 
2988 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2989 
2990 	error = spa_vdev_exit(spa, vd, txg, 0);
2991 
2992 	/*
2993 	 * If this was the removal of the original device in a hot spare vdev,
2994 	 * then we want to go through and remove the device from the hot spare
2995 	 * list of every other pool.
2996 	 */
2997 	if (unspare) {
2998 		spa = NULL;
2999 		mutex_enter(&spa_namespace_lock);
3000 		while ((spa = spa_next(spa)) != NULL) {
3001 			if (spa->spa_state != POOL_STATE_ACTIVE)
3002 				continue;
3003 
3004 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3005 		}
3006 		mutex_exit(&spa_namespace_lock);
3007 	}
3008 
3009 	return (error);
3010 }
3011 
3012 /*
3013  * Remove a spares vdev from the nvlist config.
3014  */
3015 static int
3016 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3017     nvlist_t **spares, int nspares, vdev_t *vd)
3018 {
3019 	nvlist_t *nv, **newspares;
3020 	int i, j;
3021 
3022 	nv = NULL;
3023 	for (i = 0; i < nspares; i++) {
3024 		uint64_t theguid;
3025 
3026 		VERIFY(nvlist_lookup_uint64(spares[i],
3027 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3028 		if (theguid == guid) {
3029 			nv = spares[i];
3030 			break;
3031 		}
3032 	}
3033 
3034 	/*
3035 	 * Only remove the hot spare if it's not currently in use in this pool.
3036 	 */
3037 	if (nv == NULL && vd == NULL)
3038 		return (ENOENT);
3039 
3040 	if (nv == NULL && vd != NULL)
3041 		return (ENOTSUP);
3042 
3043 	if (!unspare && nv != NULL && vd != NULL)
3044 		return (EBUSY);
3045 
3046 	if (nspares == 1) {
3047 		newspares = NULL;
3048 	} else {
3049 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3050 		    KM_SLEEP);
3051 		for (i = 0, j = 0; i < nspares; i++) {
3052 			if (spares[i] != nv)
3053 				VERIFY(nvlist_dup(spares[i],
3054 				    &newspares[j++], KM_SLEEP) == 0);
3055 		}
3056 	}
3057 
3058 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3059 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3060 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3061 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3062 	for (i = 0; i < nspares - 1; i++)
3063 		nvlist_free(newspares[i]);
3064 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3065 
3066 	return (0);
3067 }
3068 
3069 /*
3070  * Remove an l2cache vdev from the nvlist config.
3071  */
3072 static int
3073 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3074     int nl2cache, vdev_t *vd)
3075 {
3076 	nvlist_t *nv, **newl2cache;
3077 	int i, j;
3078 
3079 	nv = NULL;
3080 	for (i = 0; i < nl2cache; i++) {
3081 		uint64_t theguid;
3082 
3083 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3084 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3085 		if (theguid == guid) {
3086 			nv = l2cache[i];
3087 			break;
3088 		}
3089 	}
3090 
3091 	if (vd == NULL) {
3092 		for (i = 0; i < nl2cache; i++) {
3093 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3094 				vd = sav->sav_vdevs[i];
3095 				break;
3096 			}
3097 		}
3098 	}
3099 
3100 	if (nv == NULL && vd == NULL)
3101 		return (ENOENT);
3102 
3103 	if (nv == NULL && vd != NULL)
3104 		return (ENOTSUP);
3105 
3106 	if (nl2cache == 1) {
3107 		newl2cache = NULL;
3108 	} else {
3109 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3110 		    KM_SLEEP);
3111 		for (i = 0, j = 0; i < nl2cache; i++) {
3112 			if (l2cache[i] != nv)
3113 				VERIFY(nvlist_dup(l2cache[i],
3114 				    &newl2cache[j++], KM_SLEEP) == 0);
3115 		}
3116 	}
3117 
3118 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3119 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3120 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3121 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3122 	for (i = 0; i < nl2cache - 1; i++)
3123 		nvlist_free(newl2cache[i]);
3124 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3125 
3126 	return (0);
3127 }
3128 
3129 /*
3130  * Remove a device from the pool.  Currently, this supports removing only hot
3131  * spares and level 2 ARC devices.
3132  */
3133 int
3134 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3135 {
3136 	vdev_t *vd;
3137 	nvlist_t **spares, **l2cache;
3138 	uint_t nspares, nl2cache;
3139 	int error = 0;
3140 
3141 	spa_config_enter(spa, RW_WRITER, FTAG);
3142 
3143 	vd = spa_lookup_by_guid(spa, guid);
3144 
3145 	if (spa->spa_spares.sav_vdevs != NULL &&
3146 	    spa_spare_exists(guid, NULL) &&
3147 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3148 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3149 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3150 		    spares, nspares, vd)) != 0)
3151 			goto out;
3152 		spa_load_spares(spa);
3153 		spa->spa_spares.sav_sync = B_TRUE;
3154 		goto out;
3155 	}
3156 
3157 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3158 	    spa_l2cache_exists(guid, NULL) &&
3159 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3160 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3161 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3162 		    l2cache, nl2cache, vd)) != 0)
3163 			goto out;
3164 		spa_load_l2cache(spa);
3165 		spa->spa_l2cache.sav_sync = B_TRUE;
3166 	}
3167 
3168 out:
3169 	spa_config_exit(spa, FTAG);
3170 	return (error);
3171 }
3172 
3173 /*
3174  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3175  * current spared, so we can detach it.
3176  */
3177 static vdev_t *
3178 spa_vdev_resilver_done_hunt(vdev_t *vd)
3179 {
3180 	vdev_t *newvd, *oldvd;
3181 	int c;
3182 
3183 	for (c = 0; c < vd->vdev_children; c++) {
3184 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3185 		if (oldvd != NULL)
3186 			return (oldvd);
3187 	}
3188 
3189 	/*
3190 	 * Check for a completed replacement.
3191 	 */
3192 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3193 		oldvd = vd->vdev_child[0];
3194 		newvd = vd->vdev_child[1];
3195 
3196 		mutex_enter(&newvd->vdev_dtl_lock);
3197 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3198 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3199 			mutex_exit(&newvd->vdev_dtl_lock);
3200 			return (oldvd);
3201 		}
3202 		mutex_exit(&newvd->vdev_dtl_lock);
3203 	}
3204 
3205 	/*
3206 	 * Check for a completed resilver with the 'unspare' flag set.
3207 	 */
3208 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3209 		newvd = vd->vdev_child[0];
3210 		oldvd = vd->vdev_child[1];
3211 
3212 		mutex_enter(&newvd->vdev_dtl_lock);
3213 		if (newvd->vdev_unspare &&
3214 		    newvd->vdev_dtl_map.sm_space == 0 &&
3215 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3216 			newvd->vdev_unspare = 0;
3217 			mutex_exit(&newvd->vdev_dtl_lock);
3218 			return (oldvd);
3219 		}
3220 		mutex_exit(&newvd->vdev_dtl_lock);
3221 	}
3222 
3223 	return (NULL);
3224 }
3225 
3226 static void
3227 spa_vdev_resilver_done(spa_t *spa)
3228 {
3229 	vdev_t *vd;
3230 	vdev_t *pvd;
3231 	uint64_t guid;
3232 	uint64_t pguid = 0;
3233 
3234 	spa_config_enter(spa, RW_READER, FTAG);
3235 
3236 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3237 		guid = vd->vdev_guid;
3238 		/*
3239 		 * If we have just finished replacing a hot spared device, then
3240 		 * we need to detach the parent's first child (the original hot
3241 		 * spare) as well.
3242 		 */
3243 		pvd = vd->vdev_parent;
3244 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3245 		    pvd->vdev_id == 0) {
3246 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3247 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3248 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3249 		}
3250 		spa_config_exit(spa, FTAG);
3251 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3252 			return;
3253 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3254 			return;
3255 		spa_config_enter(spa, RW_READER, FTAG);
3256 	}
3257 
3258 	spa_config_exit(spa, FTAG);
3259 }
3260 
3261 /*
3262  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3263  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3264  */
3265 int
3266 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3267 {
3268 	vdev_t *rvd, *vd;
3269 	uint64_t txg;
3270 
3271 	rvd = spa->spa_root_vdev;
3272 
3273 	txg = spa_vdev_enter(spa);
3274 
3275 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3276 		/*
3277 		 * Determine if this is a reference to a hot spare or l2cache
3278 		 * device.  If it is, update the path as stored in their
3279 		 * device list.
3280 		 */
3281 		nvlist_t **spares, **l2cache;
3282 		uint_t i, nspares, nl2cache;
3283 
3284 		if (spa->spa_spares.sav_config != NULL) {
3285 			VERIFY(nvlist_lookup_nvlist_array(
3286 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3287 			    &spares, &nspares) == 0);
3288 			for (i = 0; i < nspares; i++) {
3289 				uint64_t theguid;
3290 				VERIFY(nvlist_lookup_uint64(spares[i],
3291 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3292 				if (theguid == guid) {
3293 					VERIFY(nvlist_add_string(spares[i],
3294 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3295 					spa_load_spares(spa);
3296 					spa->spa_spares.sav_sync = B_TRUE;
3297 					return (spa_vdev_exit(spa, NULL, txg,
3298 					    0));
3299 				}
3300 			}
3301 		}
3302 
3303 		if (spa->spa_l2cache.sav_config != NULL) {
3304 			VERIFY(nvlist_lookup_nvlist_array(
3305 			    spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE,
3306 			    &l2cache, &nl2cache) == 0);
3307 			for (i = 0; i < nl2cache; i++) {
3308 				uint64_t theguid;
3309 				VERIFY(nvlist_lookup_uint64(l2cache[i],
3310 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3311 				if (theguid == guid) {
3312 					VERIFY(nvlist_add_string(l2cache[i],
3313 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3314 					spa_load_l2cache(spa);
3315 					spa->spa_l2cache.sav_sync = B_TRUE;
3316 					return (spa_vdev_exit(spa, NULL, txg,
3317 					    0));
3318 				}
3319 			}
3320 		}
3321 
3322 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3323 	}
3324 
3325 	if (!vd->vdev_ops->vdev_op_leaf)
3326 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3327 
3328 	spa_strfree(vd->vdev_path);
3329 	vd->vdev_path = spa_strdup(newpath);
3330 
3331 	vdev_config_dirty(vd->vdev_top);
3332 
3333 	return (spa_vdev_exit(spa, NULL, txg, 0));
3334 }
3335 
3336 /*
3337  * ==========================================================================
3338  * SPA Scrubbing
3339  * ==========================================================================
3340  */
3341 
3342 static void
3343 spa_scrub_io_done(zio_t *zio)
3344 {
3345 	spa_t *spa = zio->io_spa;
3346 
3347 	arc_data_buf_free(zio->io_data, zio->io_size);
3348 
3349 	mutex_enter(&spa->spa_scrub_lock);
3350 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3351 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
3352 		spa->spa_scrub_errors++;
3353 		mutex_enter(&vd->vdev_stat_lock);
3354 		vd->vdev_stat.vs_scrub_errors++;
3355 		mutex_exit(&vd->vdev_stat_lock);
3356 	}
3357 
3358 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
3359 		cv_broadcast(&spa->spa_scrub_io_cv);
3360 
3361 	ASSERT(spa->spa_scrub_inflight >= 0);
3362 
3363 	mutex_exit(&spa->spa_scrub_lock);
3364 }
3365 
3366 static void
3367 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
3368     zbookmark_t *zb)
3369 {
3370 	size_t size = BP_GET_LSIZE(bp);
3371 	void *data;
3372 
3373 	mutex_enter(&spa->spa_scrub_lock);
3374 	/*
3375 	 * Do not give too much work to vdev(s).
3376 	 */
3377 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
3378 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3379 	}
3380 	spa->spa_scrub_inflight++;
3381 	mutex_exit(&spa->spa_scrub_lock);
3382 
3383 	data = arc_data_buf_alloc(size);
3384 
3385 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
3386 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
3387 
3388 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
3389 
3390 	zio_nowait(zio_read(NULL, spa, bp, data, size,
3391 	    spa_scrub_io_done, NULL, priority, flags, zb));
3392 }
3393 
3394 /* ARGSUSED */
3395 static int
3396 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
3397 {
3398 	blkptr_t *bp = &bc->bc_blkptr;
3399 	vdev_t *vd = spa->spa_root_vdev;
3400 	dva_t *dva = bp->blk_dva;
3401 	int needs_resilver = B_FALSE;
3402 	int d;
3403 
3404 	if (bc->bc_errno) {
3405 		/*
3406 		 * We can't scrub this block, but we can continue to scrub
3407 		 * the rest of the pool.  Note the error and move along.
3408 		 */
3409 		mutex_enter(&spa->spa_scrub_lock);
3410 		spa->spa_scrub_errors++;
3411 		mutex_exit(&spa->spa_scrub_lock);
3412 
3413 		mutex_enter(&vd->vdev_stat_lock);
3414 		vd->vdev_stat.vs_scrub_errors++;
3415 		mutex_exit(&vd->vdev_stat_lock);
3416 
3417 		return (ERESTART);
3418 	}
3419 
3420 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
3421 
3422 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3423 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
3424 
3425 		ASSERT(vd != NULL);
3426 
3427 		/*
3428 		 * Keep track of how much data we've examined so that
3429 		 * zpool(1M) status can make useful progress reports.
3430 		 */
3431 		mutex_enter(&vd->vdev_stat_lock);
3432 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
3433 		mutex_exit(&vd->vdev_stat_lock);
3434 
3435 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
3436 			if (DVA_GET_GANG(&dva[d])) {
3437 				/*
3438 				 * Gang members may be spread across multiple
3439 				 * vdevs, so the best we can do is look at the
3440 				 * pool-wide DTL.
3441 				 * XXX -- it would be better to change our
3442 				 * allocation policy to ensure that this can't
3443 				 * happen.
3444 				 */
3445 				vd = spa->spa_root_vdev;
3446 			}
3447 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
3448 			    bp->blk_birth, 1))
3449 				needs_resilver = B_TRUE;
3450 		}
3451 	}
3452 
3453 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
3454 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
3455 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
3456 	else if (needs_resilver)
3457 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
3458 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
3459 
3460 	return (0);
3461 }
3462 
3463 static void
3464 spa_scrub_thread(spa_t *spa)
3465 {
3466 	callb_cpr_t cprinfo;
3467 	traverse_handle_t *th = spa->spa_scrub_th;
3468 	vdev_t *rvd = spa->spa_root_vdev;
3469 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
3470 	int error = 0;
3471 	boolean_t complete;
3472 
3473 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
3474 
3475 	/*
3476 	 * If we're restarting due to a snapshot create/delete,
3477 	 * wait for that to complete.
3478 	 */
3479 	txg_wait_synced(spa_get_dsl(spa), 0);
3480 
3481 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
3482 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
3483 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
3484 
3485 	spa_config_enter(spa, RW_WRITER, FTAG);
3486 	vdev_reopen(rvd);		/* purge all vdev caches */
3487 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
3488 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
3489 	spa_config_exit(spa, FTAG);
3490 
3491 	mutex_enter(&spa->spa_scrub_lock);
3492 	spa->spa_scrub_errors = 0;
3493 	spa->spa_scrub_active = 1;
3494 	ASSERT(spa->spa_scrub_inflight == 0);
3495 
3496 	while (!spa->spa_scrub_stop) {
3497 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3498 		while (spa->spa_scrub_suspended) {
3499 			spa->spa_scrub_active = 0;
3500 			cv_broadcast(&spa->spa_scrub_cv);
3501 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3502 			spa->spa_scrub_active = 1;
3503 		}
3504 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
3505 
3506 		if (spa->spa_scrub_restart_txg != 0)
3507 			break;
3508 
3509 		mutex_exit(&spa->spa_scrub_lock);
3510 		error = traverse_more(th);
3511 		mutex_enter(&spa->spa_scrub_lock);
3512 		if (error != EAGAIN)
3513 			break;
3514 	}
3515 
3516 	while (spa->spa_scrub_inflight)
3517 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3518 
3519 	spa->spa_scrub_active = 0;
3520 	cv_broadcast(&spa->spa_scrub_cv);
3521 
3522 	mutex_exit(&spa->spa_scrub_lock);
3523 
3524 	spa_config_enter(spa, RW_WRITER, FTAG);
3525 
3526 	mutex_enter(&spa->spa_scrub_lock);
3527 
3528 	/*
3529 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
3530 	 * AND the spa config lock to synchronize with any config changes
3531 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
3532 	 */
3533 	if (spa->spa_scrub_restart_txg != 0)
3534 		error = ERESTART;
3535 
3536 	if (spa->spa_scrub_stop)
3537 		error = EINTR;
3538 
3539 	/*
3540 	 * Even if there were uncorrectable errors, we consider the scrub
3541 	 * completed.  The downside is that if there is a transient error during
3542 	 * a resilver, we won't resilver the data properly to the target.  But
3543 	 * if the damage is permanent (more likely) we will resilver forever,
3544 	 * which isn't really acceptable.  Since there is enough information for
3545 	 * the user to know what has failed and why, this seems like a more
3546 	 * tractable approach.
3547 	 */
3548 	complete = (error == 0);
3549 
3550 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
3551 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
3552 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
3553 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
3554 
3555 	mutex_exit(&spa->spa_scrub_lock);
3556 
3557 	/*
3558 	 * If the scrub/resilver completed, update all DTLs to reflect this.
3559 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
3560 	 */
3561 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
3562 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
3563 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
3564 	spa_errlog_rotate(spa);
3565 
3566 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
3567 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
3568 
3569 	spa_config_exit(spa, FTAG);
3570 
3571 	mutex_enter(&spa->spa_scrub_lock);
3572 
3573 	/*
3574 	 * We may have finished replacing a device.
3575 	 * Let the async thread assess this and handle the detach.
3576 	 */
3577 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3578 
3579 	/*
3580 	 * If we were told to restart, our final act is to start a new scrub.
3581 	 */
3582 	if (error == ERESTART)
3583 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
3584 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
3585 
3586 	spa->spa_scrub_type = POOL_SCRUB_NONE;
3587 	spa->spa_scrub_active = 0;
3588 	spa->spa_scrub_thread = NULL;
3589 	cv_broadcast(&spa->spa_scrub_cv);
3590 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
3591 	thread_exit();
3592 }
3593 
3594 void
3595 spa_scrub_suspend(spa_t *spa)
3596 {
3597 	mutex_enter(&spa->spa_scrub_lock);
3598 	spa->spa_scrub_suspended++;
3599 	while (spa->spa_scrub_active) {
3600 		cv_broadcast(&spa->spa_scrub_cv);
3601 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3602 	}
3603 	while (spa->spa_scrub_inflight)
3604 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3605 	mutex_exit(&spa->spa_scrub_lock);
3606 }
3607 
3608 void
3609 spa_scrub_resume(spa_t *spa)
3610 {
3611 	mutex_enter(&spa->spa_scrub_lock);
3612 	ASSERT(spa->spa_scrub_suspended != 0);
3613 	if (--spa->spa_scrub_suspended == 0)
3614 		cv_broadcast(&spa->spa_scrub_cv);
3615 	mutex_exit(&spa->spa_scrub_lock);
3616 }
3617 
3618 void
3619 spa_scrub_restart(spa_t *spa, uint64_t txg)
3620 {
3621 	/*
3622 	 * Something happened (e.g. snapshot create/delete) that means
3623 	 * we must restart any in-progress scrubs.  The itinerary will
3624 	 * fix this properly.
3625 	 */
3626 	mutex_enter(&spa->spa_scrub_lock);
3627 	spa->spa_scrub_restart_txg = txg;
3628 	mutex_exit(&spa->spa_scrub_lock);
3629 }
3630 
3631 int
3632 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
3633 {
3634 	space_seg_t *ss;
3635 	uint64_t mintxg, maxtxg;
3636 	vdev_t *rvd = spa->spa_root_vdev;
3637 
3638 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3639 	ASSERT(!spa_config_held(spa, RW_WRITER));
3640 
3641 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3642 		return (ENOTSUP);
3643 
3644 	mutex_enter(&spa->spa_scrub_lock);
3645 
3646 	/*
3647 	 * If there's a scrub or resilver already in progress, stop it.
3648 	 */
3649 	while (spa->spa_scrub_thread != NULL) {
3650 		/*
3651 		 * Don't stop a resilver unless forced.
3652 		 */
3653 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
3654 			mutex_exit(&spa->spa_scrub_lock);
3655 			return (EBUSY);
3656 		}
3657 		spa->spa_scrub_stop = 1;
3658 		cv_broadcast(&spa->spa_scrub_cv);
3659 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3660 	}
3661 
3662 	/*
3663 	 * Terminate the previous traverse.
3664 	 */
3665 	if (spa->spa_scrub_th != NULL) {
3666 		traverse_fini(spa->spa_scrub_th);
3667 		spa->spa_scrub_th = NULL;
3668 	}
3669 
3670 	if (rvd == NULL) {
3671 		ASSERT(spa->spa_scrub_stop == 0);
3672 		ASSERT(spa->spa_scrub_type == type);
3673 		ASSERT(spa->spa_scrub_restart_txg == 0);
3674 		mutex_exit(&spa->spa_scrub_lock);
3675 		return (0);
3676 	}
3677 
3678 	mintxg = TXG_INITIAL - 1;
3679 	maxtxg = spa_last_synced_txg(spa) + 1;
3680 
3681 	mutex_enter(&rvd->vdev_dtl_lock);
3682 
3683 	if (rvd->vdev_dtl_map.sm_space == 0) {
3684 		/*
3685 		 * The pool-wide DTL is empty.
3686 		 * If this is a resilver, there's nothing to do except
3687 		 * check whether any in-progress replacements have completed.
3688 		 */
3689 		if (type == POOL_SCRUB_RESILVER) {
3690 			type = POOL_SCRUB_NONE;
3691 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3692 		}
3693 	} else {
3694 		/*
3695 		 * The pool-wide DTL is non-empty.
3696 		 * If this is a normal scrub, upgrade to a resilver instead.
3697 		 */
3698 		if (type == POOL_SCRUB_EVERYTHING)
3699 			type = POOL_SCRUB_RESILVER;
3700 	}
3701 
3702 	if (type == POOL_SCRUB_RESILVER) {
3703 		/*
3704 		 * Determine the resilvering boundaries.
3705 		 *
3706 		 * Note: (mintxg, maxtxg) is an open interval,
3707 		 * i.e. mintxg and maxtxg themselves are not included.
3708 		 *
3709 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
3710 		 * so we don't claim to resilver a txg that's still changing.
3711 		 */
3712 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
3713 		mintxg = ss->ss_start - 1;
3714 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
3715 		maxtxg = MIN(ss->ss_end, maxtxg);
3716 
3717 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
3718 	}
3719 
3720 	mutex_exit(&rvd->vdev_dtl_lock);
3721 
3722 	spa->spa_scrub_stop = 0;
3723 	spa->spa_scrub_type = type;
3724 	spa->spa_scrub_restart_txg = 0;
3725 
3726 	if (type != POOL_SCRUB_NONE) {
3727 		spa->spa_scrub_mintxg = mintxg;
3728 		spa->spa_scrub_maxtxg = maxtxg;
3729 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
3730 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
3731 		    ZIO_FLAG_CANFAIL);
3732 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
3733 		spa->spa_scrub_thread = thread_create(NULL, 0,
3734 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
3735 	}
3736 
3737 	mutex_exit(&spa->spa_scrub_lock);
3738 
3739 	return (0);
3740 }
3741 
3742 /*
3743  * ==========================================================================
3744  * SPA async task processing
3745  * ==========================================================================
3746  */
3747 
3748 static void
3749 spa_async_remove(spa_t *spa, vdev_t *vd)
3750 {
3751 	vdev_t *tvd;
3752 	int c;
3753 
3754 	for (c = 0; c < vd->vdev_children; c++) {
3755 		tvd = vd->vdev_child[c];
3756 		if (tvd->vdev_remove_wanted) {
3757 			tvd->vdev_remove_wanted = 0;
3758 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3759 			    VDEV_AUX_NONE);
3760 			vdev_clear(spa, tvd, B_TRUE);
3761 			vdev_config_dirty(tvd->vdev_top);
3762 		}
3763 		spa_async_remove(spa, tvd);
3764 	}
3765 }
3766 
3767 static void
3768 spa_async_thread(spa_t *spa)
3769 {
3770 	int tasks;
3771 	uint64_t txg;
3772 
3773 	ASSERT(spa->spa_sync_on);
3774 
3775 	mutex_enter(&spa->spa_async_lock);
3776 	tasks = spa->spa_async_tasks;
3777 	spa->spa_async_tasks = 0;
3778 	mutex_exit(&spa->spa_async_lock);
3779 
3780 	/*
3781 	 * See if the config needs to be updated.
3782 	 */
3783 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3784 		mutex_enter(&spa_namespace_lock);
3785 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3786 		mutex_exit(&spa_namespace_lock);
3787 	}
3788 
3789 	/*
3790 	 * See if any devices need to be marked REMOVED.
3791 	 *
3792 	 * XXX - We avoid doing this when we are in
3793 	 * I/O failure state since spa_vdev_enter() grabs
3794 	 * the namespace lock and would not be able to obtain
3795 	 * the writer config lock.
3796 	 */
3797 	if (tasks & SPA_ASYNC_REMOVE &&
3798 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3799 		txg = spa_vdev_enter(spa);
3800 		spa_async_remove(spa, spa->spa_root_vdev);
3801 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3802 	}
3803 
3804 	/*
3805 	 * If any devices are done replacing, detach them.
3806 	 */
3807 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3808 		spa_vdev_resilver_done(spa);
3809 
3810 	/*
3811 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
3812 	 * scrub which can become a resilver), we need to hold
3813 	 * spa_namespace_lock() because the sysevent we post via
3814 	 * spa_event_notify() needs to get the name of the pool.
3815 	 */
3816 	if (tasks & SPA_ASYNC_SCRUB) {
3817 		mutex_enter(&spa_namespace_lock);
3818 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
3819 		mutex_exit(&spa_namespace_lock);
3820 	}
3821 
3822 	/*
3823 	 * Kick off a resilver.
3824 	 */
3825 	if (tasks & SPA_ASYNC_RESILVER) {
3826 		mutex_enter(&spa_namespace_lock);
3827 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
3828 		mutex_exit(&spa_namespace_lock);
3829 	}
3830 
3831 	/*
3832 	 * Let the world know that we're done.
3833 	 */
3834 	mutex_enter(&spa->spa_async_lock);
3835 	spa->spa_async_thread = NULL;
3836 	cv_broadcast(&spa->spa_async_cv);
3837 	mutex_exit(&spa->spa_async_lock);
3838 	thread_exit();
3839 }
3840 
3841 void
3842 spa_async_suspend(spa_t *spa)
3843 {
3844 	mutex_enter(&spa->spa_async_lock);
3845 	spa->spa_async_suspended++;
3846 	while (spa->spa_async_thread != NULL)
3847 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3848 	mutex_exit(&spa->spa_async_lock);
3849 }
3850 
3851 void
3852 spa_async_resume(spa_t *spa)
3853 {
3854 	mutex_enter(&spa->spa_async_lock);
3855 	ASSERT(spa->spa_async_suspended != 0);
3856 	spa->spa_async_suspended--;
3857 	mutex_exit(&spa->spa_async_lock);
3858 }
3859 
3860 static void
3861 spa_async_dispatch(spa_t *spa)
3862 {
3863 	mutex_enter(&spa->spa_async_lock);
3864 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3865 	    spa->spa_async_thread == NULL &&
3866 	    rootdir != NULL && !vn_is_readonly(rootdir))
3867 		spa->spa_async_thread = thread_create(NULL, 0,
3868 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3869 	mutex_exit(&spa->spa_async_lock);
3870 }
3871 
3872 void
3873 spa_async_request(spa_t *spa, int task)
3874 {
3875 	mutex_enter(&spa->spa_async_lock);
3876 	spa->spa_async_tasks |= task;
3877 	mutex_exit(&spa->spa_async_lock);
3878 }
3879 
3880 /*
3881  * ==========================================================================
3882  * SPA syncing routines
3883  * ==========================================================================
3884  */
3885 
3886 static void
3887 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3888 {
3889 	bplist_t *bpl = &spa->spa_sync_bplist;
3890 	dmu_tx_t *tx;
3891 	blkptr_t blk;
3892 	uint64_t itor = 0;
3893 	zio_t *zio;
3894 	int error;
3895 	uint8_t c = 1;
3896 
3897 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3898 
3899 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3900 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3901 
3902 	error = zio_wait(zio);
3903 	ASSERT3U(error, ==, 0);
3904 
3905 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3906 	bplist_vacate(bpl, tx);
3907 
3908 	/*
3909 	 * Pre-dirty the first block so we sync to convergence faster.
3910 	 * (Usually only the first block is needed.)
3911 	 */
3912 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3913 	dmu_tx_commit(tx);
3914 }
3915 
3916 static void
3917 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3918 {
3919 	char *packed = NULL;
3920 	size_t nvsize = 0;
3921 	dmu_buf_t *db;
3922 
3923 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3924 
3925 	packed = kmem_alloc(nvsize, KM_SLEEP);
3926 
3927 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3928 	    KM_SLEEP) == 0);
3929 
3930 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3931 
3932 	kmem_free(packed, nvsize);
3933 
3934 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3935 	dmu_buf_will_dirty(db, tx);
3936 	*(uint64_t *)db->db_data = nvsize;
3937 	dmu_buf_rele(db, FTAG);
3938 }
3939 
3940 static void
3941 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3942     const char *config, const char *entry)
3943 {
3944 	nvlist_t *nvroot;
3945 	nvlist_t **list;
3946 	int i;
3947 
3948 	if (!sav->sav_sync)
3949 		return;
3950 
3951 	/*
3952 	 * Update the MOS nvlist describing the list of available devices.
3953 	 * spa_validate_aux() will have already made sure this nvlist is
3954 	 * valid and the vdevs are labeled appropriately.
3955 	 */
3956 	if (sav->sav_object == 0) {
3957 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3958 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3959 		    sizeof (uint64_t), tx);
3960 		VERIFY(zap_update(spa->spa_meta_objset,
3961 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3962 		    &sav->sav_object, tx) == 0);
3963 	}
3964 
3965 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3966 	if (sav->sav_count == 0) {
3967 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3968 	} else {
3969 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3970 		for (i = 0; i < sav->sav_count; i++)
3971 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3972 			    B_FALSE, B_FALSE, B_TRUE);
3973 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3974 		    sav->sav_count) == 0);
3975 		for (i = 0; i < sav->sav_count; i++)
3976 			nvlist_free(list[i]);
3977 		kmem_free(list, sav->sav_count * sizeof (void *));
3978 	}
3979 
3980 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3981 	nvlist_free(nvroot);
3982 
3983 	sav->sav_sync = B_FALSE;
3984 }
3985 
3986 static void
3987 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3988 {
3989 	nvlist_t *config;
3990 
3991 	if (list_is_empty(&spa->spa_dirty_list))
3992 		return;
3993 
3994 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3995 
3996 	if (spa->spa_config_syncing)
3997 		nvlist_free(spa->spa_config_syncing);
3998 	spa->spa_config_syncing = config;
3999 
4000 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4001 }
4002 
4003 /*
4004  * Set zpool properties.
4005  */
4006 static void
4007 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4008 {
4009 	spa_t *spa = arg1;
4010 	objset_t *mos = spa->spa_meta_objset;
4011 	nvlist_t *nvp = arg2;
4012 	nvpair_t *elem;
4013 	uint64_t intval;
4014 	char *strval, *slash;
4015 	zpool_prop_t prop;
4016 	const char *propname;
4017 	zprop_type_t proptype;
4018 
4019 	elem = NULL;
4020 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4021 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4022 		case ZPOOL_PROP_VERSION:
4023 			/*
4024 			 * Only set version for non-zpool-creation cases
4025 			 * (set/import). spa_create() needs special care
4026 			 * for version setting.
4027 			 */
4028 			if (tx->tx_txg != TXG_INITIAL) {
4029 				VERIFY(nvpair_value_uint64(elem,
4030 				    &intval) == 0);
4031 				ASSERT(intval <= SPA_VERSION);
4032 				ASSERT(intval >= spa_version(spa));
4033 				spa->spa_uberblock.ub_version = intval;
4034 				vdev_config_dirty(spa->spa_root_vdev);
4035 			}
4036 			break;
4037 
4038 		case ZPOOL_PROP_ALTROOT:
4039 			/*
4040 			 * 'altroot' is a non-persistent property. It should
4041 			 * have been set temporarily at creation or import time.
4042 			 */
4043 			ASSERT(spa->spa_root != NULL);
4044 			break;
4045 
4046 		case ZPOOL_PROP_CACHEFILE:
4047 			/*
4048 			 * 'cachefile' is a non-persistent property, but note
4049 			 * an async request that the config cache needs to be
4050 			 * udpated.
4051 			 */
4052 			VERIFY(nvpair_value_string(elem, &strval) == 0);
4053 			if (spa->spa_config_dir)
4054 				spa_strfree(spa->spa_config_dir);
4055 			if (spa->spa_config_file)
4056 				spa_strfree(spa->spa_config_file);
4057 
4058 			if (strval[0] == '\0') {
4059 				spa->spa_config_dir = NULL;
4060 				spa->spa_config_file = NULL;
4061 			} else if (strcmp(strval, "none") == 0) {
4062 				spa->spa_config_dir = spa_strdup(strval);
4063 				spa->spa_config_file = NULL;
4064 			} else {
4065 				/*
4066 				 * If the cachefile is in the root directory,
4067 				 * we will end up with an empty string for
4068 				 * spa_config_dir.  This value is only ever
4069 				 * used when concatenated with '/', so an empty
4070 				 * string still behaves correctly and keeps the
4071 				 * rest of the code simple.
4072 				 */
4073 				slash = strrchr(strval, '/');
4074 				ASSERT(slash != NULL);
4075 				*slash = '\0';
4076 				if (strcmp(strval, spa_config_dir) == 0 &&
4077 				    strcmp(slash + 1, ZPOOL_CACHE_FILE) == 0) {
4078 					spa->spa_config_dir = NULL;
4079 					spa->spa_config_file = NULL;
4080 				} else {
4081 					spa->spa_config_dir =
4082 					    spa_strdup(strval);
4083 					spa->spa_config_file =
4084 					    spa_strdup(slash + 1);
4085 				}
4086 			}
4087 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4088 			break;
4089 		default:
4090 			/*
4091 			 * Set pool property values in the poolprops mos object.
4092 			 */
4093 			mutex_enter(&spa->spa_props_lock);
4094 			if (spa->spa_pool_props_object == 0) {
4095 				objset_t *mos = spa->spa_meta_objset;
4096 
4097 				VERIFY((spa->spa_pool_props_object =
4098 				    zap_create(mos, DMU_OT_POOL_PROPS,
4099 				    DMU_OT_NONE, 0, tx)) > 0);
4100 
4101 				VERIFY(zap_update(mos,
4102 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4103 				    8, 1, &spa->spa_pool_props_object, tx)
4104 				    == 0);
4105 			}
4106 			mutex_exit(&spa->spa_props_lock);
4107 
4108 			/* normalize the property name */
4109 			propname = zpool_prop_to_name(prop);
4110 			proptype = zpool_prop_get_type(prop);
4111 
4112 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4113 				ASSERT(proptype == PROP_TYPE_STRING);
4114 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4115 				VERIFY(zap_update(mos,
4116 				    spa->spa_pool_props_object, propname,
4117 				    1, strlen(strval) + 1, strval, tx) == 0);
4118 
4119 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4120 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4121 
4122 				if (proptype == PROP_TYPE_INDEX) {
4123 					const char *unused;
4124 					VERIFY(zpool_prop_index_to_string(
4125 					    prop, intval, &unused) == 0);
4126 				}
4127 				VERIFY(zap_update(mos,
4128 				    spa->spa_pool_props_object, propname,
4129 				    8, 1, &intval, tx) == 0);
4130 			} else {
4131 				ASSERT(0); /* not allowed */
4132 			}
4133 
4134 			switch (prop) {
4135 			case ZPOOL_PROP_DELEGATION:
4136 				spa->spa_delegation = intval;
4137 				break;
4138 			case ZPOOL_PROP_BOOTFS:
4139 				spa->spa_bootfs = intval;
4140 				break;
4141 			case ZPOOL_PROP_FAILUREMODE:
4142 				spa->spa_failmode = intval;
4143 				break;
4144 			default:
4145 				break;
4146 			}
4147 		}
4148 
4149 		/* log internal history if this is not a zpool create */
4150 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4151 		    tx->tx_txg != TXG_INITIAL) {
4152 			spa_history_internal_log(LOG_POOL_PROPSET,
4153 			    spa, tx, cr, "%s %lld %s",
4154 			    nvpair_name(elem), intval, spa->spa_name);
4155 		}
4156 	}
4157 }
4158 
4159 /*
4160  * Sync the specified transaction group.  New blocks may be dirtied as
4161  * part of the process, so we iterate until it converges.
4162  */
4163 void
4164 spa_sync(spa_t *spa, uint64_t txg)
4165 {
4166 	dsl_pool_t *dp = spa->spa_dsl_pool;
4167 	objset_t *mos = spa->spa_meta_objset;
4168 	bplist_t *bpl = &spa->spa_sync_bplist;
4169 	vdev_t *rvd = spa->spa_root_vdev;
4170 	vdev_t *vd;
4171 	vdev_t *svd[SPA_DVAS_PER_BP];
4172 	int svdcount = 0;
4173 	dmu_tx_t *tx;
4174 	int dirty_vdevs;
4175 
4176 	/*
4177 	 * Lock out configuration changes.
4178 	 */
4179 	spa_config_enter(spa, RW_READER, FTAG);
4180 
4181 	spa->spa_syncing_txg = txg;
4182 	spa->spa_sync_pass = 0;
4183 
4184 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4185 
4186 	tx = dmu_tx_create_assigned(dp, txg);
4187 
4188 	/*
4189 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4190 	 * set spa_deflate if we have no raid-z vdevs.
4191 	 */
4192 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4193 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4194 		int i;
4195 
4196 		for (i = 0; i < rvd->vdev_children; i++) {
4197 			vd = rvd->vdev_child[i];
4198 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4199 				break;
4200 		}
4201 		if (i == rvd->vdev_children) {
4202 			spa->spa_deflate = TRUE;
4203 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4204 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4205 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4206 		}
4207 	}
4208 
4209 	/*
4210 	 * If anything has changed in this txg, push the deferred frees
4211 	 * from the previous txg.  If not, leave them alone so that we
4212 	 * don't generate work on an otherwise idle system.
4213 	 */
4214 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4215 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4216 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4217 		spa_sync_deferred_frees(spa, txg);
4218 
4219 	/*
4220 	 * Iterate to convergence.
4221 	 */
4222 	do {
4223 		spa->spa_sync_pass++;
4224 
4225 		spa_sync_config_object(spa, tx);
4226 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4227 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4228 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4229 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4230 		spa_errlog_sync(spa, txg);
4231 		dsl_pool_sync(dp, txg);
4232 
4233 		dirty_vdevs = 0;
4234 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4235 			vdev_sync(vd, txg);
4236 			dirty_vdevs++;
4237 		}
4238 
4239 		bplist_sync(bpl, tx);
4240 	} while (dirty_vdevs);
4241 
4242 	bplist_close(bpl);
4243 
4244 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4245 
4246 	/*
4247 	 * Rewrite the vdev configuration (which includes the uberblock)
4248 	 * to commit the transaction group.
4249 	 *
4250 	 * If there are no dirty vdevs, we sync the uberblock to a few
4251 	 * random top-level vdevs that are known to be visible in the
4252 	 * config cache (see spa_vdev_add() for details).  If there *are*
4253 	 * dirty vdevs -- or if the sync to our random subset fails --
4254 	 * then sync the uberblock to all vdevs.
4255 	 */
4256 	if (list_is_empty(&spa->spa_dirty_list)) {
4257 		int children = rvd->vdev_children;
4258 		int c0 = spa_get_random(children);
4259 		int c;
4260 
4261 		for (c = 0; c < children; c++) {
4262 			vd = rvd->vdev_child[(c0 + c) % children];
4263 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4264 				continue;
4265 			svd[svdcount++] = vd;
4266 			if (svdcount == SPA_DVAS_PER_BP)
4267 				break;
4268 		}
4269 	}
4270 	if (svdcount == 0 || vdev_config_sync(svd, svdcount, txg) != 0)
4271 		VERIFY3U(vdev_config_sync(rvd->vdev_child,
4272 		    rvd->vdev_children, txg), ==, 0);
4273 
4274 	dmu_tx_commit(tx);
4275 
4276 	/*
4277 	 * Clear the dirty config list.
4278 	 */
4279 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
4280 		vdev_config_clean(vd);
4281 
4282 	/*
4283 	 * Now that the new config has synced transactionally,
4284 	 * let it become visible to the config cache.
4285 	 */
4286 	if (spa->spa_config_syncing != NULL) {
4287 		spa_config_set(spa, spa->spa_config_syncing);
4288 		spa->spa_config_txg = txg;
4289 		spa->spa_config_syncing = NULL;
4290 	}
4291 
4292 	/*
4293 	 * Make a stable copy of the fully synced uberblock.
4294 	 * We use this as the root for pool traversals.
4295 	 */
4296 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
4297 
4298 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
4299 
4300 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4301 	spa->spa_traverse_wanted = 0;
4302 	spa->spa_ubsync = spa->spa_uberblock;
4303 	rw_exit(&spa->spa_traverse_lock);
4304 
4305 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
4306 
4307 	/*
4308 	 * Clean up the ZIL records for the synced txg.
4309 	 */
4310 	dsl_pool_zil_clean(dp);
4311 
4312 	/*
4313 	 * Update usable space statistics.
4314 	 */
4315 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4316 		vdev_sync_done(vd, txg);
4317 
4318 	/*
4319 	 * It had better be the case that we didn't dirty anything
4320 	 * since vdev_config_sync().
4321 	 */
4322 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4323 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4324 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4325 	ASSERT(bpl->bpl_queue == NULL);
4326 
4327 	spa_config_exit(spa, FTAG);
4328 
4329 	/*
4330 	 * If any async tasks have been requested, kick them off.
4331 	 */
4332 	spa_async_dispatch(spa);
4333 }
4334 
4335 /*
4336  * Sync all pools.  We don't want to hold the namespace lock across these
4337  * operations, so we take a reference on the spa_t and drop the lock during the
4338  * sync.
4339  */
4340 void
4341 spa_sync_allpools(void)
4342 {
4343 	spa_t *spa = NULL;
4344 	mutex_enter(&spa_namespace_lock);
4345 	while ((spa = spa_next(spa)) != NULL) {
4346 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4347 			continue;
4348 		spa_open_ref(spa, FTAG);
4349 		mutex_exit(&spa_namespace_lock);
4350 		txg_wait_synced(spa_get_dsl(spa), 0);
4351 		mutex_enter(&spa_namespace_lock);
4352 		spa_close(spa, FTAG);
4353 	}
4354 	mutex_exit(&spa_namespace_lock);
4355 }
4356 
4357 /*
4358  * ==========================================================================
4359  * Miscellaneous routines
4360  * ==========================================================================
4361  */
4362 
4363 /*
4364  * Remove all pools in the system.
4365  */
4366 void
4367 spa_evict_all(void)
4368 {
4369 	spa_t *spa;
4370 
4371 	/*
4372 	 * Remove all cached state.  All pools should be closed now,
4373 	 * so every spa in the AVL tree should be unreferenced.
4374 	 */
4375 	mutex_enter(&spa_namespace_lock);
4376 	while ((spa = spa_next(NULL)) != NULL) {
4377 		/*
4378 		 * Stop async tasks.  The async thread may need to detach
4379 		 * a device that's been replaced, which requires grabbing
4380 		 * spa_namespace_lock, so we must drop it here.
4381 		 */
4382 		spa_open_ref(spa, FTAG);
4383 		mutex_exit(&spa_namespace_lock);
4384 		spa_async_suspend(spa);
4385 		mutex_enter(&spa_namespace_lock);
4386 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
4387 		spa_close(spa, FTAG);
4388 
4389 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4390 			spa_unload(spa);
4391 			spa_deactivate(spa);
4392 		}
4393 		spa_remove(spa);
4394 	}
4395 	mutex_exit(&spa_namespace_lock);
4396 }
4397 
4398 vdev_t *
4399 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
4400 {
4401 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
4402 }
4403 
4404 void
4405 spa_upgrade(spa_t *spa, uint64_t version)
4406 {
4407 	spa_config_enter(spa, RW_WRITER, FTAG);
4408 
4409 	/*
4410 	 * This should only be called for a non-faulted pool, and since a
4411 	 * future version would result in an unopenable pool, this shouldn't be
4412 	 * possible.
4413 	 */
4414 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4415 	ASSERT(version >= spa->spa_uberblock.ub_version);
4416 
4417 	spa->spa_uberblock.ub_version = version;
4418 	vdev_config_dirty(spa->spa_root_vdev);
4419 
4420 	spa_config_exit(spa, FTAG);
4421 
4422 	txg_wait_synced(spa_get_dsl(spa), 0);
4423 }
4424 
4425 boolean_t
4426 spa_has_spare(spa_t *spa, uint64_t guid)
4427 {
4428 	int i;
4429 	uint64_t spareguid;
4430 	spa_aux_vdev_t *sav = &spa->spa_spares;
4431 
4432 	for (i = 0; i < sav->sav_count; i++)
4433 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4434 			return (B_TRUE);
4435 
4436 	for (i = 0; i < sav->sav_npending; i++) {
4437 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4438 		    &spareguid) == 0 && spareguid == guid)
4439 			return (B_TRUE);
4440 	}
4441 
4442 	return (B_FALSE);
4443 }
4444 
4445 /*
4446  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4447  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4448  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4449  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4450  * or zdb as real changes.
4451  */
4452 void
4453 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4454 {
4455 #ifdef _KERNEL
4456 	sysevent_t		*ev;
4457 	sysevent_attr_list_t	*attr = NULL;
4458 	sysevent_value_t	value;
4459 	sysevent_id_t		eid;
4460 
4461 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4462 	    SE_SLEEP);
4463 
4464 	value.value_type = SE_DATA_TYPE_STRING;
4465 	value.value.sv_string = spa_name(spa);
4466 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4467 		goto done;
4468 
4469 	value.value_type = SE_DATA_TYPE_UINT64;
4470 	value.value.sv_uint64 = spa_guid(spa);
4471 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4472 		goto done;
4473 
4474 	if (vd) {
4475 		value.value_type = SE_DATA_TYPE_UINT64;
4476 		value.value.sv_uint64 = vd->vdev_guid;
4477 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4478 		    SE_SLEEP) != 0)
4479 			goto done;
4480 
4481 		if (vd->vdev_path) {
4482 			value.value_type = SE_DATA_TYPE_STRING;
4483 			value.value.sv_string = vd->vdev_path;
4484 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4485 			    &value, SE_SLEEP) != 0)
4486 				goto done;
4487 		}
4488 	}
4489 
4490 	if (sysevent_attach_attributes(ev, attr) != 0)
4491 		goto done;
4492 	attr = NULL;
4493 
4494 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4495 
4496 done:
4497 	if (attr)
4498 		sysevent_free_attr(attr);
4499 	sysevent_free(ev);
4500 #endif
4501 }
4502