1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/sunddi.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/zone.h> 66 #endif /* _KERNEL */ 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 enum zti_modes { 72 zti_mode_fixed, /* value is # of threads (min 1) */ 73 zti_mode_online_percent, /* value is % of online CPUs */ 74 zti_mode_tune, /* fill from zio_taskq_tune_* */ 75 zti_nmodes 76 }; 77 78 #define ZTI_THREAD_FIX(n) { zti_mode_fixed, (n) } 79 #define ZTI_THREAD_PCT(n) { zti_mode_online_percent, (n) } 80 #define ZTI_THREAD_TUNE { zti_mode_tune, 0 } 81 82 #define ZTI_THREAD_ONE ZTI_THREAD_FIX(1) 83 84 typedef struct zio_taskq_info { 85 const char *zti_name; 86 struct { 87 enum zti_modes zti_mode; 88 uint_t zti_value; 89 } zti_nthreads[ZIO_TASKQ_TYPES]; 90 } zio_taskq_info_t; 91 92 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 93 "issue", "intr" 94 }; 95 96 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = { 97 /* ISSUE INTR */ 98 { "spa_zio_null", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 99 { "spa_zio_read", { ZTI_THREAD_FIX(8), ZTI_THREAD_TUNE } }, 100 { "spa_zio_write", { ZTI_THREAD_TUNE, ZTI_THREAD_FIX(8) } }, 101 { "spa_zio_free", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 102 { "spa_zio_claim", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 103 { "spa_zio_ioctl", { ZTI_THREAD_ONE, ZTI_THREAD_ONE } }, 104 }; 105 106 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent; 107 uint_t zio_taskq_tune_value = 80; /* #threads = 80% of # online CPUs */ 108 109 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 110 static boolean_t spa_has_active_shared_spare(spa_t *spa); 111 112 /* 113 * ========================================================================== 114 * SPA properties routines 115 * ========================================================================== 116 */ 117 118 /* 119 * Add a (source=src, propname=propval) list to an nvlist. 120 */ 121 static void 122 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 123 uint64_t intval, zprop_source_t src) 124 { 125 const char *propname = zpool_prop_to_name(prop); 126 nvlist_t *propval; 127 128 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 129 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 130 131 if (strval != NULL) 132 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 133 else 134 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 135 136 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 137 nvlist_free(propval); 138 } 139 140 /* 141 * Get property values from the spa configuration. 142 */ 143 static void 144 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 145 { 146 uint64_t size; 147 uint64_t used; 148 uint64_t cap, version; 149 zprop_source_t src = ZPROP_SRC_NONE; 150 spa_config_dirent_t *dp; 151 152 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 153 154 if (spa->spa_root_vdev != NULL) { 155 size = spa_get_space(spa); 156 used = spa_get_alloc(spa); 157 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 158 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 159 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 160 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, 161 size - used, src); 162 163 cap = (size == 0) ? 0 : (used * 100 / size); 164 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 165 166 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 167 spa->spa_root_vdev->vdev_state, src); 168 169 version = spa_version(spa); 170 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 171 src = ZPROP_SRC_DEFAULT; 172 else 173 src = ZPROP_SRC_LOCAL; 174 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 175 } 176 177 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 178 179 if (spa->spa_root != NULL) 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 181 0, ZPROP_SRC_LOCAL); 182 183 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 184 if (dp->scd_path == NULL) { 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 186 "none", 0, ZPROP_SRC_LOCAL); 187 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 188 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 189 dp->scd_path, 0, ZPROP_SRC_LOCAL); 190 } 191 } 192 } 193 194 /* 195 * Get zpool property values. 196 */ 197 int 198 spa_prop_get(spa_t *spa, nvlist_t **nvp) 199 { 200 zap_cursor_t zc; 201 zap_attribute_t za; 202 objset_t *mos = spa->spa_meta_objset; 203 int err; 204 205 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 206 207 mutex_enter(&spa->spa_props_lock); 208 209 /* 210 * Get properties from the spa config. 211 */ 212 spa_prop_get_config(spa, nvp); 213 214 /* If no pool property object, no more prop to get. */ 215 if (spa->spa_pool_props_object == 0) { 216 mutex_exit(&spa->spa_props_lock); 217 return (0); 218 } 219 220 /* 221 * Get properties from the MOS pool property object. 222 */ 223 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 224 (err = zap_cursor_retrieve(&zc, &za)) == 0; 225 zap_cursor_advance(&zc)) { 226 uint64_t intval = 0; 227 char *strval = NULL; 228 zprop_source_t src = ZPROP_SRC_DEFAULT; 229 zpool_prop_t prop; 230 231 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 232 continue; 233 234 switch (za.za_integer_length) { 235 case 8: 236 /* integer property */ 237 if (za.za_first_integer != 238 zpool_prop_default_numeric(prop)) 239 src = ZPROP_SRC_LOCAL; 240 241 if (prop == ZPOOL_PROP_BOOTFS) { 242 dsl_pool_t *dp; 243 dsl_dataset_t *ds = NULL; 244 245 dp = spa_get_dsl(spa); 246 rw_enter(&dp->dp_config_rwlock, RW_READER); 247 if (err = dsl_dataset_hold_obj(dp, 248 za.za_first_integer, FTAG, &ds)) { 249 rw_exit(&dp->dp_config_rwlock); 250 break; 251 } 252 253 strval = kmem_alloc( 254 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 255 KM_SLEEP); 256 dsl_dataset_name(ds, strval); 257 dsl_dataset_rele(ds, FTAG); 258 rw_exit(&dp->dp_config_rwlock); 259 } else { 260 strval = NULL; 261 intval = za.za_first_integer; 262 } 263 264 spa_prop_add_list(*nvp, prop, strval, intval, src); 265 266 if (strval != NULL) 267 kmem_free(strval, 268 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 269 270 break; 271 272 case 1: 273 /* string property */ 274 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 275 err = zap_lookup(mos, spa->spa_pool_props_object, 276 za.za_name, 1, za.za_num_integers, strval); 277 if (err) { 278 kmem_free(strval, za.za_num_integers); 279 break; 280 } 281 spa_prop_add_list(*nvp, prop, strval, 0, src); 282 kmem_free(strval, za.za_num_integers); 283 break; 284 285 default: 286 break; 287 } 288 } 289 zap_cursor_fini(&zc); 290 mutex_exit(&spa->spa_props_lock); 291 out: 292 if (err && err != ENOENT) { 293 nvlist_free(*nvp); 294 *nvp = NULL; 295 return (err); 296 } 297 298 return (0); 299 } 300 301 /* 302 * Validate the given pool properties nvlist and modify the list 303 * for the property values to be set. 304 */ 305 static int 306 spa_prop_validate(spa_t *spa, nvlist_t *props) 307 { 308 nvpair_t *elem; 309 int error = 0, reset_bootfs = 0; 310 uint64_t objnum; 311 312 elem = NULL; 313 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 314 zpool_prop_t prop; 315 char *propname, *strval; 316 uint64_t intval; 317 objset_t *os; 318 char *slash; 319 320 propname = nvpair_name(elem); 321 322 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 323 return (EINVAL); 324 325 switch (prop) { 326 case ZPOOL_PROP_VERSION: 327 error = nvpair_value_uint64(elem, &intval); 328 if (!error && 329 (intval < spa_version(spa) || intval > SPA_VERSION)) 330 error = EINVAL; 331 break; 332 333 case ZPOOL_PROP_DELEGATION: 334 case ZPOOL_PROP_AUTOREPLACE: 335 case ZPOOL_PROP_LISTSNAPS: 336 case ZPOOL_PROP_AUTOEXPAND: 337 error = nvpair_value_uint64(elem, &intval); 338 if (!error && intval > 1) 339 error = EINVAL; 340 break; 341 342 case ZPOOL_PROP_BOOTFS: 343 /* 344 * If the pool version is less than SPA_VERSION_BOOTFS, 345 * or the pool is still being created (version == 0), 346 * the bootfs property cannot be set. 347 */ 348 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 349 error = ENOTSUP; 350 break; 351 } 352 353 /* 354 * Make sure the vdev config is bootable 355 */ 356 if (!vdev_is_bootable(spa->spa_root_vdev)) { 357 error = ENOTSUP; 358 break; 359 } 360 361 reset_bootfs = 1; 362 363 error = nvpair_value_string(elem, &strval); 364 365 if (!error) { 366 uint64_t compress; 367 368 if (strval == NULL || strval[0] == '\0') { 369 objnum = zpool_prop_default_numeric( 370 ZPOOL_PROP_BOOTFS); 371 break; 372 } 373 374 if (error = dmu_objset_open(strval, DMU_OST_ZFS, 375 DS_MODE_USER | DS_MODE_READONLY, &os)) 376 break; 377 378 /* We don't support gzip bootable datasets */ 379 if ((error = dsl_prop_get_integer(strval, 380 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 381 &compress, NULL)) == 0 && 382 !BOOTFS_COMPRESS_VALID(compress)) { 383 error = ENOTSUP; 384 } else { 385 objnum = dmu_objset_id(os); 386 } 387 dmu_objset_close(os); 388 } 389 break; 390 391 case ZPOOL_PROP_FAILUREMODE: 392 error = nvpair_value_uint64(elem, &intval); 393 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 394 intval > ZIO_FAILURE_MODE_PANIC)) 395 error = EINVAL; 396 397 /* 398 * This is a special case which only occurs when 399 * the pool has completely failed. This allows 400 * the user to change the in-core failmode property 401 * without syncing it out to disk (I/Os might 402 * currently be blocked). We do this by returning 403 * EIO to the caller (spa_prop_set) to trick it 404 * into thinking we encountered a property validation 405 * error. 406 */ 407 if (!error && spa_suspended(spa)) { 408 spa->spa_failmode = intval; 409 error = EIO; 410 } 411 break; 412 413 case ZPOOL_PROP_CACHEFILE: 414 if ((error = nvpair_value_string(elem, &strval)) != 0) 415 break; 416 417 if (strval[0] == '\0') 418 break; 419 420 if (strcmp(strval, "none") == 0) 421 break; 422 423 if (strval[0] != '/') { 424 error = EINVAL; 425 break; 426 } 427 428 slash = strrchr(strval, '/'); 429 ASSERT(slash != NULL); 430 431 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 432 strcmp(slash, "/..") == 0) 433 error = EINVAL; 434 break; 435 } 436 437 if (error) 438 break; 439 } 440 441 if (!error && reset_bootfs) { 442 error = nvlist_remove(props, 443 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 444 445 if (!error) { 446 error = nvlist_add_uint64(props, 447 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 448 } 449 } 450 451 return (error); 452 } 453 454 void 455 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 456 { 457 char *cachefile; 458 spa_config_dirent_t *dp; 459 460 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 461 &cachefile) != 0) 462 return; 463 464 dp = kmem_alloc(sizeof (spa_config_dirent_t), 465 KM_SLEEP); 466 467 if (cachefile[0] == '\0') 468 dp->scd_path = spa_strdup(spa_config_path); 469 else if (strcmp(cachefile, "none") == 0) 470 dp->scd_path = NULL; 471 else 472 dp->scd_path = spa_strdup(cachefile); 473 474 list_insert_head(&spa->spa_config_list, dp); 475 if (need_sync) 476 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 477 } 478 479 int 480 spa_prop_set(spa_t *spa, nvlist_t *nvp) 481 { 482 int error; 483 nvpair_t *elem; 484 boolean_t need_sync = B_FALSE; 485 zpool_prop_t prop; 486 487 if ((error = spa_prop_validate(spa, nvp)) != 0) 488 return (error); 489 490 elem = NULL; 491 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 492 if ((prop = zpool_name_to_prop( 493 nvpair_name(elem))) == ZPROP_INVAL) 494 return (EINVAL); 495 496 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 497 continue; 498 499 need_sync = B_TRUE; 500 break; 501 } 502 503 if (need_sync) 504 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 505 spa, nvp, 3)); 506 else 507 return (0); 508 } 509 510 /* 511 * If the bootfs property value is dsobj, clear it. 512 */ 513 void 514 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 515 { 516 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 517 VERIFY(zap_remove(spa->spa_meta_objset, 518 spa->spa_pool_props_object, 519 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 520 spa->spa_bootfs = 0; 521 } 522 } 523 524 /* 525 * ========================================================================== 526 * SPA state manipulation (open/create/destroy/import/export) 527 * ========================================================================== 528 */ 529 530 static int 531 spa_error_entry_compare(const void *a, const void *b) 532 { 533 spa_error_entry_t *sa = (spa_error_entry_t *)a; 534 spa_error_entry_t *sb = (spa_error_entry_t *)b; 535 int ret; 536 537 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 538 sizeof (zbookmark_t)); 539 540 if (ret < 0) 541 return (-1); 542 else if (ret > 0) 543 return (1); 544 else 545 return (0); 546 } 547 548 /* 549 * Utility function which retrieves copies of the current logs and 550 * re-initializes them in the process. 551 */ 552 void 553 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 554 { 555 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 556 557 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 558 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 559 560 avl_create(&spa->spa_errlist_scrub, 561 spa_error_entry_compare, sizeof (spa_error_entry_t), 562 offsetof(spa_error_entry_t, se_avl)); 563 avl_create(&spa->spa_errlist_last, 564 spa_error_entry_compare, sizeof (spa_error_entry_t), 565 offsetof(spa_error_entry_t, se_avl)); 566 } 567 568 /* 569 * Activate an uninitialized pool. 570 */ 571 static void 572 spa_activate(spa_t *spa, int mode) 573 { 574 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 575 576 spa->spa_state = POOL_STATE_ACTIVE; 577 spa->spa_mode = mode; 578 579 spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops); 580 spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops); 581 582 for (int t = 0; t < ZIO_TYPES; t++) { 583 const zio_taskq_info_t *ztip = &zio_taskqs[t]; 584 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 585 enum zti_modes mode = ztip->zti_nthreads[q].zti_mode; 586 uint_t value = ztip->zti_nthreads[q].zti_value; 587 char name[32]; 588 589 (void) snprintf(name, sizeof (name), 590 "%s_%s", ztip->zti_name, zio_taskq_types[q]); 591 592 if (mode == zti_mode_tune) { 593 mode = zio_taskq_tune_mode; 594 value = zio_taskq_tune_value; 595 if (mode == zti_mode_tune) 596 mode = zti_mode_online_percent; 597 } 598 599 switch (mode) { 600 case zti_mode_fixed: 601 ASSERT3U(value, >=, 1); 602 value = MAX(value, 1); 603 604 spa->spa_zio_taskq[t][q] = taskq_create(name, 605 value, maxclsyspri, 50, INT_MAX, 606 TASKQ_PREPOPULATE); 607 break; 608 609 case zti_mode_online_percent: 610 spa->spa_zio_taskq[t][q] = taskq_create(name, 611 value, maxclsyspri, 50, INT_MAX, 612 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 613 break; 614 615 case zti_mode_tune: 616 default: 617 panic("unrecognized mode for " 618 "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) " 619 "in spa_activate()", 620 t, q, mode, value); 621 break; 622 } 623 } 624 } 625 626 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 627 offsetof(vdev_t, vdev_config_dirty_node)); 628 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 629 offsetof(vdev_t, vdev_state_dirty_node)); 630 631 txg_list_create(&spa->spa_vdev_txg_list, 632 offsetof(struct vdev, vdev_txg_node)); 633 634 avl_create(&spa->spa_errlist_scrub, 635 spa_error_entry_compare, sizeof (spa_error_entry_t), 636 offsetof(spa_error_entry_t, se_avl)); 637 avl_create(&spa->spa_errlist_last, 638 spa_error_entry_compare, sizeof (spa_error_entry_t), 639 offsetof(spa_error_entry_t, se_avl)); 640 } 641 642 /* 643 * Opposite of spa_activate(). 644 */ 645 static void 646 spa_deactivate(spa_t *spa) 647 { 648 ASSERT(spa->spa_sync_on == B_FALSE); 649 ASSERT(spa->spa_dsl_pool == NULL); 650 ASSERT(spa->spa_root_vdev == NULL); 651 ASSERT(spa->spa_async_zio_root == NULL); 652 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 653 654 txg_list_destroy(&spa->spa_vdev_txg_list); 655 656 list_destroy(&spa->spa_config_dirty_list); 657 list_destroy(&spa->spa_state_dirty_list); 658 659 for (int t = 0; t < ZIO_TYPES; t++) { 660 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 661 taskq_destroy(spa->spa_zio_taskq[t][q]); 662 spa->spa_zio_taskq[t][q] = NULL; 663 } 664 } 665 666 metaslab_class_destroy(spa->spa_normal_class); 667 spa->spa_normal_class = NULL; 668 669 metaslab_class_destroy(spa->spa_log_class); 670 spa->spa_log_class = NULL; 671 672 /* 673 * If this was part of an import or the open otherwise failed, we may 674 * still have errors left in the queues. Empty them just in case. 675 */ 676 spa_errlog_drain(spa); 677 678 avl_destroy(&spa->spa_errlist_scrub); 679 avl_destroy(&spa->spa_errlist_last); 680 681 spa->spa_state = POOL_STATE_UNINITIALIZED; 682 } 683 684 /* 685 * Verify a pool configuration, and construct the vdev tree appropriately. This 686 * will create all the necessary vdevs in the appropriate layout, with each vdev 687 * in the CLOSED state. This will prep the pool before open/creation/import. 688 * All vdev validation is done by the vdev_alloc() routine. 689 */ 690 static int 691 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 692 uint_t id, int atype) 693 { 694 nvlist_t **child; 695 uint_t children; 696 int error; 697 698 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 699 return (error); 700 701 if ((*vdp)->vdev_ops->vdev_op_leaf) 702 return (0); 703 704 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 705 &child, &children); 706 707 if (error == ENOENT) 708 return (0); 709 710 if (error) { 711 vdev_free(*vdp); 712 *vdp = NULL; 713 return (EINVAL); 714 } 715 716 for (int c = 0; c < children; c++) { 717 vdev_t *vd; 718 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 719 atype)) != 0) { 720 vdev_free(*vdp); 721 *vdp = NULL; 722 return (error); 723 } 724 } 725 726 ASSERT(*vdp != NULL); 727 728 return (0); 729 } 730 731 /* 732 * Opposite of spa_load(). 733 */ 734 static void 735 spa_unload(spa_t *spa) 736 { 737 int i; 738 739 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 740 741 /* 742 * Stop async tasks. 743 */ 744 spa_async_suspend(spa); 745 746 /* 747 * Stop syncing. 748 */ 749 if (spa->spa_sync_on) { 750 txg_sync_stop(spa->spa_dsl_pool); 751 spa->spa_sync_on = B_FALSE; 752 } 753 754 /* 755 * Wait for any outstanding async I/O to complete. 756 */ 757 if (spa->spa_async_zio_root != NULL) { 758 (void) zio_wait(spa->spa_async_zio_root); 759 spa->spa_async_zio_root = NULL; 760 } 761 762 /* 763 * Close the dsl pool. 764 */ 765 if (spa->spa_dsl_pool) { 766 dsl_pool_close(spa->spa_dsl_pool); 767 spa->spa_dsl_pool = NULL; 768 } 769 770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 771 772 /* 773 * Drop and purge level 2 cache 774 */ 775 spa_l2cache_drop(spa); 776 777 /* 778 * Close all vdevs. 779 */ 780 if (spa->spa_root_vdev) 781 vdev_free(spa->spa_root_vdev); 782 ASSERT(spa->spa_root_vdev == NULL); 783 784 for (i = 0; i < spa->spa_spares.sav_count; i++) 785 vdev_free(spa->spa_spares.sav_vdevs[i]); 786 if (spa->spa_spares.sav_vdevs) { 787 kmem_free(spa->spa_spares.sav_vdevs, 788 spa->spa_spares.sav_count * sizeof (void *)); 789 spa->spa_spares.sav_vdevs = NULL; 790 } 791 if (spa->spa_spares.sav_config) { 792 nvlist_free(spa->spa_spares.sav_config); 793 spa->spa_spares.sav_config = NULL; 794 } 795 spa->spa_spares.sav_count = 0; 796 797 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 798 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 799 if (spa->spa_l2cache.sav_vdevs) { 800 kmem_free(spa->spa_l2cache.sav_vdevs, 801 spa->spa_l2cache.sav_count * sizeof (void *)); 802 spa->spa_l2cache.sav_vdevs = NULL; 803 } 804 if (spa->spa_l2cache.sav_config) { 805 nvlist_free(spa->spa_l2cache.sav_config); 806 spa->spa_l2cache.sav_config = NULL; 807 } 808 spa->spa_l2cache.sav_count = 0; 809 810 spa->spa_async_suspended = 0; 811 812 spa_config_exit(spa, SCL_ALL, FTAG); 813 } 814 815 /* 816 * Load (or re-load) the current list of vdevs describing the active spares for 817 * this pool. When this is called, we have some form of basic information in 818 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 819 * then re-generate a more complete list including status information. 820 */ 821 static void 822 spa_load_spares(spa_t *spa) 823 { 824 nvlist_t **spares; 825 uint_t nspares; 826 int i; 827 vdev_t *vd, *tvd; 828 829 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 830 831 /* 832 * First, close and free any existing spare vdevs. 833 */ 834 for (i = 0; i < spa->spa_spares.sav_count; i++) { 835 vd = spa->spa_spares.sav_vdevs[i]; 836 837 /* Undo the call to spa_activate() below */ 838 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 839 B_FALSE)) != NULL && tvd->vdev_isspare) 840 spa_spare_remove(tvd); 841 vdev_close(vd); 842 vdev_free(vd); 843 } 844 845 if (spa->spa_spares.sav_vdevs) 846 kmem_free(spa->spa_spares.sav_vdevs, 847 spa->spa_spares.sav_count * sizeof (void *)); 848 849 if (spa->spa_spares.sav_config == NULL) 850 nspares = 0; 851 else 852 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 853 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 854 855 spa->spa_spares.sav_count = (int)nspares; 856 spa->spa_spares.sav_vdevs = NULL; 857 858 if (nspares == 0) 859 return; 860 861 /* 862 * Construct the array of vdevs, opening them to get status in the 863 * process. For each spare, there is potentially two different vdev_t 864 * structures associated with it: one in the list of spares (used only 865 * for basic validation purposes) and one in the active vdev 866 * configuration (if it's spared in). During this phase we open and 867 * validate each vdev on the spare list. If the vdev also exists in the 868 * active configuration, then we also mark this vdev as an active spare. 869 */ 870 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 871 KM_SLEEP); 872 for (i = 0; i < spa->spa_spares.sav_count; i++) { 873 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 874 VDEV_ALLOC_SPARE) == 0); 875 ASSERT(vd != NULL); 876 877 spa->spa_spares.sav_vdevs[i] = vd; 878 879 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 880 B_FALSE)) != NULL) { 881 if (!tvd->vdev_isspare) 882 spa_spare_add(tvd); 883 884 /* 885 * We only mark the spare active if we were successfully 886 * able to load the vdev. Otherwise, importing a pool 887 * with a bad active spare would result in strange 888 * behavior, because multiple pool would think the spare 889 * is actively in use. 890 * 891 * There is a vulnerability here to an equally bizarre 892 * circumstance, where a dead active spare is later 893 * brought back to life (onlined or otherwise). Given 894 * the rarity of this scenario, and the extra complexity 895 * it adds, we ignore the possibility. 896 */ 897 if (!vdev_is_dead(tvd)) 898 spa_spare_activate(tvd); 899 } 900 901 vd->vdev_top = vd; 902 vd->vdev_aux = &spa->spa_spares; 903 904 if (vdev_open(vd) != 0) 905 continue; 906 907 if (vdev_validate_aux(vd) == 0) 908 spa_spare_add(vd); 909 } 910 911 /* 912 * Recompute the stashed list of spares, with status information 913 * this time. 914 */ 915 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 916 DATA_TYPE_NVLIST_ARRAY) == 0); 917 918 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 919 KM_SLEEP); 920 for (i = 0; i < spa->spa_spares.sav_count; i++) 921 spares[i] = vdev_config_generate(spa, 922 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 923 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 924 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 925 for (i = 0; i < spa->spa_spares.sav_count; i++) 926 nvlist_free(spares[i]); 927 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 928 } 929 930 /* 931 * Load (or re-load) the current list of vdevs describing the active l2cache for 932 * this pool. When this is called, we have some form of basic information in 933 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 934 * then re-generate a more complete list including status information. 935 * Devices which are already active have their details maintained, and are 936 * not re-opened. 937 */ 938 static void 939 spa_load_l2cache(spa_t *spa) 940 { 941 nvlist_t **l2cache; 942 uint_t nl2cache; 943 int i, j, oldnvdevs; 944 uint64_t guid; 945 vdev_t *vd, **oldvdevs, **newvdevs; 946 spa_aux_vdev_t *sav = &spa->spa_l2cache; 947 948 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 949 950 if (sav->sav_config != NULL) { 951 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 952 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 953 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 954 } else { 955 nl2cache = 0; 956 } 957 958 oldvdevs = sav->sav_vdevs; 959 oldnvdevs = sav->sav_count; 960 sav->sav_vdevs = NULL; 961 sav->sav_count = 0; 962 963 /* 964 * Process new nvlist of vdevs. 965 */ 966 for (i = 0; i < nl2cache; i++) { 967 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 968 &guid) == 0); 969 970 newvdevs[i] = NULL; 971 for (j = 0; j < oldnvdevs; j++) { 972 vd = oldvdevs[j]; 973 if (vd != NULL && guid == vd->vdev_guid) { 974 /* 975 * Retain previous vdev for add/remove ops. 976 */ 977 newvdevs[i] = vd; 978 oldvdevs[j] = NULL; 979 break; 980 } 981 } 982 983 if (newvdevs[i] == NULL) { 984 /* 985 * Create new vdev 986 */ 987 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 988 VDEV_ALLOC_L2CACHE) == 0); 989 ASSERT(vd != NULL); 990 newvdevs[i] = vd; 991 992 /* 993 * Commit this vdev as an l2cache device, 994 * even if it fails to open. 995 */ 996 spa_l2cache_add(vd); 997 998 vd->vdev_top = vd; 999 vd->vdev_aux = sav; 1000 1001 spa_l2cache_activate(vd); 1002 1003 if (vdev_open(vd) != 0) 1004 continue; 1005 1006 (void) vdev_validate_aux(vd); 1007 1008 if (!vdev_is_dead(vd)) 1009 l2arc_add_vdev(spa, vd); 1010 } 1011 } 1012 1013 /* 1014 * Purge vdevs that were dropped 1015 */ 1016 for (i = 0; i < oldnvdevs; i++) { 1017 uint64_t pool; 1018 1019 vd = oldvdevs[i]; 1020 if (vd != NULL) { 1021 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1022 pool != 0ULL && l2arc_vdev_present(vd)) 1023 l2arc_remove_vdev(vd); 1024 (void) vdev_close(vd); 1025 spa_l2cache_remove(vd); 1026 } 1027 } 1028 1029 if (oldvdevs) 1030 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1031 1032 if (sav->sav_config == NULL) 1033 goto out; 1034 1035 sav->sav_vdevs = newvdevs; 1036 sav->sav_count = (int)nl2cache; 1037 1038 /* 1039 * Recompute the stashed list of l2cache devices, with status 1040 * information this time. 1041 */ 1042 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1043 DATA_TYPE_NVLIST_ARRAY) == 0); 1044 1045 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1046 for (i = 0; i < sav->sav_count; i++) 1047 l2cache[i] = vdev_config_generate(spa, 1048 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1049 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1050 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1051 out: 1052 for (i = 0; i < sav->sav_count; i++) 1053 nvlist_free(l2cache[i]); 1054 if (sav->sav_count) 1055 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1056 } 1057 1058 static int 1059 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1060 { 1061 dmu_buf_t *db; 1062 char *packed = NULL; 1063 size_t nvsize = 0; 1064 int error; 1065 *value = NULL; 1066 1067 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1068 nvsize = *(uint64_t *)db->db_data; 1069 dmu_buf_rele(db, FTAG); 1070 1071 packed = kmem_alloc(nvsize, KM_SLEEP); 1072 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1073 DMU_READ_PREFETCH); 1074 if (error == 0) 1075 error = nvlist_unpack(packed, nvsize, value, 0); 1076 kmem_free(packed, nvsize); 1077 1078 return (error); 1079 } 1080 1081 /* 1082 * Checks to see if the given vdev could not be opened, in which case we post a 1083 * sysevent to notify the autoreplace code that the device has been removed. 1084 */ 1085 static void 1086 spa_check_removed(vdev_t *vd) 1087 { 1088 for (int c = 0; c < vd->vdev_children; c++) 1089 spa_check_removed(vd->vdev_child[c]); 1090 1091 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1092 zfs_post_autoreplace(vd->vdev_spa, vd); 1093 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1094 } 1095 } 1096 1097 /* 1098 * Load the slog device state from the config object since it's possible 1099 * that the label does not contain the most up-to-date information. 1100 */ 1101 void 1102 spa_load_log_state(spa_t *spa) 1103 { 1104 nvlist_t *nv, *nvroot, **child; 1105 uint64_t is_log; 1106 uint_t children; 1107 vdev_t *rvd = spa->spa_root_vdev; 1108 1109 VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0); 1110 VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1111 VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1112 &child, &children) == 0); 1113 1114 for (int c = 0; c < children; c++) { 1115 vdev_t *tvd = rvd->vdev_child[c]; 1116 1117 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 1118 &is_log) == 0 && is_log) 1119 vdev_load_log_state(tvd, child[c]); 1120 } 1121 nvlist_free(nv); 1122 } 1123 1124 /* 1125 * Check for missing log devices 1126 */ 1127 int 1128 spa_check_logs(spa_t *spa) 1129 { 1130 switch (spa->spa_log_state) { 1131 case SPA_LOG_MISSING: 1132 /* need to recheck in case slog has been restored */ 1133 case SPA_LOG_UNKNOWN: 1134 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1135 DS_FIND_CHILDREN)) { 1136 spa->spa_log_state = SPA_LOG_MISSING; 1137 return (1); 1138 } 1139 break; 1140 } 1141 return (0); 1142 } 1143 1144 /* 1145 * Load an existing storage pool, using the pool's builtin spa_config as a 1146 * source of configuration information. 1147 */ 1148 static int 1149 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 1150 { 1151 int error = 0; 1152 nvlist_t *nvroot = NULL; 1153 vdev_t *rvd; 1154 uberblock_t *ub = &spa->spa_uberblock; 1155 uint64_t config_cache_txg = spa->spa_config_txg; 1156 uint64_t pool_guid; 1157 uint64_t version; 1158 uint64_t autoreplace = 0; 1159 int orig_mode = spa->spa_mode; 1160 char *ereport = FM_EREPORT_ZFS_POOL; 1161 1162 /* 1163 * If this is an untrusted config, access the pool in read-only mode. 1164 * This prevents things like resilvering recently removed devices. 1165 */ 1166 if (!mosconfig) 1167 spa->spa_mode = FREAD; 1168 1169 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1170 1171 spa->spa_load_state = state; 1172 1173 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1174 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1175 error = EINVAL; 1176 goto out; 1177 } 1178 1179 /* 1180 * Versioning wasn't explicitly added to the label until later, so if 1181 * it's not present treat it as the initial version. 1182 */ 1183 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1184 version = SPA_VERSION_INITIAL; 1185 1186 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1187 &spa->spa_config_txg); 1188 1189 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1190 spa_guid_exists(pool_guid, 0)) { 1191 error = EEXIST; 1192 goto out; 1193 } 1194 1195 spa->spa_load_guid = pool_guid; 1196 1197 /* 1198 * Create "The Godfather" zio to hold all async IOs 1199 */ 1200 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1201 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1202 1203 /* 1204 * Parse the configuration into a vdev tree. We explicitly set the 1205 * value that will be returned by spa_version() since parsing the 1206 * configuration requires knowing the version number. 1207 */ 1208 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1209 spa->spa_ubsync.ub_version = version; 1210 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1211 spa_config_exit(spa, SCL_ALL, FTAG); 1212 1213 if (error != 0) 1214 goto out; 1215 1216 ASSERT(spa->spa_root_vdev == rvd); 1217 ASSERT(spa_guid(spa) == pool_guid); 1218 1219 /* 1220 * Try to open all vdevs, loading each label in the process. 1221 */ 1222 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1223 error = vdev_open(rvd); 1224 spa_config_exit(spa, SCL_ALL, FTAG); 1225 if (error != 0) 1226 goto out; 1227 1228 /* 1229 * We need to validate the vdev labels against the configuration that 1230 * we have in hand, which is dependent on the setting of mosconfig. If 1231 * mosconfig is true then we're validating the vdev labels based on 1232 * that config. Otherwise, we're validating against the cached config 1233 * (zpool.cache) that was read when we loaded the zfs module, and then 1234 * later we will recursively call spa_load() and validate against 1235 * the vdev config. 1236 */ 1237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1238 error = vdev_validate(rvd); 1239 spa_config_exit(spa, SCL_ALL, FTAG); 1240 if (error != 0) 1241 goto out; 1242 1243 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1244 error = ENXIO; 1245 goto out; 1246 } 1247 1248 /* 1249 * Find the best uberblock. 1250 */ 1251 vdev_uberblock_load(NULL, rvd, ub); 1252 1253 /* 1254 * If we weren't able to find a single valid uberblock, return failure. 1255 */ 1256 if (ub->ub_txg == 0) { 1257 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1258 VDEV_AUX_CORRUPT_DATA); 1259 error = ENXIO; 1260 goto out; 1261 } 1262 1263 /* 1264 * If the pool is newer than the code, we can't open it. 1265 */ 1266 if (ub->ub_version > SPA_VERSION) { 1267 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1268 VDEV_AUX_VERSION_NEWER); 1269 error = ENOTSUP; 1270 goto out; 1271 } 1272 1273 /* 1274 * If the vdev guid sum doesn't match the uberblock, we have an 1275 * incomplete configuration. 1276 */ 1277 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1278 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1279 VDEV_AUX_BAD_GUID_SUM); 1280 error = ENXIO; 1281 goto out; 1282 } 1283 1284 /* 1285 * Initialize internal SPA structures. 1286 */ 1287 spa->spa_state = POOL_STATE_ACTIVE; 1288 spa->spa_ubsync = spa->spa_uberblock; 1289 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1290 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1291 if (error) { 1292 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1293 VDEV_AUX_CORRUPT_DATA); 1294 goto out; 1295 } 1296 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1297 1298 if (zap_lookup(spa->spa_meta_objset, 1299 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1300 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1301 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1302 VDEV_AUX_CORRUPT_DATA); 1303 error = EIO; 1304 goto out; 1305 } 1306 1307 if (!mosconfig) { 1308 nvlist_t *newconfig; 1309 uint64_t hostid; 1310 1311 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1312 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1313 VDEV_AUX_CORRUPT_DATA); 1314 error = EIO; 1315 goto out; 1316 } 1317 1318 if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig, 1319 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1320 char *hostname; 1321 unsigned long myhostid = 0; 1322 1323 VERIFY(nvlist_lookup_string(newconfig, 1324 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1325 1326 #ifdef _KERNEL 1327 myhostid = zone_get_hostid(NULL); 1328 #else /* _KERNEL */ 1329 /* 1330 * We're emulating the system's hostid in userland, so 1331 * we can't use zone_get_hostid(). 1332 */ 1333 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1334 #endif /* _KERNEL */ 1335 if (hostid != 0 && myhostid != 0 && 1336 hostid != myhostid) { 1337 cmn_err(CE_WARN, "pool '%s' could not be " 1338 "loaded as it was last accessed by " 1339 "another system (host: %s hostid: 0x%lx). " 1340 "See: http://www.sun.com/msg/ZFS-8000-EY", 1341 spa_name(spa), hostname, 1342 (unsigned long)hostid); 1343 error = EBADF; 1344 goto out; 1345 } 1346 } 1347 1348 spa_config_set(spa, newconfig); 1349 spa_unload(spa); 1350 spa_deactivate(spa); 1351 spa_activate(spa, orig_mode); 1352 1353 return (spa_load(spa, newconfig, state, B_TRUE)); 1354 } 1355 1356 if (zap_lookup(spa->spa_meta_objset, 1357 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1358 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1359 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1360 VDEV_AUX_CORRUPT_DATA); 1361 error = EIO; 1362 goto out; 1363 } 1364 1365 /* 1366 * Load the bit that tells us to use the new accounting function 1367 * (raid-z deflation). If we have an older pool, this will not 1368 * be present. 1369 */ 1370 error = zap_lookup(spa->spa_meta_objset, 1371 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1372 sizeof (uint64_t), 1, &spa->spa_deflate); 1373 if (error != 0 && error != ENOENT) { 1374 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1375 VDEV_AUX_CORRUPT_DATA); 1376 error = EIO; 1377 goto out; 1378 } 1379 1380 /* 1381 * Load the persistent error log. If we have an older pool, this will 1382 * not be present. 1383 */ 1384 error = zap_lookup(spa->spa_meta_objset, 1385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1386 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1387 if (error != 0 && error != ENOENT) { 1388 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1389 VDEV_AUX_CORRUPT_DATA); 1390 error = EIO; 1391 goto out; 1392 } 1393 1394 error = zap_lookup(spa->spa_meta_objset, 1395 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1396 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1397 if (error != 0 && error != ENOENT) { 1398 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1399 VDEV_AUX_CORRUPT_DATA); 1400 error = EIO; 1401 goto out; 1402 } 1403 1404 /* 1405 * Load the history object. If we have an older pool, this 1406 * will not be present. 1407 */ 1408 error = zap_lookup(spa->spa_meta_objset, 1409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1410 sizeof (uint64_t), 1, &spa->spa_history); 1411 if (error != 0 && error != ENOENT) { 1412 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1413 VDEV_AUX_CORRUPT_DATA); 1414 error = EIO; 1415 goto out; 1416 } 1417 1418 /* 1419 * Load any hot spares for this pool. 1420 */ 1421 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1422 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1423 if (error != 0 && error != ENOENT) { 1424 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1425 VDEV_AUX_CORRUPT_DATA); 1426 error = EIO; 1427 goto out; 1428 } 1429 if (error == 0) { 1430 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1431 if (load_nvlist(spa, spa->spa_spares.sav_object, 1432 &spa->spa_spares.sav_config) != 0) { 1433 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1434 VDEV_AUX_CORRUPT_DATA); 1435 error = EIO; 1436 goto out; 1437 } 1438 1439 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1440 spa_load_spares(spa); 1441 spa_config_exit(spa, SCL_ALL, FTAG); 1442 } 1443 1444 /* 1445 * Load any level 2 ARC devices for this pool. 1446 */ 1447 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1448 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1449 &spa->spa_l2cache.sav_object); 1450 if (error != 0 && error != ENOENT) { 1451 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1452 VDEV_AUX_CORRUPT_DATA); 1453 error = EIO; 1454 goto out; 1455 } 1456 if (error == 0) { 1457 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1458 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1459 &spa->spa_l2cache.sav_config) != 0) { 1460 vdev_set_state(rvd, B_TRUE, 1461 VDEV_STATE_CANT_OPEN, 1462 VDEV_AUX_CORRUPT_DATA); 1463 error = EIO; 1464 goto out; 1465 } 1466 1467 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1468 spa_load_l2cache(spa); 1469 spa_config_exit(spa, SCL_ALL, FTAG); 1470 } 1471 1472 spa_load_log_state(spa); 1473 1474 if (spa_check_logs(spa)) { 1475 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1476 VDEV_AUX_BAD_LOG); 1477 error = ENXIO; 1478 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1479 goto out; 1480 } 1481 1482 1483 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1484 1485 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1486 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1487 1488 if (error && error != ENOENT) { 1489 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1490 VDEV_AUX_CORRUPT_DATA); 1491 error = EIO; 1492 goto out; 1493 } 1494 1495 if (error == 0) { 1496 (void) zap_lookup(spa->spa_meta_objset, 1497 spa->spa_pool_props_object, 1498 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1499 sizeof (uint64_t), 1, &spa->spa_bootfs); 1500 (void) zap_lookup(spa->spa_meta_objset, 1501 spa->spa_pool_props_object, 1502 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1503 sizeof (uint64_t), 1, &autoreplace); 1504 (void) zap_lookup(spa->spa_meta_objset, 1505 spa->spa_pool_props_object, 1506 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1507 sizeof (uint64_t), 1, &spa->spa_delegation); 1508 (void) zap_lookup(spa->spa_meta_objset, 1509 spa->spa_pool_props_object, 1510 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1511 sizeof (uint64_t), 1, &spa->spa_failmode); 1512 (void) zap_lookup(spa->spa_meta_objset, 1513 spa->spa_pool_props_object, 1514 zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND), 1515 sizeof (uint64_t), 1, &spa->spa_autoexpand); 1516 } 1517 1518 /* 1519 * If the 'autoreplace' property is set, then post a resource notifying 1520 * the ZFS DE that it should not issue any faults for unopenable 1521 * devices. We also iterate over the vdevs, and post a sysevent for any 1522 * unopenable vdevs so that the normal autoreplace handler can take 1523 * over. 1524 */ 1525 if (autoreplace && state != SPA_LOAD_TRYIMPORT) 1526 spa_check_removed(spa->spa_root_vdev); 1527 1528 /* 1529 * Load the vdev state for all toplevel vdevs. 1530 */ 1531 vdev_load(rvd); 1532 1533 /* 1534 * Propagate the leaf DTLs we just loaded all the way up the tree. 1535 */ 1536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1537 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1538 spa_config_exit(spa, SCL_ALL, FTAG); 1539 1540 /* 1541 * Check the state of the root vdev. If it can't be opened, it 1542 * indicates one or more toplevel vdevs are faulted. 1543 */ 1544 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1545 error = ENXIO; 1546 goto out; 1547 } 1548 1549 if (spa_writeable(spa)) { 1550 dmu_tx_t *tx; 1551 int need_update = B_FALSE; 1552 1553 ASSERT(state != SPA_LOAD_TRYIMPORT); 1554 1555 /* 1556 * Claim log blocks that haven't been committed yet. 1557 * This must all happen in a single txg. 1558 */ 1559 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1560 spa_first_txg(spa)); 1561 (void) dmu_objset_find(spa_name(spa), 1562 zil_claim, tx, DS_FIND_CHILDREN); 1563 dmu_tx_commit(tx); 1564 1565 spa->spa_log_state = SPA_LOG_GOOD; 1566 spa->spa_sync_on = B_TRUE; 1567 txg_sync_start(spa->spa_dsl_pool); 1568 1569 /* 1570 * Wait for all claims to sync. 1571 */ 1572 txg_wait_synced(spa->spa_dsl_pool, 0); 1573 1574 /* 1575 * If the config cache is stale, or we have uninitialized 1576 * metaslabs (see spa_vdev_add()), then update the config. 1577 */ 1578 if (config_cache_txg != spa->spa_config_txg || 1579 state == SPA_LOAD_IMPORT) 1580 need_update = B_TRUE; 1581 1582 for (int c = 0; c < rvd->vdev_children; c++) 1583 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1584 need_update = B_TRUE; 1585 1586 /* 1587 * Update the config cache asychronously in case we're the 1588 * root pool, in which case the config cache isn't writable yet. 1589 */ 1590 if (need_update) 1591 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1592 1593 /* 1594 * Check all DTLs to see if anything needs resilvering. 1595 */ 1596 if (vdev_resilver_needed(rvd, NULL, NULL)) 1597 spa_async_request(spa, SPA_ASYNC_RESILVER); 1598 } 1599 1600 error = 0; 1601 out: 1602 spa->spa_minref = refcount_count(&spa->spa_refcount); 1603 if (error && error != EBADF) 1604 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1605 spa->spa_load_state = SPA_LOAD_NONE; 1606 spa->spa_ena = 0; 1607 1608 return (error); 1609 } 1610 1611 /* 1612 * Pool Open/Import 1613 * 1614 * The import case is identical to an open except that the configuration is sent 1615 * down from userland, instead of grabbed from the configuration cache. For the 1616 * case of an open, the pool configuration will exist in the 1617 * POOL_STATE_UNINITIALIZED state. 1618 * 1619 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1620 * the same time open the pool, without having to keep around the spa_t in some 1621 * ambiguous state. 1622 */ 1623 static int 1624 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1625 { 1626 spa_t *spa; 1627 int error; 1628 int locked = B_FALSE; 1629 1630 *spapp = NULL; 1631 1632 /* 1633 * As disgusting as this is, we need to support recursive calls to this 1634 * function because dsl_dir_open() is called during spa_load(), and ends 1635 * up calling spa_open() again. The real fix is to figure out how to 1636 * avoid dsl_dir_open() calling this in the first place. 1637 */ 1638 if (mutex_owner(&spa_namespace_lock) != curthread) { 1639 mutex_enter(&spa_namespace_lock); 1640 locked = B_TRUE; 1641 } 1642 1643 if ((spa = spa_lookup(pool)) == NULL) { 1644 if (locked) 1645 mutex_exit(&spa_namespace_lock); 1646 return (ENOENT); 1647 } 1648 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1649 1650 spa_activate(spa, spa_mode_global); 1651 1652 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1653 1654 if (error == EBADF) { 1655 /* 1656 * If vdev_validate() returns failure (indicated by 1657 * EBADF), it indicates that one of the vdevs indicates 1658 * that the pool has been exported or destroyed. If 1659 * this is the case, the config cache is out of sync and 1660 * we should remove the pool from the namespace. 1661 */ 1662 spa_unload(spa); 1663 spa_deactivate(spa); 1664 spa_config_sync(spa, B_TRUE, B_TRUE); 1665 spa_remove(spa); 1666 if (locked) 1667 mutex_exit(&spa_namespace_lock); 1668 return (ENOENT); 1669 } 1670 1671 if (error) { 1672 /* 1673 * We can't open the pool, but we still have useful 1674 * information: the state of each vdev after the 1675 * attempted vdev_open(). Return this to the user. 1676 */ 1677 if (config != NULL && spa->spa_root_vdev != NULL) 1678 *config = spa_config_generate(spa, NULL, -1ULL, 1679 B_TRUE); 1680 spa_unload(spa); 1681 spa_deactivate(spa); 1682 spa->spa_last_open_failed = B_TRUE; 1683 if (locked) 1684 mutex_exit(&spa_namespace_lock); 1685 *spapp = NULL; 1686 return (error); 1687 } else { 1688 spa->spa_last_open_failed = B_FALSE; 1689 } 1690 } 1691 1692 spa_open_ref(spa, tag); 1693 1694 if (locked) 1695 mutex_exit(&spa_namespace_lock); 1696 1697 *spapp = spa; 1698 1699 if (config != NULL) 1700 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1701 1702 return (0); 1703 } 1704 1705 int 1706 spa_open(const char *name, spa_t **spapp, void *tag) 1707 { 1708 return (spa_open_common(name, spapp, tag, NULL)); 1709 } 1710 1711 /* 1712 * Lookup the given spa_t, incrementing the inject count in the process, 1713 * preventing it from being exported or destroyed. 1714 */ 1715 spa_t * 1716 spa_inject_addref(char *name) 1717 { 1718 spa_t *spa; 1719 1720 mutex_enter(&spa_namespace_lock); 1721 if ((spa = spa_lookup(name)) == NULL) { 1722 mutex_exit(&spa_namespace_lock); 1723 return (NULL); 1724 } 1725 spa->spa_inject_ref++; 1726 mutex_exit(&spa_namespace_lock); 1727 1728 return (spa); 1729 } 1730 1731 void 1732 spa_inject_delref(spa_t *spa) 1733 { 1734 mutex_enter(&spa_namespace_lock); 1735 spa->spa_inject_ref--; 1736 mutex_exit(&spa_namespace_lock); 1737 } 1738 1739 /* 1740 * Add spares device information to the nvlist. 1741 */ 1742 static void 1743 spa_add_spares(spa_t *spa, nvlist_t *config) 1744 { 1745 nvlist_t **spares; 1746 uint_t i, nspares; 1747 nvlist_t *nvroot; 1748 uint64_t guid; 1749 vdev_stat_t *vs; 1750 uint_t vsc; 1751 uint64_t pool; 1752 1753 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1754 1755 if (spa->spa_spares.sav_count == 0) 1756 return; 1757 1758 VERIFY(nvlist_lookup_nvlist(config, 1759 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1760 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1761 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1762 if (nspares != 0) { 1763 VERIFY(nvlist_add_nvlist_array(nvroot, 1764 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1765 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1766 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1767 1768 /* 1769 * Go through and find any spares which have since been 1770 * repurposed as an active spare. If this is the case, update 1771 * their status appropriately. 1772 */ 1773 for (i = 0; i < nspares; i++) { 1774 VERIFY(nvlist_lookup_uint64(spares[i], 1775 ZPOOL_CONFIG_GUID, &guid) == 0); 1776 if (spa_spare_exists(guid, &pool, NULL) && 1777 pool != 0ULL) { 1778 VERIFY(nvlist_lookup_uint64_array( 1779 spares[i], ZPOOL_CONFIG_STATS, 1780 (uint64_t **)&vs, &vsc) == 0); 1781 vs->vs_state = VDEV_STATE_CANT_OPEN; 1782 vs->vs_aux = VDEV_AUX_SPARED; 1783 } 1784 } 1785 } 1786 } 1787 1788 /* 1789 * Add l2cache device information to the nvlist, including vdev stats. 1790 */ 1791 static void 1792 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1793 { 1794 nvlist_t **l2cache; 1795 uint_t i, j, nl2cache; 1796 nvlist_t *nvroot; 1797 uint64_t guid; 1798 vdev_t *vd; 1799 vdev_stat_t *vs; 1800 uint_t vsc; 1801 1802 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1803 1804 if (spa->spa_l2cache.sav_count == 0) 1805 return; 1806 1807 VERIFY(nvlist_lookup_nvlist(config, 1808 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1809 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1810 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1811 if (nl2cache != 0) { 1812 VERIFY(nvlist_add_nvlist_array(nvroot, 1813 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1814 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1815 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1816 1817 /* 1818 * Update level 2 cache device stats. 1819 */ 1820 1821 for (i = 0; i < nl2cache; i++) { 1822 VERIFY(nvlist_lookup_uint64(l2cache[i], 1823 ZPOOL_CONFIG_GUID, &guid) == 0); 1824 1825 vd = NULL; 1826 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1827 if (guid == 1828 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1829 vd = spa->spa_l2cache.sav_vdevs[j]; 1830 break; 1831 } 1832 } 1833 ASSERT(vd != NULL); 1834 1835 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1836 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1837 vdev_get_stats(vd, vs); 1838 } 1839 } 1840 } 1841 1842 int 1843 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1844 { 1845 int error; 1846 spa_t *spa; 1847 1848 *config = NULL; 1849 error = spa_open_common(name, &spa, FTAG, config); 1850 1851 if (spa != NULL) { 1852 /* 1853 * This still leaves a window of inconsistency where the spares 1854 * or l2cache devices could change and the config would be 1855 * self-inconsistent. 1856 */ 1857 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1858 1859 if (*config != NULL) { 1860 VERIFY(nvlist_add_uint64(*config, 1861 ZPOOL_CONFIG_ERRCOUNT, 1862 spa_get_errlog_size(spa)) == 0); 1863 1864 if (spa_suspended(spa)) 1865 VERIFY(nvlist_add_uint64(*config, 1866 ZPOOL_CONFIG_SUSPENDED, 1867 spa->spa_failmode) == 0); 1868 1869 spa_add_spares(spa, *config); 1870 spa_add_l2cache(spa, *config); 1871 } 1872 } 1873 1874 /* 1875 * We want to get the alternate root even for faulted pools, so we cheat 1876 * and call spa_lookup() directly. 1877 */ 1878 if (altroot) { 1879 if (spa == NULL) { 1880 mutex_enter(&spa_namespace_lock); 1881 spa = spa_lookup(name); 1882 if (spa) 1883 spa_altroot(spa, altroot, buflen); 1884 else 1885 altroot[0] = '\0'; 1886 spa = NULL; 1887 mutex_exit(&spa_namespace_lock); 1888 } else { 1889 spa_altroot(spa, altroot, buflen); 1890 } 1891 } 1892 1893 if (spa != NULL) { 1894 spa_config_exit(spa, SCL_CONFIG, FTAG); 1895 spa_close(spa, FTAG); 1896 } 1897 1898 return (error); 1899 } 1900 1901 /* 1902 * Validate that the auxiliary device array is well formed. We must have an 1903 * array of nvlists, each which describes a valid leaf vdev. If this is an 1904 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1905 * specified, as long as they are well-formed. 1906 */ 1907 static int 1908 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1909 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1910 vdev_labeltype_t label) 1911 { 1912 nvlist_t **dev; 1913 uint_t i, ndev; 1914 vdev_t *vd; 1915 int error; 1916 1917 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1918 1919 /* 1920 * It's acceptable to have no devs specified. 1921 */ 1922 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1923 return (0); 1924 1925 if (ndev == 0) 1926 return (EINVAL); 1927 1928 /* 1929 * Make sure the pool is formatted with a version that supports this 1930 * device type. 1931 */ 1932 if (spa_version(spa) < version) 1933 return (ENOTSUP); 1934 1935 /* 1936 * Set the pending device list so we correctly handle device in-use 1937 * checking. 1938 */ 1939 sav->sav_pending = dev; 1940 sav->sav_npending = ndev; 1941 1942 for (i = 0; i < ndev; i++) { 1943 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1944 mode)) != 0) 1945 goto out; 1946 1947 if (!vd->vdev_ops->vdev_op_leaf) { 1948 vdev_free(vd); 1949 error = EINVAL; 1950 goto out; 1951 } 1952 1953 /* 1954 * The L2ARC currently only supports disk devices in 1955 * kernel context. For user-level testing, we allow it. 1956 */ 1957 #ifdef _KERNEL 1958 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1959 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1960 error = ENOTBLK; 1961 goto out; 1962 } 1963 #endif 1964 vd->vdev_top = vd; 1965 1966 if ((error = vdev_open(vd)) == 0 && 1967 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1968 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1969 vd->vdev_guid) == 0); 1970 } 1971 1972 vdev_free(vd); 1973 1974 if (error && 1975 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1976 goto out; 1977 else 1978 error = 0; 1979 } 1980 1981 out: 1982 sav->sav_pending = NULL; 1983 sav->sav_npending = 0; 1984 return (error); 1985 } 1986 1987 static int 1988 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1989 { 1990 int error; 1991 1992 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1993 1994 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1995 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 1996 VDEV_LABEL_SPARE)) != 0) { 1997 return (error); 1998 } 1999 2000 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2001 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2002 VDEV_LABEL_L2CACHE)); 2003 } 2004 2005 static void 2006 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2007 const char *config) 2008 { 2009 int i; 2010 2011 if (sav->sav_config != NULL) { 2012 nvlist_t **olddevs; 2013 uint_t oldndevs; 2014 nvlist_t **newdevs; 2015 2016 /* 2017 * Generate new dev list by concatentating with the 2018 * current dev list. 2019 */ 2020 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2021 &olddevs, &oldndevs) == 0); 2022 2023 newdevs = kmem_alloc(sizeof (void *) * 2024 (ndevs + oldndevs), KM_SLEEP); 2025 for (i = 0; i < oldndevs; i++) 2026 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2027 KM_SLEEP) == 0); 2028 for (i = 0; i < ndevs; i++) 2029 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2030 KM_SLEEP) == 0); 2031 2032 VERIFY(nvlist_remove(sav->sav_config, config, 2033 DATA_TYPE_NVLIST_ARRAY) == 0); 2034 2035 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2036 config, newdevs, ndevs + oldndevs) == 0); 2037 for (i = 0; i < oldndevs + ndevs; i++) 2038 nvlist_free(newdevs[i]); 2039 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2040 } else { 2041 /* 2042 * Generate a new dev list. 2043 */ 2044 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2045 KM_SLEEP) == 0); 2046 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2047 devs, ndevs) == 0); 2048 } 2049 } 2050 2051 /* 2052 * Stop and drop level 2 ARC devices 2053 */ 2054 void 2055 spa_l2cache_drop(spa_t *spa) 2056 { 2057 vdev_t *vd; 2058 int i; 2059 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2060 2061 for (i = 0; i < sav->sav_count; i++) { 2062 uint64_t pool; 2063 2064 vd = sav->sav_vdevs[i]; 2065 ASSERT(vd != NULL); 2066 2067 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2068 pool != 0ULL && l2arc_vdev_present(vd)) 2069 l2arc_remove_vdev(vd); 2070 if (vd->vdev_isl2cache) 2071 spa_l2cache_remove(vd); 2072 vdev_clear_stats(vd); 2073 (void) vdev_close(vd); 2074 } 2075 } 2076 2077 /* 2078 * Pool Creation 2079 */ 2080 int 2081 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2082 const char *history_str, nvlist_t *zplprops) 2083 { 2084 spa_t *spa; 2085 char *altroot = NULL; 2086 vdev_t *rvd; 2087 dsl_pool_t *dp; 2088 dmu_tx_t *tx; 2089 int error = 0; 2090 uint64_t txg = TXG_INITIAL; 2091 nvlist_t **spares, **l2cache; 2092 uint_t nspares, nl2cache; 2093 uint64_t version; 2094 2095 /* 2096 * If this pool already exists, return failure. 2097 */ 2098 mutex_enter(&spa_namespace_lock); 2099 if (spa_lookup(pool) != NULL) { 2100 mutex_exit(&spa_namespace_lock); 2101 return (EEXIST); 2102 } 2103 2104 /* 2105 * Allocate a new spa_t structure. 2106 */ 2107 (void) nvlist_lookup_string(props, 2108 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2109 spa = spa_add(pool, altroot); 2110 spa_activate(spa, spa_mode_global); 2111 2112 spa->spa_uberblock.ub_txg = txg - 1; 2113 2114 if (props && (error = spa_prop_validate(spa, props))) { 2115 spa_deactivate(spa); 2116 spa_remove(spa); 2117 mutex_exit(&spa_namespace_lock); 2118 return (error); 2119 } 2120 2121 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2122 &version) != 0) 2123 version = SPA_VERSION; 2124 ASSERT(version <= SPA_VERSION); 2125 spa->spa_uberblock.ub_version = version; 2126 spa->spa_ubsync = spa->spa_uberblock; 2127 2128 /* 2129 * Create "The Godfather" zio to hold all async IOs 2130 */ 2131 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2132 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2133 2134 /* 2135 * Create the root vdev. 2136 */ 2137 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2138 2139 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2140 2141 ASSERT(error != 0 || rvd != NULL); 2142 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2143 2144 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2145 error = EINVAL; 2146 2147 if (error == 0 && 2148 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2149 (error = spa_validate_aux(spa, nvroot, txg, 2150 VDEV_ALLOC_ADD)) == 0) { 2151 for (int c = 0; c < rvd->vdev_children; c++) { 2152 vdev_metaslab_set_size(rvd->vdev_child[c]); 2153 vdev_expand(rvd->vdev_child[c], txg); 2154 } 2155 } 2156 2157 spa_config_exit(spa, SCL_ALL, FTAG); 2158 2159 if (error != 0) { 2160 spa_unload(spa); 2161 spa_deactivate(spa); 2162 spa_remove(spa); 2163 mutex_exit(&spa_namespace_lock); 2164 return (error); 2165 } 2166 2167 /* 2168 * Get the list of spares, if specified. 2169 */ 2170 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2171 &spares, &nspares) == 0) { 2172 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2173 KM_SLEEP) == 0); 2174 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2175 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2177 spa_load_spares(spa); 2178 spa_config_exit(spa, SCL_ALL, FTAG); 2179 spa->spa_spares.sav_sync = B_TRUE; 2180 } 2181 2182 /* 2183 * Get the list of level 2 cache devices, if specified. 2184 */ 2185 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2186 &l2cache, &nl2cache) == 0) { 2187 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2188 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2189 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2190 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2191 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2192 spa_load_l2cache(spa); 2193 spa_config_exit(spa, SCL_ALL, FTAG); 2194 spa->spa_l2cache.sav_sync = B_TRUE; 2195 } 2196 2197 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2198 spa->spa_meta_objset = dp->dp_meta_objset; 2199 2200 tx = dmu_tx_create_assigned(dp, txg); 2201 2202 /* 2203 * Create the pool config object. 2204 */ 2205 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2206 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2207 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2208 2209 if (zap_add(spa->spa_meta_objset, 2210 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2211 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2212 cmn_err(CE_PANIC, "failed to add pool config"); 2213 } 2214 2215 /* Newly created pools with the right version are always deflated. */ 2216 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2217 spa->spa_deflate = TRUE; 2218 if (zap_add(spa->spa_meta_objset, 2219 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2220 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2221 cmn_err(CE_PANIC, "failed to add deflate"); 2222 } 2223 } 2224 2225 /* 2226 * Create the deferred-free bplist object. Turn off compression 2227 * because sync-to-convergence takes longer if the blocksize 2228 * keeps changing. 2229 */ 2230 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 2231 1 << 14, tx); 2232 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 2233 ZIO_COMPRESS_OFF, tx); 2234 2235 if (zap_add(spa->spa_meta_objset, 2236 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2237 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 2238 cmn_err(CE_PANIC, "failed to add bplist"); 2239 } 2240 2241 /* 2242 * Create the pool's history object. 2243 */ 2244 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2245 spa_history_create_obj(spa, tx); 2246 2247 /* 2248 * Set pool properties. 2249 */ 2250 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2251 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2252 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2253 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2254 if (props != NULL) { 2255 spa_configfile_set(spa, props, B_FALSE); 2256 spa_sync_props(spa, props, CRED(), tx); 2257 } 2258 2259 dmu_tx_commit(tx); 2260 2261 spa->spa_sync_on = B_TRUE; 2262 txg_sync_start(spa->spa_dsl_pool); 2263 2264 /* 2265 * We explicitly wait for the first transaction to complete so that our 2266 * bean counters are appropriately updated. 2267 */ 2268 txg_wait_synced(spa->spa_dsl_pool, txg); 2269 2270 spa_config_sync(spa, B_FALSE, B_TRUE); 2271 2272 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2273 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2274 spa_history_log_version(spa, LOG_POOL_CREATE); 2275 2276 spa->spa_minref = refcount_count(&spa->spa_refcount); 2277 2278 mutex_exit(&spa_namespace_lock); 2279 2280 return (0); 2281 } 2282 2283 #ifdef _KERNEL 2284 /* 2285 * Get the root pool information from the root disk, then import the root pool 2286 * during the system boot up time. 2287 */ 2288 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2289 2290 static nvlist_t * 2291 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2292 { 2293 nvlist_t *config; 2294 nvlist_t *nvtop, *nvroot; 2295 uint64_t pgid; 2296 2297 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2298 return (NULL); 2299 2300 /* 2301 * Add this top-level vdev to the child array. 2302 */ 2303 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2304 &nvtop) == 0); 2305 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2306 &pgid) == 0); 2307 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2308 2309 /* 2310 * Put this pool's top-level vdevs into a root vdev. 2311 */ 2312 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2313 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2314 VDEV_TYPE_ROOT) == 0); 2315 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2316 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2317 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2318 &nvtop, 1) == 0); 2319 2320 /* 2321 * Replace the existing vdev_tree with the new root vdev in 2322 * this pool's configuration (remove the old, add the new). 2323 */ 2324 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2325 nvlist_free(nvroot); 2326 return (config); 2327 } 2328 2329 /* 2330 * Walk the vdev tree and see if we can find a device with "better" 2331 * configuration. A configuration is "better" if the label on that 2332 * device has a more recent txg. 2333 */ 2334 static void 2335 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2336 { 2337 for (int c = 0; c < vd->vdev_children; c++) 2338 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2339 2340 if (vd->vdev_ops->vdev_op_leaf) { 2341 nvlist_t *label; 2342 uint64_t label_txg; 2343 2344 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2345 &label) != 0) 2346 return; 2347 2348 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2349 &label_txg) == 0); 2350 2351 /* 2352 * Do we have a better boot device? 2353 */ 2354 if (label_txg > *txg) { 2355 *txg = label_txg; 2356 *avd = vd; 2357 } 2358 nvlist_free(label); 2359 } 2360 } 2361 2362 /* 2363 * Import a root pool. 2364 * 2365 * For x86. devpath_list will consist of devid and/or physpath name of 2366 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2367 * The GRUB "findroot" command will return the vdev we should boot. 2368 * 2369 * For Sparc, devpath_list consists the physpath name of the booting device 2370 * no matter the rootpool is a single device pool or a mirrored pool. 2371 * e.g. 2372 * "/pci@1f,0/ide@d/disk@0,0:a" 2373 */ 2374 int 2375 spa_import_rootpool(char *devpath, char *devid) 2376 { 2377 spa_t *spa; 2378 vdev_t *rvd, *bvd, *avd = NULL; 2379 nvlist_t *config, *nvtop; 2380 uint64_t guid, txg; 2381 char *pname; 2382 int error; 2383 2384 /* 2385 * Read the label from the boot device and generate a configuration. 2386 */ 2387 if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) { 2388 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 2389 devpath); 2390 return (EIO); 2391 } 2392 2393 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 2394 &pname) == 0); 2395 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2396 2397 mutex_enter(&spa_namespace_lock); 2398 if ((spa = spa_lookup(pname)) != NULL) { 2399 /* 2400 * Remove the existing root pool from the namespace so that we 2401 * can replace it with the correct config we just read in. 2402 */ 2403 spa_remove(spa); 2404 } 2405 2406 spa = spa_add(pname, NULL); 2407 spa->spa_is_root = B_TRUE; 2408 2409 /* 2410 * Build up a vdev tree based on the boot device's label config. 2411 */ 2412 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2413 &nvtop) == 0); 2414 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2415 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 2416 VDEV_ALLOC_ROOTPOOL); 2417 spa_config_exit(spa, SCL_ALL, FTAG); 2418 if (error) { 2419 mutex_exit(&spa_namespace_lock); 2420 nvlist_free(config); 2421 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 2422 pname); 2423 return (error); 2424 } 2425 2426 /* 2427 * Get the boot vdev. 2428 */ 2429 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2430 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 2431 (u_longlong_t)guid); 2432 error = ENOENT; 2433 goto out; 2434 } 2435 2436 /* 2437 * Determine if there is a better boot device. 2438 */ 2439 avd = bvd; 2440 spa_alt_rootvdev(rvd, &avd, &txg); 2441 if (avd != bvd) { 2442 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 2443 "try booting from '%s'", avd->vdev_path); 2444 error = EINVAL; 2445 goto out; 2446 } 2447 2448 /* 2449 * If the boot device is part of a spare vdev then ensure that 2450 * we're booting off the active spare. 2451 */ 2452 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2453 !bvd->vdev_isspare) { 2454 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 2455 "try booting from '%s'", 2456 bvd->vdev_parent->vdev_child[1]->vdev_path); 2457 error = EINVAL; 2458 goto out; 2459 } 2460 2461 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2462 error = 0; 2463 spa_history_log_version(spa, LOG_POOL_IMPORT); 2464 out: 2465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2466 vdev_free(rvd); 2467 spa_config_exit(spa, SCL_ALL, FTAG); 2468 mutex_exit(&spa_namespace_lock); 2469 2470 nvlist_free(config); 2471 return (error); 2472 } 2473 2474 #endif 2475 2476 /* 2477 * Take a pool and insert it into the namespace as if it had been loaded at 2478 * boot. 2479 */ 2480 int 2481 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 2482 { 2483 spa_t *spa; 2484 char *altroot = NULL; 2485 2486 mutex_enter(&spa_namespace_lock); 2487 if (spa_lookup(pool) != NULL) { 2488 mutex_exit(&spa_namespace_lock); 2489 return (EEXIST); 2490 } 2491 2492 (void) nvlist_lookup_string(props, 2493 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2494 spa = spa_add(pool, altroot); 2495 2496 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 2497 2498 if (props != NULL) 2499 spa_configfile_set(spa, props, B_FALSE); 2500 2501 spa_config_sync(spa, B_FALSE, B_TRUE); 2502 2503 mutex_exit(&spa_namespace_lock); 2504 spa_history_log_version(spa, LOG_POOL_IMPORT); 2505 2506 return (0); 2507 } 2508 2509 /* 2510 * Import a non-root pool into the system. 2511 */ 2512 int 2513 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2514 { 2515 spa_t *spa; 2516 char *altroot = NULL; 2517 int error; 2518 nvlist_t *nvroot; 2519 nvlist_t **spares, **l2cache; 2520 uint_t nspares, nl2cache; 2521 2522 /* 2523 * If a pool with this name exists, return failure. 2524 */ 2525 mutex_enter(&spa_namespace_lock); 2526 if ((spa = spa_lookup(pool)) != NULL) { 2527 mutex_exit(&spa_namespace_lock); 2528 return (EEXIST); 2529 } 2530 2531 /* 2532 * Create and initialize the spa structure. 2533 */ 2534 (void) nvlist_lookup_string(props, 2535 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2536 spa = spa_add(pool, altroot); 2537 spa_activate(spa, spa_mode_global); 2538 2539 /* 2540 * Don't start async tasks until we know everything is healthy. 2541 */ 2542 spa_async_suspend(spa); 2543 2544 /* 2545 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 2546 * because the user-supplied config is actually the one to trust when 2547 * doing an import. 2548 */ 2549 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 2550 2551 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2552 /* 2553 * Toss any existing sparelist, as it doesn't have any validity 2554 * anymore, and conflicts with spa_has_spare(). 2555 */ 2556 if (spa->spa_spares.sav_config) { 2557 nvlist_free(spa->spa_spares.sav_config); 2558 spa->spa_spares.sav_config = NULL; 2559 spa_load_spares(spa); 2560 } 2561 if (spa->spa_l2cache.sav_config) { 2562 nvlist_free(spa->spa_l2cache.sav_config); 2563 spa->spa_l2cache.sav_config = NULL; 2564 spa_load_l2cache(spa); 2565 } 2566 2567 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2568 &nvroot) == 0); 2569 if (error == 0) 2570 error = spa_validate_aux(spa, nvroot, -1ULL, 2571 VDEV_ALLOC_SPARE); 2572 if (error == 0) 2573 error = spa_validate_aux(spa, nvroot, -1ULL, 2574 VDEV_ALLOC_L2CACHE); 2575 spa_config_exit(spa, SCL_ALL, FTAG); 2576 2577 if (props != NULL) 2578 spa_configfile_set(spa, props, B_FALSE); 2579 2580 if (error != 0 || (props && spa_writeable(spa) && 2581 (error = spa_prop_set(spa, props)))) { 2582 spa_unload(spa); 2583 spa_deactivate(spa); 2584 spa_remove(spa); 2585 mutex_exit(&spa_namespace_lock); 2586 return (error); 2587 } 2588 2589 spa_async_resume(spa); 2590 2591 /* 2592 * Override any spares and level 2 cache devices as specified by 2593 * the user, as these may have correct device names/devids, etc. 2594 */ 2595 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2596 &spares, &nspares) == 0) { 2597 if (spa->spa_spares.sav_config) 2598 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2599 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2600 else 2601 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2602 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2603 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2604 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2605 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2606 spa_load_spares(spa); 2607 spa_config_exit(spa, SCL_ALL, FTAG); 2608 spa->spa_spares.sav_sync = B_TRUE; 2609 } 2610 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2611 &l2cache, &nl2cache) == 0) { 2612 if (spa->spa_l2cache.sav_config) 2613 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2614 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2615 else 2616 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2617 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2618 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2619 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2620 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2621 spa_load_l2cache(spa); 2622 spa_config_exit(spa, SCL_ALL, FTAG); 2623 spa->spa_l2cache.sav_sync = B_TRUE; 2624 } 2625 2626 if (spa_writeable(spa)) { 2627 /* 2628 * Update the config cache to include the newly-imported pool. 2629 */ 2630 spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE); 2631 } 2632 2633 /* 2634 * It's possible that the pool was expanded while it was exported. 2635 * We kick off an async task to handle this for us. 2636 */ 2637 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 2638 2639 mutex_exit(&spa_namespace_lock); 2640 spa_history_log_version(spa, LOG_POOL_IMPORT); 2641 2642 return (0); 2643 } 2644 2645 2646 /* 2647 * This (illegal) pool name is used when temporarily importing a spa_t in order 2648 * to get the vdev stats associated with the imported devices. 2649 */ 2650 #define TRYIMPORT_NAME "$import" 2651 2652 nvlist_t * 2653 spa_tryimport(nvlist_t *tryconfig) 2654 { 2655 nvlist_t *config = NULL; 2656 char *poolname; 2657 spa_t *spa; 2658 uint64_t state; 2659 int error; 2660 2661 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2662 return (NULL); 2663 2664 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2665 return (NULL); 2666 2667 /* 2668 * Create and initialize the spa structure. 2669 */ 2670 mutex_enter(&spa_namespace_lock); 2671 spa = spa_add(TRYIMPORT_NAME, NULL); 2672 spa_activate(spa, FREAD); 2673 2674 /* 2675 * Pass off the heavy lifting to spa_load(). 2676 * Pass TRUE for mosconfig because the user-supplied config 2677 * is actually the one to trust when doing an import. 2678 */ 2679 error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2680 2681 /* 2682 * If 'tryconfig' was at least parsable, return the current config. 2683 */ 2684 if (spa->spa_root_vdev != NULL) { 2685 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2686 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2687 poolname) == 0); 2688 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2689 state) == 0); 2690 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2691 spa->spa_uberblock.ub_timestamp) == 0); 2692 2693 /* 2694 * If the bootfs property exists on this pool then we 2695 * copy it out so that external consumers can tell which 2696 * pools are bootable. 2697 */ 2698 if ((!error || error == EEXIST) && spa->spa_bootfs) { 2699 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2700 2701 /* 2702 * We have to play games with the name since the 2703 * pool was opened as TRYIMPORT_NAME. 2704 */ 2705 if (dsl_dsobj_to_dsname(spa_name(spa), 2706 spa->spa_bootfs, tmpname) == 0) { 2707 char *cp; 2708 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2709 2710 cp = strchr(tmpname, '/'); 2711 if (cp == NULL) { 2712 (void) strlcpy(dsname, tmpname, 2713 MAXPATHLEN); 2714 } else { 2715 (void) snprintf(dsname, MAXPATHLEN, 2716 "%s/%s", poolname, ++cp); 2717 } 2718 VERIFY(nvlist_add_string(config, 2719 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 2720 kmem_free(dsname, MAXPATHLEN); 2721 } 2722 kmem_free(tmpname, MAXPATHLEN); 2723 } 2724 2725 /* 2726 * Add the list of hot spares and level 2 cache devices. 2727 */ 2728 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2729 spa_add_spares(spa, config); 2730 spa_add_l2cache(spa, config); 2731 spa_config_exit(spa, SCL_CONFIG, FTAG); 2732 } 2733 2734 spa_unload(spa); 2735 spa_deactivate(spa); 2736 spa_remove(spa); 2737 mutex_exit(&spa_namespace_lock); 2738 2739 return (config); 2740 } 2741 2742 /* 2743 * Pool export/destroy 2744 * 2745 * The act of destroying or exporting a pool is very simple. We make sure there 2746 * is no more pending I/O and any references to the pool are gone. Then, we 2747 * update the pool state and sync all the labels to disk, removing the 2748 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 2749 * we don't sync the labels or remove the configuration cache. 2750 */ 2751 static int 2752 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 2753 boolean_t force, boolean_t hardforce) 2754 { 2755 spa_t *spa; 2756 2757 if (oldconfig) 2758 *oldconfig = NULL; 2759 2760 if (!(spa_mode_global & FWRITE)) 2761 return (EROFS); 2762 2763 mutex_enter(&spa_namespace_lock); 2764 if ((spa = spa_lookup(pool)) == NULL) { 2765 mutex_exit(&spa_namespace_lock); 2766 return (ENOENT); 2767 } 2768 2769 /* 2770 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2771 * reacquire the namespace lock, and see if we can export. 2772 */ 2773 spa_open_ref(spa, FTAG); 2774 mutex_exit(&spa_namespace_lock); 2775 spa_async_suspend(spa); 2776 mutex_enter(&spa_namespace_lock); 2777 spa_close(spa, FTAG); 2778 2779 /* 2780 * The pool will be in core if it's openable, 2781 * in which case we can modify its state. 2782 */ 2783 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2784 /* 2785 * Objsets may be open only because they're dirty, so we 2786 * have to force it to sync before checking spa_refcnt. 2787 */ 2788 txg_wait_synced(spa->spa_dsl_pool, 0); 2789 2790 /* 2791 * A pool cannot be exported or destroyed if there are active 2792 * references. If we are resetting a pool, allow references by 2793 * fault injection handlers. 2794 */ 2795 if (!spa_refcount_zero(spa) || 2796 (spa->spa_inject_ref != 0 && 2797 new_state != POOL_STATE_UNINITIALIZED)) { 2798 spa_async_resume(spa); 2799 mutex_exit(&spa_namespace_lock); 2800 return (EBUSY); 2801 } 2802 2803 /* 2804 * A pool cannot be exported if it has an active shared spare. 2805 * This is to prevent other pools stealing the active spare 2806 * from an exported pool. At user's own will, such pool can 2807 * be forcedly exported. 2808 */ 2809 if (!force && new_state == POOL_STATE_EXPORTED && 2810 spa_has_active_shared_spare(spa)) { 2811 spa_async_resume(spa); 2812 mutex_exit(&spa_namespace_lock); 2813 return (EXDEV); 2814 } 2815 2816 /* 2817 * We want this to be reflected on every label, 2818 * so mark them all dirty. spa_unload() will do the 2819 * final sync that pushes these changes out. 2820 */ 2821 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 2822 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2823 spa->spa_state = new_state; 2824 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2825 vdev_config_dirty(spa->spa_root_vdev); 2826 spa_config_exit(spa, SCL_ALL, FTAG); 2827 } 2828 } 2829 2830 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2831 2832 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2833 spa_unload(spa); 2834 spa_deactivate(spa); 2835 } 2836 2837 if (oldconfig && spa->spa_config) 2838 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2839 2840 if (new_state != POOL_STATE_UNINITIALIZED) { 2841 if (!hardforce) 2842 spa_config_sync(spa, B_TRUE, B_TRUE); 2843 spa_remove(spa); 2844 } 2845 mutex_exit(&spa_namespace_lock); 2846 2847 return (0); 2848 } 2849 2850 /* 2851 * Destroy a storage pool. 2852 */ 2853 int 2854 spa_destroy(char *pool) 2855 { 2856 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 2857 B_FALSE, B_FALSE)); 2858 } 2859 2860 /* 2861 * Export a storage pool. 2862 */ 2863 int 2864 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 2865 boolean_t hardforce) 2866 { 2867 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 2868 force, hardforce)); 2869 } 2870 2871 /* 2872 * Similar to spa_export(), this unloads the spa_t without actually removing it 2873 * from the namespace in any way. 2874 */ 2875 int 2876 spa_reset(char *pool) 2877 { 2878 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 2879 B_FALSE, B_FALSE)); 2880 } 2881 2882 /* 2883 * ========================================================================== 2884 * Device manipulation 2885 * ========================================================================== 2886 */ 2887 2888 /* 2889 * Add a device to a storage pool. 2890 */ 2891 int 2892 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2893 { 2894 uint64_t txg; 2895 int error; 2896 vdev_t *rvd = spa->spa_root_vdev; 2897 vdev_t *vd, *tvd; 2898 nvlist_t **spares, **l2cache; 2899 uint_t nspares, nl2cache; 2900 2901 txg = spa_vdev_enter(spa); 2902 2903 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2904 VDEV_ALLOC_ADD)) != 0) 2905 return (spa_vdev_exit(spa, NULL, txg, error)); 2906 2907 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 2908 2909 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2910 &nspares) != 0) 2911 nspares = 0; 2912 2913 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2914 &nl2cache) != 0) 2915 nl2cache = 0; 2916 2917 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 2918 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2919 2920 if (vd->vdev_children != 0 && 2921 (error = vdev_create(vd, txg, B_FALSE)) != 0) 2922 return (spa_vdev_exit(spa, vd, txg, error)); 2923 2924 /* 2925 * We must validate the spares and l2cache devices after checking the 2926 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2927 */ 2928 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 2929 return (spa_vdev_exit(spa, vd, txg, error)); 2930 2931 /* 2932 * Transfer each new top-level vdev from vd to rvd. 2933 */ 2934 for (int c = 0; c < vd->vdev_children; c++) { 2935 tvd = vd->vdev_child[c]; 2936 vdev_remove_child(vd, tvd); 2937 tvd->vdev_id = rvd->vdev_children; 2938 vdev_add_child(rvd, tvd); 2939 vdev_config_dirty(tvd); 2940 } 2941 2942 if (nspares != 0) { 2943 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2944 ZPOOL_CONFIG_SPARES); 2945 spa_load_spares(spa); 2946 spa->spa_spares.sav_sync = B_TRUE; 2947 } 2948 2949 if (nl2cache != 0) { 2950 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2951 ZPOOL_CONFIG_L2CACHE); 2952 spa_load_l2cache(spa); 2953 spa->spa_l2cache.sav_sync = B_TRUE; 2954 } 2955 2956 /* 2957 * We have to be careful when adding new vdevs to an existing pool. 2958 * If other threads start allocating from these vdevs before we 2959 * sync the config cache, and we lose power, then upon reboot we may 2960 * fail to open the pool because there are DVAs that the config cache 2961 * can't translate. Therefore, we first add the vdevs without 2962 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2963 * and then let spa_config_update() initialize the new metaslabs. 2964 * 2965 * spa_load() checks for added-but-not-initialized vdevs, so that 2966 * if we lose power at any point in this sequence, the remaining 2967 * steps will be completed the next time we load the pool. 2968 */ 2969 (void) spa_vdev_exit(spa, vd, txg, 0); 2970 2971 mutex_enter(&spa_namespace_lock); 2972 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2973 mutex_exit(&spa_namespace_lock); 2974 2975 return (0); 2976 } 2977 2978 /* 2979 * Attach a device to a mirror. The arguments are the path to any device 2980 * in the mirror, and the nvroot for the new device. If the path specifies 2981 * a device that is not mirrored, we automatically insert the mirror vdev. 2982 * 2983 * If 'replacing' is specified, the new device is intended to replace the 2984 * existing device; in this case the two devices are made into their own 2985 * mirror using the 'replacing' vdev, which is functionally identical to 2986 * the mirror vdev (it actually reuses all the same ops) but has a few 2987 * extra rules: you can't attach to it after it's been created, and upon 2988 * completion of resilvering, the first disk (the one being replaced) 2989 * is automatically detached. 2990 */ 2991 int 2992 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 2993 { 2994 uint64_t txg, open_txg; 2995 vdev_t *rvd = spa->spa_root_vdev; 2996 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 2997 vdev_ops_t *pvops; 2998 char *oldvdpath, *newvdpath; 2999 int newvd_isspare; 3000 int error; 3001 3002 txg = spa_vdev_enter(spa); 3003 3004 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3005 3006 if (oldvd == NULL) 3007 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3008 3009 if (!oldvd->vdev_ops->vdev_op_leaf) 3010 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3011 3012 pvd = oldvd->vdev_parent; 3013 3014 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3015 VDEV_ALLOC_ADD)) != 0) 3016 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3017 3018 if (newrootvd->vdev_children != 1) 3019 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3020 3021 newvd = newrootvd->vdev_child[0]; 3022 3023 if (!newvd->vdev_ops->vdev_op_leaf) 3024 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3025 3026 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3027 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3028 3029 /* 3030 * Spares can't replace logs 3031 */ 3032 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3033 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3034 3035 if (!replacing) { 3036 /* 3037 * For attach, the only allowable parent is a mirror or the root 3038 * vdev. 3039 */ 3040 if (pvd->vdev_ops != &vdev_mirror_ops && 3041 pvd->vdev_ops != &vdev_root_ops) 3042 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3043 3044 pvops = &vdev_mirror_ops; 3045 } else { 3046 /* 3047 * Active hot spares can only be replaced by inactive hot 3048 * spares. 3049 */ 3050 if (pvd->vdev_ops == &vdev_spare_ops && 3051 pvd->vdev_child[1] == oldvd && 3052 !spa_has_spare(spa, newvd->vdev_guid)) 3053 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3054 3055 /* 3056 * If the source is a hot spare, and the parent isn't already a 3057 * spare, then we want to create a new hot spare. Otherwise, we 3058 * want to create a replacing vdev. The user is not allowed to 3059 * attach to a spared vdev child unless the 'isspare' state is 3060 * the same (spare replaces spare, non-spare replaces 3061 * non-spare). 3062 */ 3063 if (pvd->vdev_ops == &vdev_replacing_ops) 3064 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3065 else if (pvd->vdev_ops == &vdev_spare_ops && 3066 newvd->vdev_isspare != oldvd->vdev_isspare) 3067 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3068 else if (pvd->vdev_ops != &vdev_spare_ops && 3069 newvd->vdev_isspare) 3070 pvops = &vdev_spare_ops; 3071 else 3072 pvops = &vdev_replacing_ops; 3073 } 3074 3075 /* 3076 * Make sure the new device is big enough. 3077 */ 3078 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3079 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3080 3081 /* 3082 * The new device cannot have a higher alignment requirement 3083 * than the top-level vdev. 3084 */ 3085 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3086 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3087 3088 /* 3089 * If this is an in-place replacement, update oldvd's path and devid 3090 * to make it distinguishable from newvd, and unopenable from now on. 3091 */ 3092 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3093 spa_strfree(oldvd->vdev_path); 3094 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3095 KM_SLEEP); 3096 (void) sprintf(oldvd->vdev_path, "%s/%s", 3097 newvd->vdev_path, "old"); 3098 if (oldvd->vdev_devid != NULL) { 3099 spa_strfree(oldvd->vdev_devid); 3100 oldvd->vdev_devid = NULL; 3101 } 3102 } 3103 3104 /* 3105 * If the parent is not a mirror, or if we're replacing, insert the new 3106 * mirror/replacing/spare vdev above oldvd. 3107 */ 3108 if (pvd->vdev_ops != pvops) 3109 pvd = vdev_add_parent(oldvd, pvops); 3110 3111 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3112 ASSERT(pvd->vdev_ops == pvops); 3113 ASSERT(oldvd->vdev_parent == pvd); 3114 3115 /* 3116 * Extract the new device from its root and add it to pvd. 3117 */ 3118 vdev_remove_child(newrootvd, newvd); 3119 newvd->vdev_id = pvd->vdev_children; 3120 vdev_add_child(pvd, newvd); 3121 3122 tvd = newvd->vdev_top; 3123 ASSERT(pvd->vdev_top == tvd); 3124 ASSERT(tvd->vdev_parent == rvd); 3125 3126 vdev_config_dirty(tvd); 3127 3128 /* 3129 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3130 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3131 */ 3132 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3133 3134 vdev_dtl_dirty(newvd, DTL_MISSING, 3135 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3136 3137 if (newvd->vdev_isspare) { 3138 spa_spare_activate(newvd); 3139 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3140 } 3141 3142 oldvdpath = spa_strdup(oldvd->vdev_path); 3143 newvdpath = spa_strdup(newvd->vdev_path); 3144 newvd_isspare = newvd->vdev_isspare; 3145 3146 /* 3147 * Mark newvd's DTL dirty in this txg. 3148 */ 3149 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3150 3151 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3152 3153 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3154 CRED(), "%s vdev=%s %s vdev=%s", 3155 replacing && newvd_isspare ? "spare in" : 3156 replacing ? "replace" : "attach", newvdpath, 3157 replacing ? "for" : "to", oldvdpath); 3158 3159 spa_strfree(oldvdpath); 3160 spa_strfree(newvdpath); 3161 3162 /* 3163 * Kick off a resilver to update newvd. 3164 */ 3165 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3166 3167 return (0); 3168 } 3169 3170 /* 3171 * Detach a device from a mirror or replacing vdev. 3172 * If 'replace_done' is specified, only detach if the parent 3173 * is a replacing vdev. 3174 */ 3175 int 3176 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3177 { 3178 uint64_t txg; 3179 int error; 3180 vdev_t *rvd = spa->spa_root_vdev; 3181 vdev_t *vd, *pvd, *cvd, *tvd; 3182 boolean_t unspare = B_FALSE; 3183 uint64_t unspare_guid; 3184 size_t len; 3185 3186 txg = spa_vdev_enter(spa); 3187 3188 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3189 3190 if (vd == NULL) 3191 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3192 3193 if (!vd->vdev_ops->vdev_op_leaf) 3194 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3195 3196 pvd = vd->vdev_parent; 3197 3198 /* 3199 * If the parent/child relationship is not as expected, don't do it. 3200 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3201 * vdev that's replacing B with C. The user's intent in replacing 3202 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3203 * the replace by detaching C, the expected behavior is to end up 3204 * M(A,B). But suppose that right after deciding to detach C, 3205 * the replacement of B completes. We would have M(A,C), and then 3206 * ask to detach C, which would leave us with just A -- not what 3207 * the user wanted. To prevent this, we make sure that the 3208 * parent/child relationship hasn't changed -- in this example, 3209 * that C's parent is still the replacing vdev R. 3210 */ 3211 if (pvd->vdev_guid != pguid && pguid != 0) 3212 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3213 3214 /* 3215 * If replace_done is specified, only remove this device if it's 3216 * the first child of a replacing vdev. For the 'spare' vdev, either 3217 * disk can be removed. 3218 */ 3219 if (replace_done) { 3220 if (pvd->vdev_ops == &vdev_replacing_ops) { 3221 if (vd->vdev_id != 0) 3222 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3223 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3224 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3225 } 3226 } 3227 3228 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3229 spa_version(spa) >= SPA_VERSION_SPARES); 3230 3231 /* 3232 * Only mirror, replacing, and spare vdevs support detach. 3233 */ 3234 if (pvd->vdev_ops != &vdev_replacing_ops && 3235 pvd->vdev_ops != &vdev_mirror_ops && 3236 pvd->vdev_ops != &vdev_spare_ops) 3237 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3238 3239 /* 3240 * If this device has the only valid copy of some data, 3241 * we cannot safely detach it. 3242 */ 3243 if (vdev_dtl_required(vd)) 3244 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3245 3246 ASSERT(pvd->vdev_children >= 2); 3247 3248 /* 3249 * If we are detaching the second disk from a replacing vdev, then 3250 * check to see if we changed the original vdev's path to have "/old" 3251 * at the end in spa_vdev_attach(). If so, undo that change now. 3252 */ 3253 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3254 pvd->vdev_child[0]->vdev_path != NULL && 3255 pvd->vdev_child[1]->vdev_path != NULL) { 3256 ASSERT(pvd->vdev_child[1] == vd); 3257 cvd = pvd->vdev_child[0]; 3258 len = strlen(vd->vdev_path); 3259 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3260 strcmp(cvd->vdev_path + len, "/old") == 0) { 3261 spa_strfree(cvd->vdev_path); 3262 cvd->vdev_path = spa_strdup(vd->vdev_path); 3263 } 3264 } 3265 3266 /* 3267 * If we are detaching the original disk from a spare, then it implies 3268 * that the spare should become a real disk, and be removed from the 3269 * active spare list for the pool. 3270 */ 3271 if (pvd->vdev_ops == &vdev_spare_ops && 3272 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3273 unspare = B_TRUE; 3274 3275 /* 3276 * Erase the disk labels so the disk can be used for other things. 3277 * This must be done after all other error cases are handled, 3278 * but before we disembowel vd (so we can still do I/O to it). 3279 * But if we can't do it, don't treat the error as fatal -- 3280 * it may be that the unwritability of the disk is the reason 3281 * it's being detached! 3282 */ 3283 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3284 3285 /* 3286 * Remove vd from its parent and compact the parent's children. 3287 */ 3288 vdev_remove_child(pvd, vd); 3289 vdev_compact_children(pvd); 3290 3291 /* 3292 * Remember one of the remaining children so we can get tvd below. 3293 */ 3294 cvd = pvd->vdev_child[0]; 3295 3296 /* 3297 * If we need to remove the remaining child from the list of hot spares, 3298 * do it now, marking the vdev as no longer a spare in the process. 3299 * We must do this before vdev_remove_parent(), because that can 3300 * change the GUID if it creates a new toplevel GUID. For a similar 3301 * reason, we must remove the spare now, in the same txg as the detach; 3302 * otherwise someone could attach a new sibling, change the GUID, and 3303 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3304 */ 3305 if (unspare) { 3306 ASSERT(cvd->vdev_isspare); 3307 spa_spare_remove(cvd); 3308 unspare_guid = cvd->vdev_guid; 3309 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3310 } 3311 3312 /* 3313 * If the parent mirror/replacing vdev only has one child, 3314 * the parent is no longer needed. Remove it from the tree. 3315 */ 3316 if (pvd->vdev_children == 1) 3317 vdev_remove_parent(cvd); 3318 3319 /* 3320 * We don't set tvd until now because the parent we just removed 3321 * may have been the previous top-level vdev. 3322 */ 3323 tvd = cvd->vdev_top; 3324 ASSERT(tvd->vdev_parent == rvd); 3325 3326 /* 3327 * Reevaluate the parent vdev state. 3328 */ 3329 vdev_propagate_state(cvd); 3330 3331 /* 3332 * If the 'autoexpand' property is set on the pool then automatically 3333 * try to expand the size of the pool. For example if the device we 3334 * just detached was smaller than the others, it may be possible to 3335 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3336 * first so that we can obtain the updated sizes of the leaf vdevs. 3337 */ 3338 if (spa->spa_autoexpand) { 3339 vdev_reopen(tvd); 3340 vdev_expand(tvd, txg); 3341 } 3342 3343 vdev_config_dirty(tvd); 3344 3345 /* 3346 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3347 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3348 * But first make sure we're not on any *other* txg's DTL list, to 3349 * prevent vd from being accessed after it's freed. 3350 */ 3351 for (int t = 0; t < TXG_SIZE; t++) 3352 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3353 vd->vdev_detached = B_TRUE; 3354 vdev_dirty(tvd, VDD_DTL, vd, txg); 3355 3356 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3357 3358 error = spa_vdev_exit(spa, vd, txg, 0); 3359 3360 /* 3361 * If this was the removal of the original device in a hot spare vdev, 3362 * then we want to go through and remove the device from the hot spare 3363 * list of every other pool. 3364 */ 3365 if (unspare) { 3366 spa_t *myspa = spa; 3367 spa = NULL; 3368 mutex_enter(&spa_namespace_lock); 3369 while ((spa = spa_next(spa)) != NULL) { 3370 if (spa->spa_state != POOL_STATE_ACTIVE) 3371 continue; 3372 if (spa == myspa) 3373 continue; 3374 spa_open_ref(spa, FTAG); 3375 mutex_exit(&spa_namespace_lock); 3376 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3377 mutex_enter(&spa_namespace_lock); 3378 spa_close(spa, FTAG); 3379 } 3380 mutex_exit(&spa_namespace_lock); 3381 } 3382 3383 return (error); 3384 } 3385 3386 static nvlist_t * 3387 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 3388 { 3389 for (int i = 0; i < count; i++) { 3390 uint64_t guid; 3391 3392 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 3393 &guid) == 0); 3394 3395 if (guid == target_guid) 3396 return (nvpp[i]); 3397 } 3398 3399 return (NULL); 3400 } 3401 3402 static void 3403 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 3404 nvlist_t *dev_to_remove) 3405 { 3406 nvlist_t **newdev = NULL; 3407 3408 if (count > 1) 3409 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 3410 3411 for (int i = 0, j = 0; i < count; i++) { 3412 if (dev[i] == dev_to_remove) 3413 continue; 3414 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 3415 } 3416 3417 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 3418 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 3419 3420 for (int i = 0; i < count - 1; i++) 3421 nvlist_free(newdev[i]); 3422 3423 if (count > 1) 3424 kmem_free(newdev, (count - 1) * sizeof (void *)); 3425 } 3426 3427 /* 3428 * Remove a device from the pool. Currently, this supports removing only hot 3429 * spares and level 2 ARC devices. 3430 */ 3431 int 3432 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3433 { 3434 vdev_t *vd; 3435 nvlist_t **spares, **l2cache, *nv; 3436 uint_t nspares, nl2cache; 3437 uint64_t txg = 0; 3438 int error = 0; 3439 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 3440 3441 if (!locked) 3442 txg = spa_vdev_enter(spa); 3443 3444 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3445 3446 if (spa->spa_spares.sav_vdevs != NULL && 3447 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3448 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 3449 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 3450 /* 3451 * Only remove the hot spare if it's not currently in use 3452 * in this pool. 3453 */ 3454 if (vd == NULL || unspare) { 3455 spa_vdev_remove_aux(spa->spa_spares.sav_config, 3456 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 3457 spa_load_spares(spa); 3458 spa->spa_spares.sav_sync = B_TRUE; 3459 } else { 3460 error = EBUSY; 3461 } 3462 } else if (spa->spa_l2cache.sav_vdevs != NULL && 3463 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3464 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 3465 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 3466 /* 3467 * Cache devices can always be removed. 3468 */ 3469 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 3470 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 3471 spa_load_l2cache(spa); 3472 spa->spa_l2cache.sav_sync = B_TRUE; 3473 } else if (vd != NULL) { 3474 /* 3475 * Normal vdevs cannot be removed (yet). 3476 */ 3477 error = ENOTSUP; 3478 } else { 3479 /* 3480 * There is no vdev of any kind with the specified guid. 3481 */ 3482 error = ENOENT; 3483 } 3484 3485 if (!locked) 3486 return (spa_vdev_exit(spa, NULL, txg, error)); 3487 3488 return (error); 3489 } 3490 3491 /* 3492 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3493 * current spared, so we can detach it. 3494 */ 3495 static vdev_t * 3496 spa_vdev_resilver_done_hunt(vdev_t *vd) 3497 { 3498 vdev_t *newvd, *oldvd; 3499 3500 for (int c = 0; c < vd->vdev_children; c++) { 3501 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3502 if (oldvd != NULL) 3503 return (oldvd); 3504 } 3505 3506 /* 3507 * Check for a completed replacement. 3508 */ 3509 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3510 oldvd = vd->vdev_child[0]; 3511 newvd = vd->vdev_child[1]; 3512 3513 if (vdev_dtl_empty(newvd, DTL_MISSING) && 3514 !vdev_dtl_required(oldvd)) 3515 return (oldvd); 3516 } 3517 3518 /* 3519 * Check for a completed resilver with the 'unspare' flag set. 3520 */ 3521 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3522 newvd = vd->vdev_child[0]; 3523 oldvd = vd->vdev_child[1]; 3524 3525 if (newvd->vdev_unspare && 3526 vdev_dtl_empty(newvd, DTL_MISSING) && 3527 !vdev_dtl_required(oldvd)) { 3528 newvd->vdev_unspare = 0; 3529 return (oldvd); 3530 } 3531 } 3532 3533 return (NULL); 3534 } 3535 3536 static void 3537 spa_vdev_resilver_done(spa_t *spa) 3538 { 3539 vdev_t *vd, *pvd, *ppvd; 3540 uint64_t guid, sguid, pguid, ppguid; 3541 3542 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3543 3544 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3545 pvd = vd->vdev_parent; 3546 ppvd = pvd->vdev_parent; 3547 guid = vd->vdev_guid; 3548 pguid = pvd->vdev_guid; 3549 ppguid = ppvd->vdev_guid; 3550 sguid = 0; 3551 /* 3552 * If we have just finished replacing a hot spared device, then 3553 * we need to detach the parent's first child (the original hot 3554 * spare) as well. 3555 */ 3556 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 3557 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3558 ASSERT(ppvd->vdev_children == 2); 3559 sguid = ppvd->vdev_child[1]->vdev_guid; 3560 } 3561 spa_config_exit(spa, SCL_ALL, FTAG); 3562 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 3563 return; 3564 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 3565 return; 3566 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3567 } 3568 3569 spa_config_exit(spa, SCL_ALL, FTAG); 3570 } 3571 3572 /* 3573 * Update the stored path or FRU for this vdev. Dirty the vdev configuration, 3574 * relying on spa_vdev_enter/exit() to synchronize the labels and cache. 3575 */ 3576 int 3577 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 3578 boolean_t ispath) 3579 { 3580 vdev_t *vd; 3581 uint64_t txg; 3582 3583 txg = spa_vdev_enter(spa); 3584 3585 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3586 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3587 3588 if (!vd->vdev_ops->vdev_op_leaf) 3589 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3590 3591 if (ispath) { 3592 spa_strfree(vd->vdev_path); 3593 vd->vdev_path = spa_strdup(value); 3594 } else { 3595 if (vd->vdev_fru != NULL) 3596 spa_strfree(vd->vdev_fru); 3597 vd->vdev_fru = spa_strdup(value); 3598 } 3599 3600 vdev_config_dirty(vd->vdev_top); 3601 3602 return (spa_vdev_exit(spa, NULL, txg, 0)); 3603 } 3604 3605 int 3606 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3607 { 3608 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 3609 } 3610 3611 int 3612 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 3613 { 3614 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 3615 } 3616 3617 /* 3618 * ========================================================================== 3619 * SPA Scrubbing 3620 * ========================================================================== 3621 */ 3622 3623 int 3624 spa_scrub(spa_t *spa, pool_scrub_type_t type) 3625 { 3626 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 3627 3628 if ((uint_t)type >= POOL_SCRUB_TYPES) 3629 return (ENOTSUP); 3630 3631 /* 3632 * If a resilver was requested, but there is no DTL on a 3633 * writeable leaf device, we have nothing to do. 3634 */ 3635 if (type == POOL_SCRUB_RESILVER && 3636 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 3637 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3638 return (0); 3639 } 3640 3641 if (type == POOL_SCRUB_EVERYTHING && 3642 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 3643 spa->spa_dsl_pool->dp_scrub_isresilver) 3644 return (EBUSY); 3645 3646 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 3647 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 3648 } else if (type == POOL_SCRUB_NONE) { 3649 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 3650 } else { 3651 return (EINVAL); 3652 } 3653 } 3654 3655 /* 3656 * ========================================================================== 3657 * SPA async task processing 3658 * ========================================================================== 3659 */ 3660 3661 static void 3662 spa_async_remove(spa_t *spa, vdev_t *vd) 3663 { 3664 if (vd->vdev_remove_wanted) { 3665 vd->vdev_remove_wanted = 0; 3666 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 3667 vdev_clear(spa, vd); 3668 vdev_state_dirty(vd->vdev_top); 3669 } 3670 3671 for (int c = 0; c < vd->vdev_children; c++) 3672 spa_async_remove(spa, vd->vdev_child[c]); 3673 } 3674 3675 static void 3676 spa_async_probe(spa_t *spa, vdev_t *vd) 3677 { 3678 if (vd->vdev_probe_wanted) { 3679 vd->vdev_probe_wanted = 0; 3680 vdev_reopen(vd); /* vdev_open() does the actual probe */ 3681 } 3682 3683 for (int c = 0; c < vd->vdev_children; c++) 3684 spa_async_probe(spa, vd->vdev_child[c]); 3685 } 3686 3687 static void 3688 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 3689 { 3690 sysevent_id_t eid; 3691 nvlist_t *attr; 3692 char *physpath; 3693 3694 if (!spa->spa_autoexpand) 3695 return; 3696 3697 for (int c = 0; c < vd->vdev_children; c++) { 3698 vdev_t *cvd = vd->vdev_child[c]; 3699 spa_async_autoexpand(spa, cvd); 3700 } 3701 3702 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 3703 return; 3704 3705 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3706 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 3707 3708 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3709 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 3710 3711 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 3712 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 3713 3714 nvlist_free(attr); 3715 kmem_free(physpath, MAXPATHLEN); 3716 } 3717 3718 static void 3719 spa_async_thread(spa_t *spa) 3720 { 3721 int tasks; 3722 3723 ASSERT(spa->spa_sync_on); 3724 3725 mutex_enter(&spa->spa_async_lock); 3726 tasks = spa->spa_async_tasks; 3727 spa->spa_async_tasks = 0; 3728 mutex_exit(&spa->spa_async_lock); 3729 3730 /* 3731 * See if the config needs to be updated. 3732 */ 3733 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3734 uint64_t oldsz, space_update; 3735 3736 mutex_enter(&spa_namespace_lock); 3737 oldsz = spa_get_space(spa); 3738 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3739 space_update = spa_get_space(spa) - oldsz; 3740 mutex_exit(&spa_namespace_lock); 3741 3742 /* 3743 * If the pool grew as a result of the config update, 3744 * then log an internal history event. 3745 */ 3746 if (space_update) { 3747 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 3748 spa, NULL, CRED(), 3749 "pool '%s' size: %llu(+%llu)", 3750 spa_name(spa), spa_get_space(spa), 3751 space_update); 3752 } 3753 } 3754 3755 /* 3756 * See if any devices need to be marked REMOVED. 3757 */ 3758 if (tasks & SPA_ASYNC_REMOVE) { 3759 spa_vdev_state_enter(spa); 3760 spa_async_remove(spa, spa->spa_root_vdev); 3761 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 3762 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 3763 for (int i = 0; i < spa->spa_spares.sav_count; i++) 3764 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 3765 (void) spa_vdev_state_exit(spa, NULL, 0); 3766 } 3767 3768 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 3769 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3770 spa_async_autoexpand(spa, spa->spa_root_vdev); 3771 spa_config_exit(spa, SCL_CONFIG, FTAG); 3772 } 3773 3774 /* 3775 * See if any devices need to be probed. 3776 */ 3777 if (tasks & SPA_ASYNC_PROBE) { 3778 spa_vdev_state_enter(spa); 3779 spa_async_probe(spa, spa->spa_root_vdev); 3780 (void) spa_vdev_state_exit(spa, NULL, 0); 3781 } 3782 3783 /* 3784 * If any devices are done replacing, detach them. 3785 */ 3786 if (tasks & SPA_ASYNC_RESILVER_DONE) 3787 spa_vdev_resilver_done(spa); 3788 3789 /* 3790 * Kick off a resilver. 3791 */ 3792 if (tasks & SPA_ASYNC_RESILVER) 3793 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 3794 3795 /* 3796 * Let the world know that we're done. 3797 */ 3798 mutex_enter(&spa->spa_async_lock); 3799 spa->spa_async_thread = NULL; 3800 cv_broadcast(&spa->spa_async_cv); 3801 mutex_exit(&spa->spa_async_lock); 3802 thread_exit(); 3803 } 3804 3805 void 3806 spa_async_suspend(spa_t *spa) 3807 { 3808 mutex_enter(&spa->spa_async_lock); 3809 spa->spa_async_suspended++; 3810 while (spa->spa_async_thread != NULL) 3811 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3812 mutex_exit(&spa->spa_async_lock); 3813 } 3814 3815 void 3816 spa_async_resume(spa_t *spa) 3817 { 3818 mutex_enter(&spa->spa_async_lock); 3819 ASSERT(spa->spa_async_suspended != 0); 3820 spa->spa_async_suspended--; 3821 mutex_exit(&spa->spa_async_lock); 3822 } 3823 3824 static void 3825 spa_async_dispatch(spa_t *spa) 3826 { 3827 mutex_enter(&spa->spa_async_lock); 3828 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3829 spa->spa_async_thread == NULL && 3830 rootdir != NULL && !vn_is_readonly(rootdir)) 3831 spa->spa_async_thread = thread_create(NULL, 0, 3832 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3833 mutex_exit(&spa->spa_async_lock); 3834 } 3835 3836 void 3837 spa_async_request(spa_t *spa, int task) 3838 { 3839 mutex_enter(&spa->spa_async_lock); 3840 spa->spa_async_tasks |= task; 3841 mutex_exit(&spa->spa_async_lock); 3842 } 3843 3844 /* 3845 * ========================================================================== 3846 * SPA syncing routines 3847 * ========================================================================== 3848 */ 3849 3850 static void 3851 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3852 { 3853 bplist_t *bpl = &spa->spa_sync_bplist; 3854 dmu_tx_t *tx; 3855 blkptr_t blk; 3856 uint64_t itor = 0; 3857 zio_t *zio; 3858 int error; 3859 uint8_t c = 1; 3860 3861 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 3862 3863 while (bplist_iterate(bpl, &itor, &blk) == 0) { 3864 ASSERT(blk.blk_birth < txg); 3865 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL, 3866 ZIO_FLAG_MUSTSUCCEED)); 3867 } 3868 3869 error = zio_wait(zio); 3870 ASSERT3U(error, ==, 0); 3871 3872 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3873 bplist_vacate(bpl, tx); 3874 3875 /* 3876 * Pre-dirty the first block so we sync to convergence faster. 3877 * (Usually only the first block is needed.) 3878 */ 3879 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3880 dmu_tx_commit(tx); 3881 } 3882 3883 static void 3884 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3885 { 3886 char *packed = NULL; 3887 size_t bufsize; 3888 size_t nvsize = 0; 3889 dmu_buf_t *db; 3890 3891 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3892 3893 /* 3894 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 3895 * information. This avoids the dbuf_will_dirty() path and 3896 * saves us a pre-read to get data we don't actually care about. 3897 */ 3898 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 3899 packed = kmem_alloc(bufsize, KM_SLEEP); 3900 3901 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3902 KM_SLEEP) == 0); 3903 bzero(packed + nvsize, bufsize - nvsize); 3904 3905 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 3906 3907 kmem_free(packed, bufsize); 3908 3909 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3910 dmu_buf_will_dirty(db, tx); 3911 *(uint64_t *)db->db_data = nvsize; 3912 dmu_buf_rele(db, FTAG); 3913 } 3914 3915 static void 3916 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3917 const char *config, const char *entry) 3918 { 3919 nvlist_t *nvroot; 3920 nvlist_t **list; 3921 int i; 3922 3923 if (!sav->sav_sync) 3924 return; 3925 3926 /* 3927 * Update the MOS nvlist describing the list of available devices. 3928 * spa_validate_aux() will have already made sure this nvlist is 3929 * valid and the vdevs are labeled appropriately. 3930 */ 3931 if (sav->sav_object == 0) { 3932 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3933 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3934 sizeof (uint64_t), tx); 3935 VERIFY(zap_update(spa->spa_meta_objset, 3936 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3937 &sav->sav_object, tx) == 0); 3938 } 3939 3940 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3941 if (sav->sav_count == 0) { 3942 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3943 } else { 3944 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3945 for (i = 0; i < sav->sav_count; i++) 3946 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3947 B_FALSE, B_FALSE, B_TRUE); 3948 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3949 sav->sav_count) == 0); 3950 for (i = 0; i < sav->sav_count; i++) 3951 nvlist_free(list[i]); 3952 kmem_free(list, sav->sav_count * sizeof (void *)); 3953 } 3954 3955 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3956 nvlist_free(nvroot); 3957 3958 sav->sav_sync = B_FALSE; 3959 } 3960 3961 static void 3962 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3963 { 3964 nvlist_t *config; 3965 3966 if (list_is_empty(&spa->spa_config_dirty_list)) 3967 return; 3968 3969 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3970 3971 config = spa_config_generate(spa, spa->spa_root_vdev, 3972 dmu_tx_get_txg(tx), B_FALSE); 3973 3974 spa_config_exit(spa, SCL_STATE, FTAG); 3975 3976 if (spa->spa_config_syncing) 3977 nvlist_free(spa->spa_config_syncing); 3978 spa->spa_config_syncing = config; 3979 3980 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 3981 } 3982 3983 /* 3984 * Set zpool properties. 3985 */ 3986 static void 3987 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 3988 { 3989 spa_t *spa = arg1; 3990 objset_t *mos = spa->spa_meta_objset; 3991 nvlist_t *nvp = arg2; 3992 nvpair_t *elem; 3993 uint64_t intval; 3994 char *strval; 3995 zpool_prop_t prop; 3996 const char *propname; 3997 zprop_type_t proptype; 3998 3999 mutex_enter(&spa->spa_props_lock); 4000 4001 elem = NULL; 4002 while ((elem = nvlist_next_nvpair(nvp, elem))) { 4003 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 4004 case ZPOOL_PROP_VERSION: 4005 /* 4006 * Only set version for non-zpool-creation cases 4007 * (set/import). spa_create() needs special care 4008 * for version setting. 4009 */ 4010 if (tx->tx_txg != TXG_INITIAL) { 4011 VERIFY(nvpair_value_uint64(elem, 4012 &intval) == 0); 4013 ASSERT(intval <= SPA_VERSION); 4014 ASSERT(intval >= spa_version(spa)); 4015 spa->spa_uberblock.ub_version = intval; 4016 vdev_config_dirty(spa->spa_root_vdev); 4017 } 4018 break; 4019 4020 case ZPOOL_PROP_ALTROOT: 4021 /* 4022 * 'altroot' is a non-persistent property. It should 4023 * have been set temporarily at creation or import time. 4024 */ 4025 ASSERT(spa->spa_root != NULL); 4026 break; 4027 4028 case ZPOOL_PROP_CACHEFILE: 4029 /* 4030 * 'cachefile' is also a non-persisitent property. 4031 */ 4032 break; 4033 default: 4034 /* 4035 * Set pool property values in the poolprops mos object. 4036 */ 4037 if (spa->spa_pool_props_object == 0) { 4038 objset_t *mos = spa->spa_meta_objset; 4039 4040 VERIFY((spa->spa_pool_props_object = 4041 zap_create(mos, DMU_OT_POOL_PROPS, 4042 DMU_OT_NONE, 0, tx)) > 0); 4043 4044 VERIFY(zap_update(mos, 4045 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 4046 8, 1, &spa->spa_pool_props_object, tx) 4047 == 0); 4048 } 4049 4050 /* normalize the property name */ 4051 propname = zpool_prop_to_name(prop); 4052 proptype = zpool_prop_get_type(prop); 4053 4054 if (nvpair_type(elem) == DATA_TYPE_STRING) { 4055 ASSERT(proptype == PROP_TYPE_STRING); 4056 VERIFY(nvpair_value_string(elem, &strval) == 0); 4057 VERIFY(zap_update(mos, 4058 spa->spa_pool_props_object, propname, 4059 1, strlen(strval) + 1, strval, tx) == 0); 4060 4061 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 4062 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 4063 4064 if (proptype == PROP_TYPE_INDEX) { 4065 const char *unused; 4066 VERIFY(zpool_prop_index_to_string( 4067 prop, intval, &unused) == 0); 4068 } 4069 VERIFY(zap_update(mos, 4070 spa->spa_pool_props_object, propname, 4071 8, 1, &intval, tx) == 0); 4072 } else { 4073 ASSERT(0); /* not allowed */ 4074 } 4075 4076 switch (prop) { 4077 case ZPOOL_PROP_DELEGATION: 4078 spa->spa_delegation = intval; 4079 break; 4080 case ZPOOL_PROP_BOOTFS: 4081 spa->spa_bootfs = intval; 4082 break; 4083 case ZPOOL_PROP_FAILUREMODE: 4084 spa->spa_failmode = intval; 4085 break; 4086 case ZPOOL_PROP_AUTOEXPAND: 4087 spa->spa_autoexpand = intval; 4088 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4089 break; 4090 default: 4091 break; 4092 } 4093 } 4094 4095 /* log internal history if this is not a zpool create */ 4096 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 4097 tx->tx_txg != TXG_INITIAL) { 4098 spa_history_internal_log(LOG_POOL_PROPSET, 4099 spa, tx, cr, "%s %lld %s", 4100 nvpair_name(elem), intval, spa_name(spa)); 4101 } 4102 } 4103 4104 mutex_exit(&spa->spa_props_lock); 4105 } 4106 4107 /* 4108 * Sync the specified transaction group. New blocks may be dirtied as 4109 * part of the process, so we iterate until it converges. 4110 */ 4111 void 4112 spa_sync(spa_t *spa, uint64_t txg) 4113 { 4114 dsl_pool_t *dp = spa->spa_dsl_pool; 4115 objset_t *mos = spa->spa_meta_objset; 4116 bplist_t *bpl = &spa->spa_sync_bplist; 4117 vdev_t *rvd = spa->spa_root_vdev; 4118 vdev_t *vd; 4119 dmu_tx_t *tx; 4120 int dirty_vdevs; 4121 int error; 4122 4123 /* 4124 * Lock out configuration changes. 4125 */ 4126 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4127 4128 spa->spa_syncing_txg = txg; 4129 spa->spa_sync_pass = 0; 4130 4131 /* 4132 * If there are any pending vdev state changes, convert them 4133 * into config changes that go out with this transaction group. 4134 */ 4135 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4136 while (list_head(&spa->spa_state_dirty_list) != NULL) { 4137 /* 4138 * We need the write lock here because, for aux vdevs, 4139 * calling vdev_config_dirty() modifies sav_config. 4140 * This is ugly and will become unnecessary when we 4141 * eliminate the aux vdev wart by integrating all vdevs 4142 * into the root vdev tree. 4143 */ 4144 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4145 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 4146 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 4147 vdev_state_clean(vd); 4148 vdev_config_dirty(vd); 4149 } 4150 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 4151 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 4152 } 4153 spa_config_exit(spa, SCL_STATE, FTAG); 4154 4155 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 4156 4157 tx = dmu_tx_create_assigned(dp, txg); 4158 4159 /* 4160 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 4161 * set spa_deflate if we have no raid-z vdevs. 4162 */ 4163 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 4164 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 4165 int i; 4166 4167 for (i = 0; i < rvd->vdev_children; i++) { 4168 vd = rvd->vdev_child[i]; 4169 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 4170 break; 4171 } 4172 if (i == rvd->vdev_children) { 4173 spa->spa_deflate = TRUE; 4174 VERIFY(0 == zap_add(spa->spa_meta_objset, 4175 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4176 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 4177 } 4178 } 4179 4180 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 4181 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 4182 dsl_pool_create_origin(dp, tx); 4183 4184 /* Keeping the origin open increases spa_minref */ 4185 spa->spa_minref += 3; 4186 } 4187 4188 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 4189 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 4190 dsl_pool_upgrade_clones(dp, tx); 4191 } 4192 4193 /* 4194 * If anything has changed in this txg, push the deferred frees 4195 * from the previous txg. If not, leave them alone so that we 4196 * don't generate work on an otherwise idle system. 4197 */ 4198 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 4199 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 4200 !txg_list_empty(&dp->dp_sync_tasks, txg)) 4201 spa_sync_deferred_frees(spa, txg); 4202 4203 /* 4204 * Iterate to convergence. 4205 */ 4206 do { 4207 spa->spa_sync_pass++; 4208 4209 spa_sync_config_object(spa, tx); 4210 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 4211 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 4212 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 4213 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 4214 spa_errlog_sync(spa, txg); 4215 dsl_pool_sync(dp, txg); 4216 4217 dirty_vdevs = 0; 4218 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 4219 vdev_sync(vd, txg); 4220 dirty_vdevs++; 4221 } 4222 4223 bplist_sync(bpl, tx); 4224 } while (dirty_vdevs); 4225 4226 bplist_close(bpl); 4227 4228 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 4229 4230 /* 4231 * Rewrite the vdev configuration (which includes the uberblock) 4232 * to commit the transaction group. 4233 * 4234 * If there are no dirty vdevs, we sync the uberblock to a few 4235 * random top-level vdevs that are known to be visible in the 4236 * config cache (see spa_vdev_add() for a complete description). 4237 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 4238 */ 4239 for (;;) { 4240 /* 4241 * We hold SCL_STATE to prevent vdev open/close/etc. 4242 * while we're attempting to write the vdev labels. 4243 */ 4244 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4245 4246 if (list_is_empty(&spa->spa_config_dirty_list)) { 4247 vdev_t *svd[SPA_DVAS_PER_BP]; 4248 int svdcount = 0; 4249 int children = rvd->vdev_children; 4250 int c0 = spa_get_random(children); 4251 4252 for (int c = 0; c < children; c++) { 4253 vd = rvd->vdev_child[(c0 + c) % children]; 4254 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4255 continue; 4256 svd[svdcount++] = vd; 4257 if (svdcount == SPA_DVAS_PER_BP) 4258 break; 4259 } 4260 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 4261 if (error != 0) 4262 error = vdev_config_sync(svd, svdcount, txg, 4263 B_TRUE); 4264 } else { 4265 error = vdev_config_sync(rvd->vdev_child, 4266 rvd->vdev_children, txg, B_FALSE); 4267 if (error != 0) 4268 error = vdev_config_sync(rvd->vdev_child, 4269 rvd->vdev_children, txg, B_TRUE); 4270 } 4271 4272 spa_config_exit(spa, SCL_STATE, FTAG); 4273 4274 if (error == 0) 4275 break; 4276 zio_suspend(spa, NULL); 4277 zio_resume_wait(spa); 4278 } 4279 dmu_tx_commit(tx); 4280 4281 /* 4282 * Clear the dirty config list. 4283 */ 4284 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 4285 vdev_config_clean(vd); 4286 4287 /* 4288 * Now that the new config has synced transactionally, 4289 * let it become visible to the config cache. 4290 */ 4291 if (spa->spa_config_syncing != NULL) { 4292 spa_config_set(spa, spa->spa_config_syncing); 4293 spa->spa_config_txg = txg; 4294 spa->spa_config_syncing = NULL; 4295 } 4296 4297 spa->spa_ubsync = spa->spa_uberblock; 4298 4299 /* 4300 * Clean up the ZIL records for the synced txg. 4301 */ 4302 dsl_pool_zil_clean(dp); 4303 4304 /* 4305 * Update usable space statistics. 4306 */ 4307 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4308 vdev_sync_done(vd, txg); 4309 4310 /* 4311 * It had better be the case that we didn't dirty anything 4312 * since vdev_config_sync(). 4313 */ 4314 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4315 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4316 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4317 ASSERT(bpl->bpl_queue == NULL); 4318 4319 spa_config_exit(spa, SCL_CONFIG, FTAG); 4320 4321 /* 4322 * If any async tasks have been requested, kick them off. 4323 */ 4324 spa_async_dispatch(spa); 4325 } 4326 4327 /* 4328 * Sync all pools. We don't want to hold the namespace lock across these 4329 * operations, so we take a reference on the spa_t and drop the lock during the 4330 * sync. 4331 */ 4332 void 4333 spa_sync_allpools(void) 4334 { 4335 spa_t *spa = NULL; 4336 mutex_enter(&spa_namespace_lock); 4337 while ((spa = spa_next(spa)) != NULL) { 4338 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 4339 continue; 4340 spa_open_ref(spa, FTAG); 4341 mutex_exit(&spa_namespace_lock); 4342 txg_wait_synced(spa_get_dsl(spa), 0); 4343 mutex_enter(&spa_namespace_lock); 4344 spa_close(spa, FTAG); 4345 } 4346 mutex_exit(&spa_namespace_lock); 4347 } 4348 4349 /* 4350 * ========================================================================== 4351 * Miscellaneous routines 4352 * ========================================================================== 4353 */ 4354 4355 /* 4356 * Remove all pools in the system. 4357 */ 4358 void 4359 spa_evict_all(void) 4360 { 4361 spa_t *spa; 4362 4363 /* 4364 * Remove all cached state. All pools should be closed now, 4365 * so every spa in the AVL tree should be unreferenced. 4366 */ 4367 mutex_enter(&spa_namespace_lock); 4368 while ((spa = spa_next(NULL)) != NULL) { 4369 /* 4370 * Stop async tasks. The async thread may need to detach 4371 * a device that's been replaced, which requires grabbing 4372 * spa_namespace_lock, so we must drop it here. 4373 */ 4374 spa_open_ref(spa, FTAG); 4375 mutex_exit(&spa_namespace_lock); 4376 spa_async_suspend(spa); 4377 mutex_enter(&spa_namespace_lock); 4378 spa_close(spa, FTAG); 4379 4380 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4381 spa_unload(spa); 4382 spa_deactivate(spa); 4383 } 4384 spa_remove(spa); 4385 } 4386 mutex_exit(&spa_namespace_lock); 4387 } 4388 4389 vdev_t * 4390 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 4391 { 4392 vdev_t *vd; 4393 int i; 4394 4395 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4396 return (vd); 4397 4398 if (aux) { 4399 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4400 vd = spa->spa_l2cache.sav_vdevs[i]; 4401 if (vd->vdev_guid == guid) 4402 return (vd); 4403 } 4404 4405 for (i = 0; i < spa->spa_spares.sav_count; i++) { 4406 vd = spa->spa_spares.sav_vdevs[i]; 4407 if (vd->vdev_guid == guid) 4408 return (vd); 4409 } 4410 } 4411 4412 return (NULL); 4413 } 4414 4415 void 4416 spa_upgrade(spa_t *spa, uint64_t version) 4417 { 4418 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4419 4420 /* 4421 * This should only be called for a non-faulted pool, and since a 4422 * future version would result in an unopenable pool, this shouldn't be 4423 * possible. 4424 */ 4425 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4426 ASSERT(version >= spa->spa_uberblock.ub_version); 4427 4428 spa->spa_uberblock.ub_version = version; 4429 vdev_config_dirty(spa->spa_root_vdev); 4430 4431 spa_config_exit(spa, SCL_ALL, FTAG); 4432 4433 txg_wait_synced(spa_get_dsl(spa), 0); 4434 } 4435 4436 boolean_t 4437 spa_has_spare(spa_t *spa, uint64_t guid) 4438 { 4439 int i; 4440 uint64_t spareguid; 4441 spa_aux_vdev_t *sav = &spa->spa_spares; 4442 4443 for (i = 0; i < sav->sav_count; i++) 4444 if (sav->sav_vdevs[i]->vdev_guid == guid) 4445 return (B_TRUE); 4446 4447 for (i = 0; i < sav->sav_npending; i++) { 4448 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4449 &spareguid) == 0 && spareguid == guid) 4450 return (B_TRUE); 4451 } 4452 4453 return (B_FALSE); 4454 } 4455 4456 /* 4457 * Check if a pool has an active shared spare device. 4458 * Note: reference count of an active spare is 2, as a spare and as a replace 4459 */ 4460 static boolean_t 4461 spa_has_active_shared_spare(spa_t *spa) 4462 { 4463 int i, refcnt; 4464 uint64_t pool; 4465 spa_aux_vdev_t *sav = &spa->spa_spares; 4466 4467 for (i = 0; i < sav->sav_count; i++) { 4468 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4469 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4470 refcnt > 2) 4471 return (B_TRUE); 4472 } 4473 4474 return (B_FALSE); 4475 } 4476 4477 /* 4478 * Post a sysevent corresponding to the given event. The 'name' must be one of 4479 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4480 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4481 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4482 * or zdb as real changes. 4483 */ 4484 void 4485 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4486 { 4487 #ifdef _KERNEL 4488 sysevent_t *ev; 4489 sysevent_attr_list_t *attr = NULL; 4490 sysevent_value_t value; 4491 sysevent_id_t eid; 4492 4493 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4494 SE_SLEEP); 4495 4496 value.value_type = SE_DATA_TYPE_STRING; 4497 value.value.sv_string = spa_name(spa); 4498 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4499 goto done; 4500 4501 value.value_type = SE_DATA_TYPE_UINT64; 4502 value.value.sv_uint64 = spa_guid(spa); 4503 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4504 goto done; 4505 4506 if (vd) { 4507 value.value_type = SE_DATA_TYPE_UINT64; 4508 value.value.sv_uint64 = vd->vdev_guid; 4509 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4510 SE_SLEEP) != 0) 4511 goto done; 4512 4513 if (vd->vdev_path) { 4514 value.value_type = SE_DATA_TYPE_STRING; 4515 value.value.sv_string = vd->vdev_path; 4516 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4517 &value, SE_SLEEP) != 0) 4518 goto done; 4519 } 4520 } 4521 4522 if (sysevent_attach_attributes(ev, attr) != 0) 4523 goto done; 4524 attr = NULL; 4525 4526 (void) log_sysevent(ev, SE_SLEEP, &eid); 4527 4528 done: 4529 if (attr) 4530 sysevent_free_attr(attr); 4531 sysevent_free(ev); 4532 #endif 4533 } 4534