1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 67 #ifdef _KERNEL 68 #include <sys/bootprops.h> 69 #include <sys/callb.h> 70 #include <sys/cpupart.h> 71 #include <sys/pool.h> 72 #include <sys/sysdc.h> 73 #include <sys/zone.h> 74 #endif /* _KERNEL */ 75 76 #include "zfs_prop.h" 77 #include "zfs_comutil.h" 78 79 typedef enum zti_modes { 80 zti_mode_fixed, /* value is # of threads (min 1) */ 81 zti_mode_online_percent, /* value is % of online CPUs */ 82 zti_mode_batch, /* cpu-intensive; value is ignored */ 83 zti_mode_null, /* don't create a taskq */ 84 zti_nmodes 85 } zti_modes_t; 86 87 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 89 #define ZTI_BATCH { zti_mode_batch, 0 } 90 #define ZTI_NULL { zti_mode_null, 0 } 91 92 #define ZTI_ONE ZTI_FIX(1) 93 94 typedef struct zio_taskq_info { 95 enum zti_modes zti_mode; 96 uint_t zti_value; 97 } zio_taskq_info_t; 98 99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 100 "issue", "issue_high", "intr", "intr_high" 101 }; 102 103 /* 104 * Define the taskq threads for the following I/O types: 105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 106 */ 107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 115 }; 116 117 static dsl_syncfunc_t spa_sync_version; 118 static dsl_syncfunc_t spa_sync_props; 119 static dsl_checkfunc_t spa_change_guid_check; 120 static dsl_syncfunc_t spa_change_guid_sync; 121 static boolean_t spa_has_active_shared_spare(spa_t *spa); 122 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 123 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 124 char **ereport); 125 static void spa_vdev_resilver_done(spa_t *spa); 126 127 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 128 id_t zio_taskq_psrset_bind = PS_NONE; 129 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 130 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 131 132 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 133 134 /* 135 * This (illegal) pool name is used when temporarily importing a spa_t in order 136 * to get the vdev stats associated with the imported devices. 137 */ 138 #define TRYIMPORT_NAME "$import" 139 140 /* 141 * ========================================================================== 142 * SPA properties routines 143 * ========================================================================== 144 */ 145 146 /* 147 * Add a (source=src, propname=propval) list to an nvlist. 148 */ 149 static void 150 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 151 uint64_t intval, zprop_source_t src) 152 { 153 const char *propname = zpool_prop_to_name(prop); 154 nvlist_t *propval; 155 156 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 157 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 158 159 if (strval != NULL) 160 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 161 else 162 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 163 164 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 165 nvlist_free(propval); 166 } 167 168 /* 169 * Get property values from the spa configuration. 170 */ 171 static void 172 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 173 { 174 vdev_t *rvd = spa->spa_root_vdev; 175 dsl_pool_t *pool = spa->spa_dsl_pool; 176 uint64_t size; 177 uint64_t alloc; 178 uint64_t space; 179 uint64_t cap, version; 180 zprop_source_t src = ZPROP_SRC_NONE; 181 spa_config_dirent_t *dp; 182 183 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 184 185 if (rvd != NULL) { 186 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 187 size = metaslab_class_get_space(spa_normal_class(spa)); 188 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 189 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 190 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 191 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 192 size - alloc, src); 193 194 space = 0; 195 for (int c = 0; c < rvd->vdev_children; c++) { 196 vdev_t *tvd = rvd->vdev_child[c]; 197 space += tvd->vdev_max_asize - tvd->vdev_asize; 198 } 199 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 200 src); 201 202 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 203 (spa_mode(spa) == FREAD), src); 204 205 cap = (size == 0) ? 0 : (alloc * 100 / size); 206 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 207 208 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 209 ddt_get_pool_dedup_ratio(spa), src); 210 211 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 212 rvd->vdev_state, src); 213 214 version = spa_version(spa); 215 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 216 src = ZPROP_SRC_DEFAULT; 217 else 218 src = ZPROP_SRC_LOCAL; 219 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 220 } 221 222 if (pool != NULL) { 223 dsl_dir_t *freedir = pool->dp_free_dir; 224 225 /* 226 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 227 * when opening pools before this version freedir will be NULL. 228 */ 229 if (freedir != NULL) { 230 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 231 freedir->dd_phys->dd_used_bytes, src); 232 } else { 233 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 234 NULL, 0, src); 235 } 236 } 237 238 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 239 240 if (spa->spa_comment != NULL) { 241 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 242 0, ZPROP_SRC_LOCAL); 243 } 244 245 if (spa->spa_root != NULL) 246 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 247 0, ZPROP_SRC_LOCAL); 248 249 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 250 if (dp->scd_path == NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 252 "none", 0, ZPROP_SRC_LOCAL); 253 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 255 dp->scd_path, 0, ZPROP_SRC_LOCAL); 256 } 257 } 258 } 259 260 /* 261 * Get zpool property values. 262 */ 263 int 264 spa_prop_get(spa_t *spa, nvlist_t **nvp) 265 { 266 objset_t *mos = spa->spa_meta_objset; 267 zap_cursor_t zc; 268 zap_attribute_t za; 269 int err; 270 271 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 272 273 mutex_enter(&spa->spa_props_lock); 274 275 /* 276 * Get properties from the spa config. 277 */ 278 spa_prop_get_config(spa, nvp); 279 280 /* If no pool property object, no more prop to get. */ 281 if (mos == NULL || spa->spa_pool_props_object == 0) { 282 mutex_exit(&spa->spa_props_lock); 283 return (0); 284 } 285 286 /* 287 * Get properties from the MOS pool property object. 288 */ 289 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 290 (err = zap_cursor_retrieve(&zc, &za)) == 0; 291 zap_cursor_advance(&zc)) { 292 uint64_t intval = 0; 293 char *strval = NULL; 294 zprop_source_t src = ZPROP_SRC_DEFAULT; 295 zpool_prop_t prop; 296 297 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 298 continue; 299 300 switch (za.za_integer_length) { 301 case 8: 302 /* integer property */ 303 if (za.za_first_integer != 304 zpool_prop_default_numeric(prop)) 305 src = ZPROP_SRC_LOCAL; 306 307 if (prop == ZPOOL_PROP_BOOTFS) { 308 dsl_pool_t *dp; 309 dsl_dataset_t *ds = NULL; 310 311 dp = spa_get_dsl(spa); 312 rw_enter(&dp->dp_config_rwlock, RW_READER); 313 if (err = dsl_dataset_hold_obj(dp, 314 za.za_first_integer, FTAG, &ds)) { 315 rw_exit(&dp->dp_config_rwlock); 316 break; 317 } 318 319 strval = kmem_alloc( 320 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 321 KM_SLEEP); 322 dsl_dataset_name(ds, strval); 323 dsl_dataset_rele(ds, FTAG); 324 rw_exit(&dp->dp_config_rwlock); 325 } else { 326 strval = NULL; 327 intval = za.za_first_integer; 328 } 329 330 spa_prop_add_list(*nvp, prop, strval, intval, src); 331 332 if (strval != NULL) 333 kmem_free(strval, 334 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 335 336 break; 337 338 case 1: 339 /* string property */ 340 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 341 err = zap_lookup(mos, spa->spa_pool_props_object, 342 za.za_name, 1, za.za_num_integers, strval); 343 if (err) { 344 kmem_free(strval, za.za_num_integers); 345 break; 346 } 347 spa_prop_add_list(*nvp, prop, strval, 0, src); 348 kmem_free(strval, za.za_num_integers); 349 break; 350 351 default: 352 break; 353 } 354 } 355 zap_cursor_fini(&zc); 356 mutex_exit(&spa->spa_props_lock); 357 out: 358 if (err && err != ENOENT) { 359 nvlist_free(*nvp); 360 *nvp = NULL; 361 return (err); 362 } 363 364 return (0); 365 } 366 367 /* 368 * Validate the given pool properties nvlist and modify the list 369 * for the property values to be set. 370 */ 371 static int 372 spa_prop_validate(spa_t *spa, nvlist_t *props) 373 { 374 nvpair_t *elem; 375 int error = 0, reset_bootfs = 0; 376 uint64_t objnum; 377 boolean_t has_feature = B_FALSE; 378 379 elem = NULL; 380 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 381 uint64_t intval; 382 char *strval, *slash, *check, *fname; 383 const char *propname = nvpair_name(elem); 384 zpool_prop_t prop = zpool_name_to_prop(propname); 385 386 switch (prop) { 387 case ZPROP_INVAL: 388 if (!zpool_prop_feature(propname)) { 389 error = EINVAL; 390 break; 391 } 392 393 /* 394 * Sanitize the input. 395 */ 396 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 397 error = EINVAL; 398 break; 399 } 400 401 if (nvpair_value_uint64(elem, &intval) != 0) { 402 error = EINVAL; 403 break; 404 } 405 406 if (intval != 0) { 407 error = EINVAL; 408 break; 409 } 410 411 fname = strchr(propname, '@') + 1; 412 if (zfeature_lookup_name(fname, NULL) != 0) { 413 error = EINVAL; 414 break; 415 } 416 417 has_feature = B_TRUE; 418 break; 419 420 case ZPOOL_PROP_VERSION: 421 error = nvpair_value_uint64(elem, &intval); 422 if (!error && 423 (intval < spa_version(spa) || 424 intval > SPA_VERSION_BEFORE_FEATURES || 425 has_feature)) 426 error = EINVAL; 427 break; 428 429 case ZPOOL_PROP_DELEGATION: 430 case ZPOOL_PROP_AUTOREPLACE: 431 case ZPOOL_PROP_LISTSNAPS: 432 case ZPOOL_PROP_AUTOEXPAND: 433 error = nvpair_value_uint64(elem, &intval); 434 if (!error && intval > 1) 435 error = EINVAL; 436 break; 437 438 case ZPOOL_PROP_BOOTFS: 439 /* 440 * If the pool version is less than SPA_VERSION_BOOTFS, 441 * or the pool is still being created (version == 0), 442 * the bootfs property cannot be set. 443 */ 444 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 445 error = ENOTSUP; 446 break; 447 } 448 449 /* 450 * Make sure the vdev config is bootable 451 */ 452 if (!vdev_is_bootable(spa->spa_root_vdev)) { 453 error = ENOTSUP; 454 break; 455 } 456 457 reset_bootfs = 1; 458 459 error = nvpair_value_string(elem, &strval); 460 461 if (!error) { 462 objset_t *os; 463 uint64_t compress; 464 465 if (strval == NULL || strval[0] == '\0') { 466 objnum = zpool_prop_default_numeric( 467 ZPOOL_PROP_BOOTFS); 468 break; 469 } 470 471 if (error = dmu_objset_hold(strval, FTAG, &os)) 472 break; 473 474 /* Must be ZPL and not gzip compressed. */ 475 476 if (dmu_objset_type(os) != DMU_OST_ZFS) { 477 error = ENOTSUP; 478 } else if ((error = dsl_prop_get_integer(strval, 479 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 480 &compress, NULL)) == 0 && 481 !BOOTFS_COMPRESS_VALID(compress)) { 482 error = ENOTSUP; 483 } else { 484 objnum = dmu_objset_id(os); 485 } 486 dmu_objset_rele(os, FTAG); 487 } 488 break; 489 490 case ZPOOL_PROP_FAILUREMODE: 491 error = nvpair_value_uint64(elem, &intval); 492 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 493 intval > ZIO_FAILURE_MODE_PANIC)) 494 error = EINVAL; 495 496 /* 497 * This is a special case which only occurs when 498 * the pool has completely failed. This allows 499 * the user to change the in-core failmode property 500 * without syncing it out to disk (I/Os might 501 * currently be blocked). We do this by returning 502 * EIO to the caller (spa_prop_set) to trick it 503 * into thinking we encountered a property validation 504 * error. 505 */ 506 if (!error && spa_suspended(spa)) { 507 spa->spa_failmode = intval; 508 error = EIO; 509 } 510 break; 511 512 case ZPOOL_PROP_CACHEFILE: 513 if ((error = nvpair_value_string(elem, &strval)) != 0) 514 break; 515 516 if (strval[0] == '\0') 517 break; 518 519 if (strcmp(strval, "none") == 0) 520 break; 521 522 if (strval[0] != '/') { 523 error = EINVAL; 524 break; 525 } 526 527 slash = strrchr(strval, '/'); 528 ASSERT(slash != NULL); 529 530 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 531 strcmp(slash, "/..") == 0) 532 error = EINVAL; 533 break; 534 535 case ZPOOL_PROP_COMMENT: 536 if ((error = nvpair_value_string(elem, &strval)) != 0) 537 break; 538 for (check = strval; *check != '\0'; check++) { 539 /* 540 * The kernel doesn't have an easy isprint() 541 * check. For this kernel check, we merely 542 * check ASCII apart from DEL. Fix this if 543 * there is an easy-to-use kernel isprint(). 544 */ 545 if (*check >= 0x7f) { 546 error = EINVAL; 547 break; 548 } 549 check++; 550 } 551 if (strlen(strval) > ZPROP_MAX_COMMENT) 552 error = E2BIG; 553 break; 554 555 case ZPOOL_PROP_DEDUPDITTO: 556 if (spa_version(spa) < SPA_VERSION_DEDUP) 557 error = ENOTSUP; 558 else 559 error = nvpair_value_uint64(elem, &intval); 560 if (error == 0 && 561 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 562 error = EINVAL; 563 break; 564 } 565 566 if (error) 567 break; 568 } 569 570 if (!error && reset_bootfs) { 571 error = nvlist_remove(props, 572 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 573 574 if (!error) { 575 error = nvlist_add_uint64(props, 576 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 577 } 578 } 579 580 return (error); 581 } 582 583 void 584 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 585 { 586 char *cachefile; 587 spa_config_dirent_t *dp; 588 589 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 590 &cachefile) != 0) 591 return; 592 593 dp = kmem_alloc(sizeof (spa_config_dirent_t), 594 KM_SLEEP); 595 596 if (cachefile[0] == '\0') 597 dp->scd_path = spa_strdup(spa_config_path); 598 else if (strcmp(cachefile, "none") == 0) 599 dp->scd_path = NULL; 600 else 601 dp->scd_path = spa_strdup(cachefile); 602 603 list_insert_head(&spa->spa_config_list, dp); 604 if (need_sync) 605 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 606 } 607 608 int 609 spa_prop_set(spa_t *spa, nvlist_t *nvp) 610 { 611 int error; 612 nvpair_t *elem = NULL; 613 boolean_t need_sync = B_FALSE; 614 615 if ((error = spa_prop_validate(spa, nvp)) != 0) 616 return (error); 617 618 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 619 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 620 621 if (prop == ZPOOL_PROP_CACHEFILE || 622 prop == ZPOOL_PROP_ALTROOT || 623 prop == ZPOOL_PROP_READONLY) 624 continue; 625 626 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 627 uint64_t ver; 628 629 if (prop == ZPOOL_PROP_VERSION) { 630 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 631 } else { 632 ASSERT(zpool_prop_feature(nvpair_name(elem))); 633 ver = SPA_VERSION_FEATURES; 634 need_sync = B_TRUE; 635 } 636 637 /* Save time if the version is already set. */ 638 if (ver == spa_version(spa)) 639 continue; 640 641 /* 642 * In addition to the pool directory object, we might 643 * create the pool properties object, the features for 644 * read object, the features for write object, or the 645 * feature descriptions object. 646 */ 647 error = dsl_sync_task_do(spa_get_dsl(spa), NULL, 648 spa_sync_version, spa, &ver, 6); 649 if (error) 650 return (error); 651 continue; 652 } 653 654 need_sync = B_TRUE; 655 break; 656 } 657 658 if (need_sync) { 659 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 660 spa, nvp, 6)); 661 } 662 663 return (0); 664 } 665 666 /* 667 * If the bootfs property value is dsobj, clear it. 668 */ 669 void 670 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 671 { 672 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 673 VERIFY(zap_remove(spa->spa_meta_objset, 674 spa->spa_pool_props_object, 675 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 676 spa->spa_bootfs = 0; 677 } 678 } 679 680 /*ARGSUSED*/ 681 static int 682 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx) 683 { 684 spa_t *spa = arg1; 685 uint64_t *newguid = arg2; 686 vdev_t *rvd = spa->spa_root_vdev; 687 uint64_t vdev_state; 688 689 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 690 vdev_state = rvd->vdev_state; 691 spa_config_exit(spa, SCL_STATE, FTAG); 692 693 if (vdev_state != VDEV_STATE_HEALTHY) 694 return (ENXIO); 695 696 ASSERT3U(spa_guid(spa), !=, *newguid); 697 698 return (0); 699 } 700 701 static void 702 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx) 703 { 704 spa_t *spa = arg1; 705 uint64_t *newguid = arg2; 706 uint64_t oldguid; 707 vdev_t *rvd = spa->spa_root_vdev; 708 709 oldguid = spa_guid(spa); 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 rvd->vdev_guid = *newguid; 713 rvd->vdev_guid_sum += (*newguid - oldguid); 714 vdev_config_dirty(rvd); 715 spa_config_exit(spa, SCL_STATE, FTAG); 716 717 spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld", 718 oldguid, *newguid); 719 } 720 721 /* 722 * Change the GUID for the pool. This is done so that we can later 723 * re-import a pool built from a clone of our own vdevs. We will modify 724 * the root vdev's guid, our own pool guid, and then mark all of our 725 * vdevs dirty. Note that we must make sure that all our vdevs are 726 * online when we do this, or else any vdevs that weren't present 727 * would be orphaned from our pool. We are also going to issue a 728 * sysevent to update any watchers. 729 */ 730 int 731 spa_change_guid(spa_t *spa) 732 { 733 int error; 734 uint64_t guid; 735 736 mutex_enter(&spa_namespace_lock); 737 guid = spa_generate_guid(NULL); 738 739 error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check, 740 spa_change_guid_sync, spa, &guid, 5); 741 742 if (error == 0) { 743 spa_config_sync(spa, B_FALSE, B_TRUE); 744 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 745 } 746 747 mutex_exit(&spa_namespace_lock); 748 749 return (error); 750 } 751 752 /* 753 * ========================================================================== 754 * SPA state manipulation (open/create/destroy/import/export) 755 * ========================================================================== 756 */ 757 758 static int 759 spa_error_entry_compare(const void *a, const void *b) 760 { 761 spa_error_entry_t *sa = (spa_error_entry_t *)a; 762 spa_error_entry_t *sb = (spa_error_entry_t *)b; 763 int ret; 764 765 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 766 sizeof (zbookmark_t)); 767 768 if (ret < 0) 769 return (-1); 770 else if (ret > 0) 771 return (1); 772 else 773 return (0); 774 } 775 776 /* 777 * Utility function which retrieves copies of the current logs and 778 * re-initializes them in the process. 779 */ 780 void 781 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 782 { 783 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 784 785 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 786 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 787 788 avl_create(&spa->spa_errlist_scrub, 789 spa_error_entry_compare, sizeof (spa_error_entry_t), 790 offsetof(spa_error_entry_t, se_avl)); 791 avl_create(&spa->spa_errlist_last, 792 spa_error_entry_compare, sizeof (spa_error_entry_t), 793 offsetof(spa_error_entry_t, se_avl)); 794 } 795 796 static taskq_t * 797 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 798 uint_t value) 799 { 800 uint_t flags = 0; 801 boolean_t batch = B_FALSE; 802 803 switch (mode) { 804 case zti_mode_null: 805 return (NULL); /* no taskq needed */ 806 807 case zti_mode_fixed: 808 ASSERT3U(value, >=, 1); 809 value = MAX(value, 1); 810 break; 811 812 case zti_mode_batch: 813 batch = B_TRUE; 814 flags |= TASKQ_THREADS_CPU_PCT; 815 value = zio_taskq_batch_pct; 816 break; 817 818 case zti_mode_online_percent: 819 flags |= TASKQ_THREADS_CPU_PCT; 820 break; 821 822 default: 823 panic("unrecognized mode for %s taskq (%u:%u) in " 824 "spa_activate()", 825 name, mode, value); 826 break; 827 } 828 829 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 830 if (batch) 831 flags |= TASKQ_DC_BATCH; 832 833 return (taskq_create_sysdc(name, value, 50, INT_MAX, 834 spa->spa_proc, zio_taskq_basedc, flags)); 835 } 836 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 837 spa->spa_proc, flags)); 838 } 839 840 static void 841 spa_create_zio_taskqs(spa_t *spa) 842 { 843 for (int t = 0; t < ZIO_TYPES; t++) { 844 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 846 enum zti_modes mode = ztip->zti_mode; 847 uint_t value = ztip->zti_value; 848 char name[32]; 849 850 (void) snprintf(name, sizeof (name), 851 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 852 853 spa->spa_zio_taskq[t][q] = 854 spa_taskq_create(spa, name, mode, value); 855 } 856 } 857 } 858 859 #ifdef _KERNEL 860 static void 861 spa_thread(void *arg) 862 { 863 callb_cpr_t cprinfo; 864 865 spa_t *spa = arg; 866 user_t *pu = PTOU(curproc); 867 868 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 869 spa->spa_name); 870 871 ASSERT(curproc != &p0); 872 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 873 "zpool-%s", spa->spa_name); 874 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 875 876 /* bind this thread to the requested psrset */ 877 if (zio_taskq_psrset_bind != PS_NONE) { 878 pool_lock(); 879 mutex_enter(&cpu_lock); 880 mutex_enter(&pidlock); 881 mutex_enter(&curproc->p_lock); 882 883 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 884 0, NULL, NULL) == 0) { 885 curthread->t_bind_pset = zio_taskq_psrset_bind; 886 } else { 887 cmn_err(CE_WARN, 888 "Couldn't bind process for zfs pool \"%s\" to " 889 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 890 } 891 892 mutex_exit(&curproc->p_lock); 893 mutex_exit(&pidlock); 894 mutex_exit(&cpu_lock); 895 pool_unlock(); 896 } 897 898 if (zio_taskq_sysdc) { 899 sysdc_thread_enter(curthread, 100, 0); 900 } 901 902 spa->spa_proc = curproc; 903 spa->spa_did = curthread->t_did; 904 905 spa_create_zio_taskqs(spa); 906 907 mutex_enter(&spa->spa_proc_lock); 908 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 909 910 spa->spa_proc_state = SPA_PROC_ACTIVE; 911 cv_broadcast(&spa->spa_proc_cv); 912 913 CALLB_CPR_SAFE_BEGIN(&cprinfo); 914 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 915 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 916 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 917 918 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 919 spa->spa_proc_state = SPA_PROC_GONE; 920 spa->spa_proc = &p0; 921 cv_broadcast(&spa->spa_proc_cv); 922 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 923 924 mutex_enter(&curproc->p_lock); 925 lwp_exit(); 926 } 927 #endif 928 929 /* 930 * Activate an uninitialized pool. 931 */ 932 static void 933 spa_activate(spa_t *spa, int mode) 934 { 935 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 936 937 spa->spa_state = POOL_STATE_ACTIVE; 938 spa->spa_mode = mode; 939 940 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 941 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 942 943 /* Try to create a covering process */ 944 mutex_enter(&spa->spa_proc_lock); 945 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 946 ASSERT(spa->spa_proc == &p0); 947 spa->spa_did = 0; 948 949 /* Only create a process if we're going to be around a while. */ 950 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 951 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 952 NULL, 0) == 0) { 953 spa->spa_proc_state = SPA_PROC_CREATED; 954 while (spa->spa_proc_state == SPA_PROC_CREATED) { 955 cv_wait(&spa->spa_proc_cv, 956 &spa->spa_proc_lock); 957 } 958 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 959 ASSERT(spa->spa_proc != &p0); 960 ASSERT(spa->spa_did != 0); 961 } else { 962 #ifdef _KERNEL 963 cmn_err(CE_WARN, 964 "Couldn't create process for zfs pool \"%s\"\n", 965 spa->spa_name); 966 #endif 967 } 968 } 969 mutex_exit(&spa->spa_proc_lock); 970 971 /* If we didn't create a process, we need to create our taskqs. */ 972 if (spa->spa_proc == &p0) { 973 spa_create_zio_taskqs(spa); 974 } 975 976 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 977 offsetof(vdev_t, vdev_config_dirty_node)); 978 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 979 offsetof(vdev_t, vdev_state_dirty_node)); 980 981 txg_list_create(&spa->spa_vdev_txg_list, 982 offsetof(struct vdev, vdev_txg_node)); 983 984 avl_create(&spa->spa_errlist_scrub, 985 spa_error_entry_compare, sizeof (spa_error_entry_t), 986 offsetof(spa_error_entry_t, se_avl)); 987 avl_create(&spa->spa_errlist_last, 988 spa_error_entry_compare, sizeof (spa_error_entry_t), 989 offsetof(spa_error_entry_t, se_avl)); 990 } 991 992 /* 993 * Opposite of spa_activate(). 994 */ 995 static void 996 spa_deactivate(spa_t *spa) 997 { 998 ASSERT(spa->spa_sync_on == B_FALSE); 999 ASSERT(spa->spa_dsl_pool == NULL); 1000 ASSERT(spa->spa_root_vdev == NULL); 1001 ASSERT(spa->spa_async_zio_root == NULL); 1002 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1003 1004 txg_list_destroy(&spa->spa_vdev_txg_list); 1005 1006 list_destroy(&spa->spa_config_dirty_list); 1007 list_destroy(&spa->spa_state_dirty_list); 1008 1009 for (int t = 0; t < ZIO_TYPES; t++) { 1010 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1011 if (spa->spa_zio_taskq[t][q] != NULL) 1012 taskq_destroy(spa->spa_zio_taskq[t][q]); 1013 spa->spa_zio_taskq[t][q] = NULL; 1014 } 1015 } 1016 1017 metaslab_class_destroy(spa->spa_normal_class); 1018 spa->spa_normal_class = NULL; 1019 1020 metaslab_class_destroy(spa->spa_log_class); 1021 spa->spa_log_class = NULL; 1022 1023 /* 1024 * If this was part of an import or the open otherwise failed, we may 1025 * still have errors left in the queues. Empty them just in case. 1026 */ 1027 spa_errlog_drain(spa); 1028 1029 avl_destroy(&spa->spa_errlist_scrub); 1030 avl_destroy(&spa->spa_errlist_last); 1031 1032 spa->spa_state = POOL_STATE_UNINITIALIZED; 1033 1034 mutex_enter(&spa->spa_proc_lock); 1035 if (spa->spa_proc_state != SPA_PROC_NONE) { 1036 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1037 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1038 cv_broadcast(&spa->spa_proc_cv); 1039 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1040 ASSERT(spa->spa_proc != &p0); 1041 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1042 } 1043 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1044 spa->spa_proc_state = SPA_PROC_NONE; 1045 } 1046 ASSERT(spa->spa_proc == &p0); 1047 mutex_exit(&spa->spa_proc_lock); 1048 1049 /* 1050 * We want to make sure spa_thread() has actually exited the ZFS 1051 * module, so that the module can't be unloaded out from underneath 1052 * it. 1053 */ 1054 if (spa->spa_did != 0) { 1055 thread_join(spa->spa_did); 1056 spa->spa_did = 0; 1057 } 1058 } 1059 1060 /* 1061 * Verify a pool configuration, and construct the vdev tree appropriately. This 1062 * will create all the necessary vdevs in the appropriate layout, with each vdev 1063 * in the CLOSED state. This will prep the pool before open/creation/import. 1064 * All vdev validation is done by the vdev_alloc() routine. 1065 */ 1066 static int 1067 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1068 uint_t id, int atype) 1069 { 1070 nvlist_t **child; 1071 uint_t children; 1072 int error; 1073 1074 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1075 return (error); 1076 1077 if ((*vdp)->vdev_ops->vdev_op_leaf) 1078 return (0); 1079 1080 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1081 &child, &children); 1082 1083 if (error == ENOENT) 1084 return (0); 1085 1086 if (error) { 1087 vdev_free(*vdp); 1088 *vdp = NULL; 1089 return (EINVAL); 1090 } 1091 1092 for (int c = 0; c < children; c++) { 1093 vdev_t *vd; 1094 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1095 atype)) != 0) { 1096 vdev_free(*vdp); 1097 *vdp = NULL; 1098 return (error); 1099 } 1100 } 1101 1102 ASSERT(*vdp != NULL); 1103 1104 return (0); 1105 } 1106 1107 /* 1108 * Opposite of spa_load(). 1109 */ 1110 static void 1111 spa_unload(spa_t *spa) 1112 { 1113 int i; 1114 1115 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1116 1117 /* 1118 * Stop async tasks. 1119 */ 1120 spa_async_suspend(spa); 1121 1122 /* 1123 * Stop syncing. 1124 */ 1125 if (spa->spa_sync_on) { 1126 txg_sync_stop(spa->spa_dsl_pool); 1127 spa->spa_sync_on = B_FALSE; 1128 } 1129 1130 /* 1131 * Wait for any outstanding async I/O to complete. 1132 */ 1133 if (spa->spa_async_zio_root != NULL) { 1134 (void) zio_wait(spa->spa_async_zio_root); 1135 spa->spa_async_zio_root = NULL; 1136 } 1137 1138 bpobj_close(&spa->spa_deferred_bpobj); 1139 1140 /* 1141 * Close the dsl pool. 1142 */ 1143 if (spa->spa_dsl_pool) { 1144 dsl_pool_close(spa->spa_dsl_pool); 1145 spa->spa_dsl_pool = NULL; 1146 spa->spa_meta_objset = NULL; 1147 } 1148 1149 ddt_unload(spa); 1150 1151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1152 1153 /* 1154 * Drop and purge level 2 cache 1155 */ 1156 spa_l2cache_drop(spa); 1157 1158 /* 1159 * Close all vdevs. 1160 */ 1161 if (spa->spa_root_vdev) 1162 vdev_free(spa->spa_root_vdev); 1163 ASSERT(spa->spa_root_vdev == NULL); 1164 1165 for (i = 0; i < spa->spa_spares.sav_count; i++) 1166 vdev_free(spa->spa_spares.sav_vdevs[i]); 1167 if (spa->spa_spares.sav_vdevs) { 1168 kmem_free(spa->spa_spares.sav_vdevs, 1169 spa->spa_spares.sav_count * sizeof (void *)); 1170 spa->spa_spares.sav_vdevs = NULL; 1171 } 1172 if (spa->spa_spares.sav_config) { 1173 nvlist_free(spa->spa_spares.sav_config); 1174 spa->spa_spares.sav_config = NULL; 1175 } 1176 spa->spa_spares.sav_count = 0; 1177 1178 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1179 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1180 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1181 } 1182 if (spa->spa_l2cache.sav_vdevs) { 1183 kmem_free(spa->spa_l2cache.sav_vdevs, 1184 spa->spa_l2cache.sav_count * sizeof (void *)); 1185 spa->spa_l2cache.sav_vdevs = NULL; 1186 } 1187 if (spa->spa_l2cache.sav_config) { 1188 nvlist_free(spa->spa_l2cache.sav_config); 1189 spa->spa_l2cache.sav_config = NULL; 1190 } 1191 spa->spa_l2cache.sav_count = 0; 1192 1193 spa->spa_async_suspended = 0; 1194 1195 if (spa->spa_comment != NULL) { 1196 spa_strfree(spa->spa_comment); 1197 spa->spa_comment = NULL; 1198 } 1199 1200 spa_config_exit(spa, SCL_ALL, FTAG); 1201 } 1202 1203 /* 1204 * Load (or re-load) the current list of vdevs describing the active spares for 1205 * this pool. When this is called, we have some form of basic information in 1206 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1207 * then re-generate a more complete list including status information. 1208 */ 1209 static void 1210 spa_load_spares(spa_t *spa) 1211 { 1212 nvlist_t **spares; 1213 uint_t nspares; 1214 int i; 1215 vdev_t *vd, *tvd; 1216 1217 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1218 1219 /* 1220 * First, close and free any existing spare vdevs. 1221 */ 1222 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1223 vd = spa->spa_spares.sav_vdevs[i]; 1224 1225 /* Undo the call to spa_activate() below */ 1226 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1227 B_FALSE)) != NULL && tvd->vdev_isspare) 1228 spa_spare_remove(tvd); 1229 vdev_close(vd); 1230 vdev_free(vd); 1231 } 1232 1233 if (spa->spa_spares.sav_vdevs) 1234 kmem_free(spa->spa_spares.sav_vdevs, 1235 spa->spa_spares.sav_count * sizeof (void *)); 1236 1237 if (spa->spa_spares.sav_config == NULL) 1238 nspares = 0; 1239 else 1240 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1241 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1242 1243 spa->spa_spares.sav_count = (int)nspares; 1244 spa->spa_spares.sav_vdevs = NULL; 1245 1246 if (nspares == 0) 1247 return; 1248 1249 /* 1250 * Construct the array of vdevs, opening them to get status in the 1251 * process. For each spare, there is potentially two different vdev_t 1252 * structures associated with it: one in the list of spares (used only 1253 * for basic validation purposes) and one in the active vdev 1254 * configuration (if it's spared in). During this phase we open and 1255 * validate each vdev on the spare list. If the vdev also exists in the 1256 * active configuration, then we also mark this vdev as an active spare. 1257 */ 1258 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1259 KM_SLEEP); 1260 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1261 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1262 VDEV_ALLOC_SPARE) == 0); 1263 ASSERT(vd != NULL); 1264 1265 spa->spa_spares.sav_vdevs[i] = vd; 1266 1267 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1268 B_FALSE)) != NULL) { 1269 if (!tvd->vdev_isspare) 1270 spa_spare_add(tvd); 1271 1272 /* 1273 * We only mark the spare active if we were successfully 1274 * able to load the vdev. Otherwise, importing a pool 1275 * with a bad active spare would result in strange 1276 * behavior, because multiple pool would think the spare 1277 * is actively in use. 1278 * 1279 * There is a vulnerability here to an equally bizarre 1280 * circumstance, where a dead active spare is later 1281 * brought back to life (onlined or otherwise). Given 1282 * the rarity of this scenario, and the extra complexity 1283 * it adds, we ignore the possibility. 1284 */ 1285 if (!vdev_is_dead(tvd)) 1286 spa_spare_activate(tvd); 1287 } 1288 1289 vd->vdev_top = vd; 1290 vd->vdev_aux = &spa->spa_spares; 1291 1292 if (vdev_open(vd) != 0) 1293 continue; 1294 1295 if (vdev_validate_aux(vd) == 0) 1296 spa_spare_add(vd); 1297 } 1298 1299 /* 1300 * Recompute the stashed list of spares, with status information 1301 * this time. 1302 */ 1303 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1304 DATA_TYPE_NVLIST_ARRAY) == 0); 1305 1306 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1307 KM_SLEEP); 1308 for (i = 0; i < spa->spa_spares.sav_count; i++) 1309 spares[i] = vdev_config_generate(spa, 1310 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1311 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1312 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) 1314 nvlist_free(spares[i]); 1315 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1316 } 1317 1318 /* 1319 * Load (or re-load) the current list of vdevs describing the active l2cache for 1320 * this pool. When this is called, we have some form of basic information in 1321 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1322 * then re-generate a more complete list including status information. 1323 * Devices which are already active have their details maintained, and are 1324 * not re-opened. 1325 */ 1326 static void 1327 spa_load_l2cache(spa_t *spa) 1328 { 1329 nvlist_t **l2cache; 1330 uint_t nl2cache; 1331 int i, j, oldnvdevs; 1332 uint64_t guid; 1333 vdev_t *vd, **oldvdevs, **newvdevs; 1334 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1335 1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1337 1338 if (sav->sav_config != NULL) { 1339 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1340 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1341 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1342 } else { 1343 nl2cache = 0; 1344 } 1345 1346 oldvdevs = sav->sav_vdevs; 1347 oldnvdevs = sav->sav_count; 1348 sav->sav_vdevs = NULL; 1349 sav->sav_count = 0; 1350 1351 /* 1352 * Process new nvlist of vdevs. 1353 */ 1354 for (i = 0; i < nl2cache; i++) { 1355 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1356 &guid) == 0); 1357 1358 newvdevs[i] = NULL; 1359 for (j = 0; j < oldnvdevs; j++) { 1360 vd = oldvdevs[j]; 1361 if (vd != NULL && guid == vd->vdev_guid) { 1362 /* 1363 * Retain previous vdev for add/remove ops. 1364 */ 1365 newvdevs[i] = vd; 1366 oldvdevs[j] = NULL; 1367 break; 1368 } 1369 } 1370 1371 if (newvdevs[i] == NULL) { 1372 /* 1373 * Create new vdev 1374 */ 1375 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1376 VDEV_ALLOC_L2CACHE) == 0); 1377 ASSERT(vd != NULL); 1378 newvdevs[i] = vd; 1379 1380 /* 1381 * Commit this vdev as an l2cache device, 1382 * even if it fails to open. 1383 */ 1384 spa_l2cache_add(vd); 1385 1386 vd->vdev_top = vd; 1387 vd->vdev_aux = sav; 1388 1389 spa_l2cache_activate(vd); 1390 1391 if (vdev_open(vd) != 0) 1392 continue; 1393 1394 (void) vdev_validate_aux(vd); 1395 1396 if (!vdev_is_dead(vd)) 1397 l2arc_add_vdev(spa, vd); 1398 } 1399 } 1400 1401 /* 1402 * Purge vdevs that were dropped 1403 */ 1404 for (i = 0; i < oldnvdevs; i++) { 1405 uint64_t pool; 1406 1407 vd = oldvdevs[i]; 1408 if (vd != NULL) { 1409 ASSERT(vd->vdev_isl2cache); 1410 1411 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1412 pool != 0ULL && l2arc_vdev_present(vd)) 1413 l2arc_remove_vdev(vd); 1414 vdev_clear_stats(vd); 1415 vdev_free(vd); 1416 } 1417 } 1418 1419 if (oldvdevs) 1420 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1421 1422 if (sav->sav_config == NULL) 1423 goto out; 1424 1425 sav->sav_vdevs = newvdevs; 1426 sav->sav_count = (int)nl2cache; 1427 1428 /* 1429 * Recompute the stashed list of l2cache devices, with status 1430 * information this time. 1431 */ 1432 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1433 DATA_TYPE_NVLIST_ARRAY) == 0); 1434 1435 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1436 for (i = 0; i < sav->sav_count; i++) 1437 l2cache[i] = vdev_config_generate(spa, 1438 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1439 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1440 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1441 out: 1442 for (i = 0; i < sav->sav_count; i++) 1443 nvlist_free(l2cache[i]); 1444 if (sav->sav_count) 1445 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1446 } 1447 1448 static int 1449 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1450 { 1451 dmu_buf_t *db; 1452 char *packed = NULL; 1453 size_t nvsize = 0; 1454 int error; 1455 *value = NULL; 1456 1457 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1458 nvsize = *(uint64_t *)db->db_data; 1459 dmu_buf_rele(db, FTAG); 1460 1461 packed = kmem_alloc(nvsize, KM_SLEEP); 1462 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1463 DMU_READ_PREFETCH); 1464 if (error == 0) 1465 error = nvlist_unpack(packed, nvsize, value, 0); 1466 kmem_free(packed, nvsize); 1467 1468 return (error); 1469 } 1470 1471 /* 1472 * Checks to see if the given vdev could not be opened, in which case we post a 1473 * sysevent to notify the autoreplace code that the device has been removed. 1474 */ 1475 static void 1476 spa_check_removed(vdev_t *vd) 1477 { 1478 for (int c = 0; c < vd->vdev_children; c++) 1479 spa_check_removed(vd->vdev_child[c]); 1480 1481 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1482 zfs_post_autoreplace(vd->vdev_spa, vd); 1483 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1484 } 1485 } 1486 1487 /* 1488 * Validate the current config against the MOS config 1489 */ 1490 static boolean_t 1491 spa_config_valid(spa_t *spa, nvlist_t *config) 1492 { 1493 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1494 nvlist_t *nv; 1495 1496 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1497 1498 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1499 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1500 1501 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1502 1503 /* 1504 * If we're doing a normal import, then build up any additional 1505 * diagnostic information about missing devices in this config. 1506 * We'll pass this up to the user for further processing. 1507 */ 1508 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1509 nvlist_t **child, *nv; 1510 uint64_t idx = 0; 1511 1512 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1513 KM_SLEEP); 1514 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1515 1516 for (int c = 0; c < rvd->vdev_children; c++) { 1517 vdev_t *tvd = rvd->vdev_child[c]; 1518 vdev_t *mtvd = mrvd->vdev_child[c]; 1519 1520 if (tvd->vdev_ops == &vdev_missing_ops && 1521 mtvd->vdev_ops != &vdev_missing_ops && 1522 mtvd->vdev_islog) 1523 child[idx++] = vdev_config_generate(spa, mtvd, 1524 B_FALSE, 0); 1525 } 1526 1527 if (idx) { 1528 VERIFY(nvlist_add_nvlist_array(nv, 1529 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1530 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1531 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1532 1533 for (int i = 0; i < idx; i++) 1534 nvlist_free(child[i]); 1535 } 1536 nvlist_free(nv); 1537 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1538 } 1539 1540 /* 1541 * Compare the root vdev tree with the information we have 1542 * from the MOS config (mrvd). Check each top-level vdev 1543 * with the corresponding MOS config top-level (mtvd). 1544 */ 1545 for (int c = 0; c < rvd->vdev_children; c++) { 1546 vdev_t *tvd = rvd->vdev_child[c]; 1547 vdev_t *mtvd = mrvd->vdev_child[c]; 1548 1549 /* 1550 * Resolve any "missing" vdevs in the current configuration. 1551 * If we find that the MOS config has more accurate information 1552 * about the top-level vdev then use that vdev instead. 1553 */ 1554 if (tvd->vdev_ops == &vdev_missing_ops && 1555 mtvd->vdev_ops != &vdev_missing_ops) { 1556 1557 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1558 continue; 1559 1560 /* 1561 * Device specific actions. 1562 */ 1563 if (mtvd->vdev_islog) { 1564 spa_set_log_state(spa, SPA_LOG_CLEAR); 1565 } else { 1566 /* 1567 * XXX - once we have 'readonly' pool 1568 * support we should be able to handle 1569 * missing data devices by transitioning 1570 * the pool to readonly. 1571 */ 1572 continue; 1573 } 1574 1575 /* 1576 * Swap the missing vdev with the data we were 1577 * able to obtain from the MOS config. 1578 */ 1579 vdev_remove_child(rvd, tvd); 1580 vdev_remove_child(mrvd, mtvd); 1581 1582 vdev_add_child(rvd, mtvd); 1583 vdev_add_child(mrvd, tvd); 1584 1585 spa_config_exit(spa, SCL_ALL, FTAG); 1586 vdev_load(mtvd); 1587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1588 1589 vdev_reopen(rvd); 1590 } else if (mtvd->vdev_islog) { 1591 /* 1592 * Load the slog device's state from the MOS config 1593 * since it's possible that the label does not 1594 * contain the most up-to-date information. 1595 */ 1596 vdev_load_log_state(tvd, mtvd); 1597 vdev_reopen(tvd); 1598 } 1599 } 1600 vdev_free(mrvd); 1601 spa_config_exit(spa, SCL_ALL, FTAG); 1602 1603 /* 1604 * Ensure we were able to validate the config. 1605 */ 1606 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1607 } 1608 1609 /* 1610 * Check for missing log devices 1611 */ 1612 static int 1613 spa_check_logs(spa_t *spa) 1614 { 1615 switch (spa->spa_log_state) { 1616 case SPA_LOG_MISSING: 1617 /* need to recheck in case slog has been restored */ 1618 case SPA_LOG_UNKNOWN: 1619 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1620 DS_FIND_CHILDREN)) { 1621 spa_set_log_state(spa, SPA_LOG_MISSING); 1622 return (1); 1623 } 1624 break; 1625 } 1626 return (0); 1627 } 1628 1629 static boolean_t 1630 spa_passivate_log(spa_t *spa) 1631 { 1632 vdev_t *rvd = spa->spa_root_vdev; 1633 boolean_t slog_found = B_FALSE; 1634 1635 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1636 1637 if (!spa_has_slogs(spa)) 1638 return (B_FALSE); 1639 1640 for (int c = 0; c < rvd->vdev_children; c++) { 1641 vdev_t *tvd = rvd->vdev_child[c]; 1642 metaslab_group_t *mg = tvd->vdev_mg; 1643 1644 if (tvd->vdev_islog) { 1645 metaslab_group_passivate(mg); 1646 slog_found = B_TRUE; 1647 } 1648 } 1649 1650 return (slog_found); 1651 } 1652 1653 static void 1654 spa_activate_log(spa_t *spa) 1655 { 1656 vdev_t *rvd = spa->spa_root_vdev; 1657 1658 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1659 1660 for (int c = 0; c < rvd->vdev_children; c++) { 1661 vdev_t *tvd = rvd->vdev_child[c]; 1662 metaslab_group_t *mg = tvd->vdev_mg; 1663 1664 if (tvd->vdev_islog) 1665 metaslab_group_activate(mg); 1666 } 1667 } 1668 1669 int 1670 spa_offline_log(spa_t *spa) 1671 { 1672 int error = 0; 1673 1674 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1675 NULL, DS_FIND_CHILDREN)) == 0) { 1676 1677 /* 1678 * We successfully offlined the log device, sync out the 1679 * current txg so that the "stubby" block can be removed 1680 * by zil_sync(). 1681 */ 1682 txg_wait_synced(spa->spa_dsl_pool, 0); 1683 } 1684 return (error); 1685 } 1686 1687 static void 1688 spa_aux_check_removed(spa_aux_vdev_t *sav) 1689 { 1690 for (int i = 0; i < sav->sav_count; i++) 1691 spa_check_removed(sav->sav_vdevs[i]); 1692 } 1693 1694 void 1695 spa_claim_notify(zio_t *zio) 1696 { 1697 spa_t *spa = zio->io_spa; 1698 1699 if (zio->io_error) 1700 return; 1701 1702 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1703 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1704 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1705 mutex_exit(&spa->spa_props_lock); 1706 } 1707 1708 typedef struct spa_load_error { 1709 uint64_t sle_meta_count; 1710 uint64_t sle_data_count; 1711 } spa_load_error_t; 1712 1713 static void 1714 spa_load_verify_done(zio_t *zio) 1715 { 1716 blkptr_t *bp = zio->io_bp; 1717 spa_load_error_t *sle = zio->io_private; 1718 dmu_object_type_t type = BP_GET_TYPE(bp); 1719 int error = zio->io_error; 1720 1721 if (error) { 1722 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1723 type != DMU_OT_INTENT_LOG) 1724 atomic_add_64(&sle->sle_meta_count, 1); 1725 else 1726 atomic_add_64(&sle->sle_data_count, 1); 1727 } 1728 zio_data_buf_free(zio->io_data, zio->io_size); 1729 } 1730 1731 /*ARGSUSED*/ 1732 static int 1733 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1734 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1735 { 1736 if (bp != NULL) { 1737 zio_t *rio = arg; 1738 size_t size = BP_GET_PSIZE(bp); 1739 void *data = zio_data_buf_alloc(size); 1740 1741 zio_nowait(zio_read(rio, spa, bp, data, size, 1742 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1743 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1744 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1745 } 1746 return (0); 1747 } 1748 1749 static int 1750 spa_load_verify(spa_t *spa) 1751 { 1752 zio_t *rio; 1753 spa_load_error_t sle = { 0 }; 1754 zpool_rewind_policy_t policy; 1755 boolean_t verify_ok = B_FALSE; 1756 int error; 1757 1758 zpool_get_rewind_policy(spa->spa_config, &policy); 1759 1760 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1761 return (0); 1762 1763 rio = zio_root(spa, NULL, &sle, 1764 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1765 1766 error = traverse_pool(spa, spa->spa_verify_min_txg, 1767 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1768 1769 (void) zio_wait(rio); 1770 1771 spa->spa_load_meta_errors = sle.sle_meta_count; 1772 spa->spa_load_data_errors = sle.sle_data_count; 1773 1774 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1775 sle.sle_data_count <= policy.zrp_maxdata) { 1776 int64_t loss = 0; 1777 1778 verify_ok = B_TRUE; 1779 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1780 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1781 1782 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1783 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1784 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1785 VERIFY(nvlist_add_int64(spa->spa_load_info, 1786 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1787 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1788 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1789 } else { 1790 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1791 } 1792 1793 if (error) { 1794 if (error != ENXIO && error != EIO) 1795 error = EIO; 1796 return (error); 1797 } 1798 1799 return (verify_ok ? 0 : EIO); 1800 } 1801 1802 /* 1803 * Find a value in the pool props object. 1804 */ 1805 static void 1806 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1807 { 1808 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1809 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1810 } 1811 1812 /* 1813 * Find a value in the pool directory object. 1814 */ 1815 static int 1816 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1817 { 1818 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1819 name, sizeof (uint64_t), 1, val)); 1820 } 1821 1822 static int 1823 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1824 { 1825 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1826 return (err); 1827 } 1828 1829 /* 1830 * Fix up config after a partly-completed split. This is done with the 1831 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1832 * pool have that entry in their config, but only the splitting one contains 1833 * a list of all the guids of the vdevs that are being split off. 1834 * 1835 * This function determines what to do with that list: either rejoin 1836 * all the disks to the pool, or complete the splitting process. To attempt 1837 * the rejoin, each disk that is offlined is marked online again, and 1838 * we do a reopen() call. If the vdev label for every disk that was 1839 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1840 * then we call vdev_split() on each disk, and complete the split. 1841 * 1842 * Otherwise we leave the config alone, with all the vdevs in place in 1843 * the original pool. 1844 */ 1845 static void 1846 spa_try_repair(spa_t *spa, nvlist_t *config) 1847 { 1848 uint_t extracted; 1849 uint64_t *glist; 1850 uint_t i, gcount; 1851 nvlist_t *nvl; 1852 vdev_t **vd; 1853 boolean_t attempt_reopen; 1854 1855 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1856 return; 1857 1858 /* check that the config is complete */ 1859 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1860 &glist, &gcount) != 0) 1861 return; 1862 1863 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1864 1865 /* attempt to online all the vdevs & validate */ 1866 attempt_reopen = B_TRUE; 1867 for (i = 0; i < gcount; i++) { 1868 if (glist[i] == 0) /* vdev is hole */ 1869 continue; 1870 1871 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1872 if (vd[i] == NULL) { 1873 /* 1874 * Don't bother attempting to reopen the disks; 1875 * just do the split. 1876 */ 1877 attempt_reopen = B_FALSE; 1878 } else { 1879 /* attempt to re-online it */ 1880 vd[i]->vdev_offline = B_FALSE; 1881 } 1882 } 1883 1884 if (attempt_reopen) { 1885 vdev_reopen(spa->spa_root_vdev); 1886 1887 /* check each device to see what state it's in */ 1888 for (extracted = 0, i = 0; i < gcount; i++) { 1889 if (vd[i] != NULL && 1890 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1891 break; 1892 ++extracted; 1893 } 1894 } 1895 1896 /* 1897 * If every disk has been moved to the new pool, or if we never 1898 * even attempted to look at them, then we split them off for 1899 * good. 1900 */ 1901 if (!attempt_reopen || gcount == extracted) { 1902 for (i = 0; i < gcount; i++) 1903 if (vd[i] != NULL) 1904 vdev_split(vd[i]); 1905 vdev_reopen(spa->spa_root_vdev); 1906 } 1907 1908 kmem_free(vd, gcount * sizeof (vdev_t *)); 1909 } 1910 1911 static int 1912 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1913 boolean_t mosconfig) 1914 { 1915 nvlist_t *config = spa->spa_config; 1916 char *ereport = FM_EREPORT_ZFS_POOL; 1917 char *comment; 1918 int error; 1919 uint64_t pool_guid; 1920 nvlist_t *nvl; 1921 1922 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1923 return (EINVAL); 1924 1925 ASSERT(spa->spa_comment == NULL); 1926 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 1927 spa->spa_comment = spa_strdup(comment); 1928 1929 /* 1930 * Versioning wasn't explicitly added to the label until later, so if 1931 * it's not present treat it as the initial version. 1932 */ 1933 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1934 &spa->spa_ubsync.ub_version) != 0) 1935 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1936 1937 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1938 &spa->spa_config_txg); 1939 1940 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1941 spa_guid_exists(pool_guid, 0)) { 1942 error = EEXIST; 1943 } else { 1944 spa->spa_config_guid = pool_guid; 1945 1946 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1947 &nvl) == 0) { 1948 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1949 KM_SLEEP) == 0); 1950 } 1951 1952 nvlist_free(spa->spa_load_info); 1953 spa->spa_load_info = fnvlist_alloc(); 1954 1955 gethrestime(&spa->spa_loaded_ts); 1956 error = spa_load_impl(spa, pool_guid, config, state, type, 1957 mosconfig, &ereport); 1958 } 1959 1960 spa->spa_minref = refcount_count(&spa->spa_refcount); 1961 if (error) { 1962 if (error != EEXIST) { 1963 spa->spa_loaded_ts.tv_sec = 0; 1964 spa->spa_loaded_ts.tv_nsec = 0; 1965 } 1966 if (error != EBADF) { 1967 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1968 } 1969 } 1970 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1971 spa->spa_ena = 0; 1972 1973 return (error); 1974 } 1975 1976 /* 1977 * Load an existing storage pool, using the pool's builtin spa_config as a 1978 * source of configuration information. 1979 */ 1980 static int 1981 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1982 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1983 char **ereport) 1984 { 1985 int error = 0; 1986 nvlist_t *nvroot = NULL; 1987 nvlist_t *label; 1988 vdev_t *rvd; 1989 uberblock_t *ub = &spa->spa_uberblock; 1990 uint64_t children, config_cache_txg = spa->spa_config_txg; 1991 int orig_mode = spa->spa_mode; 1992 int parse; 1993 uint64_t obj; 1994 boolean_t missing_feat_write = B_FALSE; 1995 1996 /* 1997 * If this is an untrusted config, access the pool in read-only mode. 1998 * This prevents things like resilvering recently removed devices. 1999 */ 2000 if (!mosconfig) 2001 spa->spa_mode = FREAD; 2002 2003 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2004 2005 spa->spa_load_state = state; 2006 2007 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2008 return (EINVAL); 2009 2010 parse = (type == SPA_IMPORT_EXISTING ? 2011 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2012 2013 /* 2014 * Create "The Godfather" zio to hold all async IOs 2015 */ 2016 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2017 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2018 2019 /* 2020 * Parse the configuration into a vdev tree. We explicitly set the 2021 * value that will be returned by spa_version() since parsing the 2022 * configuration requires knowing the version number. 2023 */ 2024 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2025 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2026 spa_config_exit(spa, SCL_ALL, FTAG); 2027 2028 if (error != 0) 2029 return (error); 2030 2031 ASSERT(spa->spa_root_vdev == rvd); 2032 2033 if (type != SPA_IMPORT_ASSEMBLE) { 2034 ASSERT(spa_guid(spa) == pool_guid); 2035 } 2036 2037 /* 2038 * Try to open all vdevs, loading each label in the process. 2039 */ 2040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2041 error = vdev_open(rvd); 2042 spa_config_exit(spa, SCL_ALL, FTAG); 2043 if (error != 0) 2044 return (error); 2045 2046 /* 2047 * We need to validate the vdev labels against the configuration that 2048 * we have in hand, which is dependent on the setting of mosconfig. If 2049 * mosconfig is true then we're validating the vdev labels based on 2050 * that config. Otherwise, we're validating against the cached config 2051 * (zpool.cache) that was read when we loaded the zfs module, and then 2052 * later we will recursively call spa_load() and validate against 2053 * the vdev config. 2054 * 2055 * If we're assembling a new pool that's been split off from an 2056 * existing pool, the labels haven't yet been updated so we skip 2057 * validation for now. 2058 */ 2059 if (type != SPA_IMPORT_ASSEMBLE) { 2060 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2061 error = vdev_validate(rvd, mosconfig); 2062 spa_config_exit(spa, SCL_ALL, FTAG); 2063 2064 if (error != 0) 2065 return (error); 2066 2067 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2068 return (ENXIO); 2069 } 2070 2071 /* 2072 * Find the best uberblock. 2073 */ 2074 vdev_uberblock_load(rvd, ub, &label); 2075 2076 /* 2077 * If we weren't able to find a single valid uberblock, return failure. 2078 */ 2079 if (ub->ub_txg == 0) { 2080 nvlist_free(label); 2081 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2082 } 2083 2084 /* 2085 * If the pool has an unsupported version we can't open it. 2086 */ 2087 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2088 nvlist_free(label); 2089 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2090 } 2091 2092 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2093 nvlist_t *features; 2094 2095 /* 2096 * If we weren't able to find what's necessary for reading the 2097 * MOS in the label, return failure. 2098 */ 2099 if (label == NULL || nvlist_lookup_nvlist(label, 2100 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2101 nvlist_free(label); 2102 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2103 ENXIO)); 2104 } 2105 2106 /* 2107 * Update our in-core representation with the definitive values 2108 * from the label. 2109 */ 2110 nvlist_free(spa->spa_label_features); 2111 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2112 } 2113 2114 nvlist_free(label); 2115 2116 /* 2117 * Look through entries in the label nvlist's features_for_read. If 2118 * there is a feature listed there which we don't understand then we 2119 * cannot open a pool. 2120 */ 2121 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2122 nvlist_t *unsup_feat; 2123 2124 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2125 0); 2126 2127 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2128 NULL); nvp != NULL; 2129 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2130 if (!zfeature_is_supported(nvpair_name(nvp))) { 2131 VERIFY(nvlist_add_string(unsup_feat, 2132 nvpair_name(nvp), "") == 0); 2133 } 2134 } 2135 2136 if (!nvlist_empty(unsup_feat)) { 2137 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2138 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2139 nvlist_free(unsup_feat); 2140 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2141 ENOTSUP)); 2142 } 2143 2144 nvlist_free(unsup_feat); 2145 } 2146 2147 /* 2148 * If the vdev guid sum doesn't match the uberblock, we have an 2149 * incomplete configuration. We first check to see if the pool 2150 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2151 * If it is, defer the vdev_guid_sum check till later so we 2152 * can handle missing vdevs. 2153 */ 2154 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2155 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2156 rvd->vdev_guid_sum != ub->ub_guid_sum) 2157 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2158 2159 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2161 spa_try_repair(spa, config); 2162 spa_config_exit(spa, SCL_ALL, FTAG); 2163 nvlist_free(spa->spa_config_splitting); 2164 spa->spa_config_splitting = NULL; 2165 } 2166 2167 /* 2168 * Initialize internal SPA structures. 2169 */ 2170 spa->spa_state = POOL_STATE_ACTIVE; 2171 spa->spa_ubsync = spa->spa_uberblock; 2172 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2173 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2174 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2175 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2176 spa->spa_claim_max_txg = spa->spa_first_txg; 2177 spa->spa_prev_software_version = ub->ub_software_version; 2178 2179 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2180 if (error) 2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2182 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2183 2184 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2185 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2186 2187 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2188 boolean_t missing_feat_read = B_FALSE; 2189 nvlist_t *unsup_feat, *enabled_feat; 2190 2191 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2192 &spa->spa_feat_for_read_obj) != 0) { 2193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2194 } 2195 2196 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2197 &spa->spa_feat_for_write_obj) != 0) { 2198 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2199 } 2200 2201 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2202 &spa->spa_feat_desc_obj) != 0) { 2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2204 } 2205 2206 enabled_feat = fnvlist_alloc(); 2207 unsup_feat = fnvlist_alloc(); 2208 2209 if (!feature_is_supported(spa->spa_meta_objset, 2210 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2211 unsup_feat, enabled_feat)) 2212 missing_feat_read = B_TRUE; 2213 2214 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2215 if (!feature_is_supported(spa->spa_meta_objset, 2216 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2217 unsup_feat, enabled_feat)) { 2218 missing_feat_write = B_TRUE; 2219 } 2220 } 2221 2222 fnvlist_add_nvlist(spa->spa_load_info, 2223 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2224 2225 if (!nvlist_empty(unsup_feat)) { 2226 fnvlist_add_nvlist(spa->spa_load_info, 2227 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2228 } 2229 2230 fnvlist_free(enabled_feat); 2231 fnvlist_free(unsup_feat); 2232 2233 if (!missing_feat_read) { 2234 fnvlist_add_boolean(spa->spa_load_info, 2235 ZPOOL_CONFIG_CAN_RDONLY); 2236 } 2237 2238 /* 2239 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2240 * twofold: to determine whether the pool is available for 2241 * import in read-write mode and (if it is not) whether the 2242 * pool is available for import in read-only mode. If the pool 2243 * is available for import in read-write mode, it is displayed 2244 * as available in userland; if it is not available for import 2245 * in read-only mode, it is displayed as unavailable in 2246 * userland. If the pool is available for import in read-only 2247 * mode but not read-write mode, it is displayed as unavailable 2248 * in userland with a special note that the pool is actually 2249 * available for open in read-only mode. 2250 * 2251 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2252 * missing a feature for write, we must first determine whether 2253 * the pool can be opened read-only before returning to 2254 * userland in order to know whether to display the 2255 * abovementioned note. 2256 */ 2257 if (missing_feat_read || (missing_feat_write && 2258 spa_writeable(spa))) { 2259 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2260 ENOTSUP)); 2261 } 2262 } 2263 2264 spa->spa_is_initializing = B_TRUE; 2265 error = dsl_pool_open(spa->spa_dsl_pool); 2266 spa->spa_is_initializing = B_FALSE; 2267 if (error != 0) 2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2269 2270 if (!mosconfig) { 2271 uint64_t hostid; 2272 nvlist_t *policy = NULL, *nvconfig; 2273 2274 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 2277 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2278 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2279 char *hostname; 2280 unsigned long myhostid = 0; 2281 2282 VERIFY(nvlist_lookup_string(nvconfig, 2283 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2284 2285 #ifdef _KERNEL 2286 myhostid = zone_get_hostid(NULL); 2287 #else /* _KERNEL */ 2288 /* 2289 * We're emulating the system's hostid in userland, so 2290 * we can't use zone_get_hostid(). 2291 */ 2292 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2293 #endif /* _KERNEL */ 2294 if (hostid != 0 && myhostid != 0 && 2295 hostid != myhostid) { 2296 nvlist_free(nvconfig); 2297 cmn_err(CE_WARN, "pool '%s' could not be " 2298 "loaded as it was last accessed by " 2299 "another system (host: %s hostid: 0x%lx). " 2300 "See: http://illumos.org/msg/ZFS-8000-EY", 2301 spa_name(spa), hostname, 2302 (unsigned long)hostid); 2303 return (EBADF); 2304 } 2305 } 2306 if (nvlist_lookup_nvlist(spa->spa_config, 2307 ZPOOL_REWIND_POLICY, &policy) == 0) 2308 VERIFY(nvlist_add_nvlist(nvconfig, 2309 ZPOOL_REWIND_POLICY, policy) == 0); 2310 2311 spa_config_set(spa, nvconfig); 2312 spa_unload(spa); 2313 spa_deactivate(spa); 2314 spa_activate(spa, orig_mode); 2315 2316 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2317 } 2318 2319 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2321 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2322 if (error != 0) 2323 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2324 2325 /* 2326 * Load the bit that tells us to use the new accounting function 2327 * (raid-z deflation). If we have an older pool, this will not 2328 * be present. 2329 */ 2330 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2331 if (error != 0 && error != ENOENT) 2332 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2333 2334 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2335 &spa->spa_creation_version); 2336 if (error != 0 && error != ENOENT) 2337 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2338 2339 /* 2340 * Load the persistent error log. If we have an older pool, this will 2341 * not be present. 2342 */ 2343 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2344 if (error != 0 && error != ENOENT) 2345 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2346 2347 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2348 &spa->spa_errlog_scrub); 2349 if (error != 0 && error != ENOENT) 2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2351 2352 /* 2353 * Load the history object. If we have an older pool, this 2354 * will not be present. 2355 */ 2356 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2357 if (error != 0 && error != ENOENT) 2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2359 2360 /* 2361 * If we're assembling the pool from the split-off vdevs of 2362 * an existing pool, we don't want to attach the spares & cache 2363 * devices. 2364 */ 2365 2366 /* 2367 * Load any hot spares for this pool. 2368 */ 2369 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2370 if (error != 0 && error != ENOENT) 2371 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2372 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2373 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2374 if (load_nvlist(spa, spa->spa_spares.sav_object, 2375 &spa->spa_spares.sav_config) != 0) 2376 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2377 2378 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2379 spa_load_spares(spa); 2380 spa_config_exit(spa, SCL_ALL, FTAG); 2381 } else if (error == 0) { 2382 spa->spa_spares.sav_sync = B_TRUE; 2383 } 2384 2385 /* 2386 * Load any level 2 ARC devices for this pool. 2387 */ 2388 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2389 &spa->spa_l2cache.sav_object); 2390 if (error != 0 && error != ENOENT) 2391 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2392 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2393 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2394 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2395 &spa->spa_l2cache.sav_config) != 0) 2396 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2397 2398 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2399 spa_load_l2cache(spa); 2400 spa_config_exit(spa, SCL_ALL, FTAG); 2401 } else if (error == 0) { 2402 spa->spa_l2cache.sav_sync = B_TRUE; 2403 } 2404 2405 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2406 2407 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2408 if (error && error != ENOENT) 2409 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2410 2411 if (error == 0) { 2412 uint64_t autoreplace; 2413 2414 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2415 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2416 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2417 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2418 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2419 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2420 &spa->spa_dedup_ditto); 2421 2422 spa->spa_autoreplace = (autoreplace != 0); 2423 } 2424 2425 /* 2426 * If the 'autoreplace' property is set, then post a resource notifying 2427 * the ZFS DE that it should not issue any faults for unopenable 2428 * devices. We also iterate over the vdevs, and post a sysevent for any 2429 * unopenable vdevs so that the normal autoreplace handler can take 2430 * over. 2431 */ 2432 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2433 spa_check_removed(spa->spa_root_vdev); 2434 /* 2435 * For the import case, this is done in spa_import(), because 2436 * at this point we're using the spare definitions from 2437 * the MOS config, not necessarily from the userland config. 2438 */ 2439 if (state != SPA_LOAD_IMPORT) { 2440 spa_aux_check_removed(&spa->spa_spares); 2441 spa_aux_check_removed(&spa->spa_l2cache); 2442 } 2443 } 2444 2445 /* 2446 * Load the vdev state for all toplevel vdevs. 2447 */ 2448 vdev_load(rvd); 2449 2450 /* 2451 * Propagate the leaf DTLs we just loaded all the way up the tree. 2452 */ 2453 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2454 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2455 spa_config_exit(spa, SCL_ALL, FTAG); 2456 2457 /* 2458 * Load the DDTs (dedup tables). 2459 */ 2460 error = ddt_load(spa); 2461 if (error != 0) 2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2463 2464 spa_update_dspace(spa); 2465 2466 /* 2467 * Validate the config, using the MOS config to fill in any 2468 * information which might be missing. If we fail to validate 2469 * the config then declare the pool unfit for use. If we're 2470 * assembling a pool from a split, the log is not transferred 2471 * over. 2472 */ 2473 if (type != SPA_IMPORT_ASSEMBLE) { 2474 nvlist_t *nvconfig; 2475 2476 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2478 2479 if (!spa_config_valid(spa, nvconfig)) { 2480 nvlist_free(nvconfig); 2481 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2482 ENXIO)); 2483 } 2484 nvlist_free(nvconfig); 2485 2486 /* 2487 * Now that we've validated the config, check the state of the 2488 * root vdev. If it can't be opened, it indicates one or 2489 * more toplevel vdevs are faulted. 2490 */ 2491 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2492 return (ENXIO); 2493 2494 if (spa_check_logs(spa)) { 2495 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2496 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2497 } 2498 } 2499 2500 if (missing_feat_write) { 2501 ASSERT(state == SPA_LOAD_TRYIMPORT); 2502 2503 /* 2504 * At this point, we know that we can open the pool in 2505 * read-only mode but not read-write mode. We now have enough 2506 * information and can return to userland. 2507 */ 2508 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2509 } 2510 2511 /* 2512 * We've successfully opened the pool, verify that we're ready 2513 * to start pushing transactions. 2514 */ 2515 if (state != SPA_LOAD_TRYIMPORT) { 2516 if (error = spa_load_verify(spa)) 2517 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2518 error)); 2519 } 2520 2521 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2522 spa->spa_load_max_txg == UINT64_MAX)) { 2523 dmu_tx_t *tx; 2524 int need_update = B_FALSE; 2525 2526 ASSERT(state != SPA_LOAD_TRYIMPORT); 2527 2528 /* 2529 * Claim log blocks that haven't been committed yet. 2530 * This must all happen in a single txg. 2531 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2532 * invoked from zil_claim_log_block()'s i/o done callback. 2533 * Price of rollback is that we abandon the log. 2534 */ 2535 spa->spa_claiming = B_TRUE; 2536 2537 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2538 spa_first_txg(spa)); 2539 (void) dmu_objset_find(spa_name(spa), 2540 zil_claim, tx, DS_FIND_CHILDREN); 2541 dmu_tx_commit(tx); 2542 2543 spa->spa_claiming = B_FALSE; 2544 2545 spa_set_log_state(spa, SPA_LOG_GOOD); 2546 spa->spa_sync_on = B_TRUE; 2547 txg_sync_start(spa->spa_dsl_pool); 2548 2549 /* 2550 * Wait for all claims to sync. We sync up to the highest 2551 * claimed log block birth time so that claimed log blocks 2552 * don't appear to be from the future. spa_claim_max_txg 2553 * will have been set for us by either zil_check_log_chain() 2554 * (invoked from spa_check_logs()) or zil_claim() above. 2555 */ 2556 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2557 2558 /* 2559 * If the config cache is stale, or we have uninitialized 2560 * metaslabs (see spa_vdev_add()), then update the config. 2561 * 2562 * If this is a verbatim import, trust the current 2563 * in-core spa_config and update the disk labels. 2564 */ 2565 if (config_cache_txg != spa->spa_config_txg || 2566 state == SPA_LOAD_IMPORT || 2567 state == SPA_LOAD_RECOVER || 2568 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2569 need_update = B_TRUE; 2570 2571 for (int c = 0; c < rvd->vdev_children; c++) 2572 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2573 need_update = B_TRUE; 2574 2575 /* 2576 * Update the config cache asychronously in case we're the 2577 * root pool, in which case the config cache isn't writable yet. 2578 */ 2579 if (need_update) 2580 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2581 2582 /* 2583 * Check all DTLs to see if anything needs resilvering. 2584 */ 2585 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2586 vdev_resilver_needed(rvd, NULL, NULL)) 2587 spa_async_request(spa, SPA_ASYNC_RESILVER); 2588 2589 /* 2590 * Log the fact that we booted up (so that we can detect if 2591 * we rebooted in the middle of an operation). 2592 */ 2593 spa_history_log_version(spa, "open"); 2594 2595 /* 2596 * Delete any inconsistent datasets. 2597 */ 2598 (void) dmu_objset_find(spa_name(spa), 2599 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2600 2601 /* 2602 * Clean up any stale temporary dataset userrefs. 2603 */ 2604 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2605 } 2606 2607 return (0); 2608 } 2609 2610 static int 2611 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2612 { 2613 int mode = spa->spa_mode; 2614 2615 spa_unload(spa); 2616 spa_deactivate(spa); 2617 2618 spa->spa_load_max_txg--; 2619 2620 spa_activate(spa, mode); 2621 spa_async_suspend(spa); 2622 2623 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2624 } 2625 2626 /* 2627 * If spa_load() fails this function will try loading prior txg's. If 2628 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2629 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2630 * function will not rewind the pool and will return the same error as 2631 * spa_load(). 2632 */ 2633 static int 2634 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2635 uint64_t max_request, int rewind_flags) 2636 { 2637 nvlist_t *loadinfo = NULL; 2638 nvlist_t *config = NULL; 2639 int load_error, rewind_error; 2640 uint64_t safe_rewind_txg; 2641 uint64_t min_txg; 2642 2643 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2644 spa->spa_load_max_txg = spa->spa_load_txg; 2645 spa_set_log_state(spa, SPA_LOG_CLEAR); 2646 } else { 2647 spa->spa_load_max_txg = max_request; 2648 } 2649 2650 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2651 mosconfig); 2652 if (load_error == 0) 2653 return (0); 2654 2655 if (spa->spa_root_vdev != NULL) 2656 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2657 2658 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2659 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2660 2661 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2662 nvlist_free(config); 2663 return (load_error); 2664 } 2665 2666 if (state == SPA_LOAD_RECOVER) { 2667 /* Price of rolling back is discarding txgs, including log */ 2668 spa_set_log_state(spa, SPA_LOG_CLEAR); 2669 } else { 2670 /* 2671 * If we aren't rolling back save the load info from our first 2672 * import attempt so that we can restore it after attempting 2673 * to rewind. 2674 */ 2675 loadinfo = spa->spa_load_info; 2676 spa->spa_load_info = fnvlist_alloc(); 2677 } 2678 2679 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2680 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2681 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2682 TXG_INITIAL : safe_rewind_txg; 2683 2684 /* 2685 * Continue as long as we're finding errors, we're still within 2686 * the acceptable rewind range, and we're still finding uberblocks 2687 */ 2688 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2689 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2690 if (spa->spa_load_max_txg < safe_rewind_txg) 2691 spa->spa_extreme_rewind = B_TRUE; 2692 rewind_error = spa_load_retry(spa, state, mosconfig); 2693 } 2694 2695 spa->spa_extreme_rewind = B_FALSE; 2696 spa->spa_load_max_txg = UINT64_MAX; 2697 2698 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2699 spa_config_set(spa, config); 2700 2701 if (state == SPA_LOAD_RECOVER) { 2702 ASSERT3P(loadinfo, ==, NULL); 2703 return (rewind_error); 2704 } else { 2705 /* Store the rewind info as part of the initial load info */ 2706 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2707 spa->spa_load_info); 2708 2709 /* Restore the initial load info */ 2710 fnvlist_free(spa->spa_load_info); 2711 spa->spa_load_info = loadinfo; 2712 2713 return (load_error); 2714 } 2715 } 2716 2717 /* 2718 * Pool Open/Import 2719 * 2720 * The import case is identical to an open except that the configuration is sent 2721 * down from userland, instead of grabbed from the configuration cache. For the 2722 * case of an open, the pool configuration will exist in the 2723 * POOL_STATE_UNINITIALIZED state. 2724 * 2725 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2726 * the same time open the pool, without having to keep around the spa_t in some 2727 * ambiguous state. 2728 */ 2729 static int 2730 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2731 nvlist_t **config) 2732 { 2733 spa_t *spa; 2734 spa_load_state_t state = SPA_LOAD_OPEN; 2735 int error; 2736 int locked = B_FALSE; 2737 2738 *spapp = NULL; 2739 2740 /* 2741 * As disgusting as this is, we need to support recursive calls to this 2742 * function because dsl_dir_open() is called during spa_load(), and ends 2743 * up calling spa_open() again. The real fix is to figure out how to 2744 * avoid dsl_dir_open() calling this in the first place. 2745 */ 2746 if (mutex_owner(&spa_namespace_lock) != curthread) { 2747 mutex_enter(&spa_namespace_lock); 2748 locked = B_TRUE; 2749 } 2750 2751 if ((spa = spa_lookup(pool)) == NULL) { 2752 if (locked) 2753 mutex_exit(&spa_namespace_lock); 2754 return (ENOENT); 2755 } 2756 2757 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2758 zpool_rewind_policy_t policy; 2759 2760 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2761 &policy); 2762 if (policy.zrp_request & ZPOOL_DO_REWIND) 2763 state = SPA_LOAD_RECOVER; 2764 2765 spa_activate(spa, spa_mode_global); 2766 2767 if (state != SPA_LOAD_RECOVER) 2768 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2769 2770 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2771 policy.zrp_request); 2772 2773 if (error == EBADF) { 2774 /* 2775 * If vdev_validate() returns failure (indicated by 2776 * EBADF), it indicates that one of the vdevs indicates 2777 * that the pool has been exported or destroyed. If 2778 * this is the case, the config cache is out of sync and 2779 * we should remove the pool from the namespace. 2780 */ 2781 spa_unload(spa); 2782 spa_deactivate(spa); 2783 spa_config_sync(spa, B_TRUE, B_TRUE); 2784 spa_remove(spa); 2785 if (locked) 2786 mutex_exit(&spa_namespace_lock); 2787 return (ENOENT); 2788 } 2789 2790 if (error) { 2791 /* 2792 * We can't open the pool, but we still have useful 2793 * information: the state of each vdev after the 2794 * attempted vdev_open(). Return this to the user. 2795 */ 2796 if (config != NULL && spa->spa_config) { 2797 VERIFY(nvlist_dup(spa->spa_config, config, 2798 KM_SLEEP) == 0); 2799 VERIFY(nvlist_add_nvlist(*config, 2800 ZPOOL_CONFIG_LOAD_INFO, 2801 spa->spa_load_info) == 0); 2802 } 2803 spa_unload(spa); 2804 spa_deactivate(spa); 2805 spa->spa_last_open_failed = error; 2806 if (locked) 2807 mutex_exit(&spa_namespace_lock); 2808 *spapp = NULL; 2809 return (error); 2810 } 2811 } 2812 2813 spa_open_ref(spa, tag); 2814 2815 if (config != NULL) 2816 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2817 2818 /* 2819 * If we've recovered the pool, pass back any information we 2820 * gathered while doing the load. 2821 */ 2822 if (state == SPA_LOAD_RECOVER) { 2823 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2824 spa->spa_load_info) == 0); 2825 } 2826 2827 if (locked) { 2828 spa->spa_last_open_failed = 0; 2829 spa->spa_last_ubsync_txg = 0; 2830 spa->spa_load_txg = 0; 2831 mutex_exit(&spa_namespace_lock); 2832 } 2833 2834 *spapp = spa; 2835 2836 return (0); 2837 } 2838 2839 int 2840 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2841 nvlist_t **config) 2842 { 2843 return (spa_open_common(name, spapp, tag, policy, config)); 2844 } 2845 2846 int 2847 spa_open(const char *name, spa_t **spapp, void *tag) 2848 { 2849 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2850 } 2851 2852 /* 2853 * Lookup the given spa_t, incrementing the inject count in the process, 2854 * preventing it from being exported or destroyed. 2855 */ 2856 spa_t * 2857 spa_inject_addref(char *name) 2858 { 2859 spa_t *spa; 2860 2861 mutex_enter(&spa_namespace_lock); 2862 if ((spa = spa_lookup(name)) == NULL) { 2863 mutex_exit(&spa_namespace_lock); 2864 return (NULL); 2865 } 2866 spa->spa_inject_ref++; 2867 mutex_exit(&spa_namespace_lock); 2868 2869 return (spa); 2870 } 2871 2872 void 2873 spa_inject_delref(spa_t *spa) 2874 { 2875 mutex_enter(&spa_namespace_lock); 2876 spa->spa_inject_ref--; 2877 mutex_exit(&spa_namespace_lock); 2878 } 2879 2880 /* 2881 * Add spares device information to the nvlist. 2882 */ 2883 static void 2884 spa_add_spares(spa_t *spa, nvlist_t *config) 2885 { 2886 nvlist_t **spares; 2887 uint_t i, nspares; 2888 nvlist_t *nvroot; 2889 uint64_t guid; 2890 vdev_stat_t *vs; 2891 uint_t vsc; 2892 uint64_t pool; 2893 2894 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2895 2896 if (spa->spa_spares.sav_count == 0) 2897 return; 2898 2899 VERIFY(nvlist_lookup_nvlist(config, 2900 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2901 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2902 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2903 if (nspares != 0) { 2904 VERIFY(nvlist_add_nvlist_array(nvroot, 2905 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2906 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2907 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2908 2909 /* 2910 * Go through and find any spares which have since been 2911 * repurposed as an active spare. If this is the case, update 2912 * their status appropriately. 2913 */ 2914 for (i = 0; i < nspares; i++) { 2915 VERIFY(nvlist_lookup_uint64(spares[i], 2916 ZPOOL_CONFIG_GUID, &guid) == 0); 2917 if (spa_spare_exists(guid, &pool, NULL) && 2918 pool != 0ULL) { 2919 VERIFY(nvlist_lookup_uint64_array( 2920 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2921 (uint64_t **)&vs, &vsc) == 0); 2922 vs->vs_state = VDEV_STATE_CANT_OPEN; 2923 vs->vs_aux = VDEV_AUX_SPARED; 2924 } 2925 } 2926 } 2927 } 2928 2929 /* 2930 * Add l2cache device information to the nvlist, including vdev stats. 2931 */ 2932 static void 2933 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2934 { 2935 nvlist_t **l2cache; 2936 uint_t i, j, nl2cache; 2937 nvlist_t *nvroot; 2938 uint64_t guid; 2939 vdev_t *vd; 2940 vdev_stat_t *vs; 2941 uint_t vsc; 2942 2943 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2944 2945 if (spa->spa_l2cache.sav_count == 0) 2946 return; 2947 2948 VERIFY(nvlist_lookup_nvlist(config, 2949 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2950 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2951 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2952 if (nl2cache != 0) { 2953 VERIFY(nvlist_add_nvlist_array(nvroot, 2954 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2955 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2956 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2957 2958 /* 2959 * Update level 2 cache device stats. 2960 */ 2961 2962 for (i = 0; i < nl2cache; i++) { 2963 VERIFY(nvlist_lookup_uint64(l2cache[i], 2964 ZPOOL_CONFIG_GUID, &guid) == 0); 2965 2966 vd = NULL; 2967 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2968 if (guid == 2969 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2970 vd = spa->spa_l2cache.sav_vdevs[j]; 2971 break; 2972 } 2973 } 2974 ASSERT(vd != NULL); 2975 2976 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2977 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2978 == 0); 2979 vdev_get_stats(vd, vs); 2980 } 2981 } 2982 } 2983 2984 static void 2985 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 2986 { 2987 nvlist_t *features; 2988 zap_cursor_t zc; 2989 zap_attribute_t za; 2990 2991 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2992 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2993 2994 if (spa->spa_feat_for_read_obj != 0) { 2995 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2996 spa->spa_feat_for_read_obj); 2997 zap_cursor_retrieve(&zc, &za) == 0; 2998 zap_cursor_advance(&zc)) { 2999 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3000 za.za_num_integers == 1); 3001 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3002 za.za_first_integer)); 3003 } 3004 zap_cursor_fini(&zc); 3005 } 3006 3007 if (spa->spa_feat_for_write_obj != 0) { 3008 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3009 spa->spa_feat_for_write_obj); 3010 zap_cursor_retrieve(&zc, &za) == 0; 3011 zap_cursor_advance(&zc)) { 3012 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3013 za.za_num_integers == 1); 3014 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3015 za.za_first_integer)); 3016 } 3017 zap_cursor_fini(&zc); 3018 } 3019 3020 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3021 features) == 0); 3022 nvlist_free(features); 3023 } 3024 3025 int 3026 spa_get_stats(const char *name, nvlist_t **config, 3027 char *altroot, size_t buflen) 3028 { 3029 int error; 3030 spa_t *spa; 3031 3032 *config = NULL; 3033 error = spa_open_common(name, &spa, FTAG, NULL, config); 3034 3035 if (spa != NULL) { 3036 /* 3037 * This still leaves a window of inconsistency where the spares 3038 * or l2cache devices could change and the config would be 3039 * self-inconsistent. 3040 */ 3041 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3042 3043 if (*config != NULL) { 3044 uint64_t loadtimes[2]; 3045 3046 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3047 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3048 VERIFY(nvlist_add_uint64_array(*config, 3049 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3050 3051 VERIFY(nvlist_add_uint64(*config, 3052 ZPOOL_CONFIG_ERRCOUNT, 3053 spa_get_errlog_size(spa)) == 0); 3054 3055 if (spa_suspended(spa)) 3056 VERIFY(nvlist_add_uint64(*config, 3057 ZPOOL_CONFIG_SUSPENDED, 3058 spa->spa_failmode) == 0); 3059 3060 spa_add_spares(spa, *config); 3061 spa_add_l2cache(spa, *config); 3062 spa_add_feature_stats(spa, *config); 3063 } 3064 } 3065 3066 /* 3067 * We want to get the alternate root even for faulted pools, so we cheat 3068 * and call spa_lookup() directly. 3069 */ 3070 if (altroot) { 3071 if (spa == NULL) { 3072 mutex_enter(&spa_namespace_lock); 3073 spa = spa_lookup(name); 3074 if (spa) 3075 spa_altroot(spa, altroot, buflen); 3076 else 3077 altroot[0] = '\0'; 3078 spa = NULL; 3079 mutex_exit(&spa_namespace_lock); 3080 } else { 3081 spa_altroot(spa, altroot, buflen); 3082 } 3083 } 3084 3085 if (spa != NULL) { 3086 spa_config_exit(spa, SCL_CONFIG, FTAG); 3087 spa_close(spa, FTAG); 3088 } 3089 3090 return (error); 3091 } 3092 3093 /* 3094 * Validate that the auxiliary device array is well formed. We must have an 3095 * array of nvlists, each which describes a valid leaf vdev. If this is an 3096 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3097 * specified, as long as they are well-formed. 3098 */ 3099 static int 3100 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3101 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3102 vdev_labeltype_t label) 3103 { 3104 nvlist_t **dev; 3105 uint_t i, ndev; 3106 vdev_t *vd; 3107 int error; 3108 3109 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3110 3111 /* 3112 * It's acceptable to have no devs specified. 3113 */ 3114 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3115 return (0); 3116 3117 if (ndev == 0) 3118 return (EINVAL); 3119 3120 /* 3121 * Make sure the pool is formatted with a version that supports this 3122 * device type. 3123 */ 3124 if (spa_version(spa) < version) 3125 return (ENOTSUP); 3126 3127 /* 3128 * Set the pending device list so we correctly handle device in-use 3129 * checking. 3130 */ 3131 sav->sav_pending = dev; 3132 sav->sav_npending = ndev; 3133 3134 for (i = 0; i < ndev; i++) { 3135 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3136 mode)) != 0) 3137 goto out; 3138 3139 if (!vd->vdev_ops->vdev_op_leaf) { 3140 vdev_free(vd); 3141 error = EINVAL; 3142 goto out; 3143 } 3144 3145 /* 3146 * The L2ARC currently only supports disk devices in 3147 * kernel context. For user-level testing, we allow it. 3148 */ 3149 #ifdef _KERNEL 3150 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3151 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3152 error = ENOTBLK; 3153 vdev_free(vd); 3154 goto out; 3155 } 3156 #endif 3157 vd->vdev_top = vd; 3158 3159 if ((error = vdev_open(vd)) == 0 && 3160 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3161 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3162 vd->vdev_guid) == 0); 3163 } 3164 3165 vdev_free(vd); 3166 3167 if (error && 3168 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3169 goto out; 3170 else 3171 error = 0; 3172 } 3173 3174 out: 3175 sav->sav_pending = NULL; 3176 sav->sav_npending = 0; 3177 return (error); 3178 } 3179 3180 static int 3181 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3182 { 3183 int error; 3184 3185 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3186 3187 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3188 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3189 VDEV_LABEL_SPARE)) != 0) { 3190 return (error); 3191 } 3192 3193 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3194 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3195 VDEV_LABEL_L2CACHE)); 3196 } 3197 3198 static void 3199 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3200 const char *config) 3201 { 3202 int i; 3203 3204 if (sav->sav_config != NULL) { 3205 nvlist_t **olddevs; 3206 uint_t oldndevs; 3207 nvlist_t **newdevs; 3208 3209 /* 3210 * Generate new dev list by concatentating with the 3211 * current dev list. 3212 */ 3213 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3214 &olddevs, &oldndevs) == 0); 3215 3216 newdevs = kmem_alloc(sizeof (void *) * 3217 (ndevs + oldndevs), KM_SLEEP); 3218 for (i = 0; i < oldndevs; i++) 3219 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3220 KM_SLEEP) == 0); 3221 for (i = 0; i < ndevs; i++) 3222 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3223 KM_SLEEP) == 0); 3224 3225 VERIFY(nvlist_remove(sav->sav_config, config, 3226 DATA_TYPE_NVLIST_ARRAY) == 0); 3227 3228 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3229 config, newdevs, ndevs + oldndevs) == 0); 3230 for (i = 0; i < oldndevs + ndevs; i++) 3231 nvlist_free(newdevs[i]); 3232 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3233 } else { 3234 /* 3235 * Generate a new dev list. 3236 */ 3237 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3238 KM_SLEEP) == 0); 3239 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3240 devs, ndevs) == 0); 3241 } 3242 } 3243 3244 /* 3245 * Stop and drop level 2 ARC devices 3246 */ 3247 void 3248 spa_l2cache_drop(spa_t *spa) 3249 { 3250 vdev_t *vd; 3251 int i; 3252 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3253 3254 for (i = 0; i < sav->sav_count; i++) { 3255 uint64_t pool; 3256 3257 vd = sav->sav_vdevs[i]; 3258 ASSERT(vd != NULL); 3259 3260 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3261 pool != 0ULL && l2arc_vdev_present(vd)) 3262 l2arc_remove_vdev(vd); 3263 } 3264 } 3265 3266 /* 3267 * Pool Creation 3268 */ 3269 int 3270 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3271 nvlist_t *zplprops) 3272 { 3273 spa_t *spa; 3274 char *altroot = NULL; 3275 vdev_t *rvd; 3276 dsl_pool_t *dp; 3277 dmu_tx_t *tx; 3278 int error = 0; 3279 uint64_t txg = TXG_INITIAL; 3280 nvlist_t **spares, **l2cache; 3281 uint_t nspares, nl2cache; 3282 uint64_t version, obj; 3283 boolean_t has_features; 3284 3285 /* 3286 * If this pool already exists, return failure. 3287 */ 3288 mutex_enter(&spa_namespace_lock); 3289 if (spa_lookup(pool) != NULL) { 3290 mutex_exit(&spa_namespace_lock); 3291 return (EEXIST); 3292 } 3293 3294 /* 3295 * Allocate a new spa_t structure. 3296 */ 3297 (void) nvlist_lookup_string(props, 3298 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3299 spa = spa_add(pool, NULL, altroot); 3300 spa_activate(spa, spa_mode_global); 3301 3302 if (props && (error = spa_prop_validate(spa, props))) { 3303 spa_deactivate(spa); 3304 spa_remove(spa); 3305 mutex_exit(&spa_namespace_lock); 3306 return (error); 3307 } 3308 3309 has_features = B_FALSE; 3310 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3311 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3312 if (zpool_prop_feature(nvpair_name(elem))) 3313 has_features = B_TRUE; 3314 } 3315 3316 if (has_features || nvlist_lookup_uint64(props, 3317 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3318 version = SPA_VERSION; 3319 } 3320 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3321 3322 spa->spa_first_txg = txg; 3323 spa->spa_uberblock.ub_txg = txg - 1; 3324 spa->spa_uberblock.ub_version = version; 3325 spa->spa_ubsync = spa->spa_uberblock; 3326 3327 /* 3328 * Create "The Godfather" zio to hold all async IOs 3329 */ 3330 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3331 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3332 3333 /* 3334 * Create the root vdev. 3335 */ 3336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3337 3338 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3339 3340 ASSERT(error != 0 || rvd != NULL); 3341 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3342 3343 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3344 error = EINVAL; 3345 3346 if (error == 0 && 3347 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3348 (error = spa_validate_aux(spa, nvroot, txg, 3349 VDEV_ALLOC_ADD)) == 0) { 3350 for (int c = 0; c < rvd->vdev_children; c++) { 3351 vdev_metaslab_set_size(rvd->vdev_child[c]); 3352 vdev_expand(rvd->vdev_child[c], txg); 3353 } 3354 } 3355 3356 spa_config_exit(spa, SCL_ALL, FTAG); 3357 3358 if (error != 0) { 3359 spa_unload(spa); 3360 spa_deactivate(spa); 3361 spa_remove(spa); 3362 mutex_exit(&spa_namespace_lock); 3363 return (error); 3364 } 3365 3366 /* 3367 * Get the list of spares, if specified. 3368 */ 3369 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3370 &spares, &nspares) == 0) { 3371 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3372 KM_SLEEP) == 0); 3373 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3374 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3375 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3376 spa_load_spares(spa); 3377 spa_config_exit(spa, SCL_ALL, FTAG); 3378 spa->spa_spares.sav_sync = B_TRUE; 3379 } 3380 3381 /* 3382 * Get the list of level 2 cache devices, if specified. 3383 */ 3384 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3385 &l2cache, &nl2cache) == 0) { 3386 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3387 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3388 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3389 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3390 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3391 spa_load_l2cache(spa); 3392 spa_config_exit(spa, SCL_ALL, FTAG); 3393 spa->spa_l2cache.sav_sync = B_TRUE; 3394 } 3395 3396 spa->spa_is_initializing = B_TRUE; 3397 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3398 spa->spa_meta_objset = dp->dp_meta_objset; 3399 spa->spa_is_initializing = B_FALSE; 3400 3401 /* 3402 * Create DDTs (dedup tables). 3403 */ 3404 ddt_create(spa); 3405 3406 spa_update_dspace(spa); 3407 3408 tx = dmu_tx_create_assigned(dp, txg); 3409 3410 /* 3411 * Create the pool config object. 3412 */ 3413 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3414 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3415 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3416 3417 if (zap_add(spa->spa_meta_objset, 3418 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3419 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3420 cmn_err(CE_PANIC, "failed to add pool config"); 3421 } 3422 3423 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3424 spa_feature_create_zap_objects(spa, tx); 3425 3426 if (zap_add(spa->spa_meta_objset, 3427 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3428 sizeof (uint64_t), 1, &version, tx) != 0) { 3429 cmn_err(CE_PANIC, "failed to add pool version"); 3430 } 3431 3432 /* Newly created pools with the right version are always deflated. */ 3433 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3434 spa->spa_deflate = TRUE; 3435 if (zap_add(spa->spa_meta_objset, 3436 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3437 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3438 cmn_err(CE_PANIC, "failed to add deflate"); 3439 } 3440 } 3441 3442 /* 3443 * Create the deferred-free bpobj. Turn off compression 3444 * because sync-to-convergence takes longer if the blocksize 3445 * keeps changing. 3446 */ 3447 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3448 dmu_object_set_compress(spa->spa_meta_objset, obj, 3449 ZIO_COMPRESS_OFF, tx); 3450 if (zap_add(spa->spa_meta_objset, 3451 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3452 sizeof (uint64_t), 1, &obj, tx) != 0) { 3453 cmn_err(CE_PANIC, "failed to add bpobj"); 3454 } 3455 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3456 spa->spa_meta_objset, obj)); 3457 3458 /* 3459 * Create the pool's history object. 3460 */ 3461 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3462 spa_history_create_obj(spa, tx); 3463 3464 /* 3465 * Set pool properties. 3466 */ 3467 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3468 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3469 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3470 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3471 3472 if (props != NULL) { 3473 spa_configfile_set(spa, props, B_FALSE); 3474 spa_sync_props(spa, props, tx); 3475 } 3476 3477 dmu_tx_commit(tx); 3478 3479 spa->spa_sync_on = B_TRUE; 3480 txg_sync_start(spa->spa_dsl_pool); 3481 3482 /* 3483 * We explicitly wait for the first transaction to complete so that our 3484 * bean counters are appropriately updated. 3485 */ 3486 txg_wait_synced(spa->spa_dsl_pool, txg); 3487 3488 spa_config_sync(spa, B_FALSE, B_TRUE); 3489 3490 spa_history_log_version(spa, "create"); 3491 3492 spa->spa_minref = refcount_count(&spa->spa_refcount); 3493 3494 mutex_exit(&spa_namespace_lock); 3495 3496 return (0); 3497 } 3498 3499 #ifdef _KERNEL 3500 /* 3501 * Get the root pool information from the root disk, then import the root pool 3502 * during the system boot up time. 3503 */ 3504 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3505 3506 static nvlist_t * 3507 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3508 { 3509 nvlist_t *config; 3510 nvlist_t *nvtop, *nvroot; 3511 uint64_t pgid; 3512 3513 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3514 return (NULL); 3515 3516 /* 3517 * Add this top-level vdev to the child array. 3518 */ 3519 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3520 &nvtop) == 0); 3521 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3522 &pgid) == 0); 3523 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3524 3525 /* 3526 * Put this pool's top-level vdevs into a root vdev. 3527 */ 3528 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3529 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3530 VDEV_TYPE_ROOT) == 0); 3531 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3532 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3533 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3534 &nvtop, 1) == 0); 3535 3536 /* 3537 * Replace the existing vdev_tree with the new root vdev in 3538 * this pool's configuration (remove the old, add the new). 3539 */ 3540 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3541 nvlist_free(nvroot); 3542 return (config); 3543 } 3544 3545 /* 3546 * Walk the vdev tree and see if we can find a device with "better" 3547 * configuration. A configuration is "better" if the label on that 3548 * device has a more recent txg. 3549 */ 3550 static void 3551 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3552 { 3553 for (int c = 0; c < vd->vdev_children; c++) 3554 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3555 3556 if (vd->vdev_ops->vdev_op_leaf) { 3557 nvlist_t *label; 3558 uint64_t label_txg; 3559 3560 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3561 &label) != 0) 3562 return; 3563 3564 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3565 &label_txg) == 0); 3566 3567 /* 3568 * Do we have a better boot device? 3569 */ 3570 if (label_txg > *txg) { 3571 *txg = label_txg; 3572 *avd = vd; 3573 } 3574 nvlist_free(label); 3575 } 3576 } 3577 3578 /* 3579 * Import a root pool. 3580 * 3581 * For x86. devpath_list will consist of devid and/or physpath name of 3582 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3583 * The GRUB "findroot" command will return the vdev we should boot. 3584 * 3585 * For Sparc, devpath_list consists the physpath name of the booting device 3586 * no matter the rootpool is a single device pool or a mirrored pool. 3587 * e.g. 3588 * "/pci@1f,0/ide@d/disk@0,0:a" 3589 */ 3590 int 3591 spa_import_rootpool(char *devpath, char *devid) 3592 { 3593 spa_t *spa; 3594 vdev_t *rvd, *bvd, *avd = NULL; 3595 nvlist_t *config, *nvtop; 3596 uint64_t guid, txg; 3597 char *pname; 3598 int error; 3599 3600 /* 3601 * Read the label from the boot device and generate a configuration. 3602 */ 3603 config = spa_generate_rootconf(devpath, devid, &guid); 3604 #if defined(_OBP) && defined(_KERNEL) 3605 if (config == NULL) { 3606 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3607 /* iscsi boot */ 3608 get_iscsi_bootpath_phy(devpath); 3609 config = spa_generate_rootconf(devpath, devid, &guid); 3610 } 3611 } 3612 #endif 3613 if (config == NULL) { 3614 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3615 devpath); 3616 return (EIO); 3617 } 3618 3619 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3620 &pname) == 0); 3621 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3622 3623 mutex_enter(&spa_namespace_lock); 3624 if ((spa = spa_lookup(pname)) != NULL) { 3625 /* 3626 * Remove the existing root pool from the namespace so that we 3627 * can replace it with the correct config we just read in. 3628 */ 3629 spa_remove(spa); 3630 } 3631 3632 spa = spa_add(pname, config, NULL); 3633 spa->spa_is_root = B_TRUE; 3634 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3635 3636 /* 3637 * Build up a vdev tree based on the boot device's label config. 3638 */ 3639 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3640 &nvtop) == 0); 3641 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3642 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3643 VDEV_ALLOC_ROOTPOOL); 3644 spa_config_exit(spa, SCL_ALL, FTAG); 3645 if (error) { 3646 mutex_exit(&spa_namespace_lock); 3647 nvlist_free(config); 3648 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3649 pname); 3650 return (error); 3651 } 3652 3653 /* 3654 * Get the boot vdev. 3655 */ 3656 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3657 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3658 (u_longlong_t)guid); 3659 error = ENOENT; 3660 goto out; 3661 } 3662 3663 /* 3664 * Determine if there is a better boot device. 3665 */ 3666 avd = bvd; 3667 spa_alt_rootvdev(rvd, &avd, &txg); 3668 if (avd != bvd) { 3669 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3670 "try booting from '%s'", avd->vdev_path); 3671 error = EINVAL; 3672 goto out; 3673 } 3674 3675 /* 3676 * If the boot device is part of a spare vdev then ensure that 3677 * we're booting off the active spare. 3678 */ 3679 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3680 !bvd->vdev_isspare) { 3681 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3682 "try booting from '%s'", 3683 bvd->vdev_parent-> 3684 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3685 error = EINVAL; 3686 goto out; 3687 } 3688 3689 error = 0; 3690 out: 3691 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3692 vdev_free(rvd); 3693 spa_config_exit(spa, SCL_ALL, FTAG); 3694 mutex_exit(&spa_namespace_lock); 3695 3696 nvlist_free(config); 3697 return (error); 3698 } 3699 3700 #endif 3701 3702 /* 3703 * Import a non-root pool into the system. 3704 */ 3705 int 3706 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3707 { 3708 spa_t *spa; 3709 char *altroot = NULL; 3710 spa_load_state_t state = SPA_LOAD_IMPORT; 3711 zpool_rewind_policy_t policy; 3712 uint64_t mode = spa_mode_global; 3713 uint64_t readonly = B_FALSE; 3714 int error; 3715 nvlist_t *nvroot; 3716 nvlist_t **spares, **l2cache; 3717 uint_t nspares, nl2cache; 3718 3719 /* 3720 * If a pool with this name exists, return failure. 3721 */ 3722 mutex_enter(&spa_namespace_lock); 3723 if (spa_lookup(pool) != NULL) { 3724 mutex_exit(&spa_namespace_lock); 3725 return (EEXIST); 3726 } 3727 3728 /* 3729 * Create and initialize the spa structure. 3730 */ 3731 (void) nvlist_lookup_string(props, 3732 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3733 (void) nvlist_lookup_uint64(props, 3734 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3735 if (readonly) 3736 mode = FREAD; 3737 spa = spa_add(pool, config, altroot); 3738 spa->spa_import_flags = flags; 3739 3740 /* 3741 * Verbatim import - Take a pool and insert it into the namespace 3742 * as if it had been loaded at boot. 3743 */ 3744 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3745 if (props != NULL) 3746 spa_configfile_set(spa, props, B_FALSE); 3747 3748 spa_config_sync(spa, B_FALSE, B_TRUE); 3749 3750 mutex_exit(&spa_namespace_lock); 3751 spa_history_log_version(spa, "import"); 3752 3753 return (0); 3754 } 3755 3756 spa_activate(spa, mode); 3757 3758 /* 3759 * Don't start async tasks until we know everything is healthy. 3760 */ 3761 spa_async_suspend(spa); 3762 3763 zpool_get_rewind_policy(config, &policy); 3764 if (policy.zrp_request & ZPOOL_DO_REWIND) 3765 state = SPA_LOAD_RECOVER; 3766 3767 /* 3768 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3769 * because the user-supplied config is actually the one to trust when 3770 * doing an import. 3771 */ 3772 if (state != SPA_LOAD_RECOVER) 3773 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3774 3775 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3776 policy.zrp_request); 3777 3778 /* 3779 * Propagate anything learned while loading the pool and pass it 3780 * back to caller (i.e. rewind info, missing devices, etc). 3781 */ 3782 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3783 spa->spa_load_info) == 0); 3784 3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3786 /* 3787 * Toss any existing sparelist, as it doesn't have any validity 3788 * anymore, and conflicts with spa_has_spare(). 3789 */ 3790 if (spa->spa_spares.sav_config) { 3791 nvlist_free(spa->spa_spares.sav_config); 3792 spa->spa_spares.sav_config = NULL; 3793 spa_load_spares(spa); 3794 } 3795 if (spa->spa_l2cache.sav_config) { 3796 nvlist_free(spa->spa_l2cache.sav_config); 3797 spa->spa_l2cache.sav_config = NULL; 3798 spa_load_l2cache(spa); 3799 } 3800 3801 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3802 &nvroot) == 0); 3803 if (error == 0) 3804 error = spa_validate_aux(spa, nvroot, -1ULL, 3805 VDEV_ALLOC_SPARE); 3806 if (error == 0) 3807 error = spa_validate_aux(spa, nvroot, -1ULL, 3808 VDEV_ALLOC_L2CACHE); 3809 spa_config_exit(spa, SCL_ALL, FTAG); 3810 3811 if (props != NULL) 3812 spa_configfile_set(spa, props, B_FALSE); 3813 3814 if (error != 0 || (props && spa_writeable(spa) && 3815 (error = spa_prop_set(spa, props)))) { 3816 spa_unload(spa); 3817 spa_deactivate(spa); 3818 spa_remove(spa); 3819 mutex_exit(&spa_namespace_lock); 3820 return (error); 3821 } 3822 3823 spa_async_resume(spa); 3824 3825 /* 3826 * Override any spares and level 2 cache devices as specified by 3827 * the user, as these may have correct device names/devids, etc. 3828 */ 3829 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3830 &spares, &nspares) == 0) { 3831 if (spa->spa_spares.sav_config) 3832 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3833 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3834 else 3835 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3836 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3837 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3838 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3839 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3840 spa_load_spares(spa); 3841 spa_config_exit(spa, SCL_ALL, FTAG); 3842 spa->spa_spares.sav_sync = B_TRUE; 3843 } 3844 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3845 &l2cache, &nl2cache) == 0) { 3846 if (spa->spa_l2cache.sav_config) 3847 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3848 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3849 else 3850 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3851 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3852 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3853 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3854 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3855 spa_load_l2cache(spa); 3856 spa_config_exit(spa, SCL_ALL, FTAG); 3857 spa->spa_l2cache.sav_sync = B_TRUE; 3858 } 3859 3860 /* 3861 * Check for any removed devices. 3862 */ 3863 if (spa->spa_autoreplace) { 3864 spa_aux_check_removed(&spa->spa_spares); 3865 spa_aux_check_removed(&spa->spa_l2cache); 3866 } 3867 3868 if (spa_writeable(spa)) { 3869 /* 3870 * Update the config cache to include the newly-imported pool. 3871 */ 3872 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3873 } 3874 3875 /* 3876 * It's possible that the pool was expanded while it was exported. 3877 * We kick off an async task to handle this for us. 3878 */ 3879 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3880 3881 mutex_exit(&spa_namespace_lock); 3882 spa_history_log_version(spa, "import"); 3883 3884 return (0); 3885 } 3886 3887 nvlist_t * 3888 spa_tryimport(nvlist_t *tryconfig) 3889 { 3890 nvlist_t *config = NULL; 3891 char *poolname; 3892 spa_t *spa; 3893 uint64_t state; 3894 int error; 3895 3896 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3897 return (NULL); 3898 3899 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3900 return (NULL); 3901 3902 /* 3903 * Create and initialize the spa structure. 3904 */ 3905 mutex_enter(&spa_namespace_lock); 3906 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3907 spa_activate(spa, FREAD); 3908 3909 /* 3910 * Pass off the heavy lifting to spa_load(). 3911 * Pass TRUE for mosconfig because the user-supplied config 3912 * is actually the one to trust when doing an import. 3913 */ 3914 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3915 3916 /* 3917 * If 'tryconfig' was at least parsable, return the current config. 3918 */ 3919 if (spa->spa_root_vdev != NULL) { 3920 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3921 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3922 poolname) == 0); 3923 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3924 state) == 0); 3925 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3926 spa->spa_uberblock.ub_timestamp) == 0); 3927 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3928 spa->spa_load_info) == 0); 3929 3930 /* 3931 * If the bootfs property exists on this pool then we 3932 * copy it out so that external consumers can tell which 3933 * pools are bootable. 3934 */ 3935 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3936 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3937 3938 /* 3939 * We have to play games with the name since the 3940 * pool was opened as TRYIMPORT_NAME. 3941 */ 3942 if (dsl_dsobj_to_dsname(spa_name(spa), 3943 spa->spa_bootfs, tmpname) == 0) { 3944 char *cp; 3945 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3946 3947 cp = strchr(tmpname, '/'); 3948 if (cp == NULL) { 3949 (void) strlcpy(dsname, tmpname, 3950 MAXPATHLEN); 3951 } else { 3952 (void) snprintf(dsname, MAXPATHLEN, 3953 "%s/%s", poolname, ++cp); 3954 } 3955 VERIFY(nvlist_add_string(config, 3956 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3957 kmem_free(dsname, MAXPATHLEN); 3958 } 3959 kmem_free(tmpname, MAXPATHLEN); 3960 } 3961 3962 /* 3963 * Add the list of hot spares and level 2 cache devices. 3964 */ 3965 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3966 spa_add_spares(spa, config); 3967 spa_add_l2cache(spa, config); 3968 spa_config_exit(spa, SCL_CONFIG, FTAG); 3969 } 3970 3971 spa_unload(spa); 3972 spa_deactivate(spa); 3973 spa_remove(spa); 3974 mutex_exit(&spa_namespace_lock); 3975 3976 return (config); 3977 } 3978 3979 /* 3980 * Pool export/destroy 3981 * 3982 * The act of destroying or exporting a pool is very simple. We make sure there 3983 * is no more pending I/O and any references to the pool are gone. Then, we 3984 * update the pool state and sync all the labels to disk, removing the 3985 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3986 * we don't sync the labels or remove the configuration cache. 3987 */ 3988 static int 3989 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3990 boolean_t force, boolean_t hardforce) 3991 { 3992 spa_t *spa; 3993 3994 if (oldconfig) 3995 *oldconfig = NULL; 3996 3997 if (!(spa_mode_global & FWRITE)) 3998 return (EROFS); 3999 4000 mutex_enter(&spa_namespace_lock); 4001 if ((spa = spa_lookup(pool)) == NULL) { 4002 mutex_exit(&spa_namespace_lock); 4003 return (ENOENT); 4004 } 4005 4006 /* 4007 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4008 * reacquire the namespace lock, and see if we can export. 4009 */ 4010 spa_open_ref(spa, FTAG); 4011 mutex_exit(&spa_namespace_lock); 4012 spa_async_suspend(spa); 4013 mutex_enter(&spa_namespace_lock); 4014 spa_close(spa, FTAG); 4015 4016 /* 4017 * The pool will be in core if it's openable, 4018 * in which case we can modify its state. 4019 */ 4020 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4021 /* 4022 * Objsets may be open only because they're dirty, so we 4023 * have to force it to sync before checking spa_refcnt. 4024 */ 4025 txg_wait_synced(spa->spa_dsl_pool, 0); 4026 4027 /* 4028 * A pool cannot be exported or destroyed if there are active 4029 * references. If we are resetting a pool, allow references by 4030 * fault injection handlers. 4031 */ 4032 if (!spa_refcount_zero(spa) || 4033 (spa->spa_inject_ref != 0 && 4034 new_state != POOL_STATE_UNINITIALIZED)) { 4035 spa_async_resume(spa); 4036 mutex_exit(&spa_namespace_lock); 4037 return (EBUSY); 4038 } 4039 4040 /* 4041 * A pool cannot be exported if it has an active shared spare. 4042 * This is to prevent other pools stealing the active spare 4043 * from an exported pool. At user's own will, such pool can 4044 * be forcedly exported. 4045 */ 4046 if (!force && new_state == POOL_STATE_EXPORTED && 4047 spa_has_active_shared_spare(spa)) { 4048 spa_async_resume(spa); 4049 mutex_exit(&spa_namespace_lock); 4050 return (EXDEV); 4051 } 4052 4053 /* 4054 * We want this to be reflected on every label, 4055 * so mark them all dirty. spa_unload() will do the 4056 * final sync that pushes these changes out. 4057 */ 4058 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4059 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4060 spa->spa_state = new_state; 4061 spa->spa_final_txg = spa_last_synced_txg(spa) + 4062 TXG_DEFER_SIZE + 1; 4063 vdev_config_dirty(spa->spa_root_vdev); 4064 spa_config_exit(spa, SCL_ALL, FTAG); 4065 } 4066 } 4067 4068 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4069 4070 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4071 spa_unload(spa); 4072 spa_deactivate(spa); 4073 } 4074 4075 if (oldconfig && spa->spa_config) 4076 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4077 4078 if (new_state != POOL_STATE_UNINITIALIZED) { 4079 if (!hardforce) 4080 spa_config_sync(spa, B_TRUE, B_TRUE); 4081 spa_remove(spa); 4082 } 4083 mutex_exit(&spa_namespace_lock); 4084 4085 return (0); 4086 } 4087 4088 /* 4089 * Destroy a storage pool. 4090 */ 4091 int 4092 spa_destroy(char *pool) 4093 { 4094 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4095 B_FALSE, B_FALSE)); 4096 } 4097 4098 /* 4099 * Export a storage pool. 4100 */ 4101 int 4102 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4103 boolean_t hardforce) 4104 { 4105 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4106 force, hardforce)); 4107 } 4108 4109 /* 4110 * Similar to spa_export(), this unloads the spa_t without actually removing it 4111 * from the namespace in any way. 4112 */ 4113 int 4114 spa_reset(char *pool) 4115 { 4116 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4117 B_FALSE, B_FALSE)); 4118 } 4119 4120 /* 4121 * ========================================================================== 4122 * Device manipulation 4123 * ========================================================================== 4124 */ 4125 4126 /* 4127 * Add a device to a storage pool. 4128 */ 4129 int 4130 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4131 { 4132 uint64_t txg, id; 4133 int error; 4134 vdev_t *rvd = spa->spa_root_vdev; 4135 vdev_t *vd, *tvd; 4136 nvlist_t **spares, **l2cache; 4137 uint_t nspares, nl2cache; 4138 4139 ASSERT(spa_writeable(spa)); 4140 4141 txg = spa_vdev_enter(spa); 4142 4143 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4144 VDEV_ALLOC_ADD)) != 0) 4145 return (spa_vdev_exit(spa, NULL, txg, error)); 4146 4147 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4148 4149 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4150 &nspares) != 0) 4151 nspares = 0; 4152 4153 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4154 &nl2cache) != 0) 4155 nl2cache = 0; 4156 4157 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4158 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4159 4160 if (vd->vdev_children != 0 && 4161 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4162 return (spa_vdev_exit(spa, vd, txg, error)); 4163 4164 /* 4165 * We must validate the spares and l2cache devices after checking the 4166 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4167 */ 4168 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4169 return (spa_vdev_exit(spa, vd, txg, error)); 4170 4171 /* 4172 * Transfer each new top-level vdev from vd to rvd. 4173 */ 4174 for (int c = 0; c < vd->vdev_children; c++) { 4175 4176 /* 4177 * Set the vdev id to the first hole, if one exists. 4178 */ 4179 for (id = 0; id < rvd->vdev_children; id++) { 4180 if (rvd->vdev_child[id]->vdev_ishole) { 4181 vdev_free(rvd->vdev_child[id]); 4182 break; 4183 } 4184 } 4185 tvd = vd->vdev_child[c]; 4186 vdev_remove_child(vd, tvd); 4187 tvd->vdev_id = id; 4188 vdev_add_child(rvd, tvd); 4189 vdev_config_dirty(tvd); 4190 } 4191 4192 if (nspares != 0) { 4193 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4194 ZPOOL_CONFIG_SPARES); 4195 spa_load_spares(spa); 4196 spa->spa_spares.sav_sync = B_TRUE; 4197 } 4198 4199 if (nl2cache != 0) { 4200 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4201 ZPOOL_CONFIG_L2CACHE); 4202 spa_load_l2cache(spa); 4203 spa->spa_l2cache.sav_sync = B_TRUE; 4204 } 4205 4206 /* 4207 * We have to be careful when adding new vdevs to an existing pool. 4208 * If other threads start allocating from these vdevs before we 4209 * sync the config cache, and we lose power, then upon reboot we may 4210 * fail to open the pool because there are DVAs that the config cache 4211 * can't translate. Therefore, we first add the vdevs without 4212 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4213 * and then let spa_config_update() initialize the new metaslabs. 4214 * 4215 * spa_load() checks for added-but-not-initialized vdevs, so that 4216 * if we lose power at any point in this sequence, the remaining 4217 * steps will be completed the next time we load the pool. 4218 */ 4219 (void) spa_vdev_exit(spa, vd, txg, 0); 4220 4221 mutex_enter(&spa_namespace_lock); 4222 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4223 mutex_exit(&spa_namespace_lock); 4224 4225 return (0); 4226 } 4227 4228 /* 4229 * Attach a device to a mirror. The arguments are the path to any device 4230 * in the mirror, and the nvroot for the new device. If the path specifies 4231 * a device that is not mirrored, we automatically insert the mirror vdev. 4232 * 4233 * If 'replacing' is specified, the new device is intended to replace the 4234 * existing device; in this case the two devices are made into their own 4235 * mirror using the 'replacing' vdev, which is functionally identical to 4236 * the mirror vdev (it actually reuses all the same ops) but has a few 4237 * extra rules: you can't attach to it after it's been created, and upon 4238 * completion of resilvering, the first disk (the one being replaced) 4239 * is automatically detached. 4240 */ 4241 int 4242 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4243 { 4244 uint64_t txg, dtl_max_txg; 4245 vdev_t *rvd = spa->spa_root_vdev; 4246 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4247 vdev_ops_t *pvops; 4248 char *oldvdpath, *newvdpath; 4249 int newvd_isspare; 4250 int error; 4251 4252 ASSERT(spa_writeable(spa)); 4253 4254 txg = spa_vdev_enter(spa); 4255 4256 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4257 4258 if (oldvd == NULL) 4259 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4260 4261 if (!oldvd->vdev_ops->vdev_op_leaf) 4262 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4263 4264 pvd = oldvd->vdev_parent; 4265 4266 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4267 VDEV_ALLOC_ATTACH)) != 0) 4268 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4269 4270 if (newrootvd->vdev_children != 1) 4271 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4272 4273 newvd = newrootvd->vdev_child[0]; 4274 4275 if (!newvd->vdev_ops->vdev_op_leaf) 4276 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4277 4278 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4279 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4280 4281 /* 4282 * Spares can't replace logs 4283 */ 4284 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4285 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4286 4287 if (!replacing) { 4288 /* 4289 * For attach, the only allowable parent is a mirror or the root 4290 * vdev. 4291 */ 4292 if (pvd->vdev_ops != &vdev_mirror_ops && 4293 pvd->vdev_ops != &vdev_root_ops) 4294 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4295 4296 pvops = &vdev_mirror_ops; 4297 } else { 4298 /* 4299 * Active hot spares can only be replaced by inactive hot 4300 * spares. 4301 */ 4302 if (pvd->vdev_ops == &vdev_spare_ops && 4303 oldvd->vdev_isspare && 4304 !spa_has_spare(spa, newvd->vdev_guid)) 4305 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4306 4307 /* 4308 * If the source is a hot spare, and the parent isn't already a 4309 * spare, then we want to create a new hot spare. Otherwise, we 4310 * want to create a replacing vdev. The user is not allowed to 4311 * attach to a spared vdev child unless the 'isspare' state is 4312 * the same (spare replaces spare, non-spare replaces 4313 * non-spare). 4314 */ 4315 if (pvd->vdev_ops == &vdev_replacing_ops && 4316 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4317 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4318 } else if (pvd->vdev_ops == &vdev_spare_ops && 4319 newvd->vdev_isspare != oldvd->vdev_isspare) { 4320 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4321 } 4322 4323 if (newvd->vdev_isspare) 4324 pvops = &vdev_spare_ops; 4325 else 4326 pvops = &vdev_replacing_ops; 4327 } 4328 4329 /* 4330 * Make sure the new device is big enough. 4331 */ 4332 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4333 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4334 4335 /* 4336 * The new device cannot have a higher alignment requirement 4337 * than the top-level vdev. 4338 */ 4339 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4340 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4341 4342 /* 4343 * If this is an in-place replacement, update oldvd's path and devid 4344 * to make it distinguishable from newvd, and unopenable from now on. 4345 */ 4346 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4347 spa_strfree(oldvd->vdev_path); 4348 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4349 KM_SLEEP); 4350 (void) sprintf(oldvd->vdev_path, "%s/%s", 4351 newvd->vdev_path, "old"); 4352 if (oldvd->vdev_devid != NULL) { 4353 spa_strfree(oldvd->vdev_devid); 4354 oldvd->vdev_devid = NULL; 4355 } 4356 } 4357 4358 /* mark the device being resilvered */ 4359 newvd->vdev_resilvering = B_TRUE; 4360 4361 /* 4362 * If the parent is not a mirror, or if we're replacing, insert the new 4363 * mirror/replacing/spare vdev above oldvd. 4364 */ 4365 if (pvd->vdev_ops != pvops) 4366 pvd = vdev_add_parent(oldvd, pvops); 4367 4368 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4369 ASSERT(pvd->vdev_ops == pvops); 4370 ASSERT(oldvd->vdev_parent == pvd); 4371 4372 /* 4373 * Extract the new device from its root and add it to pvd. 4374 */ 4375 vdev_remove_child(newrootvd, newvd); 4376 newvd->vdev_id = pvd->vdev_children; 4377 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4378 vdev_add_child(pvd, newvd); 4379 4380 tvd = newvd->vdev_top; 4381 ASSERT(pvd->vdev_top == tvd); 4382 ASSERT(tvd->vdev_parent == rvd); 4383 4384 vdev_config_dirty(tvd); 4385 4386 /* 4387 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4388 * for any dmu_sync-ed blocks. It will propagate upward when 4389 * spa_vdev_exit() calls vdev_dtl_reassess(). 4390 */ 4391 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4392 4393 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4394 dtl_max_txg - TXG_INITIAL); 4395 4396 if (newvd->vdev_isspare) { 4397 spa_spare_activate(newvd); 4398 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4399 } 4400 4401 oldvdpath = spa_strdup(oldvd->vdev_path); 4402 newvdpath = spa_strdup(newvd->vdev_path); 4403 newvd_isspare = newvd->vdev_isspare; 4404 4405 /* 4406 * Mark newvd's DTL dirty in this txg. 4407 */ 4408 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4409 4410 /* 4411 * Restart the resilver 4412 */ 4413 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4414 4415 /* 4416 * Commit the config 4417 */ 4418 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4419 4420 spa_history_log_internal(spa, "vdev attach", NULL, 4421 "%s vdev=%s %s vdev=%s", 4422 replacing && newvd_isspare ? "spare in" : 4423 replacing ? "replace" : "attach", newvdpath, 4424 replacing ? "for" : "to", oldvdpath); 4425 4426 spa_strfree(oldvdpath); 4427 spa_strfree(newvdpath); 4428 4429 if (spa->spa_bootfs) 4430 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4431 4432 return (0); 4433 } 4434 4435 /* 4436 * Detach a device from a mirror or replacing vdev. 4437 * If 'replace_done' is specified, only detach if the parent 4438 * is a replacing vdev. 4439 */ 4440 int 4441 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4442 { 4443 uint64_t txg; 4444 int error; 4445 vdev_t *rvd = spa->spa_root_vdev; 4446 vdev_t *vd, *pvd, *cvd, *tvd; 4447 boolean_t unspare = B_FALSE; 4448 uint64_t unspare_guid; 4449 char *vdpath; 4450 4451 ASSERT(spa_writeable(spa)); 4452 4453 txg = spa_vdev_enter(spa); 4454 4455 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4456 4457 if (vd == NULL) 4458 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4459 4460 if (!vd->vdev_ops->vdev_op_leaf) 4461 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4462 4463 pvd = vd->vdev_parent; 4464 4465 /* 4466 * If the parent/child relationship is not as expected, don't do it. 4467 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4468 * vdev that's replacing B with C. The user's intent in replacing 4469 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4470 * the replace by detaching C, the expected behavior is to end up 4471 * M(A,B). But suppose that right after deciding to detach C, 4472 * the replacement of B completes. We would have M(A,C), and then 4473 * ask to detach C, which would leave us with just A -- not what 4474 * the user wanted. To prevent this, we make sure that the 4475 * parent/child relationship hasn't changed -- in this example, 4476 * that C's parent is still the replacing vdev R. 4477 */ 4478 if (pvd->vdev_guid != pguid && pguid != 0) 4479 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4480 4481 /* 4482 * Only 'replacing' or 'spare' vdevs can be replaced. 4483 */ 4484 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4485 pvd->vdev_ops != &vdev_spare_ops) 4486 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4487 4488 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4489 spa_version(spa) >= SPA_VERSION_SPARES); 4490 4491 /* 4492 * Only mirror, replacing, and spare vdevs support detach. 4493 */ 4494 if (pvd->vdev_ops != &vdev_replacing_ops && 4495 pvd->vdev_ops != &vdev_mirror_ops && 4496 pvd->vdev_ops != &vdev_spare_ops) 4497 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4498 4499 /* 4500 * If this device has the only valid copy of some data, 4501 * we cannot safely detach it. 4502 */ 4503 if (vdev_dtl_required(vd)) 4504 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4505 4506 ASSERT(pvd->vdev_children >= 2); 4507 4508 /* 4509 * If we are detaching the second disk from a replacing vdev, then 4510 * check to see if we changed the original vdev's path to have "/old" 4511 * at the end in spa_vdev_attach(). If so, undo that change now. 4512 */ 4513 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4514 vd->vdev_path != NULL) { 4515 size_t len = strlen(vd->vdev_path); 4516 4517 for (int c = 0; c < pvd->vdev_children; c++) { 4518 cvd = pvd->vdev_child[c]; 4519 4520 if (cvd == vd || cvd->vdev_path == NULL) 4521 continue; 4522 4523 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4524 strcmp(cvd->vdev_path + len, "/old") == 0) { 4525 spa_strfree(cvd->vdev_path); 4526 cvd->vdev_path = spa_strdup(vd->vdev_path); 4527 break; 4528 } 4529 } 4530 } 4531 4532 /* 4533 * If we are detaching the original disk from a spare, then it implies 4534 * that the spare should become a real disk, and be removed from the 4535 * active spare list for the pool. 4536 */ 4537 if (pvd->vdev_ops == &vdev_spare_ops && 4538 vd->vdev_id == 0 && 4539 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4540 unspare = B_TRUE; 4541 4542 /* 4543 * Erase the disk labels so the disk can be used for other things. 4544 * This must be done after all other error cases are handled, 4545 * but before we disembowel vd (so we can still do I/O to it). 4546 * But if we can't do it, don't treat the error as fatal -- 4547 * it may be that the unwritability of the disk is the reason 4548 * it's being detached! 4549 */ 4550 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4551 4552 /* 4553 * Remove vd from its parent and compact the parent's children. 4554 */ 4555 vdev_remove_child(pvd, vd); 4556 vdev_compact_children(pvd); 4557 4558 /* 4559 * Remember one of the remaining children so we can get tvd below. 4560 */ 4561 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4562 4563 /* 4564 * If we need to remove the remaining child from the list of hot spares, 4565 * do it now, marking the vdev as no longer a spare in the process. 4566 * We must do this before vdev_remove_parent(), because that can 4567 * change the GUID if it creates a new toplevel GUID. For a similar 4568 * reason, we must remove the spare now, in the same txg as the detach; 4569 * otherwise someone could attach a new sibling, change the GUID, and 4570 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4571 */ 4572 if (unspare) { 4573 ASSERT(cvd->vdev_isspare); 4574 spa_spare_remove(cvd); 4575 unspare_guid = cvd->vdev_guid; 4576 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4577 cvd->vdev_unspare = B_TRUE; 4578 } 4579 4580 /* 4581 * If the parent mirror/replacing vdev only has one child, 4582 * the parent is no longer needed. Remove it from the tree. 4583 */ 4584 if (pvd->vdev_children == 1) { 4585 if (pvd->vdev_ops == &vdev_spare_ops) 4586 cvd->vdev_unspare = B_FALSE; 4587 vdev_remove_parent(cvd); 4588 cvd->vdev_resilvering = B_FALSE; 4589 } 4590 4591 4592 /* 4593 * We don't set tvd until now because the parent we just removed 4594 * may have been the previous top-level vdev. 4595 */ 4596 tvd = cvd->vdev_top; 4597 ASSERT(tvd->vdev_parent == rvd); 4598 4599 /* 4600 * Reevaluate the parent vdev state. 4601 */ 4602 vdev_propagate_state(cvd); 4603 4604 /* 4605 * If the 'autoexpand' property is set on the pool then automatically 4606 * try to expand the size of the pool. For example if the device we 4607 * just detached was smaller than the others, it may be possible to 4608 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4609 * first so that we can obtain the updated sizes of the leaf vdevs. 4610 */ 4611 if (spa->spa_autoexpand) { 4612 vdev_reopen(tvd); 4613 vdev_expand(tvd, txg); 4614 } 4615 4616 vdev_config_dirty(tvd); 4617 4618 /* 4619 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4620 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4621 * But first make sure we're not on any *other* txg's DTL list, to 4622 * prevent vd from being accessed after it's freed. 4623 */ 4624 vdpath = spa_strdup(vd->vdev_path); 4625 for (int t = 0; t < TXG_SIZE; t++) 4626 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4627 vd->vdev_detached = B_TRUE; 4628 vdev_dirty(tvd, VDD_DTL, vd, txg); 4629 4630 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4631 4632 /* hang on to the spa before we release the lock */ 4633 spa_open_ref(spa, FTAG); 4634 4635 error = spa_vdev_exit(spa, vd, txg, 0); 4636 4637 spa_history_log_internal(spa, "detach", NULL, 4638 "vdev=%s", vdpath); 4639 spa_strfree(vdpath); 4640 4641 /* 4642 * If this was the removal of the original device in a hot spare vdev, 4643 * then we want to go through and remove the device from the hot spare 4644 * list of every other pool. 4645 */ 4646 if (unspare) { 4647 spa_t *altspa = NULL; 4648 4649 mutex_enter(&spa_namespace_lock); 4650 while ((altspa = spa_next(altspa)) != NULL) { 4651 if (altspa->spa_state != POOL_STATE_ACTIVE || 4652 altspa == spa) 4653 continue; 4654 4655 spa_open_ref(altspa, FTAG); 4656 mutex_exit(&spa_namespace_lock); 4657 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4658 mutex_enter(&spa_namespace_lock); 4659 spa_close(altspa, FTAG); 4660 } 4661 mutex_exit(&spa_namespace_lock); 4662 4663 /* search the rest of the vdevs for spares to remove */ 4664 spa_vdev_resilver_done(spa); 4665 } 4666 4667 /* all done with the spa; OK to release */ 4668 mutex_enter(&spa_namespace_lock); 4669 spa_close(spa, FTAG); 4670 mutex_exit(&spa_namespace_lock); 4671 4672 return (error); 4673 } 4674 4675 /* 4676 * Split a set of devices from their mirrors, and create a new pool from them. 4677 */ 4678 int 4679 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4680 nvlist_t *props, boolean_t exp) 4681 { 4682 int error = 0; 4683 uint64_t txg, *glist; 4684 spa_t *newspa; 4685 uint_t c, children, lastlog; 4686 nvlist_t **child, *nvl, *tmp; 4687 dmu_tx_t *tx; 4688 char *altroot = NULL; 4689 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4690 boolean_t activate_slog; 4691 4692 ASSERT(spa_writeable(spa)); 4693 4694 txg = spa_vdev_enter(spa); 4695 4696 /* clear the log and flush everything up to now */ 4697 activate_slog = spa_passivate_log(spa); 4698 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4699 error = spa_offline_log(spa); 4700 txg = spa_vdev_config_enter(spa); 4701 4702 if (activate_slog) 4703 spa_activate_log(spa); 4704 4705 if (error != 0) 4706 return (spa_vdev_exit(spa, NULL, txg, error)); 4707 4708 /* check new spa name before going any further */ 4709 if (spa_lookup(newname) != NULL) 4710 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4711 4712 /* 4713 * scan through all the children to ensure they're all mirrors 4714 */ 4715 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4716 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4717 &children) != 0) 4718 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4719 4720 /* first, check to ensure we've got the right child count */ 4721 rvd = spa->spa_root_vdev; 4722 lastlog = 0; 4723 for (c = 0; c < rvd->vdev_children; c++) { 4724 vdev_t *vd = rvd->vdev_child[c]; 4725 4726 /* don't count the holes & logs as children */ 4727 if (vd->vdev_islog || vd->vdev_ishole) { 4728 if (lastlog == 0) 4729 lastlog = c; 4730 continue; 4731 } 4732 4733 lastlog = 0; 4734 } 4735 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4736 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4737 4738 /* next, ensure no spare or cache devices are part of the split */ 4739 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4740 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4741 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4742 4743 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4744 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4745 4746 /* then, loop over each vdev and validate it */ 4747 for (c = 0; c < children; c++) { 4748 uint64_t is_hole = 0; 4749 4750 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4751 &is_hole); 4752 4753 if (is_hole != 0) { 4754 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4755 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4756 continue; 4757 } else { 4758 error = EINVAL; 4759 break; 4760 } 4761 } 4762 4763 /* which disk is going to be split? */ 4764 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4765 &glist[c]) != 0) { 4766 error = EINVAL; 4767 break; 4768 } 4769 4770 /* look it up in the spa */ 4771 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4772 if (vml[c] == NULL) { 4773 error = ENODEV; 4774 break; 4775 } 4776 4777 /* make sure there's nothing stopping the split */ 4778 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4779 vml[c]->vdev_islog || 4780 vml[c]->vdev_ishole || 4781 vml[c]->vdev_isspare || 4782 vml[c]->vdev_isl2cache || 4783 !vdev_writeable(vml[c]) || 4784 vml[c]->vdev_children != 0 || 4785 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4786 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4787 error = EINVAL; 4788 break; 4789 } 4790 4791 if (vdev_dtl_required(vml[c])) { 4792 error = EBUSY; 4793 break; 4794 } 4795 4796 /* we need certain info from the top level */ 4797 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4798 vml[c]->vdev_top->vdev_ms_array) == 0); 4799 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4800 vml[c]->vdev_top->vdev_ms_shift) == 0); 4801 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4802 vml[c]->vdev_top->vdev_asize) == 0); 4803 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4804 vml[c]->vdev_top->vdev_ashift) == 0); 4805 } 4806 4807 if (error != 0) { 4808 kmem_free(vml, children * sizeof (vdev_t *)); 4809 kmem_free(glist, children * sizeof (uint64_t)); 4810 return (spa_vdev_exit(spa, NULL, txg, error)); 4811 } 4812 4813 /* stop writers from using the disks */ 4814 for (c = 0; c < children; c++) { 4815 if (vml[c] != NULL) 4816 vml[c]->vdev_offline = B_TRUE; 4817 } 4818 vdev_reopen(spa->spa_root_vdev); 4819 4820 /* 4821 * Temporarily record the splitting vdevs in the spa config. This 4822 * will disappear once the config is regenerated. 4823 */ 4824 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4825 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4826 glist, children) == 0); 4827 kmem_free(glist, children * sizeof (uint64_t)); 4828 4829 mutex_enter(&spa->spa_props_lock); 4830 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4831 nvl) == 0); 4832 mutex_exit(&spa->spa_props_lock); 4833 spa->spa_config_splitting = nvl; 4834 vdev_config_dirty(spa->spa_root_vdev); 4835 4836 /* configure and create the new pool */ 4837 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4838 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4839 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4840 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4841 spa_version(spa)) == 0); 4842 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4843 spa->spa_config_txg) == 0); 4844 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4845 spa_generate_guid(NULL)) == 0); 4846 (void) nvlist_lookup_string(props, 4847 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4848 4849 /* add the new pool to the namespace */ 4850 newspa = spa_add(newname, config, altroot); 4851 newspa->spa_config_txg = spa->spa_config_txg; 4852 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4853 4854 /* release the spa config lock, retaining the namespace lock */ 4855 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4856 4857 if (zio_injection_enabled) 4858 zio_handle_panic_injection(spa, FTAG, 1); 4859 4860 spa_activate(newspa, spa_mode_global); 4861 spa_async_suspend(newspa); 4862 4863 /* create the new pool from the disks of the original pool */ 4864 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4865 if (error) 4866 goto out; 4867 4868 /* if that worked, generate a real config for the new pool */ 4869 if (newspa->spa_root_vdev != NULL) { 4870 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4871 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4872 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4873 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4874 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4875 B_TRUE)); 4876 } 4877 4878 /* set the props */ 4879 if (props != NULL) { 4880 spa_configfile_set(newspa, props, B_FALSE); 4881 error = spa_prop_set(newspa, props); 4882 if (error) 4883 goto out; 4884 } 4885 4886 /* flush everything */ 4887 txg = spa_vdev_config_enter(newspa); 4888 vdev_config_dirty(newspa->spa_root_vdev); 4889 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4890 4891 if (zio_injection_enabled) 4892 zio_handle_panic_injection(spa, FTAG, 2); 4893 4894 spa_async_resume(newspa); 4895 4896 /* finally, update the original pool's config */ 4897 txg = spa_vdev_config_enter(spa); 4898 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4899 error = dmu_tx_assign(tx, TXG_WAIT); 4900 if (error != 0) 4901 dmu_tx_abort(tx); 4902 for (c = 0; c < children; c++) { 4903 if (vml[c] != NULL) { 4904 vdev_split(vml[c]); 4905 if (error == 0) 4906 spa_history_log_internal(spa, "detach", tx, 4907 "vdev=%s", vml[c]->vdev_path); 4908 vdev_free(vml[c]); 4909 } 4910 } 4911 vdev_config_dirty(spa->spa_root_vdev); 4912 spa->spa_config_splitting = NULL; 4913 nvlist_free(nvl); 4914 if (error == 0) 4915 dmu_tx_commit(tx); 4916 (void) spa_vdev_exit(spa, NULL, txg, 0); 4917 4918 if (zio_injection_enabled) 4919 zio_handle_panic_injection(spa, FTAG, 3); 4920 4921 /* split is complete; log a history record */ 4922 spa_history_log_internal(newspa, "split", NULL, 4923 "from pool %s", spa_name(spa)); 4924 4925 kmem_free(vml, children * sizeof (vdev_t *)); 4926 4927 /* if we're not going to mount the filesystems in userland, export */ 4928 if (exp) 4929 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4930 B_FALSE, B_FALSE); 4931 4932 return (error); 4933 4934 out: 4935 spa_unload(newspa); 4936 spa_deactivate(newspa); 4937 spa_remove(newspa); 4938 4939 txg = spa_vdev_config_enter(spa); 4940 4941 /* re-online all offlined disks */ 4942 for (c = 0; c < children; c++) { 4943 if (vml[c] != NULL) 4944 vml[c]->vdev_offline = B_FALSE; 4945 } 4946 vdev_reopen(spa->spa_root_vdev); 4947 4948 nvlist_free(spa->spa_config_splitting); 4949 spa->spa_config_splitting = NULL; 4950 (void) spa_vdev_exit(spa, NULL, txg, error); 4951 4952 kmem_free(vml, children * sizeof (vdev_t *)); 4953 return (error); 4954 } 4955 4956 static nvlist_t * 4957 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4958 { 4959 for (int i = 0; i < count; i++) { 4960 uint64_t guid; 4961 4962 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4963 &guid) == 0); 4964 4965 if (guid == target_guid) 4966 return (nvpp[i]); 4967 } 4968 4969 return (NULL); 4970 } 4971 4972 static void 4973 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4974 nvlist_t *dev_to_remove) 4975 { 4976 nvlist_t **newdev = NULL; 4977 4978 if (count > 1) 4979 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4980 4981 for (int i = 0, j = 0; i < count; i++) { 4982 if (dev[i] == dev_to_remove) 4983 continue; 4984 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4985 } 4986 4987 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4988 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4989 4990 for (int i = 0; i < count - 1; i++) 4991 nvlist_free(newdev[i]); 4992 4993 if (count > 1) 4994 kmem_free(newdev, (count - 1) * sizeof (void *)); 4995 } 4996 4997 /* 4998 * Evacuate the device. 4999 */ 5000 static int 5001 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5002 { 5003 uint64_t txg; 5004 int error = 0; 5005 5006 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5007 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5008 ASSERT(vd == vd->vdev_top); 5009 5010 /* 5011 * Evacuate the device. We don't hold the config lock as writer 5012 * since we need to do I/O but we do keep the 5013 * spa_namespace_lock held. Once this completes the device 5014 * should no longer have any blocks allocated on it. 5015 */ 5016 if (vd->vdev_islog) { 5017 if (vd->vdev_stat.vs_alloc != 0) 5018 error = spa_offline_log(spa); 5019 } else { 5020 error = ENOTSUP; 5021 } 5022 5023 if (error) 5024 return (error); 5025 5026 /* 5027 * The evacuation succeeded. Remove any remaining MOS metadata 5028 * associated with this vdev, and wait for these changes to sync. 5029 */ 5030 ASSERT0(vd->vdev_stat.vs_alloc); 5031 txg = spa_vdev_config_enter(spa); 5032 vd->vdev_removing = B_TRUE; 5033 vdev_dirty(vd, 0, NULL, txg); 5034 vdev_config_dirty(vd); 5035 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5036 5037 return (0); 5038 } 5039 5040 /* 5041 * Complete the removal by cleaning up the namespace. 5042 */ 5043 static void 5044 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5045 { 5046 vdev_t *rvd = spa->spa_root_vdev; 5047 uint64_t id = vd->vdev_id; 5048 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5049 5050 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5051 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5052 ASSERT(vd == vd->vdev_top); 5053 5054 /* 5055 * Only remove any devices which are empty. 5056 */ 5057 if (vd->vdev_stat.vs_alloc != 0) 5058 return; 5059 5060 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5061 5062 if (list_link_active(&vd->vdev_state_dirty_node)) 5063 vdev_state_clean(vd); 5064 if (list_link_active(&vd->vdev_config_dirty_node)) 5065 vdev_config_clean(vd); 5066 5067 vdev_free(vd); 5068 5069 if (last_vdev) { 5070 vdev_compact_children(rvd); 5071 } else { 5072 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5073 vdev_add_child(rvd, vd); 5074 } 5075 vdev_config_dirty(rvd); 5076 5077 /* 5078 * Reassess the health of our root vdev. 5079 */ 5080 vdev_reopen(rvd); 5081 } 5082 5083 /* 5084 * Remove a device from the pool - 5085 * 5086 * Removing a device from the vdev namespace requires several steps 5087 * and can take a significant amount of time. As a result we use 5088 * the spa_vdev_config_[enter/exit] functions which allow us to 5089 * grab and release the spa_config_lock while still holding the namespace 5090 * lock. During each step the configuration is synced out. 5091 */ 5092 5093 /* 5094 * Remove a device from the pool. Currently, this supports removing only hot 5095 * spares, slogs, and level 2 ARC devices. 5096 */ 5097 int 5098 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5099 { 5100 vdev_t *vd; 5101 metaslab_group_t *mg; 5102 nvlist_t **spares, **l2cache, *nv; 5103 uint64_t txg = 0; 5104 uint_t nspares, nl2cache; 5105 int error = 0; 5106 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5107 5108 ASSERT(spa_writeable(spa)); 5109 5110 if (!locked) 5111 txg = spa_vdev_enter(spa); 5112 5113 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5114 5115 if (spa->spa_spares.sav_vdevs != NULL && 5116 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5117 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5118 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5119 /* 5120 * Only remove the hot spare if it's not currently in use 5121 * in this pool. 5122 */ 5123 if (vd == NULL || unspare) { 5124 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5125 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5126 spa_load_spares(spa); 5127 spa->spa_spares.sav_sync = B_TRUE; 5128 } else { 5129 error = EBUSY; 5130 } 5131 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5132 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5133 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5134 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5135 /* 5136 * Cache devices can always be removed. 5137 */ 5138 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5139 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5140 spa_load_l2cache(spa); 5141 spa->spa_l2cache.sav_sync = B_TRUE; 5142 } else if (vd != NULL && vd->vdev_islog) { 5143 ASSERT(!locked); 5144 ASSERT(vd == vd->vdev_top); 5145 5146 /* 5147 * XXX - Once we have bp-rewrite this should 5148 * become the common case. 5149 */ 5150 5151 mg = vd->vdev_mg; 5152 5153 /* 5154 * Stop allocating from this vdev. 5155 */ 5156 metaslab_group_passivate(mg); 5157 5158 /* 5159 * Wait for the youngest allocations and frees to sync, 5160 * and then wait for the deferral of those frees to finish. 5161 */ 5162 spa_vdev_config_exit(spa, NULL, 5163 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5164 5165 /* 5166 * Attempt to evacuate the vdev. 5167 */ 5168 error = spa_vdev_remove_evacuate(spa, vd); 5169 5170 txg = spa_vdev_config_enter(spa); 5171 5172 /* 5173 * If we couldn't evacuate the vdev, unwind. 5174 */ 5175 if (error) { 5176 metaslab_group_activate(mg); 5177 return (spa_vdev_exit(spa, NULL, txg, error)); 5178 } 5179 5180 /* 5181 * Clean up the vdev namespace. 5182 */ 5183 spa_vdev_remove_from_namespace(spa, vd); 5184 5185 } else if (vd != NULL) { 5186 /* 5187 * Normal vdevs cannot be removed (yet). 5188 */ 5189 error = ENOTSUP; 5190 } else { 5191 /* 5192 * There is no vdev of any kind with the specified guid. 5193 */ 5194 error = ENOENT; 5195 } 5196 5197 if (!locked) 5198 return (spa_vdev_exit(spa, NULL, txg, error)); 5199 5200 return (error); 5201 } 5202 5203 /* 5204 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5205 * current spared, so we can detach it. 5206 */ 5207 static vdev_t * 5208 spa_vdev_resilver_done_hunt(vdev_t *vd) 5209 { 5210 vdev_t *newvd, *oldvd; 5211 5212 for (int c = 0; c < vd->vdev_children; c++) { 5213 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5214 if (oldvd != NULL) 5215 return (oldvd); 5216 } 5217 5218 /* 5219 * Check for a completed replacement. We always consider the first 5220 * vdev in the list to be the oldest vdev, and the last one to be 5221 * the newest (see spa_vdev_attach() for how that works). In 5222 * the case where the newest vdev is faulted, we will not automatically 5223 * remove it after a resilver completes. This is OK as it will require 5224 * user intervention to determine which disk the admin wishes to keep. 5225 */ 5226 if (vd->vdev_ops == &vdev_replacing_ops) { 5227 ASSERT(vd->vdev_children > 1); 5228 5229 newvd = vd->vdev_child[vd->vdev_children - 1]; 5230 oldvd = vd->vdev_child[0]; 5231 5232 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5233 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5234 !vdev_dtl_required(oldvd)) 5235 return (oldvd); 5236 } 5237 5238 /* 5239 * Check for a completed resilver with the 'unspare' flag set. 5240 */ 5241 if (vd->vdev_ops == &vdev_spare_ops) { 5242 vdev_t *first = vd->vdev_child[0]; 5243 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5244 5245 if (last->vdev_unspare) { 5246 oldvd = first; 5247 newvd = last; 5248 } else if (first->vdev_unspare) { 5249 oldvd = last; 5250 newvd = first; 5251 } else { 5252 oldvd = NULL; 5253 } 5254 5255 if (oldvd != NULL && 5256 vdev_dtl_empty(newvd, DTL_MISSING) && 5257 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5258 !vdev_dtl_required(oldvd)) 5259 return (oldvd); 5260 5261 /* 5262 * If there are more than two spares attached to a disk, 5263 * and those spares are not required, then we want to 5264 * attempt to free them up now so that they can be used 5265 * by other pools. Once we're back down to a single 5266 * disk+spare, we stop removing them. 5267 */ 5268 if (vd->vdev_children > 2) { 5269 newvd = vd->vdev_child[1]; 5270 5271 if (newvd->vdev_isspare && last->vdev_isspare && 5272 vdev_dtl_empty(last, DTL_MISSING) && 5273 vdev_dtl_empty(last, DTL_OUTAGE) && 5274 !vdev_dtl_required(newvd)) 5275 return (newvd); 5276 } 5277 } 5278 5279 return (NULL); 5280 } 5281 5282 static void 5283 spa_vdev_resilver_done(spa_t *spa) 5284 { 5285 vdev_t *vd, *pvd, *ppvd; 5286 uint64_t guid, sguid, pguid, ppguid; 5287 5288 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5289 5290 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5291 pvd = vd->vdev_parent; 5292 ppvd = pvd->vdev_parent; 5293 guid = vd->vdev_guid; 5294 pguid = pvd->vdev_guid; 5295 ppguid = ppvd->vdev_guid; 5296 sguid = 0; 5297 /* 5298 * If we have just finished replacing a hot spared device, then 5299 * we need to detach the parent's first child (the original hot 5300 * spare) as well. 5301 */ 5302 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5303 ppvd->vdev_children == 2) { 5304 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5305 sguid = ppvd->vdev_child[1]->vdev_guid; 5306 } 5307 spa_config_exit(spa, SCL_ALL, FTAG); 5308 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5309 return; 5310 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5311 return; 5312 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5313 } 5314 5315 spa_config_exit(spa, SCL_ALL, FTAG); 5316 } 5317 5318 /* 5319 * Update the stored path or FRU for this vdev. 5320 */ 5321 int 5322 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5323 boolean_t ispath) 5324 { 5325 vdev_t *vd; 5326 boolean_t sync = B_FALSE; 5327 5328 ASSERT(spa_writeable(spa)); 5329 5330 spa_vdev_state_enter(spa, SCL_ALL); 5331 5332 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5333 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5334 5335 if (!vd->vdev_ops->vdev_op_leaf) 5336 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5337 5338 if (ispath) { 5339 if (strcmp(value, vd->vdev_path) != 0) { 5340 spa_strfree(vd->vdev_path); 5341 vd->vdev_path = spa_strdup(value); 5342 sync = B_TRUE; 5343 } 5344 } else { 5345 if (vd->vdev_fru == NULL) { 5346 vd->vdev_fru = spa_strdup(value); 5347 sync = B_TRUE; 5348 } else if (strcmp(value, vd->vdev_fru) != 0) { 5349 spa_strfree(vd->vdev_fru); 5350 vd->vdev_fru = spa_strdup(value); 5351 sync = B_TRUE; 5352 } 5353 } 5354 5355 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5356 } 5357 5358 int 5359 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5360 { 5361 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5362 } 5363 5364 int 5365 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5366 { 5367 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5368 } 5369 5370 /* 5371 * ========================================================================== 5372 * SPA Scanning 5373 * ========================================================================== 5374 */ 5375 5376 int 5377 spa_scan_stop(spa_t *spa) 5378 { 5379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5380 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5381 return (EBUSY); 5382 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5383 } 5384 5385 int 5386 spa_scan(spa_t *spa, pool_scan_func_t func) 5387 { 5388 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5389 5390 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5391 return (ENOTSUP); 5392 5393 /* 5394 * If a resilver was requested, but there is no DTL on a 5395 * writeable leaf device, we have nothing to do. 5396 */ 5397 if (func == POOL_SCAN_RESILVER && 5398 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5399 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5400 return (0); 5401 } 5402 5403 return (dsl_scan(spa->spa_dsl_pool, func)); 5404 } 5405 5406 /* 5407 * ========================================================================== 5408 * SPA async task processing 5409 * ========================================================================== 5410 */ 5411 5412 static void 5413 spa_async_remove(spa_t *spa, vdev_t *vd) 5414 { 5415 if (vd->vdev_remove_wanted) { 5416 vd->vdev_remove_wanted = B_FALSE; 5417 vd->vdev_delayed_close = B_FALSE; 5418 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5419 5420 /* 5421 * We want to clear the stats, but we don't want to do a full 5422 * vdev_clear() as that will cause us to throw away 5423 * degraded/faulted state as well as attempt to reopen the 5424 * device, all of which is a waste. 5425 */ 5426 vd->vdev_stat.vs_read_errors = 0; 5427 vd->vdev_stat.vs_write_errors = 0; 5428 vd->vdev_stat.vs_checksum_errors = 0; 5429 5430 vdev_state_dirty(vd->vdev_top); 5431 } 5432 5433 for (int c = 0; c < vd->vdev_children; c++) 5434 spa_async_remove(spa, vd->vdev_child[c]); 5435 } 5436 5437 static void 5438 spa_async_probe(spa_t *spa, vdev_t *vd) 5439 { 5440 if (vd->vdev_probe_wanted) { 5441 vd->vdev_probe_wanted = B_FALSE; 5442 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5443 } 5444 5445 for (int c = 0; c < vd->vdev_children; c++) 5446 spa_async_probe(spa, vd->vdev_child[c]); 5447 } 5448 5449 static void 5450 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5451 { 5452 sysevent_id_t eid; 5453 nvlist_t *attr; 5454 char *physpath; 5455 5456 if (!spa->spa_autoexpand) 5457 return; 5458 5459 for (int c = 0; c < vd->vdev_children; c++) { 5460 vdev_t *cvd = vd->vdev_child[c]; 5461 spa_async_autoexpand(spa, cvd); 5462 } 5463 5464 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5465 return; 5466 5467 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5468 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5469 5470 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5471 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5472 5473 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5474 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5475 5476 nvlist_free(attr); 5477 kmem_free(physpath, MAXPATHLEN); 5478 } 5479 5480 static void 5481 spa_async_thread(spa_t *spa) 5482 { 5483 int tasks; 5484 5485 ASSERT(spa->spa_sync_on); 5486 5487 mutex_enter(&spa->spa_async_lock); 5488 tasks = spa->spa_async_tasks; 5489 spa->spa_async_tasks = 0; 5490 mutex_exit(&spa->spa_async_lock); 5491 5492 /* 5493 * See if the config needs to be updated. 5494 */ 5495 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5496 uint64_t old_space, new_space; 5497 5498 mutex_enter(&spa_namespace_lock); 5499 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5500 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5501 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5502 mutex_exit(&spa_namespace_lock); 5503 5504 /* 5505 * If the pool grew as a result of the config update, 5506 * then log an internal history event. 5507 */ 5508 if (new_space != old_space) { 5509 spa_history_log_internal(spa, "vdev online", NULL, 5510 "pool '%s' size: %llu(+%llu)", 5511 spa_name(spa), new_space, new_space - old_space); 5512 } 5513 } 5514 5515 /* 5516 * See if any devices need to be marked REMOVED. 5517 */ 5518 if (tasks & SPA_ASYNC_REMOVE) { 5519 spa_vdev_state_enter(spa, SCL_NONE); 5520 spa_async_remove(spa, spa->spa_root_vdev); 5521 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5522 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5523 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5524 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5525 (void) spa_vdev_state_exit(spa, NULL, 0); 5526 } 5527 5528 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5529 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5530 spa_async_autoexpand(spa, spa->spa_root_vdev); 5531 spa_config_exit(spa, SCL_CONFIG, FTAG); 5532 } 5533 5534 /* 5535 * See if any devices need to be probed. 5536 */ 5537 if (tasks & SPA_ASYNC_PROBE) { 5538 spa_vdev_state_enter(spa, SCL_NONE); 5539 spa_async_probe(spa, spa->spa_root_vdev); 5540 (void) spa_vdev_state_exit(spa, NULL, 0); 5541 } 5542 5543 /* 5544 * If any devices are done replacing, detach them. 5545 */ 5546 if (tasks & SPA_ASYNC_RESILVER_DONE) 5547 spa_vdev_resilver_done(spa); 5548 5549 /* 5550 * Kick off a resilver. 5551 */ 5552 if (tasks & SPA_ASYNC_RESILVER) 5553 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5554 5555 /* 5556 * Let the world know that we're done. 5557 */ 5558 mutex_enter(&spa->spa_async_lock); 5559 spa->spa_async_thread = NULL; 5560 cv_broadcast(&spa->spa_async_cv); 5561 mutex_exit(&spa->spa_async_lock); 5562 thread_exit(); 5563 } 5564 5565 void 5566 spa_async_suspend(spa_t *spa) 5567 { 5568 mutex_enter(&spa->spa_async_lock); 5569 spa->spa_async_suspended++; 5570 while (spa->spa_async_thread != NULL) 5571 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5572 mutex_exit(&spa->spa_async_lock); 5573 } 5574 5575 void 5576 spa_async_resume(spa_t *spa) 5577 { 5578 mutex_enter(&spa->spa_async_lock); 5579 ASSERT(spa->spa_async_suspended != 0); 5580 spa->spa_async_suspended--; 5581 mutex_exit(&spa->spa_async_lock); 5582 } 5583 5584 static void 5585 spa_async_dispatch(spa_t *spa) 5586 { 5587 mutex_enter(&spa->spa_async_lock); 5588 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5589 spa->spa_async_thread == NULL && 5590 rootdir != NULL && !vn_is_readonly(rootdir)) 5591 spa->spa_async_thread = thread_create(NULL, 0, 5592 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5593 mutex_exit(&spa->spa_async_lock); 5594 } 5595 5596 void 5597 spa_async_request(spa_t *spa, int task) 5598 { 5599 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5600 mutex_enter(&spa->spa_async_lock); 5601 spa->spa_async_tasks |= task; 5602 mutex_exit(&spa->spa_async_lock); 5603 } 5604 5605 /* 5606 * ========================================================================== 5607 * SPA syncing routines 5608 * ========================================================================== 5609 */ 5610 5611 static int 5612 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5613 { 5614 bpobj_t *bpo = arg; 5615 bpobj_enqueue(bpo, bp, tx); 5616 return (0); 5617 } 5618 5619 static int 5620 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5621 { 5622 zio_t *zio = arg; 5623 5624 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5625 zio->io_flags)); 5626 return (0); 5627 } 5628 5629 static void 5630 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5631 { 5632 char *packed = NULL; 5633 size_t bufsize; 5634 size_t nvsize = 0; 5635 dmu_buf_t *db; 5636 5637 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5638 5639 /* 5640 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5641 * information. This avoids the dbuf_will_dirty() path and 5642 * saves us a pre-read to get data we don't actually care about. 5643 */ 5644 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5645 packed = kmem_alloc(bufsize, KM_SLEEP); 5646 5647 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5648 KM_SLEEP) == 0); 5649 bzero(packed + nvsize, bufsize - nvsize); 5650 5651 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5652 5653 kmem_free(packed, bufsize); 5654 5655 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5656 dmu_buf_will_dirty(db, tx); 5657 *(uint64_t *)db->db_data = nvsize; 5658 dmu_buf_rele(db, FTAG); 5659 } 5660 5661 static void 5662 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5663 const char *config, const char *entry) 5664 { 5665 nvlist_t *nvroot; 5666 nvlist_t **list; 5667 int i; 5668 5669 if (!sav->sav_sync) 5670 return; 5671 5672 /* 5673 * Update the MOS nvlist describing the list of available devices. 5674 * spa_validate_aux() will have already made sure this nvlist is 5675 * valid and the vdevs are labeled appropriately. 5676 */ 5677 if (sav->sav_object == 0) { 5678 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5679 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5680 sizeof (uint64_t), tx); 5681 VERIFY(zap_update(spa->spa_meta_objset, 5682 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5683 &sav->sav_object, tx) == 0); 5684 } 5685 5686 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5687 if (sav->sav_count == 0) { 5688 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5689 } else { 5690 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5691 for (i = 0; i < sav->sav_count; i++) 5692 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5693 B_FALSE, VDEV_CONFIG_L2CACHE); 5694 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5695 sav->sav_count) == 0); 5696 for (i = 0; i < sav->sav_count; i++) 5697 nvlist_free(list[i]); 5698 kmem_free(list, sav->sav_count * sizeof (void *)); 5699 } 5700 5701 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5702 nvlist_free(nvroot); 5703 5704 sav->sav_sync = B_FALSE; 5705 } 5706 5707 static void 5708 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5709 { 5710 nvlist_t *config; 5711 5712 if (list_is_empty(&spa->spa_config_dirty_list)) 5713 return; 5714 5715 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5716 5717 config = spa_config_generate(spa, spa->spa_root_vdev, 5718 dmu_tx_get_txg(tx), B_FALSE); 5719 5720 spa_config_exit(spa, SCL_STATE, FTAG); 5721 5722 if (spa->spa_config_syncing) 5723 nvlist_free(spa->spa_config_syncing); 5724 spa->spa_config_syncing = config; 5725 5726 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5727 } 5728 5729 static void 5730 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx) 5731 { 5732 spa_t *spa = arg1; 5733 uint64_t version = *(uint64_t *)arg2; 5734 5735 /* 5736 * Setting the version is special cased when first creating the pool. 5737 */ 5738 ASSERT(tx->tx_txg != TXG_INITIAL); 5739 5740 ASSERT(version <= SPA_VERSION); 5741 ASSERT(version >= spa_version(spa)); 5742 5743 spa->spa_uberblock.ub_version = version; 5744 vdev_config_dirty(spa->spa_root_vdev); 5745 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5746 } 5747 5748 /* 5749 * Set zpool properties. 5750 */ 5751 static void 5752 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5753 { 5754 spa_t *spa = arg1; 5755 objset_t *mos = spa->spa_meta_objset; 5756 nvlist_t *nvp = arg2; 5757 nvpair_t *elem = NULL; 5758 5759 mutex_enter(&spa->spa_props_lock); 5760 5761 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5762 uint64_t intval; 5763 char *strval, *fname; 5764 zpool_prop_t prop; 5765 const char *propname; 5766 zprop_type_t proptype; 5767 zfeature_info_t *feature; 5768 5769 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5770 case ZPROP_INVAL: 5771 /* 5772 * We checked this earlier in spa_prop_validate(). 5773 */ 5774 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5775 5776 fname = strchr(nvpair_name(elem), '@') + 1; 5777 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5778 5779 spa_feature_enable(spa, feature, tx); 5780 spa_history_log_internal(spa, "set", tx, 5781 "%s=enabled", nvpair_name(elem)); 5782 break; 5783 5784 case ZPOOL_PROP_VERSION: 5785 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5786 /* 5787 * The version is synced seperatly before other 5788 * properties and should be correct by now. 5789 */ 5790 ASSERT3U(spa_version(spa), >=, intval); 5791 break; 5792 5793 case ZPOOL_PROP_ALTROOT: 5794 /* 5795 * 'altroot' is a non-persistent property. It should 5796 * have been set temporarily at creation or import time. 5797 */ 5798 ASSERT(spa->spa_root != NULL); 5799 break; 5800 5801 case ZPOOL_PROP_READONLY: 5802 case ZPOOL_PROP_CACHEFILE: 5803 /* 5804 * 'readonly' and 'cachefile' are also non-persisitent 5805 * properties. 5806 */ 5807 break; 5808 case ZPOOL_PROP_COMMENT: 5809 VERIFY(nvpair_value_string(elem, &strval) == 0); 5810 if (spa->spa_comment != NULL) 5811 spa_strfree(spa->spa_comment); 5812 spa->spa_comment = spa_strdup(strval); 5813 /* 5814 * We need to dirty the configuration on all the vdevs 5815 * so that their labels get updated. It's unnecessary 5816 * to do this for pool creation since the vdev's 5817 * configuratoin has already been dirtied. 5818 */ 5819 if (tx->tx_txg != TXG_INITIAL) 5820 vdev_config_dirty(spa->spa_root_vdev); 5821 spa_history_log_internal(spa, "set", tx, 5822 "%s=%s", nvpair_name(elem), strval); 5823 break; 5824 default: 5825 /* 5826 * Set pool property values in the poolprops mos object. 5827 */ 5828 if (spa->spa_pool_props_object == 0) { 5829 spa->spa_pool_props_object = 5830 zap_create_link(mos, DMU_OT_POOL_PROPS, 5831 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5832 tx); 5833 } 5834 5835 /* normalize the property name */ 5836 propname = zpool_prop_to_name(prop); 5837 proptype = zpool_prop_get_type(prop); 5838 5839 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5840 ASSERT(proptype == PROP_TYPE_STRING); 5841 VERIFY(nvpair_value_string(elem, &strval) == 0); 5842 VERIFY(zap_update(mos, 5843 spa->spa_pool_props_object, propname, 5844 1, strlen(strval) + 1, strval, tx) == 0); 5845 spa_history_log_internal(spa, "set", tx, 5846 "%s=%s", nvpair_name(elem), strval); 5847 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5848 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5849 5850 if (proptype == PROP_TYPE_INDEX) { 5851 const char *unused; 5852 VERIFY(zpool_prop_index_to_string( 5853 prop, intval, &unused) == 0); 5854 } 5855 VERIFY(zap_update(mos, 5856 spa->spa_pool_props_object, propname, 5857 8, 1, &intval, tx) == 0); 5858 spa_history_log_internal(spa, "set", tx, 5859 "%s=%lld", nvpair_name(elem), intval); 5860 } else { 5861 ASSERT(0); /* not allowed */ 5862 } 5863 5864 switch (prop) { 5865 case ZPOOL_PROP_DELEGATION: 5866 spa->spa_delegation = intval; 5867 break; 5868 case ZPOOL_PROP_BOOTFS: 5869 spa->spa_bootfs = intval; 5870 break; 5871 case ZPOOL_PROP_FAILUREMODE: 5872 spa->spa_failmode = intval; 5873 break; 5874 case ZPOOL_PROP_AUTOEXPAND: 5875 spa->spa_autoexpand = intval; 5876 if (tx->tx_txg != TXG_INITIAL) 5877 spa_async_request(spa, 5878 SPA_ASYNC_AUTOEXPAND); 5879 break; 5880 case ZPOOL_PROP_DEDUPDITTO: 5881 spa->spa_dedup_ditto = intval; 5882 break; 5883 default: 5884 break; 5885 } 5886 } 5887 5888 } 5889 5890 mutex_exit(&spa->spa_props_lock); 5891 } 5892 5893 /* 5894 * Perform one-time upgrade on-disk changes. spa_version() does not 5895 * reflect the new version this txg, so there must be no changes this 5896 * txg to anything that the upgrade code depends on after it executes. 5897 * Therefore this must be called after dsl_pool_sync() does the sync 5898 * tasks. 5899 */ 5900 static void 5901 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5902 { 5903 dsl_pool_t *dp = spa->spa_dsl_pool; 5904 5905 ASSERT(spa->spa_sync_pass == 1); 5906 5907 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5908 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5909 dsl_pool_create_origin(dp, tx); 5910 5911 /* Keeping the origin open increases spa_minref */ 5912 spa->spa_minref += 3; 5913 } 5914 5915 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5916 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5917 dsl_pool_upgrade_clones(dp, tx); 5918 } 5919 5920 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5921 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5922 dsl_pool_upgrade_dir_clones(dp, tx); 5923 5924 /* Keeping the freedir open increases spa_minref */ 5925 spa->spa_minref += 3; 5926 } 5927 5928 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 5929 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 5930 spa_feature_create_zap_objects(spa, tx); 5931 } 5932 } 5933 5934 /* 5935 * Sync the specified transaction group. New blocks may be dirtied as 5936 * part of the process, so we iterate until it converges. 5937 */ 5938 void 5939 spa_sync(spa_t *spa, uint64_t txg) 5940 { 5941 dsl_pool_t *dp = spa->spa_dsl_pool; 5942 objset_t *mos = spa->spa_meta_objset; 5943 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5944 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5945 vdev_t *rvd = spa->spa_root_vdev; 5946 vdev_t *vd; 5947 dmu_tx_t *tx; 5948 int error; 5949 5950 VERIFY(spa_writeable(spa)); 5951 5952 /* 5953 * Lock out configuration changes. 5954 */ 5955 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5956 5957 spa->spa_syncing_txg = txg; 5958 spa->spa_sync_pass = 0; 5959 5960 /* 5961 * If there are any pending vdev state changes, convert them 5962 * into config changes that go out with this transaction group. 5963 */ 5964 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5965 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5966 /* 5967 * We need the write lock here because, for aux vdevs, 5968 * calling vdev_config_dirty() modifies sav_config. 5969 * This is ugly and will become unnecessary when we 5970 * eliminate the aux vdev wart by integrating all vdevs 5971 * into the root vdev tree. 5972 */ 5973 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5974 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5975 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5976 vdev_state_clean(vd); 5977 vdev_config_dirty(vd); 5978 } 5979 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5980 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5981 } 5982 spa_config_exit(spa, SCL_STATE, FTAG); 5983 5984 tx = dmu_tx_create_assigned(dp, txg); 5985 5986 spa->spa_sync_starttime = gethrtime(); 5987 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 5988 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 5989 5990 /* 5991 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5992 * set spa_deflate if we have no raid-z vdevs. 5993 */ 5994 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5995 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5996 int i; 5997 5998 for (i = 0; i < rvd->vdev_children; i++) { 5999 vd = rvd->vdev_child[i]; 6000 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6001 break; 6002 } 6003 if (i == rvd->vdev_children) { 6004 spa->spa_deflate = TRUE; 6005 VERIFY(0 == zap_add(spa->spa_meta_objset, 6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6007 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6008 } 6009 } 6010 6011 /* 6012 * If anything has changed in this txg, or if someone is waiting 6013 * for this txg to sync (eg, spa_vdev_remove()), push the 6014 * deferred frees from the previous txg. If not, leave them 6015 * alone so that we don't generate work on an otherwise idle 6016 * system. 6017 */ 6018 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6019 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6020 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6021 ((dsl_scan_active(dp->dp_scan) || 6022 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6023 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6024 VERIFY3U(bpobj_iterate(defer_bpo, 6025 spa_free_sync_cb, zio, tx), ==, 0); 6026 VERIFY0(zio_wait(zio)); 6027 } 6028 6029 /* 6030 * Iterate to convergence. 6031 */ 6032 do { 6033 int pass = ++spa->spa_sync_pass; 6034 6035 spa_sync_config_object(spa, tx); 6036 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6037 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6038 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6039 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6040 spa_errlog_sync(spa, txg); 6041 dsl_pool_sync(dp, txg); 6042 6043 if (pass <= SYNC_PASS_DEFERRED_FREE) { 6044 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6045 bplist_iterate(free_bpl, spa_free_sync_cb, 6046 zio, tx); 6047 VERIFY(zio_wait(zio) == 0); 6048 } else { 6049 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6050 defer_bpo, tx); 6051 } 6052 6053 ddt_sync(spa, txg); 6054 dsl_scan_sync(dp, tx); 6055 6056 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6057 vdev_sync(vd, txg); 6058 6059 if (pass == 1) 6060 spa_sync_upgrades(spa, tx); 6061 6062 } while (dmu_objset_is_dirty(mos, txg)); 6063 6064 /* 6065 * Rewrite the vdev configuration (which includes the uberblock) 6066 * to commit the transaction group. 6067 * 6068 * If there are no dirty vdevs, we sync the uberblock to a few 6069 * random top-level vdevs that are known to be visible in the 6070 * config cache (see spa_vdev_add() for a complete description). 6071 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6072 */ 6073 for (;;) { 6074 /* 6075 * We hold SCL_STATE to prevent vdev open/close/etc. 6076 * while we're attempting to write the vdev labels. 6077 */ 6078 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6079 6080 if (list_is_empty(&spa->spa_config_dirty_list)) { 6081 vdev_t *svd[SPA_DVAS_PER_BP]; 6082 int svdcount = 0; 6083 int children = rvd->vdev_children; 6084 int c0 = spa_get_random(children); 6085 6086 for (int c = 0; c < children; c++) { 6087 vd = rvd->vdev_child[(c0 + c) % children]; 6088 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6089 continue; 6090 svd[svdcount++] = vd; 6091 if (svdcount == SPA_DVAS_PER_BP) 6092 break; 6093 } 6094 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6095 if (error != 0) 6096 error = vdev_config_sync(svd, svdcount, txg, 6097 B_TRUE); 6098 } else { 6099 error = vdev_config_sync(rvd->vdev_child, 6100 rvd->vdev_children, txg, B_FALSE); 6101 if (error != 0) 6102 error = vdev_config_sync(rvd->vdev_child, 6103 rvd->vdev_children, txg, B_TRUE); 6104 } 6105 6106 if (error == 0) 6107 spa->spa_last_synced_guid = rvd->vdev_guid; 6108 6109 spa_config_exit(spa, SCL_STATE, FTAG); 6110 6111 if (error == 0) 6112 break; 6113 zio_suspend(spa, NULL); 6114 zio_resume_wait(spa); 6115 } 6116 dmu_tx_commit(tx); 6117 6118 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6119 6120 /* 6121 * Clear the dirty config list. 6122 */ 6123 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6124 vdev_config_clean(vd); 6125 6126 /* 6127 * Now that the new config has synced transactionally, 6128 * let it become visible to the config cache. 6129 */ 6130 if (spa->spa_config_syncing != NULL) { 6131 spa_config_set(spa, spa->spa_config_syncing); 6132 spa->spa_config_txg = txg; 6133 spa->spa_config_syncing = NULL; 6134 } 6135 6136 spa->spa_ubsync = spa->spa_uberblock; 6137 6138 dsl_pool_sync_done(dp, txg); 6139 6140 /* 6141 * Update usable space statistics. 6142 */ 6143 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6144 vdev_sync_done(vd, txg); 6145 6146 spa_update_dspace(spa); 6147 6148 /* 6149 * It had better be the case that we didn't dirty anything 6150 * since vdev_config_sync(). 6151 */ 6152 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6153 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6154 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6155 6156 spa->spa_sync_pass = 0; 6157 6158 spa_config_exit(spa, SCL_CONFIG, FTAG); 6159 6160 spa_handle_ignored_writes(spa); 6161 6162 /* 6163 * If any async tasks have been requested, kick them off. 6164 */ 6165 spa_async_dispatch(spa); 6166 } 6167 6168 /* 6169 * Sync all pools. We don't want to hold the namespace lock across these 6170 * operations, so we take a reference on the spa_t and drop the lock during the 6171 * sync. 6172 */ 6173 void 6174 spa_sync_allpools(void) 6175 { 6176 spa_t *spa = NULL; 6177 mutex_enter(&spa_namespace_lock); 6178 while ((spa = spa_next(spa)) != NULL) { 6179 if (spa_state(spa) != POOL_STATE_ACTIVE || 6180 !spa_writeable(spa) || spa_suspended(spa)) 6181 continue; 6182 spa_open_ref(spa, FTAG); 6183 mutex_exit(&spa_namespace_lock); 6184 txg_wait_synced(spa_get_dsl(spa), 0); 6185 mutex_enter(&spa_namespace_lock); 6186 spa_close(spa, FTAG); 6187 } 6188 mutex_exit(&spa_namespace_lock); 6189 } 6190 6191 /* 6192 * ========================================================================== 6193 * Miscellaneous routines 6194 * ========================================================================== 6195 */ 6196 6197 /* 6198 * Remove all pools in the system. 6199 */ 6200 void 6201 spa_evict_all(void) 6202 { 6203 spa_t *spa; 6204 6205 /* 6206 * Remove all cached state. All pools should be closed now, 6207 * so every spa in the AVL tree should be unreferenced. 6208 */ 6209 mutex_enter(&spa_namespace_lock); 6210 while ((spa = spa_next(NULL)) != NULL) { 6211 /* 6212 * Stop async tasks. The async thread may need to detach 6213 * a device that's been replaced, which requires grabbing 6214 * spa_namespace_lock, so we must drop it here. 6215 */ 6216 spa_open_ref(spa, FTAG); 6217 mutex_exit(&spa_namespace_lock); 6218 spa_async_suspend(spa); 6219 mutex_enter(&spa_namespace_lock); 6220 spa_close(spa, FTAG); 6221 6222 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6223 spa_unload(spa); 6224 spa_deactivate(spa); 6225 } 6226 spa_remove(spa); 6227 } 6228 mutex_exit(&spa_namespace_lock); 6229 } 6230 6231 vdev_t * 6232 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6233 { 6234 vdev_t *vd; 6235 int i; 6236 6237 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6238 return (vd); 6239 6240 if (aux) { 6241 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6242 vd = spa->spa_l2cache.sav_vdevs[i]; 6243 if (vd->vdev_guid == guid) 6244 return (vd); 6245 } 6246 6247 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6248 vd = spa->spa_spares.sav_vdevs[i]; 6249 if (vd->vdev_guid == guid) 6250 return (vd); 6251 } 6252 } 6253 6254 return (NULL); 6255 } 6256 6257 void 6258 spa_upgrade(spa_t *spa, uint64_t version) 6259 { 6260 ASSERT(spa_writeable(spa)); 6261 6262 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6263 6264 /* 6265 * This should only be called for a non-faulted pool, and since a 6266 * future version would result in an unopenable pool, this shouldn't be 6267 * possible. 6268 */ 6269 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 6270 ASSERT(version >= spa->spa_uberblock.ub_version); 6271 6272 spa->spa_uberblock.ub_version = version; 6273 vdev_config_dirty(spa->spa_root_vdev); 6274 6275 spa_config_exit(spa, SCL_ALL, FTAG); 6276 6277 txg_wait_synced(spa_get_dsl(spa), 0); 6278 } 6279 6280 boolean_t 6281 spa_has_spare(spa_t *spa, uint64_t guid) 6282 { 6283 int i; 6284 uint64_t spareguid; 6285 spa_aux_vdev_t *sav = &spa->spa_spares; 6286 6287 for (i = 0; i < sav->sav_count; i++) 6288 if (sav->sav_vdevs[i]->vdev_guid == guid) 6289 return (B_TRUE); 6290 6291 for (i = 0; i < sav->sav_npending; i++) { 6292 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6293 &spareguid) == 0 && spareguid == guid) 6294 return (B_TRUE); 6295 } 6296 6297 return (B_FALSE); 6298 } 6299 6300 /* 6301 * Check if a pool has an active shared spare device. 6302 * Note: reference count of an active spare is 2, as a spare and as a replace 6303 */ 6304 static boolean_t 6305 spa_has_active_shared_spare(spa_t *spa) 6306 { 6307 int i, refcnt; 6308 uint64_t pool; 6309 spa_aux_vdev_t *sav = &spa->spa_spares; 6310 6311 for (i = 0; i < sav->sav_count; i++) { 6312 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6313 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6314 refcnt > 2) 6315 return (B_TRUE); 6316 } 6317 6318 return (B_FALSE); 6319 } 6320 6321 /* 6322 * Post a sysevent corresponding to the given event. The 'name' must be one of 6323 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6324 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6325 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6326 * or zdb as real changes. 6327 */ 6328 void 6329 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6330 { 6331 #ifdef _KERNEL 6332 sysevent_t *ev; 6333 sysevent_attr_list_t *attr = NULL; 6334 sysevent_value_t value; 6335 sysevent_id_t eid; 6336 6337 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6338 SE_SLEEP); 6339 6340 value.value_type = SE_DATA_TYPE_STRING; 6341 value.value.sv_string = spa_name(spa); 6342 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6343 goto done; 6344 6345 value.value_type = SE_DATA_TYPE_UINT64; 6346 value.value.sv_uint64 = spa_guid(spa); 6347 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6348 goto done; 6349 6350 if (vd) { 6351 value.value_type = SE_DATA_TYPE_UINT64; 6352 value.value.sv_uint64 = vd->vdev_guid; 6353 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6354 SE_SLEEP) != 0) 6355 goto done; 6356 6357 if (vd->vdev_path) { 6358 value.value_type = SE_DATA_TYPE_STRING; 6359 value.value.sv_string = vd->vdev_path; 6360 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6361 &value, SE_SLEEP) != 0) 6362 goto done; 6363 } 6364 } 6365 6366 if (sysevent_attach_attributes(ev, attr) != 0) 6367 goto done; 6368 attr = NULL; 6369 6370 (void) log_sysevent(ev, SE_SLEEP, &eid); 6371 6372 done: 6373 if (attr) 6374 sysevent_free_attr(attr); 6375 sysevent_free(ev); 6376 #endif 6377 } 6378