1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 63 #ifdef _KERNEL 64 #include <sys/bootprops.h> 65 #include <sys/callb.h> 66 #include <sys/cpupart.h> 67 #include <sys/pool.h> 68 #include <sys/sysdc.h> 69 #include <sys/zone.h> 70 #endif /* _KERNEL */ 71 72 #include "zfs_prop.h" 73 #include "zfs_comutil.h" 74 75 typedef enum zti_modes { 76 zti_mode_fixed, /* value is # of threads (min 1) */ 77 zti_mode_online_percent, /* value is % of online CPUs */ 78 zti_mode_batch, /* cpu-intensive; value is ignored */ 79 zti_mode_null, /* don't create a taskq */ 80 zti_nmodes 81 } zti_modes_t; 82 83 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 84 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 85 #define ZTI_BATCH { zti_mode_batch, 0 } 86 #define ZTI_NULL { zti_mode_null, 0 } 87 88 #define ZTI_ONE ZTI_FIX(1) 89 90 typedef struct zio_taskq_info { 91 enum zti_modes zti_mode; 92 uint_t zti_value; 93 } zio_taskq_info_t; 94 95 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 96 "issue", "issue_high", "intr", "intr_high" 97 }; 98 99 /* 100 * Define the taskq threads for the following I/O types: 101 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 102 */ 103 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 104 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 105 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 106 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 107 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 108 { ZTI_FIX(10), ZTI_NULL, ZTI_FIX(10), ZTI_NULL }, 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 }; 112 113 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 114 static boolean_t spa_has_active_shared_spare(spa_t *spa); 115 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 116 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 117 char **ereport); 118 119 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 120 id_t zio_taskq_psrset_bind = PS_NONE; 121 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 122 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 123 124 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 125 126 /* 127 * This (illegal) pool name is used when temporarily importing a spa_t in order 128 * to get the vdev stats associated with the imported devices. 129 */ 130 #define TRYIMPORT_NAME "$import" 131 132 /* 133 * ========================================================================== 134 * SPA properties routines 135 * ========================================================================== 136 */ 137 138 /* 139 * Add a (source=src, propname=propval) list to an nvlist. 140 */ 141 static void 142 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 143 uint64_t intval, zprop_source_t src) 144 { 145 const char *propname = zpool_prop_to_name(prop); 146 nvlist_t *propval; 147 148 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 149 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 150 151 if (strval != NULL) 152 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 153 else 154 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 155 156 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 157 nvlist_free(propval); 158 } 159 160 /* 161 * Get property values from the spa configuration. 162 */ 163 static void 164 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 165 { 166 uint64_t size; 167 uint64_t alloc; 168 uint64_t cap, version; 169 zprop_source_t src = ZPROP_SRC_NONE; 170 spa_config_dirent_t *dp; 171 172 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 173 174 if (spa->spa_root_vdev != NULL) { 175 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 176 size = metaslab_class_get_space(spa_normal_class(spa)); 177 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 181 size - alloc, src); 182 183 cap = (size == 0) ? 0 : (alloc * 100 / size); 184 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 185 186 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 187 ddt_get_pool_dedup_ratio(spa), src); 188 189 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 190 spa->spa_root_vdev->vdev_state, src); 191 192 version = spa_version(spa); 193 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 194 src = ZPROP_SRC_DEFAULT; 195 else 196 src = ZPROP_SRC_LOCAL; 197 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 198 } 199 200 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 201 202 if (spa->spa_root != NULL) 203 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 204 0, ZPROP_SRC_LOCAL); 205 206 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 207 if (dp->scd_path == NULL) { 208 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 209 "none", 0, ZPROP_SRC_LOCAL); 210 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 211 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 212 dp->scd_path, 0, ZPROP_SRC_LOCAL); 213 } 214 } 215 } 216 217 /* 218 * Get zpool property values. 219 */ 220 int 221 spa_prop_get(spa_t *spa, nvlist_t **nvp) 222 { 223 objset_t *mos = spa->spa_meta_objset; 224 zap_cursor_t zc; 225 zap_attribute_t za; 226 int err; 227 228 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 229 230 mutex_enter(&spa->spa_props_lock); 231 232 /* 233 * Get properties from the spa config. 234 */ 235 spa_prop_get_config(spa, nvp); 236 237 /* If no pool property object, no more prop to get. */ 238 if (mos == NULL || spa->spa_pool_props_object == 0) { 239 mutex_exit(&spa->spa_props_lock); 240 return (0); 241 } 242 243 /* 244 * Get properties from the MOS pool property object. 245 */ 246 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 247 (err = zap_cursor_retrieve(&zc, &za)) == 0; 248 zap_cursor_advance(&zc)) { 249 uint64_t intval = 0; 250 char *strval = NULL; 251 zprop_source_t src = ZPROP_SRC_DEFAULT; 252 zpool_prop_t prop; 253 254 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 255 continue; 256 257 switch (za.za_integer_length) { 258 case 8: 259 /* integer property */ 260 if (za.za_first_integer != 261 zpool_prop_default_numeric(prop)) 262 src = ZPROP_SRC_LOCAL; 263 264 if (prop == ZPOOL_PROP_BOOTFS) { 265 dsl_pool_t *dp; 266 dsl_dataset_t *ds = NULL; 267 268 dp = spa_get_dsl(spa); 269 rw_enter(&dp->dp_config_rwlock, RW_READER); 270 if (err = dsl_dataset_hold_obj(dp, 271 za.za_first_integer, FTAG, &ds)) { 272 rw_exit(&dp->dp_config_rwlock); 273 break; 274 } 275 276 strval = kmem_alloc( 277 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 278 KM_SLEEP); 279 dsl_dataset_name(ds, strval); 280 dsl_dataset_rele(ds, FTAG); 281 rw_exit(&dp->dp_config_rwlock); 282 } else { 283 strval = NULL; 284 intval = za.za_first_integer; 285 } 286 287 spa_prop_add_list(*nvp, prop, strval, intval, src); 288 289 if (strval != NULL) 290 kmem_free(strval, 291 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 292 293 break; 294 295 case 1: 296 /* string property */ 297 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 298 err = zap_lookup(mos, spa->spa_pool_props_object, 299 za.za_name, 1, za.za_num_integers, strval); 300 if (err) { 301 kmem_free(strval, za.za_num_integers); 302 break; 303 } 304 spa_prop_add_list(*nvp, prop, strval, 0, src); 305 kmem_free(strval, za.za_num_integers); 306 break; 307 308 default: 309 break; 310 } 311 } 312 zap_cursor_fini(&zc); 313 mutex_exit(&spa->spa_props_lock); 314 out: 315 if (err && err != ENOENT) { 316 nvlist_free(*nvp); 317 *nvp = NULL; 318 return (err); 319 } 320 321 return (0); 322 } 323 324 /* 325 * Validate the given pool properties nvlist and modify the list 326 * for the property values to be set. 327 */ 328 static int 329 spa_prop_validate(spa_t *spa, nvlist_t *props) 330 { 331 nvpair_t *elem; 332 int error = 0, reset_bootfs = 0; 333 uint64_t objnum; 334 335 elem = NULL; 336 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 337 zpool_prop_t prop; 338 char *propname, *strval; 339 uint64_t intval; 340 objset_t *os; 341 char *slash; 342 343 propname = nvpair_name(elem); 344 345 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 346 return (EINVAL); 347 348 switch (prop) { 349 case ZPOOL_PROP_VERSION: 350 error = nvpair_value_uint64(elem, &intval); 351 if (!error && 352 (intval < spa_version(spa) || intval > SPA_VERSION)) 353 error = EINVAL; 354 break; 355 356 case ZPOOL_PROP_DELEGATION: 357 case ZPOOL_PROP_AUTOREPLACE: 358 case ZPOOL_PROP_LISTSNAPS: 359 case ZPOOL_PROP_AUTOEXPAND: 360 error = nvpair_value_uint64(elem, &intval); 361 if (!error && intval > 1) 362 error = EINVAL; 363 break; 364 365 case ZPOOL_PROP_BOOTFS: 366 /* 367 * If the pool version is less than SPA_VERSION_BOOTFS, 368 * or the pool is still being created (version == 0), 369 * the bootfs property cannot be set. 370 */ 371 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 372 error = ENOTSUP; 373 break; 374 } 375 376 /* 377 * Make sure the vdev config is bootable 378 */ 379 if (!vdev_is_bootable(spa->spa_root_vdev)) { 380 error = ENOTSUP; 381 break; 382 } 383 384 reset_bootfs = 1; 385 386 error = nvpair_value_string(elem, &strval); 387 388 if (!error) { 389 uint64_t compress; 390 391 if (strval == NULL || strval[0] == '\0') { 392 objnum = zpool_prop_default_numeric( 393 ZPOOL_PROP_BOOTFS); 394 break; 395 } 396 397 if (error = dmu_objset_hold(strval, FTAG, &os)) 398 break; 399 400 /* Must be ZPL and not gzip compressed. */ 401 402 if (dmu_objset_type(os) != DMU_OST_ZFS) { 403 error = ENOTSUP; 404 } else if ((error = dsl_prop_get_integer(strval, 405 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 406 &compress, NULL)) == 0 && 407 !BOOTFS_COMPRESS_VALID(compress)) { 408 error = ENOTSUP; 409 } else { 410 objnum = dmu_objset_id(os); 411 } 412 dmu_objset_rele(os, FTAG); 413 } 414 break; 415 416 case ZPOOL_PROP_FAILUREMODE: 417 error = nvpair_value_uint64(elem, &intval); 418 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 419 intval > ZIO_FAILURE_MODE_PANIC)) 420 error = EINVAL; 421 422 /* 423 * This is a special case which only occurs when 424 * the pool has completely failed. This allows 425 * the user to change the in-core failmode property 426 * without syncing it out to disk (I/Os might 427 * currently be blocked). We do this by returning 428 * EIO to the caller (spa_prop_set) to trick it 429 * into thinking we encountered a property validation 430 * error. 431 */ 432 if (!error && spa_suspended(spa)) { 433 spa->spa_failmode = intval; 434 error = EIO; 435 } 436 break; 437 438 case ZPOOL_PROP_CACHEFILE: 439 if ((error = nvpair_value_string(elem, &strval)) != 0) 440 break; 441 442 if (strval[0] == '\0') 443 break; 444 445 if (strcmp(strval, "none") == 0) 446 break; 447 448 if (strval[0] != '/') { 449 error = EINVAL; 450 break; 451 } 452 453 slash = strrchr(strval, '/'); 454 ASSERT(slash != NULL); 455 456 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 457 strcmp(slash, "/..") == 0) 458 error = EINVAL; 459 break; 460 461 case ZPOOL_PROP_DEDUPDITTO: 462 if (spa_version(spa) < SPA_VERSION_DEDUP) 463 error = ENOTSUP; 464 else 465 error = nvpair_value_uint64(elem, &intval); 466 if (error == 0 && 467 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 468 error = EINVAL; 469 break; 470 } 471 472 if (error) 473 break; 474 } 475 476 if (!error && reset_bootfs) { 477 error = nvlist_remove(props, 478 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 479 480 if (!error) { 481 error = nvlist_add_uint64(props, 482 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 483 } 484 } 485 486 return (error); 487 } 488 489 void 490 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 491 { 492 char *cachefile; 493 spa_config_dirent_t *dp; 494 495 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 496 &cachefile) != 0) 497 return; 498 499 dp = kmem_alloc(sizeof (spa_config_dirent_t), 500 KM_SLEEP); 501 502 if (cachefile[0] == '\0') 503 dp->scd_path = spa_strdup(spa_config_path); 504 else if (strcmp(cachefile, "none") == 0) 505 dp->scd_path = NULL; 506 else 507 dp->scd_path = spa_strdup(cachefile); 508 509 list_insert_head(&spa->spa_config_list, dp); 510 if (need_sync) 511 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 512 } 513 514 int 515 spa_prop_set(spa_t *spa, nvlist_t *nvp) 516 { 517 int error; 518 nvpair_t *elem; 519 boolean_t need_sync = B_FALSE; 520 zpool_prop_t prop; 521 522 if ((error = spa_prop_validate(spa, nvp)) != 0) 523 return (error); 524 525 elem = NULL; 526 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 527 if ((prop = zpool_name_to_prop( 528 nvpair_name(elem))) == ZPROP_INVAL) 529 return (EINVAL); 530 531 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 532 continue; 533 534 need_sync = B_TRUE; 535 break; 536 } 537 538 if (need_sync) 539 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 540 spa, nvp, 3)); 541 else 542 return (0); 543 } 544 545 /* 546 * If the bootfs property value is dsobj, clear it. 547 */ 548 void 549 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 550 { 551 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 552 VERIFY(zap_remove(spa->spa_meta_objset, 553 spa->spa_pool_props_object, 554 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 555 spa->spa_bootfs = 0; 556 } 557 } 558 559 /* 560 * ========================================================================== 561 * SPA state manipulation (open/create/destroy/import/export) 562 * ========================================================================== 563 */ 564 565 static int 566 spa_error_entry_compare(const void *a, const void *b) 567 { 568 spa_error_entry_t *sa = (spa_error_entry_t *)a; 569 spa_error_entry_t *sb = (spa_error_entry_t *)b; 570 int ret; 571 572 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 573 sizeof (zbookmark_t)); 574 575 if (ret < 0) 576 return (-1); 577 else if (ret > 0) 578 return (1); 579 else 580 return (0); 581 } 582 583 /* 584 * Utility function which retrieves copies of the current logs and 585 * re-initializes them in the process. 586 */ 587 void 588 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 589 { 590 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 591 592 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 593 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 594 595 avl_create(&spa->spa_errlist_scrub, 596 spa_error_entry_compare, sizeof (spa_error_entry_t), 597 offsetof(spa_error_entry_t, se_avl)); 598 avl_create(&spa->spa_errlist_last, 599 spa_error_entry_compare, sizeof (spa_error_entry_t), 600 offsetof(spa_error_entry_t, se_avl)); 601 } 602 603 static taskq_t * 604 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 605 uint_t value) 606 { 607 uint_t flags = TASKQ_PREPOPULATE; 608 boolean_t batch = B_FALSE; 609 610 switch (mode) { 611 case zti_mode_null: 612 return (NULL); /* no taskq needed */ 613 614 case zti_mode_fixed: 615 ASSERT3U(value, >=, 1); 616 value = MAX(value, 1); 617 break; 618 619 case zti_mode_batch: 620 batch = B_TRUE; 621 flags |= TASKQ_THREADS_CPU_PCT; 622 value = zio_taskq_batch_pct; 623 break; 624 625 case zti_mode_online_percent: 626 flags |= TASKQ_THREADS_CPU_PCT; 627 break; 628 629 default: 630 panic("unrecognized mode for %s taskq (%u:%u) in " 631 "spa_activate()", 632 name, mode, value); 633 break; 634 } 635 636 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 637 if (batch) 638 flags |= TASKQ_DC_BATCH; 639 640 return (taskq_create_sysdc(name, value, 50, INT_MAX, 641 spa->spa_proc, zio_taskq_basedc, flags)); 642 } 643 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 644 spa->spa_proc, flags)); 645 } 646 647 static void 648 spa_create_zio_taskqs(spa_t *spa) 649 { 650 for (int t = 0; t < ZIO_TYPES; t++) { 651 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 652 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 653 enum zti_modes mode = ztip->zti_mode; 654 uint_t value = ztip->zti_value; 655 char name[32]; 656 657 (void) snprintf(name, sizeof (name), 658 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 659 660 spa->spa_zio_taskq[t][q] = 661 spa_taskq_create(spa, name, mode, value); 662 } 663 } 664 } 665 666 #ifdef _KERNEL 667 static void 668 spa_thread(void *arg) 669 { 670 callb_cpr_t cprinfo; 671 672 spa_t *spa = arg; 673 user_t *pu = PTOU(curproc); 674 675 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 676 spa->spa_name); 677 678 ASSERT(curproc != &p0); 679 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 680 "zpool-%s", spa->spa_name); 681 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 682 683 /* bind this thread to the requested psrset */ 684 if (zio_taskq_psrset_bind != PS_NONE) { 685 pool_lock(); 686 mutex_enter(&cpu_lock); 687 mutex_enter(&pidlock); 688 mutex_enter(&curproc->p_lock); 689 690 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 691 0, NULL, NULL) == 0) { 692 curthread->t_bind_pset = zio_taskq_psrset_bind; 693 } else { 694 cmn_err(CE_WARN, 695 "Couldn't bind process for zfs pool \"%s\" to " 696 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 697 } 698 699 mutex_exit(&curproc->p_lock); 700 mutex_exit(&pidlock); 701 mutex_exit(&cpu_lock); 702 pool_unlock(); 703 } 704 705 if (zio_taskq_sysdc) { 706 sysdc_thread_enter(curthread, 100, 0); 707 } 708 709 spa->spa_proc = curproc; 710 spa->spa_did = curthread->t_did; 711 712 spa_create_zio_taskqs(spa); 713 714 mutex_enter(&spa->spa_proc_lock); 715 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 716 717 spa->spa_proc_state = SPA_PROC_ACTIVE; 718 cv_broadcast(&spa->spa_proc_cv); 719 720 CALLB_CPR_SAFE_BEGIN(&cprinfo); 721 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 722 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 723 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 724 725 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 726 spa->spa_proc_state = SPA_PROC_GONE; 727 spa->spa_proc = &p0; 728 cv_broadcast(&spa->spa_proc_cv); 729 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 730 731 mutex_enter(&curproc->p_lock); 732 lwp_exit(); 733 } 734 #endif 735 736 /* 737 * Activate an uninitialized pool. 738 */ 739 static void 740 spa_activate(spa_t *spa, int mode) 741 { 742 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 743 744 spa->spa_state = POOL_STATE_ACTIVE; 745 spa->spa_mode = mode; 746 747 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 748 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 750 /* Try to create a covering process */ 751 mutex_enter(&spa->spa_proc_lock); 752 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 753 ASSERT(spa->spa_proc == &p0); 754 spa->spa_did = 0; 755 756 /* Only create a process if we're going to be around a while. */ 757 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 758 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 759 NULL, 0) == 0) { 760 spa->spa_proc_state = SPA_PROC_CREATED; 761 while (spa->spa_proc_state == SPA_PROC_CREATED) { 762 cv_wait(&spa->spa_proc_cv, 763 &spa->spa_proc_lock); 764 } 765 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 766 ASSERT(spa->spa_proc != &p0); 767 ASSERT(spa->spa_did != 0); 768 } else { 769 #ifdef _KERNEL 770 cmn_err(CE_WARN, 771 "Couldn't create process for zfs pool \"%s\"\n", 772 spa->spa_name); 773 #endif 774 } 775 } 776 mutex_exit(&spa->spa_proc_lock); 777 778 /* If we didn't create a process, we need to create our taskqs. */ 779 if (spa->spa_proc == &p0) { 780 spa_create_zio_taskqs(spa); 781 } 782 783 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 784 offsetof(vdev_t, vdev_config_dirty_node)); 785 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 786 offsetof(vdev_t, vdev_state_dirty_node)); 787 788 txg_list_create(&spa->spa_vdev_txg_list, 789 offsetof(struct vdev, vdev_txg_node)); 790 791 avl_create(&spa->spa_errlist_scrub, 792 spa_error_entry_compare, sizeof (spa_error_entry_t), 793 offsetof(spa_error_entry_t, se_avl)); 794 avl_create(&spa->spa_errlist_last, 795 spa_error_entry_compare, sizeof (spa_error_entry_t), 796 offsetof(spa_error_entry_t, se_avl)); 797 } 798 799 /* 800 * Opposite of spa_activate(). 801 */ 802 static void 803 spa_deactivate(spa_t *spa) 804 { 805 ASSERT(spa->spa_sync_on == B_FALSE); 806 ASSERT(spa->spa_dsl_pool == NULL); 807 ASSERT(spa->spa_root_vdev == NULL); 808 ASSERT(spa->spa_async_zio_root == NULL); 809 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 810 811 txg_list_destroy(&spa->spa_vdev_txg_list); 812 813 list_destroy(&spa->spa_config_dirty_list); 814 list_destroy(&spa->spa_state_dirty_list); 815 816 for (int t = 0; t < ZIO_TYPES; t++) { 817 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 818 if (spa->spa_zio_taskq[t][q] != NULL) 819 taskq_destroy(spa->spa_zio_taskq[t][q]); 820 spa->spa_zio_taskq[t][q] = NULL; 821 } 822 } 823 824 metaslab_class_destroy(spa->spa_normal_class); 825 spa->spa_normal_class = NULL; 826 827 metaslab_class_destroy(spa->spa_log_class); 828 spa->spa_log_class = NULL; 829 830 /* 831 * If this was part of an import or the open otherwise failed, we may 832 * still have errors left in the queues. Empty them just in case. 833 */ 834 spa_errlog_drain(spa); 835 836 avl_destroy(&spa->spa_errlist_scrub); 837 avl_destroy(&spa->spa_errlist_last); 838 839 spa->spa_state = POOL_STATE_UNINITIALIZED; 840 841 mutex_enter(&spa->spa_proc_lock); 842 if (spa->spa_proc_state != SPA_PROC_NONE) { 843 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 844 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 845 cv_broadcast(&spa->spa_proc_cv); 846 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 847 ASSERT(spa->spa_proc != &p0); 848 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 849 } 850 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 851 spa->spa_proc_state = SPA_PROC_NONE; 852 } 853 ASSERT(spa->spa_proc == &p0); 854 mutex_exit(&spa->spa_proc_lock); 855 856 /* 857 * We want to make sure spa_thread() has actually exited the ZFS 858 * module, so that the module can't be unloaded out from underneath 859 * it. 860 */ 861 if (spa->spa_did != 0) { 862 thread_join(spa->spa_did); 863 spa->spa_did = 0; 864 } 865 } 866 867 /* 868 * Verify a pool configuration, and construct the vdev tree appropriately. This 869 * will create all the necessary vdevs in the appropriate layout, with each vdev 870 * in the CLOSED state. This will prep the pool before open/creation/import. 871 * All vdev validation is done by the vdev_alloc() routine. 872 */ 873 static int 874 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 875 uint_t id, int atype) 876 { 877 nvlist_t **child; 878 uint_t children; 879 int error; 880 881 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 882 return (error); 883 884 if ((*vdp)->vdev_ops->vdev_op_leaf) 885 return (0); 886 887 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 888 &child, &children); 889 890 if (error == ENOENT) 891 return (0); 892 893 if (error) { 894 vdev_free(*vdp); 895 *vdp = NULL; 896 return (EINVAL); 897 } 898 899 for (int c = 0; c < children; c++) { 900 vdev_t *vd; 901 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 902 atype)) != 0) { 903 vdev_free(*vdp); 904 *vdp = NULL; 905 return (error); 906 } 907 } 908 909 ASSERT(*vdp != NULL); 910 911 return (0); 912 } 913 914 /* 915 * Opposite of spa_load(). 916 */ 917 static void 918 spa_unload(spa_t *spa) 919 { 920 int i; 921 922 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 923 924 /* 925 * Stop async tasks. 926 */ 927 spa_async_suspend(spa); 928 929 /* 930 * Stop syncing. 931 */ 932 if (spa->spa_sync_on) { 933 txg_sync_stop(spa->spa_dsl_pool); 934 spa->spa_sync_on = B_FALSE; 935 } 936 937 /* 938 * Wait for any outstanding async I/O to complete. 939 */ 940 if (spa->spa_async_zio_root != NULL) { 941 (void) zio_wait(spa->spa_async_zio_root); 942 spa->spa_async_zio_root = NULL; 943 } 944 945 /* 946 * Close the dsl pool. 947 */ 948 if (spa->spa_dsl_pool) { 949 dsl_pool_close(spa->spa_dsl_pool); 950 spa->spa_dsl_pool = NULL; 951 spa->spa_meta_objset = NULL; 952 } 953 954 ddt_unload(spa); 955 956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 957 958 /* 959 * Drop and purge level 2 cache 960 */ 961 spa_l2cache_drop(spa); 962 963 /* 964 * Close all vdevs. 965 */ 966 if (spa->spa_root_vdev) 967 vdev_free(spa->spa_root_vdev); 968 ASSERT(spa->spa_root_vdev == NULL); 969 970 for (i = 0; i < spa->spa_spares.sav_count; i++) 971 vdev_free(spa->spa_spares.sav_vdevs[i]); 972 if (spa->spa_spares.sav_vdevs) { 973 kmem_free(spa->spa_spares.sav_vdevs, 974 spa->spa_spares.sav_count * sizeof (void *)); 975 spa->spa_spares.sav_vdevs = NULL; 976 } 977 if (spa->spa_spares.sav_config) { 978 nvlist_free(spa->spa_spares.sav_config); 979 spa->spa_spares.sav_config = NULL; 980 } 981 spa->spa_spares.sav_count = 0; 982 983 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 984 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 985 if (spa->spa_l2cache.sav_vdevs) { 986 kmem_free(spa->spa_l2cache.sav_vdevs, 987 spa->spa_l2cache.sav_count * sizeof (void *)); 988 spa->spa_l2cache.sav_vdevs = NULL; 989 } 990 if (spa->spa_l2cache.sav_config) { 991 nvlist_free(spa->spa_l2cache.sav_config); 992 spa->spa_l2cache.sav_config = NULL; 993 } 994 spa->spa_l2cache.sav_count = 0; 995 996 spa->spa_async_suspended = 0; 997 998 spa_config_exit(spa, SCL_ALL, FTAG); 999 } 1000 1001 /* 1002 * Load (or re-load) the current list of vdevs describing the active spares for 1003 * this pool. When this is called, we have some form of basic information in 1004 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1005 * then re-generate a more complete list including status information. 1006 */ 1007 static void 1008 spa_load_spares(spa_t *spa) 1009 { 1010 nvlist_t **spares; 1011 uint_t nspares; 1012 int i; 1013 vdev_t *vd, *tvd; 1014 1015 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1016 1017 /* 1018 * First, close and free any existing spare vdevs. 1019 */ 1020 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1021 vd = spa->spa_spares.sav_vdevs[i]; 1022 1023 /* Undo the call to spa_activate() below */ 1024 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1025 B_FALSE)) != NULL && tvd->vdev_isspare) 1026 spa_spare_remove(tvd); 1027 vdev_close(vd); 1028 vdev_free(vd); 1029 } 1030 1031 if (spa->spa_spares.sav_vdevs) 1032 kmem_free(spa->spa_spares.sav_vdevs, 1033 spa->spa_spares.sav_count * sizeof (void *)); 1034 1035 if (spa->spa_spares.sav_config == NULL) 1036 nspares = 0; 1037 else 1038 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1039 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1040 1041 spa->spa_spares.sav_count = (int)nspares; 1042 spa->spa_spares.sav_vdevs = NULL; 1043 1044 if (nspares == 0) 1045 return; 1046 1047 /* 1048 * Construct the array of vdevs, opening them to get status in the 1049 * process. For each spare, there is potentially two different vdev_t 1050 * structures associated with it: one in the list of spares (used only 1051 * for basic validation purposes) and one in the active vdev 1052 * configuration (if it's spared in). During this phase we open and 1053 * validate each vdev on the spare list. If the vdev also exists in the 1054 * active configuration, then we also mark this vdev as an active spare. 1055 */ 1056 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1057 KM_SLEEP); 1058 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1059 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1060 VDEV_ALLOC_SPARE) == 0); 1061 ASSERT(vd != NULL); 1062 1063 spa->spa_spares.sav_vdevs[i] = vd; 1064 1065 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1066 B_FALSE)) != NULL) { 1067 if (!tvd->vdev_isspare) 1068 spa_spare_add(tvd); 1069 1070 /* 1071 * We only mark the spare active if we were successfully 1072 * able to load the vdev. Otherwise, importing a pool 1073 * with a bad active spare would result in strange 1074 * behavior, because multiple pool would think the spare 1075 * is actively in use. 1076 * 1077 * There is a vulnerability here to an equally bizarre 1078 * circumstance, where a dead active spare is later 1079 * brought back to life (onlined or otherwise). Given 1080 * the rarity of this scenario, and the extra complexity 1081 * it adds, we ignore the possibility. 1082 */ 1083 if (!vdev_is_dead(tvd)) 1084 spa_spare_activate(tvd); 1085 } 1086 1087 vd->vdev_top = vd; 1088 vd->vdev_aux = &spa->spa_spares; 1089 1090 if (vdev_open(vd) != 0) 1091 continue; 1092 1093 if (vdev_validate_aux(vd) == 0) 1094 spa_spare_add(vd); 1095 } 1096 1097 /* 1098 * Recompute the stashed list of spares, with status information 1099 * this time. 1100 */ 1101 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1102 DATA_TYPE_NVLIST_ARRAY) == 0); 1103 1104 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1105 KM_SLEEP); 1106 for (i = 0; i < spa->spa_spares.sav_count; i++) 1107 spares[i] = vdev_config_generate(spa, 1108 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 1109 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1110 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1111 for (i = 0; i < spa->spa_spares.sav_count; i++) 1112 nvlist_free(spares[i]); 1113 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1114 } 1115 1116 /* 1117 * Load (or re-load) the current list of vdevs describing the active l2cache for 1118 * this pool. When this is called, we have some form of basic information in 1119 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1120 * then re-generate a more complete list including status information. 1121 * Devices which are already active have their details maintained, and are 1122 * not re-opened. 1123 */ 1124 static void 1125 spa_load_l2cache(spa_t *spa) 1126 { 1127 nvlist_t **l2cache; 1128 uint_t nl2cache; 1129 int i, j, oldnvdevs; 1130 uint64_t guid; 1131 vdev_t *vd, **oldvdevs, **newvdevs; 1132 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1133 1134 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1135 1136 if (sav->sav_config != NULL) { 1137 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1138 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1139 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1140 } else { 1141 nl2cache = 0; 1142 } 1143 1144 oldvdevs = sav->sav_vdevs; 1145 oldnvdevs = sav->sav_count; 1146 sav->sav_vdevs = NULL; 1147 sav->sav_count = 0; 1148 1149 /* 1150 * Process new nvlist of vdevs. 1151 */ 1152 for (i = 0; i < nl2cache; i++) { 1153 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1154 &guid) == 0); 1155 1156 newvdevs[i] = NULL; 1157 for (j = 0; j < oldnvdevs; j++) { 1158 vd = oldvdevs[j]; 1159 if (vd != NULL && guid == vd->vdev_guid) { 1160 /* 1161 * Retain previous vdev for add/remove ops. 1162 */ 1163 newvdevs[i] = vd; 1164 oldvdevs[j] = NULL; 1165 break; 1166 } 1167 } 1168 1169 if (newvdevs[i] == NULL) { 1170 /* 1171 * Create new vdev 1172 */ 1173 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1174 VDEV_ALLOC_L2CACHE) == 0); 1175 ASSERT(vd != NULL); 1176 newvdevs[i] = vd; 1177 1178 /* 1179 * Commit this vdev as an l2cache device, 1180 * even if it fails to open. 1181 */ 1182 spa_l2cache_add(vd); 1183 1184 vd->vdev_top = vd; 1185 vd->vdev_aux = sav; 1186 1187 spa_l2cache_activate(vd); 1188 1189 if (vdev_open(vd) != 0) 1190 continue; 1191 1192 (void) vdev_validate_aux(vd); 1193 1194 if (!vdev_is_dead(vd)) 1195 l2arc_add_vdev(spa, vd); 1196 } 1197 } 1198 1199 /* 1200 * Purge vdevs that were dropped 1201 */ 1202 for (i = 0; i < oldnvdevs; i++) { 1203 uint64_t pool; 1204 1205 vd = oldvdevs[i]; 1206 if (vd != NULL) { 1207 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1208 pool != 0ULL && l2arc_vdev_present(vd)) 1209 l2arc_remove_vdev(vd); 1210 (void) vdev_close(vd); 1211 spa_l2cache_remove(vd); 1212 } 1213 } 1214 1215 if (oldvdevs) 1216 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1217 1218 if (sav->sav_config == NULL) 1219 goto out; 1220 1221 sav->sav_vdevs = newvdevs; 1222 sav->sav_count = (int)nl2cache; 1223 1224 /* 1225 * Recompute the stashed list of l2cache devices, with status 1226 * information this time. 1227 */ 1228 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1229 DATA_TYPE_NVLIST_ARRAY) == 0); 1230 1231 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1232 for (i = 0; i < sav->sav_count; i++) 1233 l2cache[i] = vdev_config_generate(spa, 1234 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1235 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1236 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1237 out: 1238 for (i = 0; i < sav->sav_count; i++) 1239 nvlist_free(l2cache[i]); 1240 if (sav->sav_count) 1241 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1242 } 1243 1244 static int 1245 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1246 { 1247 dmu_buf_t *db; 1248 char *packed = NULL; 1249 size_t nvsize = 0; 1250 int error; 1251 *value = NULL; 1252 1253 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1254 nvsize = *(uint64_t *)db->db_data; 1255 dmu_buf_rele(db, FTAG); 1256 1257 packed = kmem_alloc(nvsize, KM_SLEEP); 1258 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1259 DMU_READ_PREFETCH); 1260 if (error == 0) 1261 error = nvlist_unpack(packed, nvsize, value, 0); 1262 kmem_free(packed, nvsize); 1263 1264 return (error); 1265 } 1266 1267 /* 1268 * Checks to see if the given vdev could not be opened, in which case we post a 1269 * sysevent to notify the autoreplace code that the device has been removed. 1270 */ 1271 static void 1272 spa_check_removed(vdev_t *vd) 1273 { 1274 for (int c = 0; c < vd->vdev_children; c++) 1275 spa_check_removed(vd->vdev_child[c]); 1276 1277 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1278 zfs_post_autoreplace(vd->vdev_spa, vd); 1279 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1280 } 1281 } 1282 1283 /* 1284 * Load the slog device state from the config object since it's possible 1285 * that the label does not contain the most up-to-date information. 1286 */ 1287 void 1288 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1289 { 1290 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1291 1292 /* 1293 * Load the original root vdev tree from the passed config. 1294 */ 1295 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1296 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1297 1298 for (int c = 0; c < rvd->vdev_children; c++) { 1299 vdev_t *cvd = rvd->vdev_child[c]; 1300 if (cvd->vdev_islog) 1301 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1302 } 1303 vdev_free(ovd); 1304 spa_config_exit(spa, SCL_ALL, FTAG); 1305 } 1306 1307 /* 1308 * Check for missing log devices 1309 */ 1310 int 1311 spa_check_logs(spa_t *spa) 1312 { 1313 switch (spa->spa_log_state) { 1314 case SPA_LOG_MISSING: 1315 /* need to recheck in case slog has been restored */ 1316 case SPA_LOG_UNKNOWN: 1317 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1318 DS_FIND_CHILDREN)) { 1319 spa_set_log_state(spa, SPA_LOG_MISSING); 1320 return (1); 1321 } 1322 break; 1323 } 1324 return (0); 1325 } 1326 1327 static boolean_t 1328 spa_passivate_log(spa_t *spa) 1329 { 1330 vdev_t *rvd = spa->spa_root_vdev; 1331 boolean_t slog_found = B_FALSE; 1332 1333 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1334 1335 if (!spa_has_slogs(spa)) 1336 return (B_FALSE); 1337 1338 for (int c = 0; c < rvd->vdev_children; c++) { 1339 vdev_t *tvd = rvd->vdev_child[c]; 1340 metaslab_group_t *mg = tvd->vdev_mg; 1341 1342 if (tvd->vdev_islog) { 1343 metaslab_group_passivate(mg); 1344 slog_found = B_TRUE; 1345 } 1346 } 1347 1348 return (slog_found); 1349 } 1350 1351 static void 1352 spa_activate_log(spa_t *spa) 1353 { 1354 vdev_t *rvd = spa->spa_root_vdev; 1355 1356 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1357 1358 for (int c = 0; c < rvd->vdev_children; c++) { 1359 vdev_t *tvd = rvd->vdev_child[c]; 1360 metaslab_group_t *mg = tvd->vdev_mg; 1361 1362 if (tvd->vdev_islog) 1363 metaslab_group_activate(mg); 1364 } 1365 } 1366 1367 int 1368 spa_offline_log(spa_t *spa) 1369 { 1370 int error = 0; 1371 1372 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1373 NULL, DS_FIND_CHILDREN)) == 0) { 1374 1375 /* 1376 * We successfully offlined the log device, sync out the 1377 * current txg so that the "stubby" block can be removed 1378 * by zil_sync(). 1379 */ 1380 txg_wait_synced(spa->spa_dsl_pool, 0); 1381 } 1382 return (error); 1383 } 1384 1385 static void 1386 spa_aux_check_removed(spa_aux_vdev_t *sav) 1387 { 1388 for (int i = 0; i < sav->sav_count; i++) 1389 spa_check_removed(sav->sav_vdevs[i]); 1390 } 1391 1392 void 1393 spa_claim_notify(zio_t *zio) 1394 { 1395 spa_t *spa = zio->io_spa; 1396 1397 if (zio->io_error) 1398 return; 1399 1400 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1401 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1402 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1403 mutex_exit(&spa->spa_props_lock); 1404 } 1405 1406 typedef struct spa_load_error { 1407 uint64_t sle_meta_count; 1408 uint64_t sle_data_count; 1409 } spa_load_error_t; 1410 1411 static void 1412 spa_load_verify_done(zio_t *zio) 1413 { 1414 blkptr_t *bp = zio->io_bp; 1415 spa_load_error_t *sle = zio->io_private; 1416 dmu_object_type_t type = BP_GET_TYPE(bp); 1417 int error = zio->io_error; 1418 1419 if (error) { 1420 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1421 type != DMU_OT_INTENT_LOG) 1422 atomic_add_64(&sle->sle_meta_count, 1); 1423 else 1424 atomic_add_64(&sle->sle_data_count, 1); 1425 } 1426 zio_data_buf_free(zio->io_data, zio->io_size); 1427 } 1428 1429 /*ARGSUSED*/ 1430 static int 1431 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1432 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1433 { 1434 if (bp != NULL) { 1435 zio_t *rio = arg; 1436 size_t size = BP_GET_PSIZE(bp); 1437 void *data = zio_data_buf_alloc(size); 1438 1439 zio_nowait(zio_read(rio, spa, bp, data, size, 1440 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1441 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1442 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1443 } 1444 return (0); 1445 } 1446 1447 static int 1448 spa_load_verify(spa_t *spa) 1449 { 1450 zio_t *rio; 1451 spa_load_error_t sle = { 0 }; 1452 zpool_rewind_policy_t policy; 1453 boolean_t verify_ok = B_FALSE; 1454 int error; 1455 1456 zpool_get_rewind_policy(spa->spa_config, &policy); 1457 1458 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1459 return (0); 1460 1461 rio = zio_root(spa, NULL, &sle, 1462 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1463 1464 error = traverse_pool(spa, spa->spa_verify_min_txg, 1465 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1466 1467 (void) zio_wait(rio); 1468 1469 spa->spa_load_meta_errors = sle.sle_meta_count; 1470 spa->spa_load_data_errors = sle.sle_data_count; 1471 1472 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1473 sle.sle_data_count <= policy.zrp_maxdata) { 1474 verify_ok = B_TRUE; 1475 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1476 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1477 } else { 1478 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1479 } 1480 1481 if (error) { 1482 if (error != ENXIO && error != EIO) 1483 error = EIO; 1484 return (error); 1485 } 1486 1487 return (verify_ok ? 0 : EIO); 1488 } 1489 1490 /* 1491 * Find a value in the pool props object. 1492 */ 1493 static void 1494 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1495 { 1496 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1497 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1498 } 1499 1500 /* 1501 * Find a value in the pool directory object. 1502 */ 1503 static int 1504 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1505 { 1506 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1507 name, sizeof (uint64_t), 1, val)); 1508 } 1509 1510 static int 1511 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1512 { 1513 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1514 return (err); 1515 } 1516 1517 /* 1518 * Fix up config after a partly-completed split. This is done with the 1519 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1520 * pool have that entry in their config, but only the splitting one contains 1521 * a list of all the guids of the vdevs that are being split off. 1522 * 1523 * This function determines what to do with that list: either rejoin 1524 * all the disks to the pool, or complete the splitting process. To attempt 1525 * the rejoin, each disk that is offlined is marked online again, and 1526 * we do a reopen() call. If the vdev label for every disk that was 1527 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1528 * then we call vdev_split() on each disk, and complete the split. 1529 * 1530 * Otherwise we leave the config alone, with all the vdevs in place in 1531 * the original pool. 1532 */ 1533 static void 1534 spa_try_repair(spa_t *spa, nvlist_t *config) 1535 { 1536 uint_t extracted; 1537 uint64_t *glist; 1538 uint_t i, gcount; 1539 nvlist_t *nvl; 1540 vdev_t **vd; 1541 boolean_t attempt_reopen; 1542 1543 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1544 return; 1545 1546 /* check that the config is complete */ 1547 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1548 &glist, &gcount) != 0) 1549 return; 1550 1551 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1552 1553 /* attempt to online all the vdevs & validate */ 1554 attempt_reopen = B_TRUE; 1555 for (i = 0; i < gcount; i++) { 1556 if (glist[i] == 0) /* vdev is hole */ 1557 continue; 1558 1559 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1560 if (vd[i] == NULL) { 1561 /* 1562 * Don't bother attempting to reopen the disks; 1563 * just do the split. 1564 */ 1565 attempt_reopen = B_FALSE; 1566 } else { 1567 /* attempt to re-online it */ 1568 vd[i]->vdev_offline = B_FALSE; 1569 } 1570 } 1571 1572 if (attempt_reopen) { 1573 vdev_reopen(spa->spa_root_vdev); 1574 1575 /* check each device to see what state it's in */ 1576 for (extracted = 0, i = 0; i < gcount; i++) { 1577 if (vd[i] != NULL && 1578 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1579 break; 1580 ++extracted; 1581 } 1582 } 1583 1584 /* 1585 * If every disk has been moved to the new pool, or if we never 1586 * even attempted to look at them, then we split them off for 1587 * good. 1588 */ 1589 if (!attempt_reopen || gcount == extracted) { 1590 for (i = 0; i < gcount; i++) 1591 if (vd[i] != NULL) 1592 vdev_split(vd[i]); 1593 vdev_reopen(spa->spa_root_vdev); 1594 } 1595 1596 kmem_free(vd, gcount * sizeof (vdev_t *)); 1597 } 1598 1599 static int 1600 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1601 boolean_t mosconfig) 1602 { 1603 nvlist_t *config = spa->spa_config; 1604 char *ereport = FM_EREPORT_ZFS_POOL; 1605 int error; 1606 uint64_t pool_guid; 1607 nvlist_t *nvl; 1608 1609 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1610 return (EINVAL); 1611 1612 /* 1613 * Versioning wasn't explicitly added to the label until later, so if 1614 * it's not present treat it as the initial version. 1615 */ 1616 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1617 &spa->spa_ubsync.ub_version) != 0) 1618 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1619 1620 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1621 &spa->spa_config_txg); 1622 1623 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1624 spa_guid_exists(pool_guid, 0)) { 1625 error = EEXIST; 1626 } else { 1627 spa->spa_load_guid = pool_guid; 1628 1629 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1630 &nvl) == 0) { 1631 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1632 KM_SLEEP) == 0); 1633 } 1634 1635 error = spa_load_impl(spa, pool_guid, config, state, type, 1636 mosconfig, &ereport); 1637 } 1638 1639 spa->spa_minref = refcount_count(&spa->spa_refcount); 1640 if (error && error != EBADF) 1641 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1642 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1643 spa->spa_ena = 0; 1644 1645 return (error); 1646 } 1647 1648 /* 1649 * Load an existing storage pool, using the pool's builtin spa_config as a 1650 * source of configuration information. 1651 */ 1652 static int 1653 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1654 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1655 char **ereport) 1656 { 1657 int error = 0; 1658 nvlist_t *nvroot = NULL; 1659 vdev_t *rvd; 1660 uberblock_t *ub = &spa->spa_uberblock; 1661 uint64_t config_cache_txg = spa->spa_config_txg; 1662 int orig_mode = spa->spa_mode; 1663 int parse; 1664 1665 /* 1666 * If this is an untrusted config, access the pool in read-only mode. 1667 * This prevents things like resilvering recently removed devices. 1668 */ 1669 if (!mosconfig) 1670 spa->spa_mode = FREAD; 1671 1672 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1673 1674 spa->spa_load_state = state; 1675 1676 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1677 return (EINVAL); 1678 1679 parse = (type == SPA_IMPORT_EXISTING ? 1680 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1681 1682 /* 1683 * Create "The Godfather" zio to hold all async IOs 1684 */ 1685 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1686 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1687 1688 /* 1689 * Parse the configuration into a vdev tree. We explicitly set the 1690 * value that will be returned by spa_version() since parsing the 1691 * configuration requires knowing the version number. 1692 */ 1693 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1694 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1695 spa_config_exit(spa, SCL_ALL, FTAG); 1696 1697 if (error != 0) 1698 return (error); 1699 1700 ASSERT(spa->spa_root_vdev == rvd); 1701 1702 if (type != SPA_IMPORT_ASSEMBLE) { 1703 ASSERT(spa_guid(spa) == pool_guid); 1704 } 1705 1706 /* 1707 * Try to open all vdevs, loading each label in the process. 1708 */ 1709 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1710 error = vdev_open(rvd); 1711 spa_config_exit(spa, SCL_ALL, FTAG); 1712 if (error != 0) 1713 return (error); 1714 1715 /* 1716 * We need to validate the vdev labels against the configuration that 1717 * we have in hand, which is dependent on the setting of mosconfig. If 1718 * mosconfig is true then we're validating the vdev labels based on 1719 * that config. Otherwise, we're validating against the cached config 1720 * (zpool.cache) that was read when we loaded the zfs module, and then 1721 * later we will recursively call spa_load() and validate against 1722 * the vdev config. 1723 * 1724 * If we're assembling a new pool that's been split off from an 1725 * existing pool, the labels haven't yet been updated so we skip 1726 * validation for now. 1727 */ 1728 if (type != SPA_IMPORT_ASSEMBLE) { 1729 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1730 error = vdev_validate(rvd); 1731 spa_config_exit(spa, SCL_ALL, FTAG); 1732 1733 if (error != 0) 1734 return (error); 1735 1736 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1737 return (ENXIO); 1738 } 1739 1740 /* 1741 * Find the best uberblock. 1742 */ 1743 vdev_uberblock_load(NULL, rvd, ub); 1744 1745 /* 1746 * If we weren't able to find a single valid uberblock, return failure. 1747 */ 1748 if (ub->ub_txg == 0) 1749 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1750 1751 /* 1752 * If the pool is newer than the code, we can't open it. 1753 */ 1754 if (ub->ub_version > SPA_VERSION) 1755 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1756 1757 /* 1758 * If the vdev guid sum doesn't match the uberblock, we have an 1759 * incomplete configuration. 1760 */ 1761 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1762 rvd->vdev_guid_sum != ub->ub_guid_sum) 1763 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1764 1765 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1766 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1767 spa_try_repair(spa, config); 1768 spa_config_exit(spa, SCL_ALL, FTAG); 1769 nvlist_free(spa->spa_config_splitting); 1770 spa->spa_config_splitting = NULL; 1771 } 1772 1773 /* 1774 * Initialize internal SPA structures. 1775 */ 1776 spa->spa_state = POOL_STATE_ACTIVE; 1777 spa->spa_ubsync = spa->spa_uberblock; 1778 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1779 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1780 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1781 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1782 spa->spa_claim_max_txg = spa->spa_first_txg; 1783 1784 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1785 if (error) 1786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1787 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1788 1789 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1790 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1791 1792 if (!mosconfig) { 1793 uint64_t hostid; 1794 nvlist_t *policy = NULL, *nvconfig; 1795 1796 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1797 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1798 1799 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1800 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1801 char *hostname; 1802 unsigned long myhostid = 0; 1803 1804 VERIFY(nvlist_lookup_string(nvconfig, 1805 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1806 1807 #ifdef _KERNEL 1808 myhostid = zone_get_hostid(NULL); 1809 #else /* _KERNEL */ 1810 /* 1811 * We're emulating the system's hostid in userland, so 1812 * we can't use zone_get_hostid(). 1813 */ 1814 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1815 #endif /* _KERNEL */ 1816 if (hostid != 0 && myhostid != 0 && 1817 hostid != myhostid) { 1818 nvlist_free(nvconfig); 1819 cmn_err(CE_WARN, "pool '%s' could not be " 1820 "loaded as it was last accessed by " 1821 "another system (host: %s hostid: 0x%lx). " 1822 "See: http://www.sun.com/msg/ZFS-8000-EY", 1823 spa_name(spa), hostname, 1824 (unsigned long)hostid); 1825 return (EBADF); 1826 } 1827 } 1828 if (nvlist_lookup_nvlist(spa->spa_config, 1829 ZPOOL_REWIND_POLICY, &policy) == 0) 1830 VERIFY(nvlist_add_nvlist(nvconfig, 1831 ZPOOL_REWIND_POLICY, policy) == 0); 1832 1833 spa_config_set(spa, nvconfig); 1834 spa_unload(spa); 1835 spa_deactivate(spa); 1836 spa_activate(spa, orig_mode); 1837 1838 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1839 } 1840 1841 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST, 1842 &spa->spa_deferred_bplist_obj) != 0) 1843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1844 1845 /* 1846 * Load the bit that tells us to use the new accounting function 1847 * (raid-z deflation). If we have an older pool, this will not 1848 * be present. 1849 */ 1850 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1851 if (error != 0 && error != ENOENT) 1852 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1853 1854 /* 1855 * Load the persistent error log. If we have an older pool, this will 1856 * not be present. 1857 */ 1858 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1859 if (error != 0 && error != ENOENT) 1860 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1861 1862 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1863 &spa->spa_errlog_scrub); 1864 if (error != 0 && error != ENOENT) 1865 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1866 1867 /* 1868 * Load the history object. If we have an older pool, this 1869 * will not be present. 1870 */ 1871 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1872 if (error != 0 && error != ENOENT) 1873 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1874 1875 /* 1876 * If we're assembling the pool from the split-off vdevs of 1877 * an existing pool, we don't want to attach the spares & cache 1878 * devices. 1879 */ 1880 1881 /* 1882 * Load any hot spares for this pool. 1883 */ 1884 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1885 if (error != 0 && error != ENOENT) 1886 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1887 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1888 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1889 if (load_nvlist(spa, spa->spa_spares.sav_object, 1890 &spa->spa_spares.sav_config) != 0) 1891 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1892 1893 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1894 spa_load_spares(spa); 1895 spa_config_exit(spa, SCL_ALL, FTAG); 1896 } else if (error == 0) { 1897 spa->spa_spares.sav_sync = B_TRUE; 1898 } 1899 1900 /* 1901 * Load any level 2 ARC devices for this pool. 1902 */ 1903 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1904 &spa->spa_l2cache.sav_object); 1905 if (error != 0 && error != ENOENT) 1906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1907 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1908 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1909 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1910 &spa->spa_l2cache.sav_config) != 0) 1911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1912 1913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1914 spa_load_l2cache(spa); 1915 spa_config_exit(spa, SCL_ALL, FTAG); 1916 } else if (error == 0) { 1917 spa->spa_l2cache.sav_sync = B_TRUE; 1918 } 1919 1920 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1921 1922 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1923 if (error && error != ENOENT) 1924 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1925 1926 if (error == 0) { 1927 uint64_t autoreplace; 1928 1929 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1930 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1931 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1932 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1933 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1934 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1935 &spa->spa_dedup_ditto); 1936 1937 spa->spa_autoreplace = (autoreplace != 0); 1938 } 1939 1940 /* 1941 * If the 'autoreplace' property is set, then post a resource notifying 1942 * the ZFS DE that it should not issue any faults for unopenable 1943 * devices. We also iterate over the vdevs, and post a sysevent for any 1944 * unopenable vdevs so that the normal autoreplace handler can take 1945 * over. 1946 */ 1947 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1948 spa_check_removed(spa->spa_root_vdev); 1949 /* 1950 * For the import case, this is done in spa_import(), because 1951 * at this point we're using the spare definitions from 1952 * the MOS config, not necessarily from the userland config. 1953 */ 1954 if (state != SPA_LOAD_IMPORT) { 1955 spa_aux_check_removed(&spa->spa_spares); 1956 spa_aux_check_removed(&spa->spa_l2cache); 1957 } 1958 } 1959 1960 /* 1961 * Load the vdev state for all toplevel vdevs. 1962 */ 1963 vdev_load(rvd); 1964 1965 /* 1966 * Propagate the leaf DTLs we just loaded all the way up the tree. 1967 */ 1968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1969 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1970 spa_config_exit(spa, SCL_ALL, FTAG); 1971 1972 /* 1973 * Check the state of the root vdev. If it can't be opened, it 1974 * indicates one or more toplevel vdevs are faulted. 1975 */ 1976 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1977 return (ENXIO); 1978 1979 /* 1980 * Load the DDTs (dedup tables). 1981 */ 1982 error = ddt_load(spa); 1983 if (error != 0) 1984 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1985 1986 spa_update_dspace(spa); 1987 1988 if (state != SPA_LOAD_TRYIMPORT) { 1989 error = spa_load_verify(spa); 1990 if (error) 1991 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 1992 error)); 1993 } 1994 1995 /* 1996 * Load the intent log state and check log integrity. If we're 1997 * assembling a pool from a split, the log is not transferred over. 1998 */ 1999 if (type != SPA_IMPORT_ASSEMBLE) { 2000 nvlist_t *nvconfig; 2001 2002 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2004 2005 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2006 &nvroot) == 0); 2007 spa_load_log_state(spa, nvroot); 2008 nvlist_free(nvconfig); 2009 2010 if (spa_check_logs(spa)) { 2011 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2012 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2013 } 2014 } 2015 2016 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2017 spa->spa_load_max_txg == UINT64_MAX)) { 2018 dmu_tx_t *tx; 2019 int need_update = B_FALSE; 2020 2021 ASSERT(state != SPA_LOAD_TRYIMPORT); 2022 2023 /* 2024 * Claim log blocks that haven't been committed yet. 2025 * This must all happen in a single txg. 2026 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2027 * invoked from zil_claim_log_block()'s i/o done callback. 2028 * Price of rollback is that we abandon the log. 2029 */ 2030 spa->spa_claiming = B_TRUE; 2031 2032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2033 spa_first_txg(spa)); 2034 (void) dmu_objset_find(spa_name(spa), 2035 zil_claim, tx, DS_FIND_CHILDREN); 2036 dmu_tx_commit(tx); 2037 2038 spa->spa_claiming = B_FALSE; 2039 2040 spa_set_log_state(spa, SPA_LOG_GOOD); 2041 spa->spa_sync_on = B_TRUE; 2042 txg_sync_start(spa->spa_dsl_pool); 2043 2044 /* 2045 * Wait for all claims to sync. We sync up to the highest 2046 * claimed log block birth time so that claimed log blocks 2047 * don't appear to be from the future. spa_claim_max_txg 2048 * will have been set for us by either zil_check_log_chain() 2049 * (invoked from spa_check_logs()) or zil_claim() above. 2050 */ 2051 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2052 2053 /* 2054 * If the config cache is stale, or we have uninitialized 2055 * metaslabs (see spa_vdev_add()), then update the config. 2056 * 2057 * If spa_load_verbatim is true, trust the current 2058 * in-core spa_config and update the disk labels. 2059 */ 2060 if (config_cache_txg != spa->spa_config_txg || 2061 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2062 state == SPA_LOAD_RECOVER) 2063 need_update = B_TRUE; 2064 2065 for (int c = 0; c < rvd->vdev_children; c++) 2066 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2067 need_update = B_TRUE; 2068 2069 /* 2070 * Update the config cache asychronously in case we're the 2071 * root pool, in which case the config cache isn't writable yet. 2072 */ 2073 if (need_update) 2074 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2075 2076 /* 2077 * Check all DTLs to see if anything needs resilvering. 2078 */ 2079 if (vdev_resilver_needed(rvd, NULL, NULL)) 2080 spa_async_request(spa, SPA_ASYNC_RESILVER); 2081 2082 /* 2083 * Delete any inconsistent datasets. 2084 */ 2085 (void) dmu_objset_find(spa_name(spa), 2086 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2087 2088 /* 2089 * Clean up any stale temporary dataset userrefs. 2090 */ 2091 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2092 } 2093 2094 return (0); 2095 } 2096 2097 static int 2098 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2099 { 2100 spa_unload(spa); 2101 spa_deactivate(spa); 2102 2103 spa->spa_load_max_txg--; 2104 2105 spa_activate(spa, spa_mode_global); 2106 spa_async_suspend(spa); 2107 2108 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2109 } 2110 2111 static int 2112 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2113 uint64_t max_request, int rewind_flags) 2114 { 2115 nvlist_t *config = NULL; 2116 int load_error, rewind_error; 2117 uint64_t safe_rewind_txg; 2118 uint64_t min_txg; 2119 2120 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2121 spa->spa_load_max_txg = spa->spa_load_txg; 2122 spa_set_log_state(spa, SPA_LOG_CLEAR); 2123 } else { 2124 spa->spa_load_max_txg = max_request; 2125 } 2126 2127 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2128 mosconfig); 2129 if (load_error == 0) 2130 return (0); 2131 2132 if (spa->spa_root_vdev != NULL) 2133 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2134 2135 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2136 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2137 2138 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2139 nvlist_free(config); 2140 return (load_error); 2141 } 2142 2143 /* Price of rolling back is discarding txgs, including log */ 2144 if (state == SPA_LOAD_RECOVER) 2145 spa_set_log_state(spa, SPA_LOG_CLEAR); 2146 2147 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2148 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2149 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2150 TXG_INITIAL : safe_rewind_txg; 2151 2152 /* 2153 * Continue as long as we're finding errors, we're still within 2154 * the acceptable rewind range, and we're still finding uberblocks 2155 */ 2156 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2157 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2158 if (spa->spa_load_max_txg < safe_rewind_txg) 2159 spa->spa_extreme_rewind = B_TRUE; 2160 rewind_error = spa_load_retry(spa, state, mosconfig); 2161 } 2162 2163 if (config) 2164 spa_rewind_data_to_nvlist(spa, config); 2165 2166 spa->spa_extreme_rewind = B_FALSE; 2167 spa->spa_load_max_txg = UINT64_MAX; 2168 2169 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2170 spa_config_set(spa, config); 2171 2172 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2173 } 2174 2175 /* 2176 * Pool Open/Import 2177 * 2178 * The import case is identical to an open except that the configuration is sent 2179 * down from userland, instead of grabbed from the configuration cache. For the 2180 * case of an open, the pool configuration will exist in the 2181 * POOL_STATE_UNINITIALIZED state. 2182 * 2183 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2184 * the same time open the pool, without having to keep around the spa_t in some 2185 * ambiguous state. 2186 */ 2187 static int 2188 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2189 nvlist_t **config) 2190 { 2191 spa_t *spa; 2192 int error; 2193 int locked = B_FALSE; 2194 2195 *spapp = NULL; 2196 2197 /* 2198 * As disgusting as this is, we need to support recursive calls to this 2199 * function because dsl_dir_open() is called during spa_load(), and ends 2200 * up calling spa_open() again. The real fix is to figure out how to 2201 * avoid dsl_dir_open() calling this in the first place. 2202 */ 2203 if (mutex_owner(&spa_namespace_lock) != curthread) { 2204 mutex_enter(&spa_namespace_lock); 2205 locked = B_TRUE; 2206 } 2207 2208 if ((spa = spa_lookup(pool)) == NULL) { 2209 if (locked) 2210 mutex_exit(&spa_namespace_lock); 2211 return (ENOENT); 2212 } 2213 2214 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2215 spa_load_state_t state = SPA_LOAD_OPEN; 2216 zpool_rewind_policy_t policy; 2217 2218 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2219 &policy); 2220 if (policy.zrp_request & ZPOOL_DO_REWIND) 2221 state = SPA_LOAD_RECOVER; 2222 2223 spa_activate(spa, spa_mode_global); 2224 2225 if (spa->spa_last_open_failed && (policy.zrp_request & 2226 (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) { 2227 if (config != NULL && spa->spa_config) 2228 VERIFY(nvlist_dup(spa->spa_config, 2229 config, KM_SLEEP) == 0); 2230 spa_deactivate(spa); 2231 if (locked) 2232 mutex_exit(&spa_namespace_lock); 2233 return (spa->spa_last_open_failed); 2234 } 2235 2236 if (state != SPA_LOAD_RECOVER) 2237 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2238 2239 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2240 policy.zrp_request); 2241 2242 if (error == EBADF) { 2243 /* 2244 * If vdev_validate() returns failure (indicated by 2245 * EBADF), it indicates that one of the vdevs indicates 2246 * that the pool has been exported or destroyed. If 2247 * this is the case, the config cache is out of sync and 2248 * we should remove the pool from the namespace. 2249 */ 2250 spa_unload(spa); 2251 spa_deactivate(spa); 2252 spa_config_sync(spa, B_TRUE, B_TRUE); 2253 spa_remove(spa); 2254 if (locked) 2255 mutex_exit(&spa_namespace_lock); 2256 return (ENOENT); 2257 } 2258 2259 if (error) { 2260 /* 2261 * We can't open the pool, but we still have useful 2262 * information: the state of each vdev after the 2263 * attempted vdev_open(). Return this to the user. 2264 */ 2265 if (config != NULL && spa->spa_config) 2266 VERIFY(nvlist_dup(spa->spa_config, config, 2267 KM_SLEEP) == 0); 2268 spa_unload(spa); 2269 spa_deactivate(spa); 2270 spa->spa_last_open_failed = error; 2271 if (locked) 2272 mutex_exit(&spa_namespace_lock); 2273 *spapp = NULL; 2274 return (error); 2275 } 2276 2277 } 2278 2279 spa_open_ref(spa, tag); 2280 2281 2282 if (config != NULL) 2283 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2284 2285 if (locked) { 2286 spa->spa_last_open_failed = 0; 2287 spa->spa_last_ubsync_txg = 0; 2288 spa->spa_load_txg = 0; 2289 mutex_exit(&spa_namespace_lock); 2290 } 2291 2292 *spapp = spa; 2293 2294 return (0); 2295 } 2296 2297 int 2298 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2299 nvlist_t **config) 2300 { 2301 return (spa_open_common(name, spapp, tag, policy, config)); 2302 } 2303 2304 int 2305 spa_open(const char *name, spa_t **spapp, void *tag) 2306 { 2307 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2308 } 2309 2310 /* 2311 * Lookup the given spa_t, incrementing the inject count in the process, 2312 * preventing it from being exported or destroyed. 2313 */ 2314 spa_t * 2315 spa_inject_addref(char *name) 2316 { 2317 spa_t *spa; 2318 2319 mutex_enter(&spa_namespace_lock); 2320 if ((spa = spa_lookup(name)) == NULL) { 2321 mutex_exit(&spa_namespace_lock); 2322 return (NULL); 2323 } 2324 spa->spa_inject_ref++; 2325 mutex_exit(&spa_namespace_lock); 2326 2327 return (spa); 2328 } 2329 2330 void 2331 spa_inject_delref(spa_t *spa) 2332 { 2333 mutex_enter(&spa_namespace_lock); 2334 spa->spa_inject_ref--; 2335 mutex_exit(&spa_namespace_lock); 2336 } 2337 2338 /* 2339 * Add spares device information to the nvlist. 2340 */ 2341 static void 2342 spa_add_spares(spa_t *spa, nvlist_t *config) 2343 { 2344 nvlist_t **spares; 2345 uint_t i, nspares; 2346 nvlist_t *nvroot; 2347 uint64_t guid; 2348 vdev_stat_t *vs; 2349 uint_t vsc; 2350 uint64_t pool; 2351 2352 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2353 2354 if (spa->spa_spares.sav_count == 0) 2355 return; 2356 2357 VERIFY(nvlist_lookup_nvlist(config, 2358 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2359 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2360 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2361 if (nspares != 0) { 2362 VERIFY(nvlist_add_nvlist_array(nvroot, 2363 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2364 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2365 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2366 2367 /* 2368 * Go through and find any spares which have since been 2369 * repurposed as an active spare. If this is the case, update 2370 * their status appropriately. 2371 */ 2372 for (i = 0; i < nspares; i++) { 2373 VERIFY(nvlist_lookup_uint64(spares[i], 2374 ZPOOL_CONFIG_GUID, &guid) == 0); 2375 if (spa_spare_exists(guid, &pool, NULL) && 2376 pool != 0ULL) { 2377 VERIFY(nvlist_lookup_uint64_array( 2378 spares[i], ZPOOL_CONFIG_STATS, 2379 (uint64_t **)&vs, &vsc) == 0); 2380 vs->vs_state = VDEV_STATE_CANT_OPEN; 2381 vs->vs_aux = VDEV_AUX_SPARED; 2382 } 2383 } 2384 } 2385 } 2386 2387 /* 2388 * Add l2cache device information to the nvlist, including vdev stats. 2389 */ 2390 static void 2391 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2392 { 2393 nvlist_t **l2cache; 2394 uint_t i, j, nl2cache; 2395 nvlist_t *nvroot; 2396 uint64_t guid; 2397 vdev_t *vd; 2398 vdev_stat_t *vs; 2399 uint_t vsc; 2400 2401 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2402 2403 if (spa->spa_l2cache.sav_count == 0) 2404 return; 2405 2406 VERIFY(nvlist_lookup_nvlist(config, 2407 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2408 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2409 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2410 if (nl2cache != 0) { 2411 VERIFY(nvlist_add_nvlist_array(nvroot, 2412 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2413 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2414 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2415 2416 /* 2417 * Update level 2 cache device stats. 2418 */ 2419 2420 for (i = 0; i < nl2cache; i++) { 2421 VERIFY(nvlist_lookup_uint64(l2cache[i], 2422 ZPOOL_CONFIG_GUID, &guid) == 0); 2423 2424 vd = NULL; 2425 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2426 if (guid == 2427 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2428 vd = spa->spa_l2cache.sav_vdevs[j]; 2429 break; 2430 } 2431 } 2432 ASSERT(vd != NULL); 2433 2434 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2435 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2436 vdev_get_stats(vd, vs); 2437 } 2438 } 2439 } 2440 2441 int 2442 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2443 { 2444 int error; 2445 spa_t *spa; 2446 2447 *config = NULL; 2448 error = spa_open_common(name, &spa, FTAG, NULL, config); 2449 2450 if (spa != NULL) { 2451 /* 2452 * This still leaves a window of inconsistency where the spares 2453 * or l2cache devices could change and the config would be 2454 * self-inconsistent. 2455 */ 2456 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2457 2458 if (*config != NULL) { 2459 VERIFY(nvlist_add_uint64(*config, 2460 ZPOOL_CONFIG_ERRCOUNT, 2461 spa_get_errlog_size(spa)) == 0); 2462 2463 if (spa_suspended(spa)) 2464 VERIFY(nvlist_add_uint64(*config, 2465 ZPOOL_CONFIG_SUSPENDED, 2466 spa->spa_failmode) == 0); 2467 2468 spa_add_spares(spa, *config); 2469 spa_add_l2cache(spa, *config); 2470 } 2471 } 2472 2473 /* 2474 * We want to get the alternate root even for faulted pools, so we cheat 2475 * and call spa_lookup() directly. 2476 */ 2477 if (altroot) { 2478 if (spa == NULL) { 2479 mutex_enter(&spa_namespace_lock); 2480 spa = spa_lookup(name); 2481 if (spa) 2482 spa_altroot(spa, altroot, buflen); 2483 else 2484 altroot[0] = '\0'; 2485 spa = NULL; 2486 mutex_exit(&spa_namespace_lock); 2487 } else { 2488 spa_altroot(spa, altroot, buflen); 2489 } 2490 } 2491 2492 if (spa != NULL) { 2493 spa_config_exit(spa, SCL_CONFIG, FTAG); 2494 spa_close(spa, FTAG); 2495 } 2496 2497 return (error); 2498 } 2499 2500 /* 2501 * Validate that the auxiliary device array is well formed. We must have an 2502 * array of nvlists, each which describes a valid leaf vdev. If this is an 2503 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2504 * specified, as long as they are well-formed. 2505 */ 2506 static int 2507 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2508 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2509 vdev_labeltype_t label) 2510 { 2511 nvlist_t **dev; 2512 uint_t i, ndev; 2513 vdev_t *vd; 2514 int error; 2515 2516 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2517 2518 /* 2519 * It's acceptable to have no devs specified. 2520 */ 2521 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2522 return (0); 2523 2524 if (ndev == 0) 2525 return (EINVAL); 2526 2527 /* 2528 * Make sure the pool is formatted with a version that supports this 2529 * device type. 2530 */ 2531 if (spa_version(spa) < version) 2532 return (ENOTSUP); 2533 2534 /* 2535 * Set the pending device list so we correctly handle device in-use 2536 * checking. 2537 */ 2538 sav->sav_pending = dev; 2539 sav->sav_npending = ndev; 2540 2541 for (i = 0; i < ndev; i++) { 2542 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2543 mode)) != 0) 2544 goto out; 2545 2546 if (!vd->vdev_ops->vdev_op_leaf) { 2547 vdev_free(vd); 2548 error = EINVAL; 2549 goto out; 2550 } 2551 2552 /* 2553 * The L2ARC currently only supports disk devices in 2554 * kernel context. For user-level testing, we allow it. 2555 */ 2556 #ifdef _KERNEL 2557 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2558 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2559 error = ENOTBLK; 2560 goto out; 2561 } 2562 #endif 2563 vd->vdev_top = vd; 2564 2565 if ((error = vdev_open(vd)) == 0 && 2566 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2567 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2568 vd->vdev_guid) == 0); 2569 } 2570 2571 vdev_free(vd); 2572 2573 if (error && 2574 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2575 goto out; 2576 else 2577 error = 0; 2578 } 2579 2580 out: 2581 sav->sav_pending = NULL; 2582 sav->sav_npending = 0; 2583 return (error); 2584 } 2585 2586 static int 2587 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2588 { 2589 int error; 2590 2591 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2592 2593 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2594 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2595 VDEV_LABEL_SPARE)) != 0) { 2596 return (error); 2597 } 2598 2599 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2600 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2601 VDEV_LABEL_L2CACHE)); 2602 } 2603 2604 static void 2605 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2606 const char *config) 2607 { 2608 int i; 2609 2610 if (sav->sav_config != NULL) { 2611 nvlist_t **olddevs; 2612 uint_t oldndevs; 2613 nvlist_t **newdevs; 2614 2615 /* 2616 * Generate new dev list by concatentating with the 2617 * current dev list. 2618 */ 2619 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2620 &olddevs, &oldndevs) == 0); 2621 2622 newdevs = kmem_alloc(sizeof (void *) * 2623 (ndevs + oldndevs), KM_SLEEP); 2624 for (i = 0; i < oldndevs; i++) 2625 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2626 KM_SLEEP) == 0); 2627 for (i = 0; i < ndevs; i++) 2628 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2629 KM_SLEEP) == 0); 2630 2631 VERIFY(nvlist_remove(sav->sav_config, config, 2632 DATA_TYPE_NVLIST_ARRAY) == 0); 2633 2634 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2635 config, newdevs, ndevs + oldndevs) == 0); 2636 for (i = 0; i < oldndevs + ndevs; i++) 2637 nvlist_free(newdevs[i]); 2638 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2639 } else { 2640 /* 2641 * Generate a new dev list. 2642 */ 2643 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2644 KM_SLEEP) == 0); 2645 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2646 devs, ndevs) == 0); 2647 } 2648 } 2649 2650 /* 2651 * Stop and drop level 2 ARC devices 2652 */ 2653 void 2654 spa_l2cache_drop(spa_t *spa) 2655 { 2656 vdev_t *vd; 2657 int i; 2658 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2659 2660 for (i = 0; i < sav->sav_count; i++) { 2661 uint64_t pool; 2662 2663 vd = sav->sav_vdevs[i]; 2664 ASSERT(vd != NULL); 2665 2666 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2667 pool != 0ULL && l2arc_vdev_present(vd)) 2668 l2arc_remove_vdev(vd); 2669 if (vd->vdev_isl2cache) 2670 spa_l2cache_remove(vd); 2671 vdev_clear_stats(vd); 2672 (void) vdev_close(vd); 2673 } 2674 } 2675 2676 /* 2677 * Pool Creation 2678 */ 2679 int 2680 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2681 const char *history_str, nvlist_t *zplprops) 2682 { 2683 spa_t *spa; 2684 char *altroot = NULL; 2685 vdev_t *rvd; 2686 dsl_pool_t *dp; 2687 dmu_tx_t *tx; 2688 int error = 0; 2689 uint64_t txg = TXG_INITIAL; 2690 nvlist_t **spares, **l2cache; 2691 uint_t nspares, nl2cache; 2692 uint64_t version; 2693 2694 /* 2695 * If this pool already exists, return failure. 2696 */ 2697 mutex_enter(&spa_namespace_lock); 2698 if (spa_lookup(pool) != NULL) { 2699 mutex_exit(&spa_namespace_lock); 2700 return (EEXIST); 2701 } 2702 2703 /* 2704 * Allocate a new spa_t structure. 2705 */ 2706 (void) nvlist_lookup_string(props, 2707 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2708 spa = spa_add(pool, NULL, altroot); 2709 spa_activate(spa, spa_mode_global); 2710 2711 if (props && (error = spa_prop_validate(spa, props))) { 2712 spa_deactivate(spa); 2713 spa_remove(spa); 2714 mutex_exit(&spa_namespace_lock); 2715 return (error); 2716 } 2717 2718 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2719 &version) != 0) 2720 version = SPA_VERSION; 2721 ASSERT(version <= SPA_VERSION); 2722 2723 spa->spa_first_txg = txg; 2724 spa->spa_uberblock.ub_txg = txg - 1; 2725 spa->spa_uberblock.ub_version = version; 2726 spa->spa_ubsync = spa->spa_uberblock; 2727 2728 /* 2729 * Create "The Godfather" zio to hold all async IOs 2730 */ 2731 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2732 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2733 2734 /* 2735 * Create the root vdev. 2736 */ 2737 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2738 2739 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2740 2741 ASSERT(error != 0 || rvd != NULL); 2742 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2743 2744 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2745 error = EINVAL; 2746 2747 if (error == 0 && 2748 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2749 (error = spa_validate_aux(spa, nvroot, txg, 2750 VDEV_ALLOC_ADD)) == 0) { 2751 for (int c = 0; c < rvd->vdev_children; c++) { 2752 vdev_metaslab_set_size(rvd->vdev_child[c]); 2753 vdev_expand(rvd->vdev_child[c], txg); 2754 } 2755 } 2756 2757 spa_config_exit(spa, SCL_ALL, FTAG); 2758 2759 if (error != 0) { 2760 spa_unload(spa); 2761 spa_deactivate(spa); 2762 spa_remove(spa); 2763 mutex_exit(&spa_namespace_lock); 2764 return (error); 2765 } 2766 2767 /* 2768 * Get the list of spares, if specified. 2769 */ 2770 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2771 &spares, &nspares) == 0) { 2772 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2773 KM_SLEEP) == 0); 2774 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2775 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2776 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2777 spa_load_spares(spa); 2778 spa_config_exit(spa, SCL_ALL, FTAG); 2779 spa->spa_spares.sav_sync = B_TRUE; 2780 } 2781 2782 /* 2783 * Get the list of level 2 cache devices, if specified. 2784 */ 2785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2786 &l2cache, &nl2cache) == 0) { 2787 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2788 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2789 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2790 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2791 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2792 spa_load_l2cache(spa); 2793 spa_config_exit(spa, SCL_ALL, FTAG); 2794 spa->spa_l2cache.sav_sync = B_TRUE; 2795 } 2796 2797 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2798 spa->spa_meta_objset = dp->dp_meta_objset; 2799 2800 /* 2801 * Create DDTs (dedup tables). 2802 */ 2803 ddt_create(spa); 2804 2805 spa_update_dspace(spa); 2806 2807 tx = dmu_tx_create_assigned(dp, txg); 2808 2809 /* 2810 * Create the pool config object. 2811 */ 2812 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2813 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2814 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2815 2816 if (zap_add(spa->spa_meta_objset, 2817 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2818 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2819 cmn_err(CE_PANIC, "failed to add pool config"); 2820 } 2821 2822 /* Newly created pools with the right version are always deflated. */ 2823 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2824 spa->spa_deflate = TRUE; 2825 if (zap_add(spa->spa_meta_objset, 2826 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2827 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2828 cmn_err(CE_PANIC, "failed to add deflate"); 2829 } 2830 } 2831 2832 /* 2833 * Create the deferred-free bplist object. Turn off compression 2834 * because sync-to-convergence takes longer if the blocksize 2835 * keeps changing. 2836 */ 2837 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2838 1 << 14, tx); 2839 dmu_object_set_compress(spa->spa_meta_objset, 2840 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2841 2842 if (zap_add(spa->spa_meta_objset, 2843 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2844 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2845 cmn_err(CE_PANIC, "failed to add bplist"); 2846 } 2847 2848 /* 2849 * Create the pool's history object. 2850 */ 2851 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2852 spa_history_create_obj(spa, tx); 2853 2854 /* 2855 * Set pool properties. 2856 */ 2857 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2858 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2859 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2860 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2861 2862 if (props != NULL) { 2863 spa_configfile_set(spa, props, B_FALSE); 2864 spa_sync_props(spa, props, CRED(), tx); 2865 } 2866 2867 dmu_tx_commit(tx); 2868 2869 spa->spa_sync_on = B_TRUE; 2870 txg_sync_start(spa->spa_dsl_pool); 2871 2872 /* 2873 * We explicitly wait for the first transaction to complete so that our 2874 * bean counters are appropriately updated. 2875 */ 2876 txg_wait_synced(spa->spa_dsl_pool, txg); 2877 2878 spa_config_sync(spa, B_FALSE, B_TRUE); 2879 2880 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2881 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2882 spa_history_log_version(spa, LOG_POOL_CREATE); 2883 2884 spa->spa_minref = refcount_count(&spa->spa_refcount); 2885 2886 mutex_exit(&spa_namespace_lock); 2887 2888 return (0); 2889 } 2890 2891 #ifdef _KERNEL 2892 /* 2893 * Get the root pool information from the root disk, then import the root pool 2894 * during the system boot up time. 2895 */ 2896 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2897 2898 static nvlist_t * 2899 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2900 { 2901 nvlist_t *config; 2902 nvlist_t *nvtop, *nvroot; 2903 uint64_t pgid; 2904 2905 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2906 return (NULL); 2907 2908 /* 2909 * Add this top-level vdev to the child array. 2910 */ 2911 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2912 &nvtop) == 0); 2913 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2914 &pgid) == 0); 2915 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2916 2917 /* 2918 * Put this pool's top-level vdevs into a root vdev. 2919 */ 2920 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2921 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2922 VDEV_TYPE_ROOT) == 0); 2923 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2924 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2925 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2926 &nvtop, 1) == 0); 2927 2928 /* 2929 * Replace the existing vdev_tree with the new root vdev in 2930 * this pool's configuration (remove the old, add the new). 2931 */ 2932 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2933 nvlist_free(nvroot); 2934 return (config); 2935 } 2936 2937 /* 2938 * Walk the vdev tree and see if we can find a device with "better" 2939 * configuration. A configuration is "better" if the label on that 2940 * device has a more recent txg. 2941 */ 2942 static void 2943 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2944 { 2945 for (int c = 0; c < vd->vdev_children; c++) 2946 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2947 2948 if (vd->vdev_ops->vdev_op_leaf) { 2949 nvlist_t *label; 2950 uint64_t label_txg; 2951 2952 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2953 &label) != 0) 2954 return; 2955 2956 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2957 &label_txg) == 0); 2958 2959 /* 2960 * Do we have a better boot device? 2961 */ 2962 if (label_txg > *txg) { 2963 *txg = label_txg; 2964 *avd = vd; 2965 } 2966 nvlist_free(label); 2967 } 2968 } 2969 2970 /* 2971 * Import a root pool. 2972 * 2973 * For x86. devpath_list will consist of devid and/or physpath name of 2974 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2975 * The GRUB "findroot" command will return the vdev we should boot. 2976 * 2977 * For Sparc, devpath_list consists the physpath name of the booting device 2978 * no matter the rootpool is a single device pool or a mirrored pool. 2979 * e.g. 2980 * "/pci@1f,0/ide@d/disk@0,0:a" 2981 */ 2982 int 2983 spa_import_rootpool(char *devpath, char *devid) 2984 { 2985 spa_t *spa; 2986 vdev_t *rvd, *bvd, *avd = NULL; 2987 nvlist_t *config, *nvtop; 2988 uint64_t guid, txg; 2989 char *pname; 2990 int error; 2991 2992 /* 2993 * Read the label from the boot device and generate a configuration. 2994 */ 2995 config = spa_generate_rootconf(devpath, devid, &guid); 2996 #if defined(_OBP) && defined(_KERNEL) 2997 if (config == NULL) { 2998 if (strstr(devpath, "/iscsi/ssd") != NULL) { 2999 /* iscsi boot */ 3000 get_iscsi_bootpath_phy(devpath); 3001 config = spa_generate_rootconf(devpath, devid, &guid); 3002 } 3003 } 3004 #endif 3005 if (config == NULL) { 3006 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3007 devpath); 3008 return (EIO); 3009 } 3010 3011 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3012 &pname) == 0); 3013 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3014 3015 mutex_enter(&spa_namespace_lock); 3016 if ((spa = spa_lookup(pname)) != NULL) { 3017 /* 3018 * Remove the existing root pool from the namespace so that we 3019 * can replace it with the correct config we just read in. 3020 */ 3021 spa_remove(spa); 3022 } 3023 3024 spa = spa_add(pname, config, NULL); 3025 spa->spa_is_root = B_TRUE; 3026 spa->spa_load_verbatim = B_TRUE; 3027 3028 /* 3029 * Build up a vdev tree based on the boot device's label config. 3030 */ 3031 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3032 &nvtop) == 0); 3033 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3034 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3035 VDEV_ALLOC_ROOTPOOL); 3036 spa_config_exit(spa, SCL_ALL, FTAG); 3037 if (error) { 3038 mutex_exit(&spa_namespace_lock); 3039 nvlist_free(config); 3040 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3041 pname); 3042 return (error); 3043 } 3044 3045 /* 3046 * Get the boot vdev. 3047 */ 3048 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3049 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3050 (u_longlong_t)guid); 3051 error = ENOENT; 3052 goto out; 3053 } 3054 3055 /* 3056 * Determine if there is a better boot device. 3057 */ 3058 avd = bvd; 3059 spa_alt_rootvdev(rvd, &avd, &txg); 3060 if (avd != bvd) { 3061 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3062 "try booting from '%s'", avd->vdev_path); 3063 error = EINVAL; 3064 goto out; 3065 } 3066 3067 /* 3068 * If the boot device is part of a spare vdev then ensure that 3069 * we're booting off the active spare. 3070 */ 3071 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3072 !bvd->vdev_isspare) { 3073 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3074 "try booting from '%s'", 3075 bvd->vdev_parent->vdev_child[1]->vdev_path); 3076 error = EINVAL; 3077 goto out; 3078 } 3079 3080 error = 0; 3081 spa_history_log_version(spa, LOG_POOL_IMPORT); 3082 out: 3083 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3084 vdev_free(rvd); 3085 spa_config_exit(spa, SCL_ALL, FTAG); 3086 mutex_exit(&spa_namespace_lock); 3087 3088 nvlist_free(config); 3089 return (error); 3090 } 3091 3092 #endif 3093 3094 /* 3095 * Take a pool and insert it into the namespace as if it had been loaded at 3096 * boot. 3097 */ 3098 int 3099 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3100 { 3101 spa_t *spa; 3102 char *altroot = NULL; 3103 3104 mutex_enter(&spa_namespace_lock); 3105 if (spa_lookup(pool) != NULL) { 3106 mutex_exit(&spa_namespace_lock); 3107 return (EEXIST); 3108 } 3109 3110 (void) nvlist_lookup_string(props, 3111 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3112 spa = spa_add(pool, config, altroot); 3113 3114 spa->spa_load_verbatim = B_TRUE; 3115 3116 if (props != NULL) 3117 spa_configfile_set(spa, props, B_FALSE); 3118 3119 spa_config_sync(spa, B_FALSE, B_TRUE); 3120 3121 mutex_exit(&spa_namespace_lock); 3122 spa_history_log_version(spa, LOG_POOL_IMPORT); 3123 3124 return (0); 3125 } 3126 3127 /* 3128 * Import a non-root pool into the system. 3129 */ 3130 int 3131 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3132 { 3133 spa_t *spa; 3134 char *altroot = NULL; 3135 spa_load_state_t state = SPA_LOAD_IMPORT; 3136 zpool_rewind_policy_t policy; 3137 int error; 3138 nvlist_t *nvroot; 3139 nvlist_t **spares, **l2cache; 3140 uint_t nspares, nl2cache; 3141 3142 /* 3143 * If a pool with this name exists, return failure. 3144 */ 3145 mutex_enter(&spa_namespace_lock); 3146 if (spa_lookup(pool) != NULL) { 3147 mutex_exit(&spa_namespace_lock); 3148 return (EEXIST); 3149 } 3150 3151 zpool_get_rewind_policy(config, &policy); 3152 if (policy.zrp_request & ZPOOL_DO_REWIND) 3153 state = SPA_LOAD_RECOVER; 3154 3155 /* 3156 * Create and initialize the spa structure. 3157 */ 3158 (void) nvlist_lookup_string(props, 3159 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3160 spa = spa_add(pool, config, altroot); 3161 spa_activate(spa, spa_mode_global); 3162 3163 /* 3164 * Don't start async tasks until we know everything is healthy. 3165 */ 3166 spa_async_suspend(spa); 3167 3168 /* 3169 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3170 * because the user-supplied config is actually the one to trust when 3171 * doing an import. 3172 */ 3173 if (state != SPA_LOAD_RECOVER) 3174 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3175 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3176 policy.zrp_request); 3177 3178 /* 3179 * Propagate anything learned about failing or best txgs 3180 * back to caller 3181 */ 3182 spa_rewind_data_to_nvlist(spa, config); 3183 3184 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3185 /* 3186 * Toss any existing sparelist, as it doesn't have any validity 3187 * anymore, and conflicts with spa_has_spare(). 3188 */ 3189 if (spa->spa_spares.sav_config) { 3190 nvlist_free(spa->spa_spares.sav_config); 3191 spa->spa_spares.sav_config = NULL; 3192 spa_load_spares(spa); 3193 } 3194 if (spa->spa_l2cache.sav_config) { 3195 nvlist_free(spa->spa_l2cache.sav_config); 3196 spa->spa_l2cache.sav_config = NULL; 3197 spa_load_l2cache(spa); 3198 } 3199 3200 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3201 &nvroot) == 0); 3202 if (error == 0) 3203 error = spa_validate_aux(spa, nvroot, -1ULL, 3204 VDEV_ALLOC_SPARE); 3205 if (error == 0) 3206 error = spa_validate_aux(spa, nvroot, -1ULL, 3207 VDEV_ALLOC_L2CACHE); 3208 spa_config_exit(spa, SCL_ALL, FTAG); 3209 3210 if (props != NULL) 3211 spa_configfile_set(spa, props, B_FALSE); 3212 3213 if (error != 0 || (props && spa_writeable(spa) && 3214 (error = spa_prop_set(spa, props)))) { 3215 spa_unload(spa); 3216 spa_deactivate(spa); 3217 spa_remove(spa); 3218 mutex_exit(&spa_namespace_lock); 3219 return (error); 3220 } 3221 3222 spa_async_resume(spa); 3223 3224 /* 3225 * Override any spares and level 2 cache devices as specified by 3226 * the user, as these may have correct device names/devids, etc. 3227 */ 3228 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3229 &spares, &nspares) == 0) { 3230 if (spa->spa_spares.sav_config) 3231 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3232 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3233 else 3234 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3235 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3236 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3237 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3238 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3239 spa_load_spares(spa); 3240 spa_config_exit(spa, SCL_ALL, FTAG); 3241 spa->spa_spares.sav_sync = B_TRUE; 3242 } 3243 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3244 &l2cache, &nl2cache) == 0) { 3245 if (spa->spa_l2cache.sav_config) 3246 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3247 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3248 else 3249 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3250 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3251 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3252 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3253 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3254 spa_load_l2cache(spa); 3255 spa_config_exit(spa, SCL_ALL, FTAG); 3256 spa->spa_l2cache.sav_sync = B_TRUE; 3257 } 3258 3259 /* 3260 * Check for any removed devices. 3261 */ 3262 if (spa->spa_autoreplace) { 3263 spa_aux_check_removed(&spa->spa_spares); 3264 spa_aux_check_removed(&spa->spa_l2cache); 3265 } 3266 3267 if (spa_writeable(spa)) { 3268 /* 3269 * Update the config cache to include the newly-imported pool. 3270 */ 3271 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3272 } 3273 3274 /* 3275 * It's possible that the pool was expanded while it was exported. 3276 * We kick off an async task to handle this for us. 3277 */ 3278 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3279 3280 mutex_exit(&spa_namespace_lock); 3281 spa_history_log_version(spa, LOG_POOL_IMPORT); 3282 3283 return (0); 3284 } 3285 3286 nvlist_t * 3287 spa_tryimport(nvlist_t *tryconfig) 3288 { 3289 nvlist_t *config = NULL; 3290 char *poolname; 3291 spa_t *spa; 3292 uint64_t state; 3293 int error; 3294 3295 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3296 return (NULL); 3297 3298 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3299 return (NULL); 3300 3301 /* 3302 * Create and initialize the spa structure. 3303 */ 3304 mutex_enter(&spa_namespace_lock); 3305 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3306 spa_activate(spa, FREAD); 3307 3308 /* 3309 * Pass off the heavy lifting to spa_load(). 3310 * Pass TRUE for mosconfig because the user-supplied config 3311 * is actually the one to trust when doing an import. 3312 */ 3313 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3314 3315 /* 3316 * If 'tryconfig' was at least parsable, return the current config. 3317 */ 3318 if (spa->spa_root_vdev != NULL) { 3319 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3320 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3321 poolname) == 0); 3322 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3323 state) == 0); 3324 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3325 spa->spa_uberblock.ub_timestamp) == 0); 3326 3327 /* 3328 * If the bootfs property exists on this pool then we 3329 * copy it out so that external consumers can tell which 3330 * pools are bootable. 3331 */ 3332 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3333 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3334 3335 /* 3336 * We have to play games with the name since the 3337 * pool was opened as TRYIMPORT_NAME. 3338 */ 3339 if (dsl_dsobj_to_dsname(spa_name(spa), 3340 spa->spa_bootfs, tmpname) == 0) { 3341 char *cp; 3342 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3343 3344 cp = strchr(tmpname, '/'); 3345 if (cp == NULL) { 3346 (void) strlcpy(dsname, tmpname, 3347 MAXPATHLEN); 3348 } else { 3349 (void) snprintf(dsname, MAXPATHLEN, 3350 "%s/%s", poolname, ++cp); 3351 } 3352 VERIFY(nvlist_add_string(config, 3353 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3354 kmem_free(dsname, MAXPATHLEN); 3355 } 3356 kmem_free(tmpname, MAXPATHLEN); 3357 } 3358 3359 /* 3360 * Add the list of hot spares and level 2 cache devices. 3361 */ 3362 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3363 spa_add_spares(spa, config); 3364 spa_add_l2cache(spa, config); 3365 spa_config_exit(spa, SCL_CONFIG, FTAG); 3366 } 3367 3368 spa_unload(spa); 3369 spa_deactivate(spa); 3370 spa_remove(spa); 3371 mutex_exit(&spa_namespace_lock); 3372 3373 return (config); 3374 } 3375 3376 /* 3377 * Pool export/destroy 3378 * 3379 * The act of destroying or exporting a pool is very simple. We make sure there 3380 * is no more pending I/O and any references to the pool are gone. Then, we 3381 * update the pool state and sync all the labels to disk, removing the 3382 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3383 * we don't sync the labels or remove the configuration cache. 3384 */ 3385 static int 3386 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3387 boolean_t force, boolean_t hardforce) 3388 { 3389 spa_t *spa; 3390 3391 if (oldconfig) 3392 *oldconfig = NULL; 3393 3394 if (!(spa_mode_global & FWRITE)) 3395 return (EROFS); 3396 3397 mutex_enter(&spa_namespace_lock); 3398 if ((spa = spa_lookup(pool)) == NULL) { 3399 mutex_exit(&spa_namespace_lock); 3400 return (ENOENT); 3401 } 3402 3403 /* 3404 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3405 * reacquire the namespace lock, and see if we can export. 3406 */ 3407 spa_open_ref(spa, FTAG); 3408 mutex_exit(&spa_namespace_lock); 3409 spa_async_suspend(spa); 3410 mutex_enter(&spa_namespace_lock); 3411 spa_close(spa, FTAG); 3412 3413 /* 3414 * The pool will be in core if it's openable, 3415 * in which case we can modify its state. 3416 */ 3417 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3418 /* 3419 * Objsets may be open only because they're dirty, so we 3420 * have to force it to sync before checking spa_refcnt. 3421 */ 3422 txg_wait_synced(spa->spa_dsl_pool, 0); 3423 3424 /* 3425 * A pool cannot be exported or destroyed if there are active 3426 * references. If we are resetting a pool, allow references by 3427 * fault injection handlers. 3428 */ 3429 if (!spa_refcount_zero(spa) || 3430 (spa->spa_inject_ref != 0 && 3431 new_state != POOL_STATE_UNINITIALIZED)) { 3432 spa_async_resume(spa); 3433 mutex_exit(&spa_namespace_lock); 3434 return (EBUSY); 3435 } 3436 3437 /* 3438 * A pool cannot be exported if it has an active shared spare. 3439 * This is to prevent other pools stealing the active spare 3440 * from an exported pool. At user's own will, such pool can 3441 * be forcedly exported. 3442 */ 3443 if (!force && new_state == POOL_STATE_EXPORTED && 3444 spa_has_active_shared_spare(spa)) { 3445 spa_async_resume(spa); 3446 mutex_exit(&spa_namespace_lock); 3447 return (EXDEV); 3448 } 3449 3450 /* 3451 * We want this to be reflected on every label, 3452 * so mark them all dirty. spa_unload() will do the 3453 * final sync that pushes these changes out. 3454 */ 3455 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3456 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3457 spa->spa_state = new_state; 3458 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3459 vdev_config_dirty(spa->spa_root_vdev); 3460 spa_config_exit(spa, SCL_ALL, FTAG); 3461 } 3462 } 3463 3464 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3465 3466 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3467 spa_unload(spa); 3468 spa_deactivate(spa); 3469 } 3470 3471 if (oldconfig && spa->spa_config) 3472 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3473 3474 if (new_state != POOL_STATE_UNINITIALIZED) { 3475 if (!hardforce) 3476 spa_config_sync(spa, B_TRUE, B_TRUE); 3477 spa_remove(spa); 3478 } 3479 mutex_exit(&spa_namespace_lock); 3480 3481 return (0); 3482 } 3483 3484 /* 3485 * Destroy a storage pool. 3486 */ 3487 int 3488 spa_destroy(char *pool) 3489 { 3490 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3491 B_FALSE, B_FALSE)); 3492 } 3493 3494 /* 3495 * Export a storage pool. 3496 */ 3497 int 3498 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3499 boolean_t hardforce) 3500 { 3501 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3502 force, hardforce)); 3503 } 3504 3505 /* 3506 * Similar to spa_export(), this unloads the spa_t without actually removing it 3507 * from the namespace in any way. 3508 */ 3509 int 3510 spa_reset(char *pool) 3511 { 3512 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3513 B_FALSE, B_FALSE)); 3514 } 3515 3516 /* 3517 * ========================================================================== 3518 * Device manipulation 3519 * ========================================================================== 3520 */ 3521 3522 /* 3523 * Add a device to a storage pool. 3524 */ 3525 int 3526 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3527 { 3528 uint64_t txg, id; 3529 int error; 3530 vdev_t *rvd = spa->spa_root_vdev; 3531 vdev_t *vd, *tvd; 3532 nvlist_t **spares, **l2cache; 3533 uint_t nspares, nl2cache; 3534 3535 txg = spa_vdev_enter(spa); 3536 3537 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3538 VDEV_ALLOC_ADD)) != 0) 3539 return (spa_vdev_exit(spa, NULL, txg, error)); 3540 3541 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3542 3543 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3544 &nspares) != 0) 3545 nspares = 0; 3546 3547 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3548 &nl2cache) != 0) 3549 nl2cache = 0; 3550 3551 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3552 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3553 3554 if (vd->vdev_children != 0 && 3555 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3556 return (spa_vdev_exit(spa, vd, txg, error)); 3557 3558 /* 3559 * We must validate the spares and l2cache devices after checking the 3560 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3561 */ 3562 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3563 return (spa_vdev_exit(spa, vd, txg, error)); 3564 3565 /* 3566 * Transfer each new top-level vdev from vd to rvd. 3567 */ 3568 for (int c = 0; c < vd->vdev_children; c++) { 3569 3570 /* 3571 * Set the vdev id to the first hole, if one exists. 3572 */ 3573 for (id = 0; id < rvd->vdev_children; id++) { 3574 if (rvd->vdev_child[id]->vdev_ishole) { 3575 vdev_free(rvd->vdev_child[id]); 3576 break; 3577 } 3578 } 3579 tvd = vd->vdev_child[c]; 3580 vdev_remove_child(vd, tvd); 3581 tvd->vdev_id = id; 3582 vdev_add_child(rvd, tvd); 3583 vdev_config_dirty(tvd); 3584 } 3585 3586 if (nspares != 0) { 3587 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3588 ZPOOL_CONFIG_SPARES); 3589 spa_load_spares(spa); 3590 spa->spa_spares.sav_sync = B_TRUE; 3591 } 3592 3593 if (nl2cache != 0) { 3594 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3595 ZPOOL_CONFIG_L2CACHE); 3596 spa_load_l2cache(spa); 3597 spa->spa_l2cache.sav_sync = B_TRUE; 3598 } 3599 3600 /* 3601 * We have to be careful when adding new vdevs to an existing pool. 3602 * If other threads start allocating from these vdevs before we 3603 * sync the config cache, and we lose power, then upon reboot we may 3604 * fail to open the pool because there are DVAs that the config cache 3605 * can't translate. Therefore, we first add the vdevs without 3606 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3607 * and then let spa_config_update() initialize the new metaslabs. 3608 * 3609 * spa_load() checks for added-but-not-initialized vdevs, so that 3610 * if we lose power at any point in this sequence, the remaining 3611 * steps will be completed the next time we load the pool. 3612 */ 3613 (void) spa_vdev_exit(spa, vd, txg, 0); 3614 3615 mutex_enter(&spa_namespace_lock); 3616 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3617 mutex_exit(&spa_namespace_lock); 3618 3619 return (0); 3620 } 3621 3622 /* 3623 * Attach a device to a mirror. The arguments are the path to any device 3624 * in the mirror, and the nvroot for the new device. If the path specifies 3625 * a device that is not mirrored, we automatically insert the mirror vdev. 3626 * 3627 * If 'replacing' is specified, the new device is intended to replace the 3628 * existing device; in this case the two devices are made into their own 3629 * mirror using the 'replacing' vdev, which is functionally identical to 3630 * the mirror vdev (it actually reuses all the same ops) but has a few 3631 * extra rules: you can't attach to it after it's been created, and upon 3632 * completion of resilvering, the first disk (the one being replaced) 3633 * is automatically detached. 3634 */ 3635 int 3636 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3637 { 3638 uint64_t txg, open_txg; 3639 vdev_t *rvd = spa->spa_root_vdev; 3640 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3641 vdev_ops_t *pvops; 3642 char *oldvdpath, *newvdpath; 3643 int newvd_isspare; 3644 int error; 3645 3646 txg = spa_vdev_enter(spa); 3647 3648 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3649 3650 if (oldvd == NULL) 3651 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3652 3653 if (!oldvd->vdev_ops->vdev_op_leaf) 3654 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3655 3656 pvd = oldvd->vdev_parent; 3657 3658 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3659 VDEV_ALLOC_ADD)) != 0) 3660 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3661 3662 if (newrootvd->vdev_children != 1) 3663 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3664 3665 newvd = newrootvd->vdev_child[0]; 3666 3667 if (!newvd->vdev_ops->vdev_op_leaf) 3668 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3669 3670 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3671 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3672 3673 /* 3674 * Spares can't replace logs 3675 */ 3676 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3677 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3678 3679 if (!replacing) { 3680 /* 3681 * For attach, the only allowable parent is a mirror or the root 3682 * vdev. 3683 */ 3684 if (pvd->vdev_ops != &vdev_mirror_ops && 3685 pvd->vdev_ops != &vdev_root_ops) 3686 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3687 3688 pvops = &vdev_mirror_ops; 3689 } else { 3690 /* 3691 * Active hot spares can only be replaced by inactive hot 3692 * spares. 3693 */ 3694 if (pvd->vdev_ops == &vdev_spare_ops && 3695 pvd->vdev_child[1] == oldvd && 3696 !spa_has_spare(spa, newvd->vdev_guid)) 3697 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3698 3699 /* 3700 * If the source is a hot spare, and the parent isn't already a 3701 * spare, then we want to create a new hot spare. Otherwise, we 3702 * want to create a replacing vdev. The user is not allowed to 3703 * attach to a spared vdev child unless the 'isspare' state is 3704 * the same (spare replaces spare, non-spare replaces 3705 * non-spare). 3706 */ 3707 if (pvd->vdev_ops == &vdev_replacing_ops) 3708 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3709 else if (pvd->vdev_ops == &vdev_spare_ops && 3710 newvd->vdev_isspare != oldvd->vdev_isspare) 3711 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3712 else if (pvd->vdev_ops != &vdev_spare_ops && 3713 newvd->vdev_isspare) 3714 pvops = &vdev_spare_ops; 3715 else 3716 pvops = &vdev_replacing_ops; 3717 } 3718 3719 /* 3720 * Make sure the new device is big enough. 3721 */ 3722 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3723 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3724 3725 /* 3726 * The new device cannot have a higher alignment requirement 3727 * than the top-level vdev. 3728 */ 3729 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3730 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3731 3732 /* 3733 * If this is an in-place replacement, update oldvd's path and devid 3734 * to make it distinguishable from newvd, and unopenable from now on. 3735 */ 3736 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3737 spa_strfree(oldvd->vdev_path); 3738 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3739 KM_SLEEP); 3740 (void) sprintf(oldvd->vdev_path, "%s/%s", 3741 newvd->vdev_path, "old"); 3742 if (oldvd->vdev_devid != NULL) { 3743 spa_strfree(oldvd->vdev_devid); 3744 oldvd->vdev_devid = NULL; 3745 } 3746 } 3747 3748 /* 3749 * If the parent is not a mirror, or if we're replacing, insert the new 3750 * mirror/replacing/spare vdev above oldvd. 3751 */ 3752 if (pvd->vdev_ops != pvops) 3753 pvd = vdev_add_parent(oldvd, pvops); 3754 3755 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3756 ASSERT(pvd->vdev_ops == pvops); 3757 ASSERT(oldvd->vdev_parent == pvd); 3758 3759 /* 3760 * Extract the new device from its root and add it to pvd. 3761 */ 3762 vdev_remove_child(newrootvd, newvd); 3763 newvd->vdev_id = pvd->vdev_children; 3764 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3765 vdev_add_child(pvd, newvd); 3766 3767 tvd = newvd->vdev_top; 3768 ASSERT(pvd->vdev_top == tvd); 3769 ASSERT(tvd->vdev_parent == rvd); 3770 3771 vdev_config_dirty(tvd); 3772 3773 /* 3774 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3775 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3776 */ 3777 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3778 3779 vdev_dtl_dirty(newvd, DTL_MISSING, 3780 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3781 3782 if (newvd->vdev_isspare) { 3783 spa_spare_activate(newvd); 3784 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3785 } 3786 3787 oldvdpath = spa_strdup(oldvd->vdev_path); 3788 newvdpath = spa_strdup(newvd->vdev_path); 3789 newvd_isspare = newvd->vdev_isspare; 3790 3791 /* 3792 * Mark newvd's DTL dirty in this txg. 3793 */ 3794 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3795 3796 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3797 3798 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3799 CRED(), "%s vdev=%s %s vdev=%s", 3800 replacing && newvd_isspare ? "spare in" : 3801 replacing ? "replace" : "attach", newvdpath, 3802 replacing ? "for" : "to", oldvdpath); 3803 3804 spa_strfree(oldvdpath); 3805 spa_strfree(newvdpath); 3806 3807 /* 3808 * Kick off a resilver to update newvd. 3809 */ 3810 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3811 3812 return (0); 3813 } 3814 3815 /* 3816 * Detach a device from a mirror or replacing vdev. 3817 * If 'replace_done' is specified, only detach if the parent 3818 * is a replacing vdev. 3819 */ 3820 int 3821 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3822 { 3823 uint64_t txg; 3824 int error; 3825 vdev_t *rvd = spa->spa_root_vdev; 3826 vdev_t *vd, *pvd, *cvd, *tvd; 3827 boolean_t unspare = B_FALSE; 3828 uint64_t unspare_guid; 3829 size_t len; 3830 char *vdpath; 3831 3832 txg = spa_vdev_enter(spa); 3833 3834 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3835 3836 if (vd == NULL) 3837 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3838 3839 if (!vd->vdev_ops->vdev_op_leaf) 3840 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3841 3842 pvd = vd->vdev_parent; 3843 3844 /* 3845 * If the parent/child relationship is not as expected, don't do it. 3846 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3847 * vdev that's replacing B with C. The user's intent in replacing 3848 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3849 * the replace by detaching C, the expected behavior is to end up 3850 * M(A,B). But suppose that right after deciding to detach C, 3851 * the replacement of B completes. We would have M(A,C), and then 3852 * ask to detach C, which would leave us with just A -- not what 3853 * the user wanted. To prevent this, we make sure that the 3854 * parent/child relationship hasn't changed -- in this example, 3855 * that C's parent is still the replacing vdev R. 3856 */ 3857 if (pvd->vdev_guid != pguid && pguid != 0) 3858 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3859 3860 /* 3861 * If replace_done is specified, only remove this device if it's 3862 * the first child of a replacing vdev. For the 'spare' vdev, either 3863 * disk can be removed. 3864 */ 3865 if (replace_done) { 3866 if (pvd->vdev_ops == &vdev_replacing_ops) { 3867 if (vd->vdev_id != 0) 3868 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3869 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3870 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3871 } 3872 } 3873 3874 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3875 spa_version(spa) >= SPA_VERSION_SPARES); 3876 3877 /* 3878 * Only mirror, replacing, and spare vdevs support detach. 3879 */ 3880 if (pvd->vdev_ops != &vdev_replacing_ops && 3881 pvd->vdev_ops != &vdev_mirror_ops && 3882 pvd->vdev_ops != &vdev_spare_ops) 3883 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3884 3885 /* 3886 * If this device has the only valid copy of some data, 3887 * we cannot safely detach it. 3888 */ 3889 if (vdev_dtl_required(vd)) 3890 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3891 3892 ASSERT(pvd->vdev_children >= 2); 3893 3894 /* 3895 * If we are detaching the second disk from a replacing vdev, then 3896 * check to see if we changed the original vdev's path to have "/old" 3897 * at the end in spa_vdev_attach(). If so, undo that change now. 3898 */ 3899 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3900 pvd->vdev_child[0]->vdev_path != NULL && 3901 pvd->vdev_child[1]->vdev_path != NULL) { 3902 ASSERT(pvd->vdev_child[1] == vd); 3903 cvd = pvd->vdev_child[0]; 3904 len = strlen(vd->vdev_path); 3905 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3906 strcmp(cvd->vdev_path + len, "/old") == 0) { 3907 spa_strfree(cvd->vdev_path); 3908 cvd->vdev_path = spa_strdup(vd->vdev_path); 3909 } 3910 } 3911 3912 /* 3913 * If we are detaching the original disk from a spare, then it implies 3914 * that the spare should become a real disk, and be removed from the 3915 * active spare list for the pool. 3916 */ 3917 if (pvd->vdev_ops == &vdev_spare_ops && 3918 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3919 unspare = B_TRUE; 3920 3921 /* 3922 * Erase the disk labels so the disk can be used for other things. 3923 * This must be done after all other error cases are handled, 3924 * but before we disembowel vd (so we can still do I/O to it). 3925 * But if we can't do it, don't treat the error as fatal -- 3926 * it may be that the unwritability of the disk is the reason 3927 * it's being detached! 3928 */ 3929 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3930 3931 /* 3932 * Remove vd from its parent and compact the parent's children. 3933 */ 3934 vdev_remove_child(pvd, vd); 3935 vdev_compact_children(pvd); 3936 3937 /* 3938 * Remember one of the remaining children so we can get tvd below. 3939 */ 3940 cvd = pvd->vdev_child[0]; 3941 3942 /* 3943 * If we need to remove the remaining child from the list of hot spares, 3944 * do it now, marking the vdev as no longer a spare in the process. 3945 * We must do this before vdev_remove_parent(), because that can 3946 * change the GUID if it creates a new toplevel GUID. For a similar 3947 * reason, we must remove the spare now, in the same txg as the detach; 3948 * otherwise someone could attach a new sibling, change the GUID, and 3949 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3950 */ 3951 if (unspare) { 3952 ASSERT(cvd->vdev_isspare); 3953 spa_spare_remove(cvd); 3954 unspare_guid = cvd->vdev_guid; 3955 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3956 } 3957 3958 /* 3959 * If the parent mirror/replacing vdev only has one child, 3960 * the parent is no longer needed. Remove it from the tree. 3961 */ 3962 if (pvd->vdev_children == 1) 3963 vdev_remove_parent(cvd); 3964 3965 /* 3966 * We don't set tvd until now because the parent we just removed 3967 * may have been the previous top-level vdev. 3968 */ 3969 tvd = cvd->vdev_top; 3970 ASSERT(tvd->vdev_parent == rvd); 3971 3972 /* 3973 * Reevaluate the parent vdev state. 3974 */ 3975 vdev_propagate_state(cvd); 3976 3977 /* 3978 * If the 'autoexpand' property is set on the pool then automatically 3979 * try to expand the size of the pool. For example if the device we 3980 * just detached was smaller than the others, it may be possible to 3981 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3982 * first so that we can obtain the updated sizes of the leaf vdevs. 3983 */ 3984 if (spa->spa_autoexpand) { 3985 vdev_reopen(tvd); 3986 vdev_expand(tvd, txg); 3987 } 3988 3989 vdev_config_dirty(tvd); 3990 3991 /* 3992 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3993 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3994 * But first make sure we're not on any *other* txg's DTL list, to 3995 * prevent vd from being accessed after it's freed. 3996 */ 3997 vdpath = spa_strdup(vd->vdev_path); 3998 for (int t = 0; t < TXG_SIZE; t++) 3999 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4000 vd->vdev_detached = B_TRUE; 4001 vdev_dirty(tvd, VDD_DTL, vd, txg); 4002 4003 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4004 4005 error = spa_vdev_exit(spa, vd, txg, 0); 4006 4007 spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(), 4008 "vdev=%s", vdpath); 4009 spa_strfree(vdpath); 4010 4011 /* 4012 * If this was the removal of the original device in a hot spare vdev, 4013 * then we want to go through and remove the device from the hot spare 4014 * list of every other pool. 4015 */ 4016 if (unspare) { 4017 spa_t *myspa = spa; 4018 spa = NULL; 4019 mutex_enter(&spa_namespace_lock); 4020 while ((spa = spa_next(spa)) != NULL) { 4021 if (spa->spa_state != POOL_STATE_ACTIVE) 4022 continue; 4023 if (spa == myspa) 4024 continue; 4025 spa_open_ref(spa, FTAG); 4026 mutex_exit(&spa_namespace_lock); 4027 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4028 mutex_enter(&spa_namespace_lock); 4029 spa_close(spa, FTAG); 4030 } 4031 mutex_exit(&spa_namespace_lock); 4032 } 4033 4034 return (error); 4035 } 4036 4037 /* 4038 * Split a set of devices from their mirrors, and create a new pool from them. 4039 */ 4040 int 4041 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4042 nvlist_t *props, boolean_t exp) 4043 { 4044 int error = 0; 4045 uint64_t txg, *glist; 4046 spa_t *newspa; 4047 uint_t c, children, lastlog; 4048 nvlist_t **child, *nvl, *tmp; 4049 dmu_tx_t *tx; 4050 char *altroot = NULL; 4051 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4052 boolean_t activate_slog; 4053 4054 if (!spa_writeable(spa)) 4055 return (EROFS); 4056 4057 txg = spa_vdev_enter(spa); 4058 4059 /* clear the log and flush everything up to now */ 4060 activate_slog = spa_passivate_log(spa); 4061 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4062 error = spa_offline_log(spa); 4063 txg = spa_vdev_config_enter(spa); 4064 4065 if (activate_slog) 4066 spa_activate_log(spa); 4067 4068 if (error != 0) 4069 return (spa_vdev_exit(spa, NULL, txg, error)); 4070 4071 /* check new spa name before going any further */ 4072 if (spa_lookup(newname) != NULL) 4073 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4074 4075 /* 4076 * scan through all the children to ensure they're all mirrors 4077 */ 4078 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4079 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4080 &children) != 0) 4081 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4082 4083 /* first, check to ensure we've got the right child count */ 4084 rvd = spa->spa_root_vdev; 4085 lastlog = 0; 4086 for (c = 0; c < rvd->vdev_children; c++) { 4087 vdev_t *vd = rvd->vdev_child[c]; 4088 4089 /* don't count the holes & logs as children */ 4090 if (vd->vdev_islog || vd->vdev_ishole) { 4091 if (lastlog == 0) 4092 lastlog = c; 4093 continue; 4094 } 4095 4096 lastlog = 0; 4097 } 4098 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4099 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4100 4101 /* next, ensure no spare or cache devices are part of the split */ 4102 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4103 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4104 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4105 4106 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4107 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4108 4109 /* then, loop over each vdev and validate it */ 4110 for (c = 0; c < children; c++) { 4111 uint64_t is_hole = 0; 4112 4113 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4114 &is_hole); 4115 4116 if (is_hole != 0) { 4117 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4118 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4119 continue; 4120 } else { 4121 error = EINVAL; 4122 break; 4123 } 4124 } 4125 4126 /* which disk is going to be split? */ 4127 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4128 &glist[c]) != 0) { 4129 error = EINVAL; 4130 break; 4131 } 4132 4133 /* look it up in the spa */ 4134 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4135 if (vml[c] == NULL) { 4136 error = ENODEV; 4137 break; 4138 } 4139 4140 /* make sure there's nothing stopping the split */ 4141 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4142 vml[c]->vdev_islog || 4143 vml[c]->vdev_ishole || 4144 vml[c]->vdev_isspare || 4145 vml[c]->vdev_isl2cache || 4146 !vdev_writeable(vml[c]) || 4147 vml[c]->vdev_children != 0 || 4148 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4149 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4150 error = EINVAL; 4151 break; 4152 } 4153 4154 if (vdev_dtl_required(vml[c])) { 4155 error = EBUSY; 4156 break; 4157 } 4158 4159 /* we need certain info from the top level */ 4160 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4161 vml[c]->vdev_top->vdev_ms_array) == 0); 4162 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4163 vml[c]->vdev_top->vdev_ms_shift) == 0); 4164 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4165 vml[c]->vdev_top->vdev_asize) == 0); 4166 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4167 vml[c]->vdev_top->vdev_ashift) == 0); 4168 } 4169 4170 if (error != 0) { 4171 kmem_free(vml, children * sizeof (vdev_t *)); 4172 kmem_free(glist, children * sizeof (uint64_t)); 4173 return (spa_vdev_exit(spa, NULL, txg, error)); 4174 } 4175 4176 /* stop writers from using the disks */ 4177 for (c = 0; c < children; c++) { 4178 if (vml[c] != NULL) 4179 vml[c]->vdev_offline = B_TRUE; 4180 } 4181 vdev_reopen(spa->spa_root_vdev); 4182 4183 /* 4184 * Temporarily record the splitting vdevs in the spa config. This 4185 * will disappear once the config is regenerated. 4186 */ 4187 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4188 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4189 glist, children) == 0); 4190 kmem_free(glist, children * sizeof (uint64_t)); 4191 4192 mutex_enter(&spa->spa_props_lock); 4193 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4194 nvl) == 0); 4195 mutex_exit(&spa->spa_props_lock); 4196 spa->spa_config_splitting = nvl; 4197 vdev_config_dirty(spa->spa_root_vdev); 4198 4199 /* configure and create the new pool */ 4200 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4201 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4202 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4203 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4204 spa_version(spa)) == 0); 4205 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4206 spa->spa_config_txg) == 0); 4207 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4208 spa_generate_guid(NULL)) == 0); 4209 (void) nvlist_lookup_string(props, 4210 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4211 4212 /* add the new pool to the namespace */ 4213 newspa = spa_add(newname, config, altroot); 4214 newspa->spa_config_txg = spa->spa_config_txg; 4215 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4216 4217 /* release the spa config lock, retaining the namespace lock */ 4218 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4219 4220 if (zio_injection_enabled) 4221 zio_handle_panic_injection(spa, FTAG, 1); 4222 4223 spa_activate(newspa, spa_mode_global); 4224 spa_async_suspend(newspa); 4225 4226 /* create the new pool from the disks of the original pool */ 4227 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4228 if (error) 4229 goto out; 4230 4231 /* if that worked, generate a real config for the new pool */ 4232 if (newspa->spa_root_vdev != NULL) { 4233 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4234 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4235 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4236 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4237 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4238 B_TRUE)); 4239 } 4240 4241 /* set the props */ 4242 if (props != NULL) { 4243 spa_configfile_set(newspa, props, B_FALSE); 4244 error = spa_prop_set(newspa, props); 4245 if (error) 4246 goto out; 4247 } 4248 4249 /* flush everything */ 4250 txg = spa_vdev_config_enter(newspa); 4251 vdev_config_dirty(newspa->spa_root_vdev); 4252 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4253 4254 if (zio_injection_enabled) 4255 zio_handle_panic_injection(spa, FTAG, 2); 4256 4257 spa_async_resume(newspa); 4258 4259 /* finally, update the original pool's config */ 4260 txg = spa_vdev_config_enter(spa); 4261 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4262 error = dmu_tx_assign(tx, TXG_WAIT); 4263 if (error != 0) 4264 dmu_tx_abort(tx); 4265 for (c = 0; c < children; c++) { 4266 if (vml[c] != NULL) { 4267 vdev_split(vml[c]); 4268 if (error == 0) 4269 spa_history_internal_log(LOG_POOL_VDEV_DETACH, 4270 spa, tx, CRED(), "vdev=%s", 4271 vml[c]->vdev_path); 4272 vdev_free(vml[c]); 4273 } 4274 } 4275 vdev_config_dirty(spa->spa_root_vdev); 4276 spa->spa_config_splitting = NULL; 4277 nvlist_free(nvl); 4278 if (error == 0) 4279 dmu_tx_commit(tx); 4280 (void) spa_vdev_exit(spa, NULL, txg, 0); 4281 4282 if (zio_injection_enabled) 4283 zio_handle_panic_injection(spa, FTAG, 3); 4284 4285 /* split is complete; log a history record */ 4286 spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(), 4287 "split new pool %s from pool %s", newname, spa_name(spa)); 4288 4289 kmem_free(vml, children * sizeof (vdev_t *)); 4290 4291 /* if we're not going to mount the filesystems in userland, export */ 4292 if (exp) 4293 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4294 B_FALSE, B_FALSE); 4295 4296 return (error); 4297 4298 out: 4299 spa_unload(newspa); 4300 spa_deactivate(newspa); 4301 spa_remove(newspa); 4302 4303 txg = spa_vdev_config_enter(spa); 4304 4305 /* re-online all offlined disks */ 4306 for (c = 0; c < children; c++) { 4307 if (vml[c] != NULL) 4308 vml[c]->vdev_offline = B_FALSE; 4309 } 4310 vdev_reopen(spa->spa_root_vdev); 4311 4312 nvlist_free(spa->spa_config_splitting); 4313 spa->spa_config_splitting = NULL; 4314 (void) spa_vdev_exit(spa, NULL, txg, error); 4315 4316 kmem_free(vml, children * sizeof (vdev_t *)); 4317 return (error); 4318 } 4319 4320 static nvlist_t * 4321 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4322 { 4323 for (int i = 0; i < count; i++) { 4324 uint64_t guid; 4325 4326 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4327 &guid) == 0); 4328 4329 if (guid == target_guid) 4330 return (nvpp[i]); 4331 } 4332 4333 return (NULL); 4334 } 4335 4336 static void 4337 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4338 nvlist_t *dev_to_remove) 4339 { 4340 nvlist_t **newdev = NULL; 4341 4342 if (count > 1) 4343 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4344 4345 for (int i = 0, j = 0; i < count; i++) { 4346 if (dev[i] == dev_to_remove) 4347 continue; 4348 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4349 } 4350 4351 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4352 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4353 4354 for (int i = 0; i < count - 1; i++) 4355 nvlist_free(newdev[i]); 4356 4357 if (count > 1) 4358 kmem_free(newdev, (count - 1) * sizeof (void *)); 4359 } 4360 4361 /* 4362 * Removing a device from the vdev namespace requires several steps 4363 * and can take a significant amount of time. As a result we use 4364 * the spa_vdev_config_[enter/exit] functions which allow us to 4365 * grab and release the spa_config_lock while still holding the namespace 4366 * lock. During each step the configuration is synced out. 4367 */ 4368 4369 /* 4370 * Evacuate the device. 4371 */ 4372 int 4373 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4374 { 4375 int error = 0; 4376 uint64_t txg; 4377 4378 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4380 ASSERT(vd == vd->vdev_top); 4381 4382 /* 4383 * Evacuate the device. We don't hold the config lock as writer 4384 * since we need to do I/O but we do keep the 4385 * spa_namespace_lock held. Once this completes the device 4386 * should no longer have any blocks allocated on it. 4387 */ 4388 if (vd->vdev_islog) { 4389 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 4390 NULL, DS_FIND_CHILDREN); 4391 } else { 4392 error = ENOTSUP; /* until we have bp rewrite */ 4393 } 4394 4395 txg_wait_synced(spa_get_dsl(spa), 0); 4396 4397 if (error) 4398 return (error); 4399 4400 /* 4401 * The evacuation succeeded. Remove any remaining MOS metadata 4402 * associated with this vdev, and wait for these changes to sync. 4403 */ 4404 txg = spa_vdev_config_enter(spa); 4405 vd->vdev_removing = B_TRUE; 4406 vdev_dirty(vd, 0, NULL, txg); 4407 vdev_config_dirty(vd); 4408 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4409 4410 return (0); 4411 } 4412 4413 /* 4414 * Complete the removal by cleaning up the namespace. 4415 */ 4416 void 4417 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4418 { 4419 vdev_t *rvd = spa->spa_root_vdev; 4420 uint64_t id = vd->vdev_id; 4421 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4422 4423 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4424 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4425 ASSERT(vd == vd->vdev_top); 4426 4427 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4428 4429 if (list_link_active(&vd->vdev_state_dirty_node)) 4430 vdev_state_clean(vd); 4431 if (list_link_active(&vd->vdev_config_dirty_node)) 4432 vdev_config_clean(vd); 4433 4434 vdev_free(vd); 4435 4436 if (last_vdev) { 4437 vdev_compact_children(rvd); 4438 } else { 4439 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4440 vdev_add_child(rvd, vd); 4441 } 4442 vdev_config_dirty(rvd); 4443 4444 /* 4445 * Reassess the health of our root vdev. 4446 */ 4447 vdev_reopen(rvd); 4448 } 4449 4450 /* 4451 * Remove a device from the pool. Currently, this supports removing only hot 4452 * spares, slogs, and level 2 ARC devices. 4453 */ 4454 int 4455 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4456 { 4457 vdev_t *vd; 4458 metaslab_group_t *mg; 4459 nvlist_t **spares, **l2cache, *nv; 4460 uint64_t txg = 0; 4461 uint_t nspares, nl2cache; 4462 int error = 0; 4463 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4464 4465 if (!locked) 4466 txg = spa_vdev_enter(spa); 4467 4468 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4469 4470 if (spa->spa_spares.sav_vdevs != NULL && 4471 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4472 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4473 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4474 /* 4475 * Only remove the hot spare if it's not currently in use 4476 * in this pool. 4477 */ 4478 if (vd == NULL || unspare) { 4479 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4480 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4481 spa_load_spares(spa); 4482 spa->spa_spares.sav_sync = B_TRUE; 4483 } else { 4484 error = EBUSY; 4485 } 4486 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4487 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4488 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4489 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4490 /* 4491 * Cache devices can always be removed. 4492 */ 4493 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4494 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4495 spa_load_l2cache(spa); 4496 spa->spa_l2cache.sav_sync = B_TRUE; 4497 } else if (vd != NULL && vd->vdev_islog) { 4498 ASSERT(!locked); 4499 ASSERT(vd == vd->vdev_top); 4500 4501 /* 4502 * XXX - Once we have bp-rewrite this should 4503 * become the common case. 4504 */ 4505 4506 mg = vd->vdev_mg; 4507 4508 /* 4509 * Stop allocating from this vdev. 4510 */ 4511 metaslab_group_passivate(mg); 4512 4513 /* 4514 * Wait for the youngest allocations and frees to sync, 4515 * and then wait for the deferral of those frees to finish. 4516 */ 4517 spa_vdev_config_exit(spa, NULL, 4518 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4519 4520 /* 4521 * Attempt to evacuate the vdev. 4522 */ 4523 error = spa_vdev_remove_evacuate(spa, vd); 4524 4525 txg = spa_vdev_config_enter(spa); 4526 4527 /* 4528 * If we couldn't evacuate the vdev, unwind. 4529 */ 4530 if (error) { 4531 metaslab_group_activate(mg); 4532 return (spa_vdev_exit(spa, NULL, txg, error)); 4533 } 4534 4535 /* 4536 * Clean up the vdev namespace. 4537 */ 4538 spa_vdev_remove_from_namespace(spa, vd); 4539 4540 } else if (vd != NULL) { 4541 /* 4542 * Normal vdevs cannot be removed (yet). 4543 */ 4544 error = ENOTSUP; 4545 } else { 4546 /* 4547 * There is no vdev of any kind with the specified guid. 4548 */ 4549 error = ENOENT; 4550 } 4551 4552 if (!locked) 4553 return (spa_vdev_exit(spa, NULL, txg, error)); 4554 4555 return (error); 4556 } 4557 4558 /* 4559 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4560 * current spared, so we can detach it. 4561 */ 4562 static vdev_t * 4563 spa_vdev_resilver_done_hunt(vdev_t *vd) 4564 { 4565 vdev_t *newvd, *oldvd; 4566 4567 for (int c = 0; c < vd->vdev_children; c++) { 4568 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4569 if (oldvd != NULL) 4570 return (oldvd); 4571 } 4572 4573 /* 4574 * Check for a completed replacement. 4575 */ 4576 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4577 oldvd = vd->vdev_child[0]; 4578 newvd = vd->vdev_child[1]; 4579 4580 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4581 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4582 !vdev_dtl_required(oldvd)) 4583 return (oldvd); 4584 } 4585 4586 /* 4587 * Check for a completed resilver with the 'unspare' flag set. 4588 */ 4589 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4590 newvd = vd->vdev_child[0]; 4591 oldvd = vd->vdev_child[1]; 4592 4593 if (newvd->vdev_unspare && 4594 vdev_dtl_empty(newvd, DTL_MISSING) && 4595 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4596 !vdev_dtl_required(oldvd)) { 4597 newvd->vdev_unspare = 0; 4598 return (oldvd); 4599 } 4600 } 4601 4602 return (NULL); 4603 } 4604 4605 static void 4606 spa_vdev_resilver_done(spa_t *spa) 4607 { 4608 vdev_t *vd, *pvd, *ppvd; 4609 uint64_t guid, sguid, pguid, ppguid; 4610 4611 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4612 4613 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4614 pvd = vd->vdev_parent; 4615 ppvd = pvd->vdev_parent; 4616 guid = vd->vdev_guid; 4617 pguid = pvd->vdev_guid; 4618 ppguid = ppvd->vdev_guid; 4619 sguid = 0; 4620 /* 4621 * If we have just finished replacing a hot spared device, then 4622 * we need to detach the parent's first child (the original hot 4623 * spare) as well. 4624 */ 4625 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4626 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4627 ASSERT(ppvd->vdev_children == 2); 4628 sguid = ppvd->vdev_child[1]->vdev_guid; 4629 } 4630 spa_config_exit(spa, SCL_ALL, FTAG); 4631 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4632 return; 4633 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4634 return; 4635 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4636 } 4637 4638 spa_config_exit(spa, SCL_ALL, FTAG); 4639 } 4640 4641 /* 4642 * Update the stored path or FRU for this vdev. 4643 */ 4644 int 4645 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4646 boolean_t ispath) 4647 { 4648 vdev_t *vd; 4649 boolean_t sync = B_FALSE; 4650 4651 spa_vdev_state_enter(spa, SCL_ALL); 4652 4653 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4654 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4655 4656 if (!vd->vdev_ops->vdev_op_leaf) 4657 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4658 4659 if (ispath) { 4660 if (strcmp(value, vd->vdev_path) != 0) { 4661 spa_strfree(vd->vdev_path); 4662 vd->vdev_path = spa_strdup(value); 4663 sync = B_TRUE; 4664 } 4665 } else { 4666 if (vd->vdev_fru == NULL) { 4667 vd->vdev_fru = spa_strdup(value); 4668 sync = B_TRUE; 4669 } else if (strcmp(value, vd->vdev_fru) != 0) { 4670 spa_strfree(vd->vdev_fru); 4671 vd->vdev_fru = spa_strdup(value); 4672 sync = B_TRUE; 4673 } 4674 } 4675 4676 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4677 } 4678 4679 int 4680 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4681 { 4682 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4683 } 4684 4685 int 4686 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4687 { 4688 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4689 } 4690 4691 /* 4692 * ========================================================================== 4693 * SPA Scrubbing 4694 * ========================================================================== 4695 */ 4696 4697 int 4698 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4699 { 4700 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4701 4702 if ((uint_t)type >= POOL_SCRUB_TYPES) 4703 return (ENOTSUP); 4704 4705 /* 4706 * If a resilver was requested, but there is no DTL on a 4707 * writeable leaf device, we have nothing to do. 4708 */ 4709 if (type == POOL_SCRUB_RESILVER && 4710 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4711 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4712 return (0); 4713 } 4714 4715 if (type == POOL_SCRUB_EVERYTHING && 4716 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4717 spa->spa_dsl_pool->dp_scrub_isresilver) 4718 return (EBUSY); 4719 4720 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4721 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4722 } else if (type == POOL_SCRUB_NONE) { 4723 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4724 } else { 4725 return (EINVAL); 4726 } 4727 } 4728 4729 /* 4730 * ========================================================================== 4731 * SPA async task processing 4732 * ========================================================================== 4733 */ 4734 4735 static void 4736 spa_async_remove(spa_t *spa, vdev_t *vd) 4737 { 4738 if (vd->vdev_remove_wanted) { 4739 vd->vdev_remove_wanted = B_FALSE; 4740 vd->vdev_delayed_close = B_FALSE; 4741 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4742 4743 /* 4744 * We want to clear the stats, but we don't want to do a full 4745 * vdev_clear() as that will cause us to throw away 4746 * degraded/faulted state as well as attempt to reopen the 4747 * device, all of which is a waste. 4748 */ 4749 vd->vdev_stat.vs_read_errors = 0; 4750 vd->vdev_stat.vs_write_errors = 0; 4751 vd->vdev_stat.vs_checksum_errors = 0; 4752 4753 vdev_state_dirty(vd->vdev_top); 4754 } 4755 4756 for (int c = 0; c < vd->vdev_children; c++) 4757 spa_async_remove(spa, vd->vdev_child[c]); 4758 } 4759 4760 static void 4761 spa_async_probe(spa_t *spa, vdev_t *vd) 4762 { 4763 if (vd->vdev_probe_wanted) { 4764 vd->vdev_probe_wanted = B_FALSE; 4765 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4766 } 4767 4768 for (int c = 0; c < vd->vdev_children; c++) 4769 spa_async_probe(spa, vd->vdev_child[c]); 4770 } 4771 4772 static void 4773 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4774 { 4775 sysevent_id_t eid; 4776 nvlist_t *attr; 4777 char *physpath; 4778 4779 if (!spa->spa_autoexpand) 4780 return; 4781 4782 for (int c = 0; c < vd->vdev_children; c++) { 4783 vdev_t *cvd = vd->vdev_child[c]; 4784 spa_async_autoexpand(spa, cvd); 4785 } 4786 4787 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4788 return; 4789 4790 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4791 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4792 4793 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4794 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4795 4796 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4797 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4798 4799 nvlist_free(attr); 4800 kmem_free(physpath, MAXPATHLEN); 4801 } 4802 4803 static void 4804 spa_async_thread(spa_t *spa) 4805 { 4806 int tasks; 4807 4808 ASSERT(spa->spa_sync_on); 4809 4810 mutex_enter(&spa->spa_async_lock); 4811 tasks = spa->spa_async_tasks; 4812 spa->spa_async_tasks = 0; 4813 mutex_exit(&spa->spa_async_lock); 4814 4815 /* 4816 * See if the config needs to be updated. 4817 */ 4818 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4819 uint64_t old_space, new_space; 4820 4821 mutex_enter(&spa_namespace_lock); 4822 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4823 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4824 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4825 mutex_exit(&spa_namespace_lock); 4826 4827 /* 4828 * If the pool grew as a result of the config update, 4829 * then log an internal history event. 4830 */ 4831 if (new_space != old_space) { 4832 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4833 spa, NULL, CRED(), 4834 "pool '%s' size: %llu(+%llu)", 4835 spa_name(spa), new_space, new_space - old_space); 4836 } 4837 } 4838 4839 /* 4840 * See if any devices need to be marked REMOVED. 4841 */ 4842 if (tasks & SPA_ASYNC_REMOVE) { 4843 spa_vdev_state_enter(spa, SCL_NONE); 4844 spa_async_remove(spa, spa->spa_root_vdev); 4845 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4846 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4847 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4848 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4849 (void) spa_vdev_state_exit(spa, NULL, 0); 4850 } 4851 4852 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4853 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4854 spa_async_autoexpand(spa, spa->spa_root_vdev); 4855 spa_config_exit(spa, SCL_CONFIG, FTAG); 4856 } 4857 4858 /* 4859 * See if any devices need to be probed. 4860 */ 4861 if (tasks & SPA_ASYNC_PROBE) { 4862 spa_vdev_state_enter(spa, SCL_NONE); 4863 spa_async_probe(spa, spa->spa_root_vdev); 4864 (void) spa_vdev_state_exit(spa, NULL, 0); 4865 } 4866 4867 /* 4868 * If any devices are done replacing, detach them. 4869 */ 4870 if (tasks & SPA_ASYNC_RESILVER_DONE) 4871 spa_vdev_resilver_done(spa); 4872 4873 /* 4874 * Kick off a resilver. 4875 */ 4876 if (tasks & SPA_ASYNC_RESILVER) 4877 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4878 4879 /* 4880 * Let the world know that we're done. 4881 */ 4882 mutex_enter(&spa->spa_async_lock); 4883 spa->spa_async_thread = NULL; 4884 cv_broadcast(&spa->spa_async_cv); 4885 mutex_exit(&spa->spa_async_lock); 4886 thread_exit(); 4887 } 4888 4889 void 4890 spa_async_suspend(spa_t *spa) 4891 { 4892 mutex_enter(&spa->spa_async_lock); 4893 spa->spa_async_suspended++; 4894 while (spa->spa_async_thread != NULL) 4895 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4896 mutex_exit(&spa->spa_async_lock); 4897 } 4898 4899 void 4900 spa_async_resume(spa_t *spa) 4901 { 4902 mutex_enter(&spa->spa_async_lock); 4903 ASSERT(spa->spa_async_suspended != 0); 4904 spa->spa_async_suspended--; 4905 mutex_exit(&spa->spa_async_lock); 4906 } 4907 4908 static void 4909 spa_async_dispatch(spa_t *spa) 4910 { 4911 mutex_enter(&spa->spa_async_lock); 4912 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4913 spa->spa_async_thread == NULL && 4914 rootdir != NULL && !vn_is_readonly(rootdir)) 4915 spa->spa_async_thread = thread_create(NULL, 0, 4916 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4917 mutex_exit(&spa->spa_async_lock); 4918 } 4919 4920 void 4921 spa_async_request(spa_t *spa, int task) 4922 { 4923 mutex_enter(&spa->spa_async_lock); 4924 spa->spa_async_tasks |= task; 4925 mutex_exit(&spa->spa_async_lock); 4926 } 4927 4928 /* 4929 * ========================================================================== 4930 * SPA syncing routines 4931 * ========================================================================== 4932 */ 4933 static void 4934 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4935 { 4936 blkptr_t blk; 4937 uint64_t itor = 0; 4938 uint8_t c = 1; 4939 4940 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4941 ASSERT(blk.blk_birth < txg); 4942 zio_free(spa, txg, &blk); 4943 } 4944 4945 bplist_vacate(bpl, tx); 4946 4947 /* 4948 * Pre-dirty the first block so we sync to convergence faster. 4949 * (Usually only the first block is needed.) 4950 */ 4951 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4952 } 4953 4954 static void 4955 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4956 { 4957 zio_t *zio = arg; 4958 4959 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4960 zio->io_flags)); 4961 } 4962 4963 static void 4964 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4965 { 4966 char *packed = NULL; 4967 size_t bufsize; 4968 size_t nvsize = 0; 4969 dmu_buf_t *db; 4970 4971 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4972 4973 /* 4974 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4975 * information. This avoids the dbuf_will_dirty() path and 4976 * saves us a pre-read to get data we don't actually care about. 4977 */ 4978 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4979 packed = kmem_alloc(bufsize, KM_SLEEP); 4980 4981 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4982 KM_SLEEP) == 0); 4983 bzero(packed + nvsize, bufsize - nvsize); 4984 4985 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4986 4987 kmem_free(packed, bufsize); 4988 4989 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4990 dmu_buf_will_dirty(db, tx); 4991 *(uint64_t *)db->db_data = nvsize; 4992 dmu_buf_rele(db, FTAG); 4993 } 4994 4995 static void 4996 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4997 const char *config, const char *entry) 4998 { 4999 nvlist_t *nvroot; 5000 nvlist_t **list; 5001 int i; 5002 5003 if (!sav->sav_sync) 5004 return; 5005 5006 /* 5007 * Update the MOS nvlist describing the list of available devices. 5008 * spa_validate_aux() will have already made sure this nvlist is 5009 * valid and the vdevs are labeled appropriately. 5010 */ 5011 if (sav->sav_object == 0) { 5012 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5013 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5014 sizeof (uint64_t), tx); 5015 VERIFY(zap_update(spa->spa_meta_objset, 5016 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5017 &sav->sav_object, tx) == 0); 5018 } 5019 5020 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5021 if (sav->sav_count == 0) { 5022 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5023 } else { 5024 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5025 for (i = 0; i < sav->sav_count; i++) 5026 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5027 B_FALSE, B_FALSE, B_TRUE); 5028 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5029 sav->sav_count) == 0); 5030 for (i = 0; i < sav->sav_count; i++) 5031 nvlist_free(list[i]); 5032 kmem_free(list, sav->sav_count * sizeof (void *)); 5033 } 5034 5035 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5036 nvlist_free(nvroot); 5037 5038 sav->sav_sync = B_FALSE; 5039 } 5040 5041 static void 5042 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5043 { 5044 nvlist_t *config; 5045 5046 if (list_is_empty(&spa->spa_config_dirty_list)) 5047 return; 5048 5049 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5050 5051 config = spa_config_generate(spa, spa->spa_root_vdev, 5052 dmu_tx_get_txg(tx), B_FALSE); 5053 5054 spa_config_exit(spa, SCL_STATE, FTAG); 5055 5056 if (spa->spa_config_syncing) 5057 nvlist_free(spa->spa_config_syncing); 5058 spa->spa_config_syncing = config; 5059 5060 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5061 } 5062 5063 /* 5064 * Set zpool properties. 5065 */ 5066 static void 5067 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 5068 { 5069 spa_t *spa = arg1; 5070 objset_t *mos = spa->spa_meta_objset; 5071 nvlist_t *nvp = arg2; 5072 nvpair_t *elem; 5073 uint64_t intval; 5074 char *strval; 5075 zpool_prop_t prop; 5076 const char *propname; 5077 zprop_type_t proptype; 5078 5079 mutex_enter(&spa->spa_props_lock); 5080 5081 elem = NULL; 5082 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5083 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5084 case ZPOOL_PROP_VERSION: 5085 /* 5086 * Only set version for non-zpool-creation cases 5087 * (set/import). spa_create() needs special care 5088 * for version setting. 5089 */ 5090 if (tx->tx_txg != TXG_INITIAL) { 5091 VERIFY(nvpair_value_uint64(elem, 5092 &intval) == 0); 5093 ASSERT(intval <= SPA_VERSION); 5094 ASSERT(intval >= spa_version(spa)); 5095 spa->spa_uberblock.ub_version = intval; 5096 vdev_config_dirty(spa->spa_root_vdev); 5097 } 5098 break; 5099 5100 case ZPOOL_PROP_ALTROOT: 5101 /* 5102 * 'altroot' is a non-persistent property. It should 5103 * have been set temporarily at creation or import time. 5104 */ 5105 ASSERT(spa->spa_root != NULL); 5106 break; 5107 5108 case ZPOOL_PROP_CACHEFILE: 5109 /* 5110 * 'cachefile' is also a non-persisitent property. 5111 */ 5112 break; 5113 default: 5114 /* 5115 * Set pool property values in the poolprops mos object. 5116 */ 5117 if (spa->spa_pool_props_object == 0) { 5118 VERIFY((spa->spa_pool_props_object = 5119 zap_create(mos, DMU_OT_POOL_PROPS, 5120 DMU_OT_NONE, 0, tx)) > 0); 5121 5122 VERIFY(zap_update(mos, 5123 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5124 8, 1, &spa->spa_pool_props_object, tx) 5125 == 0); 5126 } 5127 5128 /* normalize the property name */ 5129 propname = zpool_prop_to_name(prop); 5130 proptype = zpool_prop_get_type(prop); 5131 5132 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5133 ASSERT(proptype == PROP_TYPE_STRING); 5134 VERIFY(nvpair_value_string(elem, &strval) == 0); 5135 VERIFY(zap_update(mos, 5136 spa->spa_pool_props_object, propname, 5137 1, strlen(strval) + 1, strval, tx) == 0); 5138 5139 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5140 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5141 5142 if (proptype == PROP_TYPE_INDEX) { 5143 const char *unused; 5144 VERIFY(zpool_prop_index_to_string( 5145 prop, intval, &unused) == 0); 5146 } 5147 VERIFY(zap_update(mos, 5148 spa->spa_pool_props_object, propname, 5149 8, 1, &intval, tx) == 0); 5150 } else { 5151 ASSERT(0); /* not allowed */ 5152 } 5153 5154 switch (prop) { 5155 case ZPOOL_PROP_DELEGATION: 5156 spa->spa_delegation = intval; 5157 break; 5158 case ZPOOL_PROP_BOOTFS: 5159 spa->spa_bootfs = intval; 5160 break; 5161 case ZPOOL_PROP_FAILUREMODE: 5162 spa->spa_failmode = intval; 5163 break; 5164 case ZPOOL_PROP_AUTOEXPAND: 5165 spa->spa_autoexpand = intval; 5166 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5167 break; 5168 case ZPOOL_PROP_DEDUPDITTO: 5169 spa->spa_dedup_ditto = intval; 5170 break; 5171 default: 5172 break; 5173 } 5174 } 5175 5176 /* log internal history if this is not a zpool create */ 5177 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5178 tx->tx_txg != TXG_INITIAL) { 5179 spa_history_internal_log(LOG_POOL_PROPSET, 5180 spa, tx, cr, "%s %lld %s", 5181 nvpair_name(elem), intval, spa_name(spa)); 5182 } 5183 } 5184 5185 mutex_exit(&spa->spa_props_lock); 5186 } 5187 5188 /* 5189 * Sync the specified transaction group. New blocks may be dirtied as 5190 * part of the process, so we iterate until it converges. 5191 */ 5192 void 5193 spa_sync(spa_t *spa, uint64_t txg) 5194 { 5195 dsl_pool_t *dp = spa->spa_dsl_pool; 5196 objset_t *mos = spa->spa_meta_objset; 5197 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 5198 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5199 vdev_t *rvd = spa->spa_root_vdev; 5200 vdev_t *vd; 5201 dmu_tx_t *tx; 5202 int error; 5203 5204 /* 5205 * Lock out configuration changes. 5206 */ 5207 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5208 5209 spa->spa_syncing_txg = txg; 5210 spa->spa_sync_pass = 0; 5211 5212 /* 5213 * If there are any pending vdev state changes, convert them 5214 * into config changes that go out with this transaction group. 5215 */ 5216 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5217 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5218 /* 5219 * We need the write lock here because, for aux vdevs, 5220 * calling vdev_config_dirty() modifies sav_config. 5221 * This is ugly and will become unnecessary when we 5222 * eliminate the aux vdev wart by integrating all vdevs 5223 * into the root vdev tree. 5224 */ 5225 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5226 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5227 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5228 vdev_state_clean(vd); 5229 vdev_config_dirty(vd); 5230 } 5231 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5232 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5233 } 5234 spa_config_exit(spa, SCL_STATE, FTAG); 5235 5236 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 5237 5238 tx = dmu_tx_create_assigned(dp, txg); 5239 5240 /* 5241 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5242 * set spa_deflate if we have no raid-z vdevs. 5243 */ 5244 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5245 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5246 int i; 5247 5248 for (i = 0; i < rvd->vdev_children; i++) { 5249 vd = rvd->vdev_child[i]; 5250 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5251 break; 5252 } 5253 if (i == rvd->vdev_children) { 5254 spa->spa_deflate = TRUE; 5255 VERIFY(0 == zap_add(spa->spa_meta_objset, 5256 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5257 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5258 } 5259 } 5260 5261 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5262 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5263 dsl_pool_create_origin(dp, tx); 5264 5265 /* Keeping the origin open increases spa_minref */ 5266 spa->spa_minref += 3; 5267 } 5268 5269 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5270 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5271 dsl_pool_upgrade_clones(dp, tx); 5272 } 5273 5274 /* 5275 * If anything has changed in this txg, push the deferred frees 5276 * from the previous txg. If not, leave them alone so that we 5277 * don't generate work on an otherwise idle system. 5278 */ 5279 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5280 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5281 !txg_list_empty(&dp->dp_sync_tasks, txg)) 5282 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 5283 5284 /* 5285 * Iterate to convergence. 5286 */ 5287 do { 5288 int pass = ++spa->spa_sync_pass; 5289 5290 spa_sync_config_object(spa, tx); 5291 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5292 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5293 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5294 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5295 spa_errlog_sync(spa, txg); 5296 dsl_pool_sync(dp, txg); 5297 5298 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5299 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5300 bplist_sync(free_bpl, spa_sync_free, zio, tx); 5301 VERIFY(zio_wait(zio) == 0); 5302 } else { 5303 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 5304 } 5305 5306 ddt_sync(spa, txg); 5307 5308 mutex_enter(&spa->spa_scrub_lock); 5309 while (spa->spa_scrub_inflight > 0) 5310 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5311 mutex_exit(&spa->spa_scrub_lock); 5312 5313 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5314 vdev_sync(vd, txg); 5315 5316 } while (dmu_objset_is_dirty(mos, txg)); 5317 5318 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5319 5320 bplist_close(defer_bpl); 5321 5322 /* 5323 * Rewrite the vdev configuration (which includes the uberblock) 5324 * to commit the transaction group. 5325 * 5326 * If there are no dirty vdevs, we sync the uberblock to a few 5327 * random top-level vdevs that are known to be visible in the 5328 * config cache (see spa_vdev_add() for a complete description). 5329 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5330 */ 5331 for (;;) { 5332 /* 5333 * We hold SCL_STATE to prevent vdev open/close/etc. 5334 * while we're attempting to write the vdev labels. 5335 */ 5336 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5337 5338 if (list_is_empty(&spa->spa_config_dirty_list)) { 5339 vdev_t *svd[SPA_DVAS_PER_BP]; 5340 int svdcount = 0; 5341 int children = rvd->vdev_children; 5342 int c0 = spa_get_random(children); 5343 5344 for (int c = 0; c < children; c++) { 5345 vd = rvd->vdev_child[(c0 + c) % children]; 5346 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5347 continue; 5348 svd[svdcount++] = vd; 5349 if (svdcount == SPA_DVAS_PER_BP) 5350 break; 5351 } 5352 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5353 if (error != 0) 5354 error = vdev_config_sync(svd, svdcount, txg, 5355 B_TRUE); 5356 } else { 5357 error = vdev_config_sync(rvd->vdev_child, 5358 rvd->vdev_children, txg, B_FALSE); 5359 if (error != 0) 5360 error = vdev_config_sync(rvd->vdev_child, 5361 rvd->vdev_children, txg, B_TRUE); 5362 } 5363 5364 spa_config_exit(spa, SCL_STATE, FTAG); 5365 5366 if (error == 0) 5367 break; 5368 zio_suspend(spa, NULL); 5369 zio_resume_wait(spa); 5370 } 5371 dmu_tx_commit(tx); 5372 5373 /* 5374 * Clear the dirty config list. 5375 */ 5376 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5377 vdev_config_clean(vd); 5378 5379 /* 5380 * Now that the new config has synced transactionally, 5381 * let it become visible to the config cache. 5382 */ 5383 if (spa->spa_config_syncing != NULL) { 5384 spa_config_set(spa, spa->spa_config_syncing); 5385 spa->spa_config_txg = txg; 5386 spa->spa_config_syncing = NULL; 5387 } 5388 5389 spa->spa_ubsync = spa->spa_uberblock; 5390 5391 dsl_pool_sync_done(dp, txg); 5392 5393 /* 5394 * Update usable space statistics. 5395 */ 5396 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5397 vdev_sync_done(vd, txg); 5398 5399 spa_update_dspace(spa); 5400 5401 /* 5402 * It had better be the case that we didn't dirty anything 5403 * since vdev_config_sync(). 5404 */ 5405 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5406 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5407 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5408 ASSERT(list_is_empty(&defer_bpl->bpl_queue)); 5409 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5410 5411 spa->spa_sync_pass = 0; 5412 5413 spa_config_exit(spa, SCL_CONFIG, FTAG); 5414 5415 spa_handle_ignored_writes(spa); 5416 5417 /* 5418 * If any async tasks have been requested, kick them off. 5419 */ 5420 spa_async_dispatch(spa); 5421 } 5422 5423 /* 5424 * Sync all pools. We don't want to hold the namespace lock across these 5425 * operations, so we take a reference on the spa_t and drop the lock during the 5426 * sync. 5427 */ 5428 void 5429 spa_sync_allpools(void) 5430 { 5431 spa_t *spa = NULL; 5432 mutex_enter(&spa_namespace_lock); 5433 while ((spa = spa_next(spa)) != NULL) { 5434 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5435 continue; 5436 spa_open_ref(spa, FTAG); 5437 mutex_exit(&spa_namespace_lock); 5438 txg_wait_synced(spa_get_dsl(spa), 0); 5439 mutex_enter(&spa_namespace_lock); 5440 spa_close(spa, FTAG); 5441 } 5442 mutex_exit(&spa_namespace_lock); 5443 } 5444 5445 /* 5446 * ========================================================================== 5447 * Miscellaneous routines 5448 * ========================================================================== 5449 */ 5450 5451 /* 5452 * Remove all pools in the system. 5453 */ 5454 void 5455 spa_evict_all(void) 5456 { 5457 spa_t *spa; 5458 5459 /* 5460 * Remove all cached state. All pools should be closed now, 5461 * so every spa in the AVL tree should be unreferenced. 5462 */ 5463 mutex_enter(&spa_namespace_lock); 5464 while ((spa = spa_next(NULL)) != NULL) { 5465 /* 5466 * Stop async tasks. The async thread may need to detach 5467 * a device that's been replaced, which requires grabbing 5468 * spa_namespace_lock, so we must drop it here. 5469 */ 5470 spa_open_ref(spa, FTAG); 5471 mutex_exit(&spa_namespace_lock); 5472 spa_async_suspend(spa); 5473 mutex_enter(&spa_namespace_lock); 5474 spa_close(spa, FTAG); 5475 5476 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5477 spa_unload(spa); 5478 spa_deactivate(spa); 5479 } 5480 spa_remove(spa); 5481 } 5482 mutex_exit(&spa_namespace_lock); 5483 } 5484 5485 vdev_t * 5486 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5487 { 5488 vdev_t *vd; 5489 int i; 5490 5491 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5492 return (vd); 5493 5494 if (aux) { 5495 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5496 vd = spa->spa_l2cache.sav_vdevs[i]; 5497 if (vd->vdev_guid == guid) 5498 return (vd); 5499 } 5500 5501 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5502 vd = spa->spa_spares.sav_vdevs[i]; 5503 if (vd->vdev_guid == guid) 5504 return (vd); 5505 } 5506 } 5507 5508 return (NULL); 5509 } 5510 5511 void 5512 spa_upgrade(spa_t *spa, uint64_t version) 5513 { 5514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5515 5516 /* 5517 * This should only be called for a non-faulted pool, and since a 5518 * future version would result in an unopenable pool, this shouldn't be 5519 * possible. 5520 */ 5521 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5522 ASSERT(version >= spa->spa_uberblock.ub_version); 5523 5524 spa->spa_uberblock.ub_version = version; 5525 vdev_config_dirty(spa->spa_root_vdev); 5526 5527 spa_config_exit(spa, SCL_ALL, FTAG); 5528 5529 txg_wait_synced(spa_get_dsl(spa), 0); 5530 } 5531 5532 boolean_t 5533 spa_has_spare(spa_t *spa, uint64_t guid) 5534 { 5535 int i; 5536 uint64_t spareguid; 5537 spa_aux_vdev_t *sav = &spa->spa_spares; 5538 5539 for (i = 0; i < sav->sav_count; i++) 5540 if (sav->sav_vdevs[i]->vdev_guid == guid) 5541 return (B_TRUE); 5542 5543 for (i = 0; i < sav->sav_npending; i++) { 5544 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5545 &spareguid) == 0 && spareguid == guid) 5546 return (B_TRUE); 5547 } 5548 5549 return (B_FALSE); 5550 } 5551 5552 /* 5553 * Check if a pool has an active shared spare device. 5554 * Note: reference count of an active spare is 2, as a spare and as a replace 5555 */ 5556 static boolean_t 5557 spa_has_active_shared_spare(spa_t *spa) 5558 { 5559 int i, refcnt; 5560 uint64_t pool; 5561 spa_aux_vdev_t *sav = &spa->spa_spares; 5562 5563 for (i = 0; i < sav->sav_count; i++) { 5564 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5565 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5566 refcnt > 2) 5567 return (B_TRUE); 5568 } 5569 5570 return (B_FALSE); 5571 } 5572 5573 /* 5574 * Post a sysevent corresponding to the given event. The 'name' must be one of 5575 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5576 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5577 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5578 * or zdb as real changes. 5579 */ 5580 void 5581 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5582 { 5583 #ifdef _KERNEL 5584 sysevent_t *ev; 5585 sysevent_attr_list_t *attr = NULL; 5586 sysevent_value_t value; 5587 sysevent_id_t eid; 5588 5589 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5590 SE_SLEEP); 5591 5592 value.value_type = SE_DATA_TYPE_STRING; 5593 value.value.sv_string = spa_name(spa); 5594 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5595 goto done; 5596 5597 value.value_type = SE_DATA_TYPE_UINT64; 5598 value.value.sv_uint64 = spa_guid(spa); 5599 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5600 goto done; 5601 5602 if (vd) { 5603 value.value_type = SE_DATA_TYPE_UINT64; 5604 value.value.sv_uint64 = vd->vdev_guid; 5605 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5606 SE_SLEEP) != 0) 5607 goto done; 5608 5609 if (vd->vdev_path) { 5610 value.value_type = SE_DATA_TYPE_STRING; 5611 value.value.sv_string = vd->vdev_path; 5612 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5613 &value, SE_SLEEP) != 0) 5614 goto done; 5615 } 5616 } 5617 5618 if (sysevent_attach_attributes(ev, attr) != 0) 5619 goto done; 5620 attr = NULL; 5621 5622 (void) log_sysevent(ev, SE_SLEEP, &eid); 5623 5624 done: 5625 if (attr) 5626 sysevent_free_attr(attr); 5627 sysevent_free(ev); 5628 #endif 5629 } 5630