xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 8cc2da61b2209ea79a015eead3f390ecf885fcfb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
66 #include <sys/dsl_destroy.h>
67 
68 #ifdef	_KERNEL
69 #include <sys/bootprops.h>
70 #include <sys/callb.h>
71 #include <sys/cpupart.h>
72 #include <sys/pool.h>
73 #include <sys/sysdc.h>
74 #include <sys/zone.h>
75 #endif	/* _KERNEL */
76 
77 #include "zfs_prop.h"
78 #include "zfs_comutil.h"
79 
80 typedef enum zti_modes {
81 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
82 	ZTI_MODE_ONLINE_PERCENT,	/* value is % of online CPUs */
83 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
84 	ZTI_MODE_NULL,			/* don't create a taskq */
85 	ZTI_NMODES
86 } zti_modes_t;
87 
88 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
89 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
90 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
91 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
92 
93 #define	ZTI_N(n)	ZTI_P(n, 1)
94 #define	ZTI_ONE		ZTI_N(1)
95 
96 typedef struct zio_taskq_info {
97 	zti_modes_t zti_mode;
98 	uint_t zti_value;
99 	uint_t zti_count;
100 } zio_taskq_info_t;
101 
102 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
103 	"issue", "issue_high", "intr", "intr_high"
104 };
105 
106 /*
107  * This table defines the taskq settings for each ZFS I/O type. When
108  * initializing a pool, we use this table to create an appropriately sized
109  * taskq. Some operations are low volume and therefore have a small, static
110  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
111  * macros. Other operations process a large amount of data; the ZTI_BATCH
112  * macro causes us to create a taskq oriented for throughput. Some operations
113  * are so high frequency and short-lived that the taskq itself can become a a
114  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
115  * additional degree of parallelism specified by the number of threads per-
116  * taskq and the number of taskqs; when dispatching an event in this case, the
117  * particular taskq is chosen at random.
118  *
119  * The different taskq priorities are to handle the different contexts (issue
120  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
121  * need to be handled with minimum delay.
122  */
123 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
124 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
125 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
126 	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
127 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
128 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
129 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
130 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
131 };
132 
133 static void spa_sync_version(void *arg, dmu_tx_t *tx);
134 static void spa_sync_props(void *arg, dmu_tx_t *tx);
135 static boolean_t spa_has_active_shared_spare(spa_t *spa);
136 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
137     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
138     char **ereport);
139 static void spa_vdev_resilver_done(spa_t *spa);
140 
141 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
142 id_t		zio_taskq_psrset_bind = PS_NONE;
143 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
144 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
145 
146 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
147 extern int	zfs_sync_pass_deferred_free;
148 
149 /*
150  * This (illegal) pool name is used when temporarily importing a spa_t in order
151  * to get the vdev stats associated with the imported devices.
152  */
153 #define	TRYIMPORT_NAME	"$import"
154 
155 /*
156  * ==========================================================================
157  * SPA properties routines
158  * ==========================================================================
159  */
160 
161 /*
162  * Add a (source=src, propname=propval) list to an nvlist.
163  */
164 static void
165 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
166     uint64_t intval, zprop_source_t src)
167 {
168 	const char *propname = zpool_prop_to_name(prop);
169 	nvlist_t *propval;
170 
171 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
172 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
173 
174 	if (strval != NULL)
175 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
176 	else
177 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
178 
179 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
180 	nvlist_free(propval);
181 }
182 
183 /*
184  * Get property values from the spa configuration.
185  */
186 static void
187 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
188 {
189 	vdev_t *rvd = spa->spa_root_vdev;
190 	dsl_pool_t *pool = spa->spa_dsl_pool;
191 	uint64_t size;
192 	uint64_t alloc;
193 	uint64_t space;
194 	uint64_t cap, version;
195 	zprop_source_t src = ZPROP_SRC_NONE;
196 	spa_config_dirent_t *dp;
197 
198 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
199 
200 	if (rvd != NULL) {
201 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
202 		size = metaslab_class_get_space(spa_normal_class(spa));
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
205 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
206 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
207 		    size - alloc, src);
208 
209 		space = 0;
210 		for (int c = 0; c < rvd->vdev_children; c++) {
211 			vdev_t *tvd = rvd->vdev_child[c];
212 			space += tvd->vdev_max_asize - tvd->vdev_asize;
213 		}
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
215 		    src);
216 
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
218 		    (spa_mode(spa) == FREAD), src);
219 
220 		cap = (size == 0) ? 0 : (alloc * 100 / size);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
224 		    ddt_get_pool_dedup_ratio(spa), src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
227 		    rvd->vdev_state, src);
228 
229 		version = spa_version(spa);
230 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
231 			src = ZPROP_SRC_DEFAULT;
232 		else
233 			src = ZPROP_SRC_LOCAL;
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
235 	}
236 
237 	if (pool != NULL) {
238 		dsl_dir_t *freedir = pool->dp_free_dir;
239 
240 		/*
241 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
242 		 * when opening pools before this version freedir will be NULL.
243 		 */
244 		if (freedir != NULL) {
245 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
246 			    freedir->dd_phys->dd_used_bytes, src);
247 		} else {
248 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 			    NULL, 0, src);
250 		}
251 	}
252 
253 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
254 
255 	if (spa->spa_comment != NULL) {
256 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
257 		    0, ZPROP_SRC_LOCAL);
258 	}
259 
260 	if (spa->spa_root != NULL)
261 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
262 		    0, ZPROP_SRC_LOCAL);
263 
264 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
265 		if (dp->scd_path == NULL) {
266 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
267 			    "none", 0, ZPROP_SRC_LOCAL);
268 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
269 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
270 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
271 		}
272 	}
273 }
274 
275 /*
276  * Get zpool property values.
277  */
278 int
279 spa_prop_get(spa_t *spa, nvlist_t **nvp)
280 {
281 	objset_t *mos = spa->spa_meta_objset;
282 	zap_cursor_t zc;
283 	zap_attribute_t za;
284 	int err;
285 
286 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
287 
288 	mutex_enter(&spa->spa_props_lock);
289 
290 	/*
291 	 * Get properties from the spa config.
292 	 */
293 	spa_prop_get_config(spa, nvp);
294 
295 	/* If no pool property object, no more prop to get. */
296 	if (mos == NULL || spa->spa_pool_props_object == 0) {
297 		mutex_exit(&spa->spa_props_lock);
298 		return (0);
299 	}
300 
301 	/*
302 	 * Get properties from the MOS pool property object.
303 	 */
304 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
305 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
306 	    zap_cursor_advance(&zc)) {
307 		uint64_t intval = 0;
308 		char *strval = NULL;
309 		zprop_source_t src = ZPROP_SRC_DEFAULT;
310 		zpool_prop_t prop;
311 
312 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
313 			continue;
314 
315 		switch (za.za_integer_length) {
316 		case 8:
317 			/* integer property */
318 			if (za.za_first_integer !=
319 			    zpool_prop_default_numeric(prop))
320 				src = ZPROP_SRC_LOCAL;
321 
322 			if (prop == ZPOOL_PROP_BOOTFS) {
323 				dsl_pool_t *dp;
324 				dsl_dataset_t *ds = NULL;
325 
326 				dp = spa_get_dsl(spa);
327 				dsl_pool_config_enter(dp, FTAG);
328 				if (err = dsl_dataset_hold_obj(dp,
329 				    za.za_first_integer, FTAG, &ds)) {
330 					dsl_pool_config_exit(dp, FTAG);
331 					break;
332 				}
333 
334 				strval = kmem_alloc(
335 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
336 				    KM_SLEEP);
337 				dsl_dataset_name(ds, strval);
338 				dsl_dataset_rele(ds, FTAG);
339 				dsl_pool_config_exit(dp, FTAG);
340 			} else {
341 				strval = NULL;
342 				intval = za.za_first_integer;
343 			}
344 
345 			spa_prop_add_list(*nvp, prop, strval, intval, src);
346 
347 			if (strval != NULL)
348 				kmem_free(strval,
349 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
350 
351 			break;
352 
353 		case 1:
354 			/* string property */
355 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
356 			err = zap_lookup(mos, spa->spa_pool_props_object,
357 			    za.za_name, 1, za.za_num_integers, strval);
358 			if (err) {
359 				kmem_free(strval, za.za_num_integers);
360 				break;
361 			}
362 			spa_prop_add_list(*nvp, prop, strval, 0, src);
363 			kmem_free(strval, za.za_num_integers);
364 			break;
365 
366 		default:
367 			break;
368 		}
369 	}
370 	zap_cursor_fini(&zc);
371 	mutex_exit(&spa->spa_props_lock);
372 out:
373 	if (err && err != ENOENT) {
374 		nvlist_free(*nvp);
375 		*nvp = NULL;
376 		return (err);
377 	}
378 
379 	return (0);
380 }
381 
382 /*
383  * Validate the given pool properties nvlist and modify the list
384  * for the property values to be set.
385  */
386 static int
387 spa_prop_validate(spa_t *spa, nvlist_t *props)
388 {
389 	nvpair_t *elem;
390 	int error = 0, reset_bootfs = 0;
391 	uint64_t objnum = 0;
392 	boolean_t has_feature = B_FALSE;
393 
394 	elem = NULL;
395 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
396 		uint64_t intval;
397 		char *strval, *slash, *check, *fname;
398 		const char *propname = nvpair_name(elem);
399 		zpool_prop_t prop = zpool_name_to_prop(propname);
400 
401 		switch (prop) {
402 		case ZPROP_INVAL:
403 			if (!zpool_prop_feature(propname)) {
404 				error = SET_ERROR(EINVAL);
405 				break;
406 			}
407 
408 			/*
409 			 * Sanitize the input.
410 			 */
411 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
412 				error = SET_ERROR(EINVAL);
413 				break;
414 			}
415 
416 			if (nvpair_value_uint64(elem, &intval) != 0) {
417 				error = SET_ERROR(EINVAL);
418 				break;
419 			}
420 
421 			if (intval != 0) {
422 				error = SET_ERROR(EINVAL);
423 				break;
424 			}
425 
426 			fname = strchr(propname, '@') + 1;
427 			if (zfeature_lookup_name(fname, NULL) != 0) {
428 				error = SET_ERROR(EINVAL);
429 				break;
430 			}
431 
432 			has_feature = B_TRUE;
433 			break;
434 
435 		case ZPOOL_PROP_VERSION:
436 			error = nvpair_value_uint64(elem, &intval);
437 			if (!error &&
438 			    (intval < spa_version(spa) ||
439 			    intval > SPA_VERSION_BEFORE_FEATURES ||
440 			    has_feature))
441 				error = SET_ERROR(EINVAL);
442 			break;
443 
444 		case ZPOOL_PROP_DELEGATION:
445 		case ZPOOL_PROP_AUTOREPLACE:
446 		case ZPOOL_PROP_LISTSNAPS:
447 		case ZPOOL_PROP_AUTOEXPAND:
448 			error = nvpair_value_uint64(elem, &intval);
449 			if (!error && intval > 1)
450 				error = SET_ERROR(EINVAL);
451 			break;
452 
453 		case ZPOOL_PROP_BOOTFS:
454 			/*
455 			 * If the pool version is less than SPA_VERSION_BOOTFS,
456 			 * or the pool is still being created (version == 0),
457 			 * the bootfs property cannot be set.
458 			 */
459 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
460 				error = SET_ERROR(ENOTSUP);
461 				break;
462 			}
463 
464 			/*
465 			 * Make sure the vdev config is bootable
466 			 */
467 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
468 				error = SET_ERROR(ENOTSUP);
469 				break;
470 			}
471 
472 			reset_bootfs = 1;
473 
474 			error = nvpair_value_string(elem, &strval);
475 
476 			if (!error) {
477 				objset_t *os;
478 				uint64_t compress;
479 
480 				if (strval == NULL || strval[0] == '\0') {
481 					objnum = zpool_prop_default_numeric(
482 					    ZPOOL_PROP_BOOTFS);
483 					break;
484 				}
485 
486 				if (error = dmu_objset_hold(strval, FTAG, &os))
487 					break;
488 
489 				/* Must be ZPL and not gzip compressed. */
490 
491 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
492 					error = SET_ERROR(ENOTSUP);
493 				} else if ((error =
494 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
495 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
496 				    &compress)) == 0 &&
497 				    !BOOTFS_COMPRESS_VALID(compress)) {
498 					error = SET_ERROR(ENOTSUP);
499 				} else {
500 					objnum = dmu_objset_id(os);
501 				}
502 				dmu_objset_rele(os, FTAG);
503 			}
504 			break;
505 
506 		case ZPOOL_PROP_FAILUREMODE:
507 			error = nvpair_value_uint64(elem, &intval);
508 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
509 			    intval > ZIO_FAILURE_MODE_PANIC))
510 				error = SET_ERROR(EINVAL);
511 
512 			/*
513 			 * This is a special case which only occurs when
514 			 * the pool has completely failed. This allows
515 			 * the user to change the in-core failmode property
516 			 * without syncing it out to disk (I/Os might
517 			 * currently be blocked). We do this by returning
518 			 * EIO to the caller (spa_prop_set) to trick it
519 			 * into thinking we encountered a property validation
520 			 * error.
521 			 */
522 			if (!error && spa_suspended(spa)) {
523 				spa->spa_failmode = intval;
524 				error = SET_ERROR(EIO);
525 			}
526 			break;
527 
528 		case ZPOOL_PROP_CACHEFILE:
529 			if ((error = nvpair_value_string(elem, &strval)) != 0)
530 				break;
531 
532 			if (strval[0] == '\0')
533 				break;
534 
535 			if (strcmp(strval, "none") == 0)
536 				break;
537 
538 			if (strval[0] != '/') {
539 				error = SET_ERROR(EINVAL);
540 				break;
541 			}
542 
543 			slash = strrchr(strval, '/');
544 			ASSERT(slash != NULL);
545 
546 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
547 			    strcmp(slash, "/..") == 0)
548 				error = SET_ERROR(EINVAL);
549 			break;
550 
551 		case ZPOOL_PROP_COMMENT:
552 			if ((error = nvpair_value_string(elem, &strval)) != 0)
553 				break;
554 			for (check = strval; *check != '\0'; check++) {
555 				/*
556 				 * The kernel doesn't have an easy isprint()
557 				 * check.  For this kernel check, we merely
558 				 * check ASCII apart from DEL.  Fix this if
559 				 * there is an easy-to-use kernel isprint().
560 				 */
561 				if (*check >= 0x7f) {
562 					error = SET_ERROR(EINVAL);
563 					break;
564 				}
565 				check++;
566 			}
567 			if (strlen(strval) > ZPROP_MAX_COMMENT)
568 				error = E2BIG;
569 			break;
570 
571 		case ZPOOL_PROP_DEDUPDITTO:
572 			if (spa_version(spa) < SPA_VERSION_DEDUP)
573 				error = SET_ERROR(ENOTSUP);
574 			else
575 				error = nvpair_value_uint64(elem, &intval);
576 			if (error == 0 &&
577 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
578 				error = SET_ERROR(EINVAL);
579 			break;
580 		}
581 
582 		if (error)
583 			break;
584 	}
585 
586 	if (!error && reset_bootfs) {
587 		error = nvlist_remove(props,
588 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
589 
590 		if (!error) {
591 			error = nvlist_add_uint64(props,
592 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
593 		}
594 	}
595 
596 	return (error);
597 }
598 
599 void
600 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
601 {
602 	char *cachefile;
603 	spa_config_dirent_t *dp;
604 
605 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
606 	    &cachefile) != 0)
607 		return;
608 
609 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
610 	    KM_SLEEP);
611 
612 	if (cachefile[0] == '\0')
613 		dp->scd_path = spa_strdup(spa_config_path);
614 	else if (strcmp(cachefile, "none") == 0)
615 		dp->scd_path = NULL;
616 	else
617 		dp->scd_path = spa_strdup(cachefile);
618 
619 	list_insert_head(&spa->spa_config_list, dp);
620 	if (need_sync)
621 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
622 }
623 
624 int
625 spa_prop_set(spa_t *spa, nvlist_t *nvp)
626 {
627 	int error;
628 	nvpair_t *elem = NULL;
629 	boolean_t need_sync = B_FALSE;
630 
631 	if ((error = spa_prop_validate(spa, nvp)) != 0)
632 		return (error);
633 
634 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
635 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
636 
637 		if (prop == ZPOOL_PROP_CACHEFILE ||
638 		    prop == ZPOOL_PROP_ALTROOT ||
639 		    prop == ZPOOL_PROP_READONLY)
640 			continue;
641 
642 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
643 			uint64_t ver;
644 
645 			if (prop == ZPOOL_PROP_VERSION) {
646 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
647 			} else {
648 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
649 				ver = SPA_VERSION_FEATURES;
650 				need_sync = B_TRUE;
651 			}
652 
653 			/* Save time if the version is already set. */
654 			if (ver == spa_version(spa))
655 				continue;
656 
657 			/*
658 			 * In addition to the pool directory object, we might
659 			 * create the pool properties object, the features for
660 			 * read object, the features for write object, or the
661 			 * feature descriptions object.
662 			 */
663 			error = dsl_sync_task(spa->spa_name, NULL,
664 			    spa_sync_version, &ver, 6);
665 			if (error)
666 				return (error);
667 			continue;
668 		}
669 
670 		need_sync = B_TRUE;
671 		break;
672 	}
673 
674 	if (need_sync) {
675 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
676 		    nvp, 6));
677 	}
678 
679 	return (0);
680 }
681 
682 /*
683  * If the bootfs property value is dsobj, clear it.
684  */
685 void
686 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
687 {
688 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
689 		VERIFY(zap_remove(spa->spa_meta_objset,
690 		    spa->spa_pool_props_object,
691 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
692 		spa->spa_bootfs = 0;
693 	}
694 }
695 
696 /*ARGSUSED*/
697 static int
698 spa_change_guid_check(void *arg, dmu_tx_t *tx)
699 {
700 	uint64_t *newguid = arg;
701 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
702 	vdev_t *rvd = spa->spa_root_vdev;
703 	uint64_t vdev_state;
704 
705 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
706 	vdev_state = rvd->vdev_state;
707 	spa_config_exit(spa, SCL_STATE, FTAG);
708 
709 	if (vdev_state != VDEV_STATE_HEALTHY)
710 		return (SET_ERROR(ENXIO));
711 
712 	ASSERT3U(spa_guid(spa), !=, *newguid);
713 
714 	return (0);
715 }
716 
717 static void
718 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
719 {
720 	uint64_t *newguid = arg;
721 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
722 	uint64_t oldguid;
723 	vdev_t *rvd = spa->spa_root_vdev;
724 
725 	oldguid = spa_guid(spa);
726 
727 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
728 	rvd->vdev_guid = *newguid;
729 	rvd->vdev_guid_sum += (*newguid - oldguid);
730 	vdev_config_dirty(rvd);
731 	spa_config_exit(spa, SCL_STATE, FTAG);
732 
733 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
734 	    oldguid, *newguid);
735 }
736 
737 /*
738  * Change the GUID for the pool.  This is done so that we can later
739  * re-import a pool built from a clone of our own vdevs.  We will modify
740  * the root vdev's guid, our own pool guid, and then mark all of our
741  * vdevs dirty.  Note that we must make sure that all our vdevs are
742  * online when we do this, or else any vdevs that weren't present
743  * would be orphaned from our pool.  We are also going to issue a
744  * sysevent to update any watchers.
745  */
746 int
747 spa_change_guid(spa_t *spa)
748 {
749 	int error;
750 	uint64_t guid;
751 
752 	mutex_enter(&spa_namespace_lock);
753 	guid = spa_generate_guid(NULL);
754 
755 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
756 	    spa_change_guid_sync, &guid, 5);
757 
758 	if (error == 0) {
759 		spa_config_sync(spa, B_FALSE, B_TRUE);
760 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
761 	}
762 
763 	mutex_exit(&spa_namespace_lock);
764 
765 	return (error);
766 }
767 
768 /*
769  * ==========================================================================
770  * SPA state manipulation (open/create/destroy/import/export)
771  * ==========================================================================
772  */
773 
774 static int
775 spa_error_entry_compare(const void *a, const void *b)
776 {
777 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
778 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
779 	int ret;
780 
781 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
782 	    sizeof (zbookmark_t));
783 
784 	if (ret < 0)
785 		return (-1);
786 	else if (ret > 0)
787 		return (1);
788 	else
789 		return (0);
790 }
791 
792 /*
793  * Utility function which retrieves copies of the current logs and
794  * re-initializes them in the process.
795  */
796 void
797 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
798 {
799 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
800 
801 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
802 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
803 
804 	avl_create(&spa->spa_errlist_scrub,
805 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
806 	    offsetof(spa_error_entry_t, se_avl));
807 	avl_create(&spa->spa_errlist_last,
808 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
809 	    offsetof(spa_error_entry_t, se_avl));
810 }
811 
812 static void
813 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
814 {
815 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
816 	enum zti_modes mode = ztip->zti_mode;
817 	uint_t value = ztip->zti_value;
818 	uint_t count = ztip->zti_count;
819 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
820 	char name[32];
821 	uint_t flags = 0;
822 	boolean_t batch = B_FALSE;
823 
824 	if (mode == ZTI_MODE_NULL) {
825 		tqs->stqs_count = 0;
826 		tqs->stqs_taskq = NULL;
827 		return;
828 	}
829 
830 	ASSERT3U(count, >, 0);
831 
832 	tqs->stqs_count = count;
833 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
834 
835 	for (uint_t i = 0; i < count; i++) {
836 		taskq_t *tq;
837 
838 		switch (mode) {
839 		case ZTI_MODE_FIXED:
840 			ASSERT3U(value, >=, 1);
841 			value = MAX(value, 1);
842 			break;
843 
844 		case ZTI_MODE_BATCH:
845 			batch = B_TRUE;
846 			flags |= TASKQ_THREADS_CPU_PCT;
847 			value = zio_taskq_batch_pct;
848 			break;
849 
850 		case ZTI_MODE_ONLINE_PERCENT:
851 			flags |= TASKQ_THREADS_CPU_PCT;
852 			break;
853 
854 		default:
855 			panic("unrecognized mode for %s_%s taskq (%u:%u) in "
856 			    "spa_activate()",
857 			    zio_type_name[t], zio_taskq_types[q], mode, value);
858 			break;
859 		}
860 
861 		if (count > 1) {
862 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
863 			    zio_type_name[t], zio_taskq_types[q], i);
864 		} else {
865 			(void) snprintf(name, sizeof (name), "%s_%s",
866 			    zio_type_name[t], zio_taskq_types[q]);
867 		}
868 
869 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
870 			if (batch)
871 				flags |= TASKQ_DC_BATCH;
872 
873 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
874 			    spa->spa_proc, zio_taskq_basedc, flags);
875 		} else {
876 			tq = taskq_create_proc(name, value, maxclsyspri, 50,
877 			    INT_MAX, spa->spa_proc, flags);
878 		}
879 
880 		tqs->stqs_taskq[i] = tq;
881 	}
882 }
883 
884 static void
885 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
886 {
887 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
888 
889 	if (tqs->stqs_taskq == NULL) {
890 		ASSERT0(tqs->stqs_count);
891 		return;
892 	}
893 
894 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
895 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
896 		taskq_destroy(tqs->stqs_taskq[i]);
897 	}
898 
899 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
900 	tqs->stqs_taskq = NULL;
901 }
902 
903 /*
904  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
905  * Note that a type may have multiple discrete taskqs to avoid lock contention
906  * on the taskq itself. In that case we choose which taskq at random by using
907  * the low bits of gethrtime().
908  */
909 void
910 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
911     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
912 {
913 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
914 	taskq_t *tq;
915 
916 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
917 	ASSERT3U(tqs->stqs_count, !=, 0);
918 
919 	if (tqs->stqs_count == 1) {
920 		tq = tqs->stqs_taskq[0];
921 	} else {
922 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
923 	}
924 
925 	taskq_dispatch_ent(tq, func, arg, flags, ent);
926 }
927 
928 static void
929 spa_create_zio_taskqs(spa_t *spa)
930 {
931 	for (int t = 0; t < ZIO_TYPES; t++) {
932 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
933 			spa_taskqs_init(spa, t, q);
934 		}
935 	}
936 }
937 
938 #ifdef _KERNEL
939 static void
940 spa_thread(void *arg)
941 {
942 	callb_cpr_t cprinfo;
943 
944 	spa_t *spa = arg;
945 	user_t *pu = PTOU(curproc);
946 
947 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
948 	    spa->spa_name);
949 
950 	ASSERT(curproc != &p0);
951 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
952 	    "zpool-%s", spa->spa_name);
953 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
954 
955 	/* bind this thread to the requested psrset */
956 	if (zio_taskq_psrset_bind != PS_NONE) {
957 		pool_lock();
958 		mutex_enter(&cpu_lock);
959 		mutex_enter(&pidlock);
960 		mutex_enter(&curproc->p_lock);
961 
962 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
963 		    0, NULL, NULL) == 0)  {
964 			curthread->t_bind_pset = zio_taskq_psrset_bind;
965 		} else {
966 			cmn_err(CE_WARN,
967 			    "Couldn't bind process for zfs pool \"%s\" to "
968 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
969 		}
970 
971 		mutex_exit(&curproc->p_lock);
972 		mutex_exit(&pidlock);
973 		mutex_exit(&cpu_lock);
974 		pool_unlock();
975 	}
976 
977 	if (zio_taskq_sysdc) {
978 		sysdc_thread_enter(curthread, 100, 0);
979 	}
980 
981 	spa->spa_proc = curproc;
982 	spa->spa_did = curthread->t_did;
983 
984 	spa_create_zio_taskqs(spa);
985 
986 	mutex_enter(&spa->spa_proc_lock);
987 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
988 
989 	spa->spa_proc_state = SPA_PROC_ACTIVE;
990 	cv_broadcast(&spa->spa_proc_cv);
991 
992 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
993 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
994 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
995 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
996 
997 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
998 	spa->spa_proc_state = SPA_PROC_GONE;
999 	spa->spa_proc = &p0;
1000 	cv_broadcast(&spa->spa_proc_cv);
1001 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1002 
1003 	mutex_enter(&curproc->p_lock);
1004 	lwp_exit();
1005 }
1006 #endif
1007 
1008 /*
1009  * Activate an uninitialized pool.
1010  */
1011 static void
1012 spa_activate(spa_t *spa, int mode)
1013 {
1014 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1015 
1016 	spa->spa_state = POOL_STATE_ACTIVE;
1017 	spa->spa_mode = mode;
1018 
1019 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1020 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1021 
1022 	/* Try to create a covering process */
1023 	mutex_enter(&spa->spa_proc_lock);
1024 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1025 	ASSERT(spa->spa_proc == &p0);
1026 	spa->spa_did = 0;
1027 
1028 	/* Only create a process if we're going to be around a while. */
1029 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1030 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1031 		    NULL, 0) == 0) {
1032 			spa->spa_proc_state = SPA_PROC_CREATED;
1033 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1034 				cv_wait(&spa->spa_proc_cv,
1035 				    &spa->spa_proc_lock);
1036 			}
1037 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1038 			ASSERT(spa->spa_proc != &p0);
1039 			ASSERT(spa->spa_did != 0);
1040 		} else {
1041 #ifdef _KERNEL
1042 			cmn_err(CE_WARN,
1043 			    "Couldn't create process for zfs pool \"%s\"\n",
1044 			    spa->spa_name);
1045 #endif
1046 		}
1047 	}
1048 	mutex_exit(&spa->spa_proc_lock);
1049 
1050 	/* If we didn't create a process, we need to create our taskqs. */
1051 	if (spa->spa_proc == &p0) {
1052 		spa_create_zio_taskqs(spa);
1053 	}
1054 
1055 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1056 	    offsetof(vdev_t, vdev_config_dirty_node));
1057 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1058 	    offsetof(vdev_t, vdev_state_dirty_node));
1059 
1060 	txg_list_create(&spa->spa_vdev_txg_list,
1061 	    offsetof(struct vdev, vdev_txg_node));
1062 
1063 	avl_create(&spa->spa_errlist_scrub,
1064 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1065 	    offsetof(spa_error_entry_t, se_avl));
1066 	avl_create(&spa->spa_errlist_last,
1067 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1068 	    offsetof(spa_error_entry_t, se_avl));
1069 }
1070 
1071 /*
1072  * Opposite of spa_activate().
1073  */
1074 static void
1075 spa_deactivate(spa_t *spa)
1076 {
1077 	ASSERT(spa->spa_sync_on == B_FALSE);
1078 	ASSERT(spa->spa_dsl_pool == NULL);
1079 	ASSERT(spa->spa_root_vdev == NULL);
1080 	ASSERT(spa->spa_async_zio_root == NULL);
1081 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1082 
1083 	txg_list_destroy(&spa->spa_vdev_txg_list);
1084 
1085 	list_destroy(&spa->spa_config_dirty_list);
1086 	list_destroy(&spa->spa_state_dirty_list);
1087 
1088 	for (int t = 0; t < ZIO_TYPES; t++) {
1089 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1090 			spa_taskqs_fini(spa, t, q);
1091 		}
1092 	}
1093 
1094 	metaslab_class_destroy(spa->spa_normal_class);
1095 	spa->spa_normal_class = NULL;
1096 
1097 	metaslab_class_destroy(spa->spa_log_class);
1098 	spa->spa_log_class = NULL;
1099 
1100 	/*
1101 	 * If this was part of an import or the open otherwise failed, we may
1102 	 * still have errors left in the queues.  Empty them just in case.
1103 	 */
1104 	spa_errlog_drain(spa);
1105 
1106 	avl_destroy(&spa->spa_errlist_scrub);
1107 	avl_destroy(&spa->spa_errlist_last);
1108 
1109 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1110 
1111 	mutex_enter(&spa->spa_proc_lock);
1112 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1113 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1114 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1115 		cv_broadcast(&spa->spa_proc_cv);
1116 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1117 			ASSERT(spa->spa_proc != &p0);
1118 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1119 		}
1120 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1121 		spa->spa_proc_state = SPA_PROC_NONE;
1122 	}
1123 	ASSERT(spa->spa_proc == &p0);
1124 	mutex_exit(&spa->spa_proc_lock);
1125 
1126 	/*
1127 	 * We want to make sure spa_thread() has actually exited the ZFS
1128 	 * module, so that the module can't be unloaded out from underneath
1129 	 * it.
1130 	 */
1131 	if (spa->spa_did != 0) {
1132 		thread_join(spa->spa_did);
1133 		spa->spa_did = 0;
1134 	}
1135 }
1136 
1137 /*
1138  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1139  * will create all the necessary vdevs in the appropriate layout, with each vdev
1140  * in the CLOSED state.  This will prep the pool before open/creation/import.
1141  * All vdev validation is done by the vdev_alloc() routine.
1142  */
1143 static int
1144 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1145     uint_t id, int atype)
1146 {
1147 	nvlist_t **child;
1148 	uint_t children;
1149 	int error;
1150 
1151 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1152 		return (error);
1153 
1154 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1155 		return (0);
1156 
1157 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1158 	    &child, &children);
1159 
1160 	if (error == ENOENT)
1161 		return (0);
1162 
1163 	if (error) {
1164 		vdev_free(*vdp);
1165 		*vdp = NULL;
1166 		return (SET_ERROR(EINVAL));
1167 	}
1168 
1169 	for (int c = 0; c < children; c++) {
1170 		vdev_t *vd;
1171 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1172 		    atype)) != 0) {
1173 			vdev_free(*vdp);
1174 			*vdp = NULL;
1175 			return (error);
1176 		}
1177 	}
1178 
1179 	ASSERT(*vdp != NULL);
1180 
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Opposite of spa_load().
1186  */
1187 static void
1188 spa_unload(spa_t *spa)
1189 {
1190 	int i;
1191 
1192 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1193 
1194 	/*
1195 	 * Stop async tasks.
1196 	 */
1197 	spa_async_suspend(spa);
1198 
1199 	/*
1200 	 * Stop syncing.
1201 	 */
1202 	if (spa->spa_sync_on) {
1203 		txg_sync_stop(spa->spa_dsl_pool);
1204 		spa->spa_sync_on = B_FALSE;
1205 	}
1206 
1207 	/*
1208 	 * Wait for any outstanding async I/O to complete.
1209 	 */
1210 	if (spa->spa_async_zio_root != NULL) {
1211 		(void) zio_wait(spa->spa_async_zio_root);
1212 		spa->spa_async_zio_root = NULL;
1213 	}
1214 
1215 	bpobj_close(&spa->spa_deferred_bpobj);
1216 
1217 	/*
1218 	 * Close the dsl pool.
1219 	 */
1220 	if (spa->spa_dsl_pool) {
1221 		dsl_pool_close(spa->spa_dsl_pool);
1222 		spa->spa_dsl_pool = NULL;
1223 		spa->spa_meta_objset = NULL;
1224 	}
1225 
1226 	ddt_unload(spa);
1227 
1228 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1229 
1230 	/*
1231 	 * Drop and purge level 2 cache
1232 	 */
1233 	spa_l2cache_drop(spa);
1234 
1235 	/*
1236 	 * Close all vdevs.
1237 	 */
1238 	if (spa->spa_root_vdev)
1239 		vdev_free(spa->spa_root_vdev);
1240 	ASSERT(spa->spa_root_vdev == NULL);
1241 
1242 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1243 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1244 	if (spa->spa_spares.sav_vdevs) {
1245 		kmem_free(spa->spa_spares.sav_vdevs,
1246 		    spa->spa_spares.sav_count * sizeof (void *));
1247 		spa->spa_spares.sav_vdevs = NULL;
1248 	}
1249 	if (spa->spa_spares.sav_config) {
1250 		nvlist_free(spa->spa_spares.sav_config);
1251 		spa->spa_spares.sav_config = NULL;
1252 	}
1253 	spa->spa_spares.sav_count = 0;
1254 
1255 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1256 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1257 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1258 	}
1259 	if (spa->spa_l2cache.sav_vdevs) {
1260 		kmem_free(spa->spa_l2cache.sav_vdevs,
1261 		    spa->spa_l2cache.sav_count * sizeof (void *));
1262 		spa->spa_l2cache.sav_vdevs = NULL;
1263 	}
1264 	if (spa->spa_l2cache.sav_config) {
1265 		nvlist_free(spa->spa_l2cache.sav_config);
1266 		spa->spa_l2cache.sav_config = NULL;
1267 	}
1268 	spa->spa_l2cache.sav_count = 0;
1269 
1270 	spa->spa_async_suspended = 0;
1271 
1272 	if (spa->spa_comment != NULL) {
1273 		spa_strfree(spa->spa_comment);
1274 		spa->spa_comment = NULL;
1275 	}
1276 
1277 	spa_config_exit(spa, SCL_ALL, FTAG);
1278 }
1279 
1280 /*
1281  * Load (or re-load) the current list of vdevs describing the active spares for
1282  * this pool.  When this is called, we have some form of basic information in
1283  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1284  * then re-generate a more complete list including status information.
1285  */
1286 static void
1287 spa_load_spares(spa_t *spa)
1288 {
1289 	nvlist_t **spares;
1290 	uint_t nspares;
1291 	int i;
1292 	vdev_t *vd, *tvd;
1293 
1294 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1295 
1296 	/*
1297 	 * First, close and free any existing spare vdevs.
1298 	 */
1299 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1300 		vd = spa->spa_spares.sav_vdevs[i];
1301 
1302 		/* Undo the call to spa_activate() below */
1303 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1304 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1305 			spa_spare_remove(tvd);
1306 		vdev_close(vd);
1307 		vdev_free(vd);
1308 	}
1309 
1310 	if (spa->spa_spares.sav_vdevs)
1311 		kmem_free(spa->spa_spares.sav_vdevs,
1312 		    spa->spa_spares.sav_count * sizeof (void *));
1313 
1314 	if (spa->spa_spares.sav_config == NULL)
1315 		nspares = 0;
1316 	else
1317 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1318 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1319 
1320 	spa->spa_spares.sav_count = (int)nspares;
1321 	spa->spa_spares.sav_vdevs = NULL;
1322 
1323 	if (nspares == 0)
1324 		return;
1325 
1326 	/*
1327 	 * Construct the array of vdevs, opening them to get status in the
1328 	 * process.   For each spare, there is potentially two different vdev_t
1329 	 * structures associated with it: one in the list of spares (used only
1330 	 * for basic validation purposes) and one in the active vdev
1331 	 * configuration (if it's spared in).  During this phase we open and
1332 	 * validate each vdev on the spare list.  If the vdev also exists in the
1333 	 * active configuration, then we also mark this vdev as an active spare.
1334 	 */
1335 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1336 	    KM_SLEEP);
1337 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1338 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1339 		    VDEV_ALLOC_SPARE) == 0);
1340 		ASSERT(vd != NULL);
1341 
1342 		spa->spa_spares.sav_vdevs[i] = vd;
1343 
1344 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1345 		    B_FALSE)) != NULL) {
1346 			if (!tvd->vdev_isspare)
1347 				spa_spare_add(tvd);
1348 
1349 			/*
1350 			 * We only mark the spare active if we were successfully
1351 			 * able to load the vdev.  Otherwise, importing a pool
1352 			 * with a bad active spare would result in strange
1353 			 * behavior, because multiple pool would think the spare
1354 			 * is actively in use.
1355 			 *
1356 			 * There is a vulnerability here to an equally bizarre
1357 			 * circumstance, where a dead active spare is later
1358 			 * brought back to life (onlined or otherwise).  Given
1359 			 * the rarity of this scenario, and the extra complexity
1360 			 * it adds, we ignore the possibility.
1361 			 */
1362 			if (!vdev_is_dead(tvd))
1363 				spa_spare_activate(tvd);
1364 		}
1365 
1366 		vd->vdev_top = vd;
1367 		vd->vdev_aux = &spa->spa_spares;
1368 
1369 		if (vdev_open(vd) != 0)
1370 			continue;
1371 
1372 		if (vdev_validate_aux(vd) == 0)
1373 			spa_spare_add(vd);
1374 	}
1375 
1376 	/*
1377 	 * Recompute the stashed list of spares, with status information
1378 	 * this time.
1379 	 */
1380 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1381 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1382 
1383 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1384 	    KM_SLEEP);
1385 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1386 		spares[i] = vdev_config_generate(spa,
1387 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1388 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1389 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1390 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1391 		nvlist_free(spares[i]);
1392 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1393 }
1394 
1395 /*
1396  * Load (or re-load) the current list of vdevs describing the active l2cache for
1397  * this pool.  When this is called, we have some form of basic information in
1398  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1399  * then re-generate a more complete list including status information.
1400  * Devices which are already active have their details maintained, and are
1401  * not re-opened.
1402  */
1403 static void
1404 spa_load_l2cache(spa_t *spa)
1405 {
1406 	nvlist_t **l2cache;
1407 	uint_t nl2cache;
1408 	int i, j, oldnvdevs;
1409 	uint64_t guid;
1410 	vdev_t *vd, **oldvdevs, **newvdevs;
1411 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1412 
1413 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1414 
1415 	if (sav->sav_config != NULL) {
1416 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1417 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1418 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1419 	} else {
1420 		nl2cache = 0;
1421 		newvdevs = NULL;
1422 	}
1423 
1424 	oldvdevs = sav->sav_vdevs;
1425 	oldnvdevs = sav->sav_count;
1426 	sav->sav_vdevs = NULL;
1427 	sav->sav_count = 0;
1428 
1429 	/*
1430 	 * Process new nvlist of vdevs.
1431 	 */
1432 	for (i = 0; i < nl2cache; i++) {
1433 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1434 		    &guid) == 0);
1435 
1436 		newvdevs[i] = NULL;
1437 		for (j = 0; j < oldnvdevs; j++) {
1438 			vd = oldvdevs[j];
1439 			if (vd != NULL && guid == vd->vdev_guid) {
1440 				/*
1441 				 * Retain previous vdev for add/remove ops.
1442 				 */
1443 				newvdevs[i] = vd;
1444 				oldvdevs[j] = NULL;
1445 				break;
1446 			}
1447 		}
1448 
1449 		if (newvdevs[i] == NULL) {
1450 			/*
1451 			 * Create new vdev
1452 			 */
1453 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1454 			    VDEV_ALLOC_L2CACHE) == 0);
1455 			ASSERT(vd != NULL);
1456 			newvdevs[i] = vd;
1457 
1458 			/*
1459 			 * Commit this vdev as an l2cache device,
1460 			 * even if it fails to open.
1461 			 */
1462 			spa_l2cache_add(vd);
1463 
1464 			vd->vdev_top = vd;
1465 			vd->vdev_aux = sav;
1466 
1467 			spa_l2cache_activate(vd);
1468 
1469 			if (vdev_open(vd) != 0)
1470 				continue;
1471 
1472 			(void) vdev_validate_aux(vd);
1473 
1474 			if (!vdev_is_dead(vd))
1475 				l2arc_add_vdev(spa, vd);
1476 		}
1477 	}
1478 
1479 	/*
1480 	 * Purge vdevs that were dropped
1481 	 */
1482 	for (i = 0; i < oldnvdevs; i++) {
1483 		uint64_t pool;
1484 
1485 		vd = oldvdevs[i];
1486 		if (vd != NULL) {
1487 			ASSERT(vd->vdev_isl2cache);
1488 
1489 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1490 			    pool != 0ULL && l2arc_vdev_present(vd))
1491 				l2arc_remove_vdev(vd);
1492 			vdev_clear_stats(vd);
1493 			vdev_free(vd);
1494 		}
1495 	}
1496 
1497 	if (oldvdevs)
1498 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1499 
1500 	if (sav->sav_config == NULL)
1501 		goto out;
1502 
1503 	sav->sav_vdevs = newvdevs;
1504 	sav->sav_count = (int)nl2cache;
1505 
1506 	/*
1507 	 * Recompute the stashed list of l2cache devices, with status
1508 	 * information this time.
1509 	 */
1510 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1511 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1512 
1513 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1514 	for (i = 0; i < sav->sav_count; i++)
1515 		l2cache[i] = vdev_config_generate(spa,
1516 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1517 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1518 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1519 out:
1520 	for (i = 0; i < sav->sav_count; i++)
1521 		nvlist_free(l2cache[i]);
1522 	if (sav->sav_count)
1523 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1524 }
1525 
1526 static int
1527 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1528 {
1529 	dmu_buf_t *db;
1530 	char *packed = NULL;
1531 	size_t nvsize = 0;
1532 	int error;
1533 	*value = NULL;
1534 
1535 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1536 	nvsize = *(uint64_t *)db->db_data;
1537 	dmu_buf_rele(db, FTAG);
1538 
1539 	packed = kmem_alloc(nvsize, KM_SLEEP);
1540 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1541 	    DMU_READ_PREFETCH);
1542 	if (error == 0)
1543 		error = nvlist_unpack(packed, nvsize, value, 0);
1544 	kmem_free(packed, nvsize);
1545 
1546 	return (error);
1547 }
1548 
1549 /*
1550  * Checks to see if the given vdev could not be opened, in which case we post a
1551  * sysevent to notify the autoreplace code that the device has been removed.
1552  */
1553 static void
1554 spa_check_removed(vdev_t *vd)
1555 {
1556 	for (int c = 0; c < vd->vdev_children; c++)
1557 		spa_check_removed(vd->vdev_child[c]);
1558 
1559 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1560 	    !vd->vdev_ishole) {
1561 		zfs_post_autoreplace(vd->vdev_spa, vd);
1562 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1563 	}
1564 }
1565 
1566 /*
1567  * Validate the current config against the MOS config
1568  */
1569 static boolean_t
1570 spa_config_valid(spa_t *spa, nvlist_t *config)
1571 {
1572 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1573 	nvlist_t *nv;
1574 
1575 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1576 
1577 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1578 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1579 
1580 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1581 
1582 	/*
1583 	 * If we're doing a normal import, then build up any additional
1584 	 * diagnostic information about missing devices in this config.
1585 	 * We'll pass this up to the user for further processing.
1586 	 */
1587 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1588 		nvlist_t **child, *nv;
1589 		uint64_t idx = 0;
1590 
1591 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1592 		    KM_SLEEP);
1593 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1594 
1595 		for (int c = 0; c < rvd->vdev_children; c++) {
1596 			vdev_t *tvd = rvd->vdev_child[c];
1597 			vdev_t *mtvd  = mrvd->vdev_child[c];
1598 
1599 			if (tvd->vdev_ops == &vdev_missing_ops &&
1600 			    mtvd->vdev_ops != &vdev_missing_ops &&
1601 			    mtvd->vdev_islog)
1602 				child[idx++] = vdev_config_generate(spa, mtvd,
1603 				    B_FALSE, 0);
1604 		}
1605 
1606 		if (idx) {
1607 			VERIFY(nvlist_add_nvlist_array(nv,
1608 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1609 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1610 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1611 
1612 			for (int i = 0; i < idx; i++)
1613 				nvlist_free(child[i]);
1614 		}
1615 		nvlist_free(nv);
1616 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1617 	}
1618 
1619 	/*
1620 	 * Compare the root vdev tree with the information we have
1621 	 * from the MOS config (mrvd). Check each top-level vdev
1622 	 * with the corresponding MOS config top-level (mtvd).
1623 	 */
1624 	for (int c = 0; c < rvd->vdev_children; c++) {
1625 		vdev_t *tvd = rvd->vdev_child[c];
1626 		vdev_t *mtvd  = mrvd->vdev_child[c];
1627 
1628 		/*
1629 		 * Resolve any "missing" vdevs in the current configuration.
1630 		 * If we find that the MOS config has more accurate information
1631 		 * about the top-level vdev then use that vdev instead.
1632 		 */
1633 		if (tvd->vdev_ops == &vdev_missing_ops &&
1634 		    mtvd->vdev_ops != &vdev_missing_ops) {
1635 
1636 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1637 				continue;
1638 
1639 			/*
1640 			 * Device specific actions.
1641 			 */
1642 			if (mtvd->vdev_islog) {
1643 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1644 			} else {
1645 				/*
1646 				 * XXX - once we have 'readonly' pool
1647 				 * support we should be able to handle
1648 				 * missing data devices by transitioning
1649 				 * the pool to readonly.
1650 				 */
1651 				continue;
1652 			}
1653 
1654 			/*
1655 			 * Swap the missing vdev with the data we were
1656 			 * able to obtain from the MOS config.
1657 			 */
1658 			vdev_remove_child(rvd, tvd);
1659 			vdev_remove_child(mrvd, mtvd);
1660 
1661 			vdev_add_child(rvd, mtvd);
1662 			vdev_add_child(mrvd, tvd);
1663 
1664 			spa_config_exit(spa, SCL_ALL, FTAG);
1665 			vdev_load(mtvd);
1666 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1667 
1668 			vdev_reopen(rvd);
1669 		} else if (mtvd->vdev_islog) {
1670 			/*
1671 			 * Load the slog device's state from the MOS config
1672 			 * since it's possible that the label does not
1673 			 * contain the most up-to-date information.
1674 			 */
1675 			vdev_load_log_state(tvd, mtvd);
1676 			vdev_reopen(tvd);
1677 		}
1678 	}
1679 	vdev_free(mrvd);
1680 	spa_config_exit(spa, SCL_ALL, FTAG);
1681 
1682 	/*
1683 	 * Ensure we were able to validate the config.
1684 	 */
1685 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1686 }
1687 
1688 /*
1689  * Check for missing log devices
1690  */
1691 static boolean_t
1692 spa_check_logs(spa_t *spa)
1693 {
1694 	boolean_t rv = B_FALSE;
1695 
1696 	switch (spa->spa_log_state) {
1697 	case SPA_LOG_MISSING:
1698 		/* need to recheck in case slog has been restored */
1699 	case SPA_LOG_UNKNOWN:
1700 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1701 		    NULL, DS_FIND_CHILDREN) != 0);
1702 		if (rv)
1703 			spa_set_log_state(spa, SPA_LOG_MISSING);
1704 		break;
1705 	}
1706 	return (rv);
1707 }
1708 
1709 static boolean_t
1710 spa_passivate_log(spa_t *spa)
1711 {
1712 	vdev_t *rvd = spa->spa_root_vdev;
1713 	boolean_t slog_found = B_FALSE;
1714 
1715 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1716 
1717 	if (!spa_has_slogs(spa))
1718 		return (B_FALSE);
1719 
1720 	for (int c = 0; c < rvd->vdev_children; c++) {
1721 		vdev_t *tvd = rvd->vdev_child[c];
1722 		metaslab_group_t *mg = tvd->vdev_mg;
1723 
1724 		if (tvd->vdev_islog) {
1725 			metaslab_group_passivate(mg);
1726 			slog_found = B_TRUE;
1727 		}
1728 	}
1729 
1730 	return (slog_found);
1731 }
1732 
1733 static void
1734 spa_activate_log(spa_t *spa)
1735 {
1736 	vdev_t *rvd = spa->spa_root_vdev;
1737 
1738 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1739 
1740 	for (int c = 0; c < rvd->vdev_children; c++) {
1741 		vdev_t *tvd = rvd->vdev_child[c];
1742 		metaslab_group_t *mg = tvd->vdev_mg;
1743 
1744 		if (tvd->vdev_islog)
1745 			metaslab_group_activate(mg);
1746 	}
1747 }
1748 
1749 int
1750 spa_offline_log(spa_t *spa)
1751 {
1752 	int error;
1753 
1754 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1755 	    NULL, DS_FIND_CHILDREN);
1756 	if (error == 0) {
1757 		/*
1758 		 * We successfully offlined the log device, sync out the
1759 		 * current txg so that the "stubby" block can be removed
1760 		 * by zil_sync().
1761 		 */
1762 		txg_wait_synced(spa->spa_dsl_pool, 0);
1763 	}
1764 	return (error);
1765 }
1766 
1767 static void
1768 spa_aux_check_removed(spa_aux_vdev_t *sav)
1769 {
1770 	for (int i = 0; i < sav->sav_count; i++)
1771 		spa_check_removed(sav->sav_vdevs[i]);
1772 }
1773 
1774 void
1775 spa_claim_notify(zio_t *zio)
1776 {
1777 	spa_t *spa = zio->io_spa;
1778 
1779 	if (zio->io_error)
1780 		return;
1781 
1782 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1783 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1784 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1785 	mutex_exit(&spa->spa_props_lock);
1786 }
1787 
1788 typedef struct spa_load_error {
1789 	uint64_t	sle_meta_count;
1790 	uint64_t	sle_data_count;
1791 } spa_load_error_t;
1792 
1793 static void
1794 spa_load_verify_done(zio_t *zio)
1795 {
1796 	blkptr_t *bp = zio->io_bp;
1797 	spa_load_error_t *sle = zio->io_private;
1798 	dmu_object_type_t type = BP_GET_TYPE(bp);
1799 	int error = zio->io_error;
1800 
1801 	if (error) {
1802 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1803 		    type != DMU_OT_INTENT_LOG)
1804 			atomic_add_64(&sle->sle_meta_count, 1);
1805 		else
1806 			atomic_add_64(&sle->sle_data_count, 1);
1807 	}
1808 	zio_data_buf_free(zio->io_data, zio->io_size);
1809 }
1810 
1811 /*ARGSUSED*/
1812 static int
1813 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1814     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1815 {
1816 	if (bp != NULL) {
1817 		zio_t *rio = arg;
1818 		size_t size = BP_GET_PSIZE(bp);
1819 		void *data = zio_data_buf_alloc(size);
1820 
1821 		zio_nowait(zio_read(rio, spa, bp, data, size,
1822 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1823 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1824 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1825 	}
1826 	return (0);
1827 }
1828 
1829 static int
1830 spa_load_verify(spa_t *spa)
1831 {
1832 	zio_t *rio;
1833 	spa_load_error_t sle = { 0 };
1834 	zpool_rewind_policy_t policy;
1835 	boolean_t verify_ok = B_FALSE;
1836 	int error;
1837 
1838 	zpool_get_rewind_policy(spa->spa_config, &policy);
1839 
1840 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1841 		return (0);
1842 
1843 	rio = zio_root(spa, NULL, &sle,
1844 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1845 
1846 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1847 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1848 
1849 	(void) zio_wait(rio);
1850 
1851 	spa->spa_load_meta_errors = sle.sle_meta_count;
1852 	spa->spa_load_data_errors = sle.sle_data_count;
1853 
1854 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1855 	    sle.sle_data_count <= policy.zrp_maxdata) {
1856 		int64_t loss = 0;
1857 
1858 		verify_ok = B_TRUE;
1859 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1860 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1861 
1862 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1863 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1864 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1865 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1866 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1867 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1868 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1869 	} else {
1870 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1871 	}
1872 
1873 	if (error) {
1874 		if (error != ENXIO && error != EIO)
1875 			error = SET_ERROR(EIO);
1876 		return (error);
1877 	}
1878 
1879 	return (verify_ok ? 0 : EIO);
1880 }
1881 
1882 /*
1883  * Find a value in the pool props object.
1884  */
1885 static void
1886 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1887 {
1888 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1889 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1890 }
1891 
1892 /*
1893  * Find a value in the pool directory object.
1894  */
1895 static int
1896 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1897 {
1898 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1899 	    name, sizeof (uint64_t), 1, val));
1900 }
1901 
1902 static int
1903 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1904 {
1905 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1906 	return (err);
1907 }
1908 
1909 /*
1910  * Fix up config after a partly-completed split.  This is done with the
1911  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1912  * pool have that entry in their config, but only the splitting one contains
1913  * a list of all the guids of the vdevs that are being split off.
1914  *
1915  * This function determines what to do with that list: either rejoin
1916  * all the disks to the pool, or complete the splitting process.  To attempt
1917  * the rejoin, each disk that is offlined is marked online again, and
1918  * we do a reopen() call.  If the vdev label for every disk that was
1919  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1920  * then we call vdev_split() on each disk, and complete the split.
1921  *
1922  * Otherwise we leave the config alone, with all the vdevs in place in
1923  * the original pool.
1924  */
1925 static void
1926 spa_try_repair(spa_t *spa, nvlist_t *config)
1927 {
1928 	uint_t extracted;
1929 	uint64_t *glist;
1930 	uint_t i, gcount;
1931 	nvlist_t *nvl;
1932 	vdev_t **vd;
1933 	boolean_t attempt_reopen;
1934 
1935 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1936 		return;
1937 
1938 	/* check that the config is complete */
1939 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1940 	    &glist, &gcount) != 0)
1941 		return;
1942 
1943 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1944 
1945 	/* attempt to online all the vdevs & validate */
1946 	attempt_reopen = B_TRUE;
1947 	for (i = 0; i < gcount; i++) {
1948 		if (glist[i] == 0)	/* vdev is hole */
1949 			continue;
1950 
1951 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1952 		if (vd[i] == NULL) {
1953 			/*
1954 			 * Don't bother attempting to reopen the disks;
1955 			 * just do the split.
1956 			 */
1957 			attempt_reopen = B_FALSE;
1958 		} else {
1959 			/* attempt to re-online it */
1960 			vd[i]->vdev_offline = B_FALSE;
1961 		}
1962 	}
1963 
1964 	if (attempt_reopen) {
1965 		vdev_reopen(spa->spa_root_vdev);
1966 
1967 		/* check each device to see what state it's in */
1968 		for (extracted = 0, i = 0; i < gcount; i++) {
1969 			if (vd[i] != NULL &&
1970 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1971 				break;
1972 			++extracted;
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * If every disk has been moved to the new pool, or if we never
1978 	 * even attempted to look at them, then we split them off for
1979 	 * good.
1980 	 */
1981 	if (!attempt_reopen || gcount == extracted) {
1982 		for (i = 0; i < gcount; i++)
1983 			if (vd[i] != NULL)
1984 				vdev_split(vd[i]);
1985 		vdev_reopen(spa->spa_root_vdev);
1986 	}
1987 
1988 	kmem_free(vd, gcount * sizeof (vdev_t *));
1989 }
1990 
1991 static int
1992 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1993     boolean_t mosconfig)
1994 {
1995 	nvlist_t *config = spa->spa_config;
1996 	char *ereport = FM_EREPORT_ZFS_POOL;
1997 	char *comment;
1998 	int error;
1999 	uint64_t pool_guid;
2000 	nvlist_t *nvl;
2001 
2002 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2003 		return (SET_ERROR(EINVAL));
2004 
2005 	ASSERT(spa->spa_comment == NULL);
2006 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2007 		spa->spa_comment = spa_strdup(comment);
2008 
2009 	/*
2010 	 * Versioning wasn't explicitly added to the label until later, so if
2011 	 * it's not present treat it as the initial version.
2012 	 */
2013 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2014 	    &spa->spa_ubsync.ub_version) != 0)
2015 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2016 
2017 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2018 	    &spa->spa_config_txg);
2019 
2020 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2021 	    spa_guid_exists(pool_guid, 0)) {
2022 		error = SET_ERROR(EEXIST);
2023 	} else {
2024 		spa->spa_config_guid = pool_guid;
2025 
2026 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2027 		    &nvl) == 0) {
2028 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2029 			    KM_SLEEP) == 0);
2030 		}
2031 
2032 		nvlist_free(spa->spa_load_info);
2033 		spa->spa_load_info = fnvlist_alloc();
2034 
2035 		gethrestime(&spa->spa_loaded_ts);
2036 		error = spa_load_impl(spa, pool_guid, config, state, type,
2037 		    mosconfig, &ereport);
2038 	}
2039 
2040 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2041 	if (error) {
2042 		if (error != EEXIST) {
2043 			spa->spa_loaded_ts.tv_sec = 0;
2044 			spa->spa_loaded_ts.tv_nsec = 0;
2045 		}
2046 		if (error != EBADF) {
2047 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2048 		}
2049 	}
2050 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2051 	spa->spa_ena = 0;
2052 
2053 	return (error);
2054 }
2055 
2056 /*
2057  * Load an existing storage pool, using the pool's builtin spa_config as a
2058  * source of configuration information.
2059  */
2060 static int
2061 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2062     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2063     char **ereport)
2064 {
2065 	int error = 0;
2066 	nvlist_t *nvroot = NULL;
2067 	nvlist_t *label;
2068 	vdev_t *rvd;
2069 	uberblock_t *ub = &spa->spa_uberblock;
2070 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2071 	int orig_mode = spa->spa_mode;
2072 	int parse;
2073 	uint64_t obj;
2074 	boolean_t missing_feat_write = B_FALSE;
2075 
2076 	/*
2077 	 * If this is an untrusted config, access the pool in read-only mode.
2078 	 * This prevents things like resilvering recently removed devices.
2079 	 */
2080 	if (!mosconfig)
2081 		spa->spa_mode = FREAD;
2082 
2083 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2084 
2085 	spa->spa_load_state = state;
2086 
2087 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2088 		return (SET_ERROR(EINVAL));
2089 
2090 	parse = (type == SPA_IMPORT_EXISTING ?
2091 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2092 
2093 	/*
2094 	 * Create "The Godfather" zio to hold all async IOs
2095 	 */
2096 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2097 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2098 
2099 	/*
2100 	 * Parse the configuration into a vdev tree.  We explicitly set the
2101 	 * value that will be returned by spa_version() since parsing the
2102 	 * configuration requires knowing the version number.
2103 	 */
2104 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2105 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2106 	spa_config_exit(spa, SCL_ALL, FTAG);
2107 
2108 	if (error != 0)
2109 		return (error);
2110 
2111 	ASSERT(spa->spa_root_vdev == rvd);
2112 
2113 	if (type != SPA_IMPORT_ASSEMBLE) {
2114 		ASSERT(spa_guid(spa) == pool_guid);
2115 	}
2116 
2117 	/*
2118 	 * Try to open all vdevs, loading each label in the process.
2119 	 */
2120 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2121 	error = vdev_open(rvd);
2122 	spa_config_exit(spa, SCL_ALL, FTAG);
2123 	if (error != 0)
2124 		return (error);
2125 
2126 	/*
2127 	 * We need to validate the vdev labels against the configuration that
2128 	 * we have in hand, which is dependent on the setting of mosconfig. If
2129 	 * mosconfig is true then we're validating the vdev labels based on
2130 	 * that config.  Otherwise, we're validating against the cached config
2131 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2132 	 * later we will recursively call spa_load() and validate against
2133 	 * the vdev config.
2134 	 *
2135 	 * If we're assembling a new pool that's been split off from an
2136 	 * existing pool, the labels haven't yet been updated so we skip
2137 	 * validation for now.
2138 	 */
2139 	if (type != SPA_IMPORT_ASSEMBLE) {
2140 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 		error = vdev_validate(rvd, mosconfig);
2142 		spa_config_exit(spa, SCL_ALL, FTAG);
2143 
2144 		if (error != 0)
2145 			return (error);
2146 
2147 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2148 			return (SET_ERROR(ENXIO));
2149 	}
2150 
2151 	/*
2152 	 * Find the best uberblock.
2153 	 */
2154 	vdev_uberblock_load(rvd, ub, &label);
2155 
2156 	/*
2157 	 * If we weren't able to find a single valid uberblock, return failure.
2158 	 */
2159 	if (ub->ub_txg == 0) {
2160 		nvlist_free(label);
2161 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2162 	}
2163 
2164 	/*
2165 	 * If the pool has an unsupported version we can't open it.
2166 	 */
2167 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2168 		nvlist_free(label);
2169 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2170 	}
2171 
2172 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2173 		nvlist_t *features;
2174 
2175 		/*
2176 		 * If we weren't able to find what's necessary for reading the
2177 		 * MOS in the label, return failure.
2178 		 */
2179 		if (label == NULL || nvlist_lookup_nvlist(label,
2180 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2181 			nvlist_free(label);
2182 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2183 			    ENXIO));
2184 		}
2185 
2186 		/*
2187 		 * Update our in-core representation with the definitive values
2188 		 * from the label.
2189 		 */
2190 		nvlist_free(spa->spa_label_features);
2191 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2192 	}
2193 
2194 	nvlist_free(label);
2195 
2196 	/*
2197 	 * Look through entries in the label nvlist's features_for_read. If
2198 	 * there is a feature listed there which we don't understand then we
2199 	 * cannot open a pool.
2200 	 */
2201 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2202 		nvlist_t *unsup_feat;
2203 
2204 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2205 		    0);
2206 
2207 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2208 		    NULL); nvp != NULL;
2209 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2210 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2211 				VERIFY(nvlist_add_string(unsup_feat,
2212 				    nvpair_name(nvp), "") == 0);
2213 			}
2214 		}
2215 
2216 		if (!nvlist_empty(unsup_feat)) {
2217 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2218 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2219 			nvlist_free(unsup_feat);
2220 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2221 			    ENOTSUP));
2222 		}
2223 
2224 		nvlist_free(unsup_feat);
2225 	}
2226 
2227 	/*
2228 	 * If the vdev guid sum doesn't match the uberblock, we have an
2229 	 * incomplete configuration.  We first check to see if the pool
2230 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2231 	 * If it is, defer the vdev_guid_sum check till later so we
2232 	 * can handle missing vdevs.
2233 	 */
2234 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2235 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2236 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2237 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2238 
2239 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2240 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2241 		spa_try_repair(spa, config);
2242 		spa_config_exit(spa, SCL_ALL, FTAG);
2243 		nvlist_free(spa->spa_config_splitting);
2244 		spa->spa_config_splitting = NULL;
2245 	}
2246 
2247 	/*
2248 	 * Initialize internal SPA structures.
2249 	 */
2250 	spa->spa_state = POOL_STATE_ACTIVE;
2251 	spa->spa_ubsync = spa->spa_uberblock;
2252 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2253 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2254 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2255 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2256 	spa->spa_claim_max_txg = spa->spa_first_txg;
2257 	spa->spa_prev_software_version = ub->ub_software_version;
2258 
2259 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2260 	if (error)
2261 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2262 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2263 
2264 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2265 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2266 
2267 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2268 		boolean_t missing_feat_read = B_FALSE;
2269 		nvlist_t *unsup_feat, *enabled_feat;
2270 
2271 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2272 		    &spa->spa_feat_for_read_obj) != 0) {
2273 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2274 		}
2275 
2276 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2277 		    &spa->spa_feat_for_write_obj) != 0) {
2278 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 		}
2280 
2281 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2282 		    &spa->spa_feat_desc_obj) != 0) {
2283 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2284 		}
2285 
2286 		enabled_feat = fnvlist_alloc();
2287 		unsup_feat = fnvlist_alloc();
2288 
2289 		if (!feature_is_supported(spa->spa_meta_objset,
2290 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2291 		    unsup_feat, enabled_feat))
2292 			missing_feat_read = B_TRUE;
2293 
2294 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2295 			if (!feature_is_supported(spa->spa_meta_objset,
2296 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2297 			    unsup_feat, enabled_feat)) {
2298 				missing_feat_write = B_TRUE;
2299 			}
2300 		}
2301 
2302 		fnvlist_add_nvlist(spa->spa_load_info,
2303 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2304 
2305 		if (!nvlist_empty(unsup_feat)) {
2306 			fnvlist_add_nvlist(spa->spa_load_info,
2307 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2308 		}
2309 
2310 		fnvlist_free(enabled_feat);
2311 		fnvlist_free(unsup_feat);
2312 
2313 		if (!missing_feat_read) {
2314 			fnvlist_add_boolean(spa->spa_load_info,
2315 			    ZPOOL_CONFIG_CAN_RDONLY);
2316 		}
2317 
2318 		/*
2319 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2320 		 * twofold: to determine whether the pool is available for
2321 		 * import in read-write mode and (if it is not) whether the
2322 		 * pool is available for import in read-only mode. If the pool
2323 		 * is available for import in read-write mode, it is displayed
2324 		 * as available in userland; if it is not available for import
2325 		 * in read-only mode, it is displayed as unavailable in
2326 		 * userland. If the pool is available for import in read-only
2327 		 * mode but not read-write mode, it is displayed as unavailable
2328 		 * in userland with a special note that the pool is actually
2329 		 * available for open in read-only mode.
2330 		 *
2331 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2332 		 * missing a feature for write, we must first determine whether
2333 		 * the pool can be opened read-only before returning to
2334 		 * userland in order to know whether to display the
2335 		 * abovementioned note.
2336 		 */
2337 		if (missing_feat_read || (missing_feat_write &&
2338 		    spa_writeable(spa))) {
2339 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2340 			    ENOTSUP));
2341 		}
2342 	}
2343 
2344 	spa->spa_is_initializing = B_TRUE;
2345 	error = dsl_pool_open(spa->spa_dsl_pool);
2346 	spa->spa_is_initializing = B_FALSE;
2347 	if (error != 0)
2348 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349 
2350 	if (!mosconfig) {
2351 		uint64_t hostid;
2352 		nvlist_t *policy = NULL, *nvconfig;
2353 
2354 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2355 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356 
2357 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2358 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2359 			char *hostname;
2360 			unsigned long myhostid = 0;
2361 
2362 			VERIFY(nvlist_lookup_string(nvconfig,
2363 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2364 
2365 #ifdef	_KERNEL
2366 			myhostid = zone_get_hostid(NULL);
2367 #else	/* _KERNEL */
2368 			/*
2369 			 * We're emulating the system's hostid in userland, so
2370 			 * we can't use zone_get_hostid().
2371 			 */
2372 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2373 #endif	/* _KERNEL */
2374 			if (hostid != 0 && myhostid != 0 &&
2375 			    hostid != myhostid) {
2376 				nvlist_free(nvconfig);
2377 				cmn_err(CE_WARN, "pool '%s' could not be "
2378 				    "loaded as it was last accessed by "
2379 				    "another system (host: %s hostid: 0x%lx). "
2380 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2381 				    spa_name(spa), hostname,
2382 				    (unsigned long)hostid);
2383 				return (SET_ERROR(EBADF));
2384 			}
2385 		}
2386 		if (nvlist_lookup_nvlist(spa->spa_config,
2387 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2388 			VERIFY(nvlist_add_nvlist(nvconfig,
2389 			    ZPOOL_REWIND_POLICY, policy) == 0);
2390 
2391 		spa_config_set(spa, nvconfig);
2392 		spa_unload(spa);
2393 		spa_deactivate(spa);
2394 		spa_activate(spa, orig_mode);
2395 
2396 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2397 	}
2398 
2399 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2400 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2401 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2402 	if (error != 0)
2403 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404 
2405 	/*
2406 	 * Load the bit that tells us to use the new accounting function
2407 	 * (raid-z deflation).  If we have an older pool, this will not
2408 	 * be present.
2409 	 */
2410 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2411 	if (error != 0 && error != ENOENT)
2412 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413 
2414 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2415 	    &spa->spa_creation_version);
2416 	if (error != 0 && error != ENOENT)
2417 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418 
2419 	/*
2420 	 * Load the persistent error log.  If we have an older pool, this will
2421 	 * not be present.
2422 	 */
2423 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2424 	if (error != 0 && error != ENOENT)
2425 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 
2427 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2428 	    &spa->spa_errlog_scrub);
2429 	if (error != 0 && error != ENOENT)
2430 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431 
2432 	/*
2433 	 * Load the history object.  If we have an older pool, this
2434 	 * will not be present.
2435 	 */
2436 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2437 	if (error != 0 && error != ENOENT)
2438 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 
2440 	/*
2441 	 * If we're assembling the pool from the split-off vdevs of
2442 	 * an existing pool, we don't want to attach the spares & cache
2443 	 * devices.
2444 	 */
2445 
2446 	/*
2447 	 * Load any hot spares for this pool.
2448 	 */
2449 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2450 	if (error != 0 && error != ENOENT)
2451 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2453 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2454 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2455 		    &spa->spa_spares.sav_config) != 0)
2456 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 
2458 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2459 		spa_load_spares(spa);
2460 		spa_config_exit(spa, SCL_ALL, FTAG);
2461 	} else if (error == 0) {
2462 		spa->spa_spares.sav_sync = B_TRUE;
2463 	}
2464 
2465 	/*
2466 	 * Load any level 2 ARC devices for this pool.
2467 	 */
2468 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2469 	    &spa->spa_l2cache.sav_object);
2470 	if (error != 0 && error != ENOENT)
2471 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2472 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2473 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2474 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2475 		    &spa->spa_l2cache.sav_config) != 0)
2476 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477 
2478 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2479 		spa_load_l2cache(spa);
2480 		spa_config_exit(spa, SCL_ALL, FTAG);
2481 	} else if (error == 0) {
2482 		spa->spa_l2cache.sav_sync = B_TRUE;
2483 	}
2484 
2485 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2486 
2487 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2488 	if (error && error != ENOENT)
2489 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 
2491 	if (error == 0) {
2492 		uint64_t autoreplace;
2493 
2494 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2495 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2496 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2497 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2498 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2499 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2500 		    &spa->spa_dedup_ditto);
2501 
2502 		spa->spa_autoreplace = (autoreplace != 0);
2503 	}
2504 
2505 	/*
2506 	 * If the 'autoreplace' property is set, then post a resource notifying
2507 	 * the ZFS DE that it should not issue any faults for unopenable
2508 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2509 	 * unopenable vdevs so that the normal autoreplace handler can take
2510 	 * over.
2511 	 */
2512 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2513 		spa_check_removed(spa->spa_root_vdev);
2514 		/*
2515 		 * For the import case, this is done in spa_import(), because
2516 		 * at this point we're using the spare definitions from
2517 		 * the MOS config, not necessarily from the userland config.
2518 		 */
2519 		if (state != SPA_LOAD_IMPORT) {
2520 			spa_aux_check_removed(&spa->spa_spares);
2521 			spa_aux_check_removed(&spa->spa_l2cache);
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * Load the vdev state for all toplevel vdevs.
2527 	 */
2528 	vdev_load(rvd);
2529 
2530 	/*
2531 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2532 	 */
2533 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2534 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2535 	spa_config_exit(spa, SCL_ALL, FTAG);
2536 
2537 	/*
2538 	 * Load the DDTs (dedup tables).
2539 	 */
2540 	error = ddt_load(spa);
2541 	if (error != 0)
2542 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543 
2544 	spa_update_dspace(spa);
2545 
2546 	/*
2547 	 * Validate the config, using the MOS config to fill in any
2548 	 * information which might be missing.  If we fail to validate
2549 	 * the config then declare the pool unfit for use. If we're
2550 	 * assembling a pool from a split, the log is not transferred
2551 	 * over.
2552 	 */
2553 	if (type != SPA_IMPORT_ASSEMBLE) {
2554 		nvlist_t *nvconfig;
2555 
2556 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2557 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2558 
2559 		if (!spa_config_valid(spa, nvconfig)) {
2560 			nvlist_free(nvconfig);
2561 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2562 			    ENXIO));
2563 		}
2564 		nvlist_free(nvconfig);
2565 
2566 		/*
2567 		 * Now that we've validated the config, check the state of the
2568 		 * root vdev.  If it can't be opened, it indicates one or
2569 		 * more toplevel vdevs are faulted.
2570 		 */
2571 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2572 			return (SET_ERROR(ENXIO));
2573 
2574 		if (spa_check_logs(spa)) {
2575 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2576 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2577 		}
2578 	}
2579 
2580 	if (missing_feat_write) {
2581 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2582 
2583 		/*
2584 		 * At this point, we know that we can open the pool in
2585 		 * read-only mode but not read-write mode. We now have enough
2586 		 * information and can return to userland.
2587 		 */
2588 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2589 	}
2590 
2591 	/*
2592 	 * We've successfully opened the pool, verify that we're ready
2593 	 * to start pushing transactions.
2594 	 */
2595 	if (state != SPA_LOAD_TRYIMPORT) {
2596 		if (error = spa_load_verify(spa))
2597 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2598 			    error));
2599 	}
2600 
2601 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2602 	    spa->spa_load_max_txg == UINT64_MAX)) {
2603 		dmu_tx_t *tx;
2604 		int need_update = B_FALSE;
2605 
2606 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2607 
2608 		/*
2609 		 * Claim log blocks that haven't been committed yet.
2610 		 * This must all happen in a single txg.
2611 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2612 		 * invoked from zil_claim_log_block()'s i/o done callback.
2613 		 * Price of rollback is that we abandon the log.
2614 		 */
2615 		spa->spa_claiming = B_TRUE;
2616 
2617 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2618 		    spa_first_txg(spa));
2619 		(void) dmu_objset_find(spa_name(spa),
2620 		    zil_claim, tx, DS_FIND_CHILDREN);
2621 		dmu_tx_commit(tx);
2622 
2623 		spa->spa_claiming = B_FALSE;
2624 
2625 		spa_set_log_state(spa, SPA_LOG_GOOD);
2626 		spa->spa_sync_on = B_TRUE;
2627 		txg_sync_start(spa->spa_dsl_pool);
2628 
2629 		/*
2630 		 * Wait for all claims to sync.  We sync up to the highest
2631 		 * claimed log block birth time so that claimed log blocks
2632 		 * don't appear to be from the future.  spa_claim_max_txg
2633 		 * will have been set for us by either zil_check_log_chain()
2634 		 * (invoked from spa_check_logs()) or zil_claim() above.
2635 		 */
2636 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2637 
2638 		/*
2639 		 * If the config cache is stale, or we have uninitialized
2640 		 * metaslabs (see spa_vdev_add()), then update the config.
2641 		 *
2642 		 * If this is a verbatim import, trust the current
2643 		 * in-core spa_config and update the disk labels.
2644 		 */
2645 		if (config_cache_txg != spa->spa_config_txg ||
2646 		    state == SPA_LOAD_IMPORT ||
2647 		    state == SPA_LOAD_RECOVER ||
2648 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2649 			need_update = B_TRUE;
2650 
2651 		for (int c = 0; c < rvd->vdev_children; c++)
2652 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2653 				need_update = B_TRUE;
2654 
2655 		/*
2656 		 * Update the config cache asychronously in case we're the
2657 		 * root pool, in which case the config cache isn't writable yet.
2658 		 */
2659 		if (need_update)
2660 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2661 
2662 		/*
2663 		 * Check all DTLs to see if anything needs resilvering.
2664 		 */
2665 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2666 		    vdev_resilver_needed(rvd, NULL, NULL))
2667 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2668 
2669 		/*
2670 		 * Log the fact that we booted up (so that we can detect if
2671 		 * we rebooted in the middle of an operation).
2672 		 */
2673 		spa_history_log_version(spa, "open");
2674 
2675 		/*
2676 		 * Delete any inconsistent datasets.
2677 		 */
2678 		(void) dmu_objset_find(spa_name(spa),
2679 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2680 
2681 		/*
2682 		 * Clean up any stale temporary dataset userrefs.
2683 		 */
2684 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2685 	}
2686 
2687 	return (0);
2688 }
2689 
2690 static int
2691 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2692 {
2693 	int mode = spa->spa_mode;
2694 
2695 	spa_unload(spa);
2696 	spa_deactivate(spa);
2697 
2698 	spa->spa_load_max_txg--;
2699 
2700 	spa_activate(spa, mode);
2701 	spa_async_suspend(spa);
2702 
2703 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2704 }
2705 
2706 /*
2707  * If spa_load() fails this function will try loading prior txg's. If
2708  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2709  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2710  * function will not rewind the pool and will return the same error as
2711  * spa_load().
2712  */
2713 static int
2714 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2715     uint64_t max_request, int rewind_flags)
2716 {
2717 	nvlist_t *loadinfo = NULL;
2718 	nvlist_t *config = NULL;
2719 	int load_error, rewind_error;
2720 	uint64_t safe_rewind_txg;
2721 	uint64_t min_txg;
2722 
2723 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2724 		spa->spa_load_max_txg = spa->spa_load_txg;
2725 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2726 	} else {
2727 		spa->spa_load_max_txg = max_request;
2728 	}
2729 
2730 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2731 	    mosconfig);
2732 	if (load_error == 0)
2733 		return (0);
2734 
2735 	if (spa->spa_root_vdev != NULL)
2736 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2737 
2738 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2739 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2740 
2741 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2742 		nvlist_free(config);
2743 		return (load_error);
2744 	}
2745 
2746 	if (state == SPA_LOAD_RECOVER) {
2747 		/* Price of rolling back is discarding txgs, including log */
2748 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2749 	} else {
2750 		/*
2751 		 * If we aren't rolling back save the load info from our first
2752 		 * import attempt so that we can restore it after attempting
2753 		 * to rewind.
2754 		 */
2755 		loadinfo = spa->spa_load_info;
2756 		spa->spa_load_info = fnvlist_alloc();
2757 	}
2758 
2759 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2760 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2761 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2762 	    TXG_INITIAL : safe_rewind_txg;
2763 
2764 	/*
2765 	 * Continue as long as we're finding errors, we're still within
2766 	 * the acceptable rewind range, and we're still finding uberblocks
2767 	 */
2768 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2769 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2770 		if (spa->spa_load_max_txg < safe_rewind_txg)
2771 			spa->spa_extreme_rewind = B_TRUE;
2772 		rewind_error = spa_load_retry(spa, state, mosconfig);
2773 	}
2774 
2775 	spa->spa_extreme_rewind = B_FALSE;
2776 	spa->spa_load_max_txg = UINT64_MAX;
2777 
2778 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2779 		spa_config_set(spa, config);
2780 
2781 	if (state == SPA_LOAD_RECOVER) {
2782 		ASSERT3P(loadinfo, ==, NULL);
2783 		return (rewind_error);
2784 	} else {
2785 		/* Store the rewind info as part of the initial load info */
2786 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2787 		    spa->spa_load_info);
2788 
2789 		/* Restore the initial load info */
2790 		fnvlist_free(spa->spa_load_info);
2791 		spa->spa_load_info = loadinfo;
2792 
2793 		return (load_error);
2794 	}
2795 }
2796 
2797 /*
2798  * Pool Open/Import
2799  *
2800  * The import case is identical to an open except that the configuration is sent
2801  * down from userland, instead of grabbed from the configuration cache.  For the
2802  * case of an open, the pool configuration will exist in the
2803  * POOL_STATE_UNINITIALIZED state.
2804  *
2805  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2806  * the same time open the pool, without having to keep around the spa_t in some
2807  * ambiguous state.
2808  */
2809 static int
2810 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2811     nvlist_t **config)
2812 {
2813 	spa_t *spa;
2814 	spa_load_state_t state = SPA_LOAD_OPEN;
2815 	int error;
2816 	int locked = B_FALSE;
2817 
2818 	*spapp = NULL;
2819 
2820 	/*
2821 	 * As disgusting as this is, we need to support recursive calls to this
2822 	 * function because dsl_dir_open() is called during spa_load(), and ends
2823 	 * up calling spa_open() again.  The real fix is to figure out how to
2824 	 * avoid dsl_dir_open() calling this in the first place.
2825 	 */
2826 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2827 		mutex_enter(&spa_namespace_lock);
2828 		locked = B_TRUE;
2829 	}
2830 
2831 	if ((spa = spa_lookup(pool)) == NULL) {
2832 		if (locked)
2833 			mutex_exit(&spa_namespace_lock);
2834 		return (SET_ERROR(ENOENT));
2835 	}
2836 
2837 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2838 		zpool_rewind_policy_t policy;
2839 
2840 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2841 		    &policy);
2842 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2843 			state = SPA_LOAD_RECOVER;
2844 
2845 		spa_activate(spa, spa_mode_global);
2846 
2847 		if (state != SPA_LOAD_RECOVER)
2848 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2849 
2850 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2851 		    policy.zrp_request);
2852 
2853 		if (error == EBADF) {
2854 			/*
2855 			 * If vdev_validate() returns failure (indicated by
2856 			 * EBADF), it indicates that one of the vdevs indicates
2857 			 * that the pool has been exported or destroyed.  If
2858 			 * this is the case, the config cache is out of sync and
2859 			 * we should remove the pool from the namespace.
2860 			 */
2861 			spa_unload(spa);
2862 			spa_deactivate(spa);
2863 			spa_config_sync(spa, B_TRUE, B_TRUE);
2864 			spa_remove(spa);
2865 			if (locked)
2866 				mutex_exit(&spa_namespace_lock);
2867 			return (SET_ERROR(ENOENT));
2868 		}
2869 
2870 		if (error) {
2871 			/*
2872 			 * We can't open the pool, but we still have useful
2873 			 * information: the state of each vdev after the
2874 			 * attempted vdev_open().  Return this to the user.
2875 			 */
2876 			if (config != NULL && spa->spa_config) {
2877 				VERIFY(nvlist_dup(spa->spa_config, config,
2878 				    KM_SLEEP) == 0);
2879 				VERIFY(nvlist_add_nvlist(*config,
2880 				    ZPOOL_CONFIG_LOAD_INFO,
2881 				    spa->spa_load_info) == 0);
2882 			}
2883 			spa_unload(spa);
2884 			spa_deactivate(spa);
2885 			spa->spa_last_open_failed = error;
2886 			if (locked)
2887 				mutex_exit(&spa_namespace_lock);
2888 			*spapp = NULL;
2889 			return (error);
2890 		}
2891 	}
2892 
2893 	spa_open_ref(spa, tag);
2894 
2895 	if (config != NULL)
2896 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2897 
2898 	/*
2899 	 * If we've recovered the pool, pass back any information we
2900 	 * gathered while doing the load.
2901 	 */
2902 	if (state == SPA_LOAD_RECOVER) {
2903 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2904 		    spa->spa_load_info) == 0);
2905 	}
2906 
2907 	if (locked) {
2908 		spa->spa_last_open_failed = 0;
2909 		spa->spa_last_ubsync_txg = 0;
2910 		spa->spa_load_txg = 0;
2911 		mutex_exit(&spa_namespace_lock);
2912 	}
2913 
2914 	*spapp = spa;
2915 
2916 	return (0);
2917 }
2918 
2919 int
2920 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2921     nvlist_t **config)
2922 {
2923 	return (spa_open_common(name, spapp, tag, policy, config));
2924 }
2925 
2926 int
2927 spa_open(const char *name, spa_t **spapp, void *tag)
2928 {
2929 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2930 }
2931 
2932 /*
2933  * Lookup the given spa_t, incrementing the inject count in the process,
2934  * preventing it from being exported or destroyed.
2935  */
2936 spa_t *
2937 spa_inject_addref(char *name)
2938 {
2939 	spa_t *spa;
2940 
2941 	mutex_enter(&spa_namespace_lock);
2942 	if ((spa = spa_lookup(name)) == NULL) {
2943 		mutex_exit(&spa_namespace_lock);
2944 		return (NULL);
2945 	}
2946 	spa->spa_inject_ref++;
2947 	mutex_exit(&spa_namespace_lock);
2948 
2949 	return (spa);
2950 }
2951 
2952 void
2953 spa_inject_delref(spa_t *spa)
2954 {
2955 	mutex_enter(&spa_namespace_lock);
2956 	spa->spa_inject_ref--;
2957 	mutex_exit(&spa_namespace_lock);
2958 }
2959 
2960 /*
2961  * Add spares device information to the nvlist.
2962  */
2963 static void
2964 spa_add_spares(spa_t *spa, nvlist_t *config)
2965 {
2966 	nvlist_t **spares;
2967 	uint_t i, nspares;
2968 	nvlist_t *nvroot;
2969 	uint64_t guid;
2970 	vdev_stat_t *vs;
2971 	uint_t vsc;
2972 	uint64_t pool;
2973 
2974 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2975 
2976 	if (spa->spa_spares.sav_count == 0)
2977 		return;
2978 
2979 	VERIFY(nvlist_lookup_nvlist(config,
2980 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2981 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2982 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2983 	if (nspares != 0) {
2984 		VERIFY(nvlist_add_nvlist_array(nvroot,
2985 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2986 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2987 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2988 
2989 		/*
2990 		 * Go through and find any spares which have since been
2991 		 * repurposed as an active spare.  If this is the case, update
2992 		 * their status appropriately.
2993 		 */
2994 		for (i = 0; i < nspares; i++) {
2995 			VERIFY(nvlist_lookup_uint64(spares[i],
2996 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2997 			if (spa_spare_exists(guid, &pool, NULL) &&
2998 			    pool != 0ULL) {
2999 				VERIFY(nvlist_lookup_uint64_array(
3000 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3001 				    (uint64_t **)&vs, &vsc) == 0);
3002 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3003 				vs->vs_aux = VDEV_AUX_SPARED;
3004 			}
3005 		}
3006 	}
3007 }
3008 
3009 /*
3010  * Add l2cache device information to the nvlist, including vdev stats.
3011  */
3012 static void
3013 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3014 {
3015 	nvlist_t **l2cache;
3016 	uint_t i, j, nl2cache;
3017 	nvlist_t *nvroot;
3018 	uint64_t guid;
3019 	vdev_t *vd;
3020 	vdev_stat_t *vs;
3021 	uint_t vsc;
3022 
3023 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3024 
3025 	if (spa->spa_l2cache.sav_count == 0)
3026 		return;
3027 
3028 	VERIFY(nvlist_lookup_nvlist(config,
3029 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3030 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3031 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3032 	if (nl2cache != 0) {
3033 		VERIFY(nvlist_add_nvlist_array(nvroot,
3034 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3035 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3036 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3037 
3038 		/*
3039 		 * Update level 2 cache device stats.
3040 		 */
3041 
3042 		for (i = 0; i < nl2cache; i++) {
3043 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3044 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3045 
3046 			vd = NULL;
3047 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3048 				if (guid ==
3049 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3050 					vd = spa->spa_l2cache.sav_vdevs[j];
3051 					break;
3052 				}
3053 			}
3054 			ASSERT(vd != NULL);
3055 
3056 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3057 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3058 			    == 0);
3059 			vdev_get_stats(vd, vs);
3060 		}
3061 	}
3062 }
3063 
3064 static void
3065 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3066 {
3067 	nvlist_t *features;
3068 	zap_cursor_t zc;
3069 	zap_attribute_t za;
3070 
3071 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3072 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3073 
3074 	if (spa->spa_feat_for_read_obj != 0) {
3075 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3076 		    spa->spa_feat_for_read_obj);
3077 		    zap_cursor_retrieve(&zc, &za) == 0;
3078 		    zap_cursor_advance(&zc)) {
3079 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3080 			    za.za_num_integers == 1);
3081 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3082 			    za.za_first_integer));
3083 		}
3084 		zap_cursor_fini(&zc);
3085 	}
3086 
3087 	if (spa->spa_feat_for_write_obj != 0) {
3088 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 		    spa->spa_feat_for_write_obj);
3090 		    zap_cursor_retrieve(&zc, &za) == 0;
3091 		    zap_cursor_advance(&zc)) {
3092 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 			    za.za_num_integers == 1);
3094 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 			    za.za_first_integer));
3096 		}
3097 		zap_cursor_fini(&zc);
3098 	}
3099 
3100 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3101 	    features) == 0);
3102 	nvlist_free(features);
3103 }
3104 
3105 int
3106 spa_get_stats(const char *name, nvlist_t **config,
3107     char *altroot, size_t buflen)
3108 {
3109 	int error;
3110 	spa_t *spa;
3111 
3112 	*config = NULL;
3113 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3114 
3115 	if (spa != NULL) {
3116 		/*
3117 		 * This still leaves a window of inconsistency where the spares
3118 		 * or l2cache devices could change and the config would be
3119 		 * self-inconsistent.
3120 		 */
3121 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3122 
3123 		if (*config != NULL) {
3124 			uint64_t loadtimes[2];
3125 
3126 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3127 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3128 			VERIFY(nvlist_add_uint64_array(*config,
3129 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3130 
3131 			VERIFY(nvlist_add_uint64(*config,
3132 			    ZPOOL_CONFIG_ERRCOUNT,
3133 			    spa_get_errlog_size(spa)) == 0);
3134 
3135 			if (spa_suspended(spa))
3136 				VERIFY(nvlist_add_uint64(*config,
3137 				    ZPOOL_CONFIG_SUSPENDED,
3138 				    spa->spa_failmode) == 0);
3139 
3140 			spa_add_spares(spa, *config);
3141 			spa_add_l2cache(spa, *config);
3142 			spa_add_feature_stats(spa, *config);
3143 		}
3144 	}
3145 
3146 	/*
3147 	 * We want to get the alternate root even for faulted pools, so we cheat
3148 	 * and call spa_lookup() directly.
3149 	 */
3150 	if (altroot) {
3151 		if (spa == NULL) {
3152 			mutex_enter(&spa_namespace_lock);
3153 			spa = spa_lookup(name);
3154 			if (spa)
3155 				spa_altroot(spa, altroot, buflen);
3156 			else
3157 				altroot[0] = '\0';
3158 			spa = NULL;
3159 			mutex_exit(&spa_namespace_lock);
3160 		} else {
3161 			spa_altroot(spa, altroot, buflen);
3162 		}
3163 	}
3164 
3165 	if (spa != NULL) {
3166 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3167 		spa_close(spa, FTAG);
3168 	}
3169 
3170 	return (error);
3171 }
3172 
3173 /*
3174  * Validate that the auxiliary device array is well formed.  We must have an
3175  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3176  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3177  * specified, as long as they are well-formed.
3178  */
3179 static int
3180 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3181     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3182     vdev_labeltype_t label)
3183 {
3184 	nvlist_t **dev;
3185 	uint_t i, ndev;
3186 	vdev_t *vd;
3187 	int error;
3188 
3189 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3190 
3191 	/*
3192 	 * It's acceptable to have no devs specified.
3193 	 */
3194 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3195 		return (0);
3196 
3197 	if (ndev == 0)
3198 		return (SET_ERROR(EINVAL));
3199 
3200 	/*
3201 	 * Make sure the pool is formatted with a version that supports this
3202 	 * device type.
3203 	 */
3204 	if (spa_version(spa) < version)
3205 		return (SET_ERROR(ENOTSUP));
3206 
3207 	/*
3208 	 * Set the pending device list so we correctly handle device in-use
3209 	 * checking.
3210 	 */
3211 	sav->sav_pending = dev;
3212 	sav->sav_npending = ndev;
3213 
3214 	for (i = 0; i < ndev; i++) {
3215 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3216 		    mode)) != 0)
3217 			goto out;
3218 
3219 		if (!vd->vdev_ops->vdev_op_leaf) {
3220 			vdev_free(vd);
3221 			error = SET_ERROR(EINVAL);
3222 			goto out;
3223 		}
3224 
3225 		/*
3226 		 * The L2ARC currently only supports disk devices in
3227 		 * kernel context.  For user-level testing, we allow it.
3228 		 */
3229 #ifdef _KERNEL
3230 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3231 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3232 			error = SET_ERROR(ENOTBLK);
3233 			vdev_free(vd);
3234 			goto out;
3235 		}
3236 #endif
3237 		vd->vdev_top = vd;
3238 
3239 		if ((error = vdev_open(vd)) == 0 &&
3240 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3241 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3242 			    vd->vdev_guid) == 0);
3243 		}
3244 
3245 		vdev_free(vd);
3246 
3247 		if (error &&
3248 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3249 			goto out;
3250 		else
3251 			error = 0;
3252 	}
3253 
3254 out:
3255 	sav->sav_pending = NULL;
3256 	sav->sav_npending = 0;
3257 	return (error);
3258 }
3259 
3260 static int
3261 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3262 {
3263 	int error;
3264 
3265 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3266 
3267 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3268 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3269 	    VDEV_LABEL_SPARE)) != 0) {
3270 		return (error);
3271 	}
3272 
3273 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3274 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3275 	    VDEV_LABEL_L2CACHE));
3276 }
3277 
3278 static void
3279 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3280     const char *config)
3281 {
3282 	int i;
3283 
3284 	if (sav->sav_config != NULL) {
3285 		nvlist_t **olddevs;
3286 		uint_t oldndevs;
3287 		nvlist_t **newdevs;
3288 
3289 		/*
3290 		 * Generate new dev list by concatentating with the
3291 		 * current dev list.
3292 		 */
3293 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3294 		    &olddevs, &oldndevs) == 0);
3295 
3296 		newdevs = kmem_alloc(sizeof (void *) *
3297 		    (ndevs + oldndevs), KM_SLEEP);
3298 		for (i = 0; i < oldndevs; i++)
3299 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3300 			    KM_SLEEP) == 0);
3301 		for (i = 0; i < ndevs; i++)
3302 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3303 			    KM_SLEEP) == 0);
3304 
3305 		VERIFY(nvlist_remove(sav->sav_config, config,
3306 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3307 
3308 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3309 		    config, newdevs, ndevs + oldndevs) == 0);
3310 		for (i = 0; i < oldndevs + ndevs; i++)
3311 			nvlist_free(newdevs[i]);
3312 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3313 	} else {
3314 		/*
3315 		 * Generate a new dev list.
3316 		 */
3317 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3318 		    KM_SLEEP) == 0);
3319 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3320 		    devs, ndevs) == 0);
3321 	}
3322 }
3323 
3324 /*
3325  * Stop and drop level 2 ARC devices
3326  */
3327 void
3328 spa_l2cache_drop(spa_t *spa)
3329 {
3330 	vdev_t *vd;
3331 	int i;
3332 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3333 
3334 	for (i = 0; i < sav->sav_count; i++) {
3335 		uint64_t pool;
3336 
3337 		vd = sav->sav_vdevs[i];
3338 		ASSERT(vd != NULL);
3339 
3340 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3341 		    pool != 0ULL && l2arc_vdev_present(vd))
3342 			l2arc_remove_vdev(vd);
3343 	}
3344 }
3345 
3346 /*
3347  * Pool Creation
3348  */
3349 int
3350 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3351     nvlist_t *zplprops)
3352 {
3353 	spa_t *spa;
3354 	char *altroot = NULL;
3355 	vdev_t *rvd;
3356 	dsl_pool_t *dp;
3357 	dmu_tx_t *tx;
3358 	int error = 0;
3359 	uint64_t txg = TXG_INITIAL;
3360 	nvlist_t **spares, **l2cache;
3361 	uint_t nspares, nl2cache;
3362 	uint64_t version, obj;
3363 	boolean_t has_features;
3364 
3365 	/*
3366 	 * If this pool already exists, return failure.
3367 	 */
3368 	mutex_enter(&spa_namespace_lock);
3369 	if (spa_lookup(pool) != NULL) {
3370 		mutex_exit(&spa_namespace_lock);
3371 		return (SET_ERROR(EEXIST));
3372 	}
3373 
3374 	/*
3375 	 * Allocate a new spa_t structure.
3376 	 */
3377 	(void) nvlist_lookup_string(props,
3378 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3379 	spa = spa_add(pool, NULL, altroot);
3380 	spa_activate(spa, spa_mode_global);
3381 
3382 	if (props && (error = spa_prop_validate(spa, props))) {
3383 		spa_deactivate(spa);
3384 		spa_remove(spa);
3385 		mutex_exit(&spa_namespace_lock);
3386 		return (error);
3387 	}
3388 
3389 	has_features = B_FALSE;
3390 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3391 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3392 		if (zpool_prop_feature(nvpair_name(elem)))
3393 			has_features = B_TRUE;
3394 	}
3395 
3396 	if (has_features || nvlist_lookup_uint64(props,
3397 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3398 		version = SPA_VERSION;
3399 	}
3400 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3401 
3402 	spa->spa_first_txg = txg;
3403 	spa->spa_uberblock.ub_txg = txg - 1;
3404 	spa->spa_uberblock.ub_version = version;
3405 	spa->spa_ubsync = spa->spa_uberblock;
3406 
3407 	/*
3408 	 * Create "The Godfather" zio to hold all async IOs
3409 	 */
3410 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3411 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3412 
3413 	/*
3414 	 * Create the root vdev.
3415 	 */
3416 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3417 
3418 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3419 
3420 	ASSERT(error != 0 || rvd != NULL);
3421 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3422 
3423 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3424 		error = SET_ERROR(EINVAL);
3425 
3426 	if (error == 0 &&
3427 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3428 	    (error = spa_validate_aux(spa, nvroot, txg,
3429 	    VDEV_ALLOC_ADD)) == 0) {
3430 		for (int c = 0; c < rvd->vdev_children; c++) {
3431 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3432 			vdev_expand(rvd->vdev_child[c], txg);
3433 		}
3434 	}
3435 
3436 	spa_config_exit(spa, SCL_ALL, FTAG);
3437 
3438 	if (error != 0) {
3439 		spa_unload(spa);
3440 		spa_deactivate(spa);
3441 		spa_remove(spa);
3442 		mutex_exit(&spa_namespace_lock);
3443 		return (error);
3444 	}
3445 
3446 	/*
3447 	 * Get the list of spares, if specified.
3448 	 */
3449 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3450 	    &spares, &nspares) == 0) {
3451 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3452 		    KM_SLEEP) == 0);
3453 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3454 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3455 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3456 		spa_load_spares(spa);
3457 		spa_config_exit(spa, SCL_ALL, FTAG);
3458 		spa->spa_spares.sav_sync = B_TRUE;
3459 	}
3460 
3461 	/*
3462 	 * Get the list of level 2 cache devices, if specified.
3463 	 */
3464 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3465 	    &l2cache, &nl2cache) == 0) {
3466 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3467 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3468 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3469 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3470 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3471 		spa_load_l2cache(spa);
3472 		spa_config_exit(spa, SCL_ALL, FTAG);
3473 		spa->spa_l2cache.sav_sync = B_TRUE;
3474 	}
3475 
3476 	spa->spa_is_initializing = B_TRUE;
3477 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3478 	spa->spa_meta_objset = dp->dp_meta_objset;
3479 	spa->spa_is_initializing = B_FALSE;
3480 
3481 	/*
3482 	 * Create DDTs (dedup tables).
3483 	 */
3484 	ddt_create(spa);
3485 
3486 	spa_update_dspace(spa);
3487 
3488 	tx = dmu_tx_create_assigned(dp, txg);
3489 
3490 	/*
3491 	 * Create the pool config object.
3492 	 */
3493 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3494 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3495 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3496 
3497 	if (zap_add(spa->spa_meta_objset,
3498 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3499 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3500 		cmn_err(CE_PANIC, "failed to add pool config");
3501 	}
3502 
3503 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3504 		spa_feature_create_zap_objects(spa, tx);
3505 
3506 	if (zap_add(spa->spa_meta_objset,
3507 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3508 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3509 		cmn_err(CE_PANIC, "failed to add pool version");
3510 	}
3511 
3512 	/* Newly created pools with the right version are always deflated. */
3513 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3514 		spa->spa_deflate = TRUE;
3515 		if (zap_add(spa->spa_meta_objset,
3516 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3517 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3518 			cmn_err(CE_PANIC, "failed to add deflate");
3519 		}
3520 	}
3521 
3522 	/*
3523 	 * Create the deferred-free bpobj.  Turn off compression
3524 	 * because sync-to-convergence takes longer if the blocksize
3525 	 * keeps changing.
3526 	 */
3527 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3528 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3529 	    ZIO_COMPRESS_OFF, tx);
3530 	if (zap_add(spa->spa_meta_objset,
3531 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3532 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3533 		cmn_err(CE_PANIC, "failed to add bpobj");
3534 	}
3535 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3536 	    spa->spa_meta_objset, obj));
3537 
3538 	/*
3539 	 * Create the pool's history object.
3540 	 */
3541 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3542 		spa_history_create_obj(spa, tx);
3543 
3544 	/*
3545 	 * Set pool properties.
3546 	 */
3547 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3548 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3549 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3550 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3551 
3552 	if (props != NULL) {
3553 		spa_configfile_set(spa, props, B_FALSE);
3554 		spa_sync_props(props, tx);
3555 	}
3556 
3557 	dmu_tx_commit(tx);
3558 
3559 	spa->spa_sync_on = B_TRUE;
3560 	txg_sync_start(spa->spa_dsl_pool);
3561 
3562 	/*
3563 	 * We explicitly wait for the first transaction to complete so that our
3564 	 * bean counters are appropriately updated.
3565 	 */
3566 	txg_wait_synced(spa->spa_dsl_pool, txg);
3567 
3568 	spa_config_sync(spa, B_FALSE, B_TRUE);
3569 
3570 	spa_history_log_version(spa, "create");
3571 
3572 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3573 
3574 	mutex_exit(&spa_namespace_lock);
3575 
3576 	return (0);
3577 }
3578 
3579 #ifdef _KERNEL
3580 /*
3581  * Get the root pool information from the root disk, then import the root pool
3582  * during the system boot up time.
3583  */
3584 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3585 
3586 static nvlist_t *
3587 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3588 {
3589 	nvlist_t *config;
3590 	nvlist_t *nvtop, *nvroot;
3591 	uint64_t pgid;
3592 
3593 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3594 		return (NULL);
3595 
3596 	/*
3597 	 * Add this top-level vdev to the child array.
3598 	 */
3599 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3600 	    &nvtop) == 0);
3601 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3602 	    &pgid) == 0);
3603 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3604 
3605 	/*
3606 	 * Put this pool's top-level vdevs into a root vdev.
3607 	 */
3608 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3609 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3610 	    VDEV_TYPE_ROOT) == 0);
3611 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3612 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3613 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3614 	    &nvtop, 1) == 0);
3615 
3616 	/*
3617 	 * Replace the existing vdev_tree with the new root vdev in
3618 	 * this pool's configuration (remove the old, add the new).
3619 	 */
3620 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3621 	nvlist_free(nvroot);
3622 	return (config);
3623 }
3624 
3625 /*
3626  * Walk the vdev tree and see if we can find a device with "better"
3627  * configuration. A configuration is "better" if the label on that
3628  * device has a more recent txg.
3629  */
3630 static void
3631 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3632 {
3633 	for (int c = 0; c < vd->vdev_children; c++)
3634 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3635 
3636 	if (vd->vdev_ops->vdev_op_leaf) {
3637 		nvlist_t *label;
3638 		uint64_t label_txg;
3639 
3640 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3641 		    &label) != 0)
3642 			return;
3643 
3644 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3645 		    &label_txg) == 0);
3646 
3647 		/*
3648 		 * Do we have a better boot device?
3649 		 */
3650 		if (label_txg > *txg) {
3651 			*txg = label_txg;
3652 			*avd = vd;
3653 		}
3654 		nvlist_free(label);
3655 	}
3656 }
3657 
3658 /*
3659  * Import a root pool.
3660  *
3661  * For x86. devpath_list will consist of devid and/or physpath name of
3662  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3663  * The GRUB "findroot" command will return the vdev we should boot.
3664  *
3665  * For Sparc, devpath_list consists the physpath name of the booting device
3666  * no matter the rootpool is a single device pool or a mirrored pool.
3667  * e.g.
3668  *	"/pci@1f,0/ide@d/disk@0,0:a"
3669  */
3670 int
3671 spa_import_rootpool(char *devpath, char *devid)
3672 {
3673 	spa_t *spa;
3674 	vdev_t *rvd, *bvd, *avd = NULL;
3675 	nvlist_t *config, *nvtop;
3676 	uint64_t guid, txg;
3677 	char *pname;
3678 	int error;
3679 
3680 	/*
3681 	 * Read the label from the boot device and generate a configuration.
3682 	 */
3683 	config = spa_generate_rootconf(devpath, devid, &guid);
3684 #if defined(_OBP) && defined(_KERNEL)
3685 	if (config == NULL) {
3686 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3687 			/* iscsi boot */
3688 			get_iscsi_bootpath_phy(devpath);
3689 			config = spa_generate_rootconf(devpath, devid, &guid);
3690 		}
3691 	}
3692 #endif
3693 	if (config == NULL) {
3694 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3695 		    devpath);
3696 		return (SET_ERROR(EIO));
3697 	}
3698 
3699 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3700 	    &pname) == 0);
3701 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3702 
3703 	mutex_enter(&spa_namespace_lock);
3704 	if ((spa = spa_lookup(pname)) != NULL) {
3705 		/*
3706 		 * Remove the existing root pool from the namespace so that we
3707 		 * can replace it with the correct config we just read in.
3708 		 */
3709 		spa_remove(spa);
3710 	}
3711 
3712 	spa = spa_add(pname, config, NULL);
3713 	spa->spa_is_root = B_TRUE;
3714 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3715 
3716 	/*
3717 	 * Build up a vdev tree based on the boot device's label config.
3718 	 */
3719 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3720 	    &nvtop) == 0);
3721 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3722 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3723 	    VDEV_ALLOC_ROOTPOOL);
3724 	spa_config_exit(spa, SCL_ALL, FTAG);
3725 	if (error) {
3726 		mutex_exit(&spa_namespace_lock);
3727 		nvlist_free(config);
3728 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3729 		    pname);
3730 		return (error);
3731 	}
3732 
3733 	/*
3734 	 * Get the boot vdev.
3735 	 */
3736 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3737 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3738 		    (u_longlong_t)guid);
3739 		error = SET_ERROR(ENOENT);
3740 		goto out;
3741 	}
3742 
3743 	/*
3744 	 * Determine if there is a better boot device.
3745 	 */
3746 	avd = bvd;
3747 	spa_alt_rootvdev(rvd, &avd, &txg);
3748 	if (avd != bvd) {
3749 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3750 		    "try booting from '%s'", avd->vdev_path);
3751 		error = SET_ERROR(EINVAL);
3752 		goto out;
3753 	}
3754 
3755 	/*
3756 	 * If the boot device is part of a spare vdev then ensure that
3757 	 * we're booting off the active spare.
3758 	 */
3759 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3760 	    !bvd->vdev_isspare) {
3761 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3762 		    "try booting from '%s'",
3763 		    bvd->vdev_parent->
3764 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3765 		error = SET_ERROR(EINVAL);
3766 		goto out;
3767 	}
3768 
3769 	error = 0;
3770 out:
3771 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3772 	vdev_free(rvd);
3773 	spa_config_exit(spa, SCL_ALL, FTAG);
3774 	mutex_exit(&spa_namespace_lock);
3775 
3776 	nvlist_free(config);
3777 	return (error);
3778 }
3779 
3780 #endif
3781 
3782 /*
3783  * Import a non-root pool into the system.
3784  */
3785 int
3786 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3787 {
3788 	spa_t *spa;
3789 	char *altroot = NULL;
3790 	spa_load_state_t state = SPA_LOAD_IMPORT;
3791 	zpool_rewind_policy_t policy;
3792 	uint64_t mode = spa_mode_global;
3793 	uint64_t readonly = B_FALSE;
3794 	int error;
3795 	nvlist_t *nvroot;
3796 	nvlist_t **spares, **l2cache;
3797 	uint_t nspares, nl2cache;
3798 
3799 	/*
3800 	 * If a pool with this name exists, return failure.
3801 	 */
3802 	mutex_enter(&spa_namespace_lock);
3803 	if (spa_lookup(pool) != NULL) {
3804 		mutex_exit(&spa_namespace_lock);
3805 		return (SET_ERROR(EEXIST));
3806 	}
3807 
3808 	/*
3809 	 * Create and initialize the spa structure.
3810 	 */
3811 	(void) nvlist_lookup_string(props,
3812 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3813 	(void) nvlist_lookup_uint64(props,
3814 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3815 	if (readonly)
3816 		mode = FREAD;
3817 	spa = spa_add(pool, config, altroot);
3818 	spa->spa_import_flags = flags;
3819 
3820 	/*
3821 	 * Verbatim import - Take a pool and insert it into the namespace
3822 	 * as if it had been loaded at boot.
3823 	 */
3824 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3825 		if (props != NULL)
3826 			spa_configfile_set(spa, props, B_FALSE);
3827 
3828 		spa_config_sync(spa, B_FALSE, B_TRUE);
3829 
3830 		mutex_exit(&spa_namespace_lock);
3831 		spa_history_log_version(spa, "import");
3832 
3833 		return (0);
3834 	}
3835 
3836 	spa_activate(spa, mode);
3837 
3838 	/*
3839 	 * Don't start async tasks until we know everything is healthy.
3840 	 */
3841 	spa_async_suspend(spa);
3842 
3843 	zpool_get_rewind_policy(config, &policy);
3844 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3845 		state = SPA_LOAD_RECOVER;
3846 
3847 	/*
3848 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3849 	 * because the user-supplied config is actually the one to trust when
3850 	 * doing an import.
3851 	 */
3852 	if (state != SPA_LOAD_RECOVER)
3853 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3854 
3855 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3856 	    policy.zrp_request);
3857 
3858 	/*
3859 	 * Propagate anything learned while loading the pool and pass it
3860 	 * back to caller (i.e. rewind info, missing devices, etc).
3861 	 */
3862 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3863 	    spa->spa_load_info) == 0);
3864 
3865 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3866 	/*
3867 	 * Toss any existing sparelist, as it doesn't have any validity
3868 	 * anymore, and conflicts with spa_has_spare().
3869 	 */
3870 	if (spa->spa_spares.sav_config) {
3871 		nvlist_free(spa->spa_spares.sav_config);
3872 		spa->spa_spares.sav_config = NULL;
3873 		spa_load_spares(spa);
3874 	}
3875 	if (spa->spa_l2cache.sav_config) {
3876 		nvlist_free(spa->spa_l2cache.sav_config);
3877 		spa->spa_l2cache.sav_config = NULL;
3878 		spa_load_l2cache(spa);
3879 	}
3880 
3881 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3882 	    &nvroot) == 0);
3883 	if (error == 0)
3884 		error = spa_validate_aux(spa, nvroot, -1ULL,
3885 		    VDEV_ALLOC_SPARE);
3886 	if (error == 0)
3887 		error = spa_validate_aux(spa, nvroot, -1ULL,
3888 		    VDEV_ALLOC_L2CACHE);
3889 	spa_config_exit(spa, SCL_ALL, FTAG);
3890 
3891 	if (props != NULL)
3892 		spa_configfile_set(spa, props, B_FALSE);
3893 
3894 	if (error != 0 || (props && spa_writeable(spa) &&
3895 	    (error = spa_prop_set(spa, props)))) {
3896 		spa_unload(spa);
3897 		spa_deactivate(spa);
3898 		spa_remove(spa);
3899 		mutex_exit(&spa_namespace_lock);
3900 		return (error);
3901 	}
3902 
3903 	spa_async_resume(spa);
3904 
3905 	/*
3906 	 * Override any spares and level 2 cache devices as specified by
3907 	 * the user, as these may have correct device names/devids, etc.
3908 	 */
3909 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3910 	    &spares, &nspares) == 0) {
3911 		if (spa->spa_spares.sav_config)
3912 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3913 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3914 		else
3915 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3916 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3917 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3918 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3919 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3920 		spa_load_spares(spa);
3921 		spa_config_exit(spa, SCL_ALL, FTAG);
3922 		spa->spa_spares.sav_sync = B_TRUE;
3923 	}
3924 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3925 	    &l2cache, &nl2cache) == 0) {
3926 		if (spa->spa_l2cache.sav_config)
3927 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3928 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3929 		else
3930 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3931 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3932 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3933 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3934 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3935 		spa_load_l2cache(spa);
3936 		spa_config_exit(spa, SCL_ALL, FTAG);
3937 		spa->spa_l2cache.sav_sync = B_TRUE;
3938 	}
3939 
3940 	/*
3941 	 * Check for any removed devices.
3942 	 */
3943 	if (spa->spa_autoreplace) {
3944 		spa_aux_check_removed(&spa->spa_spares);
3945 		spa_aux_check_removed(&spa->spa_l2cache);
3946 	}
3947 
3948 	if (spa_writeable(spa)) {
3949 		/*
3950 		 * Update the config cache to include the newly-imported pool.
3951 		 */
3952 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3953 	}
3954 
3955 	/*
3956 	 * It's possible that the pool was expanded while it was exported.
3957 	 * We kick off an async task to handle this for us.
3958 	 */
3959 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3960 
3961 	mutex_exit(&spa_namespace_lock);
3962 	spa_history_log_version(spa, "import");
3963 
3964 	return (0);
3965 }
3966 
3967 nvlist_t *
3968 spa_tryimport(nvlist_t *tryconfig)
3969 {
3970 	nvlist_t *config = NULL;
3971 	char *poolname;
3972 	spa_t *spa;
3973 	uint64_t state;
3974 	int error;
3975 
3976 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3977 		return (NULL);
3978 
3979 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3980 		return (NULL);
3981 
3982 	/*
3983 	 * Create and initialize the spa structure.
3984 	 */
3985 	mutex_enter(&spa_namespace_lock);
3986 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3987 	spa_activate(spa, FREAD);
3988 
3989 	/*
3990 	 * Pass off the heavy lifting to spa_load().
3991 	 * Pass TRUE for mosconfig because the user-supplied config
3992 	 * is actually the one to trust when doing an import.
3993 	 */
3994 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3995 
3996 	/*
3997 	 * If 'tryconfig' was at least parsable, return the current config.
3998 	 */
3999 	if (spa->spa_root_vdev != NULL) {
4000 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4001 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4002 		    poolname) == 0);
4003 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4004 		    state) == 0);
4005 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4006 		    spa->spa_uberblock.ub_timestamp) == 0);
4007 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4008 		    spa->spa_load_info) == 0);
4009 
4010 		/*
4011 		 * If the bootfs property exists on this pool then we
4012 		 * copy it out so that external consumers can tell which
4013 		 * pools are bootable.
4014 		 */
4015 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4016 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4017 
4018 			/*
4019 			 * We have to play games with the name since the
4020 			 * pool was opened as TRYIMPORT_NAME.
4021 			 */
4022 			if (dsl_dsobj_to_dsname(spa_name(spa),
4023 			    spa->spa_bootfs, tmpname) == 0) {
4024 				char *cp;
4025 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4026 
4027 				cp = strchr(tmpname, '/');
4028 				if (cp == NULL) {
4029 					(void) strlcpy(dsname, tmpname,
4030 					    MAXPATHLEN);
4031 				} else {
4032 					(void) snprintf(dsname, MAXPATHLEN,
4033 					    "%s/%s", poolname, ++cp);
4034 				}
4035 				VERIFY(nvlist_add_string(config,
4036 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4037 				kmem_free(dsname, MAXPATHLEN);
4038 			}
4039 			kmem_free(tmpname, MAXPATHLEN);
4040 		}
4041 
4042 		/*
4043 		 * Add the list of hot spares and level 2 cache devices.
4044 		 */
4045 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4046 		spa_add_spares(spa, config);
4047 		spa_add_l2cache(spa, config);
4048 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4049 	}
4050 
4051 	spa_unload(spa);
4052 	spa_deactivate(spa);
4053 	spa_remove(spa);
4054 	mutex_exit(&spa_namespace_lock);
4055 
4056 	return (config);
4057 }
4058 
4059 /*
4060  * Pool export/destroy
4061  *
4062  * The act of destroying or exporting a pool is very simple.  We make sure there
4063  * is no more pending I/O and any references to the pool are gone.  Then, we
4064  * update the pool state and sync all the labels to disk, removing the
4065  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4066  * we don't sync the labels or remove the configuration cache.
4067  */
4068 static int
4069 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4070     boolean_t force, boolean_t hardforce)
4071 {
4072 	spa_t *spa;
4073 
4074 	if (oldconfig)
4075 		*oldconfig = NULL;
4076 
4077 	if (!(spa_mode_global & FWRITE))
4078 		return (SET_ERROR(EROFS));
4079 
4080 	mutex_enter(&spa_namespace_lock);
4081 	if ((spa = spa_lookup(pool)) == NULL) {
4082 		mutex_exit(&spa_namespace_lock);
4083 		return (SET_ERROR(ENOENT));
4084 	}
4085 
4086 	/*
4087 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4088 	 * reacquire the namespace lock, and see if we can export.
4089 	 */
4090 	spa_open_ref(spa, FTAG);
4091 	mutex_exit(&spa_namespace_lock);
4092 	spa_async_suspend(spa);
4093 	mutex_enter(&spa_namespace_lock);
4094 	spa_close(spa, FTAG);
4095 
4096 	/*
4097 	 * The pool will be in core if it's openable,
4098 	 * in which case we can modify its state.
4099 	 */
4100 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4101 		/*
4102 		 * Objsets may be open only because they're dirty, so we
4103 		 * have to force it to sync before checking spa_refcnt.
4104 		 */
4105 		txg_wait_synced(spa->spa_dsl_pool, 0);
4106 
4107 		/*
4108 		 * A pool cannot be exported or destroyed if there are active
4109 		 * references.  If we are resetting a pool, allow references by
4110 		 * fault injection handlers.
4111 		 */
4112 		if (!spa_refcount_zero(spa) ||
4113 		    (spa->spa_inject_ref != 0 &&
4114 		    new_state != POOL_STATE_UNINITIALIZED)) {
4115 			spa_async_resume(spa);
4116 			mutex_exit(&spa_namespace_lock);
4117 			return (SET_ERROR(EBUSY));
4118 		}
4119 
4120 		/*
4121 		 * A pool cannot be exported if it has an active shared spare.
4122 		 * This is to prevent other pools stealing the active spare
4123 		 * from an exported pool. At user's own will, such pool can
4124 		 * be forcedly exported.
4125 		 */
4126 		if (!force && new_state == POOL_STATE_EXPORTED &&
4127 		    spa_has_active_shared_spare(spa)) {
4128 			spa_async_resume(spa);
4129 			mutex_exit(&spa_namespace_lock);
4130 			return (SET_ERROR(EXDEV));
4131 		}
4132 
4133 		/*
4134 		 * We want this to be reflected on every label,
4135 		 * so mark them all dirty.  spa_unload() will do the
4136 		 * final sync that pushes these changes out.
4137 		 */
4138 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4139 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4140 			spa->spa_state = new_state;
4141 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4142 			    TXG_DEFER_SIZE + 1;
4143 			vdev_config_dirty(spa->spa_root_vdev);
4144 			spa_config_exit(spa, SCL_ALL, FTAG);
4145 		}
4146 	}
4147 
4148 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4149 
4150 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4151 		spa_unload(spa);
4152 		spa_deactivate(spa);
4153 	}
4154 
4155 	if (oldconfig && spa->spa_config)
4156 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4157 
4158 	if (new_state != POOL_STATE_UNINITIALIZED) {
4159 		if (!hardforce)
4160 			spa_config_sync(spa, B_TRUE, B_TRUE);
4161 		spa_remove(spa);
4162 	}
4163 	mutex_exit(&spa_namespace_lock);
4164 
4165 	return (0);
4166 }
4167 
4168 /*
4169  * Destroy a storage pool.
4170  */
4171 int
4172 spa_destroy(char *pool)
4173 {
4174 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4175 	    B_FALSE, B_FALSE));
4176 }
4177 
4178 /*
4179  * Export a storage pool.
4180  */
4181 int
4182 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4183     boolean_t hardforce)
4184 {
4185 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4186 	    force, hardforce));
4187 }
4188 
4189 /*
4190  * Similar to spa_export(), this unloads the spa_t without actually removing it
4191  * from the namespace in any way.
4192  */
4193 int
4194 spa_reset(char *pool)
4195 {
4196 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4197 	    B_FALSE, B_FALSE));
4198 }
4199 
4200 /*
4201  * ==========================================================================
4202  * Device manipulation
4203  * ==========================================================================
4204  */
4205 
4206 /*
4207  * Add a device to a storage pool.
4208  */
4209 int
4210 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4211 {
4212 	uint64_t txg, id;
4213 	int error;
4214 	vdev_t *rvd = spa->spa_root_vdev;
4215 	vdev_t *vd, *tvd;
4216 	nvlist_t **spares, **l2cache;
4217 	uint_t nspares, nl2cache;
4218 
4219 	ASSERT(spa_writeable(spa));
4220 
4221 	txg = spa_vdev_enter(spa);
4222 
4223 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4224 	    VDEV_ALLOC_ADD)) != 0)
4225 		return (spa_vdev_exit(spa, NULL, txg, error));
4226 
4227 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4228 
4229 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4230 	    &nspares) != 0)
4231 		nspares = 0;
4232 
4233 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4234 	    &nl2cache) != 0)
4235 		nl2cache = 0;
4236 
4237 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4238 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4239 
4240 	if (vd->vdev_children != 0 &&
4241 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4242 		return (spa_vdev_exit(spa, vd, txg, error));
4243 
4244 	/*
4245 	 * We must validate the spares and l2cache devices after checking the
4246 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4247 	 */
4248 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4249 		return (spa_vdev_exit(spa, vd, txg, error));
4250 
4251 	/*
4252 	 * Transfer each new top-level vdev from vd to rvd.
4253 	 */
4254 	for (int c = 0; c < vd->vdev_children; c++) {
4255 
4256 		/*
4257 		 * Set the vdev id to the first hole, if one exists.
4258 		 */
4259 		for (id = 0; id < rvd->vdev_children; id++) {
4260 			if (rvd->vdev_child[id]->vdev_ishole) {
4261 				vdev_free(rvd->vdev_child[id]);
4262 				break;
4263 			}
4264 		}
4265 		tvd = vd->vdev_child[c];
4266 		vdev_remove_child(vd, tvd);
4267 		tvd->vdev_id = id;
4268 		vdev_add_child(rvd, tvd);
4269 		vdev_config_dirty(tvd);
4270 	}
4271 
4272 	if (nspares != 0) {
4273 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4274 		    ZPOOL_CONFIG_SPARES);
4275 		spa_load_spares(spa);
4276 		spa->spa_spares.sav_sync = B_TRUE;
4277 	}
4278 
4279 	if (nl2cache != 0) {
4280 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4281 		    ZPOOL_CONFIG_L2CACHE);
4282 		spa_load_l2cache(spa);
4283 		spa->spa_l2cache.sav_sync = B_TRUE;
4284 	}
4285 
4286 	/*
4287 	 * We have to be careful when adding new vdevs to an existing pool.
4288 	 * If other threads start allocating from these vdevs before we
4289 	 * sync the config cache, and we lose power, then upon reboot we may
4290 	 * fail to open the pool because there are DVAs that the config cache
4291 	 * can't translate.  Therefore, we first add the vdevs without
4292 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4293 	 * and then let spa_config_update() initialize the new metaslabs.
4294 	 *
4295 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4296 	 * if we lose power at any point in this sequence, the remaining
4297 	 * steps will be completed the next time we load the pool.
4298 	 */
4299 	(void) spa_vdev_exit(spa, vd, txg, 0);
4300 
4301 	mutex_enter(&spa_namespace_lock);
4302 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4303 	mutex_exit(&spa_namespace_lock);
4304 
4305 	return (0);
4306 }
4307 
4308 /*
4309  * Attach a device to a mirror.  The arguments are the path to any device
4310  * in the mirror, and the nvroot for the new device.  If the path specifies
4311  * a device that is not mirrored, we automatically insert the mirror vdev.
4312  *
4313  * If 'replacing' is specified, the new device is intended to replace the
4314  * existing device; in this case the two devices are made into their own
4315  * mirror using the 'replacing' vdev, which is functionally identical to
4316  * the mirror vdev (it actually reuses all the same ops) but has a few
4317  * extra rules: you can't attach to it after it's been created, and upon
4318  * completion of resilvering, the first disk (the one being replaced)
4319  * is automatically detached.
4320  */
4321 int
4322 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4323 {
4324 	uint64_t txg, dtl_max_txg;
4325 	vdev_t *rvd = spa->spa_root_vdev;
4326 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4327 	vdev_ops_t *pvops;
4328 	char *oldvdpath, *newvdpath;
4329 	int newvd_isspare;
4330 	int error;
4331 
4332 	ASSERT(spa_writeable(spa));
4333 
4334 	txg = spa_vdev_enter(spa);
4335 
4336 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4337 
4338 	if (oldvd == NULL)
4339 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4340 
4341 	if (!oldvd->vdev_ops->vdev_op_leaf)
4342 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4343 
4344 	pvd = oldvd->vdev_parent;
4345 
4346 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4347 	    VDEV_ALLOC_ATTACH)) != 0)
4348 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4349 
4350 	if (newrootvd->vdev_children != 1)
4351 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4352 
4353 	newvd = newrootvd->vdev_child[0];
4354 
4355 	if (!newvd->vdev_ops->vdev_op_leaf)
4356 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4357 
4358 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4359 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4360 
4361 	/*
4362 	 * Spares can't replace logs
4363 	 */
4364 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4365 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4366 
4367 	if (!replacing) {
4368 		/*
4369 		 * For attach, the only allowable parent is a mirror or the root
4370 		 * vdev.
4371 		 */
4372 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4373 		    pvd->vdev_ops != &vdev_root_ops)
4374 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4375 
4376 		pvops = &vdev_mirror_ops;
4377 	} else {
4378 		/*
4379 		 * Active hot spares can only be replaced by inactive hot
4380 		 * spares.
4381 		 */
4382 		if (pvd->vdev_ops == &vdev_spare_ops &&
4383 		    oldvd->vdev_isspare &&
4384 		    !spa_has_spare(spa, newvd->vdev_guid))
4385 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4386 
4387 		/*
4388 		 * If the source is a hot spare, and the parent isn't already a
4389 		 * spare, then we want to create a new hot spare.  Otherwise, we
4390 		 * want to create a replacing vdev.  The user is not allowed to
4391 		 * attach to a spared vdev child unless the 'isspare' state is
4392 		 * the same (spare replaces spare, non-spare replaces
4393 		 * non-spare).
4394 		 */
4395 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4396 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4397 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4398 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4399 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4400 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4401 		}
4402 
4403 		if (newvd->vdev_isspare)
4404 			pvops = &vdev_spare_ops;
4405 		else
4406 			pvops = &vdev_replacing_ops;
4407 	}
4408 
4409 	/*
4410 	 * Make sure the new device is big enough.
4411 	 */
4412 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4413 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4414 
4415 	/*
4416 	 * The new device cannot have a higher alignment requirement
4417 	 * than the top-level vdev.
4418 	 */
4419 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4420 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4421 
4422 	/*
4423 	 * If this is an in-place replacement, update oldvd's path and devid
4424 	 * to make it distinguishable from newvd, and unopenable from now on.
4425 	 */
4426 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4427 		spa_strfree(oldvd->vdev_path);
4428 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4429 		    KM_SLEEP);
4430 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4431 		    newvd->vdev_path, "old");
4432 		if (oldvd->vdev_devid != NULL) {
4433 			spa_strfree(oldvd->vdev_devid);
4434 			oldvd->vdev_devid = NULL;
4435 		}
4436 	}
4437 
4438 	/* mark the device being resilvered */
4439 	newvd->vdev_resilvering = B_TRUE;
4440 
4441 	/*
4442 	 * If the parent is not a mirror, or if we're replacing, insert the new
4443 	 * mirror/replacing/spare vdev above oldvd.
4444 	 */
4445 	if (pvd->vdev_ops != pvops)
4446 		pvd = vdev_add_parent(oldvd, pvops);
4447 
4448 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4449 	ASSERT(pvd->vdev_ops == pvops);
4450 	ASSERT(oldvd->vdev_parent == pvd);
4451 
4452 	/*
4453 	 * Extract the new device from its root and add it to pvd.
4454 	 */
4455 	vdev_remove_child(newrootvd, newvd);
4456 	newvd->vdev_id = pvd->vdev_children;
4457 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4458 	vdev_add_child(pvd, newvd);
4459 
4460 	tvd = newvd->vdev_top;
4461 	ASSERT(pvd->vdev_top == tvd);
4462 	ASSERT(tvd->vdev_parent == rvd);
4463 
4464 	vdev_config_dirty(tvd);
4465 
4466 	/*
4467 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4468 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4469 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4470 	 */
4471 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4472 
4473 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4474 	    dtl_max_txg - TXG_INITIAL);
4475 
4476 	if (newvd->vdev_isspare) {
4477 		spa_spare_activate(newvd);
4478 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4479 	}
4480 
4481 	oldvdpath = spa_strdup(oldvd->vdev_path);
4482 	newvdpath = spa_strdup(newvd->vdev_path);
4483 	newvd_isspare = newvd->vdev_isspare;
4484 
4485 	/*
4486 	 * Mark newvd's DTL dirty in this txg.
4487 	 */
4488 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4489 
4490 	/*
4491 	 * Restart the resilver
4492 	 */
4493 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4494 
4495 	/*
4496 	 * Commit the config
4497 	 */
4498 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4499 
4500 	spa_history_log_internal(spa, "vdev attach", NULL,
4501 	    "%s vdev=%s %s vdev=%s",
4502 	    replacing && newvd_isspare ? "spare in" :
4503 	    replacing ? "replace" : "attach", newvdpath,
4504 	    replacing ? "for" : "to", oldvdpath);
4505 
4506 	spa_strfree(oldvdpath);
4507 	spa_strfree(newvdpath);
4508 
4509 	if (spa->spa_bootfs)
4510 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4511 
4512 	return (0);
4513 }
4514 
4515 /*
4516  * Detach a device from a mirror or replacing vdev.
4517  * If 'replace_done' is specified, only detach if the parent
4518  * is a replacing vdev.
4519  */
4520 int
4521 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4522 {
4523 	uint64_t txg;
4524 	int error;
4525 	vdev_t *rvd = spa->spa_root_vdev;
4526 	vdev_t *vd, *pvd, *cvd, *tvd;
4527 	boolean_t unspare = B_FALSE;
4528 	uint64_t unspare_guid = 0;
4529 	char *vdpath;
4530 
4531 	ASSERT(spa_writeable(spa));
4532 
4533 	txg = spa_vdev_enter(spa);
4534 
4535 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4536 
4537 	if (vd == NULL)
4538 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4539 
4540 	if (!vd->vdev_ops->vdev_op_leaf)
4541 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4542 
4543 	pvd = vd->vdev_parent;
4544 
4545 	/*
4546 	 * If the parent/child relationship is not as expected, don't do it.
4547 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4548 	 * vdev that's replacing B with C.  The user's intent in replacing
4549 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4550 	 * the replace by detaching C, the expected behavior is to end up
4551 	 * M(A,B).  But suppose that right after deciding to detach C,
4552 	 * the replacement of B completes.  We would have M(A,C), and then
4553 	 * ask to detach C, which would leave us with just A -- not what
4554 	 * the user wanted.  To prevent this, we make sure that the
4555 	 * parent/child relationship hasn't changed -- in this example,
4556 	 * that C's parent is still the replacing vdev R.
4557 	 */
4558 	if (pvd->vdev_guid != pguid && pguid != 0)
4559 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4560 
4561 	/*
4562 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4563 	 */
4564 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4565 	    pvd->vdev_ops != &vdev_spare_ops)
4566 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4567 
4568 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4569 	    spa_version(spa) >= SPA_VERSION_SPARES);
4570 
4571 	/*
4572 	 * Only mirror, replacing, and spare vdevs support detach.
4573 	 */
4574 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4575 	    pvd->vdev_ops != &vdev_mirror_ops &&
4576 	    pvd->vdev_ops != &vdev_spare_ops)
4577 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4578 
4579 	/*
4580 	 * If this device has the only valid copy of some data,
4581 	 * we cannot safely detach it.
4582 	 */
4583 	if (vdev_dtl_required(vd))
4584 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4585 
4586 	ASSERT(pvd->vdev_children >= 2);
4587 
4588 	/*
4589 	 * If we are detaching the second disk from a replacing vdev, then
4590 	 * check to see if we changed the original vdev's path to have "/old"
4591 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4592 	 */
4593 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4594 	    vd->vdev_path != NULL) {
4595 		size_t len = strlen(vd->vdev_path);
4596 
4597 		for (int c = 0; c < pvd->vdev_children; c++) {
4598 			cvd = pvd->vdev_child[c];
4599 
4600 			if (cvd == vd || cvd->vdev_path == NULL)
4601 				continue;
4602 
4603 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4604 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4605 				spa_strfree(cvd->vdev_path);
4606 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4607 				break;
4608 			}
4609 		}
4610 	}
4611 
4612 	/*
4613 	 * If we are detaching the original disk from a spare, then it implies
4614 	 * that the spare should become a real disk, and be removed from the
4615 	 * active spare list for the pool.
4616 	 */
4617 	if (pvd->vdev_ops == &vdev_spare_ops &&
4618 	    vd->vdev_id == 0 &&
4619 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4620 		unspare = B_TRUE;
4621 
4622 	/*
4623 	 * Erase the disk labels so the disk can be used for other things.
4624 	 * This must be done after all other error cases are handled,
4625 	 * but before we disembowel vd (so we can still do I/O to it).
4626 	 * But if we can't do it, don't treat the error as fatal --
4627 	 * it may be that the unwritability of the disk is the reason
4628 	 * it's being detached!
4629 	 */
4630 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4631 
4632 	/*
4633 	 * Remove vd from its parent and compact the parent's children.
4634 	 */
4635 	vdev_remove_child(pvd, vd);
4636 	vdev_compact_children(pvd);
4637 
4638 	/*
4639 	 * Remember one of the remaining children so we can get tvd below.
4640 	 */
4641 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4642 
4643 	/*
4644 	 * If we need to remove the remaining child from the list of hot spares,
4645 	 * do it now, marking the vdev as no longer a spare in the process.
4646 	 * We must do this before vdev_remove_parent(), because that can
4647 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4648 	 * reason, we must remove the spare now, in the same txg as the detach;
4649 	 * otherwise someone could attach a new sibling, change the GUID, and
4650 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4651 	 */
4652 	if (unspare) {
4653 		ASSERT(cvd->vdev_isspare);
4654 		spa_spare_remove(cvd);
4655 		unspare_guid = cvd->vdev_guid;
4656 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4657 		cvd->vdev_unspare = B_TRUE;
4658 	}
4659 
4660 	/*
4661 	 * If the parent mirror/replacing vdev only has one child,
4662 	 * the parent is no longer needed.  Remove it from the tree.
4663 	 */
4664 	if (pvd->vdev_children == 1) {
4665 		if (pvd->vdev_ops == &vdev_spare_ops)
4666 			cvd->vdev_unspare = B_FALSE;
4667 		vdev_remove_parent(cvd);
4668 		cvd->vdev_resilvering = B_FALSE;
4669 	}
4670 
4671 
4672 	/*
4673 	 * We don't set tvd until now because the parent we just removed
4674 	 * may have been the previous top-level vdev.
4675 	 */
4676 	tvd = cvd->vdev_top;
4677 	ASSERT(tvd->vdev_parent == rvd);
4678 
4679 	/*
4680 	 * Reevaluate the parent vdev state.
4681 	 */
4682 	vdev_propagate_state(cvd);
4683 
4684 	/*
4685 	 * If the 'autoexpand' property is set on the pool then automatically
4686 	 * try to expand the size of the pool. For example if the device we
4687 	 * just detached was smaller than the others, it may be possible to
4688 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4689 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4690 	 */
4691 	if (spa->spa_autoexpand) {
4692 		vdev_reopen(tvd);
4693 		vdev_expand(tvd, txg);
4694 	}
4695 
4696 	vdev_config_dirty(tvd);
4697 
4698 	/*
4699 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4700 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4701 	 * But first make sure we're not on any *other* txg's DTL list, to
4702 	 * prevent vd from being accessed after it's freed.
4703 	 */
4704 	vdpath = spa_strdup(vd->vdev_path);
4705 	for (int t = 0; t < TXG_SIZE; t++)
4706 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4707 	vd->vdev_detached = B_TRUE;
4708 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4709 
4710 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4711 
4712 	/* hang on to the spa before we release the lock */
4713 	spa_open_ref(spa, FTAG);
4714 
4715 	error = spa_vdev_exit(spa, vd, txg, 0);
4716 
4717 	spa_history_log_internal(spa, "detach", NULL,
4718 	    "vdev=%s", vdpath);
4719 	spa_strfree(vdpath);
4720 
4721 	/*
4722 	 * If this was the removal of the original device in a hot spare vdev,
4723 	 * then we want to go through and remove the device from the hot spare
4724 	 * list of every other pool.
4725 	 */
4726 	if (unspare) {
4727 		spa_t *altspa = NULL;
4728 
4729 		mutex_enter(&spa_namespace_lock);
4730 		while ((altspa = spa_next(altspa)) != NULL) {
4731 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4732 			    altspa == spa)
4733 				continue;
4734 
4735 			spa_open_ref(altspa, FTAG);
4736 			mutex_exit(&spa_namespace_lock);
4737 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4738 			mutex_enter(&spa_namespace_lock);
4739 			spa_close(altspa, FTAG);
4740 		}
4741 		mutex_exit(&spa_namespace_lock);
4742 
4743 		/* search the rest of the vdevs for spares to remove */
4744 		spa_vdev_resilver_done(spa);
4745 	}
4746 
4747 	/* all done with the spa; OK to release */
4748 	mutex_enter(&spa_namespace_lock);
4749 	spa_close(spa, FTAG);
4750 	mutex_exit(&spa_namespace_lock);
4751 
4752 	return (error);
4753 }
4754 
4755 /*
4756  * Split a set of devices from their mirrors, and create a new pool from them.
4757  */
4758 int
4759 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4760     nvlist_t *props, boolean_t exp)
4761 {
4762 	int error = 0;
4763 	uint64_t txg, *glist;
4764 	spa_t *newspa;
4765 	uint_t c, children, lastlog;
4766 	nvlist_t **child, *nvl, *tmp;
4767 	dmu_tx_t *tx;
4768 	char *altroot = NULL;
4769 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4770 	boolean_t activate_slog;
4771 
4772 	ASSERT(spa_writeable(spa));
4773 
4774 	txg = spa_vdev_enter(spa);
4775 
4776 	/* clear the log and flush everything up to now */
4777 	activate_slog = spa_passivate_log(spa);
4778 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4779 	error = spa_offline_log(spa);
4780 	txg = spa_vdev_config_enter(spa);
4781 
4782 	if (activate_slog)
4783 		spa_activate_log(spa);
4784 
4785 	if (error != 0)
4786 		return (spa_vdev_exit(spa, NULL, txg, error));
4787 
4788 	/* check new spa name before going any further */
4789 	if (spa_lookup(newname) != NULL)
4790 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4791 
4792 	/*
4793 	 * scan through all the children to ensure they're all mirrors
4794 	 */
4795 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4796 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4797 	    &children) != 0)
4798 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4799 
4800 	/* first, check to ensure we've got the right child count */
4801 	rvd = spa->spa_root_vdev;
4802 	lastlog = 0;
4803 	for (c = 0; c < rvd->vdev_children; c++) {
4804 		vdev_t *vd = rvd->vdev_child[c];
4805 
4806 		/* don't count the holes & logs as children */
4807 		if (vd->vdev_islog || vd->vdev_ishole) {
4808 			if (lastlog == 0)
4809 				lastlog = c;
4810 			continue;
4811 		}
4812 
4813 		lastlog = 0;
4814 	}
4815 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4816 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4817 
4818 	/* next, ensure no spare or cache devices are part of the split */
4819 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4820 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4821 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4822 
4823 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4824 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4825 
4826 	/* then, loop over each vdev and validate it */
4827 	for (c = 0; c < children; c++) {
4828 		uint64_t is_hole = 0;
4829 
4830 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4831 		    &is_hole);
4832 
4833 		if (is_hole != 0) {
4834 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4835 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4836 				continue;
4837 			} else {
4838 				error = SET_ERROR(EINVAL);
4839 				break;
4840 			}
4841 		}
4842 
4843 		/* which disk is going to be split? */
4844 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4845 		    &glist[c]) != 0) {
4846 			error = SET_ERROR(EINVAL);
4847 			break;
4848 		}
4849 
4850 		/* look it up in the spa */
4851 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4852 		if (vml[c] == NULL) {
4853 			error = SET_ERROR(ENODEV);
4854 			break;
4855 		}
4856 
4857 		/* make sure there's nothing stopping the split */
4858 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4859 		    vml[c]->vdev_islog ||
4860 		    vml[c]->vdev_ishole ||
4861 		    vml[c]->vdev_isspare ||
4862 		    vml[c]->vdev_isl2cache ||
4863 		    !vdev_writeable(vml[c]) ||
4864 		    vml[c]->vdev_children != 0 ||
4865 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4866 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4867 			error = SET_ERROR(EINVAL);
4868 			break;
4869 		}
4870 
4871 		if (vdev_dtl_required(vml[c])) {
4872 			error = SET_ERROR(EBUSY);
4873 			break;
4874 		}
4875 
4876 		/* we need certain info from the top level */
4877 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4878 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4879 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4880 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4881 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4882 		    vml[c]->vdev_top->vdev_asize) == 0);
4883 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4884 		    vml[c]->vdev_top->vdev_ashift) == 0);
4885 	}
4886 
4887 	if (error != 0) {
4888 		kmem_free(vml, children * sizeof (vdev_t *));
4889 		kmem_free(glist, children * sizeof (uint64_t));
4890 		return (spa_vdev_exit(spa, NULL, txg, error));
4891 	}
4892 
4893 	/* stop writers from using the disks */
4894 	for (c = 0; c < children; c++) {
4895 		if (vml[c] != NULL)
4896 			vml[c]->vdev_offline = B_TRUE;
4897 	}
4898 	vdev_reopen(spa->spa_root_vdev);
4899 
4900 	/*
4901 	 * Temporarily record the splitting vdevs in the spa config.  This
4902 	 * will disappear once the config is regenerated.
4903 	 */
4904 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4905 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4906 	    glist, children) == 0);
4907 	kmem_free(glist, children * sizeof (uint64_t));
4908 
4909 	mutex_enter(&spa->spa_props_lock);
4910 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4911 	    nvl) == 0);
4912 	mutex_exit(&spa->spa_props_lock);
4913 	spa->spa_config_splitting = nvl;
4914 	vdev_config_dirty(spa->spa_root_vdev);
4915 
4916 	/* configure and create the new pool */
4917 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4918 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4919 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4920 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4921 	    spa_version(spa)) == 0);
4922 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4923 	    spa->spa_config_txg) == 0);
4924 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4925 	    spa_generate_guid(NULL)) == 0);
4926 	(void) nvlist_lookup_string(props,
4927 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4928 
4929 	/* add the new pool to the namespace */
4930 	newspa = spa_add(newname, config, altroot);
4931 	newspa->spa_config_txg = spa->spa_config_txg;
4932 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4933 
4934 	/* release the spa config lock, retaining the namespace lock */
4935 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4936 
4937 	if (zio_injection_enabled)
4938 		zio_handle_panic_injection(spa, FTAG, 1);
4939 
4940 	spa_activate(newspa, spa_mode_global);
4941 	spa_async_suspend(newspa);
4942 
4943 	/* create the new pool from the disks of the original pool */
4944 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4945 	if (error)
4946 		goto out;
4947 
4948 	/* if that worked, generate a real config for the new pool */
4949 	if (newspa->spa_root_vdev != NULL) {
4950 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4951 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4952 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4953 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4954 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4955 		    B_TRUE));
4956 	}
4957 
4958 	/* set the props */
4959 	if (props != NULL) {
4960 		spa_configfile_set(newspa, props, B_FALSE);
4961 		error = spa_prop_set(newspa, props);
4962 		if (error)
4963 			goto out;
4964 	}
4965 
4966 	/* flush everything */
4967 	txg = spa_vdev_config_enter(newspa);
4968 	vdev_config_dirty(newspa->spa_root_vdev);
4969 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4970 
4971 	if (zio_injection_enabled)
4972 		zio_handle_panic_injection(spa, FTAG, 2);
4973 
4974 	spa_async_resume(newspa);
4975 
4976 	/* finally, update the original pool's config */
4977 	txg = spa_vdev_config_enter(spa);
4978 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4979 	error = dmu_tx_assign(tx, TXG_WAIT);
4980 	if (error != 0)
4981 		dmu_tx_abort(tx);
4982 	for (c = 0; c < children; c++) {
4983 		if (vml[c] != NULL) {
4984 			vdev_split(vml[c]);
4985 			if (error == 0)
4986 				spa_history_log_internal(spa, "detach", tx,
4987 				    "vdev=%s", vml[c]->vdev_path);
4988 			vdev_free(vml[c]);
4989 		}
4990 	}
4991 	vdev_config_dirty(spa->spa_root_vdev);
4992 	spa->spa_config_splitting = NULL;
4993 	nvlist_free(nvl);
4994 	if (error == 0)
4995 		dmu_tx_commit(tx);
4996 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4997 
4998 	if (zio_injection_enabled)
4999 		zio_handle_panic_injection(spa, FTAG, 3);
5000 
5001 	/* split is complete; log a history record */
5002 	spa_history_log_internal(newspa, "split", NULL,
5003 	    "from pool %s", spa_name(spa));
5004 
5005 	kmem_free(vml, children * sizeof (vdev_t *));
5006 
5007 	/* if we're not going to mount the filesystems in userland, export */
5008 	if (exp)
5009 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5010 		    B_FALSE, B_FALSE);
5011 
5012 	return (error);
5013 
5014 out:
5015 	spa_unload(newspa);
5016 	spa_deactivate(newspa);
5017 	spa_remove(newspa);
5018 
5019 	txg = spa_vdev_config_enter(spa);
5020 
5021 	/* re-online all offlined disks */
5022 	for (c = 0; c < children; c++) {
5023 		if (vml[c] != NULL)
5024 			vml[c]->vdev_offline = B_FALSE;
5025 	}
5026 	vdev_reopen(spa->spa_root_vdev);
5027 
5028 	nvlist_free(spa->spa_config_splitting);
5029 	spa->spa_config_splitting = NULL;
5030 	(void) spa_vdev_exit(spa, NULL, txg, error);
5031 
5032 	kmem_free(vml, children * sizeof (vdev_t *));
5033 	return (error);
5034 }
5035 
5036 static nvlist_t *
5037 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5038 {
5039 	for (int i = 0; i < count; i++) {
5040 		uint64_t guid;
5041 
5042 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5043 		    &guid) == 0);
5044 
5045 		if (guid == target_guid)
5046 			return (nvpp[i]);
5047 	}
5048 
5049 	return (NULL);
5050 }
5051 
5052 static void
5053 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5054 	nvlist_t *dev_to_remove)
5055 {
5056 	nvlist_t **newdev = NULL;
5057 
5058 	if (count > 1)
5059 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5060 
5061 	for (int i = 0, j = 0; i < count; i++) {
5062 		if (dev[i] == dev_to_remove)
5063 			continue;
5064 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5065 	}
5066 
5067 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5068 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5069 
5070 	for (int i = 0; i < count - 1; i++)
5071 		nvlist_free(newdev[i]);
5072 
5073 	if (count > 1)
5074 		kmem_free(newdev, (count - 1) * sizeof (void *));
5075 }
5076 
5077 /*
5078  * Evacuate the device.
5079  */
5080 static int
5081 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5082 {
5083 	uint64_t txg;
5084 	int error = 0;
5085 
5086 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5087 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5088 	ASSERT(vd == vd->vdev_top);
5089 
5090 	/*
5091 	 * Evacuate the device.  We don't hold the config lock as writer
5092 	 * since we need to do I/O but we do keep the
5093 	 * spa_namespace_lock held.  Once this completes the device
5094 	 * should no longer have any blocks allocated on it.
5095 	 */
5096 	if (vd->vdev_islog) {
5097 		if (vd->vdev_stat.vs_alloc != 0)
5098 			error = spa_offline_log(spa);
5099 	} else {
5100 		error = SET_ERROR(ENOTSUP);
5101 	}
5102 
5103 	if (error)
5104 		return (error);
5105 
5106 	/*
5107 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5108 	 * associated with this vdev, and wait for these changes to sync.
5109 	 */
5110 	ASSERT0(vd->vdev_stat.vs_alloc);
5111 	txg = spa_vdev_config_enter(spa);
5112 	vd->vdev_removing = B_TRUE;
5113 	vdev_dirty(vd, 0, NULL, txg);
5114 	vdev_config_dirty(vd);
5115 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5116 
5117 	return (0);
5118 }
5119 
5120 /*
5121  * Complete the removal by cleaning up the namespace.
5122  */
5123 static void
5124 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5125 {
5126 	vdev_t *rvd = spa->spa_root_vdev;
5127 	uint64_t id = vd->vdev_id;
5128 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5129 
5130 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5132 	ASSERT(vd == vd->vdev_top);
5133 
5134 	/*
5135 	 * Only remove any devices which are empty.
5136 	 */
5137 	if (vd->vdev_stat.vs_alloc != 0)
5138 		return;
5139 
5140 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5141 
5142 	if (list_link_active(&vd->vdev_state_dirty_node))
5143 		vdev_state_clean(vd);
5144 	if (list_link_active(&vd->vdev_config_dirty_node))
5145 		vdev_config_clean(vd);
5146 
5147 	vdev_free(vd);
5148 
5149 	if (last_vdev) {
5150 		vdev_compact_children(rvd);
5151 	} else {
5152 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5153 		vdev_add_child(rvd, vd);
5154 	}
5155 	vdev_config_dirty(rvd);
5156 
5157 	/*
5158 	 * Reassess the health of our root vdev.
5159 	 */
5160 	vdev_reopen(rvd);
5161 }
5162 
5163 /*
5164  * Remove a device from the pool -
5165  *
5166  * Removing a device from the vdev namespace requires several steps
5167  * and can take a significant amount of time.  As a result we use
5168  * the spa_vdev_config_[enter/exit] functions which allow us to
5169  * grab and release the spa_config_lock while still holding the namespace
5170  * lock.  During each step the configuration is synced out.
5171  */
5172 
5173 /*
5174  * Remove a device from the pool.  Currently, this supports removing only hot
5175  * spares, slogs, and level 2 ARC devices.
5176  */
5177 int
5178 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5179 {
5180 	vdev_t *vd;
5181 	metaslab_group_t *mg;
5182 	nvlist_t **spares, **l2cache, *nv;
5183 	uint64_t txg = 0;
5184 	uint_t nspares, nl2cache;
5185 	int error = 0;
5186 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5187 
5188 	ASSERT(spa_writeable(spa));
5189 
5190 	if (!locked)
5191 		txg = spa_vdev_enter(spa);
5192 
5193 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5194 
5195 	if (spa->spa_spares.sav_vdevs != NULL &&
5196 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5197 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5198 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5199 		/*
5200 		 * Only remove the hot spare if it's not currently in use
5201 		 * in this pool.
5202 		 */
5203 		if (vd == NULL || unspare) {
5204 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5205 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5206 			spa_load_spares(spa);
5207 			spa->spa_spares.sav_sync = B_TRUE;
5208 		} else {
5209 			error = SET_ERROR(EBUSY);
5210 		}
5211 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5212 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5213 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5214 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5215 		/*
5216 		 * Cache devices can always be removed.
5217 		 */
5218 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5219 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5220 		spa_load_l2cache(spa);
5221 		spa->spa_l2cache.sav_sync = B_TRUE;
5222 	} else if (vd != NULL && vd->vdev_islog) {
5223 		ASSERT(!locked);
5224 		ASSERT(vd == vd->vdev_top);
5225 
5226 		/*
5227 		 * XXX - Once we have bp-rewrite this should
5228 		 * become the common case.
5229 		 */
5230 
5231 		mg = vd->vdev_mg;
5232 
5233 		/*
5234 		 * Stop allocating from this vdev.
5235 		 */
5236 		metaslab_group_passivate(mg);
5237 
5238 		/*
5239 		 * Wait for the youngest allocations and frees to sync,
5240 		 * and then wait for the deferral of those frees to finish.
5241 		 */
5242 		spa_vdev_config_exit(spa, NULL,
5243 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5244 
5245 		/*
5246 		 * Attempt to evacuate the vdev.
5247 		 */
5248 		error = spa_vdev_remove_evacuate(spa, vd);
5249 
5250 		txg = spa_vdev_config_enter(spa);
5251 
5252 		/*
5253 		 * If we couldn't evacuate the vdev, unwind.
5254 		 */
5255 		if (error) {
5256 			metaslab_group_activate(mg);
5257 			return (spa_vdev_exit(spa, NULL, txg, error));
5258 		}
5259 
5260 		/*
5261 		 * Clean up the vdev namespace.
5262 		 */
5263 		spa_vdev_remove_from_namespace(spa, vd);
5264 
5265 	} else if (vd != NULL) {
5266 		/*
5267 		 * Normal vdevs cannot be removed (yet).
5268 		 */
5269 		error = SET_ERROR(ENOTSUP);
5270 	} else {
5271 		/*
5272 		 * There is no vdev of any kind with the specified guid.
5273 		 */
5274 		error = SET_ERROR(ENOENT);
5275 	}
5276 
5277 	if (!locked)
5278 		return (spa_vdev_exit(spa, NULL, txg, error));
5279 
5280 	return (error);
5281 }
5282 
5283 /*
5284  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5285  * current spared, so we can detach it.
5286  */
5287 static vdev_t *
5288 spa_vdev_resilver_done_hunt(vdev_t *vd)
5289 {
5290 	vdev_t *newvd, *oldvd;
5291 
5292 	for (int c = 0; c < vd->vdev_children; c++) {
5293 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5294 		if (oldvd != NULL)
5295 			return (oldvd);
5296 	}
5297 
5298 	/*
5299 	 * Check for a completed replacement.  We always consider the first
5300 	 * vdev in the list to be the oldest vdev, and the last one to be
5301 	 * the newest (see spa_vdev_attach() for how that works).  In
5302 	 * the case where the newest vdev is faulted, we will not automatically
5303 	 * remove it after a resilver completes.  This is OK as it will require
5304 	 * user intervention to determine which disk the admin wishes to keep.
5305 	 */
5306 	if (vd->vdev_ops == &vdev_replacing_ops) {
5307 		ASSERT(vd->vdev_children > 1);
5308 
5309 		newvd = vd->vdev_child[vd->vdev_children - 1];
5310 		oldvd = vd->vdev_child[0];
5311 
5312 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5313 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5314 		    !vdev_dtl_required(oldvd))
5315 			return (oldvd);
5316 	}
5317 
5318 	/*
5319 	 * Check for a completed resilver with the 'unspare' flag set.
5320 	 */
5321 	if (vd->vdev_ops == &vdev_spare_ops) {
5322 		vdev_t *first = vd->vdev_child[0];
5323 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5324 
5325 		if (last->vdev_unspare) {
5326 			oldvd = first;
5327 			newvd = last;
5328 		} else if (first->vdev_unspare) {
5329 			oldvd = last;
5330 			newvd = first;
5331 		} else {
5332 			oldvd = NULL;
5333 		}
5334 
5335 		if (oldvd != NULL &&
5336 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5337 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5338 		    !vdev_dtl_required(oldvd))
5339 			return (oldvd);
5340 
5341 		/*
5342 		 * If there are more than two spares attached to a disk,
5343 		 * and those spares are not required, then we want to
5344 		 * attempt to free them up now so that they can be used
5345 		 * by other pools.  Once we're back down to a single
5346 		 * disk+spare, we stop removing them.
5347 		 */
5348 		if (vd->vdev_children > 2) {
5349 			newvd = vd->vdev_child[1];
5350 
5351 			if (newvd->vdev_isspare && last->vdev_isspare &&
5352 			    vdev_dtl_empty(last, DTL_MISSING) &&
5353 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5354 			    !vdev_dtl_required(newvd))
5355 				return (newvd);
5356 		}
5357 	}
5358 
5359 	return (NULL);
5360 }
5361 
5362 static void
5363 spa_vdev_resilver_done(spa_t *spa)
5364 {
5365 	vdev_t *vd, *pvd, *ppvd;
5366 	uint64_t guid, sguid, pguid, ppguid;
5367 
5368 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5369 
5370 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5371 		pvd = vd->vdev_parent;
5372 		ppvd = pvd->vdev_parent;
5373 		guid = vd->vdev_guid;
5374 		pguid = pvd->vdev_guid;
5375 		ppguid = ppvd->vdev_guid;
5376 		sguid = 0;
5377 		/*
5378 		 * If we have just finished replacing a hot spared device, then
5379 		 * we need to detach the parent's first child (the original hot
5380 		 * spare) as well.
5381 		 */
5382 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5383 		    ppvd->vdev_children == 2) {
5384 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5385 			sguid = ppvd->vdev_child[1]->vdev_guid;
5386 		}
5387 		spa_config_exit(spa, SCL_ALL, FTAG);
5388 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5389 			return;
5390 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5391 			return;
5392 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5393 	}
5394 
5395 	spa_config_exit(spa, SCL_ALL, FTAG);
5396 }
5397 
5398 /*
5399  * Update the stored path or FRU for this vdev.
5400  */
5401 int
5402 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5403     boolean_t ispath)
5404 {
5405 	vdev_t *vd;
5406 	boolean_t sync = B_FALSE;
5407 
5408 	ASSERT(spa_writeable(spa));
5409 
5410 	spa_vdev_state_enter(spa, SCL_ALL);
5411 
5412 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5413 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5414 
5415 	if (!vd->vdev_ops->vdev_op_leaf)
5416 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5417 
5418 	if (ispath) {
5419 		if (strcmp(value, vd->vdev_path) != 0) {
5420 			spa_strfree(vd->vdev_path);
5421 			vd->vdev_path = spa_strdup(value);
5422 			sync = B_TRUE;
5423 		}
5424 	} else {
5425 		if (vd->vdev_fru == NULL) {
5426 			vd->vdev_fru = spa_strdup(value);
5427 			sync = B_TRUE;
5428 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5429 			spa_strfree(vd->vdev_fru);
5430 			vd->vdev_fru = spa_strdup(value);
5431 			sync = B_TRUE;
5432 		}
5433 	}
5434 
5435 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5436 }
5437 
5438 int
5439 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5440 {
5441 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5442 }
5443 
5444 int
5445 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5446 {
5447 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5448 }
5449 
5450 /*
5451  * ==========================================================================
5452  * SPA Scanning
5453  * ==========================================================================
5454  */
5455 
5456 int
5457 spa_scan_stop(spa_t *spa)
5458 {
5459 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5460 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5461 		return (SET_ERROR(EBUSY));
5462 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5463 }
5464 
5465 int
5466 spa_scan(spa_t *spa, pool_scan_func_t func)
5467 {
5468 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5469 
5470 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5471 		return (SET_ERROR(ENOTSUP));
5472 
5473 	/*
5474 	 * If a resilver was requested, but there is no DTL on a
5475 	 * writeable leaf device, we have nothing to do.
5476 	 */
5477 	if (func == POOL_SCAN_RESILVER &&
5478 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5479 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5480 		return (0);
5481 	}
5482 
5483 	return (dsl_scan(spa->spa_dsl_pool, func));
5484 }
5485 
5486 /*
5487  * ==========================================================================
5488  * SPA async task processing
5489  * ==========================================================================
5490  */
5491 
5492 static void
5493 spa_async_remove(spa_t *spa, vdev_t *vd)
5494 {
5495 	if (vd->vdev_remove_wanted) {
5496 		vd->vdev_remove_wanted = B_FALSE;
5497 		vd->vdev_delayed_close = B_FALSE;
5498 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5499 
5500 		/*
5501 		 * We want to clear the stats, but we don't want to do a full
5502 		 * vdev_clear() as that will cause us to throw away
5503 		 * degraded/faulted state as well as attempt to reopen the
5504 		 * device, all of which is a waste.
5505 		 */
5506 		vd->vdev_stat.vs_read_errors = 0;
5507 		vd->vdev_stat.vs_write_errors = 0;
5508 		vd->vdev_stat.vs_checksum_errors = 0;
5509 
5510 		vdev_state_dirty(vd->vdev_top);
5511 	}
5512 
5513 	for (int c = 0; c < vd->vdev_children; c++)
5514 		spa_async_remove(spa, vd->vdev_child[c]);
5515 }
5516 
5517 static void
5518 spa_async_probe(spa_t *spa, vdev_t *vd)
5519 {
5520 	if (vd->vdev_probe_wanted) {
5521 		vd->vdev_probe_wanted = B_FALSE;
5522 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5523 	}
5524 
5525 	for (int c = 0; c < vd->vdev_children; c++)
5526 		spa_async_probe(spa, vd->vdev_child[c]);
5527 }
5528 
5529 static void
5530 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5531 {
5532 	sysevent_id_t eid;
5533 	nvlist_t *attr;
5534 	char *physpath;
5535 
5536 	if (!spa->spa_autoexpand)
5537 		return;
5538 
5539 	for (int c = 0; c < vd->vdev_children; c++) {
5540 		vdev_t *cvd = vd->vdev_child[c];
5541 		spa_async_autoexpand(spa, cvd);
5542 	}
5543 
5544 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5545 		return;
5546 
5547 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5548 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5549 
5550 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5551 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5552 
5553 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5554 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5555 
5556 	nvlist_free(attr);
5557 	kmem_free(physpath, MAXPATHLEN);
5558 }
5559 
5560 static void
5561 spa_async_thread(spa_t *spa)
5562 {
5563 	int tasks;
5564 
5565 	ASSERT(spa->spa_sync_on);
5566 
5567 	mutex_enter(&spa->spa_async_lock);
5568 	tasks = spa->spa_async_tasks;
5569 	spa->spa_async_tasks = 0;
5570 	mutex_exit(&spa->spa_async_lock);
5571 
5572 	/*
5573 	 * See if the config needs to be updated.
5574 	 */
5575 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5576 		uint64_t old_space, new_space;
5577 
5578 		mutex_enter(&spa_namespace_lock);
5579 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5580 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5581 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5582 		mutex_exit(&spa_namespace_lock);
5583 
5584 		/*
5585 		 * If the pool grew as a result of the config update,
5586 		 * then log an internal history event.
5587 		 */
5588 		if (new_space != old_space) {
5589 			spa_history_log_internal(spa, "vdev online", NULL,
5590 			    "pool '%s' size: %llu(+%llu)",
5591 			    spa_name(spa), new_space, new_space - old_space);
5592 		}
5593 	}
5594 
5595 	/*
5596 	 * See if any devices need to be marked REMOVED.
5597 	 */
5598 	if (tasks & SPA_ASYNC_REMOVE) {
5599 		spa_vdev_state_enter(spa, SCL_NONE);
5600 		spa_async_remove(spa, spa->spa_root_vdev);
5601 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5602 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5603 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5604 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5605 		(void) spa_vdev_state_exit(spa, NULL, 0);
5606 	}
5607 
5608 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5609 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5610 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5611 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5612 	}
5613 
5614 	/*
5615 	 * See if any devices need to be probed.
5616 	 */
5617 	if (tasks & SPA_ASYNC_PROBE) {
5618 		spa_vdev_state_enter(spa, SCL_NONE);
5619 		spa_async_probe(spa, spa->spa_root_vdev);
5620 		(void) spa_vdev_state_exit(spa, NULL, 0);
5621 	}
5622 
5623 	/*
5624 	 * If any devices are done replacing, detach them.
5625 	 */
5626 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5627 		spa_vdev_resilver_done(spa);
5628 
5629 	/*
5630 	 * Kick off a resilver.
5631 	 */
5632 	if (tasks & SPA_ASYNC_RESILVER)
5633 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5634 
5635 	/*
5636 	 * Let the world know that we're done.
5637 	 */
5638 	mutex_enter(&spa->spa_async_lock);
5639 	spa->spa_async_thread = NULL;
5640 	cv_broadcast(&spa->spa_async_cv);
5641 	mutex_exit(&spa->spa_async_lock);
5642 	thread_exit();
5643 }
5644 
5645 void
5646 spa_async_suspend(spa_t *spa)
5647 {
5648 	mutex_enter(&spa->spa_async_lock);
5649 	spa->spa_async_suspended++;
5650 	while (spa->spa_async_thread != NULL)
5651 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5652 	mutex_exit(&spa->spa_async_lock);
5653 }
5654 
5655 void
5656 spa_async_resume(spa_t *spa)
5657 {
5658 	mutex_enter(&spa->spa_async_lock);
5659 	ASSERT(spa->spa_async_suspended != 0);
5660 	spa->spa_async_suspended--;
5661 	mutex_exit(&spa->spa_async_lock);
5662 }
5663 
5664 static void
5665 spa_async_dispatch(spa_t *spa)
5666 {
5667 	mutex_enter(&spa->spa_async_lock);
5668 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5669 	    spa->spa_async_thread == NULL &&
5670 	    rootdir != NULL && !vn_is_readonly(rootdir))
5671 		spa->spa_async_thread = thread_create(NULL, 0,
5672 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5673 	mutex_exit(&spa->spa_async_lock);
5674 }
5675 
5676 void
5677 spa_async_request(spa_t *spa, int task)
5678 {
5679 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5680 	mutex_enter(&spa->spa_async_lock);
5681 	spa->spa_async_tasks |= task;
5682 	mutex_exit(&spa->spa_async_lock);
5683 }
5684 
5685 /*
5686  * ==========================================================================
5687  * SPA syncing routines
5688  * ==========================================================================
5689  */
5690 
5691 static int
5692 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5693 {
5694 	bpobj_t *bpo = arg;
5695 	bpobj_enqueue(bpo, bp, tx);
5696 	return (0);
5697 }
5698 
5699 static int
5700 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5701 {
5702 	zio_t *zio = arg;
5703 
5704 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5705 	    zio->io_flags));
5706 	return (0);
5707 }
5708 
5709 static void
5710 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5711 {
5712 	char *packed = NULL;
5713 	size_t bufsize;
5714 	size_t nvsize = 0;
5715 	dmu_buf_t *db;
5716 
5717 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5718 
5719 	/*
5720 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5721 	 * information.  This avoids the dbuf_will_dirty() path and
5722 	 * saves us a pre-read to get data we don't actually care about.
5723 	 */
5724 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5725 	packed = kmem_alloc(bufsize, KM_SLEEP);
5726 
5727 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5728 	    KM_SLEEP) == 0);
5729 	bzero(packed + nvsize, bufsize - nvsize);
5730 
5731 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5732 
5733 	kmem_free(packed, bufsize);
5734 
5735 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5736 	dmu_buf_will_dirty(db, tx);
5737 	*(uint64_t *)db->db_data = nvsize;
5738 	dmu_buf_rele(db, FTAG);
5739 }
5740 
5741 static void
5742 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5743     const char *config, const char *entry)
5744 {
5745 	nvlist_t *nvroot;
5746 	nvlist_t **list;
5747 	int i;
5748 
5749 	if (!sav->sav_sync)
5750 		return;
5751 
5752 	/*
5753 	 * Update the MOS nvlist describing the list of available devices.
5754 	 * spa_validate_aux() will have already made sure this nvlist is
5755 	 * valid and the vdevs are labeled appropriately.
5756 	 */
5757 	if (sav->sav_object == 0) {
5758 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5759 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5760 		    sizeof (uint64_t), tx);
5761 		VERIFY(zap_update(spa->spa_meta_objset,
5762 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5763 		    &sav->sav_object, tx) == 0);
5764 	}
5765 
5766 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5767 	if (sav->sav_count == 0) {
5768 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5769 	} else {
5770 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5771 		for (i = 0; i < sav->sav_count; i++)
5772 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5773 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5774 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5775 		    sav->sav_count) == 0);
5776 		for (i = 0; i < sav->sav_count; i++)
5777 			nvlist_free(list[i]);
5778 		kmem_free(list, sav->sav_count * sizeof (void *));
5779 	}
5780 
5781 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5782 	nvlist_free(nvroot);
5783 
5784 	sav->sav_sync = B_FALSE;
5785 }
5786 
5787 static void
5788 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5789 {
5790 	nvlist_t *config;
5791 
5792 	if (list_is_empty(&spa->spa_config_dirty_list))
5793 		return;
5794 
5795 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5796 
5797 	config = spa_config_generate(spa, spa->spa_root_vdev,
5798 	    dmu_tx_get_txg(tx), B_FALSE);
5799 
5800 	/*
5801 	 * If we're upgrading the spa version then make sure that
5802 	 * the config object gets updated with the correct version.
5803 	 */
5804 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5805 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5806 		    spa->spa_uberblock.ub_version);
5807 
5808 	spa_config_exit(spa, SCL_STATE, FTAG);
5809 
5810 	if (spa->spa_config_syncing)
5811 		nvlist_free(spa->spa_config_syncing);
5812 	spa->spa_config_syncing = config;
5813 
5814 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5815 }
5816 
5817 static void
5818 spa_sync_version(void *arg, dmu_tx_t *tx)
5819 {
5820 	uint64_t *versionp = arg;
5821 	uint64_t version = *versionp;
5822 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5823 
5824 	/*
5825 	 * Setting the version is special cased when first creating the pool.
5826 	 */
5827 	ASSERT(tx->tx_txg != TXG_INITIAL);
5828 
5829 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5830 	ASSERT(version >= spa_version(spa));
5831 
5832 	spa->spa_uberblock.ub_version = version;
5833 	vdev_config_dirty(spa->spa_root_vdev);
5834 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5835 }
5836 
5837 /*
5838  * Set zpool properties.
5839  */
5840 static void
5841 spa_sync_props(void *arg, dmu_tx_t *tx)
5842 {
5843 	nvlist_t *nvp = arg;
5844 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5845 	objset_t *mos = spa->spa_meta_objset;
5846 	nvpair_t *elem = NULL;
5847 
5848 	mutex_enter(&spa->spa_props_lock);
5849 
5850 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5851 		uint64_t intval;
5852 		char *strval, *fname;
5853 		zpool_prop_t prop;
5854 		const char *propname;
5855 		zprop_type_t proptype;
5856 		zfeature_info_t *feature;
5857 
5858 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5859 		case ZPROP_INVAL:
5860 			/*
5861 			 * We checked this earlier in spa_prop_validate().
5862 			 */
5863 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5864 
5865 			fname = strchr(nvpair_name(elem), '@') + 1;
5866 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5867 
5868 			spa_feature_enable(spa, feature, tx);
5869 			spa_history_log_internal(spa, "set", tx,
5870 			    "%s=enabled", nvpair_name(elem));
5871 			break;
5872 
5873 		case ZPOOL_PROP_VERSION:
5874 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5875 			/*
5876 			 * The version is synced seperatly before other
5877 			 * properties and should be correct by now.
5878 			 */
5879 			ASSERT3U(spa_version(spa), >=, intval);
5880 			break;
5881 
5882 		case ZPOOL_PROP_ALTROOT:
5883 			/*
5884 			 * 'altroot' is a non-persistent property. It should
5885 			 * have been set temporarily at creation or import time.
5886 			 */
5887 			ASSERT(spa->spa_root != NULL);
5888 			break;
5889 
5890 		case ZPOOL_PROP_READONLY:
5891 		case ZPOOL_PROP_CACHEFILE:
5892 			/*
5893 			 * 'readonly' and 'cachefile' are also non-persisitent
5894 			 * properties.
5895 			 */
5896 			break;
5897 		case ZPOOL_PROP_COMMENT:
5898 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5899 			if (spa->spa_comment != NULL)
5900 				spa_strfree(spa->spa_comment);
5901 			spa->spa_comment = spa_strdup(strval);
5902 			/*
5903 			 * We need to dirty the configuration on all the vdevs
5904 			 * so that their labels get updated.  It's unnecessary
5905 			 * to do this for pool creation since the vdev's
5906 			 * configuratoin has already been dirtied.
5907 			 */
5908 			if (tx->tx_txg != TXG_INITIAL)
5909 				vdev_config_dirty(spa->spa_root_vdev);
5910 			spa_history_log_internal(spa, "set", tx,
5911 			    "%s=%s", nvpair_name(elem), strval);
5912 			break;
5913 		default:
5914 			/*
5915 			 * Set pool property values in the poolprops mos object.
5916 			 */
5917 			if (spa->spa_pool_props_object == 0) {
5918 				spa->spa_pool_props_object =
5919 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5920 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5921 				    tx);
5922 			}
5923 
5924 			/* normalize the property name */
5925 			propname = zpool_prop_to_name(prop);
5926 			proptype = zpool_prop_get_type(prop);
5927 
5928 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5929 				ASSERT(proptype == PROP_TYPE_STRING);
5930 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5931 				VERIFY(zap_update(mos,
5932 				    spa->spa_pool_props_object, propname,
5933 				    1, strlen(strval) + 1, strval, tx) == 0);
5934 				spa_history_log_internal(spa, "set", tx,
5935 				    "%s=%s", nvpair_name(elem), strval);
5936 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5937 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5938 
5939 				if (proptype == PROP_TYPE_INDEX) {
5940 					const char *unused;
5941 					VERIFY(zpool_prop_index_to_string(
5942 					    prop, intval, &unused) == 0);
5943 				}
5944 				VERIFY(zap_update(mos,
5945 				    spa->spa_pool_props_object, propname,
5946 				    8, 1, &intval, tx) == 0);
5947 				spa_history_log_internal(spa, "set", tx,
5948 				    "%s=%lld", nvpair_name(elem), intval);
5949 			} else {
5950 				ASSERT(0); /* not allowed */
5951 			}
5952 
5953 			switch (prop) {
5954 			case ZPOOL_PROP_DELEGATION:
5955 				spa->spa_delegation = intval;
5956 				break;
5957 			case ZPOOL_PROP_BOOTFS:
5958 				spa->spa_bootfs = intval;
5959 				break;
5960 			case ZPOOL_PROP_FAILUREMODE:
5961 				spa->spa_failmode = intval;
5962 				break;
5963 			case ZPOOL_PROP_AUTOEXPAND:
5964 				spa->spa_autoexpand = intval;
5965 				if (tx->tx_txg != TXG_INITIAL)
5966 					spa_async_request(spa,
5967 					    SPA_ASYNC_AUTOEXPAND);
5968 				break;
5969 			case ZPOOL_PROP_DEDUPDITTO:
5970 				spa->spa_dedup_ditto = intval;
5971 				break;
5972 			default:
5973 				break;
5974 			}
5975 		}
5976 
5977 	}
5978 
5979 	mutex_exit(&spa->spa_props_lock);
5980 }
5981 
5982 /*
5983  * Perform one-time upgrade on-disk changes.  spa_version() does not
5984  * reflect the new version this txg, so there must be no changes this
5985  * txg to anything that the upgrade code depends on after it executes.
5986  * Therefore this must be called after dsl_pool_sync() does the sync
5987  * tasks.
5988  */
5989 static void
5990 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5991 {
5992 	dsl_pool_t *dp = spa->spa_dsl_pool;
5993 
5994 	ASSERT(spa->spa_sync_pass == 1);
5995 
5996 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
5997 
5998 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5999 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6000 		dsl_pool_create_origin(dp, tx);
6001 
6002 		/* Keeping the origin open increases spa_minref */
6003 		spa->spa_minref += 3;
6004 	}
6005 
6006 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6007 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6008 		dsl_pool_upgrade_clones(dp, tx);
6009 	}
6010 
6011 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6012 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6013 		dsl_pool_upgrade_dir_clones(dp, tx);
6014 
6015 		/* Keeping the freedir open increases spa_minref */
6016 		spa->spa_minref += 3;
6017 	}
6018 
6019 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6020 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6021 		spa_feature_create_zap_objects(spa, tx);
6022 	}
6023 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6024 }
6025 
6026 /*
6027  * Sync the specified transaction group.  New blocks may be dirtied as
6028  * part of the process, so we iterate until it converges.
6029  */
6030 void
6031 spa_sync(spa_t *spa, uint64_t txg)
6032 {
6033 	dsl_pool_t *dp = spa->spa_dsl_pool;
6034 	objset_t *mos = spa->spa_meta_objset;
6035 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6036 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6037 	vdev_t *rvd = spa->spa_root_vdev;
6038 	vdev_t *vd;
6039 	dmu_tx_t *tx;
6040 	int error;
6041 
6042 	VERIFY(spa_writeable(spa));
6043 
6044 	/*
6045 	 * Lock out configuration changes.
6046 	 */
6047 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6048 
6049 	spa->spa_syncing_txg = txg;
6050 	spa->spa_sync_pass = 0;
6051 
6052 	/*
6053 	 * If there are any pending vdev state changes, convert them
6054 	 * into config changes that go out with this transaction group.
6055 	 */
6056 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6057 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6058 		/*
6059 		 * We need the write lock here because, for aux vdevs,
6060 		 * calling vdev_config_dirty() modifies sav_config.
6061 		 * This is ugly and will become unnecessary when we
6062 		 * eliminate the aux vdev wart by integrating all vdevs
6063 		 * into the root vdev tree.
6064 		 */
6065 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6066 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6067 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6068 			vdev_state_clean(vd);
6069 			vdev_config_dirty(vd);
6070 		}
6071 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6072 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6073 	}
6074 	spa_config_exit(spa, SCL_STATE, FTAG);
6075 
6076 	tx = dmu_tx_create_assigned(dp, txg);
6077 
6078 	spa->spa_sync_starttime = gethrtime();
6079 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6080 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6081 
6082 	/*
6083 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6084 	 * set spa_deflate if we have no raid-z vdevs.
6085 	 */
6086 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6087 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6088 		int i;
6089 
6090 		for (i = 0; i < rvd->vdev_children; i++) {
6091 			vd = rvd->vdev_child[i];
6092 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6093 				break;
6094 		}
6095 		if (i == rvd->vdev_children) {
6096 			spa->spa_deflate = TRUE;
6097 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6098 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6099 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6100 		}
6101 	}
6102 
6103 	/*
6104 	 * If anything has changed in this txg, or if someone is waiting
6105 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6106 	 * deferred frees from the previous txg.  If not, leave them
6107 	 * alone so that we don't generate work on an otherwise idle
6108 	 * system.
6109 	 */
6110 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6111 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6112 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6113 	    ((dsl_scan_active(dp->dp_scan) ||
6114 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6115 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6116 		VERIFY3U(bpobj_iterate(defer_bpo,
6117 		    spa_free_sync_cb, zio, tx), ==, 0);
6118 		VERIFY0(zio_wait(zio));
6119 	}
6120 
6121 	/*
6122 	 * Iterate to convergence.
6123 	 */
6124 	do {
6125 		int pass = ++spa->spa_sync_pass;
6126 
6127 		spa_sync_config_object(spa, tx);
6128 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6129 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6130 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6131 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6132 		spa_errlog_sync(spa, txg);
6133 		dsl_pool_sync(dp, txg);
6134 
6135 		if (pass < zfs_sync_pass_deferred_free) {
6136 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6137 			bplist_iterate(free_bpl, spa_free_sync_cb,
6138 			    zio, tx);
6139 			VERIFY(zio_wait(zio) == 0);
6140 		} else {
6141 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6142 			    defer_bpo, tx);
6143 		}
6144 
6145 		ddt_sync(spa, txg);
6146 		dsl_scan_sync(dp, tx);
6147 
6148 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6149 			vdev_sync(vd, txg);
6150 
6151 		if (pass == 1)
6152 			spa_sync_upgrades(spa, tx);
6153 
6154 	} while (dmu_objset_is_dirty(mos, txg));
6155 
6156 	/*
6157 	 * Rewrite the vdev configuration (which includes the uberblock)
6158 	 * to commit the transaction group.
6159 	 *
6160 	 * If there are no dirty vdevs, we sync the uberblock to a few
6161 	 * random top-level vdevs that are known to be visible in the
6162 	 * config cache (see spa_vdev_add() for a complete description).
6163 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6164 	 */
6165 	for (;;) {
6166 		/*
6167 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6168 		 * while we're attempting to write the vdev labels.
6169 		 */
6170 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6171 
6172 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6173 			vdev_t *svd[SPA_DVAS_PER_BP];
6174 			int svdcount = 0;
6175 			int children = rvd->vdev_children;
6176 			int c0 = spa_get_random(children);
6177 
6178 			for (int c = 0; c < children; c++) {
6179 				vd = rvd->vdev_child[(c0 + c) % children];
6180 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6181 					continue;
6182 				svd[svdcount++] = vd;
6183 				if (svdcount == SPA_DVAS_PER_BP)
6184 					break;
6185 			}
6186 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6187 			if (error != 0)
6188 				error = vdev_config_sync(svd, svdcount, txg,
6189 				    B_TRUE);
6190 		} else {
6191 			error = vdev_config_sync(rvd->vdev_child,
6192 			    rvd->vdev_children, txg, B_FALSE);
6193 			if (error != 0)
6194 				error = vdev_config_sync(rvd->vdev_child,
6195 				    rvd->vdev_children, txg, B_TRUE);
6196 		}
6197 
6198 		if (error == 0)
6199 			spa->spa_last_synced_guid = rvd->vdev_guid;
6200 
6201 		spa_config_exit(spa, SCL_STATE, FTAG);
6202 
6203 		if (error == 0)
6204 			break;
6205 		zio_suspend(spa, NULL);
6206 		zio_resume_wait(spa);
6207 	}
6208 	dmu_tx_commit(tx);
6209 
6210 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6211 
6212 	/*
6213 	 * Clear the dirty config list.
6214 	 */
6215 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6216 		vdev_config_clean(vd);
6217 
6218 	/*
6219 	 * Now that the new config has synced transactionally,
6220 	 * let it become visible to the config cache.
6221 	 */
6222 	if (spa->spa_config_syncing != NULL) {
6223 		spa_config_set(spa, spa->spa_config_syncing);
6224 		spa->spa_config_txg = txg;
6225 		spa->spa_config_syncing = NULL;
6226 	}
6227 
6228 	spa->spa_ubsync = spa->spa_uberblock;
6229 
6230 	dsl_pool_sync_done(dp, txg);
6231 
6232 	/*
6233 	 * Update usable space statistics.
6234 	 */
6235 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6236 		vdev_sync_done(vd, txg);
6237 
6238 	spa_update_dspace(spa);
6239 
6240 	/*
6241 	 * It had better be the case that we didn't dirty anything
6242 	 * since vdev_config_sync().
6243 	 */
6244 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6245 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6246 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6247 
6248 	spa->spa_sync_pass = 0;
6249 
6250 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6251 
6252 	spa_handle_ignored_writes(spa);
6253 
6254 	/*
6255 	 * If any async tasks have been requested, kick them off.
6256 	 */
6257 	spa_async_dispatch(spa);
6258 }
6259 
6260 /*
6261  * Sync all pools.  We don't want to hold the namespace lock across these
6262  * operations, so we take a reference on the spa_t and drop the lock during the
6263  * sync.
6264  */
6265 void
6266 spa_sync_allpools(void)
6267 {
6268 	spa_t *spa = NULL;
6269 	mutex_enter(&spa_namespace_lock);
6270 	while ((spa = spa_next(spa)) != NULL) {
6271 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6272 		    !spa_writeable(spa) || spa_suspended(spa))
6273 			continue;
6274 		spa_open_ref(spa, FTAG);
6275 		mutex_exit(&spa_namespace_lock);
6276 		txg_wait_synced(spa_get_dsl(spa), 0);
6277 		mutex_enter(&spa_namespace_lock);
6278 		spa_close(spa, FTAG);
6279 	}
6280 	mutex_exit(&spa_namespace_lock);
6281 }
6282 
6283 /*
6284  * ==========================================================================
6285  * Miscellaneous routines
6286  * ==========================================================================
6287  */
6288 
6289 /*
6290  * Remove all pools in the system.
6291  */
6292 void
6293 spa_evict_all(void)
6294 {
6295 	spa_t *spa;
6296 
6297 	/*
6298 	 * Remove all cached state.  All pools should be closed now,
6299 	 * so every spa in the AVL tree should be unreferenced.
6300 	 */
6301 	mutex_enter(&spa_namespace_lock);
6302 	while ((spa = spa_next(NULL)) != NULL) {
6303 		/*
6304 		 * Stop async tasks.  The async thread may need to detach
6305 		 * a device that's been replaced, which requires grabbing
6306 		 * spa_namespace_lock, so we must drop it here.
6307 		 */
6308 		spa_open_ref(spa, FTAG);
6309 		mutex_exit(&spa_namespace_lock);
6310 		spa_async_suspend(spa);
6311 		mutex_enter(&spa_namespace_lock);
6312 		spa_close(spa, FTAG);
6313 
6314 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6315 			spa_unload(spa);
6316 			spa_deactivate(spa);
6317 		}
6318 		spa_remove(spa);
6319 	}
6320 	mutex_exit(&spa_namespace_lock);
6321 }
6322 
6323 vdev_t *
6324 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6325 {
6326 	vdev_t *vd;
6327 	int i;
6328 
6329 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6330 		return (vd);
6331 
6332 	if (aux) {
6333 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6334 			vd = spa->spa_l2cache.sav_vdevs[i];
6335 			if (vd->vdev_guid == guid)
6336 				return (vd);
6337 		}
6338 
6339 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6340 			vd = spa->spa_spares.sav_vdevs[i];
6341 			if (vd->vdev_guid == guid)
6342 				return (vd);
6343 		}
6344 	}
6345 
6346 	return (NULL);
6347 }
6348 
6349 void
6350 spa_upgrade(spa_t *spa, uint64_t version)
6351 {
6352 	ASSERT(spa_writeable(spa));
6353 
6354 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6355 
6356 	/*
6357 	 * This should only be called for a non-faulted pool, and since a
6358 	 * future version would result in an unopenable pool, this shouldn't be
6359 	 * possible.
6360 	 */
6361 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6362 	ASSERT(version >= spa->spa_uberblock.ub_version);
6363 
6364 	spa->spa_uberblock.ub_version = version;
6365 	vdev_config_dirty(spa->spa_root_vdev);
6366 
6367 	spa_config_exit(spa, SCL_ALL, FTAG);
6368 
6369 	txg_wait_synced(spa_get_dsl(spa), 0);
6370 }
6371 
6372 boolean_t
6373 spa_has_spare(spa_t *spa, uint64_t guid)
6374 {
6375 	int i;
6376 	uint64_t spareguid;
6377 	spa_aux_vdev_t *sav = &spa->spa_spares;
6378 
6379 	for (i = 0; i < sav->sav_count; i++)
6380 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6381 			return (B_TRUE);
6382 
6383 	for (i = 0; i < sav->sav_npending; i++) {
6384 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6385 		    &spareguid) == 0 && spareguid == guid)
6386 			return (B_TRUE);
6387 	}
6388 
6389 	return (B_FALSE);
6390 }
6391 
6392 /*
6393  * Check if a pool has an active shared spare device.
6394  * Note: reference count of an active spare is 2, as a spare and as a replace
6395  */
6396 static boolean_t
6397 spa_has_active_shared_spare(spa_t *spa)
6398 {
6399 	int i, refcnt;
6400 	uint64_t pool;
6401 	spa_aux_vdev_t *sav = &spa->spa_spares;
6402 
6403 	for (i = 0; i < sav->sav_count; i++) {
6404 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6405 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6406 		    refcnt > 2)
6407 			return (B_TRUE);
6408 	}
6409 
6410 	return (B_FALSE);
6411 }
6412 
6413 /*
6414  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6415  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6416  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6417  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6418  * or zdb as real changes.
6419  */
6420 void
6421 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6422 {
6423 #ifdef _KERNEL
6424 	sysevent_t		*ev;
6425 	sysevent_attr_list_t	*attr = NULL;
6426 	sysevent_value_t	value;
6427 	sysevent_id_t		eid;
6428 
6429 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6430 	    SE_SLEEP);
6431 
6432 	value.value_type = SE_DATA_TYPE_STRING;
6433 	value.value.sv_string = spa_name(spa);
6434 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6435 		goto done;
6436 
6437 	value.value_type = SE_DATA_TYPE_UINT64;
6438 	value.value.sv_uint64 = spa_guid(spa);
6439 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6440 		goto done;
6441 
6442 	if (vd) {
6443 		value.value_type = SE_DATA_TYPE_UINT64;
6444 		value.value.sv_uint64 = vd->vdev_guid;
6445 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6446 		    SE_SLEEP) != 0)
6447 			goto done;
6448 
6449 		if (vd->vdev_path) {
6450 			value.value_type = SE_DATA_TYPE_STRING;
6451 			value.value.sv_string = vd->vdev_path;
6452 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6453 			    &value, SE_SLEEP) != 0)
6454 				goto done;
6455 		}
6456 	}
6457 
6458 	if (sysevent_attach_attributes(ev, attr) != 0)
6459 		goto done;
6460 	attr = NULL;
6461 
6462 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6463 
6464 done:
6465 	if (attr)
6466 		sysevent_free_attr(attr);
6467 	sysevent_free(ev);
6468 #endif
6469 }
6470