xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 7d46dc6ca63a6f3f0d51aa655bfcf10cf2405a9e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size;
198 	uint64_t alloc;
199 	uint64_t space;
200 	uint64_t cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		space = 0;
216 		for (int c = 0; c < rvd->vdev_children; c++) {
217 			vdev_t *tvd = rvd->vdev_child[c];
218 			space += tvd->vdev_max_asize - tvd->vdev_asize;
219 		}
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 		    src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		/*
245 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 		 * when opening pools before this version freedir will be NULL.
247 		 */
248 		if (pool->dp_free_dir != NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 		} else {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 			    NULL, 0, src);
254 		}
255 
256 		if (pool->dp_leak_dir != NULL) {
257 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 		} else {
260 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 			    NULL, 0, src);
262 		}
263 	}
264 
265 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266 
267 	if (spa->spa_comment != NULL) {
268 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 		    0, ZPROP_SRC_LOCAL);
270 	}
271 
272 	if (spa->spa_root != NULL)
273 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 		    0, ZPROP_SRC_LOCAL);
275 
276 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 		if (dp->scd_path == NULL) {
278 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 			    "none", 0, ZPROP_SRC_LOCAL);
280 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 		}
284 	}
285 }
286 
287 /*
288  * Get zpool property values.
289  */
290 int
291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 {
293 	objset_t *mos = spa->spa_meta_objset;
294 	zap_cursor_t zc;
295 	zap_attribute_t za;
296 	int err;
297 
298 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299 
300 	mutex_enter(&spa->spa_props_lock);
301 
302 	/*
303 	 * Get properties from the spa config.
304 	 */
305 	spa_prop_get_config(spa, nvp);
306 
307 	/* If no pool property object, no more prop to get. */
308 	if (mos == NULL || spa->spa_pool_props_object == 0) {
309 		mutex_exit(&spa->spa_props_lock);
310 		return (0);
311 	}
312 
313 	/*
314 	 * Get properties from the MOS pool property object.
315 	 */
316 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 	    zap_cursor_advance(&zc)) {
319 		uint64_t intval = 0;
320 		char *strval = NULL;
321 		zprop_source_t src = ZPROP_SRC_DEFAULT;
322 		zpool_prop_t prop;
323 
324 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 			continue;
326 
327 		switch (za.za_integer_length) {
328 		case 8:
329 			/* integer property */
330 			if (za.za_first_integer !=
331 			    zpool_prop_default_numeric(prop))
332 				src = ZPROP_SRC_LOCAL;
333 
334 			if (prop == ZPOOL_PROP_BOOTFS) {
335 				dsl_pool_t *dp;
336 				dsl_dataset_t *ds = NULL;
337 
338 				dp = spa_get_dsl(spa);
339 				dsl_pool_config_enter(dp, FTAG);
340 				if (err = dsl_dataset_hold_obj(dp,
341 				    za.za_first_integer, FTAG, &ds)) {
342 					dsl_pool_config_exit(dp, FTAG);
343 					break;
344 				}
345 
346 				strval = kmem_alloc(
347 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 				    KM_SLEEP);
349 				dsl_dataset_name(ds, strval);
350 				dsl_dataset_rele(ds, FTAG);
351 				dsl_pool_config_exit(dp, FTAG);
352 			} else {
353 				strval = NULL;
354 				intval = za.za_first_integer;
355 			}
356 
357 			spa_prop_add_list(*nvp, prop, strval, intval, src);
358 
359 			if (strval != NULL)
360 				kmem_free(strval,
361 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362 
363 			break;
364 
365 		case 1:
366 			/* string property */
367 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 			err = zap_lookup(mos, spa->spa_pool_props_object,
369 			    za.za_name, 1, za.za_num_integers, strval);
370 			if (err) {
371 				kmem_free(strval, za.za_num_integers);
372 				break;
373 			}
374 			spa_prop_add_list(*nvp, prop, strval, 0, src);
375 			kmem_free(strval, za.za_num_integers);
376 			break;
377 
378 		default:
379 			break;
380 		}
381 	}
382 	zap_cursor_fini(&zc);
383 	mutex_exit(&spa->spa_props_lock);
384 out:
385 	if (err && err != ENOENT) {
386 		nvlist_free(*nvp);
387 		*nvp = NULL;
388 		return (err);
389 	}
390 
391 	return (0);
392 }
393 
394 /*
395  * Validate the given pool properties nvlist and modify the list
396  * for the property values to be set.
397  */
398 static int
399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 {
401 	nvpair_t *elem;
402 	int error = 0, reset_bootfs = 0;
403 	uint64_t objnum = 0;
404 	boolean_t has_feature = B_FALSE;
405 
406 	elem = NULL;
407 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 		uint64_t intval;
409 		char *strval, *slash, *check, *fname;
410 		const char *propname = nvpair_name(elem);
411 		zpool_prop_t prop = zpool_name_to_prop(propname);
412 
413 		switch (prop) {
414 		case ZPROP_INVAL:
415 			if (!zpool_prop_feature(propname)) {
416 				error = SET_ERROR(EINVAL);
417 				break;
418 			}
419 
420 			/*
421 			 * Sanitize the input.
422 			 */
423 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 				error = SET_ERROR(EINVAL);
425 				break;
426 			}
427 
428 			if (nvpair_value_uint64(elem, &intval) != 0) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (intval != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			fname = strchr(propname, '@') + 1;
439 			if (zfeature_lookup_name(fname, NULL) != 0) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			has_feature = B_TRUE;
445 			break;
446 
447 		case ZPOOL_PROP_VERSION:
448 			error = nvpair_value_uint64(elem, &intval);
449 			if (!error &&
450 			    (intval < spa_version(spa) ||
451 			    intval > SPA_VERSION_BEFORE_FEATURES ||
452 			    has_feature))
453 				error = SET_ERROR(EINVAL);
454 			break;
455 
456 		case ZPOOL_PROP_DELEGATION:
457 		case ZPOOL_PROP_AUTOREPLACE:
458 		case ZPOOL_PROP_LISTSNAPS:
459 		case ZPOOL_PROP_AUTOEXPAND:
460 			error = nvpair_value_uint64(elem, &intval);
461 			if (!error && intval > 1)
462 				error = SET_ERROR(EINVAL);
463 			break;
464 
465 		case ZPOOL_PROP_BOOTFS:
466 			/*
467 			 * If the pool version is less than SPA_VERSION_BOOTFS,
468 			 * or the pool is still being created (version == 0),
469 			 * the bootfs property cannot be set.
470 			 */
471 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 				error = SET_ERROR(ENOTSUP);
473 				break;
474 			}
475 
476 			/*
477 			 * Make sure the vdev config is bootable
478 			 */
479 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 				error = SET_ERROR(ENOTSUP);
481 				break;
482 			}
483 
484 			reset_bootfs = 1;
485 
486 			error = nvpair_value_string(elem, &strval);
487 
488 			if (!error) {
489 				objset_t *os;
490 				uint64_t compress;
491 
492 				if (strval == NULL || strval[0] == '\0') {
493 					objnum = zpool_prop_default_numeric(
494 					    ZPOOL_PROP_BOOTFS);
495 					break;
496 				}
497 
498 				if (error = dmu_objset_hold(strval, FTAG, &os))
499 					break;
500 
501 				/* Must be ZPL and not gzip compressed. */
502 
503 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else if ((error =
506 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
507 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 				    &compress)) == 0 &&
509 				    !BOOTFS_COMPRESS_VALID(compress)) {
510 					error = SET_ERROR(ENOTSUP);
511 				} else {
512 					objnum = dmu_objset_id(os);
513 				}
514 				dmu_objset_rele(os, FTAG);
515 			}
516 			break;
517 
518 		case ZPOOL_PROP_FAILUREMODE:
519 			error = nvpair_value_uint64(elem, &intval);
520 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 			    intval > ZIO_FAILURE_MODE_PANIC))
522 				error = SET_ERROR(EINVAL);
523 
524 			/*
525 			 * This is a special case which only occurs when
526 			 * the pool has completely failed. This allows
527 			 * the user to change the in-core failmode property
528 			 * without syncing it out to disk (I/Os might
529 			 * currently be blocked). We do this by returning
530 			 * EIO to the caller (spa_prop_set) to trick it
531 			 * into thinking we encountered a property validation
532 			 * error.
533 			 */
534 			if (!error && spa_suspended(spa)) {
535 				spa->spa_failmode = intval;
536 				error = SET_ERROR(EIO);
537 			}
538 			break;
539 
540 		case ZPOOL_PROP_CACHEFILE:
541 			if ((error = nvpair_value_string(elem, &strval)) != 0)
542 				break;
543 
544 			if (strval[0] == '\0')
545 				break;
546 
547 			if (strcmp(strval, "none") == 0)
548 				break;
549 
550 			if (strval[0] != '/') {
551 				error = SET_ERROR(EINVAL);
552 				break;
553 			}
554 
555 			slash = strrchr(strval, '/');
556 			ASSERT(slash != NULL);
557 
558 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 			    strcmp(slash, "/..") == 0)
560 				error = SET_ERROR(EINVAL);
561 			break;
562 
563 		case ZPOOL_PROP_COMMENT:
564 			if ((error = nvpair_value_string(elem, &strval)) != 0)
565 				break;
566 			for (check = strval; *check != '\0'; check++) {
567 				/*
568 				 * The kernel doesn't have an easy isprint()
569 				 * check.  For this kernel check, we merely
570 				 * check ASCII apart from DEL.  Fix this if
571 				 * there is an easy-to-use kernel isprint().
572 				 */
573 				if (*check >= 0x7f) {
574 					error = SET_ERROR(EINVAL);
575 					break;
576 				}
577 				check++;
578 			}
579 			if (strlen(strval) > ZPROP_MAX_COMMENT)
580 				error = E2BIG;
581 			break;
582 
583 		case ZPOOL_PROP_DEDUPDITTO:
584 			if (spa_version(spa) < SPA_VERSION_DEDUP)
585 				error = SET_ERROR(ENOTSUP);
586 			else
587 				error = nvpair_value_uint64(elem, &intval);
588 			if (error == 0 &&
589 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 				error = SET_ERROR(EINVAL);
591 			break;
592 		}
593 
594 		if (error)
595 			break;
596 	}
597 
598 	if (!error && reset_bootfs) {
599 		error = nvlist_remove(props,
600 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601 
602 		if (!error) {
603 			error = nvlist_add_uint64(props,
604 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 		}
606 	}
607 
608 	return (error);
609 }
610 
611 void
612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 {
614 	char *cachefile;
615 	spa_config_dirent_t *dp;
616 
617 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 	    &cachefile) != 0)
619 		return;
620 
621 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 	    KM_SLEEP);
623 
624 	if (cachefile[0] == '\0')
625 		dp->scd_path = spa_strdup(spa_config_path);
626 	else if (strcmp(cachefile, "none") == 0)
627 		dp->scd_path = NULL;
628 	else
629 		dp->scd_path = spa_strdup(cachefile);
630 
631 	list_insert_head(&spa->spa_config_list, dp);
632 	if (need_sync)
633 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 }
635 
636 int
637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 {
639 	int error;
640 	nvpair_t *elem = NULL;
641 	boolean_t need_sync = B_FALSE;
642 
643 	if ((error = spa_prop_validate(spa, nvp)) != 0)
644 		return (error);
645 
646 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648 
649 		if (prop == ZPOOL_PROP_CACHEFILE ||
650 		    prop == ZPOOL_PROP_ALTROOT ||
651 		    prop == ZPOOL_PROP_READONLY)
652 			continue;
653 
654 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 			uint64_t ver;
656 
657 			if (prop == ZPOOL_PROP_VERSION) {
658 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 			} else {
660 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 				ver = SPA_VERSION_FEATURES;
662 				need_sync = B_TRUE;
663 			}
664 
665 			/* Save time if the version is already set. */
666 			if (ver == spa_version(spa))
667 				continue;
668 
669 			/*
670 			 * In addition to the pool directory object, we might
671 			 * create the pool properties object, the features for
672 			 * read object, the features for write object, or the
673 			 * feature descriptions object.
674 			 */
675 			error = dsl_sync_task(spa->spa_name, NULL,
676 			    spa_sync_version, &ver,
677 			    6, ZFS_SPACE_CHECK_RESERVED);
678 			if (error)
679 				return (error);
680 			continue;
681 		}
682 
683 		need_sync = B_TRUE;
684 		break;
685 	}
686 
687 	if (need_sync) {
688 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
689 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
690 	}
691 
692 	return (0);
693 }
694 
695 /*
696  * If the bootfs property value is dsobj, clear it.
697  */
698 void
699 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
700 {
701 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
702 		VERIFY(zap_remove(spa->spa_meta_objset,
703 		    spa->spa_pool_props_object,
704 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
705 		spa->spa_bootfs = 0;
706 	}
707 }
708 
709 /*ARGSUSED*/
710 static int
711 spa_change_guid_check(void *arg, dmu_tx_t *tx)
712 {
713 	uint64_t *newguid = arg;
714 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
715 	vdev_t *rvd = spa->spa_root_vdev;
716 	uint64_t vdev_state;
717 
718 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
719 	vdev_state = rvd->vdev_state;
720 	spa_config_exit(spa, SCL_STATE, FTAG);
721 
722 	if (vdev_state != VDEV_STATE_HEALTHY)
723 		return (SET_ERROR(ENXIO));
724 
725 	ASSERT3U(spa_guid(spa), !=, *newguid);
726 
727 	return (0);
728 }
729 
730 static void
731 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
732 {
733 	uint64_t *newguid = arg;
734 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
735 	uint64_t oldguid;
736 	vdev_t *rvd = spa->spa_root_vdev;
737 
738 	oldguid = spa_guid(spa);
739 
740 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
741 	rvd->vdev_guid = *newguid;
742 	rvd->vdev_guid_sum += (*newguid - oldguid);
743 	vdev_config_dirty(rvd);
744 	spa_config_exit(spa, SCL_STATE, FTAG);
745 
746 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
747 	    oldguid, *newguid);
748 }
749 
750 /*
751  * Change the GUID for the pool.  This is done so that we can later
752  * re-import a pool built from a clone of our own vdevs.  We will modify
753  * the root vdev's guid, our own pool guid, and then mark all of our
754  * vdevs dirty.  Note that we must make sure that all our vdevs are
755  * online when we do this, or else any vdevs that weren't present
756  * would be orphaned from our pool.  We are also going to issue a
757  * sysevent to update any watchers.
758  */
759 int
760 spa_change_guid(spa_t *spa)
761 {
762 	int error;
763 	uint64_t guid;
764 
765 	mutex_enter(&spa->spa_vdev_top_lock);
766 	mutex_enter(&spa_namespace_lock);
767 	guid = spa_generate_guid(NULL);
768 
769 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
770 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
771 
772 	if (error == 0) {
773 		spa_config_sync(spa, B_FALSE, B_TRUE);
774 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
775 	}
776 
777 	mutex_exit(&spa_namespace_lock);
778 	mutex_exit(&spa->spa_vdev_top_lock);
779 
780 	return (error);
781 }
782 
783 /*
784  * ==========================================================================
785  * SPA state manipulation (open/create/destroy/import/export)
786  * ==========================================================================
787  */
788 
789 static int
790 spa_error_entry_compare(const void *a, const void *b)
791 {
792 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
793 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
794 	int ret;
795 
796 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
797 	    sizeof (zbookmark_phys_t));
798 
799 	if (ret < 0)
800 		return (-1);
801 	else if (ret > 0)
802 		return (1);
803 	else
804 		return (0);
805 }
806 
807 /*
808  * Utility function which retrieves copies of the current logs and
809  * re-initializes them in the process.
810  */
811 void
812 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
813 {
814 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
815 
816 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
817 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
818 
819 	avl_create(&spa->spa_errlist_scrub,
820 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
821 	    offsetof(spa_error_entry_t, se_avl));
822 	avl_create(&spa->spa_errlist_last,
823 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
824 	    offsetof(spa_error_entry_t, se_avl));
825 }
826 
827 static void
828 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
829 {
830 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
831 	enum zti_modes mode = ztip->zti_mode;
832 	uint_t value = ztip->zti_value;
833 	uint_t count = ztip->zti_count;
834 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
835 	char name[32];
836 	uint_t flags = 0;
837 	boolean_t batch = B_FALSE;
838 
839 	if (mode == ZTI_MODE_NULL) {
840 		tqs->stqs_count = 0;
841 		tqs->stqs_taskq = NULL;
842 		return;
843 	}
844 
845 	ASSERT3U(count, >, 0);
846 
847 	tqs->stqs_count = count;
848 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
849 
850 	switch (mode) {
851 	case ZTI_MODE_FIXED:
852 		ASSERT3U(value, >=, 1);
853 		value = MAX(value, 1);
854 		break;
855 
856 	case ZTI_MODE_BATCH:
857 		batch = B_TRUE;
858 		flags |= TASKQ_THREADS_CPU_PCT;
859 		value = zio_taskq_batch_pct;
860 		break;
861 
862 	default:
863 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
864 		    "spa_activate()",
865 		    zio_type_name[t], zio_taskq_types[q], mode, value);
866 		break;
867 	}
868 
869 	for (uint_t i = 0; i < count; i++) {
870 		taskq_t *tq;
871 
872 		if (count > 1) {
873 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
874 			    zio_type_name[t], zio_taskq_types[q], i);
875 		} else {
876 			(void) snprintf(name, sizeof (name), "%s_%s",
877 			    zio_type_name[t], zio_taskq_types[q]);
878 		}
879 
880 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
881 			if (batch)
882 				flags |= TASKQ_DC_BATCH;
883 
884 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
885 			    spa->spa_proc, zio_taskq_basedc, flags);
886 		} else {
887 			pri_t pri = maxclsyspri;
888 			/*
889 			 * The write issue taskq can be extremely CPU
890 			 * intensive.  Run it at slightly lower priority
891 			 * than the other taskqs.
892 			 */
893 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
894 				pri--;
895 
896 			tq = taskq_create_proc(name, value, pri, 50,
897 			    INT_MAX, spa->spa_proc, flags);
898 		}
899 
900 		tqs->stqs_taskq[i] = tq;
901 	}
902 }
903 
904 static void
905 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
906 {
907 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
908 
909 	if (tqs->stqs_taskq == NULL) {
910 		ASSERT0(tqs->stqs_count);
911 		return;
912 	}
913 
914 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
915 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
916 		taskq_destroy(tqs->stqs_taskq[i]);
917 	}
918 
919 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
920 	tqs->stqs_taskq = NULL;
921 }
922 
923 /*
924  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
925  * Note that a type may have multiple discrete taskqs to avoid lock contention
926  * on the taskq itself. In that case we choose which taskq at random by using
927  * the low bits of gethrtime().
928  */
929 void
930 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
931     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
932 {
933 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
934 	taskq_t *tq;
935 
936 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
937 	ASSERT3U(tqs->stqs_count, !=, 0);
938 
939 	if (tqs->stqs_count == 1) {
940 		tq = tqs->stqs_taskq[0];
941 	} else {
942 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
943 	}
944 
945 	taskq_dispatch_ent(tq, func, arg, flags, ent);
946 }
947 
948 static void
949 spa_create_zio_taskqs(spa_t *spa)
950 {
951 	for (int t = 0; t < ZIO_TYPES; t++) {
952 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
953 			spa_taskqs_init(spa, t, q);
954 		}
955 	}
956 }
957 
958 #ifdef _KERNEL
959 static void
960 spa_thread(void *arg)
961 {
962 	callb_cpr_t cprinfo;
963 
964 	spa_t *spa = arg;
965 	user_t *pu = PTOU(curproc);
966 
967 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
968 	    spa->spa_name);
969 
970 	ASSERT(curproc != &p0);
971 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
972 	    "zpool-%s", spa->spa_name);
973 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
974 
975 	/* bind this thread to the requested psrset */
976 	if (zio_taskq_psrset_bind != PS_NONE) {
977 		pool_lock();
978 		mutex_enter(&cpu_lock);
979 		mutex_enter(&pidlock);
980 		mutex_enter(&curproc->p_lock);
981 
982 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
983 		    0, NULL, NULL) == 0)  {
984 			curthread->t_bind_pset = zio_taskq_psrset_bind;
985 		} else {
986 			cmn_err(CE_WARN,
987 			    "Couldn't bind process for zfs pool \"%s\" to "
988 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
989 		}
990 
991 		mutex_exit(&curproc->p_lock);
992 		mutex_exit(&pidlock);
993 		mutex_exit(&cpu_lock);
994 		pool_unlock();
995 	}
996 
997 	if (zio_taskq_sysdc) {
998 		sysdc_thread_enter(curthread, 100, 0);
999 	}
1000 
1001 	spa->spa_proc = curproc;
1002 	spa->spa_did = curthread->t_did;
1003 
1004 	spa_create_zio_taskqs(spa);
1005 
1006 	mutex_enter(&spa->spa_proc_lock);
1007 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1008 
1009 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1010 	cv_broadcast(&spa->spa_proc_cv);
1011 
1012 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1013 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1014 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1015 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1016 
1017 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1018 	spa->spa_proc_state = SPA_PROC_GONE;
1019 	spa->spa_proc = &p0;
1020 	cv_broadcast(&spa->spa_proc_cv);
1021 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1022 
1023 	mutex_enter(&curproc->p_lock);
1024 	lwp_exit();
1025 }
1026 #endif
1027 
1028 /*
1029  * Activate an uninitialized pool.
1030  */
1031 static void
1032 spa_activate(spa_t *spa, int mode)
1033 {
1034 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1035 
1036 	spa->spa_state = POOL_STATE_ACTIVE;
1037 	spa->spa_mode = mode;
1038 
1039 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1041 
1042 	/* Try to create a covering process */
1043 	mutex_enter(&spa->spa_proc_lock);
1044 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1045 	ASSERT(spa->spa_proc == &p0);
1046 	spa->spa_did = 0;
1047 
1048 	/* Only create a process if we're going to be around a while. */
1049 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1050 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1051 		    NULL, 0) == 0) {
1052 			spa->spa_proc_state = SPA_PROC_CREATED;
1053 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1054 				cv_wait(&spa->spa_proc_cv,
1055 				    &spa->spa_proc_lock);
1056 			}
1057 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1058 			ASSERT(spa->spa_proc != &p0);
1059 			ASSERT(spa->spa_did != 0);
1060 		} else {
1061 #ifdef _KERNEL
1062 			cmn_err(CE_WARN,
1063 			    "Couldn't create process for zfs pool \"%s\"\n",
1064 			    spa->spa_name);
1065 #endif
1066 		}
1067 	}
1068 	mutex_exit(&spa->spa_proc_lock);
1069 
1070 	/* If we didn't create a process, we need to create our taskqs. */
1071 	if (spa->spa_proc == &p0) {
1072 		spa_create_zio_taskqs(spa);
1073 	}
1074 
1075 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1076 	    offsetof(vdev_t, vdev_config_dirty_node));
1077 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1078 	    offsetof(vdev_t, vdev_state_dirty_node));
1079 
1080 	txg_list_create(&spa->spa_vdev_txg_list,
1081 	    offsetof(struct vdev, vdev_txg_node));
1082 
1083 	avl_create(&spa->spa_errlist_scrub,
1084 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1085 	    offsetof(spa_error_entry_t, se_avl));
1086 	avl_create(&spa->spa_errlist_last,
1087 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1088 	    offsetof(spa_error_entry_t, se_avl));
1089 }
1090 
1091 /*
1092  * Opposite of spa_activate().
1093  */
1094 static void
1095 spa_deactivate(spa_t *spa)
1096 {
1097 	ASSERT(spa->spa_sync_on == B_FALSE);
1098 	ASSERT(spa->spa_dsl_pool == NULL);
1099 	ASSERT(spa->spa_root_vdev == NULL);
1100 	ASSERT(spa->spa_async_zio_root == NULL);
1101 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1102 
1103 	txg_list_destroy(&spa->spa_vdev_txg_list);
1104 
1105 	list_destroy(&spa->spa_config_dirty_list);
1106 	list_destroy(&spa->spa_state_dirty_list);
1107 
1108 	for (int t = 0; t < ZIO_TYPES; t++) {
1109 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1110 			spa_taskqs_fini(spa, t, q);
1111 		}
1112 	}
1113 
1114 	metaslab_class_destroy(spa->spa_normal_class);
1115 	spa->spa_normal_class = NULL;
1116 
1117 	metaslab_class_destroy(spa->spa_log_class);
1118 	spa->spa_log_class = NULL;
1119 
1120 	/*
1121 	 * If this was part of an import or the open otherwise failed, we may
1122 	 * still have errors left in the queues.  Empty them just in case.
1123 	 */
1124 	spa_errlog_drain(spa);
1125 
1126 	avl_destroy(&spa->spa_errlist_scrub);
1127 	avl_destroy(&spa->spa_errlist_last);
1128 
1129 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1130 
1131 	mutex_enter(&spa->spa_proc_lock);
1132 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1133 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1134 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1135 		cv_broadcast(&spa->spa_proc_cv);
1136 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1137 			ASSERT(spa->spa_proc != &p0);
1138 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1139 		}
1140 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1141 		spa->spa_proc_state = SPA_PROC_NONE;
1142 	}
1143 	ASSERT(spa->spa_proc == &p0);
1144 	mutex_exit(&spa->spa_proc_lock);
1145 
1146 	/*
1147 	 * We want to make sure spa_thread() has actually exited the ZFS
1148 	 * module, so that the module can't be unloaded out from underneath
1149 	 * it.
1150 	 */
1151 	if (spa->spa_did != 0) {
1152 		thread_join(spa->spa_did);
1153 		spa->spa_did = 0;
1154 	}
1155 }
1156 
1157 /*
1158  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1159  * will create all the necessary vdevs in the appropriate layout, with each vdev
1160  * in the CLOSED state.  This will prep the pool before open/creation/import.
1161  * All vdev validation is done by the vdev_alloc() routine.
1162  */
1163 static int
1164 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1165     uint_t id, int atype)
1166 {
1167 	nvlist_t **child;
1168 	uint_t children;
1169 	int error;
1170 
1171 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1172 		return (error);
1173 
1174 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1175 		return (0);
1176 
1177 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1178 	    &child, &children);
1179 
1180 	if (error == ENOENT)
1181 		return (0);
1182 
1183 	if (error) {
1184 		vdev_free(*vdp);
1185 		*vdp = NULL;
1186 		return (SET_ERROR(EINVAL));
1187 	}
1188 
1189 	for (int c = 0; c < children; c++) {
1190 		vdev_t *vd;
1191 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1192 		    atype)) != 0) {
1193 			vdev_free(*vdp);
1194 			*vdp = NULL;
1195 			return (error);
1196 		}
1197 	}
1198 
1199 	ASSERT(*vdp != NULL);
1200 
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Opposite of spa_load().
1206  */
1207 static void
1208 spa_unload(spa_t *spa)
1209 {
1210 	int i;
1211 
1212 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1213 
1214 	/*
1215 	 * Stop async tasks.
1216 	 */
1217 	spa_async_suspend(spa);
1218 
1219 	/*
1220 	 * Stop syncing.
1221 	 */
1222 	if (spa->spa_sync_on) {
1223 		txg_sync_stop(spa->spa_dsl_pool);
1224 		spa->spa_sync_on = B_FALSE;
1225 	}
1226 
1227 	/*
1228 	 * Wait for any outstanding async I/O to complete.
1229 	 */
1230 	if (spa->spa_async_zio_root != NULL) {
1231 		(void) zio_wait(spa->spa_async_zio_root);
1232 		spa->spa_async_zio_root = NULL;
1233 	}
1234 
1235 	bpobj_close(&spa->spa_deferred_bpobj);
1236 
1237 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238 
1239 	/*
1240 	 * Close all vdevs.
1241 	 */
1242 	if (spa->spa_root_vdev)
1243 		vdev_free(spa->spa_root_vdev);
1244 	ASSERT(spa->spa_root_vdev == NULL);
1245 
1246 	/*
1247 	 * Close the dsl pool.
1248 	 */
1249 	if (spa->spa_dsl_pool) {
1250 		dsl_pool_close(spa->spa_dsl_pool);
1251 		spa->spa_dsl_pool = NULL;
1252 		spa->spa_meta_objset = NULL;
1253 	}
1254 
1255 	ddt_unload(spa);
1256 
1257 
1258 	/*
1259 	 * Drop and purge level 2 cache
1260 	 */
1261 	spa_l2cache_drop(spa);
1262 
1263 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1264 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1265 	if (spa->spa_spares.sav_vdevs) {
1266 		kmem_free(spa->spa_spares.sav_vdevs,
1267 		    spa->spa_spares.sav_count * sizeof (void *));
1268 		spa->spa_spares.sav_vdevs = NULL;
1269 	}
1270 	if (spa->spa_spares.sav_config) {
1271 		nvlist_free(spa->spa_spares.sav_config);
1272 		spa->spa_spares.sav_config = NULL;
1273 	}
1274 	spa->spa_spares.sav_count = 0;
1275 
1276 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1277 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1278 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1279 	}
1280 	if (spa->spa_l2cache.sav_vdevs) {
1281 		kmem_free(spa->spa_l2cache.sav_vdevs,
1282 		    spa->spa_l2cache.sav_count * sizeof (void *));
1283 		spa->spa_l2cache.sav_vdevs = NULL;
1284 	}
1285 	if (spa->spa_l2cache.sav_config) {
1286 		nvlist_free(spa->spa_l2cache.sav_config);
1287 		spa->spa_l2cache.sav_config = NULL;
1288 	}
1289 	spa->spa_l2cache.sav_count = 0;
1290 
1291 	spa->spa_async_suspended = 0;
1292 
1293 	if (spa->spa_comment != NULL) {
1294 		spa_strfree(spa->spa_comment);
1295 		spa->spa_comment = NULL;
1296 	}
1297 
1298 	spa_config_exit(spa, SCL_ALL, FTAG);
1299 }
1300 
1301 /*
1302  * Load (or re-load) the current list of vdevs describing the active spares for
1303  * this pool.  When this is called, we have some form of basic information in
1304  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1305  * then re-generate a more complete list including status information.
1306  */
1307 static void
1308 spa_load_spares(spa_t *spa)
1309 {
1310 	nvlist_t **spares;
1311 	uint_t nspares;
1312 	int i;
1313 	vdev_t *vd, *tvd;
1314 
1315 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1316 
1317 	/*
1318 	 * First, close and free any existing spare vdevs.
1319 	 */
1320 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1321 		vd = spa->spa_spares.sav_vdevs[i];
1322 
1323 		/* Undo the call to spa_activate() below */
1324 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1325 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1326 			spa_spare_remove(tvd);
1327 		vdev_close(vd);
1328 		vdev_free(vd);
1329 	}
1330 
1331 	if (spa->spa_spares.sav_vdevs)
1332 		kmem_free(spa->spa_spares.sav_vdevs,
1333 		    spa->spa_spares.sav_count * sizeof (void *));
1334 
1335 	if (spa->spa_spares.sav_config == NULL)
1336 		nspares = 0;
1337 	else
1338 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1339 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1340 
1341 	spa->spa_spares.sav_count = (int)nspares;
1342 	spa->spa_spares.sav_vdevs = NULL;
1343 
1344 	if (nspares == 0)
1345 		return;
1346 
1347 	/*
1348 	 * Construct the array of vdevs, opening them to get status in the
1349 	 * process.   For each spare, there is potentially two different vdev_t
1350 	 * structures associated with it: one in the list of spares (used only
1351 	 * for basic validation purposes) and one in the active vdev
1352 	 * configuration (if it's spared in).  During this phase we open and
1353 	 * validate each vdev on the spare list.  If the vdev also exists in the
1354 	 * active configuration, then we also mark this vdev as an active spare.
1355 	 */
1356 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1357 	    KM_SLEEP);
1358 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1359 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1360 		    VDEV_ALLOC_SPARE) == 0);
1361 		ASSERT(vd != NULL);
1362 
1363 		spa->spa_spares.sav_vdevs[i] = vd;
1364 
1365 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1366 		    B_FALSE)) != NULL) {
1367 			if (!tvd->vdev_isspare)
1368 				spa_spare_add(tvd);
1369 
1370 			/*
1371 			 * We only mark the spare active if we were successfully
1372 			 * able to load the vdev.  Otherwise, importing a pool
1373 			 * with a bad active spare would result in strange
1374 			 * behavior, because multiple pool would think the spare
1375 			 * is actively in use.
1376 			 *
1377 			 * There is a vulnerability here to an equally bizarre
1378 			 * circumstance, where a dead active spare is later
1379 			 * brought back to life (onlined or otherwise).  Given
1380 			 * the rarity of this scenario, and the extra complexity
1381 			 * it adds, we ignore the possibility.
1382 			 */
1383 			if (!vdev_is_dead(tvd))
1384 				spa_spare_activate(tvd);
1385 		}
1386 
1387 		vd->vdev_top = vd;
1388 		vd->vdev_aux = &spa->spa_spares;
1389 
1390 		if (vdev_open(vd) != 0)
1391 			continue;
1392 
1393 		if (vdev_validate_aux(vd) == 0)
1394 			spa_spare_add(vd);
1395 	}
1396 
1397 	/*
1398 	 * Recompute the stashed list of spares, with status information
1399 	 * this time.
1400 	 */
1401 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1402 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1403 
1404 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1405 	    KM_SLEEP);
1406 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1407 		spares[i] = vdev_config_generate(spa,
1408 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1409 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1410 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1411 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1412 		nvlist_free(spares[i]);
1413 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1414 }
1415 
1416 /*
1417  * Load (or re-load) the current list of vdevs describing the active l2cache for
1418  * this pool.  When this is called, we have some form of basic information in
1419  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1420  * then re-generate a more complete list including status information.
1421  * Devices which are already active have their details maintained, and are
1422  * not re-opened.
1423  */
1424 static void
1425 spa_load_l2cache(spa_t *spa)
1426 {
1427 	nvlist_t **l2cache;
1428 	uint_t nl2cache;
1429 	int i, j, oldnvdevs;
1430 	uint64_t guid;
1431 	vdev_t *vd, **oldvdevs, **newvdevs;
1432 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1433 
1434 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1435 
1436 	if (sav->sav_config != NULL) {
1437 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1438 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1439 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1440 	} else {
1441 		nl2cache = 0;
1442 		newvdevs = NULL;
1443 	}
1444 
1445 	oldvdevs = sav->sav_vdevs;
1446 	oldnvdevs = sav->sav_count;
1447 	sav->sav_vdevs = NULL;
1448 	sav->sav_count = 0;
1449 
1450 	/*
1451 	 * Process new nvlist of vdevs.
1452 	 */
1453 	for (i = 0; i < nl2cache; i++) {
1454 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1455 		    &guid) == 0);
1456 
1457 		newvdevs[i] = NULL;
1458 		for (j = 0; j < oldnvdevs; j++) {
1459 			vd = oldvdevs[j];
1460 			if (vd != NULL && guid == vd->vdev_guid) {
1461 				/*
1462 				 * Retain previous vdev for add/remove ops.
1463 				 */
1464 				newvdevs[i] = vd;
1465 				oldvdevs[j] = NULL;
1466 				break;
1467 			}
1468 		}
1469 
1470 		if (newvdevs[i] == NULL) {
1471 			/*
1472 			 * Create new vdev
1473 			 */
1474 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1475 			    VDEV_ALLOC_L2CACHE) == 0);
1476 			ASSERT(vd != NULL);
1477 			newvdevs[i] = vd;
1478 
1479 			/*
1480 			 * Commit this vdev as an l2cache device,
1481 			 * even if it fails to open.
1482 			 */
1483 			spa_l2cache_add(vd);
1484 
1485 			vd->vdev_top = vd;
1486 			vd->vdev_aux = sav;
1487 
1488 			spa_l2cache_activate(vd);
1489 
1490 			if (vdev_open(vd) != 0)
1491 				continue;
1492 
1493 			(void) vdev_validate_aux(vd);
1494 
1495 			if (!vdev_is_dead(vd))
1496 				l2arc_add_vdev(spa, vd);
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Purge vdevs that were dropped
1502 	 */
1503 	for (i = 0; i < oldnvdevs; i++) {
1504 		uint64_t pool;
1505 
1506 		vd = oldvdevs[i];
1507 		if (vd != NULL) {
1508 			ASSERT(vd->vdev_isl2cache);
1509 
1510 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1511 			    pool != 0ULL && l2arc_vdev_present(vd))
1512 				l2arc_remove_vdev(vd);
1513 			vdev_clear_stats(vd);
1514 			vdev_free(vd);
1515 		}
1516 	}
1517 
1518 	if (oldvdevs)
1519 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1520 
1521 	if (sav->sav_config == NULL)
1522 		goto out;
1523 
1524 	sav->sav_vdevs = newvdevs;
1525 	sav->sav_count = (int)nl2cache;
1526 
1527 	/*
1528 	 * Recompute the stashed list of l2cache devices, with status
1529 	 * information this time.
1530 	 */
1531 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1532 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1533 
1534 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1535 	for (i = 0; i < sav->sav_count; i++)
1536 		l2cache[i] = vdev_config_generate(spa,
1537 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1538 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1539 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1540 out:
1541 	for (i = 0; i < sav->sav_count; i++)
1542 		nvlist_free(l2cache[i]);
1543 	if (sav->sav_count)
1544 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1545 }
1546 
1547 static int
1548 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1549 {
1550 	dmu_buf_t *db;
1551 	char *packed = NULL;
1552 	size_t nvsize = 0;
1553 	int error;
1554 	*value = NULL;
1555 
1556 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1557 	nvsize = *(uint64_t *)db->db_data;
1558 	dmu_buf_rele(db, FTAG);
1559 
1560 	packed = kmem_alloc(nvsize, KM_SLEEP);
1561 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1562 	    DMU_READ_PREFETCH);
1563 	if (error == 0)
1564 		error = nvlist_unpack(packed, nvsize, value, 0);
1565 	kmem_free(packed, nvsize);
1566 
1567 	return (error);
1568 }
1569 
1570 /*
1571  * Checks to see if the given vdev could not be opened, in which case we post a
1572  * sysevent to notify the autoreplace code that the device has been removed.
1573  */
1574 static void
1575 spa_check_removed(vdev_t *vd)
1576 {
1577 	for (int c = 0; c < vd->vdev_children; c++)
1578 		spa_check_removed(vd->vdev_child[c]);
1579 
1580 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1581 	    !vd->vdev_ishole) {
1582 		zfs_post_autoreplace(vd->vdev_spa, vd);
1583 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1584 	}
1585 }
1586 
1587 /*
1588  * Validate the current config against the MOS config
1589  */
1590 static boolean_t
1591 spa_config_valid(spa_t *spa, nvlist_t *config)
1592 {
1593 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1594 	nvlist_t *nv;
1595 
1596 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1597 
1598 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1599 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1600 
1601 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1602 
1603 	/*
1604 	 * If we're doing a normal import, then build up any additional
1605 	 * diagnostic information about missing devices in this config.
1606 	 * We'll pass this up to the user for further processing.
1607 	 */
1608 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1609 		nvlist_t **child, *nv;
1610 		uint64_t idx = 0;
1611 
1612 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1613 		    KM_SLEEP);
1614 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1615 
1616 		for (int c = 0; c < rvd->vdev_children; c++) {
1617 			vdev_t *tvd = rvd->vdev_child[c];
1618 			vdev_t *mtvd  = mrvd->vdev_child[c];
1619 
1620 			if (tvd->vdev_ops == &vdev_missing_ops &&
1621 			    mtvd->vdev_ops != &vdev_missing_ops &&
1622 			    mtvd->vdev_islog)
1623 				child[idx++] = vdev_config_generate(spa, mtvd,
1624 				    B_FALSE, 0);
1625 		}
1626 
1627 		if (idx) {
1628 			VERIFY(nvlist_add_nvlist_array(nv,
1629 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1630 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1631 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1632 
1633 			for (int i = 0; i < idx; i++)
1634 				nvlist_free(child[i]);
1635 		}
1636 		nvlist_free(nv);
1637 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1638 	}
1639 
1640 	/*
1641 	 * Compare the root vdev tree with the information we have
1642 	 * from the MOS config (mrvd). Check each top-level vdev
1643 	 * with the corresponding MOS config top-level (mtvd).
1644 	 */
1645 	for (int c = 0; c < rvd->vdev_children; c++) {
1646 		vdev_t *tvd = rvd->vdev_child[c];
1647 		vdev_t *mtvd  = mrvd->vdev_child[c];
1648 
1649 		/*
1650 		 * Resolve any "missing" vdevs in the current configuration.
1651 		 * If we find that the MOS config has more accurate information
1652 		 * about the top-level vdev then use that vdev instead.
1653 		 */
1654 		if (tvd->vdev_ops == &vdev_missing_ops &&
1655 		    mtvd->vdev_ops != &vdev_missing_ops) {
1656 
1657 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1658 				continue;
1659 
1660 			/*
1661 			 * Device specific actions.
1662 			 */
1663 			if (mtvd->vdev_islog) {
1664 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1665 			} else {
1666 				/*
1667 				 * XXX - once we have 'readonly' pool
1668 				 * support we should be able to handle
1669 				 * missing data devices by transitioning
1670 				 * the pool to readonly.
1671 				 */
1672 				continue;
1673 			}
1674 
1675 			/*
1676 			 * Swap the missing vdev with the data we were
1677 			 * able to obtain from the MOS config.
1678 			 */
1679 			vdev_remove_child(rvd, tvd);
1680 			vdev_remove_child(mrvd, mtvd);
1681 
1682 			vdev_add_child(rvd, mtvd);
1683 			vdev_add_child(mrvd, tvd);
1684 
1685 			spa_config_exit(spa, SCL_ALL, FTAG);
1686 			vdev_load(mtvd);
1687 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1688 
1689 			vdev_reopen(rvd);
1690 		} else if (mtvd->vdev_islog) {
1691 			/*
1692 			 * Load the slog device's state from the MOS config
1693 			 * since it's possible that the label does not
1694 			 * contain the most up-to-date information.
1695 			 */
1696 			vdev_load_log_state(tvd, mtvd);
1697 			vdev_reopen(tvd);
1698 		}
1699 	}
1700 	vdev_free(mrvd);
1701 	spa_config_exit(spa, SCL_ALL, FTAG);
1702 
1703 	/*
1704 	 * Ensure we were able to validate the config.
1705 	 */
1706 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1707 }
1708 
1709 /*
1710  * Check for missing log devices
1711  */
1712 static boolean_t
1713 spa_check_logs(spa_t *spa)
1714 {
1715 	boolean_t rv = B_FALSE;
1716 
1717 	switch (spa->spa_log_state) {
1718 	case SPA_LOG_MISSING:
1719 		/* need to recheck in case slog has been restored */
1720 	case SPA_LOG_UNKNOWN:
1721 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1722 		    NULL, DS_FIND_CHILDREN) != 0);
1723 		if (rv)
1724 			spa_set_log_state(spa, SPA_LOG_MISSING);
1725 		break;
1726 	}
1727 	return (rv);
1728 }
1729 
1730 static boolean_t
1731 spa_passivate_log(spa_t *spa)
1732 {
1733 	vdev_t *rvd = spa->spa_root_vdev;
1734 	boolean_t slog_found = B_FALSE;
1735 
1736 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1737 
1738 	if (!spa_has_slogs(spa))
1739 		return (B_FALSE);
1740 
1741 	for (int c = 0; c < rvd->vdev_children; c++) {
1742 		vdev_t *tvd = rvd->vdev_child[c];
1743 		metaslab_group_t *mg = tvd->vdev_mg;
1744 
1745 		if (tvd->vdev_islog) {
1746 			metaslab_group_passivate(mg);
1747 			slog_found = B_TRUE;
1748 		}
1749 	}
1750 
1751 	return (slog_found);
1752 }
1753 
1754 static void
1755 spa_activate_log(spa_t *spa)
1756 {
1757 	vdev_t *rvd = spa->spa_root_vdev;
1758 
1759 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1760 
1761 	for (int c = 0; c < rvd->vdev_children; c++) {
1762 		vdev_t *tvd = rvd->vdev_child[c];
1763 		metaslab_group_t *mg = tvd->vdev_mg;
1764 
1765 		if (tvd->vdev_islog)
1766 			metaslab_group_activate(mg);
1767 	}
1768 }
1769 
1770 int
1771 spa_offline_log(spa_t *spa)
1772 {
1773 	int error;
1774 
1775 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1776 	    NULL, DS_FIND_CHILDREN);
1777 	if (error == 0) {
1778 		/*
1779 		 * We successfully offlined the log device, sync out the
1780 		 * current txg so that the "stubby" block can be removed
1781 		 * by zil_sync().
1782 		 */
1783 		txg_wait_synced(spa->spa_dsl_pool, 0);
1784 	}
1785 	return (error);
1786 }
1787 
1788 static void
1789 spa_aux_check_removed(spa_aux_vdev_t *sav)
1790 {
1791 	for (int i = 0; i < sav->sav_count; i++)
1792 		spa_check_removed(sav->sav_vdevs[i]);
1793 }
1794 
1795 void
1796 spa_claim_notify(zio_t *zio)
1797 {
1798 	spa_t *spa = zio->io_spa;
1799 
1800 	if (zio->io_error)
1801 		return;
1802 
1803 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1804 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1805 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1806 	mutex_exit(&spa->spa_props_lock);
1807 }
1808 
1809 typedef struct spa_load_error {
1810 	uint64_t	sle_meta_count;
1811 	uint64_t	sle_data_count;
1812 } spa_load_error_t;
1813 
1814 static void
1815 spa_load_verify_done(zio_t *zio)
1816 {
1817 	blkptr_t *bp = zio->io_bp;
1818 	spa_load_error_t *sle = zio->io_private;
1819 	dmu_object_type_t type = BP_GET_TYPE(bp);
1820 	int error = zio->io_error;
1821 
1822 	if (error) {
1823 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1824 		    type != DMU_OT_INTENT_LOG)
1825 			atomic_add_64(&sle->sle_meta_count, 1);
1826 		else
1827 			atomic_add_64(&sle->sle_data_count, 1);
1828 	}
1829 	zio_data_buf_free(zio->io_data, zio->io_size);
1830 }
1831 
1832 /*ARGSUSED*/
1833 static int
1834 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1835     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1836 {
1837 	if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1838 		zio_t *rio = arg;
1839 		size_t size = BP_GET_PSIZE(bp);
1840 		void *data = zio_data_buf_alloc(size);
1841 
1842 		zio_nowait(zio_read(rio, spa, bp, data, size,
1843 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1844 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1845 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1846 	}
1847 	return (0);
1848 }
1849 
1850 static int
1851 spa_load_verify(spa_t *spa)
1852 {
1853 	zio_t *rio;
1854 	spa_load_error_t sle = { 0 };
1855 	zpool_rewind_policy_t policy;
1856 	boolean_t verify_ok = B_FALSE;
1857 	int error;
1858 
1859 	zpool_get_rewind_policy(spa->spa_config, &policy);
1860 
1861 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1862 		return (0);
1863 
1864 	rio = zio_root(spa, NULL, &sle,
1865 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1866 
1867 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1868 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1869 
1870 	(void) zio_wait(rio);
1871 
1872 	spa->spa_load_meta_errors = sle.sle_meta_count;
1873 	spa->spa_load_data_errors = sle.sle_data_count;
1874 
1875 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1876 	    sle.sle_data_count <= policy.zrp_maxdata) {
1877 		int64_t loss = 0;
1878 
1879 		verify_ok = B_TRUE;
1880 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1881 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1882 
1883 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1884 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1885 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1886 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1887 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1888 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1889 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1890 	} else {
1891 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1892 	}
1893 
1894 	if (error) {
1895 		if (error != ENXIO && error != EIO)
1896 			error = SET_ERROR(EIO);
1897 		return (error);
1898 	}
1899 
1900 	return (verify_ok ? 0 : EIO);
1901 }
1902 
1903 /*
1904  * Find a value in the pool props object.
1905  */
1906 static void
1907 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1908 {
1909 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1910 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1911 }
1912 
1913 /*
1914  * Find a value in the pool directory object.
1915  */
1916 static int
1917 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1918 {
1919 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1920 	    name, sizeof (uint64_t), 1, val));
1921 }
1922 
1923 static int
1924 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1925 {
1926 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1927 	return (err);
1928 }
1929 
1930 /*
1931  * Fix up config after a partly-completed split.  This is done with the
1932  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1933  * pool have that entry in their config, but only the splitting one contains
1934  * a list of all the guids of the vdevs that are being split off.
1935  *
1936  * This function determines what to do with that list: either rejoin
1937  * all the disks to the pool, or complete the splitting process.  To attempt
1938  * the rejoin, each disk that is offlined is marked online again, and
1939  * we do a reopen() call.  If the vdev label for every disk that was
1940  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1941  * then we call vdev_split() on each disk, and complete the split.
1942  *
1943  * Otherwise we leave the config alone, with all the vdevs in place in
1944  * the original pool.
1945  */
1946 static void
1947 spa_try_repair(spa_t *spa, nvlist_t *config)
1948 {
1949 	uint_t extracted;
1950 	uint64_t *glist;
1951 	uint_t i, gcount;
1952 	nvlist_t *nvl;
1953 	vdev_t **vd;
1954 	boolean_t attempt_reopen;
1955 
1956 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1957 		return;
1958 
1959 	/* check that the config is complete */
1960 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1961 	    &glist, &gcount) != 0)
1962 		return;
1963 
1964 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1965 
1966 	/* attempt to online all the vdevs & validate */
1967 	attempt_reopen = B_TRUE;
1968 	for (i = 0; i < gcount; i++) {
1969 		if (glist[i] == 0)	/* vdev is hole */
1970 			continue;
1971 
1972 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1973 		if (vd[i] == NULL) {
1974 			/*
1975 			 * Don't bother attempting to reopen the disks;
1976 			 * just do the split.
1977 			 */
1978 			attempt_reopen = B_FALSE;
1979 		} else {
1980 			/* attempt to re-online it */
1981 			vd[i]->vdev_offline = B_FALSE;
1982 		}
1983 	}
1984 
1985 	if (attempt_reopen) {
1986 		vdev_reopen(spa->spa_root_vdev);
1987 
1988 		/* check each device to see what state it's in */
1989 		for (extracted = 0, i = 0; i < gcount; i++) {
1990 			if (vd[i] != NULL &&
1991 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1992 				break;
1993 			++extracted;
1994 		}
1995 	}
1996 
1997 	/*
1998 	 * If every disk has been moved to the new pool, or if we never
1999 	 * even attempted to look at them, then we split them off for
2000 	 * good.
2001 	 */
2002 	if (!attempt_reopen || gcount == extracted) {
2003 		for (i = 0; i < gcount; i++)
2004 			if (vd[i] != NULL)
2005 				vdev_split(vd[i]);
2006 		vdev_reopen(spa->spa_root_vdev);
2007 	}
2008 
2009 	kmem_free(vd, gcount * sizeof (vdev_t *));
2010 }
2011 
2012 static int
2013 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2014     boolean_t mosconfig)
2015 {
2016 	nvlist_t *config = spa->spa_config;
2017 	char *ereport = FM_EREPORT_ZFS_POOL;
2018 	char *comment;
2019 	int error;
2020 	uint64_t pool_guid;
2021 	nvlist_t *nvl;
2022 
2023 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2024 		return (SET_ERROR(EINVAL));
2025 
2026 	ASSERT(spa->spa_comment == NULL);
2027 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2028 		spa->spa_comment = spa_strdup(comment);
2029 
2030 	/*
2031 	 * Versioning wasn't explicitly added to the label until later, so if
2032 	 * it's not present treat it as the initial version.
2033 	 */
2034 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2035 	    &spa->spa_ubsync.ub_version) != 0)
2036 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2037 
2038 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2039 	    &spa->spa_config_txg);
2040 
2041 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2042 	    spa_guid_exists(pool_guid, 0)) {
2043 		error = SET_ERROR(EEXIST);
2044 	} else {
2045 		spa->spa_config_guid = pool_guid;
2046 
2047 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2048 		    &nvl) == 0) {
2049 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2050 			    KM_SLEEP) == 0);
2051 		}
2052 
2053 		nvlist_free(spa->spa_load_info);
2054 		spa->spa_load_info = fnvlist_alloc();
2055 
2056 		gethrestime(&spa->spa_loaded_ts);
2057 		error = spa_load_impl(spa, pool_guid, config, state, type,
2058 		    mosconfig, &ereport);
2059 	}
2060 
2061 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2062 	if (error) {
2063 		if (error != EEXIST) {
2064 			spa->spa_loaded_ts.tv_sec = 0;
2065 			spa->spa_loaded_ts.tv_nsec = 0;
2066 		}
2067 		if (error != EBADF) {
2068 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2069 		}
2070 	}
2071 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2072 	spa->spa_ena = 0;
2073 
2074 	return (error);
2075 }
2076 
2077 /*
2078  * Load an existing storage pool, using the pool's builtin spa_config as a
2079  * source of configuration information.
2080  */
2081 static int
2082 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2083     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2084     char **ereport)
2085 {
2086 	int error = 0;
2087 	nvlist_t *nvroot = NULL;
2088 	nvlist_t *label;
2089 	vdev_t *rvd;
2090 	uberblock_t *ub = &spa->spa_uberblock;
2091 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2092 	int orig_mode = spa->spa_mode;
2093 	int parse;
2094 	uint64_t obj;
2095 	boolean_t missing_feat_write = B_FALSE;
2096 
2097 	/*
2098 	 * If this is an untrusted config, access the pool in read-only mode.
2099 	 * This prevents things like resilvering recently removed devices.
2100 	 */
2101 	if (!mosconfig)
2102 		spa->spa_mode = FREAD;
2103 
2104 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2105 
2106 	spa->spa_load_state = state;
2107 
2108 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2109 		return (SET_ERROR(EINVAL));
2110 
2111 	parse = (type == SPA_IMPORT_EXISTING ?
2112 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2113 
2114 	/*
2115 	 * Create "The Godfather" zio to hold all async IOs
2116 	 */
2117 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2118 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2119 
2120 	/*
2121 	 * Parse the configuration into a vdev tree.  We explicitly set the
2122 	 * value that will be returned by spa_version() since parsing the
2123 	 * configuration requires knowing the version number.
2124 	 */
2125 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2126 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2127 	spa_config_exit(spa, SCL_ALL, FTAG);
2128 
2129 	if (error != 0)
2130 		return (error);
2131 
2132 	ASSERT(spa->spa_root_vdev == rvd);
2133 
2134 	if (type != SPA_IMPORT_ASSEMBLE) {
2135 		ASSERT(spa_guid(spa) == pool_guid);
2136 	}
2137 
2138 	/*
2139 	 * Try to open all vdevs, loading each label in the process.
2140 	 */
2141 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2142 	error = vdev_open(rvd);
2143 	spa_config_exit(spa, SCL_ALL, FTAG);
2144 	if (error != 0)
2145 		return (error);
2146 
2147 	/*
2148 	 * We need to validate the vdev labels against the configuration that
2149 	 * we have in hand, which is dependent on the setting of mosconfig. If
2150 	 * mosconfig is true then we're validating the vdev labels based on
2151 	 * that config.  Otherwise, we're validating against the cached config
2152 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2153 	 * later we will recursively call spa_load() and validate against
2154 	 * the vdev config.
2155 	 *
2156 	 * If we're assembling a new pool that's been split off from an
2157 	 * existing pool, the labels haven't yet been updated so we skip
2158 	 * validation for now.
2159 	 */
2160 	if (type != SPA_IMPORT_ASSEMBLE) {
2161 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2162 		error = vdev_validate(rvd, mosconfig);
2163 		spa_config_exit(spa, SCL_ALL, FTAG);
2164 
2165 		if (error != 0)
2166 			return (error);
2167 
2168 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2169 			return (SET_ERROR(ENXIO));
2170 	}
2171 
2172 	/*
2173 	 * Find the best uberblock.
2174 	 */
2175 	vdev_uberblock_load(rvd, ub, &label);
2176 
2177 	/*
2178 	 * If we weren't able to find a single valid uberblock, return failure.
2179 	 */
2180 	if (ub->ub_txg == 0) {
2181 		nvlist_free(label);
2182 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2183 	}
2184 
2185 	/*
2186 	 * If the pool has an unsupported version we can't open it.
2187 	 */
2188 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2189 		nvlist_free(label);
2190 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2191 	}
2192 
2193 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2194 		nvlist_t *features;
2195 
2196 		/*
2197 		 * If we weren't able to find what's necessary for reading the
2198 		 * MOS in the label, return failure.
2199 		 */
2200 		if (label == NULL || nvlist_lookup_nvlist(label,
2201 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2202 			nvlist_free(label);
2203 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2204 			    ENXIO));
2205 		}
2206 
2207 		/*
2208 		 * Update our in-core representation with the definitive values
2209 		 * from the label.
2210 		 */
2211 		nvlist_free(spa->spa_label_features);
2212 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2213 	}
2214 
2215 	nvlist_free(label);
2216 
2217 	/*
2218 	 * Look through entries in the label nvlist's features_for_read. If
2219 	 * there is a feature listed there which we don't understand then we
2220 	 * cannot open a pool.
2221 	 */
2222 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2223 		nvlist_t *unsup_feat;
2224 
2225 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2226 		    0);
2227 
2228 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2229 		    NULL); nvp != NULL;
2230 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2231 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2232 				VERIFY(nvlist_add_string(unsup_feat,
2233 				    nvpair_name(nvp), "") == 0);
2234 			}
2235 		}
2236 
2237 		if (!nvlist_empty(unsup_feat)) {
2238 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2239 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2240 			nvlist_free(unsup_feat);
2241 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2242 			    ENOTSUP));
2243 		}
2244 
2245 		nvlist_free(unsup_feat);
2246 	}
2247 
2248 	/*
2249 	 * If the vdev guid sum doesn't match the uberblock, we have an
2250 	 * incomplete configuration.  We first check to see if the pool
2251 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2252 	 * If it is, defer the vdev_guid_sum check till later so we
2253 	 * can handle missing vdevs.
2254 	 */
2255 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2256 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2257 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2258 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2259 
2260 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2261 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2262 		spa_try_repair(spa, config);
2263 		spa_config_exit(spa, SCL_ALL, FTAG);
2264 		nvlist_free(spa->spa_config_splitting);
2265 		spa->spa_config_splitting = NULL;
2266 	}
2267 
2268 	/*
2269 	 * Initialize internal SPA structures.
2270 	 */
2271 	spa->spa_state = POOL_STATE_ACTIVE;
2272 	spa->spa_ubsync = spa->spa_uberblock;
2273 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2274 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2275 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2276 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2277 	spa->spa_claim_max_txg = spa->spa_first_txg;
2278 	spa->spa_prev_software_version = ub->ub_software_version;
2279 
2280 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2281 	if (error)
2282 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2283 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2284 
2285 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2286 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 
2288 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2289 		boolean_t missing_feat_read = B_FALSE;
2290 		nvlist_t *unsup_feat, *enabled_feat;
2291 
2292 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2293 		    &spa->spa_feat_for_read_obj) != 0) {
2294 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2295 		}
2296 
2297 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2298 		    &spa->spa_feat_for_write_obj) != 0) {
2299 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2300 		}
2301 
2302 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2303 		    &spa->spa_feat_desc_obj) != 0) {
2304 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2305 		}
2306 
2307 		enabled_feat = fnvlist_alloc();
2308 		unsup_feat = fnvlist_alloc();
2309 
2310 		if (!spa_features_check(spa, B_FALSE,
2311 		    unsup_feat, enabled_feat))
2312 			missing_feat_read = B_TRUE;
2313 
2314 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2315 			if (!spa_features_check(spa, B_TRUE,
2316 			    unsup_feat, enabled_feat)) {
2317 				missing_feat_write = B_TRUE;
2318 			}
2319 		}
2320 
2321 		fnvlist_add_nvlist(spa->spa_load_info,
2322 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2323 
2324 		if (!nvlist_empty(unsup_feat)) {
2325 			fnvlist_add_nvlist(spa->spa_load_info,
2326 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2327 		}
2328 
2329 		fnvlist_free(enabled_feat);
2330 		fnvlist_free(unsup_feat);
2331 
2332 		if (!missing_feat_read) {
2333 			fnvlist_add_boolean(spa->spa_load_info,
2334 			    ZPOOL_CONFIG_CAN_RDONLY);
2335 		}
2336 
2337 		/*
2338 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2339 		 * twofold: to determine whether the pool is available for
2340 		 * import in read-write mode and (if it is not) whether the
2341 		 * pool is available for import in read-only mode. If the pool
2342 		 * is available for import in read-write mode, it is displayed
2343 		 * as available in userland; if it is not available for import
2344 		 * in read-only mode, it is displayed as unavailable in
2345 		 * userland. If the pool is available for import in read-only
2346 		 * mode but not read-write mode, it is displayed as unavailable
2347 		 * in userland with a special note that the pool is actually
2348 		 * available for open in read-only mode.
2349 		 *
2350 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2351 		 * missing a feature for write, we must first determine whether
2352 		 * the pool can be opened read-only before returning to
2353 		 * userland in order to know whether to display the
2354 		 * abovementioned note.
2355 		 */
2356 		if (missing_feat_read || (missing_feat_write &&
2357 		    spa_writeable(spa))) {
2358 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2359 			    ENOTSUP));
2360 		}
2361 
2362 		/*
2363 		 * Load refcounts for ZFS features from disk into an in-memory
2364 		 * cache during SPA initialization.
2365 		 */
2366 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2367 			uint64_t refcount;
2368 
2369 			error = feature_get_refcount_from_disk(spa,
2370 			    &spa_feature_table[i], &refcount);
2371 			if (error == 0) {
2372 				spa->spa_feat_refcount_cache[i] = refcount;
2373 			} else if (error == ENOTSUP) {
2374 				spa->spa_feat_refcount_cache[i] =
2375 				    SPA_FEATURE_DISABLED;
2376 			} else {
2377 				return (spa_vdev_err(rvd,
2378 				    VDEV_AUX_CORRUPT_DATA, EIO));
2379 			}
2380 		}
2381 	}
2382 
2383 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2384 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2385 		    &spa->spa_feat_enabled_txg_obj) != 0)
2386 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2387 	}
2388 
2389 	spa->spa_is_initializing = B_TRUE;
2390 	error = dsl_pool_open(spa->spa_dsl_pool);
2391 	spa->spa_is_initializing = B_FALSE;
2392 	if (error != 0)
2393 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2394 
2395 	if (!mosconfig) {
2396 		uint64_t hostid;
2397 		nvlist_t *policy = NULL, *nvconfig;
2398 
2399 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2400 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2401 
2402 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2403 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2404 			char *hostname;
2405 			unsigned long myhostid = 0;
2406 
2407 			VERIFY(nvlist_lookup_string(nvconfig,
2408 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2409 
2410 #ifdef	_KERNEL
2411 			myhostid = zone_get_hostid(NULL);
2412 #else	/* _KERNEL */
2413 			/*
2414 			 * We're emulating the system's hostid in userland, so
2415 			 * we can't use zone_get_hostid().
2416 			 */
2417 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2418 #endif	/* _KERNEL */
2419 			if (hostid != 0 && myhostid != 0 &&
2420 			    hostid != myhostid) {
2421 				nvlist_free(nvconfig);
2422 				cmn_err(CE_WARN, "pool '%s' could not be "
2423 				    "loaded as it was last accessed by "
2424 				    "another system (host: %s hostid: 0x%lx). "
2425 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2426 				    spa_name(spa), hostname,
2427 				    (unsigned long)hostid);
2428 				return (SET_ERROR(EBADF));
2429 			}
2430 		}
2431 		if (nvlist_lookup_nvlist(spa->spa_config,
2432 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2433 			VERIFY(nvlist_add_nvlist(nvconfig,
2434 			    ZPOOL_REWIND_POLICY, policy) == 0);
2435 
2436 		spa_config_set(spa, nvconfig);
2437 		spa_unload(spa);
2438 		spa_deactivate(spa);
2439 		spa_activate(spa, orig_mode);
2440 
2441 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2442 	}
2443 
2444 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2445 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2446 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2447 	if (error != 0)
2448 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2449 
2450 	/*
2451 	 * Load the bit that tells us to use the new accounting function
2452 	 * (raid-z deflation).  If we have an older pool, this will not
2453 	 * be present.
2454 	 */
2455 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2456 	if (error != 0 && error != ENOENT)
2457 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2458 
2459 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2460 	    &spa->spa_creation_version);
2461 	if (error != 0 && error != ENOENT)
2462 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2463 
2464 	/*
2465 	 * Load the persistent error log.  If we have an older pool, this will
2466 	 * not be present.
2467 	 */
2468 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2469 	if (error != 0 && error != ENOENT)
2470 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2471 
2472 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2473 	    &spa->spa_errlog_scrub);
2474 	if (error != 0 && error != ENOENT)
2475 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2476 
2477 	/*
2478 	 * Load the history object.  If we have an older pool, this
2479 	 * will not be present.
2480 	 */
2481 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2482 	if (error != 0 && error != ENOENT)
2483 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2484 
2485 	/*
2486 	 * If we're assembling the pool from the split-off vdevs of
2487 	 * an existing pool, we don't want to attach the spares & cache
2488 	 * devices.
2489 	 */
2490 
2491 	/*
2492 	 * Load any hot spares for this pool.
2493 	 */
2494 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2495 	if (error != 0 && error != ENOENT)
2496 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2497 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2498 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2499 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2500 		    &spa->spa_spares.sav_config) != 0)
2501 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2502 
2503 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2504 		spa_load_spares(spa);
2505 		spa_config_exit(spa, SCL_ALL, FTAG);
2506 	} else if (error == 0) {
2507 		spa->spa_spares.sav_sync = B_TRUE;
2508 	}
2509 
2510 	/*
2511 	 * Load any level 2 ARC devices for this pool.
2512 	 */
2513 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2514 	    &spa->spa_l2cache.sav_object);
2515 	if (error != 0 && error != ENOENT)
2516 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2518 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2519 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2520 		    &spa->spa_l2cache.sav_config) != 0)
2521 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522 
2523 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2524 		spa_load_l2cache(spa);
2525 		spa_config_exit(spa, SCL_ALL, FTAG);
2526 	} else if (error == 0) {
2527 		spa->spa_l2cache.sav_sync = B_TRUE;
2528 	}
2529 
2530 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2531 
2532 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2533 	if (error && error != ENOENT)
2534 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535 
2536 	if (error == 0) {
2537 		uint64_t autoreplace;
2538 
2539 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2540 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2541 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2542 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2543 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2544 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2545 		    &spa->spa_dedup_ditto);
2546 
2547 		spa->spa_autoreplace = (autoreplace != 0);
2548 	}
2549 
2550 	/*
2551 	 * If the 'autoreplace' property is set, then post a resource notifying
2552 	 * the ZFS DE that it should not issue any faults for unopenable
2553 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2554 	 * unopenable vdevs so that the normal autoreplace handler can take
2555 	 * over.
2556 	 */
2557 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2558 		spa_check_removed(spa->spa_root_vdev);
2559 		/*
2560 		 * For the import case, this is done in spa_import(), because
2561 		 * at this point we're using the spare definitions from
2562 		 * the MOS config, not necessarily from the userland config.
2563 		 */
2564 		if (state != SPA_LOAD_IMPORT) {
2565 			spa_aux_check_removed(&spa->spa_spares);
2566 			spa_aux_check_removed(&spa->spa_l2cache);
2567 		}
2568 	}
2569 
2570 	/*
2571 	 * Load the vdev state for all toplevel vdevs.
2572 	 */
2573 	vdev_load(rvd);
2574 
2575 	/*
2576 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2577 	 */
2578 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2579 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2580 	spa_config_exit(spa, SCL_ALL, FTAG);
2581 
2582 	/*
2583 	 * Load the DDTs (dedup tables).
2584 	 */
2585 	error = ddt_load(spa);
2586 	if (error != 0)
2587 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2588 
2589 	spa_update_dspace(spa);
2590 
2591 	/*
2592 	 * Validate the config, using the MOS config to fill in any
2593 	 * information which might be missing.  If we fail to validate
2594 	 * the config then declare the pool unfit for use. If we're
2595 	 * assembling a pool from a split, the log is not transferred
2596 	 * over.
2597 	 */
2598 	if (type != SPA_IMPORT_ASSEMBLE) {
2599 		nvlist_t *nvconfig;
2600 
2601 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2602 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603 
2604 		if (!spa_config_valid(spa, nvconfig)) {
2605 			nvlist_free(nvconfig);
2606 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2607 			    ENXIO));
2608 		}
2609 		nvlist_free(nvconfig);
2610 
2611 		/*
2612 		 * Now that we've validated the config, check the state of the
2613 		 * root vdev.  If it can't be opened, it indicates one or
2614 		 * more toplevel vdevs are faulted.
2615 		 */
2616 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2617 			return (SET_ERROR(ENXIO));
2618 
2619 		if (spa_check_logs(spa)) {
2620 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2621 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2622 		}
2623 	}
2624 
2625 	if (missing_feat_write) {
2626 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2627 
2628 		/*
2629 		 * At this point, we know that we can open the pool in
2630 		 * read-only mode but not read-write mode. We now have enough
2631 		 * information and can return to userland.
2632 		 */
2633 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2634 	}
2635 
2636 	/*
2637 	 * We've successfully opened the pool, verify that we're ready
2638 	 * to start pushing transactions.
2639 	 */
2640 	if (state != SPA_LOAD_TRYIMPORT) {
2641 		if (error = spa_load_verify(spa))
2642 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2643 			    error));
2644 	}
2645 
2646 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2647 	    spa->spa_load_max_txg == UINT64_MAX)) {
2648 		dmu_tx_t *tx;
2649 		int need_update = B_FALSE;
2650 
2651 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2652 
2653 		/*
2654 		 * Claim log blocks that haven't been committed yet.
2655 		 * This must all happen in a single txg.
2656 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2657 		 * invoked from zil_claim_log_block()'s i/o done callback.
2658 		 * Price of rollback is that we abandon the log.
2659 		 */
2660 		spa->spa_claiming = B_TRUE;
2661 
2662 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2663 		    spa_first_txg(spa));
2664 		(void) dmu_objset_find(spa_name(spa),
2665 		    zil_claim, tx, DS_FIND_CHILDREN);
2666 		dmu_tx_commit(tx);
2667 
2668 		spa->spa_claiming = B_FALSE;
2669 
2670 		spa_set_log_state(spa, SPA_LOG_GOOD);
2671 		spa->spa_sync_on = B_TRUE;
2672 		txg_sync_start(spa->spa_dsl_pool);
2673 
2674 		/*
2675 		 * Wait for all claims to sync.  We sync up to the highest
2676 		 * claimed log block birth time so that claimed log blocks
2677 		 * don't appear to be from the future.  spa_claim_max_txg
2678 		 * will have been set for us by either zil_check_log_chain()
2679 		 * (invoked from spa_check_logs()) or zil_claim() above.
2680 		 */
2681 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2682 
2683 		/*
2684 		 * If the config cache is stale, or we have uninitialized
2685 		 * metaslabs (see spa_vdev_add()), then update the config.
2686 		 *
2687 		 * If this is a verbatim import, trust the current
2688 		 * in-core spa_config and update the disk labels.
2689 		 */
2690 		if (config_cache_txg != spa->spa_config_txg ||
2691 		    state == SPA_LOAD_IMPORT ||
2692 		    state == SPA_LOAD_RECOVER ||
2693 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2694 			need_update = B_TRUE;
2695 
2696 		for (int c = 0; c < rvd->vdev_children; c++)
2697 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2698 				need_update = B_TRUE;
2699 
2700 		/*
2701 		 * Update the config cache asychronously in case we're the
2702 		 * root pool, in which case the config cache isn't writable yet.
2703 		 */
2704 		if (need_update)
2705 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2706 
2707 		/*
2708 		 * Check all DTLs to see if anything needs resilvering.
2709 		 */
2710 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2711 		    vdev_resilver_needed(rvd, NULL, NULL))
2712 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2713 
2714 		/*
2715 		 * Log the fact that we booted up (so that we can detect if
2716 		 * we rebooted in the middle of an operation).
2717 		 */
2718 		spa_history_log_version(spa, "open");
2719 
2720 		/*
2721 		 * Delete any inconsistent datasets.
2722 		 */
2723 		(void) dmu_objset_find(spa_name(spa),
2724 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2725 
2726 		/*
2727 		 * Clean up any stale temporary dataset userrefs.
2728 		 */
2729 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2730 	}
2731 
2732 	return (0);
2733 }
2734 
2735 static int
2736 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2737 {
2738 	int mode = spa->spa_mode;
2739 
2740 	spa_unload(spa);
2741 	spa_deactivate(spa);
2742 
2743 	spa->spa_load_max_txg--;
2744 
2745 	spa_activate(spa, mode);
2746 	spa_async_suspend(spa);
2747 
2748 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2749 }
2750 
2751 /*
2752  * If spa_load() fails this function will try loading prior txg's. If
2753  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2754  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2755  * function will not rewind the pool and will return the same error as
2756  * spa_load().
2757  */
2758 static int
2759 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2760     uint64_t max_request, int rewind_flags)
2761 {
2762 	nvlist_t *loadinfo = NULL;
2763 	nvlist_t *config = NULL;
2764 	int load_error, rewind_error;
2765 	uint64_t safe_rewind_txg;
2766 	uint64_t min_txg;
2767 
2768 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2769 		spa->spa_load_max_txg = spa->spa_load_txg;
2770 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2771 	} else {
2772 		spa->spa_load_max_txg = max_request;
2773 	}
2774 
2775 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2776 	    mosconfig);
2777 	if (load_error == 0)
2778 		return (0);
2779 
2780 	if (spa->spa_root_vdev != NULL)
2781 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2782 
2783 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2784 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2785 
2786 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2787 		nvlist_free(config);
2788 		return (load_error);
2789 	}
2790 
2791 	if (state == SPA_LOAD_RECOVER) {
2792 		/* Price of rolling back is discarding txgs, including log */
2793 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2794 	} else {
2795 		/*
2796 		 * If we aren't rolling back save the load info from our first
2797 		 * import attempt so that we can restore it after attempting
2798 		 * to rewind.
2799 		 */
2800 		loadinfo = spa->spa_load_info;
2801 		spa->spa_load_info = fnvlist_alloc();
2802 	}
2803 
2804 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2805 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2806 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2807 	    TXG_INITIAL : safe_rewind_txg;
2808 
2809 	/*
2810 	 * Continue as long as we're finding errors, we're still within
2811 	 * the acceptable rewind range, and we're still finding uberblocks
2812 	 */
2813 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2814 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2815 		if (spa->spa_load_max_txg < safe_rewind_txg)
2816 			spa->spa_extreme_rewind = B_TRUE;
2817 		rewind_error = spa_load_retry(spa, state, mosconfig);
2818 	}
2819 
2820 	spa->spa_extreme_rewind = B_FALSE;
2821 	spa->spa_load_max_txg = UINT64_MAX;
2822 
2823 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2824 		spa_config_set(spa, config);
2825 
2826 	if (state == SPA_LOAD_RECOVER) {
2827 		ASSERT3P(loadinfo, ==, NULL);
2828 		return (rewind_error);
2829 	} else {
2830 		/* Store the rewind info as part of the initial load info */
2831 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2832 		    spa->spa_load_info);
2833 
2834 		/* Restore the initial load info */
2835 		fnvlist_free(spa->spa_load_info);
2836 		spa->spa_load_info = loadinfo;
2837 
2838 		return (load_error);
2839 	}
2840 }
2841 
2842 /*
2843  * Pool Open/Import
2844  *
2845  * The import case is identical to an open except that the configuration is sent
2846  * down from userland, instead of grabbed from the configuration cache.  For the
2847  * case of an open, the pool configuration will exist in the
2848  * POOL_STATE_UNINITIALIZED state.
2849  *
2850  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2851  * the same time open the pool, without having to keep around the spa_t in some
2852  * ambiguous state.
2853  */
2854 static int
2855 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2856     nvlist_t **config)
2857 {
2858 	spa_t *spa;
2859 	spa_load_state_t state = SPA_LOAD_OPEN;
2860 	int error;
2861 	int locked = B_FALSE;
2862 
2863 	*spapp = NULL;
2864 
2865 	/*
2866 	 * As disgusting as this is, we need to support recursive calls to this
2867 	 * function because dsl_dir_open() is called during spa_load(), and ends
2868 	 * up calling spa_open() again.  The real fix is to figure out how to
2869 	 * avoid dsl_dir_open() calling this in the first place.
2870 	 */
2871 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2872 		mutex_enter(&spa_namespace_lock);
2873 		locked = B_TRUE;
2874 	}
2875 
2876 	if ((spa = spa_lookup(pool)) == NULL) {
2877 		if (locked)
2878 			mutex_exit(&spa_namespace_lock);
2879 		return (SET_ERROR(ENOENT));
2880 	}
2881 
2882 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2883 		zpool_rewind_policy_t policy;
2884 
2885 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2886 		    &policy);
2887 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2888 			state = SPA_LOAD_RECOVER;
2889 
2890 		spa_activate(spa, spa_mode_global);
2891 
2892 		if (state != SPA_LOAD_RECOVER)
2893 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2894 
2895 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2896 		    policy.zrp_request);
2897 
2898 		if (error == EBADF) {
2899 			/*
2900 			 * If vdev_validate() returns failure (indicated by
2901 			 * EBADF), it indicates that one of the vdevs indicates
2902 			 * that the pool has been exported or destroyed.  If
2903 			 * this is the case, the config cache is out of sync and
2904 			 * we should remove the pool from the namespace.
2905 			 */
2906 			spa_unload(spa);
2907 			spa_deactivate(spa);
2908 			spa_config_sync(spa, B_TRUE, B_TRUE);
2909 			spa_remove(spa);
2910 			if (locked)
2911 				mutex_exit(&spa_namespace_lock);
2912 			return (SET_ERROR(ENOENT));
2913 		}
2914 
2915 		if (error) {
2916 			/*
2917 			 * We can't open the pool, but we still have useful
2918 			 * information: the state of each vdev after the
2919 			 * attempted vdev_open().  Return this to the user.
2920 			 */
2921 			if (config != NULL && spa->spa_config) {
2922 				VERIFY(nvlist_dup(spa->spa_config, config,
2923 				    KM_SLEEP) == 0);
2924 				VERIFY(nvlist_add_nvlist(*config,
2925 				    ZPOOL_CONFIG_LOAD_INFO,
2926 				    spa->spa_load_info) == 0);
2927 			}
2928 			spa_unload(spa);
2929 			spa_deactivate(spa);
2930 			spa->spa_last_open_failed = error;
2931 			if (locked)
2932 				mutex_exit(&spa_namespace_lock);
2933 			*spapp = NULL;
2934 			return (error);
2935 		}
2936 	}
2937 
2938 	spa_open_ref(spa, tag);
2939 
2940 	if (config != NULL)
2941 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2942 
2943 	/*
2944 	 * If we've recovered the pool, pass back any information we
2945 	 * gathered while doing the load.
2946 	 */
2947 	if (state == SPA_LOAD_RECOVER) {
2948 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2949 		    spa->spa_load_info) == 0);
2950 	}
2951 
2952 	if (locked) {
2953 		spa->spa_last_open_failed = 0;
2954 		spa->spa_last_ubsync_txg = 0;
2955 		spa->spa_load_txg = 0;
2956 		mutex_exit(&spa_namespace_lock);
2957 	}
2958 
2959 	*spapp = spa;
2960 
2961 	return (0);
2962 }
2963 
2964 int
2965 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2966     nvlist_t **config)
2967 {
2968 	return (spa_open_common(name, spapp, tag, policy, config));
2969 }
2970 
2971 int
2972 spa_open(const char *name, spa_t **spapp, void *tag)
2973 {
2974 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2975 }
2976 
2977 /*
2978  * Lookup the given spa_t, incrementing the inject count in the process,
2979  * preventing it from being exported or destroyed.
2980  */
2981 spa_t *
2982 spa_inject_addref(char *name)
2983 {
2984 	spa_t *spa;
2985 
2986 	mutex_enter(&spa_namespace_lock);
2987 	if ((spa = spa_lookup(name)) == NULL) {
2988 		mutex_exit(&spa_namespace_lock);
2989 		return (NULL);
2990 	}
2991 	spa->spa_inject_ref++;
2992 	mutex_exit(&spa_namespace_lock);
2993 
2994 	return (spa);
2995 }
2996 
2997 void
2998 spa_inject_delref(spa_t *spa)
2999 {
3000 	mutex_enter(&spa_namespace_lock);
3001 	spa->spa_inject_ref--;
3002 	mutex_exit(&spa_namespace_lock);
3003 }
3004 
3005 /*
3006  * Add spares device information to the nvlist.
3007  */
3008 static void
3009 spa_add_spares(spa_t *spa, nvlist_t *config)
3010 {
3011 	nvlist_t **spares;
3012 	uint_t i, nspares;
3013 	nvlist_t *nvroot;
3014 	uint64_t guid;
3015 	vdev_stat_t *vs;
3016 	uint_t vsc;
3017 	uint64_t pool;
3018 
3019 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3020 
3021 	if (spa->spa_spares.sav_count == 0)
3022 		return;
3023 
3024 	VERIFY(nvlist_lookup_nvlist(config,
3025 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3026 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3027 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3028 	if (nspares != 0) {
3029 		VERIFY(nvlist_add_nvlist_array(nvroot,
3030 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3031 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3032 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3033 
3034 		/*
3035 		 * Go through and find any spares which have since been
3036 		 * repurposed as an active spare.  If this is the case, update
3037 		 * their status appropriately.
3038 		 */
3039 		for (i = 0; i < nspares; i++) {
3040 			VERIFY(nvlist_lookup_uint64(spares[i],
3041 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3042 			if (spa_spare_exists(guid, &pool, NULL) &&
3043 			    pool != 0ULL) {
3044 				VERIFY(nvlist_lookup_uint64_array(
3045 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3046 				    (uint64_t **)&vs, &vsc) == 0);
3047 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3048 				vs->vs_aux = VDEV_AUX_SPARED;
3049 			}
3050 		}
3051 	}
3052 }
3053 
3054 /*
3055  * Add l2cache device information to the nvlist, including vdev stats.
3056  */
3057 static void
3058 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3059 {
3060 	nvlist_t **l2cache;
3061 	uint_t i, j, nl2cache;
3062 	nvlist_t *nvroot;
3063 	uint64_t guid;
3064 	vdev_t *vd;
3065 	vdev_stat_t *vs;
3066 	uint_t vsc;
3067 
3068 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3069 
3070 	if (spa->spa_l2cache.sav_count == 0)
3071 		return;
3072 
3073 	VERIFY(nvlist_lookup_nvlist(config,
3074 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3075 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3076 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3077 	if (nl2cache != 0) {
3078 		VERIFY(nvlist_add_nvlist_array(nvroot,
3079 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3080 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3081 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3082 
3083 		/*
3084 		 * Update level 2 cache device stats.
3085 		 */
3086 
3087 		for (i = 0; i < nl2cache; i++) {
3088 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3089 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3090 
3091 			vd = NULL;
3092 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3093 				if (guid ==
3094 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3095 					vd = spa->spa_l2cache.sav_vdevs[j];
3096 					break;
3097 				}
3098 			}
3099 			ASSERT(vd != NULL);
3100 
3101 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3102 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3103 			    == 0);
3104 			vdev_get_stats(vd, vs);
3105 		}
3106 	}
3107 }
3108 
3109 static void
3110 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3111 {
3112 	nvlist_t *features;
3113 	zap_cursor_t zc;
3114 	zap_attribute_t za;
3115 
3116 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3117 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3118 
3119 	if (spa->spa_feat_for_read_obj != 0) {
3120 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3121 		    spa->spa_feat_for_read_obj);
3122 		    zap_cursor_retrieve(&zc, &za) == 0;
3123 		    zap_cursor_advance(&zc)) {
3124 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3125 			    za.za_num_integers == 1);
3126 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3127 			    za.za_first_integer));
3128 		}
3129 		zap_cursor_fini(&zc);
3130 	}
3131 
3132 	if (spa->spa_feat_for_write_obj != 0) {
3133 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3134 		    spa->spa_feat_for_write_obj);
3135 		    zap_cursor_retrieve(&zc, &za) == 0;
3136 		    zap_cursor_advance(&zc)) {
3137 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3138 			    za.za_num_integers == 1);
3139 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3140 			    za.za_first_integer));
3141 		}
3142 		zap_cursor_fini(&zc);
3143 	}
3144 
3145 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3146 	    features) == 0);
3147 	nvlist_free(features);
3148 }
3149 
3150 int
3151 spa_get_stats(const char *name, nvlist_t **config,
3152     char *altroot, size_t buflen)
3153 {
3154 	int error;
3155 	spa_t *spa;
3156 
3157 	*config = NULL;
3158 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3159 
3160 	if (spa != NULL) {
3161 		/*
3162 		 * This still leaves a window of inconsistency where the spares
3163 		 * or l2cache devices could change and the config would be
3164 		 * self-inconsistent.
3165 		 */
3166 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3167 
3168 		if (*config != NULL) {
3169 			uint64_t loadtimes[2];
3170 
3171 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3172 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3173 			VERIFY(nvlist_add_uint64_array(*config,
3174 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3175 
3176 			VERIFY(nvlist_add_uint64(*config,
3177 			    ZPOOL_CONFIG_ERRCOUNT,
3178 			    spa_get_errlog_size(spa)) == 0);
3179 
3180 			if (spa_suspended(spa))
3181 				VERIFY(nvlist_add_uint64(*config,
3182 				    ZPOOL_CONFIG_SUSPENDED,
3183 				    spa->spa_failmode) == 0);
3184 
3185 			spa_add_spares(spa, *config);
3186 			spa_add_l2cache(spa, *config);
3187 			spa_add_feature_stats(spa, *config);
3188 		}
3189 	}
3190 
3191 	/*
3192 	 * We want to get the alternate root even for faulted pools, so we cheat
3193 	 * and call spa_lookup() directly.
3194 	 */
3195 	if (altroot) {
3196 		if (spa == NULL) {
3197 			mutex_enter(&spa_namespace_lock);
3198 			spa = spa_lookup(name);
3199 			if (spa)
3200 				spa_altroot(spa, altroot, buflen);
3201 			else
3202 				altroot[0] = '\0';
3203 			spa = NULL;
3204 			mutex_exit(&spa_namespace_lock);
3205 		} else {
3206 			spa_altroot(spa, altroot, buflen);
3207 		}
3208 	}
3209 
3210 	if (spa != NULL) {
3211 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3212 		spa_close(spa, FTAG);
3213 	}
3214 
3215 	return (error);
3216 }
3217 
3218 /*
3219  * Validate that the auxiliary device array is well formed.  We must have an
3220  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3221  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3222  * specified, as long as they are well-formed.
3223  */
3224 static int
3225 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3226     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3227     vdev_labeltype_t label)
3228 {
3229 	nvlist_t **dev;
3230 	uint_t i, ndev;
3231 	vdev_t *vd;
3232 	int error;
3233 
3234 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3235 
3236 	/*
3237 	 * It's acceptable to have no devs specified.
3238 	 */
3239 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3240 		return (0);
3241 
3242 	if (ndev == 0)
3243 		return (SET_ERROR(EINVAL));
3244 
3245 	/*
3246 	 * Make sure the pool is formatted with a version that supports this
3247 	 * device type.
3248 	 */
3249 	if (spa_version(spa) < version)
3250 		return (SET_ERROR(ENOTSUP));
3251 
3252 	/*
3253 	 * Set the pending device list so we correctly handle device in-use
3254 	 * checking.
3255 	 */
3256 	sav->sav_pending = dev;
3257 	sav->sav_npending = ndev;
3258 
3259 	for (i = 0; i < ndev; i++) {
3260 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3261 		    mode)) != 0)
3262 			goto out;
3263 
3264 		if (!vd->vdev_ops->vdev_op_leaf) {
3265 			vdev_free(vd);
3266 			error = SET_ERROR(EINVAL);
3267 			goto out;
3268 		}
3269 
3270 		/*
3271 		 * The L2ARC currently only supports disk devices in
3272 		 * kernel context.  For user-level testing, we allow it.
3273 		 */
3274 #ifdef _KERNEL
3275 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3276 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3277 			error = SET_ERROR(ENOTBLK);
3278 			vdev_free(vd);
3279 			goto out;
3280 		}
3281 #endif
3282 		vd->vdev_top = vd;
3283 
3284 		if ((error = vdev_open(vd)) == 0 &&
3285 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3286 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3287 			    vd->vdev_guid) == 0);
3288 		}
3289 
3290 		vdev_free(vd);
3291 
3292 		if (error &&
3293 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3294 			goto out;
3295 		else
3296 			error = 0;
3297 	}
3298 
3299 out:
3300 	sav->sav_pending = NULL;
3301 	sav->sav_npending = 0;
3302 	return (error);
3303 }
3304 
3305 static int
3306 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3307 {
3308 	int error;
3309 
3310 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3311 
3312 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3313 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3314 	    VDEV_LABEL_SPARE)) != 0) {
3315 		return (error);
3316 	}
3317 
3318 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3319 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3320 	    VDEV_LABEL_L2CACHE));
3321 }
3322 
3323 static void
3324 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3325     const char *config)
3326 {
3327 	int i;
3328 
3329 	if (sav->sav_config != NULL) {
3330 		nvlist_t **olddevs;
3331 		uint_t oldndevs;
3332 		nvlist_t **newdevs;
3333 
3334 		/*
3335 		 * Generate new dev list by concatentating with the
3336 		 * current dev list.
3337 		 */
3338 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3339 		    &olddevs, &oldndevs) == 0);
3340 
3341 		newdevs = kmem_alloc(sizeof (void *) *
3342 		    (ndevs + oldndevs), KM_SLEEP);
3343 		for (i = 0; i < oldndevs; i++)
3344 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3345 			    KM_SLEEP) == 0);
3346 		for (i = 0; i < ndevs; i++)
3347 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3348 			    KM_SLEEP) == 0);
3349 
3350 		VERIFY(nvlist_remove(sav->sav_config, config,
3351 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3352 
3353 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3354 		    config, newdevs, ndevs + oldndevs) == 0);
3355 		for (i = 0; i < oldndevs + ndevs; i++)
3356 			nvlist_free(newdevs[i]);
3357 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3358 	} else {
3359 		/*
3360 		 * Generate a new dev list.
3361 		 */
3362 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3363 		    KM_SLEEP) == 0);
3364 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3365 		    devs, ndevs) == 0);
3366 	}
3367 }
3368 
3369 /*
3370  * Stop and drop level 2 ARC devices
3371  */
3372 void
3373 spa_l2cache_drop(spa_t *spa)
3374 {
3375 	vdev_t *vd;
3376 	int i;
3377 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3378 
3379 	for (i = 0; i < sav->sav_count; i++) {
3380 		uint64_t pool;
3381 
3382 		vd = sav->sav_vdevs[i];
3383 		ASSERT(vd != NULL);
3384 
3385 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3386 		    pool != 0ULL && l2arc_vdev_present(vd))
3387 			l2arc_remove_vdev(vd);
3388 	}
3389 }
3390 
3391 /*
3392  * Pool Creation
3393  */
3394 int
3395 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3396     nvlist_t *zplprops)
3397 {
3398 	spa_t *spa;
3399 	char *altroot = NULL;
3400 	vdev_t *rvd;
3401 	dsl_pool_t *dp;
3402 	dmu_tx_t *tx;
3403 	int error = 0;
3404 	uint64_t txg = TXG_INITIAL;
3405 	nvlist_t **spares, **l2cache;
3406 	uint_t nspares, nl2cache;
3407 	uint64_t version, obj;
3408 	boolean_t has_features;
3409 
3410 	/*
3411 	 * If this pool already exists, return failure.
3412 	 */
3413 	mutex_enter(&spa_namespace_lock);
3414 	if (spa_lookup(pool) != NULL) {
3415 		mutex_exit(&spa_namespace_lock);
3416 		return (SET_ERROR(EEXIST));
3417 	}
3418 
3419 	/*
3420 	 * Allocate a new spa_t structure.
3421 	 */
3422 	(void) nvlist_lookup_string(props,
3423 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3424 	spa = spa_add(pool, NULL, altroot);
3425 	spa_activate(spa, spa_mode_global);
3426 
3427 	if (props && (error = spa_prop_validate(spa, props))) {
3428 		spa_deactivate(spa);
3429 		spa_remove(spa);
3430 		mutex_exit(&spa_namespace_lock);
3431 		return (error);
3432 	}
3433 
3434 	has_features = B_FALSE;
3435 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3436 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3437 		if (zpool_prop_feature(nvpair_name(elem)))
3438 			has_features = B_TRUE;
3439 	}
3440 
3441 	if (has_features || nvlist_lookup_uint64(props,
3442 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3443 		version = SPA_VERSION;
3444 	}
3445 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3446 
3447 	spa->spa_first_txg = txg;
3448 	spa->spa_uberblock.ub_txg = txg - 1;
3449 	spa->spa_uberblock.ub_version = version;
3450 	spa->spa_ubsync = spa->spa_uberblock;
3451 
3452 	/*
3453 	 * Create "The Godfather" zio to hold all async IOs
3454 	 */
3455 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3456 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3457 
3458 	/*
3459 	 * Create the root vdev.
3460 	 */
3461 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3462 
3463 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3464 
3465 	ASSERT(error != 0 || rvd != NULL);
3466 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3467 
3468 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3469 		error = SET_ERROR(EINVAL);
3470 
3471 	if (error == 0 &&
3472 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3473 	    (error = spa_validate_aux(spa, nvroot, txg,
3474 	    VDEV_ALLOC_ADD)) == 0) {
3475 		for (int c = 0; c < rvd->vdev_children; c++) {
3476 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3477 			vdev_expand(rvd->vdev_child[c], txg);
3478 		}
3479 	}
3480 
3481 	spa_config_exit(spa, SCL_ALL, FTAG);
3482 
3483 	if (error != 0) {
3484 		spa_unload(spa);
3485 		spa_deactivate(spa);
3486 		spa_remove(spa);
3487 		mutex_exit(&spa_namespace_lock);
3488 		return (error);
3489 	}
3490 
3491 	/*
3492 	 * Get the list of spares, if specified.
3493 	 */
3494 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3495 	    &spares, &nspares) == 0) {
3496 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3497 		    KM_SLEEP) == 0);
3498 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3499 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3500 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3501 		spa_load_spares(spa);
3502 		spa_config_exit(spa, SCL_ALL, FTAG);
3503 		spa->spa_spares.sav_sync = B_TRUE;
3504 	}
3505 
3506 	/*
3507 	 * Get the list of level 2 cache devices, if specified.
3508 	 */
3509 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3510 	    &l2cache, &nl2cache) == 0) {
3511 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3512 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3513 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3514 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3515 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3516 		spa_load_l2cache(spa);
3517 		spa_config_exit(spa, SCL_ALL, FTAG);
3518 		spa->spa_l2cache.sav_sync = B_TRUE;
3519 	}
3520 
3521 	spa->spa_is_initializing = B_TRUE;
3522 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3523 	spa->spa_meta_objset = dp->dp_meta_objset;
3524 	spa->spa_is_initializing = B_FALSE;
3525 
3526 	/*
3527 	 * Create DDTs (dedup tables).
3528 	 */
3529 	ddt_create(spa);
3530 
3531 	spa_update_dspace(spa);
3532 
3533 	tx = dmu_tx_create_assigned(dp, txg);
3534 
3535 	/*
3536 	 * Create the pool config object.
3537 	 */
3538 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3539 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3540 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3541 
3542 	if (zap_add(spa->spa_meta_objset,
3543 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3544 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3545 		cmn_err(CE_PANIC, "failed to add pool config");
3546 	}
3547 
3548 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3549 		spa_feature_create_zap_objects(spa, tx);
3550 
3551 	if (zap_add(spa->spa_meta_objset,
3552 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3553 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3554 		cmn_err(CE_PANIC, "failed to add pool version");
3555 	}
3556 
3557 	/* Newly created pools with the right version are always deflated. */
3558 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3559 		spa->spa_deflate = TRUE;
3560 		if (zap_add(spa->spa_meta_objset,
3561 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3562 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3563 			cmn_err(CE_PANIC, "failed to add deflate");
3564 		}
3565 	}
3566 
3567 	/*
3568 	 * Create the deferred-free bpobj.  Turn off compression
3569 	 * because sync-to-convergence takes longer if the blocksize
3570 	 * keeps changing.
3571 	 */
3572 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3573 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3574 	    ZIO_COMPRESS_OFF, tx);
3575 	if (zap_add(spa->spa_meta_objset,
3576 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3577 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3578 		cmn_err(CE_PANIC, "failed to add bpobj");
3579 	}
3580 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3581 	    spa->spa_meta_objset, obj));
3582 
3583 	/*
3584 	 * Create the pool's history object.
3585 	 */
3586 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3587 		spa_history_create_obj(spa, tx);
3588 
3589 	/*
3590 	 * Set pool properties.
3591 	 */
3592 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3593 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3594 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3595 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3596 
3597 	if (props != NULL) {
3598 		spa_configfile_set(spa, props, B_FALSE);
3599 		spa_sync_props(props, tx);
3600 	}
3601 
3602 	dmu_tx_commit(tx);
3603 
3604 	spa->spa_sync_on = B_TRUE;
3605 	txg_sync_start(spa->spa_dsl_pool);
3606 
3607 	/*
3608 	 * We explicitly wait for the first transaction to complete so that our
3609 	 * bean counters are appropriately updated.
3610 	 */
3611 	txg_wait_synced(spa->spa_dsl_pool, txg);
3612 
3613 	spa_config_sync(spa, B_FALSE, B_TRUE);
3614 
3615 	spa_history_log_version(spa, "create");
3616 
3617 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3618 
3619 	mutex_exit(&spa_namespace_lock);
3620 
3621 	return (0);
3622 }
3623 
3624 #ifdef _KERNEL
3625 /*
3626  * Get the root pool information from the root disk, then import the root pool
3627  * during the system boot up time.
3628  */
3629 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3630 
3631 static nvlist_t *
3632 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3633 {
3634 	nvlist_t *config;
3635 	nvlist_t *nvtop, *nvroot;
3636 	uint64_t pgid;
3637 
3638 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3639 		return (NULL);
3640 
3641 	/*
3642 	 * Add this top-level vdev to the child array.
3643 	 */
3644 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3645 	    &nvtop) == 0);
3646 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3647 	    &pgid) == 0);
3648 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3649 
3650 	/*
3651 	 * Put this pool's top-level vdevs into a root vdev.
3652 	 */
3653 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3654 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3655 	    VDEV_TYPE_ROOT) == 0);
3656 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3657 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3658 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3659 	    &nvtop, 1) == 0);
3660 
3661 	/*
3662 	 * Replace the existing vdev_tree with the new root vdev in
3663 	 * this pool's configuration (remove the old, add the new).
3664 	 */
3665 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3666 	nvlist_free(nvroot);
3667 	return (config);
3668 }
3669 
3670 /*
3671  * Walk the vdev tree and see if we can find a device with "better"
3672  * configuration. A configuration is "better" if the label on that
3673  * device has a more recent txg.
3674  */
3675 static void
3676 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3677 {
3678 	for (int c = 0; c < vd->vdev_children; c++)
3679 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3680 
3681 	if (vd->vdev_ops->vdev_op_leaf) {
3682 		nvlist_t *label;
3683 		uint64_t label_txg;
3684 
3685 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3686 		    &label) != 0)
3687 			return;
3688 
3689 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3690 		    &label_txg) == 0);
3691 
3692 		/*
3693 		 * Do we have a better boot device?
3694 		 */
3695 		if (label_txg > *txg) {
3696 			*txg = label_txg;
3697 			*avd = vd;
3698 		}
3699 		nvlist_free(label);
3700 	}
3701 }
3702 
3703 /*
3704  * Import a root pool.
3705  *
3706  * For x86. devpath_list will consist of devid and/or physpath name of
3707  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3708  * The GRUB "findroot" command will return the vdev we should boot.
3709  *
3710  * For Sparc, devpath_list consists the physpath name of the booting device
3711  * no matter the rootpool is a single device pool or a mirrored pool.
3712  * e.g.
3713  *	"/pci@1f,0/ide@d/disk@0,0:a"
3714  */
3715 int
3716 spa_import_rootpool(char *devpath, char *devid)
3717 {
3718 	spa_t *spa;
3719 	vdev_t *rvd, *bvd, *avd = NULL;
3720 	nvlist_t *config, *nvtop;
3721 	uint64_t guid, txg;
3722 	char *pname;
3723 	int error;
3724 
3725 	/*
3726 	 * Read the label from the boot device and generate a configuration.
3727 	 */
3728 	config = spa_generate_rootconf(devpath, devid, &guid);
3729 #if defined(_OBP) && defined(_KERNEL)
3730 	if (config == NULL) {
3731 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3732 			/* iscsi boot */
3733 			get_iscsi_bootpath_phy(devpath);
3734 			config = spa_generate_rootconf(devpath, devid, &guid);
3735 		}
3736 	}
3737 #endif
3738 	if (config == NULL) {
3739 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3740 		    devpath);
3741 		return (SET_ERROR(EIO));
3742 	}
3743 
3744 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3745 	    &pname) == 0);
3746 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3747 
3748 	mutex_enter(&spa_namespace_lock);
3749 	if ((spa = spa_lookup(pname)) != NULL) {
3750 		/*
3751 		 * Remove the existing root pool from the namespace so that we
3752 		 * can replace it with the correct config we just read in.
3753 		 */
3754 		spa_remove(spa);
3755 	}
3756 
3757 	spa = spa_add(pname, config, NULL);
3758 	spa->spa_is_root = B_TRUE;
3759 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3760 
3761 	/*
3762 	 * Build up a vdev tree based on the boot device's label config.
3763 	 */
3764 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3765 	    &nvtop) == 0);
3766 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3767 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3768 	    VDEV_ALLOC_ROOTPOOL);
3769 	spa_config_exit(spa, SCL_ALL, FTAG);
3770 	if (error) {
3771 		mutex_exit(&spa_namespace_lock);
3772 		nvlist_free(config);
3773 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3774 		    pname);
3775 		return (error);
3776 	}
3777 
3778 	/*
3779 	 * Get the boot vdev.
3780 	 */
3781 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3782 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3783 		    (u_longlong_t)guid);
3784 		error = SET_ERROR(ENOENT);
3785 		goto out;
3786 	}
3787 
3788 	/*
3789 	 * Determine if there is a better boot device.
3790 	 */
3791 	avd = bvd;
3792 	spa_alt_rootvdev(rvd, &avd, &txg);
3793 	if (avd != bvd) {
3794 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3795 		    "try booting from '%s'", avd->vdev_path);
3796 		error = SET_ERROR(EINVAL);
3797 		goto out;
3798 	}
3799 
3800 	/*
3801 	 * If the boot device is part of a spare vdev then ensure that
3802 	 * we're booting off the active spare.
3803 	 */
3804 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3805 	    !bvd->vdev_isspare) {
3806 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3807 		    "try booting from '%s'",
3808 		    bvd->vdev_parent->
3809 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3810 		error = SET_ERROR(EINVAL);
3811 		goto out;
3812 	}
3813 
3814 	error = 0;
3815 out:
3816 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3817 	vdev_free(rvd);
3818 	spa_config_exit(spa, SCL_ALL, FTAG);
3819 	mutex_exit(&spa_namespace_lock);
3820 
3821 	nvlist_free(config);
3822 	return (error);
3823 }
3824 
3825 #endif
3826 
3827 /*
3828  * Import a non-root pool into the system.
3829  */
3830 int
3831 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3832 {
3833 	spa_t *spa;
3834 	char *altroot = NULL;
3835 	spa_load_state_t state = SPA_LOAD_IMPORT;
3836 	zpool_rewind_policy_t policy;
3837 	uint64_t mode = spa_mode_global;
3838 	uint64_t readonly = B_FALSE;
3839 	int error;
3840 	nvlist_t *nvroot;
3841 	nvlist_t **spares, **l2cache;
3842 	uint_t nspares, nl2cache;
3843 
3844 	/*
3845 	 * If a pool with this name exists, return failure.
3846 	 */
3847 	mutex_enter(&spa_namespace_lock);
3848 	if (spa_lookup(pool) != NULL) {
3849 		mutex_exit(&spa_namespace_lock);
3850 		return (SET_ERROR(EEXIST));
3851 	}
3852 
3853 	/*
3854 	 * Create and initialize the spa structure.
3855 	 */
3856 	(void) nvlist_lookup_string(props,
3857 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3858 	(void) nvlist_lookup_uint64(props,
3859 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3860 	if (readonly)
3861 		mode = FREAD;
3862 	spa = spa_add(pool, config, altroot);
3863 	spa->spa_import_flags = flags;
3864 
3865 	/*
3866 	 * Verbatim import - Take a pool and insert it into the namespace
3867 	 * as if it had been loaded at boot.
3868 	 */
3869 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3870 		if (props != NULL)
3871 			spa_configfile_set(spa, props, B_FALSE);
3872 
3873 		spa_config_sync(spa, B_FALSE, B_TRUE);
3874 
3875 		mutex_exit(&spa_namespace_lock);
3876 		return (0);
3877 	}
3878 
3879 	spa_activate(spa, mode);
3880 
3881 	/*
3882 	 * Don't start async tasks until we know everything is healthy.
3883 	 */
3884 	spa_async_suspend(spa);
3885 
3886 	zpool_get_rewind_policy(config, &policy);
3887 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3888 		state = SPA_LOAD_RECOVER;
3889 
3890 	/*
3891 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3892 	 * because the user-supplied config is actually the one to trust when
3893 	 * doing an import.
3894 	 */
3895 	if (state != SPA_LOAD_RECOVER)
3896 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3897 
3898 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3899 	    policy.zrp_request);
3900 
3901 	/*
3902 	 * Propagate anything learned while loading the pool and pass it
3903 	 * back to caller (i.e. rewind info, missing devices, etc).
3904 	 */
3905 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3906 	    spa->spa_load_info) == 0);
3907 
3908 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3909 	/*
3910 	 * Toss any existing sparelist, as it doesn't have any validity
3911 	 * anymore, and conflicts with spa_has_spare().
3912 	 */
3913 	if (spa->spa_spares.sav_config) {
3914 		nvlist_free(spa->spa_spares.sav_config);
3915 		spa->spa_spares.sav_config = NULL;
3916 		spa_load_spares(spa);
3917 	}
3918 	if (spa->spa_l2cache.sav_config) {
3919 		nvlist_free(spa->spa_l2cache.sav_config);
3920 		spa->spa_l2cache.sav_config = NULL;
3921 		spa_load_l2cache(spa);
3922 	}
3923 
3924 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3925 	    &nvroot) == 0);
3926 	if (error == 0)
3927 		error = spa_validate_aux(spa, nvroot, -1ULL,
3928 		    VDEV_ALLOC_SPARE);
3929 	if (error == 0)
3930 		error = spa_validate_aux(spa, nvroot, -1ULL,
3931 		    VDEV_ALLOC_L2CACHE);
3932 	spa_config_exit(spa, SCL_ALL, FTAG);
3933 
3934 	if (props != NULL)
3935 		spa_configfile_set(spa, props, B_FALSE);
3936 
3937 	if (error != 0 || (props && spa_writeable(spa) &&
3938 	    (error = spa_prop_set(spa, props)))) {
3939 		spa_unload(spa);
3940 		spa_deactivate(spa);
3941 		spa_remove(spa);
3942 		mutex_exit(&spa_namespace_lock);
3943 		return (error);
3944 	}
3945 
3946 	spa_async_resume(spa);
3947 
3948 	/*
3949 	 * Override any spares and level 2 cache devices as specified by
3950 	 * the user, as these may have correct device names/devids, etc.
3951 	 */
3952 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3953 	    &spares, &nspares) == 0) {
3954 		if (spa->spa_spares.sav_config)
3955 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3956 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3957 		else
3958 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3959 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3960 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3961 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3962 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3963 		spa_load_spares(spa);
3964 		spa_config_exit(spa, SCL_ALL, FTAG);
3965 		spa->spa_spares.sav_sync = B_TRUE;
3966 	}
3967 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3968 	    &l2cache, &nl2cache) == 0) {
3969 		if (spa->spa_l2cache.sav_config)
3970 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3971 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3972 		else
3973 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3974 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3975 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3976 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3977 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3978 		spa_load_l2cache(spa);
3979 		spa_config_exit(spa, SCL_ALL, FTAG);
3980 		spa->spa_l2cache.sav_sync = B_TRUE;
3981 	}
3982 
3983 	/*
3984 	 * Check for any removed devices.
3985 	 */
3986 	if (spa->spa_autoreplace) {
3987 		spa_aux_check_removed(&spa->spa_spares);
3988 		spa_aux_check_removed(&spa->spa_l2cache);
3989 	}
3990 
3991 	if (spa_writeable(spa)) {
3992 		/*
3993 		 * Update the config cache to include the newly-imported pool.
3994 		 */
3995 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3996 	}
3997 
3998 	/*
3999 	 * It's possible that the pool was expanded while it was exported.
4000 	 * We kick off an async task to handle this for us.
4001 	 */
4002 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4003 
4004 	mutex_exit(&spa_namespace_lock);
4005 	spa_history_log_version(spa, "import");
4006 
4007 	return (0);
4008 }
4009 
4010 nvlist_t *
4011 spa_tryimport(nvlist_t *tryconfig)
4012 {
4013 	nvlist_t *config = NULL;
4014 	char *poolname;
4015 	spa_t *spa;
4016 	uint64_t state;
4017 	int error;
4018 
4019 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4020 		return (NULL);
4021 
4022 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4023 		return (NULL);
4024 
4025 	/*
4026 	 * Create and initialize the spa structure.
4027 	 */
4028 	mutex_enter(&spa_namespace_lock);
4029 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4030 	spa_activate(spa, FREAD);
4031 
4032 	/*
4033 	 * Pass off the heavy lifting to spa_load().
4034 	 * Pass TRUE for mosconfig because the user-supplied config
4035 	 * is actually the one to trust when doing an import.
4036 	 */
4037 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4038 
4039 	/*
4040 	 * If 'tryconfig' was at least parsable, return the current config.
4041 	 */
4042 	if (spa->spa_root_vdev != NULL) {
4043 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4044 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4045 		    poolname) == 0);
4046 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4047 		    state) == 0);
4048 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4049 		    spa->spa_uberblock.ub_timestamp) == 0);
4050 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4051 		    spa->spa_load_info) == 0);
4052 
4053 		/*
4054 		 * If the bootfs property exists on this pool then we
4055 		 * copy it out so that external consumers can tell which
4056 		 * pools are bootable.
4057 		 */
4058 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4059 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4060 
4061 			/*
4062 			 * We have to play games with the name since the
4063 			 * pool was opened as TRYIMPORT_NAME.
4064 			 */
4065 			if (dsl_dsobj_to_dsname(spa_name(spa),
4066 			    spa->spa_bootfs, tmpname) == 0) {
4067 				char *cp;
4068 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4069 
4070 				cp = strchr(tmpname, '/');
4071 				if (cp == NULL) {
4072 					(void) strlcpy(dsname, tmpname,
4073 					    MAXPATHLEN);
4074 				} else {
4075 					(void) snprintf(dsname, MAXPATHLEN,
4076 					    "%s/%s", poolname, ++cp);
4077 				}
4078 				VERIFY(nvlist_add_string(config,
4079 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4080 				kmem_free(dsname, MAXPATHLEN);
4081 			}
4082 			kmem_free(tmpname, MAXPATHLEN);
4083 		}
4084 
4085 		/*
4086 		 * Add the list of hot spares and level 2 cache devices.
4087 		 */
4088 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4089 		spa_add_spares(spa, config);
4090 		spa_add_l2cache(spa, config);
4091 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4092 	}
4093 
4094 	spa_unload(spa);
4095 	spa_deactivate(spa);
4096 	spa_remove(spa);
4097 	mutex_exit(&spa_namespace_lock);
4098 
4099 	return (config);
4100 }
4101 
4102 /*
4103  * Pool export/destroy
4104  *
4105  * The act of destroying or exporting a pool is very simple.  We make sure there
4106  * is no more pending I/O and any references to the pool are gone.  Then, we
4107  * update the pool state and sync all the labels to disk, removing the
4108  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4109  * we don't sync the labels or remove the configuration cache.
4110  */
4111 static int
4112 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4113     boolean_t force, boolean_t hardforce)
4114 {
4115 	spa_t *spa;
4116 
4117 	if (oldconfig)
4118 		*oldconfig = NULL;
4119 
4120 	if (!(spa_mode_global & FWRITE))
4121 		return (SET_ERROR(EROFS));
4122 
4123 	mutex_enter(&spa_namespace_lock);
4124 	if ((spa = spa_lookup(pool)) == NULL) {
4125 		mutex_exit(&spa_namespace_lock);
4126 		return (SET_ERROR(ENOENT));
4127 	}
4128 
4129 	/*
4130 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4131 	 * reacquire the namespace lock, and see if we can export.
4132 	 */
4133 	spa_open_ref(spa, FTAG);
4134 	mutex_exit(&spa_namespace_lock);
4135 	spa_async_suspend(spa);
4136 	mutex_enter(&spa_namespace_lock);
4137 	spa_close(spa, FTAG);
4138 
4139 	/*
4140 	 * The pool will be in core if it's openable,
4141 	 * in which case we can modify its state.
4142 	 */
4143 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4144 		/*
4145 		 * Objsets may be open only because they're dirty, so we
4146 		 * have to force it to sync before checking spa_refcnt.
4147 		 */
4148 		txg_wait_synced(spa->spa_dsl_pool, 0);
4149 
4150 		/*
4151 		 * A pool cannot be exported or destroyed if there are active
4152 		 * references.  If we are resetting a pool, allow references by
4153 		 * fault injection handlers.
4154 		 */
4155 		if (!spa_refcount_zero(spa) ||
4156 		    (spa->spa_inject_ref != 0 &&
4157 		    new_state != POOL_STATE_UNINITIALIZED)) {
4158 			spa_async_resume(spa);
4159 			mutex_exit(&spa_namespace_lock);
4160 			return (SET_ERROR(EBUSY));
4161 		}
4162 
4163 		/*
4164 		 * A pool cannot be exported if it has an active shared spare.
4165 		 * This is to prevent other pools stealing the active spare
4166 		 * from an exported pool. At user's own will, such pool can
4167 		 * be forcedly exported.
4168 		 */
4169 		if (!force && new_state == POOL_STATE_EXPORTED &&
4170 		    spa_has_active_shared_spare(spa)) {
4171 			spa_async_resume(spa);
4172 			mutex_exit(&spa_namespace_lock);
4173 			return (SET_ERROR(EXDEV));
4174 		}
4175 
4176 		/*
4177 		 * We want this to be reflected on every label,
4178 		 * so mark them all dirty.  spa_unload() will do the
4179 		 * final sync that pushes these changes out.
4180 		 */
4181 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4182 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4183 			spa->spa_state = new_state;
4184 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4185 			    TXG_DEFER_SIZE + 1;
4186 			vdev_config_dirty(spa->spa_root_vdev);
4187 			spa_config_exit(spa, SCL_ALL, FTAG);
4188 		}
4189 	}
4190 
4191 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4192 
4193 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4194 		spa_unload(spa);
4195 		spa_deactivate(spa);
4196 	}
4197 
4198 	if (oldconfig && spa->spa_config)
4199 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4200 
4201 	if (new_state != POOL_STATE_UNINITIALIZED) {
4202 		if (!hardforce)
4203 			spa_config_sync(spa, B_TRUE, B_TRUE);
4204 		spa_remove(spa);
4205 	}
4206 	mutex_exit(&spa_namespace_lock);
4207 
4208 	return (0);
4209 }
4210 
4211 /*
4212  * Destroy a storage pool.
4213  */
4214 int
4215 spa_destroy(char *pool)
4216 {
4217 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4218 	    B_FALSE, B_FALSE));
4219 }
4220 
4221 /*
4222  * Export a storage pool.
4223  */
4224 int
4225 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4226     boolean_t hardforce)
4227 {
4228 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4229 	    force, hardforce));
4230 }
4231 
4232 /*
4233  * Similar to spa_export(), this unloads the spa_t without actually removing it
4234  * from the namespace in any way.
4235  */
4236 int
4237 spa_reset(char *pool)
4238 {
4239 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4240 	    B_FALSE, B_FALSE));
4241 }
4242 
4243 /*
4244  * ==========================================================================
4245  * Device manipulation
4246  * ==========================================================================
4247  */
4248 
4249 /*
4250  * Add a device to a storage pool.
4251  */
4252 int
4253 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4254 {
4255 	uint64_t txg, id;
4256 	int error;
4257 	vdev_t *rvd = spa->spa_root_vdev;
4258 	vdev_t *vd, *tvd;
4259 	nvlist_t **spares, **l2cache;
4260 	uint_t nspares, nl2cache;
4261 
4262 	ASSERT(spa_writeable(spa));
4263 
4264 	txg = spa_vdev_enter(spa);
4265 
4266 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4267 	    VDEV_ALLOC_ADD)) != 0)
4268 		return (spa_vdev_exit(spa, NULL, txg, error));
4269 
4270 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4271 
4272 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4273 	    &nspares) != 0)
4274 		nspares = 0;
4275 
4276 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4277 	    &nl2cache) != 0)
4278 		nl2cache = 0;
4279 
4280 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4281 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4282 
4283 	if (vd->vdev_children != 0 &&
4284 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4285 		return (spa_vdev_exit(spa, vd, txg, error));
4286 
4287 	/*
4288 	 * We must validate the spares and l2cache devices after checking the
4289 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4290 	 */
4291 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4292 		return (spa_vdev_exit(spa, vd, txg, error));
4293 
4294 	/*
4295 	 * Transfer each new top-level vdev from vd to rvd.
4296 	 */
4297 	for (int c = 0; c < vd->vdev_children; c++) {
4298 
4299 		/*
4300 		 * Set the vdev id to the first hole, if one exists.
4301 		 */
4302 		for (id = 0; id < rvd->vdev_children; id++) {
4303 			if (rvd->vdev_child[id]->vdev_ishole) {
4304 				vdev_free(rvd->vdev_child[id]);
4305 				break;
4306 			}
4307 		}
4308 		tvd = vd->vdev_child[c];
4309 		vdev_remove_child(vd, tvd);
4310 		tvd->vdev_id = id;
4311 		vdev_add_child(rvd, tvd);
4312 		vdev_config_dirty(tvd);
4313 	}
4314 
4315 	if (nspares != 0) {
4316 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4317 		    ZPOOL_CONFIG_SPARES);
4318 		spa_load_spares(spa);
4319 		spa->spa_spares.sav_sync = B_TRUE;
4320 	}
4321 
4322 	if (nl2cache != 0) {
4323 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4324 		    ZPOOL_CONFIG_L2CACHE);
4325 		spa_load_l2cache(spa);
4326 		spa->spa_l2cache.sav_sync = B_TRUE;
4327 	}
4328 
4329 	/*
4330 	 * We have to be careful when adding new vdevs to an existing pool.
4331 	 * If other threads start allocating from these vdevs before we
4332 	 * sync the config cache, and we lose power, then upon reboot we may
4333 	 * fail to open the pool because there are DVAs that the config cache
4334 	 * can't translate.  Therefore, we first add the vdevs without
4335 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4336 	 * and then let spa_config_update() initialize the new metaslabs.
4337 	 *
4338 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4339 	 * if we lose power at any point in this sequence, the remaining
4340 	 * steps will be completed the next time we load the pool.
4341 	 */
4342 	(void) spa_vdev_exit(spa, vd, txg, 0);
4343 
4344 	mutex_enter(&spa_namespace_lock);
4345 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4346 	mutex_exit(&spa_namespace_lock);
4347 
4348 	return (0);
4349 }
4350 
4351 /*
4352  * Attach a device to a mirror.  The arguments are the path to any device
4353  * in the mirror, and the nvroot for the new device.  If the path specifies
4354  * a device that is not mirrored, we automatically insert the mirror vdev.
4355  *
4356  * If 'replacing' is specified, the new device is intended to replace the
4357  * existing device; in this case the two devices are made into their own
4358  * mirror using the 'replacing' vdev, which is functionally identical to
4359  * the mirror vdev (it actually reuses all the same ops) but has a few
4360  * extra rules: you can't attach to it after it's been created, and upon
4361  * completion of resilvering, the first disk (the one being replaced)
4362  * is automatically detached.
4363  */
4364 int
4365 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4366 {
4367 	uint64_t txg, dtl_max_txg;
4368 	vdev_t *rvd = spa->spa_root_vdev;
4369 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4370 	vdev_ops_t *pvops;
4371 	char *oldvdpath, *newvdpath;
4372 	int newvd_isspare;
4373 	int error;
4374 
4375 	ASSERT(spa_writeable(spa));
4376 
4377 	txg = spa_vdev_enter(spa);
4378 
4379 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4380 
4381 	if (oldvd == NULL)
4382 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4383 
4384 	if (!oldvd->vdev_ops->vdev_op_leaf)
4385 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4386 
4387 	pvd = oldvd->vdev_parent;
4388 
4389 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4390 	    VDEV_ALLOC_ATTACH)) != 0)
4391 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4392 
4393 	if (newrootvd->vdev_children != 1)
4394 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4395 
4396 	newvd = newrootvd->vdev_child[0];
4397 
4398 	if (!newvd->vdev_ops->vdev_op_leaf)
4399 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4400 
4401 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4402 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4403 
4404 	/*
4405 	 * Spares can't replace logs
4406 	 */
4407 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4408 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4409 
4410 	if (!replacing) {
4411 		/*
4412 		 * For attach, the only allowable parent is a mirror or the root
4413 		 * vdev.
4414 		 */
4415 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4416 		    pvd->vdev_ops != &vdev_root_ops)
4417 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4418 
4419 		pvops = &vdev_mirror_ops;
4420 	} else {
4421 		/*
4422 		 * Active hot spares can only be replaced by inactive hot
4423 		 * spares.
4424 		 */
4425 		if (pvd->vdev_ops == &vdev_spare_ops &&
4426 		    oldvd->vdev_isspare &&
4427 		    !spa_has_spare(spa, newvd->vdev_guid))
4428 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4429 
4430 		/*
4431 		 * If the source is a hot spare, and the parent isn't already a
4432 		 * spare, then we want to create a new hot spare.  Otherwise, we
4433 		 * want to create a replacing vdev.  The user is not allowed to
4434 		 * attach to a spared vdev child unless the 'isspare' state is
4435 		 * the same (spare replaces spare, non-spare replaces
4436 		 * non-spare).
4437 		 */
4438 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4439 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4440 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4441 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4442 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4443 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4444 		}
4445 
4446 		if (newvd->vdev_isspare)
4447 			pvops = &vdev_spare_ops;
4448 		else
4449 			pvops = &vdev_replacing_ops;
4450 	}
4451 
4452 	/*
4453 	 * Make sure the new device is big enough.
4454 	 */
4455 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4456 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4457 
4458 	/*
4459 	 * The new device cannot have a higher alignment requirement
4460 	 * than the top-level vdev.
4461 	 */
4462 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4463 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4464 
4465 	/*
4466 	 * If this is an in-place replacement, update oldvd's path and devid
4467 	 * to make it distinguishable from newvd, and unopenable from now on.
4468 	 */
4469 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4470 		spa_strfree(oldvd->vdev_path);
4471 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4472 		    KM_SLEEP);
4473 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4474 		    newvd->vdev_path, "old");
4475 		if (oldvd->vdev_devid != NULL) {
4476 			spa_strfree(oldvd->vdev_devid);
4477 			oldvd->vdev_devid = NULL;
4478 		}
4479 	}
4480 
4481 	/* mark the device being resilvered */
4482 	newvd->vdev_resilver_txg = txg;
4483 
4484 	/*
4485 	 * If the parent is not a mirror, or if we're replacing, insert the new
4486 	 * mirror/replacing/spare vdev above oldvd.
4487 	 */
4488 	if (pvd->vdev_ops != pvops)
4489 		pvd = vdev_add_parent(oldvd, pvops);
4490 
4491 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4492 	ASSERT(pvd->vdev_ops == pvops);
4493 	ASSERT(oldvd->vdev_parent == pvd);
4494 
4495 	/*
4496 	 * Extract the new device from its root and add it to pvd.
4497 	 */
4498 	vdev_remove_child(newrootvd, newvd);
4499 	newvd->vdev_id = pvd->vdev_children;
4500 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4501 	vdev_add_child(pvd, newvd);
4502 
4503 	tvd = newvd->vdev_top;
4504 	ASSERT(pvd->vdev_top == tvd);
4505 	ASSERT(tvd->vdev_parent == rvd);
4506 
4507 	vdev_config_dirty(tvd);
4508 
4509 	/*
4510 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4511 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4512 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4513 	 */
4514 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4515 
4516 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4517 	    dtl_max_txg - TXG_INITIAL);
4518 
4519 	if (newvd->vdev_isspare) {
4520 		spa_spare_activate(newvd);
4521 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4522 	}
4523 
4524 	oldvdpath = spa_strdup(oldvd->vdev_path);
4525 	newvdpath = spa_strdup(newvd->vdev_path);
4526 	newvd_isspare = newvd->vdev_isspare;
4527 
4528 	/*
4529 	 * Mark newvd's DTL dirty in this txg.
4530 	 */
4531 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4532 
4533 	/*
4534 	 * Schedule the resilver to restart in the future. We do this to
4535 	 * ensure that dmu_sync-ed blocks have been stitched into the
4536 	 * respective datasets.
4537 	 */
4538 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4539 
4540 	/*
4541 	 * Commit the config
4542 	 */
4543 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4544 
4545 	spa_history_log_internal(spa, "vdev attach", NULL,
4546 	    "%s vdev=%s %s vdev=%s",
4547 	    replacing && newvd_isspare ? "spare in" :
4548 	    replacing ? "replace" : "attach", newvdpath,
4549 	    replacing ? "for" : "to", oldvdpath);
4550 
4551 	spa_strfree(oldvdpath);
4552 	spa_strfree(newvdpath);
4553 
4554 	if (spa->spa_bootfs)
4555 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4556 
4557 	return (0);
4558 }
4559 
4560 /*
4561  * Detach a device from a mirror or replacing vdev.
4562  *
4563  * If 'replace_done' is specified, only detach if the parent
4564  * is a replacing vdev.
4565  */
4566 int
4567 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4568 {
4569 	uint64_t txg;
4570 	int error;
4571 	vdev_t *rvd = spa->spa_root_vdev;
4572 	vdev_t *vd, *pvd, *cvd, *tvd;
4573 	boolean_t unspare = B_FALSE;
4574 	uint64_t unspare_guid = 0;
4575 	char *vdpath;
4576 
4577 	ASSERT(spa_writeable(spa));
4578 
4579 	txg = spa_vdev_enter(spa);
4580 
4581 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4582 
4583 	if (vd == NULL)
4584 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4585 
4586 	if (!vd->vdev_ops->vdev_op_leaf)
4587 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4588 
4589 	pvd = vd->vdev_parent;
4590 
4591 	/*
4592 	 * If the parent/child relationship is not as expected, don't do it.
4593 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4594 	 * vdev that's replacing B with C.  The user's intent in replacing
4595 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4596 	 * the replace by detaching C, the expected behavior is to end up
4597 	 * M(A,B).  But suppose that right after deciding to detach C,
4598 	 * the replacement of B completes.  We would have M(A,C), and then
4599 	 * ask to detach C, which would leave us with just A -- not what
4600 	 * the user wanted.  To prevent this, we make sure that the
4601 	 * parent/child relationship hasn't changed -- in this example,
4602 	 * that C's parent is still the replacing vdev R.
4603 	 */
4604 	if (pvd->vdev_guid != pguid && pguid != 0)
4605 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4606 
4607 	/*
4608 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4609 	 */
4610 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4611 	    pvd->vdev_ops != &vdev_spare_ops)
4612 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4613 
4614 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4615 	    spa_version(spa) >= SPA_VERSION_SPARES);
4616 
4617 	/*
4618 	 * Only mirror, replacing, and spare vdevs support detach.
4619 	 */
4620 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4621 	    pvd->vdev_ops != &vdev_mirror_ops &&
4622 	    pvd->vdev_ops != &vdev_spare_ops)
4623 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4624 
4625 	/*
4626 	 * If this device has the only valid copy of some data,
4627 	 * we cannot safely detach it.
4628 	 */
4629 	if (vdev_dtl_required(vd))
4630 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4631 
4632 	ASSERT(pvd->vdev_children >= 2);
4633 
4634 	/*
4635 	 * If we are detaching the second disk from a replacing vdev, then
4636 	 * check to see if we changed the original vdev's path to have "/old"
4637 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4638 	 */
4639 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4640 	    vd->vdev_path != NULL) {
4641 		size_t len = strlen(vd->vdev_path);
4642 
4643 		for (int c = 0; c < pvd->vdev_children; c++) {
4644 			cvd = pvd->vdev_child[c];
4645 
4646 			if (cvd == vd || cvd->vdev_path == NULL)
4647 				continue;
4648 
4649 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4650 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4651 				spa_strfree(cvd->vdev_path);
4652 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4653 				break;
4654 			}
4655 		}
4656 	}
4657 
4658 	/*
4659 	 * If we are detaching the original disk from a spare, then it implies
4660 	 * that the spare should become a real disk, and be removed from the
4661 	 * active spare list for the pool.
4662 	 */
4663 	if (pvd->vdev_ops == &vdev_spare_ops &&
4664 	    vd->vdev_id == 0 &&
4665 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4666 		unspare = B_TRUE;
4667 
4668 	/*
4669 	 * Erase the disk labels so the disk can be used for other things.
4670 	 * This must be done after all other error cases are handled,
4671 	 * but before we disembowel vd (so we can still do I/O to it).
4672 	 * But if we can't do it, don't treat the error as fatal --
4673 	 * it may be that the unwritability of the disk is the reason
4674 	 * it's being detached!
4675 	 */
4676 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4677 
4678 	/*
4679 	 * Remove vd from its parent and compact the parent's children.
4680 	 */
4681 	vdev_remove_child(pvd, vd);
4682 	vdev_compact_children(pvd);
4683 
4684 	/*
4685 	 * Remember one of the remaining children so we can get tvd below.
4686 	 */
4687 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4688 
4689 	/*
4690 	 * If we need to remove the remaining child from the list of hot spares,
4691 	 * do it now, marking the vdev as no longer a spare in the process.
4692 	 * We must do this before vdev_remove_parent(), because that can
4693 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4694 	 * reason, we must remove the spare now, in the same txg as the detach;
4695 	 * otherwise someone could attach a new sibling, change the GUID, and
4696 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4697 	 */
4698 	if (unspare) {
4699 		ASSERT(cvd->vdev_isspare);
4700 		spa_spare_remove(cvd);
4701 		unspare_guid = cvd->vdev_guid;
4702 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4703 		cvd->vdev_unspare = B_TRUE;
4704 	}
4705 
4706 	/*
4707 	 * If the parent mirror/replacing vdev only has one child,
4708 	 * the parent is no longer needed.  Remove it from the tree.
4709 	 */
4710 	if (pvd->vdev_children == 1) {
4711 		if (pvd->vdev_ops == &vdev_spare_ops)
4712 			cvd->vdev_unspare = B_FALSE;
4713 		vdev_remove_parent(cvd);
4714 	}
4715 
4716 
4717 	/*
4718 	 * We don't set tvd until now because the parent we just removed
4719 	 * may have been the previous top-level vdev.
4720 	 */
4721 	tvd = cvd->vdev_top;
4722 	ASSERT(tvd->vdev_parent == rvd);
4723 
4724 	/*
4725 	 * Reevaluate the parent vdev state.
4726 	 */
4727 	vdev_propagate_state(cvd);
4728 
4729 	/*
4730 	 * If the 'autoexpand' property is set on the pool then automatically
4731 	 * try to expand the size of the pool. For example if the device we
4732 	 * just detached was smaller than the others, it may be possible to
4733 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4734 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4735 	 */
4736 	if (spa->spa_autoexpand) {
4737 		vdev_reopen(tvd);
4738 		vdev_expand(tvd, txg);
4739 	}
4740 
4741 	vdev_config_dirty(tvd);
4742 
4743 	/*
4744 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4745 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4746 	 * But first make sure we're not on any *other* txg's DTL list, to
4747 	 * prevent vd from being accessed after it's freed.
4748 	 */
4749 	vdpath = spa_strdup(vd->vdev_path);
4750 	for (int t = 0; t < TXG_SIZE; t++)
4751 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4752 	vd->vdev_detached = B_TRUE;
4753 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4754 
4755 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4756 
4757 	/* hang on to the spa before we release the lock */
4758 	spa_open_ref(spa, FTAG);
4759 
4760 	error = spa_vdev_exit(spa, vd, txg, 0);
4761 
4762 	spa_history_log_internal(spa, "detach", NULL,
4763 	    "vdev=%s", vdpath);
4764 	spa_strfree(vdpath);
4765 
4766 	/*
4767 	 * If this was the removal of the original device in a hot spare vdev,
4768 	 * then we want to go through and remove the device from the hot spare
4769 	 * list of every other pool.
4770 	 */
4771 	if (unspare) {
4772 		spa_t *altspa = NULL;
4773 
4774 		mutex_enter(&spa_namespace_lock);
4775 		while ((altspa = spa_next(altspa)) != NULL) {
4776 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4777 			    altspa == spa)
4778 				continue;
4779 
4780 			spa_open_ref(altspa, FTAG);
4781 			mutex_exit(&spa_namespace_lock);
4782 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4783 			mutex_enter(&spa_namespace_lock);
4784 			spa_close(altspa, FTAG);
4785 		}
4786 		mutex_exit(&spa_namespace_lock);
4787 
4788 		/* search the rest of the vdevs for spares to remove */
4789 		spa_vdev_resilver_done(spa);
4790 	}
4791 
4792 	/* all done with the spa; OK to release */
4793 	mutex_enter(&spa_namespace_lock);
4794 	spa_close(spa, FTAG);
4795 	mutex_exit(&spa_namespace_lock);
4796 
4797 	return (error);
4798 }
4799 
4800 /*
4801  * Split a set of devices from their mirrors, and create a new pool from them.
4802  */
4803 int
4804 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4805     nvlist_t *props, boolean_t exp)
4806 {
4807 	int error = 0;
4808 	uint64_t txg, *glist;
4809 	spa_t *newspa;
4810 	uint_t c, children, lastlog;
4811 	nvlist_t **child, *nvl, *tmp;
4812 	dmu_tx_t *tx;
4813 	char *altroot = NULL;
4814 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4815 	boolean_t activate_slog;
4816 
4817 	ASSERT(spa_writeable(spa));
4818 
4819 	txg = spa_vdev_enter(spa);
4820 
4821 	/* clear the log and flush everything up to now */
4822 	activate_slog = spa_passivate_log(spa);
4823 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4824 	error = spa_offline_log(spa);
4825 	txg = spa_vdev_config_enter(spa);
4826 
4827 	if (activate_slog)
4828 		spa_activate_log(spa);
4829 
4830 	if (error != 0)
4831 		return (spa_vdev_exit(spa, NULL, txg, error));
4832 
4833 	/* check new spa name before going any further */
4834 	if (spa_lookup(newname) != NULL)
4835 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4836 
4837 	/*
4838 	 * scan through all the children to ensure they're all mirrors
4839 	 */
4840 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4841 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4842 	    &children) != 0)
4843 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4844 
4845 	/* first, check to ensure we've got the right child count */
4846 	rvd = spa->spa_root_vdev;
4847 	lastlog = 0;
4848 	for (c = 0; c < rvd->vdev_children; c++) {
4849 		vdev_t *vd = rvd->vdev_child[c];
4850 
4851 		/* don't count the holes & logs as children */
4852 		if (vd->vdev_islog || vd->vdev_ishole) {
4853 			if (lastlog == 0)
4854 				lastlog = c;
4855 			continue;
4856 		}
4857 
4858 		lastlog = 0;
4859 	}
4860 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4861 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4862 
4863 	/* next, ensure no spare or cache devices are part of the split */
4864 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4865 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4866 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4867 
4868 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4869 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4870 
4871 	/* then, loop over each vdev and validate it */
4872 	for (c = 0; c < children; c++) {
4873 		uint64_t is_hole = 0;
4874 
4875 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4876 		    &is_hole);
4877 
4878 		if (is_hole != 0) {
4879 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4880 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4881 				continue;
4882 			} else {
4883 				error = SET_ERROR(EINVAL);
4884 				break;
4885 			}
4886 		}
4887 
4888 		/* which disk is going to be split? */
4889 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4890 		    &glist[c]) != 0) {
4891 			error = SET_ERROR(EINVAL);
4892 			break;
4893 		}
4894 
4895 		/* look it up in the spa */
4896 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4897 		if (vml[c] == NULL) {
4898 			error = SET_ERROR(ENODEV);
4899 			break;
4900 		}
4901 
4902 		/* make sure there's nothing stopping the split */
4903 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4904 		    vml[c]->vdev_islog ||
4905 		    vml[c]->vdev_ishole ||
4906 		    vml[c]->vdev_isspare ||
4907 		    vml[c]->vdev_isl2cache ||
4908 		    !vdev_writeable(vml[c]) ||
4909 		    vml[c]->vdev_children != 0 ||
4910 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4911 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4912 			error = SET_ERROR(EINVAL);
4913 			break;
4914 		}
4915 
4916 		if (vdev_dtl_required(vml[c])) {
4917 			error = SET_ERROR(EBUSY);
4918 			break;
4919 		}
4920 
4921 		/* we need certain info from the top level */
4922 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4923 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4924 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4925 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4926 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4927 		    vml[c]->vdev_top->vdev_asize) == 0);
4928 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4929 		    vml[c]->vdev_top->vdev_ashift) == 0);
4930 	}
4931 
4932 	if (error != 0) {
4933 		kmem_free(vml, children * sizeof (vdev_t *));
4934 		kmem_free(glist, children * sizeof (uint64_t));
4935 		return (spa_vdev_exit(spa, NULL, txg, error));
4936 	}
4937 
4938 	/* stop writers from using the disks */
4939 	for (c = 0; c < children; c++) {
4940 		if (vml[c] != NULL)
4941 			vml[c]->vdev_offline = B_TRUE;
4942 	}
4943 	vdev_reopen(spa->spa_root_vdev);
4944 
4945 	/*
4946 	 * Temporarily record the splitting vdevs in the spa config.  This
4947 	 * will disappear once the config is regenerated.
4948 	 */
4949 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4950 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4951 	    glist, children) == 0);
4952 	kmem_free(glist, children * sizeof (uint64_t));
4953 
4954 	mutex_enter(&spa->spa_props_lock);
4955 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4956 	    nvl) == 0);
4957 	mutex_exit(&spa->spa_props_lock);
4958 	spa->spa_config_splitting = nvl;
4959 	vdev_config_dirty(spa->spa_root_vdev);
4960 
4961 	/* configure and create the new pool */
4962 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4963 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4964 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4965 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4966 	    spa_version(spa)) == 0);
4967 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4968 	    spa->spa_config_txg) == 0);
4969 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4970 	    spa_generate_guid(NULL)) == 0);
4971 	(void) nvlist_lookup_string(props,
4972 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4973 
4974 	/* add the new pool to the namespace */
4975 	newspa = spa_add(newname, config, altroot);
4976 	newspa->spa_config_txg = spa->spa_config_txg;
4977 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4978 
4979 	/* release the spa config lock, retaining the namespace lock */
4980 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4981 
4982 	if (zio_injection_enabled)
4983 		zio_handle_panic_injection(spa, FTAG, 1);
4984 
4985 	spa_activate(newspa, spa_mode_global);
4986 	spa_async_suspend(newspa);
4987 
4988 	/* create the new pool from the disks of the original pool */
4989 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4990 	if (error)
4991 		goto out;
4992 
4993 	/* if that worked, generate a real config for the new pool */
4994 	if (newspa->spa_root_vdev != NULL) {
4995 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4996 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4997 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4998 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4999 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5000 		    B_TRUE));
5001 	}
5002 
5003 	/* set the props */
5004 	if (props != NULL) {
5005 		spa_configfile_set(newspa, props, B_FALSE);
5006 		error = spa_prop_set(newspa, props);
5007 		if (error)
5008 			goto out;
5009 	}
5010 
5011 	/* flush everything */
5012 	txg = spa_vdev_config_enter(newspa);
5013 	vdev_config_dirty(newspa->spa_root_vdev);
5014 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5015 
5016 	if (zio_injection_enabled)
5017 		zio_handle_panic_injection(spa, FTAG, 2);
5018 
5019 	spa_async_resume(newspa);
5020 
5021 	/* finally, update the original pool's config */
5022 	txg = spa_vdev_config_enter(spa);
5023 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5024 	error = dmu_tx_assign(tx, TXG_WAIT);
5025 	if (error != 0)
5026 		dmu_tx_abort(tx);
5027 	for (c = 0; c < children; c++) {
5028 		if (vml[c] != NULL) {
5029 			vdev_split(vml[c]);
5030 			if (error == 0)
5031 				spa_history_log_internal(spa, "detach", tx,
5032 				    "vdev=%s", vml[c]->vdev_path);
5033 			vdev_free(vml[c]);
5034 		}
5035 	}
5036 	vdev_config_dirty(spa->spa_root_vdev);
5037 	spa->spa_config_splitting = NULL;
5038 	nvlist_free(nvl);
5039 	if (error == 0)
5040 		dmu_tx_commit(tx);
5041 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5042 
5043 	if (zio_injection_enabled)
5044 		zio_handle_panic_injection(spa, FTAG, 3);
5045 
5046 	/* split is complete; log a history record */
5047 	spa_history_log_internal(newspa, "split", NULL,
5048 	    "from pool %s", spa_name(spa));
5049 
5050 	kmem_free(vml, children * sizeof (vdev_t *));
5051 
5052 	/* if we're not going to mount the filesystems in userland, export */
5053 	if (exp)
5054 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5055 		    B_FALSE, B_FALSE);
5056 
5057 	return (error);
5058 
5059 out:
5060 	spa_unload(newspa);
5061 	spa_deactivate(newspa);
5062 	spa_remove(newspa);
5063 
5064 	txg = spa_vdev_config_enter(spa);
5065 
5066 	/* re-online all offlined disks */
5067 	for (c = 0; c < children; c++) {
5068 		if (vml[c] != NULL)
5069 			vml[c]->vdev_offline = B_FALSE;
5070 	}
5071 	vdev_reopen(spa->spa_root_vdev);
5072 
5073 	nvlist_free(spa->spa_config_splitting);
5074 	spa->spa_config_splitting = NULL;
5075 	(void) spa_vdev_exit(spa, NULL, txg, error);
5076 
5077 	kmem_free(vml, children * sizeof (vdev_t *));
5078 	return (error);
5079 }
5080 
5081 static nvlist_t *
5082 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5083 {
5084 	for (int i = 0; i < count; i++) {
5085 		uint64_t guid;
5086 
5087 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5088 		    &guid) == 0);
5089 
5090 		if (guid == target_guid)
5091 			return (nvpp[i]);
5092 	}
5093 
5094 	return (NULL);
5095 }
5096 
5097 static void
5098 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5099 	nvlist_t *dev_to_remove)
5100 {
5101 	nvlist_t **newdev = NULL;
5102 
5103 	if (count > 1)
5104 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5105 
5106 	for (int i = 0, j = 0; i < count; i++) {
5107 		if (dev[i] == dev_to_remove)
5108 			continue;
5109 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5110 	}
5111 
5112 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5113 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5114 
5115 	for (int i = 0; i < count - 1; i++)
5116 		nvlist_free(newdev[i]);
5117 
5118 	if (count > 1)
5119 		kmem_free(newdev, (count - 1) * sizeof (void *));
5120 }
5121 
5122 /*
5123  * Evacuate the device.
5124  */
5125 static int
5126 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5127 {
5128 	uint64_t txg;
5129 	int error = 0;
5130 
5131 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5132 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5133 	ASSERT(vd == vd->vdev_top);
5134 
5135 	/*
5136 	 * Evacuate the device.  We don't hold the config lock as writer
5137 	 * since we need to do I/O but we do keep the
5138 	 * spa_namespace_lock held.  Once this completes the device
5139 	 * should no longer have any blocks allocated on it.
5140 	 */
5141 	if (vd->vdev_islog) {
5142 		if (vd->vdev_stat.vs_alloc != 0)
5143 			error = spa_offline_log(spa);
5144 	} else {
5145 		error = SET_ERROR(ENOTSUP);
5146 	}
5147 
5148 	if (error)
5149 		return (error);
5150 
5151 	/*
5152 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5153 	 * associated with this vdev, and wait for these changes to sync.
5154 	 */
5155 	ASSERT0(vd->vdev_stat.vs_alloc);
5156 	txg = spa_vdev_config_enter(spa);
5157 	vd->vdev_removing = B_TRUE;
5158 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5159 	vdev_config_dirty(vd);
5160 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5161 
5162 	return (0);
5163 }
5164 
5165 /*
5166  * Complete the removal by cleaning up the namespace.
5167  */
5168 static void
5169 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5170 {
5171 	vdev_t *rvd = spa->spa_root_vdev;
5172 	uint64_t id = vd->vdev_id;
5173 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5174 
5175 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5176 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5177 	ASSERT(vd == vd->vdev_top);
5178 
5179 	/*
5180 	 * Only remove any devices which are empty.
5181 	 */
5182 	if (vd->vdev_stat.vs_alloc != 0)
5183 		return;
5184 
5185 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5186 
5187 	if (list_link_active(&vd->vdev_state_dirty_node))
5188 		vdev_state_clean(vd);
5189 	if (list_link_active(&vd->vdev_config_dirty_node))
5190 		vdev_config_clean(vd);
5191 
5192 	vdev_free(vd);
5193 
5194 	if (last_vdev) {
5195 		vdev_compact_children(rvd);
5196 	} else {
5197 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5198 		vdev_add_child(rvd, vd);
5199 	}
5200 	vdev_config_dirty(rvd);
5201 
5202 	/*
5203 	 * Reassess the health of our root vdev.
5204 	 */
5205 	vdev_reopen(rvd);
5206 }
5207 
5208 /*
5209  * Remove a device from the pool -
5210  *
5211  * Removing a device from the vdev namespace requires several steps
5212  * and can take a significant amount of time.  As a result we use
5213  * the spa_vdev_config_[enter/exit] functions which allow us to
5214  * grab and release the spa_config_lock while still holding the namespace
5215  * lock.  During each step the configuration is synced out.
5216  *
5217  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5218  * devices.
5219  */
5220 int
5221 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5222 {
5223 	vdev_t *vd;
5224 	metaslab_group_t *mg;
5225 	nvlist_t **spares, **l2cache, *nv;
5226 	uint64_t txg = 0;
5227 	uint_t nspares, nl2cache;
5228 	int error = 0;
5229 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5230 
5231 	ASSERT(spa_writeable(spa));
5232 
5233 	if (!locked)
5234 		txg = spa_vdev_enter(spa);
5235 
5236 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5237 
5238 	if (spa->spa_spares.sav_vdevs != NULL &&
5239 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5240 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5241 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5242 		/*
5243 		 * Only remove the hot spare if it's not currently in use
5244 		 * in this pool.
5245 		 */
5246 		if (vd == NULL || unspare) {
5247 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5248 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5249 			spa_load_spares(spa);
5250 			spa->spa_spares.sav_sync = B_TRUE;
5251 		} else {
5252 			error = SET_ERROR(EBUSY);
5253 		}
5254 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5255 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5256 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5257 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5258 		/*
5259 		 * Cache devices can always be removed.
5260 		 */
5261 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5262 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5263 		spa_load_l2cache(spa);
5264 		spa->spa_l2cache.sav_sync = B_TRUE;
5265 	} else if (vd != NULL && vd->vdev_islog) {
5266 		ASSERT(!locked);
5267 		ASSERT(vd == vd->vdev_top);
5268 
5269 		mg = vd->vdev_mg;
5270 
5271 		/*
5272 		 * Stop allocating from this vdev.
5273 		 */
5274 		metaslab_group_passivate(mg);
5275 
5276 		/*
5277 		 * Wait for the youngest allocations and frees to sync,
5278 		 * and then wait for the deferral of those frees to finish.
5279 		 */
5280 		spa_vdev_config_exit(spa, NULL,
5281 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5282 
5283 		/*
5284 		 * Attempt to evacuate the vdev.
5285 		 */
5286 		error = spa_vdev_remove_evacuate(spa, vd);
5287 
5288 		txg = spa_vdev_config_enter(spa);
5289 
5290 		/*
5291 		 * If we couldn't evacuate the vdev, unwind.
5292 		 */
5293 		if (error) {
5294 			metaslab_group_activate(mg);
5295 			return (spa_vdev_exit(spa, NULL, txg, error));
5296 		}
5297 
5298 		/*
5299 		 * Clean up the vdev namespace.
5300 		 */
5301 		spa_vdev_remove_from_namespace(spa, vd);
5302 
5303 	} else if (vd != NULL) {
5304 		/*
5305 		 * Normal vdevs cannot be removed (yet).
5306 		 */
5307 		error = SET_ERROR(ENOTSUP);
5308 	} else {
5309 		/*
5310 		 * There is no vdev of any kind with the specified guid.
5311 		 */
5312 		error = SET_ERROR(ENOENT);
5313 	}
5314 
5315 	if (!locked)
5316 		return (spa_vdev_exit(spa, NULL, txg, error));
5317 
5318 	return (error);
5319 }
5320 
5321 /*
5322  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5323  * currently spared, so we can detach it.
5324  */
5325 static vdev_t *
5326 spa_vdev_resilver_done_hunt(vdev_t *vd)
5327 {
5328 	vdev_t *newvd, *oldvd;
5329 
5330 	for (int c = 0; c < vd->vdev_children; c++) {
5331 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5332 		if (oldvd != NULL)
5333 			return (oldvd);
5334 	}
5335 
5336 	/*
5337 	 * Check for a completed replacement.  We always consider the first
5338 	 * vdev in the list to be the oldest vdev, and the last one to be
5339 	 * the newest (see spa_vdev_attach() for how that works).  In
5340 	 * the case where the newest vdev is faulted, we will not automatically
5341 	 * remove it after a resilver completes.  This is OK as it will require
5342 	 * user intervention to determine which disk the admin wishes to keep.
5343 	 */
5344 	if (vd->vdev_ops == &vdev_replacing_ops) {
5345 		ASSERT(vd->vdev_children > 1);
5346 
5347 		newvd = vd->vdev_child[vd->vdev_children - 1];
5348 		oldvd = vd->vdev_child[0];
5349 
5350 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5351 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5352 		    !vdev_dtl_required(oldvd))
5353 			return (oldvd);
5354 	}
5355 
5356 	/*
5357 	 * Check for a completed resilver with the 'unspare' flag set.
5358 	 */
5359 	if (vd->vdev_ops == &vdev_spare_ops) {
5360 		vdev_t *first = vd->vdev_child[0];
5361 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5362 
5363 		if (last->vdev_unspare) {
5364 			oldvd = first;
5365 			newvd = last;
5366 		} else if (first->vdev_unspare) {
5367 			oldvd = last;
5368 			newvd = first;
5369 		} else {
5370 			oldvd = NULL;
5371 		}
5372 
5373 		if (oldvd != NULL &&
5374 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5375 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5376 		    !vdev_dtl_required(oldvd))
5377 			return (oldvd);
5378 
5379 		/*
5380 		 * If there are more than two spares attached to a disk,
5381 		 * and those spares are not required, then we want to
5382 		 * attempt to free them up now so that they can be used
5383 		 * by other pools.  Once we're back down to a single
5384 		 * disk+spare, we stop removing them.
5385 		 */
5386 		if (vd->vdev_children > 2) {
5387 			newvd = vd->vdev_child[1];
5388 
5389 			if (newvd->vdev_isspare && last->vdev_isspare &&
5390 			    vdev_dtl_empty(last, DTL_MISSING) &&
5391 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5392 			    !vdev_dtl_required(newvd))
5393 				return (newvd);
5394 		}
5395 	}
5396 
5397 	return (NULL);
5398 }
5399 
5400 static void
5401 spa_vdev_resilver_done(spa_t *spa)
5402 {
5403 	vdev_t *vd, *pvd, *ppvd;
5404 	uint64_t guid, sguid, pguid, ppguid;
5405 
5406 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5407 
5408 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5409 		pvd = vd->vdev_parent;
5410 		ppvd = pvd->vdev_parent;
5411 		guid = vd->vdev_guid;
5412 		pguid = pvd->vdev_guid;
5413 		ppguid = ppvd->vdev_guid;
5414 		sguid = 0;
5415 		/*
5416 		 * If we have just finished replacing a hot spared device, then
5417 		 * we need to detach the parent's first child (the original hot
5418 		 * spare) as well.
5419 		 */
5420 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5421 		    ppvd->vdev_children == 2) {
5422 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5423 			sguid = ppvd->vdev_child[1]->vdev_guid;
5424 		}
5425 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5426 
5427 		spa_config_exit(spa, SCL_ALL, FTAG);
5428 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5429 			return;
5430 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5431 			return;
5432 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5433 	}
5434 
5435 	spa_config_exit(spa, SCL_ALL, FTAG);
5436 }
5437 
5438 /*
5439  * Update the stored path or FRU for this vdev.
5440  */
5441 int
5442 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5443     boolean_t ispath)
5444 {
5445 	vdev_t *vd;
5446 	boolean_t sync = B_FALSE;
5447 
5448 	ASSERT(spa_writeable(spa));
5449 
5450 	spa_vdev_state_enter(spa, SCL_ALL);
5451 
5452 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5453 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5454 
5455 	if (!vd->vdev_ops->vdev_op_leaf)
5456 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5457 
5458 	if (ispath) {
5459 		if (strcmp(value, vd->vdev_path) != 0) {
5460 			spa_strfree(vd->vdev_path);
5461 			vd->vdev_path = spa_strdup(value);
5462 			sync = B_TRUE;
5463 		}
5464 	} else {
5465 		if (vd->vdev_fru == NULL) {
5466 			vd->vdev_fru = spa_strdup(value);
5467 			sync = B_TRUE;
5468 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5469 			spa_strfree(vd->vdev_fru);
5470 			vd->vdev_fru = spa_strdup(value);
5471 			sync = B_TRUE;
5472 		}
5473 	}
5474 
5475 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5476 }
5477 
5478 int
5479 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5480 {
5481 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5482 }
5483 
5484 int
5485 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5486 {
5487 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5488 }
5489 
5490 /*
5491  * ==========================================================================
5492  * SPA Scanning
5493  * ==========================================================================
5494  */
5495 
5496 int
5497 spa_scan_stop(spa_t *spa)
5498 {
5499 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5500 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5501 		return (SET_ERROR(EBUSY));
5502 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5503 }
5504 
5505 int
5506 spa_scan(spa_t *spa, pool_scan_func_t func)
5507 {
5508 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5509 
5510 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5511 		return (SET_ERROR(ENOTSUP));
5512 
5513 	/*
5514 	 * If a resilver was requested, but there is no DTL on a
5515 	 * writeable leaf device, we have nothing to do.
5516 	 */
5517 	if (func == POOL_SCAN_RESILVER &&
5518 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5519 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5520 		return (0);
5521 	}
5522 
5523 	return (dsl_scan(spa->spa_dsl_pool, func));
5524 }
5525 
5526 /*
5527  * ==========================================================================
5528  * SPA async task processing
5529  * ==========================================================================
5530  */
5531 
5532 static void
5533 spa_async_remove(spa_t *spa, vdev_t *vd)
5534 {
5535 	if (vd->vdev_remove_wanted) {
5536 		vd->vdev_remove_wanted = B_FALSE;
5537 		vd->vdev_delayed_close = B_FALSE;
5538 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5539 
5540 		/*
5541 		 * We want to clear the stats, but we don't want to do a full
5542 		 * vdev_clear() as that will cause us to throw away
5543 		 * degraded/faulted state as well as attempt to reopen the
5544 		 * device, all of which is a waste.
5545 		 */
5546 		vd->vdev_stat.vs_read_errors = 0;
5547 		vd->vdev_stat.vs_write_errors = 0;
5548 		vd->vdev_stat.vs_checksum_errors = 0;
5549 
5550 		vdev_state_dirty(vd->vdev_top);
5551 	}
5552 
5553 	for (int c = 0; c < vd->vdev_children; c++)
5554 		spa_async_remove(spa, vd->vdev_child[c]);
5555 }
5556 
5557 static void
5558 spa_async_probe(spa_t *spa, vdev_t *vd)
5559 {
5560 	if (vd->vdev_probe_wanted) {
5561 		vd->vdev_probe_wanted = B_FALSE;
5562 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5563 	}
5564 
5565 	for (int c = 0; c < vd->vdev_children; c++)
5566 		spa_async_probe(spa, vd->vdev_child[c]);
5567 }
5568 
5569 static void
5570 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5571 {
5572 	sysevent_id_t eid;
5573 	nvlist_t *attr;
5574 	char *physpath;
5575 
5576 	if (!spa->spa_autoexpand)
5577 		return;
5578 
5579 	for (int c = 0; c < vd->vdev_children; c++) {
5580 		vdev_t *cvd = vd->vdev_child[c];
5581 		spa_async_autoexpand(spa, cvd);
5582 	}
5583 
5584 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5585 		return;
5586 
5587 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5588 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5589 
5590 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5591 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5592 
5593 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5594 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5595 
5596 	nvlist_free(attr);
5597 	kmem_free(physpath, MAXPATHLEN);
5598 }
5599 
5600 static void
5601 spa_async_thread(spa_t *spa)
5602 {
5603 	int tasks;
5604 
5605 	ASSERT(spa->spa_sync_on);
5606 
5607 	mutex_enter(&spa->spa_async_lock);
5608 	tasks = spa->spa_async_tasks;
5609 	spa->spa_async_tasks = 0;
5610 	mutex_exit(&spa->spa_async_lock);
5611 
5612 	/*
5613 	 * See if the config needs to be updated.
5614 	 */
5615 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5616 		uint64_t old_space, new_space;
5617 
5618 		mutex_enter(&spa_namespace_lock);
5619 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5620 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5621 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5622 		mutex_exit(&spa_namespace_lock);
5623 
5624 		/*
5625 		 * If the pool grew as a result of the config update,
5626 		 * then log an internal history event.
5627 		 */
5628 		if (new_space != old_space) {
5629 			spa_history_log_internal(spa, "vdev online", NULL,
5630 			    "pool '%s' size: %llu(+%llu)",
5631 			    spa_name(spa), new_space, new_space - old_space);
5632 		}
5633 	}
5634 
5635 	/*
5636 	 * See if any devices need to be marked REMOVED.
5637 	 */
5638 	if (tasks & SPA_ASYNC_REMOVE) {
5639 		spa_vdev_state_enter(spa, SCL_NONE);
5640 		spa_async_remove(spa, spa->spa_root_vdev);
5641 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5642 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5643 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5644 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5645 		(void) spa_vdev_state_exit(spa, NULL, 0);
5646 	}
5647 
5648 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5649 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5650 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5651 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5652 	}
5653 
5654 	/*
5655 	 * See if any devices need to be probed.
5656 	 */
5657 	if (tasks & SPA_ASYNC_PROBE) {
5658 		spa_vdev_state_enter(spa, SCL_NONE);
5659 		spa_async_probe(spa, spa->spa_root_vdev);
5660 		(void) spa_vdev_state_exit(spa, NULL, 0);
5661 	}
5662 
5663 	/*
5664 	 * If any devices are done replacing, detach them.
5665 	 */
5666 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5667 		spa_vdev_resilver_done(spa);
5668 
5669 	/*
5670 	 * Kick off a resilver.
5671 	 */
5672 	if (tasks & SPA_ASYNC_RESILVER)
5673 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5674 
5675 	/*
5676 	 * Let the world know that we're done.
5677 	 */
5678 	mutex_enter(&spa->spa_async_lock);
5679 	spa->spa_async_thread = NULL;
5680 	cv_broadcast(&spa->spa_async_cv);
5681 	mutex_exit(&spa->spa_async_lock);
5682 	thread_exit();
5683 }
5684 
5685 void
5686 spa_async_suspend(spa_t *spa)
5687 {
5688 	mutex_enter(&spa->spa_async_lock);
5689 	spa->spa_async_suspended++;
5690 	while (spa->spa_async_thread != NULL)
5691 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5692 	mutex_exit(&spa->spa_async_lock);
5693 }
5694 
5695 void
5696 spa_async_resume(spa_t *spa)
5697 {
5698 	mutex_enter(&spa->spa_async_lock);
5699 	ASSERT(spa->spa_async_suspended != 0);
5700 	spa->spa_async_suspended--;
5701 	mutex_exit(&spa->spa_async_lock);
5702 }
5703 
5704 static boolean_t
5705 spa_async_tasks_pending(spa_t *spa)
5706 {
5707 	uint_t non_config_tasks;
5708 	uint_t config_task;
5709 	boolean_t config_task_suspended;
5710 
5711 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5712 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5713 	if (spa->spa_ccw_fail_time == 0) {
5714 		config_task_suspended = B_FALSE;
5715 	} else {
5716 		config_task_suspended =
5717 		    (gethrtime() - spa->spa_ccw_fail_time) <
5718 		    (zfs_ccw_retry_interval * NANOSEC);
5719 	}
5720 
5721 	return (non_config_tasks || (config_task && !config_task_suspended));
5722 }
5723 
5724 static void
5725 spa_async_dispatch(spa_t *spa)
5726 {
5727 	mutex_enter(&spa->spa_async_lock);
5728 	if (spa_async_tasks_pending(spa) &&
5729 	    !spa->spa_async_suspended &&
5730 	    spa->spa_async_thread == NULL &&
5731 	    rootdir != NULL)
5732 		spa->spa_async_thread = thread_create(NULL, 0,
5733 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5734 	mutex_exit(&spa->spa_async_lock);
5735 }
5736 
5737 void
5738 spa_async_request(spa_t *spa, int task)
5739 {
5740 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5741 	mutex_enter(&spa->spa_async_lock);
5742 	spa->spa_async_tasks |= task;
5743 	mutex_exit(&spa->spa_async_lock);
5744 }
5745 
5746 /*
5747  * ==========================================================================
5748  * SPA syncing routines
5749  * ==========================================================================
5750  */
5751 
5752 static int
5753 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5754 {
5755 	bpobj_t *bpo = arg;
5756 	bpobj_enqueue(bpo, bp, tx);
5757 	return (0);
5758 }
5759 
5760 static int
5761 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5762 {
5763 	zio_t *zio = arg;
5764 
5765 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5766 	    zio->io_flags));
5767 	return (0);
5768 }
5769 
5770 /*
5771  * Note: this simple function is not inlined to make it easier to dtrace the
5772  * amount of time spent syncing frees.
5773  */
5774 static void
5775 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5776 {
5777 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5778 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5779 	VERIFY(zio_wait(zio) == 0);
5780 }
5781 
5782 /*
5783  * Note: this simple function is not inlined to make it easier to dtrace the
5784  * amount of time spent syncing deferred frees.
5785  */
5786 static void
5787 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5788 {
5789 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5790 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5791 	    spa_free_sync_cb, zio, tx), ==, 0);
5792 	VERIFY0(zio_wait(zio));
5793 }
5794 
5795 
5796 static void
5797 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5798 {
5799 	char *packed = NULL;
5800 	size_t bufsize;
5801 	size_t nvsize = 0;
5802 	dmu_buf_t *db;
5803 
5804 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5805 
5806 	/*
5807 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5808 	 * information.  This avoids the dmu_buf_will_dirty() path and
5809 	 * saves us a pre-read to get data we don't actually care about.
5810 	 */
5811 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5812 	packed = kmem_alloc(bufsize, KM_SLEEP);
5813 
5814 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5815 	    KM_SLEEP) == 0);
5816 	bzero(packed + nvsize, bufsize - nvsize);
5817 
5818 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5819 
5820 	kmem_free(packed, bufsize);
5821 
5822 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5823 	dmu_buf_will_dirty(db, tx);
5824 	*(uint64_t *)db->db_data = nvsize;
5825 	dmu_buf_rele(db, FTAG);
5826 }
5827 
5828 static void
5829 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5830     const char *config, const char *entry)
5831 {
5832 	nvlist_t *nvroot;
5833 	nvlist_t **list;
5834 	int i;
5835 
5836 	if (!sav->sav_sync)
5837 		return;
5838 
5839 	/*
5840 	 * Update the MOS nvlist describing the list of available devices.
5841 	 * spa_validate_aux() will have already made sure this nvlist is
5842 	 * valid and the vdevs are labeled appropriately.
5843 	 */
5844 	if (sav->sav_object == 0) {
5845 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5846 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5847 		    sizeof (uint64_t), tx);
5848 		VERIFY(zap_update(spa->spa_meta_objset,
5849 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5850 		    &sav->sav_object, tx) == 0);
5851 	}
5852 
5853 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5854 	if (sav->sav_count == 0) {
5855 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5856 	} else {
5857 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5858 		for (i = 0; i < sav->sav_count; i++)
5859 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5860 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5861 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5862 		    sav->sav_count) == 0);
5863 		for (i = 0; i < sav->sav_count; i++)
5864 			nvlist_free(list[i]);
5865 		kmem_free(list, sav->sav_count * sizeof (void *));
5866 	}
5867 
5868 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5869 	nvlist_free(nvroot);
5870 
5871 	sav->sav_sync = B_FALSE;
5872 }
5873 
5874 static void
5875 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5876 {
5877 	nvlist_t *config;
5878 
5879 	if (list_is_empty(&spa->spa_config_dirty_list))
5880 		return;
5881 
5882 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5883 
5884 	config = spa_config_generate(spa, spa->spa_root_vdev,
5885 	    dmu_tx_get_txg(tx), B_FALSE);
5886 
5887 	/*
5888 	 * If we're upgrading the spa version then make sure that
5889 	 * the config object gets updated with the correct version.
5890 	 */
5891 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5892 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5893 		    spa->spa_uberblock.ub_version);
5894 
5895 	spa_config_exit(spa, SCL_STATE, FTAG);
5896 
5897 	if (spa->spa_config_syncing)
5898 		nvlist_free(spa->spa_config_syncing);
5899 	spa->spa_config_syncing = config;
5900 
5901 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5902 }
5903 
5904 static void
5905 spa_sync_version(void *arg, dmu_tx_t *tx)
5906 {
5907 	uint64_t *versionp = arg;
5908 	uint64_t version = *versionp;
5909 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5910 
5911 	/*
5912 	 * Setting the version is special cased when first creating the pool.
5913 	 */
5914 	ASSERT(tx->tx_txg != TXG_INITIAL);
5915 
5916 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5917 	ASSERT(version >= spa_version(spa));
5918 
5919 	spa->spa_uberblock.ub_version = version;
5920 	vdev_config_dirty(spa->spa_root_vdev);
5921 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5922 }
5923 
5924 /*
5925  * Set zpool properties.
5926  */
5927 static void
5928 spa_sync_props(void *arg, dmu_tx_t *tx)
5929 {
5930 	nvlist_t *nvp = arg;
5931 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5932 	objset_t *mos = spa->spa_meta_objset;
5933 	nvpair_t *elem = NULL;
5934 
5935 	mutex_enter(&spa->spa_props_lock);
5936 
5937 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5938 		uint64_t intval;
5939 		char *strval, *fname;
5940 		zpool_prop_t prop;
5941 		const char *propname;
5942 		zprop_type_t proptype;
5943 		spa_feature_t fid;
5944 
5945 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5946 		case ZPROP_INVAL:
5947 			/*
5948 			 * We checked this earlier in spa_prop_validate().
5949 			 */
5950 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5951 
5952 			fname = strchr(nvpair_name(elem), '@') + 1;
5953 			VERIFY0(zfeature_lookup_name(fname, &fid));
5954 
5955 			spa_feature_enable(spa, fid, tx);
5956 			spa_history_log_internal(spa, "set", tx,
5957 			    "%s=enabled", nvpair_name(elem));
5958 			break;
5959 
5960 		case ZPOOL_PROP_VERSION:
5961 			intval = fnvpair_value_uint64(elem);
5962 			/*
5963 			 * The version is synced seperatly before other
5964 			 * properties and should be correct by now.
5965 			 */
5966 			ASSERT3U(spa_version(spa), >=, intval);
5967 			break;
5968 
5969 		case ZPOOL_PROP_ALTROOT:
5970 			/*
5971 			 * 'altroot' is a non-persistent property. It should
5972 			 * have been set temporarily at creation or import time.
5973 			 */
5974 			ASSERT(spa->spa_root != NULL);
5975 			break;
5976 
5977 		case ZPOOL_PROP_READONLY:
5978 		case ZPOOL_PROP_CACHEFILE:
5979 			/*
5980 			 * 'readonly' and 'cachefile' are also non-persisitent
5981 			 * properties.
5982 			 */
5983 			break;
5984 		case ZPOOL_PROP_COMMENT:
5985 			strval = fnvpair_value_string(elem);
5986 			if (spa->spa_comment != NULL)
5987 				spa_strfree(spa->spa_comment);
5988 			spa->spa_comment = spa_strdup(strval);
5989 			/*
5990 			 * We need to dirty the configuration on all the vdevs
5991 			 * so that their labels get updated.  It's unnecessary
5992 			 * to do this for pool creation since the vdev's
5993 			 * configuratoin has already been dirtied.
5994 			 */
5995 			if (tx->tx_txg != TXG_INITIAL)
5996 				vdev_config_dirty(spa->spa_root_vdev);
5997 			spa_history_log_internal(spa, "set", tx,
5998 			    "%s=%s", nvpair_name(elem), strval);
5999 			break;
6000 		default:
6001 			/*
6002 			 * Set pool property values in the poolprops mos object.
6003 			 */
6004 			if (spa->spa_pool_props_object == 0) {
6005 				spa->spa_pool_props_object =
6006 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6007 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6008 				    tx);
6009 			}
6010 
6011 			/* normalize the property name */
6012 			propname = zpool_prop_to_name(prop);
6013 			proptype = zpool_prop_get_type(prop);
6014 
6015 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6016 				ASSERT(proptype == PROP_TYPE_STRING);
6017 				strval = fnvpair_value_string(elem);
6018 				VERIFY0(zap_update(mos,
6019 				    spa->spa_pool_props_object, propname,
6020 				    1, strlen(strval) + 1, strval, tx));
6021 				spa_history_log_internal(spa, "set", tx,
6022 				    "%s=%s", nvpair_name(elem), strval);
6023 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6024 				intval = fnvpair_value_uint64(elem);
6025 
6026 				if (proptype == PROP_TYPE_INDEX) {
6027 					const char *unused;
6028 					VERIFY0(zpool_prop_index_to_string(
6029 					    prop, intval, &unused));
6030 				}
6031 				VERIFY0(zap_update(mos,
6032 				    spa->spa_pool_props_object, propname,
6033 				    8, 1, &intval, tx));
6034 				spa_history_log_internal(spa, "set", tx,
6035 				    "%s=%lld", nvpair_name(elem), intval);
6036 			} else {
6037 				ASSERT(0); /* not allowed */
6038 			}
6039 
6040 			switch (prop) {
6041 			case ZPOOL_PROP_DELEGATION:
6042 				spa->spa_delegation = intval;
6043 				break;
6044 			case ZPOOL_PROP_BOOTFS:
6045 				spa->spa_bootfs = intval;
6046 				break;
6047 			case ZPOOL_PROP_FAILUREMODE:
6048 				spa->spa_failmode = intval;
6049 				break;
6050 			case ZPOOL_PROP_AUTOEXPAND:
6051 				spa->spa_autoexpand = intval;
6052 				if (tx->tx_txg != TXG_INITIAL)
6053 					spa_async_request(spa,
6054 					    SPA_ASYNC_AUTOEXPAND);
6055 				break;
6056 			case ZPOOL_PROP_DEDUPDITTO:
6057 				spa->spa_dedup_ditto = intval;
6058 				break;
6059 			default:
6060 				break;
6061 			}
6062 		}
6063 
6064 	}
6065 
6066 	mutex_exit(&spa->spa_props_lock);
6067 }
6068 
6069 /*
6070  * Perform one-time upgrade on-disk changes.  spa_version() does not
6071  * reflect the new version this txg, so there must be no changes this
6072  * txg to anything that the upgrade code depends on after it executes.
6073  * Therefore this must be called after dsl_pool_sync() does the sync
6074  * tasks.
6075  */
6076 static void
6077 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6078 {
6079 	dsl_pool_t *dp = spa->spa_dsl_pool;
6080 
6081 	ASSERT(spa->spa_sync_pass == 1);
6082 
6083 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6084 
6085 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6086 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6087 		dsl_pool_create_origin(dp, tx);
6088 
6089 		/* Keeping the origin open increases spa_minref */
6090 		spa->spa_minref += 3;
6091 	}
6092 
6093 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6094 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6095 		dsl_pool_upgrade_clones(dp, tx);
6096 	}
6097 
6098 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6099 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6100 		dsl_pool_upgrade_dir_clones(dp, tx);
6101 
6102 		/* Keeping the freedir open increases spa_minref */
6103 		spa->spa_minref += 3;
6104 	}
6105 
6106 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6107 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6108 		spa_feature_create_zap_objects(spa, tx);
6109 	}
6110 
6111 	/*
6112 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6113 	 * when possibility to use lz4 compression for metadata was added
6114 	 * Old pools that have this feature enabled must be upgraded to have
6115 	 * this feature active
6116 	 */
6117 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6118 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6119 		    SPA_FEATURE_LZ4_COMPRESS);
6120 		boolean_t lz4_ac = spa_feature_is_active(spa,
6121 		    SPA_FEATURE_LZ4_COMPRESS);
6122 
6123 		if (lz4_en && !lz4_ac)
6124 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6125 	}
6126 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6127 }
6128 
6129 /*
6130  * Sync the specified transaction group.  New blocks may be dirtied as
6131  * part of the process, so we iterate until it converges.
6132  */
6133 void
6134 spa_sync(spa_t *spa, uint64_t txg)
6135 {
6136 	dsl_pool_t *dp = spa->spa_dsl_pool;
6137 	objset_t *mos = spa->spa_meta_objset;
6138 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6139 	vdev_t *rvd = spa->spa_root_vdev;
6140 	vdev_t *vd;
6141 	dmu_tx_t *tx;
6142 	int error;
6143 
6144 	VERIFY(spa_writeable(spa));
6145 
6146 	/*
6147 	 * Lock out configuration changes.
6148 	 */
6149 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6150 
6151 	spa->spa_syncing_txg = txg;
6152 	spa->spa_sync_pass = 0;
6153 
6154 	/*
6155 	 * If there are any pending vdev state changes, convert them
6156 	 * into config changes that go out with this transaction group.
6157 	 */
6158 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6159 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6160 		/*
6161 		 * We need the write lock here because, for aux vdevs,
6162 		 * calling vdev_config_dirty() modifies sav_config.
6163 		 * This is ugly and will become unnecessary when we
6164 		 * eliminate the aux vdev wart by integrating all vdevs
6165 		 * into the root vdev tree.
6166 		 */
6167 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6168 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6169 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6170 			vdev_state_clean(vd);
6171 			vdev_config_dirty(vd);
6172 		}
6173 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6174 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6175 	}
6176 	spa_config_exit(spa, SCL_STATE, FTAG);
6177 
6178 	tx = dmu_tx_create_assigned(dp, txg);
6179 
6180 	spa->spa_sync_starttime = gethrtime();
6181 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6182 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6183 
6184 	/*
6185 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6186 	 * set spa_deflate if we have no raid-z vdevs.
6187 	 */
6188 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6189 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6190 		int i;
6191 
6192 		for (i = 0; i < rvd->vdev_children; i++) {
6193 			vd = rvd->vdev_child[i];
6194 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6195 				break;
6196 		}
6197 		if (i == rvd->vdev_children) {
6198 			spa->spa_deflate = TRUE;
6199 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6200 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6201 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6202 		}
6203 	}
6204 
6205 	/*
6206 	 * If anything has changed in this txg, or if someone is waiting
6207 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6208 	 * deferred frees from the previous txg.  If not, leave them
6209 	 * alone so that we don't generate work on an otherwise idle
6210 	 * system.
6211 	 */
6212 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6213 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6214 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6215 	    ((dsl_scan_active(dp->dp_scan) ||
6216 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6217 		spa_sync_deferred_frees(spa, tx);
6218 	}
6219 
6220 	/*
6221 	 * Iterate to convergence.
6222 	 */
6223 	do {
6224 		int pass = ++spa->spa_sync_pass;
6225 
6226 		spa_sync_config_object(spa, tx);
6227 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6228 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6229 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6230 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6231 		spa_errlog_sync(spa, txg);
6232 		dsl_pool_sync(dp, txg);
6233 
6234 		if (pass < zfs_sync_pass_deferred_free) {
6235 			spa_sync_frees(spa, free_bpl, tx);
6236 		} else {
6237 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6238 			    &spa->spa_deferred_bpobj, tx);
6239 		}
6240 
6241 		ddt_sync(spa, txg);
6242 		dsl_scan_sync(dp, tx);
6243 
6244 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6245 			vdev_sync(vd, txg);
6246 
6247 		if (pass == 1)
6248 			spa_sync_upgrades(spa, tx);
6249 
6250 	} while (dmu_objset_is_dirty(mos, txg));
6251 
6252 	/*
6253 	 * Rewrite the vdev configuration (which includes the uberblock)
6254 	 * to commit the transaction group.
6255 	 *
6256 	 * If there are no dirty vdevs, we sync the uberblock to a few
6257 	 * random top-level vdevs that are known to be visible in the
6258 	 * config cache (see spa_vdev_add() for a complete description).
6259 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6260 	 */
6261 	for (;;) {
6262 		/*
6263 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6264 		 * while we're attempting to write the vdev labels.
6265 		 */
6266 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6267 
6268 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6269 			vdev_t *svd[SPA_DVAS_PER_BP];
6270 			int svdcount = 0;
6271 			int children = rvd->vdev_children;
6272 			int c0 = spa_get_random(children);
6273 
6274 			for (int c = 0; c < children; c++) {
6275 				vd = rvd->vdev_child[(c0 + c) % children];
6276 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6277 					continue;
6278 				svd[svdcount++] = vd;
6279 				if (svdcount == SPA_DVAS_PER_BP)
6280 					break;
6281 			}
6282 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6283 			if (error != 0)
6284 				error = vdev_config_sync(svd, svdcount, txg,
6285 				    B_TRUE);
6286 		} else {
6287 			error = vdev_config_sync(rvd->vdev_child,
6288 			    rvd->vdev_children, txg, B_FALSE);
6289 			if (error != 0)
6290 				error = vdev_config_sync(rvd->vdev_child,
6291 				    rvd->vdev_children, txg, B_TRUE);
6292 		}
6293 
6294 		if (error == 0)
6295 			spa->spa_last_synced_guid = rvd->vdev_guid;
6296 
6297 		spa_config_exit(spa, SCL_STATE, FTAG);
6298 
6299 		if (error == 0)
6300 			break;
6301 		zio_suspend(spa, NULL);
6302 		zio_resume_wait(spa);
6303 	}
6304 	dmu_tx_commit(tx);
6305 
6306 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6307 
6308 	/*
6309 	 * Clear the dirty config list.
6310 	 */
6311 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6312 		vdev_config_clean(vd);
6313 
6314 	/*
6315 	 * Now that the new config has synced transactionally,
6316 	 * let it become visible to the config cache.
6317 	 */
6318 	if (spa->spa_config_syncing != NULL) {
6319 		spa_config_set(spa, spa->spa_config_syncing);
6320 		spa->spa_config_txg = txg;
6321 		spa->spa_config_syncing = NULL;
6322 	}
6323 
6324 	spa->spa_ubsync = spa->spa_uberblock;
6325 
6326 	dsl_pool_sync_done(dp, txg);
6327 
6328 	/*
6329 	 * Update usable space statistics.
6330 	 */
6331 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6332 		vdev_sync_done(vd, txg);
6333 
6334 	spa_update_dspace(spa);
6335 
6336 	/*
6337 	 * It had better be the case that we didn't dirty anything
6338 	 * since vdev_config_sync().
6339 	 */
6340 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6341 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6342 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6343 
6344 	spa->spa_sync_pass = 0;
6345 
6346 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6347 
6348 	spa_handle_ignored_writes(spa);
6349 
6350 	/*
6351 	 * If any async tasks have been requested, kick them off.
6352 	 */
6353 	spa_async_dispatch(spa);
6354 }
6355 
6356 /*
6357  * Sync all pools.  We don't want to hold the namespace lock across these
6358  * operations, so we take a reference on the spa_t and drop the lock during the
6359  * sync.
6360  */
6361 void
6362 spa_sync_allpools(void)
6363 {
6364 	spa_t *spa = NULL;
6365 	mutex_enter(&spa_namespace_lock);
6366 	while ((spa = spa_next(spa)) != NULL) {
6367 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6368 		    !spa_writeable(spa) || spa_suspended(spa))
6369 			continue;
6370 		spa_open_ref(spa, FTAG);
6371 		mutex_exit(&spa_namespace_lock);
6372 		txg_wait_synced(spa_get_dsl(spa), 0);
6373 		mutex_enter(&spa_namespace_lock);
6374 		spa_close(spa, FTAG);
6375 	}
6376 	mutex_exit(&spa_namespace_lock);
6377 }
6378 
6379 /*
6380  * ==========================================================================
6381  * Miscellaneous routines
6382  * ==========================================================================
6383  */
6384 
6385 /*
6386  * Remove all pools in the system.
6387  */
6388 void
6389 spa_evict_all(void)
6390 {
6391 	spa_t *spa;
6392 
6393 	/*
6394 	 * Remove all cached state.  All pools should be closed now,
6395 	 * so every spa in the AVL tree should be unreferenced.
6396 	 */
6397 	mutex_enter(&spa_namespace_lock);
6398 	while ((spa = spa_next(NULL)) != NULL) {
6399 		/*
6400 		 * Stop async tasks.  The async thread may need to detach
6401 		 * a device that's been replaced, which requires grabbing
6402 		 * spa_namespace_lock, so we must drop it here.
6403 		 */
6404 		spa_open_ref(spa, FTAG);
6405 		mutex_exit(&spa_namespace_lock);
6406 		spa_async_suspend(spa);
6407 		mutex_enter(&spa_namespace_lock);
6408 		spa_close(spa, FTAG);
6409 
6410 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6411 			spa_unload(spa);
6412 			spa_deactivate(spa);
6413 		}
6414 		spa_remove(spa);
6415 	}
6416 	mutex_exit(&spa_namespace_lock);
6417 }
6418 
6419 vdev_t *
6420 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6421 {
6422 	vdev_t *vd;
6423 	int i;
6424 
6425 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6426 		return (vd);
6427 
6428 	if (aux) {
6429 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6430 			vd = spa->spa_l2cache.sav_vdevs[i];
6431 			if (vd->vdev_guid == guid)
6432 				return (vd);
6433 		}
6434 
6435 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6436 			vd = spa->spa_spares.sav_vdevs[i];
6437 			if (vd->vdev_guid == guid)
6438 				return (vd);
6439 		}
6440 	}
6441 
6442 	return (NULL);
6443 }
6444 
6445 void
6446 spa_upgrade(spa_t *spa, uint64_t version)
6447 {
6448 	ASSERT(spa_writeable(spa));
6449 
6450 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6451 
6452 	/*
6453 	 * This should only be called for a non-faulted pool, and since a
6454 	 * future version would result in an unopenable pool, this shouldn't be
6455 	 * possible.
6456 	 */
6457 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6458 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6459 
6460 	spa->spa_uberblock.ub_version = version;
6461 	vdev_config_dirty(spa->spa_root_vdev);
6462 
6463 	spa_config_exit(spa, SCL_ALL, FTAG);
6464 
6465 	txg_wait_synced(spa_get_dsl(spa), 0);
6466 }
6467 
6468 boolean_t
6469 spa_has_spare(spa_t *spa, uint64_t guid)
6470 {
6471 	int i;
6472 	uint64_t spareguid;
6473 	spa_aux_vdev_t *sav = &spa->spa_spares;
6474 
6475 	for (i = 0; i < sav->sav_count; i++)
6476 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6477 			return (B_TRUE);
6478 
6479 	for (i = 0; i < sav->sav_npending; i++) {
6480 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6481 		    &spareguid) == 0 && spareguid == guid)
6482 			return (B_TRUE);
6483 	}
6484 
6485 	return (B_FALSE);
6486 }
6487 
6488 /*
6489  * Check if a pool has an active shared spare device.
6490  * Note: reference count of an active spare is 2, as a spare and as a replace
6491  */
6492 static boolean_t
6493 spa_has_active_shared_spare(spa_t *spa)
6494 {
6495 	int i, refcnt;
6496 	uint64_t pool;
6497 	spa_aux_vdev_t *sav = &spa->spa_spares;
6498 
6499 	for (i = 0; i < sav->sav_count; i++) {
6500 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6501 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6502 		    refcnt > 2)
6503 			return (B_TRUE);
6504 	}
6505 
6506 	return (B_FALSE);
6507 }
6508 
6509 /*
6510  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6511  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6512  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6513  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6514  * or zdb as real changes.
6515  */
6516 void
6517 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6518 {
6519 #ifdef _KERNEL
6520 	sysevent_t		*ev;
6521 	sysevent_attr_list_t	*attr = NULL;
6522 	sysevent_value_t	value;
6523 	sysevent_id_t		eid;
6524 
6525 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6526 	    SE_SLEEP);
6527 
6528 	value.value_type = SE_DATA_TYPE_STRING;
6529 	value.value.sv_string = spa_name(spa);
6530 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6531 		goto done;
6532 
6533 	value.value_type = SE_DATA_TYPE_UINT64;
6534 	value.value.sv_uint64 = spa_guid(spa);
6535 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6536 		goto done;
6537 
6538 	if (vd) {
6539 		value.value_type = SE_DATA_TYPE_UINT64;
6540 		value.value.sv_uint64 = vd->vdev_guid;
6541 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6542 		    SE_SLEEP) != 0)
6543 			goto done;
6544 
6545 		if (vd->vdev_path) {
6546 			value.value_type = SE_DATA_TYPE_STRING;
6547 			value.value.sv_string = vd->vdev_path;
6548 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6549 			    &value, SE_SLEEP) != 0)
6550 				goto done;
6551 		}
6552 	}
6553 
6554 	if (sysevent_attach_attributes(ev, attr) != 0)
6555 		goto done;
6556 	attr = NULL;
6557 
6558 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6559 
6560 done:
6561 	if (attr)
6562 		sysevent_free_attr(attr);
6563 	sysevent_free(ev);
6564 #endif
6565 }
6566