xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 75eba5b6d79ed4d2ce3daf7b2806306b6b69a938)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size;
198 	uint64_t alloc;
199 	uint64_t space;
200 	uint64_t cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		space = 0;
216 		for (int c = 0; c < rvd->vdev_children; c++) {
217 			vdev_t *tvd = rvd->vdev_child[c];
218 			space += tvd->vdev_max_asize - tvd->vdev_asize;
219 		}
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 		    src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		dsl_dir_t *freedir = pool->dp_free_dir;
245 
246 		/*
247 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 		 * when opening pools before this version freedir will be NULL.
249 		 */
250 		if (freedir != NULL) {
251 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 			    freedir->dd_phys->dd_used_bytes, src);
253 		} else {
254 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 			    NULL, 0, src);
256 		}
257 	}
258 
259 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 
261 	if (spa->spa_comment != NULL) {
262 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 		    0, ZPROP_SRC_LOCAL);
264 	}
265 
266 	if (spa->spa_root != NULL)
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 		    0, ZPROP_SRC_LOCAL);
269 
270 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 		if (dp->scd_path == NULL) {
272 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 			    "none", 0, ZPROP_SRC_LOCAL);
274 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 		}
278 	}
279 }
280 
281 /*
282  * Get zpool property values.
283  */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 	objset_t *mos = spa->spa_meta_objset;
288 	zap_cursor_t zc;
289 	zap_attribute_t za;
290 	int err;
291 
292 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 
294 	mutex_enter(&spa->spa_props_lock);
295 
296 	/*
297 	 * Get properties from the spa config.
298 	 */
299 	spa_prop_get_config(spa, nvp);
300 
301 	/* If no pool property object, no more prop to get. */
302 	if (mos == NULL || spa->spa_pool_props_object == 0) {
303 		mutex_exit(&spa->spa_props_lock);
304 		return (0);
305 	}
306 
307 	/*
308 	 * Get properties from the MOS pool property object.
309 	 */
310 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 	    zap_cursor_advance(&zc)) {
313 		uint64_t intval = 0;
314 		char *strval = NULL;
315 		zprop_source_t src = ZPROP_SRC_DEFAULT;
316 		zpool_prop_t prop;
317 
318 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 			continue;
320 
321 		switch (za.za_integer_length) {
322 		case 8:
323 			/* integer property */
324 			if (za.za_first_integer !=
325 			    zpool_prop_default_numeric(prop))
326 				src = ZPROP_SRC_LOCAL;
327 
328 			if (prop == ZPOOL_PROP_BOOTFS) {
329 				dsl_pool_t *dp;
330 				dsl_dataset_t *ds = NULL;
331 
332 				dp = spa_get_dsl(spa);
333 				dsl_pool_config_enter(dp, FTAG);
334 				if (err = dsl_dataset_hold_obj(dp,
335 				    za.za_first_integer, FTAG, &ds)) {
336 					dsl_pool_config_exit(dp, FTAG);
337 					break;
338 				}
339 
340 				strval = kmem_alloc(
341 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 				    KM_SLEEP);
343 				dsl_dataset_name(ds, strval);
344 				dsl_dataset_rele(ds, FTAG);
345 				dsl_pool_config_exit(dp, FTAG);
346 			} else {
347 				strval = NULL;
348 				intval = za.za_first_integer;
349 			}
350 
351 			spa_prop_add_list(*nvp, prop, strval, intval, src);
352 
353 			if (strval != NULL)
354 				kmem_free(strval,
355 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 
357 			break;
358 
359 		case 1:
360 			/* string property */
361 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 			err = zap_lookup(mos, spa->spa_pool_props_object,
363 			    za.za_name, 1, za.za_num_integers, strval);
364 			if (err) {
365 				kmem_free(strval, za.za_num_integers);
366 				break;
367 			}
368 			spa_prop_add_list(*nvp, prop, strval, 0, src);
369 			kmem_free(strval, za.za_num_integers);
370 			break;
371 
372 		default:
373 			break;
374 		}
375 	}
376 	zap_cursor_fini(&zc);
377 	mutex_exit(&spa->spa_props_lock);
378 out:
379 	if (err && err != ENOENT) {
380 		nvlist_free(*nvp);
381 		*nvp = NULL;
382 		return (err);
383 	}
384 
385 	return (0);
386 }
387 
388 /*
389  * Validate the given pool properties nvlist and modify the list
390  * for the property values to be set.
391  */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 	nvpair_t *elem;
396 	int error = 0, reset_bootfs = 0;
397 	uint64_t objnum = 0;
398 	boolean_t has_feature = B_FALSE;
399 
400 	elem = NULL;
401 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 		uint64_t intval;
403 		char *strval, *slash, *check, *fname;
404 		const char *propname = nvpair_name(elem);
405 		zpool_prop_t prop = zpool_name_to_prop(propname);
406 
407 		switch (prop) {
408 		case ZPROP_INVAL:
409 			if (!zpool_prop_feature(propname)) {
410 				error = SET_ERROR(EINVAL);
411 				break;
412 			}
413 
414 			/*
415 			 * Sanitize the input.
416 			 */
417 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 				error = SET_ERROR(EINVAL);
419 				break;
420 			}
421 
422 			if (nvpair_value_uint64(elem, &intval) != 0) {
423 				error = SET_ERROR(EINVAL);
424 				break;
425 			}
426 
427 			if (intval != 0) {
428 				error = SET_ERROR(EINVAL);
429 				break;
430 			}
431 
432 			fname = strchr(propname, '@') + 1;
433 			if (zfeature_lookup_name(fname, NULL) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			has_feature = B_TRUE;
439 			break;
440 
441 		case ZPOOL_PROP_VERSION:
442 			error = nvpair_value_uint64(elem, &intval);
443 			if (!error &&
444 			    (intval < spa_version(spa) ||
445 			    intval > SPA_VERSION_BEFORE_FEATURES ||
446 			    has_feature))
447 				error = SET_ERROR(EINVAL);
448 			break;
449 
450 		case ZPOOL_PROP_DELEGATION:
451 		case ZPOOL_PROP_AUTOREPLACE:
452 		case ZPOOL_PROP_LISTSNAPS:
453 		case ZPOOL_PROP_AUTOEXPAND:
454 			error = nvpair_value_uint64(elem, &intval);
455 			if (!error && intval > 1)
456 				error = SET_ERROR(EINVAL);
457 			break;
458 
459 		case ZPOOL_PROP_BOOTFS:
460 			/*
461 			 * If the pool version is less than SPA_VERSION_BOOTFS,
462 			 * or the pool is still being created (version == 0),
463 			 * the bootfs property cannot be set.
464 			 */
465 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 				error = SET_ERROR(ENOTSUP);
467 				break;
468 			}
469 
470 			/*
471 			 * Make sure the vdev config is bootable
472 			 */
473 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 				error = SET_ERROR(ENOTSUP);
475 				break;
476 			}
477 
478 			reset_bootfs = 1;
479 
480 			error = nvpair_value_string(elem, &strval);
481 
482 			if (!error) {
483 				objset_t *os;
484 				uint64_t compress;
485 
486 				if (strval == NULL || strval[0] == '\0') {
487 					objnum = zpool_prop_default_numeric(
488 					    ZPOOL_PROP_BOOTFS);
489 					break;
490 				}
491 
492 				if (error = dmu_objset_hold(strval, FTAG, &os))
493 					break;
494 
495 				/* Must be ZPL and not gzip compressed. */
496 
497 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 					error = SET_ERROR(ENOTSUP);
499 				} else if ((error =
500 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
501 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 				    &compress)) == 0 &&
503 				    !BOOTFS_COMPRESS_VALID(compress)) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else {
506 					objnum = dmu_objset_id(os);
507 				}
508 				dmu_objset_rele(os, FTAG);
509 			}
510 			break;
511 
512 		case ZPOOL_PROP_FAILUREMODE:
513 			error = nvpair_value_uint64(elem, &intval);
514 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 			    intval > ZIO_FAILURE_MODE_PANIC))
516 				error = SET_ERROR(EINVAL);
517 
518 			/*
519 			 * This is a special case which only occurs when
520 			 * the pool has completely failed. This allows
521 			 * the user to change the in-core failmode property
522 			 * without syncing it out to disk (I/Os might
523 			 * currently be blocked). We do this by returning
524 			 * EIO to the caller (spa_prop_set) to trick it
525 			 * into thinking we encountered a property validation
526 			 * error.
527 			 */
528 			if (!error && spa_suspended(spa)) {
529 				spa->spa_failmode = intval;
530 				error = SET_ERROR(EIO);
531 			}
532 			break;
533 
534 		case ZPOOL_PROP_CACHEFILE:
535 			if ((error = nvpair_value_string(elem, &strval)) != 0)
536 				break;
537 
538 			if (strval[0] == '\0')
539 				break;
540 
541 			if (strcmp(strval, "none") == 0)
542 				break;
543 
544 			if (strval[0] != '/') {
545 				error = SET_ERROR(EINVAL);
546 				break;
547 			}
548 
549 			slash = strrchr(strval, '/');
550 			ASSERT(slash != NULL);
551 
552 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 			    strcmp(slash, "/..") == 0)
554 				error = SET_ERROR(EINVAL);
555 			break;
556 
557 		case ZPOOL_PROP_COMMENT:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 			for (check = strval; *check != '\0'; check++) {
561 				/*
562 				 * The kernel doesn't have an easy isprint()
563 				 * check.  For this kernel check, we merely
564 				 * check ASCII apart from DEL.  Fix this if
565 				 * there is an easy-to-use kernel isprint().
566 				 */
567 				if (*check >= 0x7f) {
568 					error = SET_ERROR(EINVAL);
569 					break;
570 				}
571 				check++;
572 			}
573 			if (strlen(strval) > ZPROP_MAX_COMMENT)
574 				error = E2BIG;
575 			break;
576 
577 		case ZPOOL_PROP_DEDUPDITTO:
578 			if (spa_version(spa) < SPA_VERSION_DEDUP)
579 				error = SET_ERROR(ENOTSUP);
580 			else
581 				error = nvpair_value_uint64(elem, &intval);
582 			if (error == 0 &&
583 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 				error = SET_ERROR(EINVAL);
585 			break;
586 		}
587 
588 		if (error)
589 			break;
590 	}
591 
592 	if (!error && reset_bootfs) {
593 		error = nvlist_remove(props,
594 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 
596 		if (!error) {
597 			error = nvlist_add_uint64(props,
598 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 		}
600 	}
601 
602 	return (error);
603 }
604 
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 	char *cachefile;
609 	spa_config_dirent_t *dp;
610 
611 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 	    &cachefile) != 0)
613 		return;
614 
615 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 	    KM_SLEEP);
617 
618 	if (cachefile[0] == '\0')
619 		dp->scd_path = spa_strdup(spa_config_path);
620 	else if (strcmp(cachefile, "none") == 0)
621 		dp->scd_path = NULL;
622 	else
623 		dp->scd_path = spa_strdup(cachefile);
624 
625 	list_insert_head(&spa->spa_config_list, dp);
626 	if (need_sync)
627 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629 
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 	int error;
634 	nvpair_t *elem = NULL;
635 	boolean_t need_sync = B_FALSE;
636 
637 	if ((error = spa_prop_validate(spa, nvp)) != 0)
638 		return (error);
639 
640 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 
643 		if (prop == ZPOOL_PROP_CACHEFILE ||
644 		    prop == ZPOOL_PROP_ALTROOT ||
645 		    prop == ZPOOL_PROP_READONLY)
646 			continue;
647 
648 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 			uint64_t ver;
650 
651 			if (prop == ZPOOL_PROP_VERSION) {
652 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 			} else {
654 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 				ver = SPA_VERSION_FEATURES;
656 				need_sync = B_TRUE;
657 			}
658 
659 			/* Save time if the version is already set. */
660 			if (ver == spa_version(spa))
661 				continue;
662 
663 			/*
664 			 * In addition to the pool directory object, we might
665 			 * create the pool properties object, the features for
666 			 * read object, the features for write object, or the
667 			 * feature descriptions object.
668 			 */
669 			error = dsl_sync_task(spa->spa_name, NULL,
670 			    spa_sync_version, &ver, 6);
671 			if (error)
672 				return (error);
673 			continue;
674 		}
675 
676 		need_sync = B_TRUE;
677 		break;
678 	}
679 
680 	if (need_sync) {
681 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 		    nvp, 6));
683 	}
684 
685 	return (0);
686 }
687 
688 /*
689  * If the bootfs property value is dsobj, clear it.
690  */
691 void
692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 {
694 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 		VERIFY(zap_remove(spa->spa_meta_objset,
696 		    spa->spa_pool_props_object,
697 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 		spa->spa_bootfs = 0;
699 	}
700 }
701 
702 /*ARGSUSED*/
703 static int
704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 {
706 	uint64_t *newguid = arg;
707 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 	vdev_t *rvd = spa->spa_root_vdev;
709 	uint64_t vdev_state;
710 
711 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 	vdev_state = rvd->vdev_state;
713 	spa_config_exit(spa, SCL_STATE, FTAG);
714 
715 	if (vdev_state != VDEV_STATE_HEALTHY)
716 		return (SET_ERROR(ENXIO));
717 
718 	ASSERT3U(spa_guid(spa), !=, *newguid);
719 
720 	return (0);
721 }
722 
723 static void
724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 {
726 	uint64_t *newguid = arg;
727 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 	uint64_t oldguid;
729 	vdev_t *rvd = spa->spa_root_vdev;
730 
731 	oldguid = spa_guid(spa);
732 
733 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 	rvd->vdev_guid = *newguid;
735 	rvd->vdev_guid_sum += (*newguid - oldguid);
736 	vdev_config_dirty(rvd);
737 	spa_config_exit(spa, SCL_STATE, FTAG);
738 
739 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 	    oldguid, *newguid);
741 }
742 
743 /*
744  * Change the GUID for the pool.  This is done so that we can later
745  * re-import a pool built from a clone of our own vdevs.  We will modify
746  * the root vdev's guid, our own pool guid, and then mark all of our
747  * vdevs dirty.  Note that we must make sure that all our vdevs are
748  * online when we do this, or else any vdevs that weren't present
749  * would be orphaned from our pool.  We are also going to issue a
750  * sysevent to update any watchers.
751  */
752 int
753 spa_change_guid(spa_t *spa)
754 {
755 	int error;
756 	uint64_t guid;
757 
758 	mutex_enter(&spa->spa_vdev_top_lock);
759 	mutex_enter(&spa_namespace_lock);
760 	guid = spa_generate_guid(NULL);
761 
762 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 	    spa_change_guid_sync, &guid, 5);
764 
765 	if (error == 0) {
766 		spa_config_sync(spa, B_FALSE, B_TRUE);
767 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 	}
769 
770 	mutex_exit(&spa_namespace_lock);
771 	mutex_exit(&spa->spa_vdev_top_lock);
772 
773 	return (error);
774 }
775 
776 /*
777  * ==========================================================================
778  * SPA state manipulation (open/create/destroy/import/export)
779  * ==========================================================================
780  */
781 
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 	int ret;
788 
789 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 	    sizeof (zbookmark_t));
791 
792 	if (ret < 0)
793 		return (-1);
794 	else if (ret > 0)
795 		return (1);
796 	else
797 		return (0);
798 }
799 
800 /*
801  * Utility function which retrieves copies of the current logs and
802  * re-initializes them in the process.
803  */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 
809 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 
812 	avl_create(&spa->spa_errlist_scrub,
813 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
814 	    offsetof(spa_error_entry_t, se_avl));
815 	avl_create(&spa->spa_errlist_last,
816 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
817 	    offsetof(spa_error_entry_t, se_avl));
818 }
819 
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 	enum zti_modes mode = ztip->zti_mode;
825 	uint_t value = ztip->zti_value;
826 	uint_t count = ztip->zti_count;
827 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 	char name[32];
829 	uint_t flags = 0;
830 	boolean_t batch = B_FALSE;
831 
832 	if (mode == ZTI_MODE_NULL) {
833 		tqs->stqs_count = 0;
834 		tqs->stqs_taskq = NULL;
835 		return;
836 	}
837 
838 	ASSERT3U(count, >, 0);
839 
840 	tqs->stqs_count = count;
841 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 
843 	switch (mode) {
844 	case ZTI_MODE_FIXED:
845 		ASSERT3U(value, >=, 1);
846 		value = MAX(value, 1);
847 		break;
848 
849 	case ZTI_MODE_BATCH:
850 		batch = B_TRUE;
851 		flags |= TASKQ_THREADS_CPU_PCT;
852 		value = zio_taskq_batch_pct;
853 		break;
854 
855 	default:
856 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 		    "spa_activate()",
858 		    zio_type_name[t], zio_taskq_types[q], mode, value);
859 		break;
860 	}
861 
862 	for (uint_t i = 0; i < count; i++) {
863 		taskq_t *tq;
864 
865 		if (count > 1) {
866 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
867 			    zio_type_name[t], zio_taskq_types[q], i);
868 		} else {
869 			(void) snprintf(name, sizeof (name), "%s_%s",
870 			    zio_type_name[t], zio_taskq_types[q]);
871 		}
872 
873 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 			if (batch)
875 				flags |= TASKQ_DC_BATCH;
876 
877 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 			    spa->spa_proc, zio_taskq_basedc, flags);
879 		} else {
880 			pri_t pri = maxclsyspri;
881 			/*
882 			 * The write issue taskq can be extremely CPU
883 			 * intensive.  Run it at slightly lower priority
884 			 * than the other taskqs.
885 			 */
886 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 				pri--;
888 
889 			tq = taskq_create_proc(name, value, pri, 50,
890 			    INT_MAX, spa->spa_proc, flags);
891 		}
892 
893 		tqs->stqs_taskq[i] = tq;
894 	}
895 }
896 
897 static void
898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 {
900 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901 
902 	if (tqs->stqs_taskq == NULL) {
903 		ASSERT0(tqs->stqs_count);
904 		return;
905 	}
906 
907 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 		taskq_destroy(tqs->stqs_taskq[i]);
910 	}
911 
912 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 	tqs->stqs_taskq = NULL;
914 }
915 
916 /*
917  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918  * Note that a type may have multiple discrete taskqs to avoid lock contention
919  * on the taskq itself. In that case we choose which taskq at random by using
920  * the low bits of gethrtime().
921  */
922 void
923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 {
926 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 	taskq_t *tq;
928 
929 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 	ASSERT3U(tqs->stqs_count, !=, 0);
931 
932 	if (tqs->stqs_count == 1) {
933 		tq = tqs->stqs_taskq[0];
934 	} else {
935 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 	}
937 
938 	taskq_dispatch_ent(tq, func, arg, flags, ent);
939 }
940 
941 static void
942 spa_create_zio_taskqs(spa_t *spa)
943 {
944 	for (int t = 0; t < ZIO_TYPES; t++) {
945 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 			spa_taskqs_init(spa, t, q);
947 		}
948 	}
949 }
950 
951 #ifdef _KERNEL
952 static void
953 spa_thread(void *arg)
954 {
955 	callb_cpr_t cprinfo;
956 
957 	spa_t *spa = arg;
958 	user_t *pu = PTOU(curproc);
959 
960 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 	    spa->spa_name);
962 
963 	ASSERT(curproc != &p0);
964 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 	    "zpool-%s", spa->spa_name);
966 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967 
968 	/* bind this thread to the requested psrset */
969 	if (zio_taskq_psrset_bind != PS_NONE) {
970 		pool_lock();
971 		mutex_enter(&cpu_lock);
972 		mutex_enter(&pidlock);
973 		mutex_enter(&curproc->p_lock);
974 
975 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 		    0, NULL, NULL) == 0)  {
977 			curthread->t_bind_pset = zio_taskq_psrset_bind;
978 		} else {
979 			cmn_err(CE_WARN,
980 			    "Couldn't bind process for zfs pool \"%s\" to "
981 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 		}
983 
984 		mutex_exit(&curproc->p_lock);
985 		mutex_exit(&pidlock);
986 		mutex_exit(&cpu_lock);
987 		pool_unlock();
988 	}
989 
990 	if (zio_taskq_sysdc) {
991 		sysdc_thread_enter(curthread, 100, 0);
992 	}
993 
994 	spa->spa_proc = curproc;
995 	spa->spa_did = curthread->t_did;
996 
997 	spa_create_zio_taskqs(spa);
998 
999 	mutex_enter(&spa->spa_proc_lock);
1000 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 
1002 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 	cv_broadcast(&spa->spa_proc_cv);
1004 
1005 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 
1010 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 	spa->spa_proc_state = SPA_PROC_GONE;
1012 	spa->spa_proc = &p0;
1013 	cv_broadcast(&spa->spa_proc_cv);
1014 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1015 
1016 	mutex_enter(&curproc->p_lock);
1017 	lwp_exit();
1018 }
1019 #endif
1020 
1021 /*
1022  * Activate an uninitialized pool.
1023  */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 
1029 	spa->spa_state = POOL_STATE_ACTIVE;
1030 	spa->spa_mode = mode;
1031 
1032 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 
1035 	/* Try to create a covering process */
1036 	mutex_enter(&spa->spa_proc_lock);
1037 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 	ASSERT(spa->spa_proc == &p0);
1039 	spa->spa_did = 0;
1040 
1041 	/* Only create a process if we're going to be around a while. */
1042 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 		    NULL, 0) == 0) {
1045 			spa->spa_proc_state = SPA_PROC_CREATED;
1046 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 				cv_wait(&spa->spa_proc_cv,
1048 				    &spa->spa_proc_lock);
1049 			}
1050 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 			ASSERT(spa->spa_proc != &p0);
1052 			ASSERT(spa->spa_did != 0);
1053 		} else {
1054 #ifdef _KERNEL
1055 			cmn_err(CE_WARN,
1056 			    "Couldn't create process for zfs pool \"%s\"\n",
1057 			    spa->spa_name);
1058 #endif
1059 		}
1060 	}
1061 	mutex_exit(&spa->spa_proc_lock);
1062 
1063 	/* If we didn't create a process, we need to create our taskqs. */
1064 	if (spa->spa_proc == &p0) {
1065 		spa_create_zio_taskqs(spa);
1066 	}
1067 
1068 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 	    offsetof(vdev_t, vdev_config_dirty_node));
1070 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 	    offsetof(vdev_t, vdev_state_dirty_node));
1072 
1073 	txg_list_create(&spa->spa_vdev_txg_list,
1074 	    offsetof(struct vdev, vdev_txg_node));
1075 
1076 	avl_create(&spa->spa_errlist_scrub,
1077 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 	    offsetof(spa_error_entry_t, se_avl));
1079 	avl_create(&spa->spa_errlist_last,
1080 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 	    offsetof(spa_error_entry_t, se_avl));
1082 }
1083 
1084 /*
1085  * Opposite of spa_activate().
1086  */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090 	ASSERT(spa->spa_sync_on == B_FALSE);
1091 	ASSERT(spa->spa_dsl_pool == NULL);
1092 	ASSERT(spa->spa_root_vdev == NULL);
1093 	ASSERT(spa->spa_async_zio_root == NULL);
1094 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 
1096 	txg_list_destroy(&spa->spa_vdev_txg_list);
1097 
1098 	list_destroy(&spa->spa_config_dirty_list);
1099 	list_destroy(&spa->spa_state_dirty_list);
1100 
1101 	for (int t = 0; t < ZIO_TYPES; t++) {
1102 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 			spa_taskqs_fini(spa, t, q);
1104 		}
1105 	}
1106 
1107 	metaslab_class_destroy(spa->spa_normal_class);
1108 	spa->spa_normal_class = NULL;
1109 
1110 	metaslab_class_destroy(spa->spa_log_class);
1111 	spa->spa_log_class = NULL;
1112 
1113 	/*
1114 	 * If this was part of an import or the open otherwise failed, we may
1115 	 * still have errors left in the queues.  Empty them just in case.
1116 	 */
1117 	spa_errlog_drain(spa);
1118 
1119 	avl_destroy(&spa->spa_errlist_scrub);
1120 	avl_destroy(&spa->spa_errlist_last);
1121 
1122 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 
1124 	mutex_enter(&spa->spa_proc_lock);
1125 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 		cv_broadcast(&spa->spa_proc_cv);
1129 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 			ASSERT(spa->spa_proc != &p0);
1131 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 		}
1133 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 		spa->spa_proc_state = SPA_PROC_NONE;
1135 	}
1136 	ASSERT(spa->spa_proc == &p0);
1137 	mutex_exit(&spa->spa_proc_lock);
1138 
1139 	/*
1140 	 * We want to make sure spa_thread() has actually exited the ZFS
1141 	 * module, so that the module can't be unloaded out from underneath
1142 	 * it.
1143 	 */
1144 	if (spa->spa_did != 0) {
1145 		thread_join(spa->spa_did);
1146 		spa->spa_did = 0;
1147 	}
1148 }
1149 
1150 /*
1151  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1152  * will create all the necessary vdevs in the appropriate layout, with each vdev
1153  * in the CLOSED state.  This will prep the pool before open/creation/import.
1154  * All vdev validation is done by the vdev_alloc() routine.
1155  */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158     uint_t id, int atype)
1159 {
1160 	nvlist_t **child;
1161 	uint_t children;
1162 	int error;
1163 
1164 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 		return (error);
1166 
1167 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 		return (0);
1169 
1170 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 	    &child, &children);
1172 
1173 	if (error == ENOENT)
1174 		return (0);
1175 
1176 	if (error) {
1177 		vdev_free(*vdp);
1178 		*vdp = NULL;
1179 		return (SET_ERROR(EINVAL));
1180 	}
1181 
1182 	for (int c = 0; c < children; c++) {
1183 		vdev_t *vd;
1184 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 		    atype)) != 0) {
1186 			vdev_free(*vdp);
1187 			*vdp = NULL;
1188 			return (error);
1189 		}
1190 	}
1191 
1192 	ASSERT(*vdp != NULL);
1193 
1194 	return (0);
1195 }
1196 
1197 /*
1198  * Opposite of spa_load().
1199  */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203 	int i;
1204 
1205 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 
1207 	/*
1208 	 * Stop async tasks.
1209 	 */
1210 	spa_async_suspend(spa);
1211 
1212 	/*
1213 	 * Stop syncing.
1214 	 */
1215 	if (spa->spa_sync_on) {
1216 		txg_sync_stop(spa->spa_dsl_pool);
1217 		spa->spa_sync_on = B_FALSE;
1218 	}
1219 
1220 	/*
1221 	 * Wait for any outstanding async I/O to complete.
1222 	 */
1223 	if (spa->spa_async_zio_root != NULL) {
1224 		(void) zio_wait(spa->spa_async_zio_root);
1225 		spa->spa_async_zio_root = NULL;
1226 	}
1227 
1228 	bpobj_close(&spa->spa_deferred_bpobj);
1229 
1230 	/*
1231 	 * Close the dsl pool.
1232 	 */
1233 	if (spa->spa_dsl_pool) {
1234 		dsl_pool_close(spa->spa_dsl_pool);
1235 		spa->spa_dsl_pool = NULL;
1236 		spa->spa_meta_objset = NULL;
1237 	}
1238 
1239 	ddt_unload(spa);
1240 
1241 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1242 
1243 	/*
1244 	 * Drop and purge level 2 cache
1245 	 */
1246 	spa_l2cache_drop(spa);
1247 
1248 	/*
1249 	 * Close all vdevs.
1250 	 */
1251 	if (spa->spa_root_vdev)
1252 		vdev_free(spa->spa_root_vdev);
1253 	ASSERT(spa->spa_root_vdev == NULL);
1254 
1255 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1256 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1257 	if (spa->spa_spares.sav_vdevs) {
1258 		kmem_free(spa->spa_spares.sav_vdevs,
1259 		    spa->spa_spares.sav_count * sizeof (void *));
1260 		spa->spa_spares.sav_vdevs = NULL;
1261 	}
1262 	if (spa->spa_spares.sav_config) {
1263 		nvlist_free(spa->spa_spares.sav_config);
1264 		spa->spa_spares.sav_config = NULL;
1265 	}
1266 	spa->spa_spares.sav_count = 0;
1267 
1268 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1269 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1270 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1271 	}
1272 	if (spa->spa_l2cache.sav_vdevs) {
1273 		kmem_free(spa->spa_l2cache.sav_vdevs,
1274 		    spa->spa_l2cache.sav_count * sizeof (void *));
1275 		spa->spa_l2cache.sav_vdevs = NULL;
1276 	}
1277 	if (spa->spa_l2cache.sav_config) {
1278 		nvlist_free(spa->spa_l2cache.sav_config);
1279 		spa->spa_l2cache.sav_config = NULL;
1280 	}
1281 	spa->spa_l2cache.sav_count = 0;
1282 
1283 	spa->spa_async_suspended = 0;
1284 
1285 	if (spa->spa_comment != NULL) {
1286 		spa_strfree(spa->spa_comment);
1287 		spa->spa_comment = NULL;
1288 	}
1289 
1290 	spa_config_exit(spa, SCL_ALL, FTAG);
1291 }
1292 
1293 /*
1294  * Load (or re-load) the current list of vdevs describing the active spares for
1295  * this pool.  When this is called, we have some form of basic information in
1296  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1297  * then re-generate a more complete list including status information.
1298  */
1299 static void
1300 spa_load_spares(spa_t *spa)
1301 {
1302 	nvlist_t **spares;
1303 	uint_t nspares;
1304 	int i;
1305 	vdev_t *vd, *tvd;
1306 
1307 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1308 
1309 	/*
1310 	 * First, close and free any existing spare vdevs.
1311 	 */
1312 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1313 		vd = spa->spa_spares.sav_vdevs[i];
1314 
1315 		/* Undo the call to spa_activate() below */
1316 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1317 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1318 			spa_spare_remove(tvd);
1319 		vdev_close(vd);
1320 		vdev_free(vd);
1321 	}
1322 
1323 	if (spa->spa_spares.sav_vdevs)
1324 		kmem_free(spa->spa_spares.sav_vdevs,
1325 		    spa->spa_spares.sav_count * sizeof (void *));
1326 
1327 	if (spa->spa_spares.sav_config == NULL)
1328 		nspares = 0;
1329 	else
1330 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1331 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1332 
1333 	spa->spa_spares.sav_count = (int)nspares;
1334 	spa->spa_spares.sav_vdevs = NULL;
1335 
1336 	if (nspares == 0)
1337 		return;
1338 
1339 	/*
1340 	 * Construct the array of vdevs, opening them to get status in the
1341 	 * process.   For each spare, there is potentially two different vdev_t
1342 	 * structures associated with it: one in the list of spares (used only
1343 	 * for basic validation purposes) and one in the active vdev
1344 	 * configuration (if it's spared in).  During this phase we open and
1345 	 * validate each vdev on the spare list.  If the vdev also exists in the
1346 	 * active configuration, then we also mark this vdev as an active spare.
1347 	 */
1348 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1349 	    KM_SLEEP);
1350 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1351 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1352 		    VDEV_ALLOC_SPARE) == 0);
1353 		ASSERT(vd != NULL);
1354 
1355 		spa->spa_spares.sav_vdevs[i] = vd;
1356 
1357 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1358 		    B_FALSE)) != NULL) {
1359 			if (!tvd->vdev_isspare)
1360 				spa_spare_add(tvd);
1361 
1362 			/*
1363 			 * We only mark the spare active if we were successfully
1364 			 * able to load the vdev.  Otherwise, importing a pool
1365 			 * with a bad active spare would result in strange
1366 			 * behavior, because multiple pool would think the spare
1367 			 * is actively in use.
1368 			 *
1369 			 * There is a vulnerability here to an equally bizarre
1370 			 * circumstance, where a dead active spare is later
1371 			 * brought back to life (onlined or otherwise).  Given
1372 			 * the rarity of this scenario, and the extra complexity
1373 			 * it adds, we ignore the possibility.
1374 			 */
1375 			if (!vdev_is_dead(tvd))
1376 				spa_spare_activate(tvd);
1377 		}
1378 
1379 		vd->vdev_top = vd;
1380 		vd->vdev_aux = &spa->spa_spares;
1381 
1382 		if (vdev_open(vd) != 0)
1383 			continue;
1384 
1385 		if (vdev_validate_aux(vd) == 0)
1386 			spa_spare_add(vd);
1387 	}
1388 
1389 	/*
1390 	 * Recompute the stashed list of spares, with status information
1391 	 * this time.
1392 	 */
1393 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1394 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1395 
1396 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1397 	    KM_SLEEP);
1398 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1399 		spares[i] = vdev_config_generate(spa,
1400 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1401 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1402 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1403 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1404 		nvlist_free(spares[i]);
1405 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1406 }
1407 
1408 /*
1409  * Load (or re-load) the current list of vdevs describing the active l2cache for
1410  * this pool.  When this is called, we have some form of basic information in
1411  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1412  * then re-generate a more complete list including status information.
1413  * Devices which are already active have their details maintained, and are
1414  * not re-opened.
1415  */
1416 static void
1417 spa_load_l2cache(spa_t *spa)
1418 {
1419 	nvlist_t **l2cache;
1420 	uint_t nl2cache;
1421 	int i, j, oldnvdevs;
1422 	uint64_t guid;
1423 	vdev_t *vd, **oldvdevs, **newvdevs;
1424 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1425 
1426 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1427 
1428 	if (sav->sav_config != NULL) {
1429 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1430 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1431 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1432 	} else {
1433 		nl2cache = 0;
1434 		newvdevs = NULL;
1435 	}
1436 
1437 	oldvdevs = sav->sav_vdevs;
1438 	oldnvdevs = sav->sav_count;
1439 	sav->sav_vdevs = NULL;
1440 	sav->sav_count = 0;
1441 
1442 	/*
1443 	 * Process new nvlist of vdevs.
1444 	 */
1445 	for (i = 0; i < nl2cache; i++) {
1446 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1447 		    &guid) == 0);
1448 
1449 		newvdevs[i] = NULL;
1450 		for (j = 0; j < oldnvdevs; j++) {
1451 			vd = oldvdevs[j];
1452 			if (vd != NULL && guid == vd->vdev_guid) {
1453 				/*
1454 				 * Retain previous vdev for add/remove ops.
1455 				 */
1456 				newvdevs[i] = vd;
1457 				oldvdevs[j] = NULL;
1458 				break;
1459 			}
1460 		}
1461 
1462 		if (newvdevs[i] == NULL) {
1463 			/*
1464 			 * Create new vdev
1465 			 */
1466 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1467 			    VDEV_ALLOC_L2CACHE) == 0);
1468 			ASSERT(vd != NULL);
1469 			newvdevs[i] = vd;
1470 
1471 			/*
1472 			 * Commit this vdev as an l2cache device,
1473 			 * even if it fails to open.
1474 			 */
1475 			spa_l2cache_add(vd);
1476 
1477 			vd->vdev_top = vd;
1478 			vd->vdev_aux = sav;
1479 
1480 			spa_l2cache_activate(vd);
1481 
1482 			if (vdev_open(vd) != 0)
1483 				continue;
1484 
1485 			(void) vdev_validate_aux(vd);
1486 
1487 			if (!vdev_is_dead(vd))
1488 				l2arc_add_vdev(spa, vd);
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * Purge vdevs that were dropped
1494 	 */
1495 	for (i = 0; i < oldnvdevs; i++) {
1496 		uint64_t pool;
1497 
1498 		vd = oldvdevs[i];
1499 		if (vd != NULL) {
1500 			ASSERT(vd->vdev_isl2cache);
1501 
1502 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1503 			    pool != 0ULL && l2arc_vdev_present(vd))
1504 				l2arc_remove_vdev(vd);
1505 			vdev_clear_stats(vd);
1506 			vdev_free(vd);
1507 		}
1508 	}
1509 
1510 	if (oldvdevs)
1511 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1512 
1513 	if (sav->sav_config == NULL)
1514 		goto out;
1515 
1516 	sav->sav_vdevs = newvdevs;
1517 	sav->sav_count = (int)nl2cache;
1518 
1519 	/*
1520 	 * Recompute the stashed list of l2cache devices, with status
1521 	 * information this time.
1522 	 */
1523 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1524 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1525 
1526 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1527 	for (i = 0; i < sav->sav_count; i++)
1528 		l2cache[i] = vdev_config_generate(spa,
1529 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1530 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1531 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1532 out:
1533 	for (i = 0; i < sav->sav_count; i++)
1534 		nvlist_free(l2cache[i]);
1535 	if (sav->sav_count)
1536 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1537 }
1538 
1539 static int
1540 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1541 {
1542 	dmu_buf_t *db;
1543 	char *packed = NULL;
1544 	size_t nvsize = 0;
1545 	int error;
1546 	*value = NULL;
1547 
1548 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1549 	nvsize = *(uint64_t *)db->db_data;
1550 	dmu_buf_rele(db, FTAG);
1551 
1552 	packed = kmem_alloc(nvsize, KM_SLEEP);
1553 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1554 	    DMU_READ_PREFETCH);
1555 	if (error == 0)
1556 		error = nvlist_unpack(packed, nvsize, value, 0);
1557 	kmem_free(packed, nvsize);
1558 
1559 	return (error);
1560 }
1561 
1562 /*
1563  * Checks to see if the given vdev could not be opened, in which case we post a
1564  * sysevent to notify the autoreplace code that the device has been removed.
1565  */
1566 static void
1567 spa_check_removed(vdev_t *vd)
1568 {
1569 	for (int c = 0; c < vd->vdev_children; c++)
1570 		spa_check_removed(vd->vdev_child[c]);
1571 
1572 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1573 	    !vd->vdev_ishole) {
1574 		zfs_post_autoreplace(vd->vdev_spa, vd);
1575 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1576 	}
1577 }
1578 
1579 /*
1580  * Validate the current config against the MOS config
1581  */
1582 static boolean_t
1583 spa_config_valid(spa_t *spa, nvlist_t *config)
1584 {
1585 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1586 	nvlist_t *nv;
1587 
1588 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1589 
1590 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1591 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1592 
1593 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1594 
1595 	/*
1596 	 * If we're doing a normal import, then build up any additional
1597 	 * diagnostic information about missing devices in this config.
1598 	 * We'll pass this up to the user for further processing.
1599 	 */
1600 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1601 		nvlist_t **child, *nv;
1602 		uint64_t idx = 0;
1603 
1604 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1605 		    KM_SLEEP);
1606 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1607 
1608 		for (int c = 0; c < rvd->vdev_children; c++) {
1609 			vdev_t *tvd = rvd->vdev_child[c];
1610 			vdev_t *mtvd  = mrvd->vdev_child[c];
1611 
1612 			if (tvd->vdev_ops == &vdev_missing_ops &&
1613 			    mtvd->vdev_ops != &vdev_missing_ops &&
1614 			    mtvd->vdev_islog)
1615 				child[idx++] = vdev_config_generate(spa, mtvd,
1616 				    B_FALSE, 0);
1617 		}
1618 
1619 		if (idx) {
1620 			VERIFY(nvlist_add_nvlist_array(nv,
1621 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1622 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1623 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1624 
1625 			for (int i = 0; i < idx; i++)
1626 				nvlist_free(child[i]);
1627 		}
1628 		nvlist_free(nv);
1629 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1630 	}
1631 
1632 	/*
1633 	 * Compare the root vdev tree with the information we have
1634 	 * from the MOS config (mrvd). Check each top-level vdev
1635 	 * with the corresponding MOS config top-level (mtvd).
1636 	 */
1637 	for (int c = 0; c < rvd->vdev_children; c++) {
1638 		vdev_t *tvd = rvd->vdev_child[c];
1639 		vdev_t *mtvd  = mrvd->vdev_child[c];
1640 
1641 		/*
1642 		 * Resolve any "missing" vdevs in the current configuration.
1643 		 * If we find that the MOS config has more accurate information
1644 		 * about the top-level vdev then use that vdev instead.
1645 		 */
1646 		if (tvd->vdev_ops == &vdev_missing_ops &&
1647 		    mtvd->vdev_ops != &vdev_missing_ops) {
1648 
1649 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1650 				continue;
1651 
1652 			/*
1653 			 * Device specific actions.
1654 			 */
1655 			if (mtvd->vdev_islog) {
1656 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1657 			} else {
1658 				/*
1659 				 * XXX - once we have 'readonly' pool
1660 				 * support we should be able to handle
1661 				 * missing data devices by transitioning
1662 				 * the pool to readonly.
1663 				 */
1664 				continue;
1665 			}
1666 
1667 			/*
1668 			 * Swap the missing vdev with the data we were
1669 			 * able to obtain from the MOS config.
1670 			 */
1671 			vdev_remove_child(rvd, tvd);
1672 			vdev_remove_child(mrvd, mtvd);
1673 
1674 			vdev_add_child(rvd, mtvd);
1675 			vdev_add_child(mrvd, tvd);
1676 
1677 			spa_config_exit(spa, SCL_ALL, FTAG);
1678 			vdev_load(mtvd);
1679 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680 
1681 			vdev_reopen(rvd);
1682 		} else if (mtvd->vdev_islog) {
1683 			/*
1684 			 * Load the slog device's state from the MOS config
1685 			 * since it's possible that the label does not
1686 			 * contain the most up-to-date information.
1687 			 */
1688 			vdev_load_log_state(tvd, mtvd);
1689 			vdev_reopen(tvd);
1690 		}
1691 	}
1692 	vdev_free(mrvd);
1693 	spa_config_exit(spa, SCL_ALL, FTAG);
1694 
1695 	/*
1696 	 * Ensure we were able to validate the config.
1697 	 */
1698 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1699 }
1700 
1701 /*
1702  * Check for missing log devices
1703  */
1704 static boolean_t
1705 spa_check_logs(spa_t *spa)
1706 {
1707 	boolean_t rv = B_FALSE;
1708 
1709 	switch (spa->spa_log_state) {
1710 	case SPA_LOG_MISSING:
1711 		/* need to recheck in case slog has been restored */
1712 	case SPA_LOG_UNKNOWN:
1713 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1714 		    NULL, DS_FIND_CHILDREN) != 0);
1715 		if (rv)
1716 			spa_set_log_state(spa, SPA_LOG_MISSING);
1717 		break;
1718 	}
1719 	return (rv);
1720 }
1721 
1722 static boolean_t
1723 spa_passivate_log(spa_t *spa)
1724 {
1725 	vdev_t *rvd = spa->spa_root_vdev;
1726 	boolean_t slog_found = B_FALSE;
1727 
1728 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1729 
1730 	if (!spa_has_slogs(spa))
1731 		return (B_FALSE);
1732 
1733 	for (int c = 0; c < rvd->vdev_children; c++) {
1734 		vdev_t *tvd = rvd->vdev_child[c];
1735 		metaslab_group_t *mg = tvd->vdev_mg;
1736 
1737 		if (tvd->vdev_islog) {
1738 			metaslab_group_passivate(mg);
1739 			slog_found = B_TRUE;
1740 		}
1741 	}
1742 
1743 	return (slog_found);
1744 }
1745 
1746 static void
1747 spa_activate_log(spa_t *spa)
1748 {
1749 	vdev_t *rvd = spa->spa_root_vdev;
1750 
1751 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1752 
1753 	for (int c = 0; c < rvd->vdev_children; c++) {
1754 		vdev_t *tvd = rvd->vdev_child[c];
1755 		metaslab_group_t *mg = tvd->vdev_mg;
1756 
1757 		if (tvd->vdev_islog)
1758 			metaslab_group_activate(mg);
1759 	}
1760 }
1761 
1762 int
1763 spa_offline_log(spa_t *spa)
1764 {
1765 	int error;
1766 
1767 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1768 	    NULL, DS_FIND_CHILDREN);
1769 	if (error == 0) {
1770 		/*
1771 		 * We successfully offlined the log device, sync out the
1772 		 * current txg so that the "stubby" block can be removed
1773 		 * by zil_sync().
1774 		 */
1775 		txg_wait_synced(spa->spa_dsl_pool, 0);
1776 	}
1777 	return (error);
1778 }
1779 
1780 static void
1781 spa_aux_check_removed(spa_aux_vdev_t *sav)
1782 {
1783 	for (int i = 0; i < sav->sav_count; i++)
1784 		spa_check_removed(sav->sav_vdevs[i]);
1785 }
1786 
1787 void
1788 spa_claim_notify(zio_t *zio)
1789 {
1790 	spa_t *spa = zio->io_spa;
1791 
1792 	if (zio->io_error)
1793 		return;
1794 
1795 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1796 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1797 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1798 	mutex_exit(&spa->spa_props_lock);
1799 }
1800 
1801 typedef struct spa_load_error {
1802 	uint64_t	sle_meta_count;
1803 	uint64_t	sle_data_count;
1804 } spa_load_error_t;
1805 
1806 static void
1807 spa_load_verify_done(zio_t *zio)
1808 {
1809 	blkptr_t *bp = zio->io_bp;
1810 	spa_load_error_t *sle = zio->io_private;
1811 	dmu_object_type_t type = BP_GET_TYPE(bp);
1812 	int error = zio->io_error;
1813 
1814 	if (error) {
1815 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1816 		    type != DMU_OT_INTENT_LOG)
1817 			atomic_add_64(&sle->sle_meta_count, 1);
1818 		else
1819 			atomic_add_64(&sle->sle_data_count, 1);
1820 	}
1821 	zio_data_buf_free(zio->io_data, zio->io_size);
1822 }
1823 
1824 /*ARGSUSED*/
1825 static int
1826 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1827     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1828 {
1829 	if (bp != NULL) {
1830 		zio_t *rio = arg;
1831 		size_t size = BP_GET_PSIZE(bp);
1832 		void *data = zio_data_buf_alloc(size);
1833 
1834 		zio_nowait(zio_read(rio, spa, bp, data, size,
1835 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1836 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1837 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1838 	}
1839 	return (0);
1840 }
1841 
1842 static int
1843 spa_load_verify(spa_t *spa)
1844 {
1845 	zio_t *rio;
1846 	spa_load_error_t sle = { 0 };
1847 	zpool_rewind_policy_t policy;
1848 	boolean_t verify_ok = B_FALSE;
1849 	int error;
1850 
1851 	zpool_get_rewind_policy(spa->spa_config, &policy);
1852 
1853 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1854 		return (0);
1855 
1856 	rio = zio_root(spa, NULL, &sle,
1857 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1858 
1859 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1860 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1861 
1862 	(void) zio_wait(rio);
1863 
1864 	spa->spa_load_meta_errors = sle.sle_meta_count;
1865 	spa->spa_load_data_errors = sle.sle_data_count;
1866 
1867 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1868 	    sle.sle_data_count <= policy.zrp_maxdata) {
1869 		int64_t loss = 0;
1870 
1871 		verify_ok = B_TRUE;
1872 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1873 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1874 
1875 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1876 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1877 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1878 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1879 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1880 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1881 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1882 	} else {
1883 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1884 	}
1885 
1886 	if (error) {
1887 		if (error != ENXIO && error != EIO)
1888 			error = SET_ERROR(EIO);
1889 		return (error);
1890 	}
1891 
1892 	return (verify_ok ? 0 : EIO);
1893 }
1894 
1895 /*
1896  * Find a value in the pool props object.
1897  */
1898 static void
1899 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1900 {
1901 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1902 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1903 }
1904 
1905 /*
1906  * Find a value in the pool directory object.
1907  */
1908 static int
1909 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1910 {
1911 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1912 	    name, sizeof (uint64_t), 1, val));
1913 }
1914 
1915 static int
1916 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1917 {
1918 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1919 	return (err);
1920 }
1921 
1922 /*
1923  * Fix up config after a partly-completed split.  This is done with the
1924  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1925  * pool have that entry in their config, but only the splitting one contains
1926  * a list of all the guids of the vdevs that are being split off.
1927  *
1928  * This function determines what to do with that list: either rejoin
1929  * all the disks to the pool, or complete the splitting process.  To attempt
1930  * the rejoin, each disk that is offlined is marked online again, and
1931  * we do a reopen() call.  If the vdev label for every disk that was
1932  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1933  * then we call vdev_split() on each disk, and complete the split.
1934  *
1935  * Otherwise we leave the config alone, with all the vdevs in place in
1936  * the original pool.
1937  */
1938 static void
1939 spa_try_repair(spa_t *spa, nvlist_t *config)
1940 {
1941 	uint_t extracted;
1942 	uint64_t *glist;
1943 	uint_t i, gcount;
1944 	nvlist_t *nvl;
1945 	vdev_t **vd;
1946 	boolean_t attempt_reopen;
1947 
1948 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1949 		return;
1950 
1951 	/* check that the config is complete */
1952 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1953 	    &glist, &gcount) != 0)
1954 		return;
1955 
1956 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1957 
1958 	/* attempt to online all the vdevs & validate */
1959 	attempt_reopen = B_TRUE;
1960 	for (i = 0; i < gcount; i++) {
1961 		if (glist[i] == 0)	/* vdev is hole */
1962 			continue;
1963 
1964 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1965 		if (vd[i] == NULL) {
1966 			/*
1967 			 * Don't bother attempting to reopen the disks;
1968 			 * just do the split.
1969 			 */
1970 			attempt_reopen = B_FALSE;
1971 		} else {
1972 			/* attempt to re-online it */
1973 			vd[i]->vdev_offline = B_FALSE;
1974 		}
1975 	}
1976 
1977 	if (attempt_reopen) {
1978 		vdev_reopen(spa->spa_root_vdev);
1979 
1980 		/* check each device to see what state it's in */
1981 		for (extracted = 0, i = 0; i < gcount; i++) {
1982 			if (vd[i] != NULL &&
1983 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1984 				break;
1985 			++extracted;
1986 		}
1987 	}
1988 
1989 	/*
1990 	 * If every disk has been moved to the new pool, or if we never
1991 	 * even attempted to look at them, then we split them off for
1992 	 * good.
1993 	 */
1994 	if (!attempt_reopen || gcount == extracted) {
1995 		for (i = 0; i < gcount; i++)
1996 			if (vd[i] != NULL)
1997 				vdev_split(vd[i]);
1998 		vdev_reopen(spa->spa_root_vdev);
1999 	}
2000 
2001 	kmem_free(vd, gcount * sizeof (vdev_t *));
2002 }
2003 
2004 static int
2005 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2006     boolean_t mosconfig)
2007 {
2008 	nvlist_t *config = spa->spa_config;
2009 	char *ereport = FM_EREPORT_ZFS_POOL;
2010 	char *comment;
2011 	int error;
2012 	uint64_t pool_guid;
2013 	nvlist_t *nvl;
2014 
2015 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2016 		return (SET_ERROR(EINVAL));
2017 
2018 	ASSERT(spa->spa_comment == NULL);
2019 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2020 		spa->spa_comment = spa_strdup(comment);
2021 
2022 	/*
2023 	 * Versioning wasn't explicitly added to the label until later, so if
2024 	 * it's not present treat it as the initial version.
2025 	 */
2026 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2027 	    &spa->spa_ubsync.ub_version) != 0)
2028 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2029 
2030 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2031 	    &spa->spa_config_txg);
2032 
2033 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2034 	    spa_guid_exists(pool_guid, 0)) {
2035 		error = SET_ERROR(EEXIST);
2036 	} else {
2037 		spa->spa_config_guid = pool_guid;
2038 
2039 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2040 		    &nvl) == 0) {
2041 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2042 			    KM_SLEEP) == 0);
2043 		}
2044 
2045 		nvlist_free(spa->spa_load_info);
2046 		spa->spa_load_info = fnvlist_alloc();
2047 
2048 		gethrestime(&spa->spa_loaded_ts);
2049 		error = spa_load_impl(spa, pool_guid, config, state, type,
2050 		    mosconfig, &ereport);
2051 	}
2052 
2053 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2054 	if (error) {
2055 		if (error != EEXIST) {
2056 			spa->spa_loaded_ts.tv_sec = 0;
2057 			spa->spa_loaded_ts.tv_nsec = 0;
2058 		}
2059 		if (error != EBADF) {
2060 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2061 		}
2062 	}
2063 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2064 	spa->spa_ena = 0;
2065 
2066 	return (error);
2067 }
2068 
2069 /*
2070  * Load an existing storage pool, using the pool's builtin spa_config as a
2071  * source of configuration information.
2072  */
2073 static int
2074 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2075     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2076     char **ereport)
2077 {
2078 	int error = 0;
2079 	nvlist_t *nvroot = NULL;
2080 	nvlist_t *label;
2081 	vdev_t *rvd;
2082 	uberblock_t *ub = &spa->spa_uberblock;
2083 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2084 	int orig_mode = spa->spa_mode;
2085 	int parse;
2086 	uint64_t obj;
2087 	boolean_t missing_feat_write = B_FALSE;
2088 
2089 	/*
2090 	 * If this is an untrusted config, access the pool in read-only mode.
2091 	 * This prevents things like resilvering recently removed devices.
2092 	 */
2093 	if (!mosconfig)
2094 		spa->spa_mode = FREAD;
2095 
2096 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2097 
2098 	spa->spa_load_state = state;
2099 
2100 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2101 		return (SET_ERROR(EINVAL));
2102 
2103 	parse = (type == SPA_IMPORT_EXISTING ?
2104 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2105 
2106 	/*
2107 	 * Create "The Godfather" zio to hold all async IOs
2108 	 */
2109 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2110 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2111 
2112 	/*
2113 	 * Parse the configuration into a vdev tree.  We explicitly set the
2114 	 * value that will be returned by spa_version() since parsing the
2115 	 * configuration requires knowing the version number.
2116 	 */
2117 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2118 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2119 	spa_config_exit(spa, SCL_ALL, FTAG);
2120 
2121 	if (error != 0)
2122 		return (error);
2123 
2124 	ASSERT(spa->spa_root_vdev == rvd);
2125 
2126 	if (type != SPA_IMPORT_ASSEMBLE) {
2127 		ASSERT(spa_guid(spa) == pool_guid);
2128 	}
2129 
2130 	/*
2131 	 * Try to open all vdevs, loading each label in the process.
2132 	 */
2133 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2134 	error = vdev_open(rvd);
2135 	spa_config_exit(spa, SCL_ALL, FTAG);
2136 	if (error != 0)
2137 		return (error);
2138 
2139 	/*
2140 	 * We need to validate the vdev labels against the configuration that
2141 	 * we have in hand, which is dependent on the setting of mosconfig. If
2142 	 * mosconfig is true then we're validating the vdev labels based on
2143 	 * that config.  Otherwise, we're validating against the cached config
2144 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2145 	 * later we will recursively call spa_load() and validate against
2146 	 * the vdev config.
2147 	 *
2148 	 * If we're assembling a new pool that's been split off from an
2149 	 * existing pool, the labels haven't yet been updated so we skip
2150 	 * validation for now.
2151 	 */
2152 	if (type != SPA_IMPORT_ASSEMBLE) {
2153 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2154 		error = vdev_validate(rvd, mosconfig);
2155 		spa_config_exit(spa, SCL_ALL, FTAG);
2156 
2157 		if (error != 0)
2158 			return (error);
2159 
2160 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2161 			return (SET_ERROR(ENXIO));
2162 	}
2163 
2164 	/*
2165 	 * Find the best uberblock.
2166 	 */
2167 	vdev_uberblock_load(rvd, ub, &label);
2168 
2169 	/*
2170 	 * If we weren't able to find a single valid uberblock, return failure.
2171 	 */
2172 	if (ub->ub_txg == 0) {
2173 		nvlist_free(label);
2174 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2175 	}
2176 
2177 	/*
2178 	 * If the pool has an unsupported version we can't open it.
2179 	 */
2180 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2181 		nvlist_free(label);
2182 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2183 	}
2184 
2185 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2186 		nvlist_t *features;
2187 
2188 		/*
2189 		 * If we weren't able to find what's necessary for reading the
2190 		 * MOS in the label, return failure.
2191 		 */
2192 		if (label == NULL || nvlist_lookup_nvlist(label,
2193 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2194 			nvlist_free(label);
2195 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2196 			    ENXIO));
2197 		}
2198 
2199 		/*
2200 		 * Update our in-core representation with the definitive values
2201 		 * from the label.
2202 		 */
2203 		nvlist_free(spa->spa_label_features);
2204 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2205 	}
2206 
2207 	nvlist_free(label);
2208 
2209 	/*
2210 	 * Look through entries in the label nvlist's features_for_read. If
2211 	 * there is a feature listed there which we don't understand then we
2212 	 * cannot open a pool.
2213 	 */
2214 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2215 		nvlist_t *unsup_feat;
2216 
2217 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2218 		    0);
2219 
2220 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2221 		    NULL); nvp != NULL;
2222 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2223 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2224 				VERIFY(nvlist_add_string(unsup_feat,
2225 				    nvpair_name(nvp), "") == 0);
2226 			}
2227 		}
2228 
2229 		if (!nvlist_empty(unsup_feat)) {
2230 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2231 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2232 			nvlist_free(unsup_feat);
2233 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2234 			    ENOTSUP));
2235 		}
2236 
2237 		nvlist_free(unsup_feat);
2238 	}
2239 
2240 	/*
2241 	 * If the vdev guid sum doesn't match the uberblock, we have an
2242 	 * incomplete configuration.  We first check to see if the pool
2243 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2244 	 * If it is, defer the vdev_guid_sum check till later so we
2245 	 * can handle missing vdevs.
2246 	 */
2247 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2248 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2249 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2250 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2251 
2252 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2253 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2254 		spa_try_repair(spa, config);
2255 		spa_config_exit(spa, SCL_ALL, FTAG);
2256 		nvlist_free(spa->spa_config_splitting);
2257 		spa->spa_config_splitting = NULL;
2258 	}
2259 
2260 	/*
2261 	 * Initialize internal SPA structures.
2262 	 */
2263 	spa->spa_state = POOL_STATE_ACTIVE;
2264 	spa->spa_ubsync = spa->spa_uberblock;
2265 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2266 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2267 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2268 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2269 	spa->spa_claim_max_txg = spa->spa_first_txg;
2270 	spa->spa_prev_software_version = ub->ub_software_version;
2271 
2272 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2273 	if (error)
2274 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2275 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2276 
2277 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2278 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 
2280 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2281 		boolean_t missing_feat_read = B_FALSE;
2282 		nvlist_t *unsup_feat, *enabled_feat;
2283 
2284 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2285 		    &spa->spa_feat_for_read_obj) != 0) {
2286 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2287 		}
2288 
2289 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2290 		    &spa->spa_feat_for_write_obj) != 0) {
2291 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2292 		}
2293 
2294 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2295 		    &spa->spa_feat_desc_obj) != 0) {
2296 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2297 		}
2298 
2299 		enabled_feat = fnvlist_alloc();
2300 		unsup_feat = fnvlist_alloc();
2301 
2302 		if (!feature_is_supported(spa->spa_meta_objset,
2303 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2304 		    unsup_feat, enabled_feat))
2305 			missing_feat_read = B_TRUE;
2306 
2307 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 			if (!feature_is_supported(spa->spa_meta_objset,
2309 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2310 			    unsup_feat, enabled_feat)) {
2311 				missing_feat_write = B_TRUE;
2312 			}
2313 		}
2314 
2315 		fnvlist_add_nvlist(spa->spa_load_info,
2316 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2317 
2318 		if (!nvlist_empty(unsup_feat)) {
2319 			fnvlist_add_nvlist(spa->spa_load_info,
2320 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2321 		}
2322 
2323 		fnvlist_free(enabled_feat);
2324 		fnvlist_free(unsup_feat);
2325 
2326 		if (!missing_feat_read) {
2327 			fnvlist_add_boolean(spa->spa_load_info,
2328 			    ZPOOL_CONFIG_CAN_RDONLY);
2329 		}
2330 
2331 		/*
2332 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2333 		 * twofold: to determine whether the pool is available for
2334 		 * import in read-write mode and (if it is not) whether the
2335 		 * pool is available for import in read-only mode. If the pool
2336 		 * is available for import in read-write mode, it is displayed
2337 		 * as available in userland; if it is not available for import
2338 		 * in read-only mode, it is displayed as unavailable in
2339 		 * userland. If the pool is available for import in read-only
2340 		 * mode but not read-write mode, it is displayed as unavailable
2341 		 * in userland with a special note that the pool is actually
2342 		 * available for open in read-only mode.
2343 		 *
2344 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2345 		 * missing a feature for write, we must first determine whether
2346 		 * the pool can be opened read-only before returning to
2347 		 * userland in order to know whether to display the
2348 		 * abovementioned note.
2349 		 */
2350 		if (missing_feat_read || (missing_feat_write &&
2351 		    spa_writeable(spa))) {
2352 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2353 			    ENOTSUP));
2354 		}
2355 	}
2356 
2357 	spa->spa_is_initializing = B_TRUE;
2358 	error = dsl_pool_open(spa->spa_dsl_pool);
2359 	spa->spa_is_initializing = B_FALSE;
2360 	if (error != 0)
2361 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2362 
2363 	if (!mosconfig) {
2364 		uint64_t hostid;
2365 		nvlist_t *policy = NULL, *nvconfig;
2366 
2367 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2368 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369 
2370 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2371 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2372 			char *hostname;
2373 			unsigned long myhostid = 0;
2374 
2375 			VERIFY(nvlist_lookup_string(nvconfig,
2376 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2377 
2378 #ifdef	_KERNEL
2379 			myhostid = zone_get_hostid(NULL);
2380 #else	/* _KERNEL */
2381 			/*
2382 			 * We're emulating the system's hostid in userland, so
2383 			 * we can't use zone_get_hostid().
2384 			 */
2385 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2386 #endif	/* _KERNEL */
2387 			if (hostid != 0 && myhostid != 0 &&
2388 			    hostid != myhostid) {
2389 				nvlist_free(nvconfig);
2390 				cmn_err(CE_WARN, "pool '%s' could not be "
2391 				    "loaded as it was last accessed by "
2392 				    "another system (host: %s hostid: 0x%lx). "
2393 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2394 				    spa_name(spa), hostname,
2395 				    (unsigned long)hostid);
2396 				return (SET_ERROR(EBADF));
2397 			}
2398 		}
2399 		if (nvlist_lookup_nvlist(spa->spa_config,
2400 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2401 			VERIFY(nvlist_add_nvlist(nvconfig,
2402 			    ZPOOL_REWIND_POLICY, policy) == 0);
2403 
2404 		spa_config_set(spa, nvconfig);
2405 		spa_unload(spa);
2406 		spa_deactivate(spa);
2407 		spa_activate(spa, orig_mode);
2408 
2409 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2410 	}
2411 
2412 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2413 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2415 	if (error != 0)
2416 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417 
2418 	/*
2419 	 * Load the bit that tells us to use the new accounting function
2420 	 * (raid-z deflation).  If we have an older pool, this will not
2421 	 * be present.
2422 	 */
2423 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2424 	if (error != 0 && error != ENOENT)
2425 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 
2427 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2428 	    &spa->spa_creation_version);
2429 	if (error != 0 && error != ENOENT)
2430 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431 
2432 	/*
2433 	 * Load the persistent error log.  If we have an older pool, this will
2434 	 * not be present.
2435 	 */
2436 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2437 	if (error != 0 && error != ENOENT)
2438 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 
2440 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2441 	    &spa->spa_errlog_scrub);
2442 	if (error != 0 && error != ENOENT)
2443 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444 
2445 	/*
2446 	 * Load the history object.  If we have an older pool, this
2447 	 * will not be present.
2448 	 */
2449 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2450 	if (error != 0 && error != ENOENT)
2451 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 
2453 	/*
2454 	 * If we're assembling the pool from the split-off vdevs of
2455 	 * an existing pool, we don't want to attach the spares & cache
2456 	 * devices.
2457 	 */
2458 
2459 	/*
2460 	 * Load any hot spares for this pool.
2461 	 */
2462 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2463 	if (error != 0 && error != ENOENT)
2464 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2466 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2467 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2468 		    &spa->spa_spares.sav_config) != 0)
2469 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 
2471 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2472 		spa_load_spares(spa);
2473 		spa_config_exit(spa, SCL_ALL, FTAG);
2474 	} else if (error == 0) {
2475 		spa->spa_spares.sav_sync = B_TRUE;
2476 	}
2477 
2478 	/*
2479 	 * Load any level 2 ARC devices for this pool.
2480 	 */
2481 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2482 	    &spa->spa_l2cache.sav_object);
2483 	if (error != 0 && error != ENOENT)
2484 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2486 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2487 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2488 		    &spa->spa_l2cache.sav_config) != 0)
2489 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 
2491 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2492 		spa_load_l2cache(spa);
2493 		spa_config_exit(spa, SCL_ALL, FTAG);
2494 	} else if (error == 0) {
2495 		spa->spa_l2cache.sav_sync = B_TRUE;
2496 	}
2497 
2498 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2499 
2500 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2501 	if (error && error != ENOENT)
2502 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503 
2504 	if (error == 0) {
2505 		uint64_t autoreplace;
2506 
2507 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2508 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2509 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2510 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2511 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2512 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2513 		    &spa->spa_dedup_ditto);
2514 
2515 		spa->spa_autoreplace = (autoreplace != 0);
2516 	}
2517 
2518 	/*
2519 	 * If the 'autoreplace' property is set, then post a resource notifying
2520 	 * the ZFS DE that it should not issue any faults for unopenable
2521 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2522 	 * unopenable vdevs so that the normal autoreplace handler can take
2523 	 * over.
2524 	 */
2525 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2526 		spa_check_removed(spa->spa_root_vdev);
2527 		/*
2528 		 * For the import case, this is done in spa_import(), because
2529 		 * at this point we're using the spare definitions from
2530 		 * the MOS config, not necessarily from the userland config.
2531 		 */
2532 		if (state != SPA_LOAD_IMPORT) {
2533 			spa_aux_check_removed(&spa->spa_spares);
2534 			spa_aux_check_removed(&spa->spa_l2cache);
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * Load the vdev state for all toplevel vdevs.
2540 	 */
2541 	vdev_load(rvd);
2542 
2543 	/*
2544 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2545 	 */
2546 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2547 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2548 	spa_config_exit(spa, SCL_ALL, FTAG);
2549 
2550 	/*
2551 	 * Load the DDTs (dedup tables).
2552 	 */
2553 	error = ddt_load(spa);
2554 	if (error != 0)
2555 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2556 
2557 	spa_update_dspace(spa);
2558 
2559 	/*
2560 	 * Validate the config, using the MOS config to fill in any
2561 	 * information which might be missing.  If we fail to validate
2562 	 * the config then declare the pool unfit for use. If we're
2563 	 * assembling a pool from a split, the log is not transferred
2564 	 * over.
2565 	 */
2566 	if (type != SPA_IMPORT_ASSEMBLE) {
2567 		nvlist_t *nvconfig;
2568 
2569 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2570 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571 
2572 		if (!spa_config_valid(spa, nvconfig)) {
2573 			nvlist_free(nvconfig);
2574 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2575 			    ENXIO));
2576 		}
2577 		nvlist_free(nvconfig);
2578 
2579 		/*
2580 		 * Now that we've validated the config, check the state of the
2581 		 * root vdev.  If it can't be opened, it indicates one or
2582 		 * more toplevel vdevs are faulted.
2583 		 */
2584 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2585 			return (SET_ERROR(ENXIO));
2586 
2587 		if (spa_check_logs(spa)) {
2588 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2589 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2590 		}
2591 	}
2592 
2593 	if (missing_feat_write) {
2594 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2595 
2596 		/*
2597 		 * At this point, we know that we can open the pool in
2598 		 * read-only mode but not read-write mode. We now have enough
2599 		 * information and can return to userland.
2600 		 */
2601 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2602 	}
2603 
2604 	/*
2605 	 * We've successfully opened the pool, verify that we're ready
2606 	 * to start pushing transactions.
2607 	 */
2608 	if (state != SPA_LOAD_TRYIMPORT) {
2609 		if (error = spa_load_verify(spa))
2610 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2611 			    error));
2612 	}
2613 
2614 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2615 	    spa->spa_load_max_txg == UINT64_MAX)) {
2616 		dmu_tx_t *tx;
2617 		int need_update = B_FALSE;
2618 
2619 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2620 
2621 		/*
2622 		 * Claim log blocks that haven't been committed yet.
2623 		 * This must all happen in a single txg.
2624 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2625 		 * invoked from zil_claim_log_block()'s i/o done callback.
2626 		 * Price of rollback is that we abandon the log.
2627 		 */
2628 		spa->spa_claiming = B_TRUE;
2629 
2630 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2631 		    spa_first_txg(spa));
2632 		(void) dmu_objset_find(spa_name(spa),
2633 		    zil_claim, tx, DS_FIND_CHILDREN);
2634 		dmu_tx_commit(tx);
2635 
2636 		spa->spa_claiming = B_FALSE;
2637 
2638 		spa_set_log_state(spa, SPA_LOG_GOOD);
2639 		spa->spa_sync_on = B_TRUE;
2640 		txg_sync_start(spa->spa_dsl_pool);
2641 
2642 		/*
2643 		 * Wait for all claims to sync.  We sync up to the highest
2644 		 * claimed log block birth time so that claimed log blocks
2645 		 * don't appear to be from the future.  spa_claim_max_txg
2646 		 * will have been set for us by either zil_check_log_chain()
2647 		 * (invoked from spa_check_logs()) or zil_claim() above.
2648 		 */
2649 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2650 
2651 		/*
2652 		 * If the config cache is stale, or we have uninitialized
2653 		 * metaslabs (see spa_vdev_add()), then update the config.
2654 		 *
2655 		 * If this is a verbatim import, trust the current
2656 		 * in-core spa_config and update the disk labels.
2657 		 */
2658 		if (config_cache_txg != spa->spa_config_txg ||
2659 		    state == SPA_LOAD_IMPORT ||
2660 		    state == SPA_LOAD_RECOVER ||
2661 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2662 			need_update = B_TRUE;
2663 
2664 		for (int c = 0; c < rvd->vdev_children; c++)
2665 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2666 				need_update = B_TRUE;
2667 
2668 		/*
2669 		 * Update the config cache asychronously in case we're the
2670 		 * root pool, in which case the config cache isn't writable yet.
2671 		 */
2672 		if (need_update)
2673 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2674 
2675 		/*
2676 		 * Check all DTLs to see if anything needs resilvering.
2677 		 */
2678 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2679 		    vdev_resilver_needed(rvd, NULL, NULL))
2680 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2681 
2682 		/*
2683 		 * Log the fact that we booted up (so that we can detect if
2684 		 * we rebooted in the middle of an operation).
2685 		 */
2686 		spa_history_log_version(spa, "open");
2687 
2688 		/*
2689 		 * Delete any inconsistent datasets.
2690 		 */
2691 		(void) dmu_objset_find(spa_name(spa),
2692 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2693 
2694 		/*
2695 		 * Clean up any stale temporary dataset userrefs.
2696 		 */
2697 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2698 	}
2699 
2700 	return (0);
2701 }
2702 
2703 static int
2704 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2705 {
2706 	int mode = spa->spa_mode;
2707 
2708 	spa_unload(spa);
2709 	spa_deactivate(spa);
2710 
2711 	spa->spa_load_max_txg--;
2712 
2713 	spa_activate(spa, mode);
2714 	spa_async_suspend(spa);
2715 
2716 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2717 }
2718 
2719 /*
2720  * If spa_load() fails this function will try loading prior txg's. If
2721  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2722  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2723  * function will not rewind the pool and will return the same error as
2724  * spa_load().
2725  */
2726 static int
2727 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2728     uint64_t max_request, int rewind_flags)
2729 {
2730 	nvlist_t *loadinfo = NULL;
2731 	nvlist_t *config = NULL;
2732 	int load_error, rewind_error;
2733 	uint64_t safe_rewind_txg;
2734 	uint64_t min_txg;
2735 
2736 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2737 		spa->spa_load_max_txg = spa->spa_load_txg;
2738 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2739 	} else {
2740 		spa->spa_load_max_txg = max_request;
2741 	}
2742 
2743 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2744 	    mosconfig);
2745 	if (load_error == 0)
2746 		return (0);
2747 
2748 	if (spa->spa_root_vdev != NULL)
2749 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2750 
2751 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2752 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2753 
2754 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2755 		nvlist_free(config);
2756 		return (load_error);
2757 	}
2758 
2759 	if (state == SPA_LOAD_RECOVER) {
2760 		/* Price of rolling back is discarding txgs, including log */
2761 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2762 	} else {
2763 		/*
2764 		 * If we aren't rolling back save the load info from our first
2765 		 * import attempt so that we can restore it after attempting
2766 		 * to rewind.
2767 		 */
2768 		loadinfo = spa->spa_load_info;
2769 		spa->spa_load_info = fnvlist_alloc();
2770 	}
2771 
2772 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2773 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2774 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2775 	    TXG_INITIAL : safe_rewind_txg;
2776 
2777 	/*
2778 	 * Continue as long as we're finding errors, we're still within
2779 	 * the acceptable rewind range, and we're still finding uberblocks
2780 	 */
2781 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2782 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2783 		if (spa->spa_load_max_txg < safe_rewind_txg)
2784 			spa->spa_extreme_rewind = B_TRUE;
2785 		rewind_error = spa_load_retry(spa, state, mosconfig);
2786 	}
2787 
2788 	spa->spa_extreme_rewind = B_FALSE;
2789 	spa->spa_load_max_txg = UINT64_MAX;
2790 
2791 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2792 		spa_config_set(spa, config);
2793 
2794 	if (state == SPA_LOAD_RECOVER) {
2795 		ASSERT3P(loadinfo, ==, NULL);
2796 		return (rewind_error);
2797 	} else {
2798 		/* Store the rewind info as part of the initial load info */
2799 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2800 		    spa->spa_load_info);
2801 
2802 		/* Restore the initial load info */
2803 		fnvlist_free(spa->spa_load_info);
2804 		spa->spa_load_info = loadinfo;
2805 
2806 		return (load_error);
2807 	}
2808 }
2809 
2810 /*
2811  * Pool Open/Import
2812  *
2813  * The import case is identical to an open except that the configuration is sent
2814  * down from userland, instead of grabbed from the configuration cache.  For the
2815  * case of an open, the pool configuration will exist in the
2816  * POOL_STATE_UNINITIALIZED state.
2817  *
2818  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2819  * the same time open the pool, without having to keep around the spa_t in some
2820  * ambiguous state.
2821  */
2822 static int
2823 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2824     nvlist_t **config)
2825 {
2826 	spa_t *spa;
2827 	spa_load_state_t state = SPA_LOAD_OPEN;
2828 	int error;
2829 	int locked = B_FALSE;
2830 
2831 	*spapp = NULL;
2832 
2833 	/*
2834 	 * As disgusting as this is, we need to support recursive calls to this
2835 	 * function because dsl_dir_open() is called during spa_load(), and ends
2836 	 * up calling spa_open() again.  The real fix is to figure out how to
2837 	 * avoid dsl_dir_open() calling this in the first place.
2838 	 */
2839 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2840 		mutex_enter(&spa_namespace_lock);
2841 		locked = B_TRUE;
2842 	}
2843 
2844 	if ((spa = spa_lookup(pool)) == NULL) {
2845 		if (locked)
2846 			mutex_exit(&spa_namespace_lock);
2847 		return (SET_ERROR(ENOENT));
2848 	}
2849 
2850 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2851 		zpool_rewind_policy_t policy;
2852 
2853 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2854 		    &policy);
2855 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2856 			state = SPA_LOAD_RECOVER;
2857 
2858 		spa_activate(spa, spa_mode_global);
2859 
2860 		if (state != SPA_LOAD_RECOVER)
2861 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2862 
2863 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2864 		    policy.zrp_request);
2865 
2866 		if (error == EBADF) {
2867 			/*
2868 			 * If vdev_validate() returns failure (indicated by
2869 			 * EBADF), it indicates that one of the vdevs indicates
2870 			 * that the pool has been exported or destroyed.  If
2871 			 * this is the case, the config cache is out of sync and
2872 			 * we should remove the pool from the namespace.
2873 			 */
2874 			spa_unload(spa);
2875 			spa_deactivate(spa);
2876 			spa_config_sync(spa, B_TRUE, B_TRUE);
2877 			spa_remove(spa);
2878 			if (locked)
2879 				mutex_exit(&spa_namespace_lock);
2880 			return (SET_ERROR(ENOENT));
2881 		}
2882 
2883 		if (error) {
2884 			/*
2885 			 * We can't open the pool, but we still have useful
2886 			 * information: the state of each vdev after the
2887 			 * attempted vdev_open().  Return this to the user.
2888 			 */
2889 			if (config != NULL && spa->spa_config) {
2890 				VERIFY(nvlist_dup(spa->spa_config, config,
2891 				    KM_SLEEP) == 0);
2892 				VERIFY(nvlist_add_nvlist(*config,
2893 				    ZPOOL_CONFIG_LOAD_INFO,
2894 				    spa->spa_load_info) == 0);
2895 			}
2896 			spa_unload(spa);
2897 			spa_deactivate(spa);
2898 			spa->spa_last_open_failed = error;
2899 			if (locked)
2900 				mutex_exit(&spa_namespace_lock);
2901 			*spapp = NULL;
2902 			return (error);
2903 		}
2904 	}
2905 
2906 	spa_open_ref(spa, tag);
2907 
2908 	if (config != NULL)
2909 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2910 
2911 	/*
2912 	 * If we've recovered the pool, pass back any information we
2913 	 * gathered while doing the load.
2914 	 */
2915 	if (state == SPA_LOAD_RECOVER) {
2916 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2917 		    spa->spa_load_info) == 0);
2918 	}
2919 
2920 	if (locked) {
2921 		spa->spa_last_open_failed = 0;
2922 		spa->spa_last_ubsync_txg = 0;
2923 		spa->spa_load_txg = 0;
2924 		mutex_exit(&spa_namespace_lock);
2925 	}
2926 
2927 	*spapp = spa;
2928 
2929 	return (0);
2930 }
2931 
2932 int
2933 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2934     nvlist_t **config)
2935 {
2936 	return (spa_open_common(name, spapp, tag, policy, config));
2937 }
2938 
2939 int
2940 spa_open(const char *name, spa_t **spapp, void *tag)
2941 {
2942 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2943 }
2944 
2945 /*
2946  * Lookup the given spa_t, incrementing the inject count in the process,
2947  * preventing it from being exported or destroyed.
2948  */
2949 spa_t *
2950 spa_inject_addref(char *name)
2951 {
2952 	spa_t *spa;
2953 
2954 	mutex_enter(&spa_namespace_lock);
2955 	if ((spa = spa_lookup(name)) == NULL) {
2956 		mutex_exit(&spa_namespace_lock);
2957 		return (NULL);
2958 	}
2959 	spa->spa_inject_ref++;
2960 	mutex_exit(&spa_namespace_lock);
2961 
2962 	return (spa);
2963 }
2964 
2965 void
2966 spa_inject_delref(spa_t *spa)
2967 {
2968 	mutex_enter(&spa_namespace_lock);
2969 	spa->spa_inject_ref--;
2970 	mutex_exit(&spa_namespace_lock);
2971 }
2972 
2973 /*
2974  * Add spares device information to the nvlist.
2975  */
2976 static void
2977 spa_add_spares(spa_t *spa, nvlist_t *config)
2978 {
2979 	nvlist_t **spares;
2980 	uint_t i, nspares;
2981 	nvlist_t *nvroot;
2982 	uint64_t guid;
2983 	vdev_stat_t *vs;
2984 	uint_t vsc;
2985 	uint64_t pool;
2986 
2987 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2988 
2989 	if (spa->spa_spares.sav_count == 0)
2990 		return;
2991 
2992 	VERIFY(nvlist_lookup_nvlist(config,
2993 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2994 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2995 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2996 	if (nspares != 0) {
2997 		VERIFY(nvlist_add_nvlist_array(nvroot,
2998 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2999 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3000 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3001 
3002 		/*
3003 		 * Go through and find any spares which have since been
3004 		 * repurposed as an active spare.  If this is the case, update
3005 		 * their status appropriately.
3006 		 */
3007 		for (i = 0; i < nspares; i++) {
3008 			VERIFY(nvlist_lookup_uint64(spares[i],
3009 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3010 			if (spa_spare_exists(guid, &pool, NULL) &&
3011 			    pool != 0ULL) {
3012 				VERIFY(nvlist_lookup_uint64_array(
3013 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3014 				    (uint64_t **)&vs, &vsc) == 0);
3015 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3016 				vs->vs_aux = VDEV_AUX_SPARED;
3017 			}
3018 		}
3019 	}
3020 }
3021 
3022 /*
3023  * Add l2cache device information to the nvlist, including vdev stats.
3024  */
3025 static void
3026 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3027 {
3028 	nvlist_t **l2cache;
3029 	uint_t i, j, nl2cache;
3030 	nvlist_t *nvroot;
3031 	uint64_t guid;
3032 	vdev_t *vd;
3033 	vdev_stat_t *vs;
3034 	uint_t vsc;
3035 
3036 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3037 
3038 	if (spa->spa_l2cache.sav_count == 0)
3039 		return;
3040 
3041 	VERIFY(nvlist_lookup_nvlist(config,
3042 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3043 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3044 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3045 	if (nl2cache != 0) {
3046 		VERIFY(nvlist_add_nvlist_array(nvroot,
3047 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3048 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3049 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3050 
3051 		/*
3052 		 * Update level 2 cache device stats.
3053 		 */
3054 
3055 		for (i = 0; i < nl2cache; i++) {
3056 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3057 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3058 
3059 			vd = NULL;
3060 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3061 				if (guid ==
3062 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3063 					vd = spa->spa_l2cache.sav_vdevs[j];
3064 					break;
3065 				}
3066 			}
3067 			ASSERT(vd != NULL);
3068 
3069 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3070 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3071 			    == 0);
3072 			vdev_get_stats(vd, vs);
3073 		}
3074 	}
3075 }
3076 
3077 static void
3078 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3079 {
3080 	nvlist_t *features;
3081 	zap_cursor_t zc;
3082 	zap_attribute_t za;
3083 
3084 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3085 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3086 
3087 	if (spa->spa_feat_for_read_obj != 0) {
3088 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3089 		    spa->spa_feat_for_read_obj);
3090 		    zap_cursor_retrieve(&zc, &za) == 0;
3091 		    zap_cursor_advance(&zc)) {
3092 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3093 			    za.za_num_integers == 1);
3094 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3095 			    za.za_first_integer));
3096 		}
3097 		zap_cursor_fini(&zc);
3098 	}
3099 
3100 	if (spa->spa_feat_for_write_obj != 0) {
3101 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3102 		    spa->spa_feat_for_write_obj);
3103 		    zap_cursor_retrieve(&zc, &za) == 0;
3104 		    zap_cursor_advance(&zc)) {
3105 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3106 			    za.za_num_integers == 1);
3107 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3108 			    za.za_first_integer));
3109 		}
3110 		zap_cursor_fini(&zc);
3111 	}
3112 
3113 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3114 	    features) == 0);
3115 	nvlist_free(features);
3116 }
3117 
3118 int
3119 spa_get_stats(const char *name, nvlist_t **config,
3120     char *altroot, size_t buflen)
3121 {
3122 	int error;
3123 	spa_t *spa;
3124 
3125 	*config = NULL;
3126 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3127 
3128 	if (spa != NULL) {
3129 		/*
3130 		 * This still leaves a window of inconsistency where the spares
3131 		 * or l2cache devices could change and the config would be
3132 		 * self-inconsistent.
3133 		 */
3134 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3135 
3136 		if (*config != NULL) {
3137 			uint64_t loadtimes[2];
3138 
3139 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3140 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3141 			VERIFY(nvlist_add_uint64_array(*config,
3142 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3143 
3144 			VERIFY(nvlist_add_uint64(*config,
3145 			    ZPOOL_CONFIG_ERRCOUNT,
3146 			    spa_get_errlog_size(spa)) == 0);
3147 
3148 			if (spa_suspended(spa))
3149 				VERIFY(nvlist_add_uint64(*config,
3150 				    ZPOOL_CONFIG_SUSPENDED,
3151 				    spa->spa_failmode) == 0);
3152 
3153 			spa_add_spares(spa, *config);
3154 			spa_add_l2cache(spa, *config);
3155 			spa_add_feature_stats(spa, *config);
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * We want to get the alternate root even for faulted pools, so we cheat
3161 	 * and call spa_lookup() directly.
3162 	 */
3163 	if (altroot) {
3164 		if (spa == NULL) {
3165 			mutex_enter(&spa_namespace_lock);
3166 			spa = spa_lookup(name);
3167 			if (spa)
3168 				spa_altroot(spa, altroot, buflen);
3169 			else
3170 				altroot[0] = '\0';
3171 			spa = NULL;
3172 			mutex_exit(&spa_namespace_lock);
3173 		} else {
3174 			spa_altroot(spa, altroot, buflen);
3175 		}
3176 	}
3177 
3178 	if (spa != NULL) {
3179 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3180 		spa_close(spa, FTAG);
3181 	}
3182 
3183 	return (error);
3184 }
3185 
3186 /*
3187  * Validate that the auxiliary device array is well formed.  We must have an
3188  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3189  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3190  * specified, as long as they are well-formed.
3191  */
3192 static int
3193 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3194     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3195     vdev_labeltype_t label)
3196 {
3197 	nvlist_t **dev;
3198 	uint_t i, ndev;
3199 	vdev_t *vd;
3200 	int error;
3201 
3202 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3203 
3204 	/*
3205 	 * It's acceptable to have no devs specified.
3206 	 */
3207 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3208 		return (0);
3209 
3210 	if (ndev == 0)
3211 		return (SET_ERROR(EINVAL));
3212 
3213 	/*
3214 	 * Make sure the pool is formatted with a version that supports this
3215 	 * device type.
3216 	 */
3217 	if (spa_version(spa) < version)
3218 		return (SET_ERROR(ENOTSUP));
3219 
3220 	/*
3221 	 * Set the pending device list so we correctly handle device in-use
3222 	 * checking.
3223 	 */
3224 	sav->sav_pending = dev;
3225 	sav->sav_npending = ndev;
3226 
3227 	for (i = 0; i < ndev; i++) {
3228 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3229 		    mode)) != 0)
3230 			goto out;
3231 
3232 		if (!vd->vdev_ops->vdev_op_leaf) {
3233 			vdev_free(vd);
3234 			error = SET_ERROR(EINVAL);
3235 			goto out;
3236 		}
3237 
3238 		/*
3239 		 * The L2ARC currently only supports disk devices in
3240 		 * kernel context.  For user-level testing, we allow it.
3241 		 */
3242 #ifdef _KERNEL
3243 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3244 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3245 			error = SET_ERROR(ENOTBLK);
3246 			vdev_free(vd);
3247 			goto out;
3248 		}
3249 #endif
3250 		vd->vdev_top = vd;
3251 
3252 		if ((error = vdev_open(vd)) == 0 &&
3253 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3254 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3255 			    vd->vdev_guid) == 0);
3256 		}
3257 
3258 		vdev_free(vd);
3259 
3260 		if (error &&
3261 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3262 			goto out;
3263 		else
3264 			error = 0;
3265 	}
3266 
3267 out:
3268 	sav->sav_pending = NULL;
3269 	sav->sav_npending = 0;
3270 	return (error);
3271 }
3272 
3273 static int
3274 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3275 {
3276 	int error;
3277 
3278 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3279 
3280 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3281 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3282 	    VDEV_LABEL_SPARE)) != 0) {
3283 		return (error);
3284 	}
3285 
3286 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3287 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3288 	    VDEV_LABEL_L2CACHE));
3289 }
3290 
3291 static void
3292 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3293     const char *config)
3294 {
3295 	int i;
3296 
3297 	if (sav->sav_config != NULL) {
3298 		nvlist_t **olddevs;
3299 		uint_t oldndevs;
3300 		nvlist_t **newdevs;
3301 
3302 		/*
3303 		 * Generate new dev list by concatentating with the
3304 		 * current dev list.
3305 		 */
3306 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3307 		    &olddevs, &oldndevs) == 0);
3308 
3309 		newdevs = kmem_alloc(sizeof (void *) *
3310 		    (ndevs + oldndevs), KM_SLEEP);
3311 		for (i = 0; i < oldndevs; i++)
3312 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3313 			    KM_SLEEP) == 0);
3314 		for (i = 0; i < ndevs; i++)
3315 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3316 			    KM_SLEEP) == 0);
3317 
3318 		VERIFY(nvlist_remove(sav->sav_config, config,
3319 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3320 
3321 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3322 		    config, newdevs, ndevs + oldndevs) == 0);
3323 		for (i = 0; i < oldndevs + ndevs; i++)
3324 			nvlist_free(newdevs[i]);
3325 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3326 	} else {
3327 		/*
3328 		 * Generate a new dev list.
3329 		 */
3330 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3331 		    KM_SLEEP) == 0);
3332 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3333 		    devs, ndevs) == 0);
3334 	}
3335 }
3336 
3337 /*
3338  * Stop and drop level 2 ARC devices
3339  */
3340 void
3341 spa_l2cache_drop(spa_t *spa)
3342 {
3343 	vdev_t *vd;
3344 	int i;
3345 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3346 
3347 	for (i = 0; i < sav->sav_count; i++) {
3348 		uint64_t pool;
3349 
3350 		vd = sav->sav_vdevs[i];
3351 		ASSERT(vd != NULL);
3352 
3353 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3354 		    pool != 0ULL && l2arc_vdev_present(vd))
3355 			l2arc_remove_vdev(vd);
3356 	}
3357 }
3358 
3359 /*
3360  * Pool Creation
3361  */
3362 int
3363 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3364     nvlist_t *zplprops)
3365 {
3366 	spa_t *spa;
3367 	char *altroot = NULL;
3368 	vdev_t *rvd;
3369 	dsl_pool_t *dp;
3370 	dmu_tx_t *tx;
3371 	int error = 0;
3372 	uint64_t txg = TXG_INITIAL;
3373 	nvlist_t **spares, **l2cache;
3374 	uint_t nspares, nl2cache;
3375 	uint64_t version, obj;
3376 	boolean_t has_features;
3377 
3378 	/*
3379 	 * If this pool already exists, return failure.
3380 	 */
3381 	mutex_enter(&spa_namespace_lock);
3382 	if (spa_lookup(pool) != NULL) {
3383 		mutex_exit(&spa_namespace_lock);
3384 		return (SET_ERROR(EEXIST));
3385 	}
3386 
3387 	/*
3388 	 * Allocate a new spa_t structure.
3389 	 */
3390 	(void) nvlist_lookup_string(props,
3391 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3392 	spa = spa_add(pool, NULL, altroot);
3393 	spa_activate(spa, spa_mode_global);
3394 
3395 	if (props && (error = spa_prop_validate(spa, props))) {
3396 		spa_deactivate(spa);
3397 		spa_remove(spa);
3398 		mutex_exit(&spa_namespace_lock);
3399 		return (error);
3400 	}
3401 
3402 	has_features = B_FALSE;
3403 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3404 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3405 		if (zpool_prop_feature(nvpair_name(elem)))
3406 			has_features = B_TRUE;
3407 	}
3408 
3409 	if (has_features || nvlist_lookup_uint64(props,
3410 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3411 		version = SPA_VERSION;
3412 	}
3413 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3414 
3415 	spa->spa_first_txg = txg;
3416 	spa->spa_uberblock.ub_txg = txg - 1;
3417 	spa->spa_uberblock.ub_version = version;
3418 	spa->spa_ubsync = spa->spa_uberblock;
3419 
3420 	/*
3421 	 * Create "The Godfather" zio to hold all async IOs
3422 	 */
3423 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3424 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3425 
3426 	/*
3427 	 * Create the root vdev.
3428 	 */
3429 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3430 
3431 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3432 
3433 	ASSERT(error != 0 || rvd != NULL);
3434 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3435 
3436 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3437 		error = SET_ERROR(EINVAL);
3438 
3439 	if (error == 0 &&
3440 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3441 	    (error = spa_validate_aux(spa, nvroot, txg,
3442 	    VDEV_ALLOC_ADD)) == 0) {
3443 		for (int c = 0; c < rvd->vdev_children; c++) {
3444 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3445 			vdev_expand(rvd->vdev_child[c], txg);
3446 		}
3447 	}
3448 
3449 	spa_config_exit(spa, SCL_ALL, FTAG);
3450 
3451 	if (error != 0) {
3452 		spa_unload(spa);
3453 		spa_deactivate(spa);
3454 		spa_remove(spa);
3455 		mutex_exit(&spa_namespace_lock);
3456 		return (error);
3457 	}
3458 
3459 	/*
3460 	 * Get the list of spares, if specified.
3461 	 */
3462 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3463 	    &spares, &nspares) == 0) {
3464 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3465 		    KM_SLEEP) == 0);
3466 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3467 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3468 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3469 		spa_load_spares(spa);
3470 		spa_config_exit(spa, SCL_ALL, FTAG);
3471 		spa->spa_spares.sav_sync = B_TRUE;
3472 	}
3473 
3474 	/*
3475 	 * Get the list of level 2 cache devices, if specified.
3476 	 */
3477 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3478 	    &l2cache, &nl2cache) == 0) {
3479 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3480 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3481 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3482 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3483 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3484 		spa_load_l2cache(spa);
3485 		spa_config_exit(spa, SCL_ALL, FTAG);
3486 		spa->spa_l2cache.sav_sync = B_TRUE;
3487 	}
3488 
3489 	spa->spa_is_initializing = B_TRUE;
3490 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3491 	spa->spa_meta_objset = dp->dp_meta_objset;
3492 	spa->spa_is_initializing = B_FALSE;
3493 
3494 	/*
3495 	 * Create DDTs (dedup tables).
3496 	 */
3497 	ddt_create(spa);
3498 
3499 	spa_update_dspace(spa);
3500 
3501 	tx = dmu_tx_create_assigned(dp, txg);
3502 
3503 	/*
3504 	 * Create the pool config object.
3505 	 */
3506 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3507 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3508 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3509 
3510 	if (zap_add(spa->spa_meta_objset,
3511 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3512 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3513 		cmn_err(CE_PANIC, "failed to add pool config");
3514 	}
3515 
3516 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3517 		spa_feature_create_zap_objects(spa, tx);
3518 
3519 	if (zap_add(spa->spa_meta_objset,
3520 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3521 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3522 		cmn_err(CE_PANIC, "failed to add pool version");
3523 	}
3524 
3525 	/* Newly created pools with the right version are always deflated. */
3526 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3527 		spa->spa_deflate = TRUE;
3528 		if (zap_add(spa->spa_meta_objset,
3529 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3530 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3531 			cmn_err(CE_PANIC, "failed to add deflate");
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * Create the deferred-free bpobj.  Turn off compression
3537 	 * because sync-to-convergence takes longer if the blocksize
3538 	 * keeps changing.
3539 	 */
3540 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3541 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3542 	    ZIO_COMPRESS_OFF, tx);
3543 	if (zap_add(spa->spa_meta_objset,
3544 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3545 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3546 		cmn_err(CE_PANIC, "failed to add bpobj");
3547 	}
3548 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3549 	    spa->spa_meta_objset, obj));
3550 
3551 	/*
3552 	 * Create the pool's history object.
3553 	 */
3554 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3555 		spa_history_create_obj(spa, tx);
3556 
3557 	/*
3558 	 * Set pool properties.
3559 	 */
3560 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3561 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3562 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3563 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3564 
3565 	if (props != NULL) {
3566 		spa_configfile_set(spa, props, B_FALSE);
3567 		spa_sync_props(props, tx);
3568 	}
3569 
3570 	dmu_tx_commit(tx);
3571 
3572 	spa->spa_sync_on = B_TRUE;
3573 	txg_sync_start(spa->spa_dsl_pool);
3574 
3575 	/*
3576 	 * We explicitly wait for the first transaction to complete so that our
3577 	 * bean counters are appropriately updated.
3578 	 */
3579 	txg_wait_synced(spa->spa_dsl_pool, txg);
3580 
3581 	spa_config_sync(spa, B_FALSE, B_TRUE);
3582 
3583 	spa_history_log_version(spa, "create");
3584 
3585 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3586 
3587 	mutex_exit(&spa_namespace_lock);
3588 
3589 	return (0);
3590 }
3591 
3592 #ifdef _KERNEL
3593 /*
3594  * Get the root pool information from the root disk, then import the root pool
3595  * during the system boot up time.
3596  */
3597 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3598 
3599 static nvlist_t *
3600 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3601 {
3602 	nvlist_t *config;
3603 	nvlist_t *nvtop, *nvroot;
3604 	uint64_t pgid;
3605 
3606 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3607 		return (NULL);
3608 
3609 	/*
3610 	 * Add this top-level vdev to the child array.
3611 	 */
3612 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3613 	    &nvtop) == 0);
3614 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3615 	    &pgid) == 0);
3616 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3617 
3618 	/*
3619 	 * Put this pool's top-level vdevs into a root vdev.
3620 	 */
3621 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3622 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3623 	    VDEV_TYPE_ROOT) == 0);
3624 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3625 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3626 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3627 	    &nvtop, 1) == 0);
3628 
3629 	/*
3630 	 * Replace the existing vdev_tree with the new root vdev in
3631 	 * this pool's configuration (remove the old, add the new).
3632 	 */
3633 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3634 	nvlist_free(nvroot);
3635 	return (config);
3636 }
3637 
3638 /*
3639  * Walk the vdev tree and see if we can find a device with "better"
3640  * configuration. A configuration is "better" if the label on that
3641  * device has a more recent txg.
3642  */
3643 static void
3644 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3645 {
3646 	for (int c = 0; c < vd->vdev_children; c++)
3647 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3648 
3649 	if (vd->vdev_ops->vdev_op_leaf) {
3650 		nvlist_t *label;
3651 		uint64_t label_txg;
3652 
3653 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3654 		    &label) != 0)
3655 			return;
3656 
3657 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3658 		    &label_txg) == 0);
3659 
3660 		/*
3661 		 * Do we have a better boot device?
3662 		 */
3663 		if (label_txg > *txg) {
3664 			*txg = label_txg;
3665 			*avd = vd;
3666 		}
3667 		nvlist_free(label);
3668 	}
3669 }
3670 
3671 /*
3672  * Import a root pool.
3673  *
3674  * For x86. devpath_list will consist of devid and/or physpath name of
3675  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3676  * The GRUB "findroot" command will return the vdev we should boot.
3677  *
3678  * For Sparc, devpath_list consists the physpath name of the booting device
3679  * no matter the rootpool is a single device pool or a mirrored pool.
3680  * e.g.
3681  *	"/pci@1f,0/ide@d/disk@0,0:a"
3682  */
3683 int
3684 spa_import_rootpool(char *devpath, char *devid)
3685 {
3686 	spa_t *spa;
3687 	vdev_t *rvd, *bvd, *avd = NULL;
3688 	nvlist_t *config, *nvtop;
3689 	uint64_t guid, txg;
3690 	char *pname;
3691 	int error;
3692 
3693 	/*
3694 	 * Read the label from the boot device and generate a configuration.
3695 	 */
3696 	config = spa_generate_rootconf(devpath, devid, &guid);
3697 #if defined(_OBP) && defined(_KERNEL)
3698 	if (config == NULL) {
3699 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3700 			/* iscsi boot */
3701 			get_iscsi_bootpath_phy(devpath);
3702 			config = spa_generate_rootconf(devpath, devid, &guid);
3703 		}
3704 	}
3705 #endif
3706 	if (config == NULL) {
3707 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3708 		    devpath);
3709 		return (SET_ERROR(EIO));
3710 	}
3711 
3712 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3713 	    &pname) == 0);
3714 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3715 
3716 	mutex_enter(&spa_namespace_lock);
3717 	if ((spa = spa_lookup(pname)) != NULL) {
3718 		/*
3719 		 * Remove the existing root pool from the namespace so that we
3720 		 * can replace it with the correct config we just read in.
3721 		 */
3722 		spa_remove(spa);
3723 	}
3724 
3725 	spa = spa_add(pname, config, NULL);
3726 	spa->spa_is_root = B_TRUE;
3727 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3728 
3729 	/*
3730 	 * Build up a vdev tree based on the boot device's label config.
3731 	 */
3732 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3733 	    &nvtop) == 0);
3734 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3735 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3736 	    VDEV_ALLOC_ROOTPOOL);
3737 	spa_config_exit(spa, SCL_ALL, FTAG);
3738 	if (error) {
3739 		mutex_exit(&spa_namespace_lock);
3740 		nvlist_free(config);
3741 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3742 		    pname);
3743 		return (error);
3744 	}
3745 
3746 	/*
3747 	 * Get the boot vdev.
3748 	 */
3749 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3750 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3751 		    (u_longlong_t)guid);
3752 		error = SET_ERROR(ENOENT);
3753 		goto out;
3754 	}
3755 
3756 	/*
3757 	 * Determine if there is a better boot device.
3758 	 */
3759 	avd = bvd;
3760 	spa_alt_rootvdev(rvd, &avd, &txg);
3761 	if (avd != bvd) {
3762 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3763 		    "try booting from '%s'", avd->vdev_path);
3764 		error = SET_ERROR(EINVAL);
3765 		goto out;
3766 	}
3767 
3768 	/*
3769 	 * If the boot device is part of a spare vdev then ensure that
3770 	 * we're booting off the active spare.
3771 	 */
3772 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3773 	    !bvd->vdev_isspare) {
3774 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3775 		    "try booting from '%s'",
3776 		    bvd->vdev_parent->
3777 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3778 		error = SET_ERROR(EINVAL);
3779 		goto out;
3780 	}
3781 
3782 	error = 0;
3783 out:
3784 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3785 	vdev_free(rvd);
3786 	spa_config_exit(spa, SCL_ALL, FTAG);
3787 	mutex_exit(&spa_namespace_lock);
3788 
3789 	nvlist_free(config);
3790 	return (error);
3791 }
3792 
3793 #endif
3794 
3795 /*
3796  * Import a non-root pool into the system.
3797  */
3798 int
3799 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3800 {
3801 	spa_t *spa;
3802 	char *altroot = NULL;
3803 	spa_load_state_t state = SPA_LOAD_IMPORT;
3804 	zpool_rewind_policy_t policy;
3805 	uint64_t mode = spa_mode_global;
3806 	uint64_t readonly = B_FALSE;
3807 	int error;
3808 	nvlist_t *nvroot;
3809 	nvlist_t **spares, **l2cache;
3810 	uint_t nspares, nl2cache;
3811 
3812 	/*
3813 	 * If a pool with this name exists, return failure.
3814 	 */
3815 	mutex_enter(&spa_namespace_lock);
3816 	if (spa_lookup(pool) != NULL) {
3817 		mutex_exit(&spa_namespace_lock);
3818 		return (SET_ERROR(EEXIST));
3819 	}
3820 
3821 	/*
3822 	 * Create and initialize the spa structure.
3823 	 */
3824 	(void) nvlist_lookup_string(props,
3825 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3826 	(void) nvlist_lookup_uint64(props,
3827 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3828 	if (readonly)
3829 		mode = FREAD;
3830 	spa = spa_add(pool, config, altroot);
3831 	spa->spa_import_flags = flags;
3832 
3833 	/*
3834 	 * Verbatim import - Take a pool and insert it into the namespace
3835 	 * as if it had been loaded at boot.
3836 	 */
3837 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3838 		if (props != NULL)
3839 			spa_configfile_set(spa, props, B_FALSE);
3840 
3841 		spa_config_sync(spa, B_FALSE, B_TRUE);
3842 
3843 		mutex_exit(&spa_namespace_lock);
3844 		spa_history_log_version(spa, "import");
3845 
3846 		return (0);
3847 	}
3848 
3849 	spa_activate(spa, mode);
3850 
3851 	/*
3852 	 * Don't start async tasks until we know everything is healthy.
3853 	 */
3854 	spa_async_suspend(spa);
3855 
3856 	zpool_get_rewind_policy(config, &policy);
3857 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3858 		state = SPA_LOAD_RECOVER;
3859 
3860 	/*
3861 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3862 	 * because the user-supplied config is actually the one to trust when
3863 	 * doing an import.
3864 	 */
3865 	if (state != SPA_LOAD_RECOVER)
3866 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3867 
3868 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3869 	    policy.zrp_request);
3870 
3871 	/*
3872 	 * Propagate anything learned while loading the pool and pass it
3873 	 * back to caller (i.e. rewind info, missing devices, etc).
3874 	 */
3875 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3876 	    spa->spa_load_info) == 0);
3877 
3878 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3879 	/*
3880 	 * Toss any existing sparelist, as it doesn't have any validity
3881 	 * anymore, and conflicts with spa_has_spare().
3882 	 */
3883 	if (spa->spa_spares.sav_config) {
3884 		nvlist_free(spa->spa_spares.sav_config);
3885 		spa->spa_spares.sav_config = NULL;
3886 		spa_load_spares(spa);
3887 	}
3888 	if (spa->spa_l2cache.sav_config) {
3889 		nvlist_free(spa->spa_l2cache.sav_config);
3890 		spa->spa_l2cache.sav_config = NULL;
3891 		spa_load_l2cache(spa);
3892 	}
3893 
3894 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3895 	    &nvroot) == 0);
3896 	if (error == 0)
3897 		error = spa_validate_aux(spa, nvroot, -1ULL,
3898 		    VDEV_ALLOC_SPARE);
3899 	if (error == 0)
3900 		error = spa_validate_aux(spa, nvroot, -1ULL,
3901 		    VDEV_ALLOC_L2CACHE);
3902 	spa_config_exit(spa, SCL_ALL, FTAG);
3903 
3904 	if (props != NULL)
3905 		spa_configfile_set(spa, props, B_FALSE);
3906 
3907 	if (error != 0 || (props && spa_writeable(spa) &&
3908 	    (error = spa_prop_set(spa, props)))) {
3909 		spa_unload(spa);
3910 		spa_deactivate(spa);
3911 		spa_remove(spa);
3912 		mutex_exit(&spa_namespace_lock);
3913 		return (error);
3914 	}
3915 
3916 	spa_async_resume(spa);
3917 
3918 	/*
3919 	 * Override any spares and level 2 cache devices as specified by
3920 	 * the user, as these may have correct device names/devids, etc.
3921 	 */
3922 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3923 	    &spares, &nspares) == 0) {
3924 		if (spa->spa_spares.sav_config)
3925 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3926 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3927 		else
3928 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3929 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3930 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3931 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3932 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3933 		spa_load_spares(spa);
3934 		spa_config_exit(spa, SCL_ALL, FTAG);
3935 		spa->spa_spares.sav_sync = B_TRUE;
3936 	}
3937 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3938 	    &l2cache, &nl2cache) == 0) {
3939 		if (spa->spa_l2cache.sav_config)
3940 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3941 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3942 		else
3943 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3944 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3945 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3946 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3947 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3948 		spa_load_l2cache(spa);
3949 		spa_config_exit(spa, SCL_ALL, FTAG);
3950 		spa->spa_l2cache.sav_sync = B_TRUE;
3951 	}
3952 
3953 	/*
3954 	 * Check for any removed devices.
3955 	 */
3956 	if (spa->spa_autoreplace) {
3957 		spa_aux_check_removed(&spa->spa_spares);
3958 		spa_aux_check_removed(&spa->spa_l2cache);
3959 	}
3960 
3961 	if (spa_writeable(spa)) {
3962 		/*
3963 		 * Update the config cache to include the newly-imported pool.
3964 		 */
3965 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3966 	}
3967 
3968 	/*
3969 	 * It's possible that the pool was expanded while it was exported.
3970 	 * We kick off an async task to handle this for us.
3971 	 */
3972 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3973 
3974 	mutex_exit(&spa_namespace_lock);
3975 	spa_history_log_version(spa, "import");
3976 
3977 	return (0);
3978 }
3979 
3980 nvlist_t *
3981 spa_tryimport(nvlist_t *tryconfig)
3982 {
3983 	nvlist_t *config = NULL;
3984 	char *poolname;
3985 	spa_t *spa;
3986 	uint64_t state;
3987 	int error;
3988 
3989 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3990 		return (NULL);
3991 
3992 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3993 		return (NULL);
3994 
3995 	/*
3996 	 * Create and initialize the spa structure.
3997 	 */
3998 	mutex_enter(&spa_namespace_lock);
3999 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4000 	spa_activate(spa, FREAD);
4001 
4002 	/*
4003 	 * Pass off the heavy lifting to spa_load().
4004 	 * Pass TRUE for mosconfig because the user-supplied config
4005 	 * is actually the one to trust when doing an import.
4006 	 */
4007 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4008 
4009 	/*
4010 	 * If 'tryconfig' was at least parsable, return the current config.
4011 	 */
4012 	if (spa->spa_root_vdev != NULL) {
4013 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4014 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4015 		    poolname) == 0);
4016 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4017 		    state) == 0);
4018 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4019 		    spa->spa_uberblock.ub_timestamp) == 0);
4020 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4021 		    spa->spa_load_info) == 0);
4022 
4023 		/*
4024 		 * If the bootfs property exists on this pool then we
4025 		 * copy it out so that external consumers can tell which
4026 		 * pools are bootable.
4027 		 */
4028 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4029 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4030 
4031 			/*
4032 			 * We have to play games with the name since the
4033 			 * pool was opened as TRYIMPORT_NAME.
4034 			 */
4035 			if (dsl_dsobj_to_dsname(spa_name(spa),
4036 			    spa->spa_bootfs, tmpname) == 0) {
4037 				char *cp;
4038 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4039 
4040 				cp = strchr(tmpname, '/');
4041 				if (cp == NULL) {
4042 					(void) strlcpy(dsname, tmpname,
4043 					    MAXPATHLEN);
4044 				} else {
4045 					(void) snprintf(dsname, MAXPATHLEN,
4046 					    "%s/%s", poolname, ++cp);
4047 				}
4048 				VERIFY(nvlist_add_string(config,
4049 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4050 				kmem_free(dsname, MAXPATHLEN);
4051 			}
4052 			kmem_free(tmpname, MAXPATHLEN);
4053 		}
4054 
4055 		/*
4056 		 * Add the list of hot spares and level 2 cache devices.
4057 		 */
4058 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4059 		spa_add_spares(spa, config);
4060 		spa_add_l2cache(spa, config);
4061 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4062 	}
4063 
4064 	spa_unload(spa);
4065 	spa_deactivate(spa);
4066 	spa_remove(spa);
4067 	mutex_exit(&spa_namespace_lock);
4068 
4069 	return (config);
4070 }
4071 
4072 /*
4073  * Pool export/destroy
4074  *
4075  * The act of destroying or exporting a pool is very simple.  We make sure there
4076  * is no more pending I/O and any references to the pool are gone.  Then, we
4077  * update the pool state and sync all the labels to disk, removing the
4078  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4079  * we don't sync the labels or remove the configuration cache.
4080  */
4081 static int
4082 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4083     boolean_t force, boolean_t hardforce)
4084 {
4085 	spa_t *spa;
4086 
4087 	if (oldconfig)
4088 		*oldconfig = NULL;
4089 
4090 	if (!(spa_mode_global & FWRITE))
4091 		return (SET_ERROR(EROFS));
4092 
4093 	mutex_enter(&spa_namespace_lock);
4094 	if ((spa = spa_lookup(pool)) == NULL) {
4095 		mutex_exit(&spa_namespace_lock);
4096 		return (SET_ERROR(ENOENT));
4097 	}
4098 
4099 	/*
4100 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4101 	 * reacquire the namespace lock, and see if we can export.
4102 	 */
4103 	spa_open_ref(spa, FTAG);
4104 	mutex_exit(&spa_namespace_lock);
4105 	spa_async_suspend(spa);
4106 	mutex_enter(&spa_namespace_lock);
4107 	spa_close(spa, FTAG);
4108 
4109 	/*
4110 	 * The pool will be in core if it's openable,
4111 	 * in which case we can modify its state.
4112 	 */
4113 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4114 		/*
4115 		 * Objsets may be open only because they're dirty, so we
4116 		 * have to force it to sync before checking spa_refcnt.
4117 		 */
4118 		txg_wait_synced(spa->spa_dsl_pool, 0);
4119 
4120 		/*
4121 		 * A pool cannot be exported or destroyed if there are active
4122 		 * references.  If we are resetting a pool, allow references by
4123 		 * fault injection handlers.
4124 		 */
4125 		if (!spa_refcount_zero(spa) ||
4126 		    (spa->spa_inject_ref != 0 &&
4127 		    new_state != POOL_STATE_UNINITIALIZED)) {
4128 			spa_async_resume(spa);
4129 			mutex_exit(&spa_namespace_lock);
4130 			return (SET_ERROR(EBUSY));
4131 		}
4132 
4133 		/*
4134 		 * A pool cannot be exported if it has an active shared spare.
4135 		 * This is to prevent other pools stealing the active spare
4136 		 * from an exported pool. At user's own will, such pool can
4137 		 * be forcedly exported.
4138 		 */
4139 		if (!force && new_state == POOL_STATE_EXPORTED &&
4140 		    spa_has_active_shared_spare(spa)) {
4141 			spa_async_resume(spa);
4142 			mutex_exit(&spa_namespace_lock);
4143 			return (SET_ERROR(EXDEV));
4144 		}
4145 
4146 		/*
4147 		 * We want this to be reflected on every label,
4148 		 * so mark them all dirty.  spa_unload() will do the
4149 		 * final sync that pushes these changes out.
4150 		 */
4151 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4152 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4153 			spa->spa_state = new_state;
4154 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4155 			    TXG_DEFER_SIZE + 1;
4156 			vdev_config_dirty(spa->spa_root_vdev);
4157 			spa_config_exit(spa, SCL_ALL, FTAG);
4158 		}
4159 	}
4160 
4161 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4162 
4163 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4164 		spa_unload(spa);
4165 		spa_deactivate(spa);
4166 	}
4167 
4168 	if (oldconfig && spa->spa_config)
4169 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4170 
4171 	if (new_state != POOL_STATE_UNINITIALIZED) {
4172 		if (!hardforce)
4173 			spa_config_sync(spa, B_TRUE, B_TRUE);
4174 		spa_remove(spa);
4175 	}
4176 	mutex_exit(&spa_namespace_lock);
4177 
4178 	return (0);
4179 }
4180 
4181 /*
4182  * Destroy a storage pool.
4183  */
4184 int
4185 spa_destroy(char *pool)
4186 {
4187 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4188 	    B_FALSE, B_FALSE));
4189 }
4190 
4191 /*
4192  * Export a storage pool.
4193  */
4194 int
4195 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4196     boolean_t hardforce)
4197 {
4198 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4199 	    force, hardforce));
4200 }
4201 
4202 /*
4203  * Similar to spa_export(), this unloads the spa_t without actually removing it
4204  * from the namespace in any way.
4205  */
4206 int
4207 spa_reset(char *pool)
4208 {
4209 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4210 	    B_FALSE, B_FALSE));
4211 }
4212 
4213 /*
4214  * ==========================================================================
4215  * Device manipulation
4216  * ==========================================================================
4217  */
4218 
4219 /*
4220  * Add a device to a storage pool.
4221  */
4222 int
4223 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4224 {
4225 	uint64_t txg, id;
4226 	int error;
4227 	vdev_t *rvd = spa->spa_root_vdev;
4228 	vdev_t *vd, *tvd;
4229 	nvlist_t **spares, **l2cache;
4230 	uint_t nspares, nl2cache;
4231 
4232 	ASSERT(spa_writeable(spa));
4233 
4234 	txg = spa_vdev_enter(spa);
4235 
4236 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4237 	    VDEV_ALLOC_ADD)) != 0)
4238 		return (spa_vdev_exit(spa, NULL, txg, error));
4239 
4240 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4241 
4242 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4243 	    &nspares) != 0)
4244 		nspares = 0;
4245 
4246 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4247 	    &nl2cache) != 0)
4248 		nl2cache = 0;
4249 
4250 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4251 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4252 
4253 	if (vd->vdev_children != 0 &&
4254 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4255 		return (spa_vdev_exit(spa, vd, txg, error));
4256 
4257 	/*
4258 	 * We must validate the spares and l2cache devices after checking the
4259 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4260 	 */
4261 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4262 		return (spa_vdev_exit(spa, vd, txg, error));
4263 
4264 	/*
4265 	 * Transfer each new top-level vdev from vd to rvd.
4266 	 */
4267 	for (int c = 0; c < vd->vdev_children; c++) {
4268 
4269 		/*
4270 		 * Set the vdev id to the first hole, if one exists.
4271 		 */
4272 		for (id = 0; id < rvd->vdev_children; id++) {
4273 			if (rvd->vdev_child[id]->vdev_ishole) {
4274 				vdev_free(rvd->vdev_child[id]);
4275 				break;
4276 			}
4277 		}
4278 		tvd = vd->vdev_child[c];
4279 		vdev_remove_child(vd, tvd);
4280 		tvd->vdev_id = id;
4281 		vdev_add_child(rvd, tvd);
4282 		vdev_config_dirty(tvd);
4283 	}
4284 
4285 	if (nspares != 0) {
4286 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4287 		    ZPOOL_CONFIG_SPARES);
4288 		spa_load_spares(spa);
4289 		spa->spa_spares.sav_sync = B_TRUE;
4290 	}
4291 
4292 	if (nl2cache != 0) {
4293 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4294 		    ZPOOL_CONFIG_L2CACHE);
4295 		spa_load_l2cache(spa);
4296 		spa->spa_l2cache.sav_sync = B_TRUE;
4297 	}
4298 
4299 	/*
4300 	 * We have to be careful when adding new vdevs to an existing pool.
4301 	 * If other threads start allocating from these vdevs before we
4302 	 * sync the config cache, and we lose power, then upon reboot we may
4303 	 * fail to open the pool because there are DVAs that the config cache
4304 	 * can't translate.  Therefore, we first add the vdevs without
4305 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4306 	 * and then let spa_config_update() initialize the new metaslabs.
4307 	 *
4308 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4309 	 * if we lose power at any point in this sequence, the remaining
4310 	 * steps will be completed the next time we load the pool.
4311 	 */
4312 	(void) spa_vdev_exit(spa, vd, txg, 0);
4313 
4314 	mutex_enter(&spa_namespace_lock);
4315 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4316 	mutex_exit(&spa_namespace_lock);
4317 
4318 	return (0);
4319 }
4320 
4321 /*
4322  * Attach a device to a mirror.  The arguments are the path to any device
4323  * in the mirror, and the nvroot for the new device.  If the path specifies
4324  * a device that is not mirrored, we automatically insert the mirror vdev.
4325  *
4326  * If 'replacing' is specified, the new device is intended to replace the
4327  * existing device; in this case the two devices are made into their own
4328  * mirror using the 'replacing' vdev, which is functionally identical to
4329  * the mirror vdev (it actually reuses all the same ops) but has a few
4330  * extra rules: you can't attach to it after it's been created, and upon
4331  * completion of resilvering, the first disk (the one being replaced)
4332  * is automatically detached.
4333  */
4334 int
4335 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4336 {
4337 	uint64_t txg, dtl_max_txg;
4338 	vdev_t *rvd = spa->spa_root_vdev;
4339 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4340 	vdev_ops_t *pvops;
4341 	char *oldvdpath, *newvdpath;
4342 	int newvd_isspare;
4343 	int error;
4344 
4345 	ASSERT(spa_writeable(spa));
4346 
4347 	txg = spa_vdev_enter(spa);
4348 
4349 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4350 
4351 	if (oldvd == NULL)
4352 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4353 
4354 	if (!oldvd->vdev_ops->vdev_op_leaf)
4355 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4356 
4357 	pvd = oldvd->vdev_parent;
4358 
4359 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4360 	    VDEV_ALLOC_ATTACH)) != 0)
4361 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4362 
4363 	if (newrootvd->vdev_children != 1)
4364 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4365 
4366 	newvd = newrootvd->vdev_child[0];
4367 
4368 	if (!newvd->vdev_ops->vdev_op_leaf)
4369 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4370 
4371 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4372 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4373 
4374 	/*
4375 	 * Spares can't replace logs
4376 	 */
4377 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4378 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4379 
4380 	if (!replacing) {
4381 		/*
4382 		 * For attach, the only allowable parent is a mirror or the root
4383 		 * vdev.
4384 		 */
4385 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4386 		    pvd->vdev_ops != &vdev_root_ops)
4387 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4388 
4389 		pvops = &vdev_mirror_ops;
4390 	} else {
4391 		/*
4392 		 * Active hot spares can only be replaced by inactive hot
4393 		 * spares.
4394 		 */
4395 		if (pvd->vdev_ops == &vdev_spare_ops &&
4396 		    oldvd->vdev_isspare &&
4397 		    !spa_has_spare(spa, newvd->vdev_guid))
4398 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4399 
4400 		/*
4401 		 * If the source is a hot spare, and the parent isn't already a
4402 		 * spare, then we want to create a new hot spare.  Otherwise, we
4403 		 * want to create a replacing vdev.  The user is not allowed to
4404 		 * attach to a spared vdev child unless the 'isspare' state is
4405 		 * the same (spare replaces spare, non-spare replaces
4406 		 * non-spare).
4407 		 */
4408 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4409 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4410 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4412 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4413 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4414 		}
4415 
4416 		if (newvd->vdev_isspare)
4417 			pvops = &vdev_spare_ops;
4418 		else
4419 			pvops = &vdev_replacing_ops;
4420 	}
4421 
4422 	/*
4423 	 * Make sure the new device is big enough.
4424 	 */
4425 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4426 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4427 
4428 	/*
4429 	 * The new device cannot have a higher alignment requirement
4430 	 * than the top-level vdev.
4431 	 */
4432 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4433 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4434 
4435 	/*
4436 	 * If this is an in-place replacement, update oldvd's path and devid
4437 	 * to make it distinguishable from newvd, and unopenable from now on.
4438 	 */
4439 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4440 		spa_strfree(oldvd->vdev_path);
4441 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4442 		    KM_SLEEP);
4443 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4444 		    newvd->vdev_path, "old");
4445 		if (oldvd->vdev_devid != NULL) {
4446 			spa_strfree(oldvd->vdev_devid);
4447 			oldvd->vdev_devid = NULL;
4448 		}
4449 	}
4450 
4451 	/* mark the device being resilvered */
4452 	newvd->vdev_resilver_txg = txg;
4453 
4454 	/*
4455 	 * If the parent is not a mirror, or if we're replacing, insert the new
4456 	 * mirror/replacing/spare vdev above oldvd.
4457 	 */
4458 	if (pvd->vdev_ops != pvops)
4459 		pvd = vdev_add_parent(oldvd, pvops);
4460 
4461 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4462 	ASSERT(pvd->vdev_ops == pvops);
4463 	ASSERT(oldvd->vdev_parent == pvd);
4464 
4465 	/*
4466 	 * Extract the new device from its root and add it to pvd.
4467 	 */
4468 	vdev_remove_child(newrootvd, newvd);
4469 	newvd->vdev_id = pvd->vdev_children;
4470 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4471 	vdev_add_child(pvd, newvd);
4472 
4473 	tvd = newvd->vdev_top;
4474 	ASSERT(pvd->vdev_top == tvd);
4475 	ASSERT(tvd->vdev_parent == rvd);
4476 
4477 	vdev_config_dirty(tvd);
4478 
4479 	/*
4480 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4481 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4482 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4483 	 */
4484 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4485 
4486 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4487 	    dtl_max_txg - TXG_INITIAL);
4488 
4489 	if (newvd->vdev_isspare) {
4490 		spa_spare_activate(newvd);
4491 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4492 	}
4493 
4494 	oldvdpath = spa_strdup(oldvd->vdev_path);
4495 	newvdpath = spa_strdup(newvd->vdev_path);
4496 	newvd_isspare = newvd->vdev_isspare;
4497 
4498 	/*
4499 	 * Mark newvd's DTL dirty in this txg.
4500 	 */
4501 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4502 
4503 	/*
4504 	 * Restart the resilver
4505 	 */
4506 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4507 
4508 	/*
4509 	 * Commit the config
4510 	 */
4511 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4512 
4513 	spa_history_log_internal(spa, "vdev attach", NULL,
4514 	    "%s vdev=%s %s vdev=%s",
4515 	    replacing && newvd_isspare ? "spare in" :
4516 	    replacing ? "replace" : "attach", newvdpath,
4517 	    replacing ? "for" : "to", oldvdpath);
4518 
4519 	spa_strfree(oldvdpath);
4520 	spa_strfree(newvdpath);
4521 
4522 	if (spa->spa_bootfs)
4523 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4524 
4525 	return (0);
4526 }
4527 
4528 /*
4529  * Detach a device from a mirror or replacing vdev.
4530  *
4531  * If 'replace_done' is specified, only detach if the parent
4532  * is a replacing vdev.
4533  */
4534 int
4535 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4536 {
4537 	uint64_t txg;
4538 	int error;
4539 	vdev_t *rvd = spa->spa_root_vdev;
4540 	vdev_t *vd, *pvd, *cvd, *tvd;
4541 	boolean_t unspare = B_FALSE;
4542 	uint64_t unspare_guid = 0;
4543 	char *vdpath;
4544 
4545 	ASSERT(spa_writeable(spa));
4546 
4547 	txg = spa_vdev_enter(spa);
4548 
4549 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4550 
4551 	if (vd == NULL)
4552 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4553 
4554 	if (!vd->vdev_ops->vdev_op_leaf)
4555 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4556 
4557 	pvd = vd->vdev_parent;
4558 
4559 	/*
4560 	 * If the parent/child relationship is not as expected, don't do it.
4561 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4562 	 * vdev that's replacing B with C.  The user's intent in replacing
4563 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4564 	 * the replace by detaching C, the expected behavior is to end up
4565 	 * M(A,B).  But suppose that right after deciding to detach C,
4566 	 * the replacement of B completes.  We would have M(A,C), and then
4567 	 * ask to detach C, which would leave us with just A -- not what
4568 	 * the user wanted.  To prevent this, we make sure that the
4569 	 * parent/child relationship hasn't changed -- in this example,
4570 	 * that C's parent is still the replacing vdev R.
4571 	 */
4572 	if (pvd->vdev_guid != pguid && pguid != 0)
4573 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4574 
4575 	/*
4576 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4577 	 */
4578 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4579 	    pvd->vdev_ops != &vdev_spare_ops)
4580 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4581 
4582 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4583 	    spa_version(spa) >= SPA_VERSION_SPARES);
4584 
4585 	/*
4586 	 * Only mirror, replacing, and spare vdevs support detach.
4587 	 */
4588 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4589 	    pvd->vdev_ops != &vdev_mirror_ops &&
4590 	    pvd->vdev_ops != &vdev_spare_ops)
4591 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4592 
4593 	/*
4594 	 * If this device has the only valid copy of some data,
4595 	 * we cannot safely detach it.
4596 	 */
4597 	if (vdev_dtl_required(vd))
4598 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4599 
4600 	ASSERT(pvd->vdev_children >= 2);
4601 
4602 	/*
4603 	 * If we are detaching the second disk from a replacing vdev, then
4604 	 * check to see if we changed the original vdev's path to have "/old"
4605 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4606 	 */
4607 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4608 	    vd->vdev_path != NULL) {
4609 		size_t len = strlen(vd->vdev_path);
4610 
4611 		for (int c = 0; c < pvd->vdev_children; c++) {
4612 			cvd = pvd->vdev_child[c];
4613 
4614 			if (cvd == vd || cvd->vdev_path == NULL)
4615 				continue;
4616 
4617 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4618 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4619 				spa_strfree(cvd->vdev_path);
4620 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4621 				break;
4622 			}
4623 		}
4624 	}
4625 
4626 	/*
4627 	 * If we are detaching the original disk from a spare, then it implies
4628 	 * that the spare should become a real disk, and be removed from the
4629 	 * active spare list for the pool.
4630 	 */
4631 	if (pvd->vdev_ops == &vdev_spare_ops &&
4632 	    vd->vdev_id == 0 &&
4633 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4634 		unspare = B_TRUE;
4635 
4636 	/*
4637 	 * Erase the disk labels so the disk can be used for other things.
4638 	 * This must be done after all other error cases are handled,
4639 	 * but before we disembowel vd (so we can still do I/O to it).
4640 	 * But if we can't do it, don't treat the error as fatal --
4641 	 * it may be that the unwritability of the disk is the reason
4642 	 * it's being detached!
4643 	 */
4644 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4645 
4646 	/*
4647 	 * Remove vd from its parent and compact the parent's children.
4648 	 */
4649 	vdev_remove_child(pvd, vd);
4650 	vdev_compact_children(pvd);
4651 
4652 	/*
4653 	 * Remember one of the remaining children so we can get tvd below.
4654 	 */
4655 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4656 
4657 	/*
4658 	 * If we need to remove the remaining child from the list of hot spares,
4659 	 * do it now, marking the vdev as no longer a spare in the process.
4660 	 * We must do this before vdev_remove_parent(), because that can
4661 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4662 	 * reason, we must remove the spare now, in the same txg as the detach;
4663 	 * otherwise someone could attach a new sibling, change the GUID, and
4664 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4665 	 */
4666 	if (unspare) {
4667 		ASSERT(cvd->vdev_isspare);
4668 		spa_spare_remove(cvd);
4669 		unspare_guid = cvd->vdev_guid;
4670 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4671 		cvd->vdev_unspare = B_TRUE;
4672 	}
4673 
4674 	/*
4675 	 * If the parent mirror/replacing vdev only has one child,
4676 	 * the parent is no longer needed.  Remove it from the tree.
4677 	 */
4678 	if (pvd->vdev_children == 1) {
4679 		if (pvd->vdev_ops == &vdev_spare_ops)
4680 			cvd->vdev_unspare = B_FALSE;
4681 		vdev_remove_parent(cvd);
4682 	}
4683 
4684 
4685 	/*
4686 	 * We don't set tvd until now because the parent we just removed
4687 	 * may have been the previous top-level vdev.
4688 	 */
4689 	tvd = cvd->vdev_top;
4690 	ASSERT(tvd->vdev_parent == rvd);
4691 
4692 	/*
4693 	 * Reevaluate the parent vdev state.
4694 	 */
4695 	vdev_propagate_state(cvd);
4696 
4697 	/*
4698 	 * If the 'autoexpand' property is set on the pool then automatically
4699 	 * try to expand the size of the pool. For example if the device we
4700 	 * just detached was smaller than the others, it may be possible to
4701 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4702 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4703 	 */
4704 	if (spa->spa_autoexpand) {
4705 		vdev_reopen(tvd);
4706 		vdev_expand(tvd, txg);
4707 	}
4708 
4709 	vdev_config_dirty(tvd);
4710 
4711 	/*
4712 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4713 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4714 	 * But first make sure we're not on any *other* txg's DTL list, to
4715 	 * prevent vd from being accessed after it's freed.
4716 	 */
4717 	vdpath = spa_strdup(vd->vdev_path);
4718 	for (int t = 0; t < TXG_SIZE; t++)
4719 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4720 	vd->vdev_detached = B_TRUE;
4721 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4722 
4723 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4724 
4725 	/* hang on to the spa before we release the lock */
4726 	spa_open_ref(spa, FTAG);
4727 
4728 	error = spa_vdev_exit(spa, vd, txg, 0);
4729 
4730 	spa_history_log_internal(spa, "detach", NULL,
4731 	    "vdev=%s", vdpath);
4732 	spa_strfree(vdpath);
4733 
4734 	/*
4735 	 * If this was the removal of the original device in a hot spare vdev,
4736 	 * then we want to go through and remove the device from the hot spare
4737 	 * list of every other pool.
4738 	 */
4739 	if (unspare) {
4740 		spa_t *altspa = NULL;
4741 
4742 		mutex_enter(&spa_namespace_lock);
4743 		while ((altspa = spa_next(altspa)) != NULL) {
4744 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4745 			    altspa == spa)
4746 				continue;
4747 
4748 			spa_open_ref(altspa, FTAG);
4749 			mutex_exit(&spa_namespace_lock);
4750 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4751 			mutex_enter(&spa_namespace_lock);
4752 			spa_close(altspa, FTAG);
4753 		}
4754 		mutex_exit(&spa_namespace_lock);
4755 
4756 		/* search the rest of the vdevs for spares to remove */
4757 		spa_vdev_resilver_done(spa);
4758 	}
4759 
4760 	/* all done with the spa; OK to release */
4761 	mutex_enter(&spa_namespace_lock);
4762 	spa_close(spa, FTAG);
4763 	mutex_exit(&spa_namespace_lock);
4764 
4765 	return (error);
4766 }
4767 
4768 /*
4769  * Split a set of devices from their mirrors, and create a new pool from them.
4770  */
4771 int
4772 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4773     nvlist_t *props, boolean_t exp)
4774 {
4775 	int error = 0;
4776 	uint64_t txg, *glist;
4777 	spa_t *newspa;
4778 	uint_t c, children, lastlog;
4779 	nvlist_t **child, *nvl, *tmp;
4780 	dmu_tx_t *tx;
4781 	char *altroot = NULL;
4782 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4783 	boolean_t activate_slog;
4784 
4785 	ASSERT(spa_writeable(spa));
4786 
4787 	txg = spa_vdev_enter(spa);
4788 
4789 	/* clear the log and flush everything up to now */
4790 	activate_slog = spa_passivate_log(spa);
4791 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4792 	error = spa_offline_log(spa);
4793 	txg = spa_vdev_config_enter(spa);
4794 
4795 	if (activate_slog)
4796 		spa_activate_log(spa);
4797 
4798 	if (error != 0)
4799 		return (spa_vdev_exit(spa, NULL, txg, error));
4800 
4801 	/* check new spa name before going any further */
4802 	if (spa_lookup(newname) != NULL)
4803 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4804 
4805 	/*
4806 	 * scan through all the children to ensure they're all mirrors
4807 	 */
4808 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4809 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4810 	    &children) != 0)
4811 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4812 
4813 	/* first, check to ensure we've got the right child count */
4814 	rvd = spa->spa_root_vdev;
4815 	lastlog = 0;
4816 	for (c = 0; c < rvd->vdev_children; c++) {
4817 		vdev_t *vd = rvd->vdev_child[c];
4818 
4819 		/* don't count the holes & logs as children */
4820 		if (vd->vdev_islog || vd->vdev_ishole) {
4821 			if (lastlog == 0)
4822 				lastlog = c;
4823 			continue;
4824 		}
4825 
4826 		lastlog = 0;
4827 	}
4828 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4829 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4830 
4831 	/* next, ensure no spare or cache devices are part of the split */
4832 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4833 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4834 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4835 
4836 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4837 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4838 
4839 	/* then, loop over each vdev and validate it */
4840 	for (c = 0; c < children; c++) {
4841 		uint64_t is_hole = 0;
4842 
4843 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4844 		    &is_hole);
4845 
4846 		if (is_hole != 0) {
4847 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4848 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4849 				continue;
4850 			} else {
4851 				error = SET_ERROR(EINVAL);
4852 				break;
4853 			}
4854 		}
4855 
4856 		/* which disk is going to be split? */
4857 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4858 		    &glist[c]) != 0) {
4859 			error = SET_ERROR(EINVAL);
4860 			break;
4861 		}
4862 
4863 		/* look it up in the spa */
4864 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4865 		if (vml[c] == NULL) {
4866 			error = SET_ERROR(ENODEV);
4867 			break;
4868 		}
4869 
4870 		/* make sure there's nothing stopping the split */
4871 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4872 		    vml[c]->vdev_islog ||
4873 		    vml[c]->vdev_ishole ||
4874 		    vml[c]->vdev_isspare ||
4875 		    vml[c]->vdev_isl2cache ||
4876 		    !vdev_writeable(vml[c]) ||
4877 		    vml[c]->vdev_children != 0 ||
4878 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4879 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4880 			error = SET_ERROR(EINVAL);
4881 			break;
4882 		}
4883 
4884 		if (vdev_dtl_required(vml[c])) {
4885 			error = SET_ERROR(EBUSY);
4886 			break;
4887 		}
4888 
4889 		/* we need certain info from the top level */
4890 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4891 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4892 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4893 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4894 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4895 		    vml[c]->vdev_top->vdev_asize) == 0);
4896 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4897 		    vml[c]->vdev_top->vdev_ashift) == 0);
4898 	}
4899 
4900 	if (error != 0) {
4901 		kmem_free(vml, children * sizeof (vdev_t *));
4902 		kmem_free(glist, children * sizeof (uint64_t));
4903 		return (spa_vdev_exit(spa, NULL, txg, error));
4904 	}
4905 
4906 	/* stop writers from using the disks */
4907 	for (c = 0; c < children; c++) {
4908 		if (vml[c] != NULL)
4909 			vml[c]->vdev_offline = B_TRUE;
4910 	}
4911 	vdev_reopen(spa->spa_root_vdev);
4912 
4913 	/*
4914 	 * Temporarily record the splitting vdevs in the spa config.  This
4915 	 * will disappear once the config is regenerated.
4916 	 */
4917 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4918 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4919 	    glist, children) == 0);
4920 	kmem_free(glist, children * sizeof (uint64_t));
4921 
4922 	mutex_enter(&spa->spa_props_lock);
4923 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4924 	    nvl) == 0);
4925 	mutex_exit(&spa->spa_props_lock);
4926 	spa->spa_config_splitting = nvl;
4927 	vdev_config_dirty(spa->spa_root_vdev);
4928 
4929 	/* configure and create the new pool */
4930 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4931 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4932 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4933 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4934 	    spa_version(spa)) == 0);
4935 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4936 	    spa->spa_config_txg) == 0);
4937 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4938 	    spa_generate_guid(NULL)) == 0);
4939 	(void) nvlist_lookup_string(props,
4940 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4941 
4942 	/* add the new pool to the namespace */
4943 	newspa = spa_add(newname, config, altroot);
4944 	newspa->spa_config_txg = spa->spa_config_txg;
4945 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4946 
4947 	/* release the spa config lock, retaining the namespace lock */
4948 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4949 
4950 	if (zio_injection_enabled)
4951 		zio_handle_panic_injection(spa, FTAG, 1);
4952 
4953 	spa_activate(newspa, spa_mode_global);
4954 	spa_async_suspend(newspa);
4955 
4956 	/* create the new pool from the disks of the original pool */
4957 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4958 	if (error)
4959 		goto out;
4960 
4961 	/* if that worked, generate a real config for the new pool */
4962 	if (newspa->spa_root_vdev != NULL) {
4963 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4964 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4965 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4966 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4967 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4968 		    B_TRUE));
4969 	}
4970 
4971 	/* set the props */
4972 	if (props != NULL) {
4973 		spa_configfile_set(newspa, props, B_FALSE);
4974 		error = spa_prop_set(newspa, props);
4975 		if (error)
4976 			goto out;
4977 	}
4978 
4979 	/* flush everything */
4980 	txg = spa_vdev_config_enter(newspa);
4981 	vdev_config_dirty(newspa->spa_root_vdev);
4982 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4983 
4984 	if (zio_injection_enabled)
4985 		zio_handle_panic_injection(spa, FTAG, 2);
4986 
4987 	spa_async_resume(newspa);
4988 
4989 	/* finally, update the original pool's config */
4990 	txg = spa_vdev_config_enter(spa);
4991 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4992 	error = dmu_tx_assign(tx, TXG_WAIT);
4993 	if (error != 0)
4994 		dmu_tx_abort(tx);
4995 	for (c = 0; c < children; c++) {
4996 		if (vml[c] != NULL) {
4997 			vdev_split(vml[c]);
4998 			if (error == 0)
4999 				spa_history_log_internal(spa, "detach", tx,
5000 				    "vdev=%s", vml[c]->vdev_path);
5001 			vdev_free(vml[c]);
5002 		}
5003 	}
5004 	vdev_config_dirty(spa->spa_root_vdev);
5005 	spa->spa_config_splitting = NULL;
5006 	nvlist_free(nvl);
5007 	if (error == 0)
5008 		dmu_tx_commit(tx);
5009 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5010 
5011 	if (zio_injection_enabled)
5012 		zio_handle_panic_injection(spa, FTAG, 3);
5013 
5014 	/* split is complete; log a history record */
5015 	spa_history_log_internal(newspa, "split", NULL,
5016 	    "from pool %s", spa_name(spa));
5017 
5018 	kmem_free(vml, children * sizeof (vdev_t *));
5019 
5020 	/* if we're not going to mount the filesystems in userland, export */
5021 	if (exp)
5022 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5023 		    B_FALSE, B_FALSE);
5024 
5025 	return (error);
5026 
5027 out:
5028 	spa_unload(newspa);
5029 	spa_deactivate(newspa);
5030 	spa_remove(newspa);
5031 
5032 	txg = spa_vdev_config_enter(spa);
5033 
5034 	/* re-online all offlined disks */
5035 	for (c = 0; c < children; c++) {
5036 		if (vml[c] != NULL)
5037 			vml[c]->vdev_offline = B_FALSE;
5038 	}
5039 	vdev_reopen(spa->spa_root_vdev);
5040 
5041 	nvlist_free(spa->spa_config_splitting);
5042 	spa->spa_config_splitting = NULL;
5043 	(void) spa_vdev_exit(spa, NULL, txg, error);
5044 
5045 	kmem_free(vml, children * sizeof (vdev_t *));
5046 	return (error);
5047 }
5048 
5049 static nvlist_t *
5050 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5051 {
5052 	for (int i = 0; i < count; i++) {
5053 		uint64_t guid;
5054 
5055 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5056 		    &guid) == 0);
5057 
5058 		if (guid == target_guid)
5059 			return (nvpp[i]);
5060 	}
5061 
5062 	return (NULL);
5063 }
5064 
5065 static void
5066 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5067 	nvlist_t *dev_to_remove)
5068 {
5069 	nvlist_t **newdev = NULL;
5070 
5071 	if (count > 1)
5072 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5073 
5074 	for (int i = 0, j = 0; i < count; i++) {
5075 		if (dev[i] == dev_to_remove)
5076 			continue;
5077 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5078 	}
5079 
5080 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5081 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5082 
5083 	for (int i = 0; i < count - 1; i++)
5084 		nvlist_free(newdev[i]);
5085 
5086 	if (count > 1)
5087 		kmem_free(newdev, (count - 1) * sizeof (void *));
5088 }
5089 
5090 /*
5091  * Evacuate the device.
5092  */
5093 static int
5094 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5095 {
5096 	uint64_t txg;
5097 	int error = 0;
5098 
5099 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5100 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5101 	ASSERT(vd == vd->vdev_top);
5102 
5103 	/*
5104 	 * Evacuate the device.  We don't hold the config lock as writer
5105 	 * since we need to do I/O but we do keep the
5106 	 * spa_namespace_lock held.  Once this completes the device
5107 	 * should no longer have any blocks allocated on it.
5108 	 */
5109 	if (vd->vdev_islog) {
5110 		if (vd->vdev_stat.vs_alloc != 0)
5111 			error = spa_offline_log(spa);
5112 	} else {
5113 		error = SET_ERROR(ENOTSUP);
5114 	}
5115 
5116 	if (error)
5117 		return (error);
5118 
5119 	/*
5120 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5121 	 * associated with this vdev, and wait for these changes to sync.
5122 	 */
5123 	ASSERT0(vd->vdev_stat.vs_alloc);
5124 	txg = spa_vdev_config_enter(spa);
5125 	vd->vdev_removing = B_TRUE;
5126 	vdev_dirty(vd, 0, NULL, txg);
5127 	vdev_config_dirty(vd);
5128 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5129 
5130 	return (0);
5131 }
5132 
5133 /*
5134  * Complete the removal by cleaning up the namespace.
5135  */
5136 static void
5137 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5138 {
5139 	vdev_t *rvd = spa->spa_root_vdev;
5140 	uint64_t id = vd->vdev_id;
5141 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5142 
5143 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5144 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5145 	ASSERT(vd == vd->vdev_top);
5146 
5147 	/*
5148 	 * Only remove any devices which are empty.
5149 	 */
5150 	if (vd->vdev_stat.vs_alloc != 0)
5151 		return;
5152 
5153 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5154 
5155 	if (list_link_active(&vd->vdev_state_dirty_node))
5156 		vdev_state_clean(vd);
5157 	if (list_link_active(&vd->vdev_config_dirty_node))
5158 		vdev_config_clean(vd);
5159 
5160 	vdev_free(vd);
5161 
5162 	if (last_vdev) {
5163 		vdev_compact_children(rvd);
5164 	} else {
5165 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5166 		vdev_add_child(rvd, vd);
5167 	}
5168 	vdev_config_dirty(rvd);
5169 
5170 	/*
5171 	 * Reassess the health of our root vdev.
5172 	 */
5173 	vdev_reopen(rvd);
5174 }
5175 
5176 /*
5177  * Remove a device from the pool -
5178  *
5179  * Removing a device from the vdev namespace requires several steps
5180  * and can take a significant amount of time.  As a result we use
5181  * the spa_vdev_config_[enter/exit] functions which allow us to
5182  * grab and release the spa_config_lock while still holding the namespace
5183  * lock.  During each step the configuration is synced out.
5184  *
5185  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5186  * devices.
5187  */
5188 int
5189 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5190 {
5191 	vdev_t *vd;
5192 	metaslab_group_t *mg;
5193 	nvlist_t **spares, **l2cache, *nv;
5194 	uint64_t txg = 0;
5195 	uint_t nspares, nl2cache;
5196 	int error = 0;
5197 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5198 
5199 	ASSERT(spa_writeable(spa));
5200 
5201 	if (!locked)
5202 		txg = spa_vdev_enter(spa);
5203 
5204 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5205 
5206 	if (spa->spa_spares.sav_vdevs != NULL &&
5207 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5208 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5209 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5210 		/*
5211 		 * Only remove the hot spare if it's not currently in use
5212 		 * in this pool.
5213 		 */
5214 		if (vd == NULL || unspare) {
5215 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5216 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5217 			spa_load_spares(spa);
5218 			spa->spa_spares.sav_sync = B_TRUE;
5219 		} else {
5220 			error = SET_ERROR(EBUSY);
5221 		}
5222 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5223 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5224 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5225 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5226 		/*
5227 		 * Cache devices can always be removed.
5228 		 */
5229 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5230 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5231 		spa_load_l2cache(spa);
5232 		spa->spa_l2cache.sav_sync = B_TRUE;
5233 	} else if (vd != NULL && vd->vdev_islog) {
5234 		ASSERT(!locked);
5235 		ASSERT(vd == vd->vdev_top);
5236 
5237 		/*
5238 		 * XXX - Once we have bp-rewrite this should
5239 		 * become the common case.
5240 		 */
5241 
5242 		mg = vd->vdev_mg;
5243 
5244 		/*
5245 		 * Stop allocating from this vdev.
5246 		 */
5247 		metaslab_group_passivate(mg);
5248 
5249 		/*
5250 		 * Wait for the youngest allocations and frees to sync,
5251 		 * and then wait for the deferral of those frees to finish.
5252 		 */
5253 		spa_vdev_config_exit(spa, NULL,
5254 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5255 
5256 		/*
5257 		 * Attempt to evacuate the vdev.
5258 		 */
5259 		error = spa_vdev_remove_evacuate(spa, vd);
5260 
5261 		txg = spa_vdev_config_enter(spa);
5262 
5263 		/*
5264 		 * If we couldn't evacuate the vdev, unwind.
5265 		 */
5266 		if (error) {
5267 			metaslab_group_activate(mg);
5268 			return (spa_vdev_exit(spa, NULL, txg, error));
5269 		}
5270 
5271 		/*
5272 		 * Clean up the vdev namespace.
5273 		 */
5274 		spa_vdev_remove_from_namespace(spa, vd);
5275 
5276 	} else if (vd != NULL) {
5277 		/*
5278 		 * Normal vdevs cannot be removed (yet).
5279 		 */
5280 		error = SET_ERROR(ENOTSUP);
5281 	} else {
5282 		/*
5283 		 * There is no vdev of any kind with the specified guid.
5284 		 */
5285 		error = SET_ERROR(ENOENT);
5286 	}
5287 
5288 	if (!locked)
5289 		return (spa_vdev_exit(spa, NULL, txg, error));
5290 
5291 	return (error);
5292 }
5293 
5294 /*
5295  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5296  * currently spared, so we can detach it.
5297  */
5298 static vdev_t *
5299 spa_vdev_resilver_done_hunt(vdev_t *vd)
5300 {
5301 	vdev_t *newvd, *oldvd;
5302 
5303 	for (int c = 0; c < vd->vdev_children; c++) {
5304 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5305 		if (oldvd != NULL)
5306 			return (oldvd);
5307 	}
5308 
5309 	/*
5310 	 * Check for a completed replacement.  We always consider the first
5311 	 * vdev in the list to be the oldest vdev, and the last one to be
5312 	 * the newest (see spa_vdev_attach() for how that works).  In
5313 	 * the case where the newest vdev is faulted, we will not automatically
5314 	 * remove it after a resilver completes.  This is OK as it will require
5315 	 * user intervention to determine which disk the admin wishes to keep.
5316 	 */
5317 	if (vd->vdev_ops == &vdev_replacing_ops) {
5318 		ASSERT(vd->vdev_children > 1);
5319 
5320 		newvd = vd->vdev_child[vd->vdev_children - 1];
5321 		oldvd = vd->vdev_child[0];
5322 
5323 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5324 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5325 		    !vdev_dtl_required(oldvd))
5326 			return (oldvd);
5327 	}
5328 
5329 	/*
5330 	 * Check for a completed resilver with the 'unspare' flag set.
5331 	 */
5332 	if (vd->vdev_ops == &vdev_spare_ops) {
5333 		vdev_t *first = vd->vdev_child[0];
5334 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5335 
5336 		if (last->vdev_unspare) {
5337 			oldvd = first;
5338 			newvd = last;
5339 		} else if (first->vdev_unspare) {
5340 			oldvd = last;
5341 			newvd = first;
5342 		} else {
5343 			oldvd = NULL;
5344 		}
5345 
5346 		if (oldvd != NULL &&
5347 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5348 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5349 		    !vdev_dtl_required(oldvd))
5350 			return (oldvd);
5351 
5352 		/*
5353 		 * If there are more than two spares attached to a disk,
5354 		 * and those spares are not required, then we want to
5355 		 * attempt to free them up now so that they can be used
5356 		 * by other pools.  Once we're back down to a single
5357 		 * disk+spare, we stop removing them.
5358 		 */
5359 		if (vd->vdev_children > 2) {
5360 			newvd = vd->vdev_child[1];
5361 
5362 			if (newvd->vdev_isspare && last->vdev_isspare &&
5363 			    vdev_dtl_empty(last, DTL_MISSING) &&
5364 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5365 			    !vdev_dtl_required(newvd))
5366 				return (newvd);
5367 		}
5368 	}
5369 
5370 	return (NULL);
5371 }
5372 
5373 static void
5374 spa_vdev_resilver_done(spa_t *spa)
5375 {
5376 	vdev_t *vd, *pvd, *ppvd;
5377 	uint64_t guid, sguid, pguid, ppguid;
5378 
5379 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5380 
5381 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5382 		pvd = vd->vdev_parent;
5383 		ppvd = pvd->vdev_parent;
5384 		guid = vd->vdev_guid;
5385 		pguid = pvd->vdev_guid;
5386 		ppguid = ppvd->vdev_guid;
5387 		sguid = 0;
5388 		/*
5389 		 * If we have just finished replacing a hot spared device, then
5390 		 * we need to detach the parent's first child (the original hot
5391 		 * spare) as well.
5392 		 */
5393 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5394 		    ppvd->vdev_children == 2) {
5395 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5396 			sguid = ppvd->vdev_child[1]->vdev_guid;
5397 		}
5398 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5399 
5400 		spa_config_exit(spa, SCL_ALL, FTAG);
5401 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5402 			return;
5403 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5404 			return;
5405 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 	}
5407 
5408 	spa_config_exit(spa, SCL_ALL, FTAG);
5409 }
5410 
5411 /*
5412  * Update the stored path or FRU for this vdev.
5413  */
5414 int
5415 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5416     boolean_t ispath)
5417 {
5418 	vdev_t *vd;
5419 	boolean_t sync = B_FALSE;
5420 
5421 	ASSERT(spa_writeable(spa));
5422 
5423 	spa_vdev_state_enter(spa, SCL_ALL);
5424 
5425 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5426 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5427 
5428 	if (!vd->vdev_ops->vdev_op_leaf)
5429 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5430 
5431 	if (ispath) {
5432 		if (strcmp(value, vd->vdev_path) != 0) {
5433 			spa_strfree(vd->vdev_path);
5434 			vd->vdev_path = spa_strdup(value);
5435 			sync = B_TRUE;
5436 		}
5437 	} else {
5438 		if (vd->vdev_fru == NULL) {
5439 			vd->vdev_fru = spa_strdup(value);
5440 			sync = B_TRUE;
5441 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5442 			spa_strfree(vd->vdev_fru);
5443 			vd->vdev_fru = spa_strdup(value);
5444 			sync = B_TRUE;
5445 		}
5446 	}
5447 
5448 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5449 }
5450 
5451 int
5452 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5453 {
5454 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5455 }
5456 
5457 int
5458 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5459 {
5460 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5461 }
5462 
5463 /*
5464  * ==========================================================================
5465  * SPA Scanning
5466  * ==========================================================================
5467  */
5468 
5469 int
5470 spa_scan_stop(spa_t *spa)
5471 {
5472 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5473 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5474 		return (SET_ERROR(EBUSY));
5475 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5476 }
5477 
5478 int
5479 spa_scan(spa_t *spa, pool_scan_func_t func)
5480 {
5481 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5482 
5483 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5484 		return (SET_ERROR(ENOTSUP));
5485 
5486 	/*
5487 	 * If a resilver was requested, but there is no DTL on a
5488 	 * writeable leaf device, we have nothing to do.
5489 	 */
5490 	if (func == POOL_SCAN_RESILVER &&
5491 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5492 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5493 		return (0);
5494 	}
5495 
5496 	return (dsl_scan(spa->spa_dsl_pool, func));
5497 }
5498 
5499 /*
5500  * ==========================================================================
5501  * SPA async task processing
5502  * ==========================================================================
5503  */
5504 
5505 static void
5506 spa_async_remove(spa_t *spa, vdev_t *vd)
5507 {
5508 	if (vd->vdev_remove_wanted) {
5509 		vd->vdev_remove_wanted = B_FALSE;
5510 		vd->vdev_delayed_close = B_FALSE;
5511 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5512 
5513 		/*
5514 		 * We want to clear the stats, but we don't want to do a full
5515 		 * vdev_clear() as that will cause us to throw away
5516 		 * degraded/faulted state as well as attempt to reopen the
5517 		 * device, all of which is a waste.
5518 		 */
5519 		vd->vdev_stat.vs_read_errors = 0;
5520 		vd->vdev_stat.vs_write_errors = 0;
5521 		vd->vdev_stat.vs_checksum_errors = 0;
5522 
5523 		vdev_state_dirty(vd->vdev_top);
5524 	}
5525 
5526 	for (int c = 0; c < vd->vdev_children; c++)
5527 		spa_async_remove(spa, vd->vdev_child[c]);
5528 }
5529 
5530 static void
5531 spa_async_probe(spa_t *spa, vdev_t *vd)
5532 {
5533 	if (vd->vdev_probe_wanted) {
5534 		vd->vdev_probe_wanted = B_FALSE;
5535 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5536 	}
5537 
5538 	for (int c = 0; c < vd->vdev_children; c++)
5539 		spa_async_probe(spa, vd->vdev_child[c]);
5540 }
5541 
5542 static void
5543 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5544 {
5545 	sysevent_id_t eid;
5546 	nvlist_t *attr;
5547 	char *physpath;
5548 
5549 	if (!spa->spa_autoexpand)
5550 		return;
5551 
5552 	for (int c = 0; c < vd->vdev_children; c++) {
5553 		vdev_t *cvd = vd->vdev_child[c];
5554 		spa_async_autoexpand(spa, cvd);
5555 	}
5556 
5557 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5558 		return;
5559 
5560 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5561 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5562 
5563 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5564 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5565 
5566 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5567 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5568 
5569 	nvlist_free(attr);
5570 	kmem_free(physpath, MAXPATHLEN);
5571 }
5572 
5573 static void
5574 spa_async_thread(spa_t *spa)
5575 {
5576 	int tasks;
5577 
5578 	ASSERT(spa->spa_sync_on);
5579 
5580 	mutex_enter(&spa->spa_async_lock);
5581 	tasks = spa->spa_async_tasks;
5582 	spa->spa_async_tasks = 0;
5583 	mutex_exit(&spa->spa_async_lock);
5584 
5585 	/*
5586 	 * See if the config needs to be updated.
5587 	 */
5588 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5589 		uint64_t old_space, new_space;
5590 
5591 		mutex_enter(&spa_namespace_lock);
5592 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5593 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5594 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5595 		mutex_exit(&spa_namespace_lock);
5596 
5597 		/*
5598 		 * If the pool grew as a result of the config update,
5599 		 * then log an internal history event.
5600 		 */
5601 		if (new_space != old_space) {
5602 			spa_history_log_internal(spa, "vdev online", NULL,
5603 			    "pool '%s' size: %llu(+%llu)",
5604 			    spa_name(spa), new_space, new_space - old_space);
5605 		}
5606 	}
5607 
5608 	/*
5609 	 * See if any devices need to be marked REMOVED.
5610 	 */
5611 	if (tasks & SPA_ASYNC_REMOVE) {
5612 		spa_vdev_state_enter(spa, SCL_NONE);
5613 		spa_async_remove(spa, spa->spa_root_vdev);
5614 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5615 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5616 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5617 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5618 		(void) spa_vdev_state_exit(spa, NULL, 0);
5619 	}
5620 
5621 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5622 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5623 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5624 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5625 	}
5626 
5627 	/*
5628 	 * See if any devices need to be probed.
5629 	 */
5630 	if (tasks & SPA_ASYNC_PROBE) {
5631 		spa_vdev_state_enter(spa, SCL_NONE);
5632 		spa_async_probe(spa, spa->spa_root_vdev);
5633 		(void) spa_vdev_state_exit(spa, NULL, 0);
5634 	}
5635 
5636 	/*
5637 	 * If any devices are done replacing, detach them.
5638 	 */
5639 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5640 		spa_vdev_resilver_done(spa);
5641 
5642 	/*
5643 	 * Kick off a resilver.
5644 	 */
5645 	if (tasks & SPA_ASYNC_RESILVER)
5646 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5647 
5648 	/*
5649 	 * Let the world know that we're done.
5650 	 */
5651 	mutex_enter(&spa->spa_async_lock);
5652 	spa->spa_async_thread = NULL;
5653 	cv_broadcast(&spa->spa_async_cv);
5654 	mutex_exit(&spa->spa_async_lock);
5655 	thread_exit();
5656 }
5657 
5658 void
5659 spa_async_suspend(spa_t *spa)
5660 {
5661 	mutex_enter(&spa->spa_async_lock);
5662 	spa->spa_async_suspended++;
5663 	while (spa->spa_async_thread != NULL)
5664 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5665 	mutex_exit(&spa->spa_async_lock);
5666 }
5667 
5668 void
5669 spa_async_resume(spa_t *spa)
5670 {
5671 	mutex_enter(&spa->spa_async_lock);
5672 	ASSERT(spa->spa_async_suspended != 0);
5673 	spa->spa_async_suspended--;
5674 	mutex_exit(&spa->spa_async_lock);
5675 }
5676 
5677 static boolean_t
5678 spa_async_tasks_pending(spa_t *spa)
5679 {
5680 	uint_t non_config_tasks;
5681 	uint_t config_task;
5682 	boolean_t config_task_suspended;
5683 
5684 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5685 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5686 	if (spa->spa_ccw_fail_time == 0) {
5687 		config_task_suspended = B_FALSE;
5688 	} else {
5689 		config_task_suspended =
5690 		    (gethrtime() - spa->spa_ccw_fail_time) <
5691 		    (zfs_ccw_retry_interval * NANOSEC);
5692 	}
5693 
5694 	return (non_config_tasks || (config_task && !config_task_suspended));
5695 }
5696 
5697 static void
5698 spa_async_dispatch(spa_t *spa)
5699 {
5700 	mutex_enter(&spa->spa_async_lock);
5701 	if (spa_async_tasks_pending(spa) &&
5702 	    !spa->spa_async_suspended &&
5703 	    spa->spa_async_thread == NULL &&
5704 	    rootdir != NULL)
5705 		spa->spa_async_thread = thread_create(NULL, 0,
5706 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5707 	mutex_exit(&spa->spa_async_lock);
5708 }
5709 
5710 void
5711 spa_async_request(spa_t *spa, int task)
5712 {
5713 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5714 	mutex_enter(&spa->spa_async_lock);
5715 	spa->spa_async_tasks |= task;
5716 	mutex_exit(&spa->spa_async_lock);
5717 }
5718 
5719 /*
5720  * ==========================================================================
5721  * SPA syncing routines
5722  * ==========================================================================
5723  */
5724 
5725 static int
5726 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5727 {
5728 	bpobj_t *bpo = arg;
5729 	bpobj_enqueue(bpo, bp, tx);
5730 	return (0);
5731 }
5732 
5733 static int
5734 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5735 {
5736 	zio_t *zio = arg;
5737 
5738 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5739 	    zio->io_flags));
5740 	return (0);
5741 }
5742 
5743 /*
5744  * Note: this simple function is not inlined to make it easier to dtrace the
5745  * amount of time spent syncing frees.
5746  */
5747 static void
5748 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5749 {
5750 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5751 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5752 	VERIFY(zio_wait(zio) == 0);
5753 }
5754 
5755 /*
5756  * Note: this simple function is not inlined to make it easier to dtrace the
5757  * amount of time spent syncing deferred frees.
5758  */
5759 static void
5760 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5761 {
5762 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5763 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5764 	    spa_free_sync_cb, zio, tx), ==, 0);
5765 	VERIFY0(zio_wait(zio));
5766 }
5767 
5768 
5769 static void
5770 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5771 {
5772 	char *packed = NULL;
5773 	size_t bufsize;
5774 	size_t nvsize = 0;
5775 	dmu_buf_t *db;
5776 
5777 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5778 
5779 	/*
5780 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5781 	 * information.  This avoids the dbuf_will_dirty() path and
5782 	 * saves us a pre-read to get data we don't actually care about.
5783 	 */
5784 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5785 	packed = kmem_alloc(bufsize, KM_SLEEP);
5786 
5787 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5788 	    KM_SLEEP) == 0);
5789 	bzero(packed + nvsize, bufsize - nvsize);
5790 
5791 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5792 
5793 	kmem_free(packed, bufsize);
5794 
5795 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5796 	dmu_buf_will_dirty(db, tx);
5797 	*(uint64_t *)db->db_data = nvsize;
5798 	dmu_buf_rele(db, FTAG);
5799 }
5800 
5801 static void
5802 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5803     const char *config, const char *entry)
5804 {
5805 	nvlist_t *nvroot;
5806 	nvlist_t **list;
5807 	int i;
5808 
5809 	if (!sav->sav_sync)
5810 		return;
5811 
5812 	/*
5813 	 * Update the MOS nvlist describing the list of available devices.
5814 	 * spa_validate_aux() will have already made sure this nvlist is
5815 	 * valid and the vdevs are labeled appropriately.
5816 	 */
5817 	if (sav->sav_object == 0) {
5818 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5819 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5820 		    sizeof (uint64_t), tx);
5821 		VERIFY(zap_update(spa->spa_meta_objset,
5822 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5823 		    &sav->sav_object, tx) == 0);
5824 	}
5825 
5826 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5827 	if (sav->sav_count == 0) {
5828 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5829 	} else {
5830 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5831 		for (i = 0; i < sav->sav_count; i++)
5832 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5833 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5834 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5835 		    sav->sav_count) == 0);
5836 		for (i = 0; i < sav->sav_count; i++)
5837 			nvlist_free(list[i]);
5838 		kmem_free(list, sav->sav_count * sizeof (void *));
5839 	}
5840 
5841 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5842 	nvlist_free(nvroot);
5843 
5844 	sav->sav_sync = B_FALSE;
5845 }
5846 
5847 static void
5848 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5849 {
5850 	nvlist_t *config;
5851 
5852 	if (list_is_empty(&spa->spa_config_dirty_list))
5853 		return;
5854 
5855 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5856 
5857 	config = spa_config_generate(spa, spa->spa_root_vdev,
5858 	    dmu_tx_get_txg(tx), B_FALSE);
5859 
5860 	/*
5861 	 * If we're upgrading the spa version then make sure that
5862 	 * the config object gets updated with the correct version.
5863 	 */
5864 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5865 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5866 		    spa->spa_uberblock.ub_version);
5867 
5868 	spa_config_exit(spa, SCL_STATE, FTAG);
5869 
5870 	if (spa->spa_config_syncing)
5871 		nvlist_free(spa->spa_config_syncing);
5872 	spa->spa_config_syncing = config;
5873 
5874 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5875 }
5876 
5877 static void
5878 spa_sync_version(void *arg, dmu_tx_t *tx)
5879 {
5880 	uint64_t *versionp = arg;
5881 	uint64_t version = *versionp;
5882 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5883 
5884 	/*
5885 	 * Setting the version is special cased when first creating the pool.
5886 	 */
5887 	ASSERT(tx->tx_txg != TXG_INITIAL);
5888 
5889 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5890 	ASSERT(version >= spa_version(spa));
5891 
5892 	spa->spa_uberblock.ub_version = version;
5893 	vdev_config_dirty(spa->spa_root_vdev);
5894 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5895 }
5896 
5897 /*
5898  * Set zpool properties.
5899  */
5900 static void
5901 spa_sync_props(void *arg, dmu_tx_t *tx)
5902 {
5903 	nvlist_t *nvp = arg;
5904 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5905 	objset_t *mos = spa->spa_meta_objset;
5906 	nvpair_t *elem = NULL;
5907 
5908 	mutex_enter(&spa->spa_props_lock);
5909 
5910 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5911 		uint64_t intval;
5912 		char *strval, *fname;
5913 		zpool_prop_t prop;
5914 		const char *propname;
5915 		zprop_type_t proptype;
5916 		zfeature_info_t *feature;
5917 
5918 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5919 		case ZPROP_INVAL:
5920 			/*
5921 			 * We checked this earlier in spa_prop_validate().
5922 			 */
5923 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5924 
5925 			fname = strchr(nvpair_name(elem), '@') + 1;
5926 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5927 
5928 			spa_feature_enable(spa, feature, tx);
5929 			spa_history_log_internal(spa, "set", tx,
5930 			    "%s=enabled", nvpair_name(elem));
5931 			break;
5932 
5933 		case ZPOOL_PROP_VERSION:
5934 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5935 			/*
5936 			 * The version is synced seperatly before other
5937 			 * properties and should be correct by now.
5938 			 */
5939 			ASSERT3U(spa_version(spa), >=, intval);
5940 			break;
5941 
5942 		case ZPOOL_PROP_ALTROOT:
5943 			/*
5944 			 * 'altroot' is a non-persistent property. It should
5945 			 * have been set temporarily at creation or import time.
5946 			 */
5947 			ASSERT(spa->spa_root != NULL);
5948 			break;
5949 
5950 		case ZPOOL_PROP_READONLY:
5951 		case ZPOOL_PROP_CACHEFILE:
5952 			/*
5953 			 * 'readonly' and 'cachefile' are also non-persisitent
5954 			 * properties.
5955 			 */
5956 			break;
5957 		case ZPOOL_PROP_COMMENT:
5958 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5959 			if (spa->spa_comment != NULL)
5960 				spa_strfree(spa->spa_comment);
5961 			spa->spa_comment = spa_strdup(strval);
5962 			/*
5963 			 * We need to dirty the configuration on all the vdevs
5964 			 * so that their labels get updated.  It's unnecessary
5965 			 * to do this for pool creation since the vdev's
5966 			 * configuratoin has already been dirtied.
5967 			 */
5968 			if (tx->tx_txg != TXG_INITIAL)
5969 				vdev_config_dirty(spa->spa_root_vdev);
5970 			spa_history_log_internal(spa, "set", tx,
5971 			    "%s=%s", nvpair_name(elem), strval);
5972 			break;
5973 		default:
5974 			/*
5975 			 * Set pool property values in the poolprops mos object.
5976 			 */
5977 			if (spa->spa_pool_props_object == 0) {
5978 				spa->spa_pool_props_object =
5979 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5980 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5981 				    tx);
5982 			}
5983 
5984 			/* normalize the property name */
5985 			propname = zpool_prop_to_name(prop);
5986 			proptype = zpool_prop_get_type(prop);
5987 
5988 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5989 				ASSERT(proptype == PROP_TYPE_STRING);
5990 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5991 				VERIFY(zap_update(mos,
5992 				    spa->spa_pool_props_object, propname,
5993 				    1, strlen(strval) + 1, strval, tx) == 0);
5994 				spa_history_log_internal(spa, "set", tx,
5995 				    "%s=%s", nvpair_name(elem), strval);
5996 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5997 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5998 
5999 				if (proptype == PROP_TYPE_INDEX) {
6000 					const char *unused;
6001 					VERIFY(zpool_prop_index_to_string(
6002 					    prop, intval, &unused) == 0);
6003 				}
6004 				VERIFY(zap_update(mos,
6005 				    spa->spa_pool_props_object, propname,
6006 				    8, 1, &intval, tx) == 0);
6007 				spa_history_log_internal(spa, "set", tx,
6008 				    "%s=%lld", nvpair_name(elem), intval);
6009 			} else {
6010 				ASSERT(0); /* not allowed */
6011 			}
6012 
6013 			switch (prop) {
6014 			case ZPOOL_PROP_DELEGATION:
6015 				spa->spa_delegation = intval;
6016 				break;
6017 			case ZPOOL_PROP_BOOTFS:
6018 				spa->spa_bootfs = intval;
6019 				break;
6020 			case ZPOOL_PROP_FAILUREMODE:
6021 				spa->spa_failmode = intval;
6022 				break;
6023 			case ZPOOL_PROP_AUTOEXPAND:
6024 				spa->spa_autoexpand = intval;
6025 				if (tx->tx_txg != TXG_INITIAL)
6026 					spa_async_request(spa,
6027 					    SPA_ASYNC_AUTOEXPAND);
6028 				break;
6029 			case ZPOOL_PROP_DEDUPDITTO:
6030 				spa->spa_dedup_ditto = intval;
6031 				break;
6032 			default:
6033 				break;
6034 			}
6035 		}
6036 
6037 	}
6038 
6039 	mutex_exit(&spa->spa_props_lock);
6040 }
6041 
6042 /*
6043  * Perform one-time upgrade on-disk changes.  spa_version() does not
6044  * reflect the new version this txg, so there must be no changes this
6045  * txg to anything that the upgrade code depends on after it executes.
6046  * Therefore this must be called after dsl_pool_sync() does the sync
6047  * tasks.
6048  */
6049 static void
6050 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6051 {
6052 	dsl_pool_t *dp = spa->spa_dsl_pool;
6053 
6054 	ASSERT(spa->spa_sync_pass == 1);
6055 
6056 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6057 
6058 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6059 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6060 		dsl_pool_create_origin(dp, tx);
6061 
6062 		/* Keeping the origin open increases spa_minref */
6063 		spa->spa_minref += 3;
6064 	}
6065 
6066 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6067 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6068 		dsl_pool_upgrade_clones(dp, tx);
6069 	}
6070 
6071 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6072 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6073 		dsl_pool_upgrade_dir_clones(dp, tx);
6074 
6075 		/* Keeping the freedir open increases spa_minref */
6076 		spa->spa_minref += 3;
6077 	}
6078 
6079 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6080 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6081 		spa_feature_create_zap_objects(spa, tx);
6082 	}
6083 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6084 }
6085 
6086 /*
6087  * Sync the specified transaction group.  New blocks may be dirtied as
6088  * part of the process, so we iterate until it converges.
6089  */
6090 void
6091 spa_sync(spa_t *spa, uint64_t txg)
6092 {
6093 	dsl_pool_t *dp = spa->spa_dsl_pool;
6094 	objset_t *mos = spa->spa_meta_objset;
6095 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6096 	vdev_t *rvd = spa->spa_root_vdev;
6097 	vdev_t *vd;
6098 	dmu_tx_t *tx;
6099 	int error;
6100 
6101 	VERIFY(spa_writeable(spa));
6102 
6103 	/*
6104 	 * Lock out configuration changes.
6105 	 */
6106 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6107 
6108 	spa->spa_syncing_txg = txg;
6109 	spa->spa_sync_pass = 0;
6110 
6111 	/*
6112 	 * If there are any pending vdev state changes, convert them
6113 	 * into config changes that go out with this transaction group.
6114 	 */
6115 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6116 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6117 		/*
6118 		 * We need the write lock here because, for aux vdevs,
6119 		 * calling vdev_config_dirty() modifies sav_config.
6120 		 * This is ugly and will become unnecessary when we
6121 		 * eliminate the aux vdev wart by integrating all vdevs
6122 		 * into the root vdev tree.
6123 		 */
6124 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6125 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6126 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6127 			vdev_state_clean(vd);
6128 			vdev_config_dirty(vd);
6129 		}
6130 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6131 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6132 	}
6133 	spa_config_exit(spa, SCL_STATE, FTAG);
6134 
6135 	tx = dmu_tx_create_assigned(dp, txg);
6136 
6137 	spa->spa_sync_starttime = gethrtime();
6138 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6139 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6140 
6141 	/*
6142 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6143 	 * set spa_deflate if we have no raid-z vdevs.
6144 	 */
6145 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6146 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6147 		int i;
6148 
6149 		for (i = 0; i < rvd->vdev_children; i++) {
6150 			vd = rvd->vdev_child[i];
6151 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6152 				break;
6153 		}
6154 		if (i == rvd->vdev_children) {
6155 			spa->spa_deflate = TRUE;
6156 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6157 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6158 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6159 		}
6160 	}
6161 
6162 	/*
6163 	 * If anything has changed in this txg, or if someone is waiting
6164 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6165 	 * deferred frees from the previous txg.  If not, leave them
6166 	 * alone so that we don't generate work on an otherwise idle
6167 	 * system.
6168 	 */
6169 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6170 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6171 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6172 	    ((dsl_scan_active(dp->dp_scan) ||
6173 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6174 		spa_sync_deferred_frees(spa, tx);
6175 	}
6176 
6177 	/*
6178 	 * Iterate to convergence.
6179 	 */
6180 	do {
6181 		int pass = ++spa->spa_sync_pass;
6182 
6183 		spa_sync_config_object(spa, tx);
6184 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6185 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6186 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6187 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6188 		spa_errlog_sync(spa, txg);
6189 		dsl_pool_sync(dp, txg);
6190 
6191 		if (pass < zfs_sync_pass_deferred_free) {
6192 			spa_sync_frees(spa, free_bpl, tx);
6193 		} else {
6194 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6195 			    &spa->spa_deferred_bpobj, tx);
6196 		}
6197 
6198 		ddt_sync(spa, txg);
6199 		dsl_scan_sync(dp, tx);
6200 
6201 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6202 			vdev_sync(vd, txg);
6203 
6204 		if (pass == 1)
6205 			spa_sync_upgrades(spa, tx);
6206 
6207 	} while (dmu_objset_is_dirty(mos, txg));
6208 
6209 	/*
6210 	 * Rewrite the vdev configuration (which includes the uberblock)
6211 	 * to commit the transaction group.
6212 	 *
6213 	 * If there are no dirty vdevs, we sync the uberblock to a few
6214 	 * random top-level vdevs that are known to be visible in the
6215 	 * config cache (see spa_vdev_add() for a complete description).
6216 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6217 	 */
6218 	for (;;) {
6219 		/*
6220 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6221 		 * while we're attempting to write the vdev labels.
6222 		 */
6223 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6224 
6225 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6226 			vdev_t *svd[SPA_DVAS_PER_BP];
6227 			int svdcount = 0;
6228 			int children = rvd->vdev_children;
6229 			int c0 = spa_get_random(children);
6230 
6231 			for (int c = 0; c < children; c++) {
6232 				vd = rvd->vdev_child[(c0 + c) % children];
6233 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6234 					continue;
6235 				svd[svdcount++] = vd;
6236 				if (svdcount == SPA_DVAS_PER_BP)
6237 					break;
6238 			}
6239 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6240 			if (error != 0)
6241 				error = vdev_config_sync(svd, svdcount, txg,
6242 				    B_TRUE);
6243 		} else {
6244 			error = vdev_config_sync(rvd->vdev_child,
6245 			    rvd->vdev_children, txg, B_FALSE);
6246 			if (error != 0)
6247 				error = vdev_config_sync(rvd->vdev_child,
6248 				    rvd->vdev_children, txg, B_TRUE);
6249 		}
6250 
6251 		if (error == 0)
6252 			spa->spa_last_synced_guid = rvd->vdev_guid;
6253 
6254 		spa_config_exit(spa, SCL_STATE, FTAG);
6255 
6256 		if (error == 0)
6257 			break;
6258 		zio_suspend(spa, NULL);
6259 		zio_resume_wait(spa);
6260 	}
6261 	dmu_tx_commit(tx);
6262 
6263 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6264 
6265 	/*
6266 	 * Clear the dirty config list.
6267 	 */
6268 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6269 		vdev_config_clean(vd);
6270 
6271 	/*
6272 	 * Now that the new config has synced transactionally,
6273 	 * let it become visible to the config cache.
6274 	 */
6275 	if (spa->spa_config_syncing != NULL) {
6276 		spa_config_set(spa, spa->spa_config_syncing);
6277 		spa->spa_config_txg = txg;
6278 		spa->spa_config_syncing = NULL;
6279 	}
6280 
6281 	spa->spa_ubsync = spa->spa_uberblock;
6282 
6283 	dsl_pool_sync_done(dp, txg);
6284 
6285 	/*
6286 	 * Update usable space statistics.
6287 	 */
6288 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6289 		vdev_sync_done(vd, txg);
6290 
6291 	spa_update_dspace(spa);
6292 
6293 	/*
6294 	 * It had better be the case that we didn't dirty anything
6295 	 * since vdev_config_sync().
6296 	 */
6297 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6298 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6299 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6300 
6301 	spa->spa_sync_pass = 0;
6302 
6303 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6304 
6305 	spa_handle_ignored_writes(spa);
6306 
6307 	/*
6308 	 * If any async tasks have been requested, kick them off.
6309 	 */
6310 	spa_async_dispatch(spa);
6311 }
6312 
6313 /*
6314  * Sync all pools.  We don't want to hold the namespace lock across these
6315  * operations, so we take a reference on the spa_t and drop the lock during the
6316  * sync.
6317  */
6318 void
6319 spa_sync_allpools(void)
6320 {
6321 	spa_t *spa = NULL;
6322 	mutex_enter(&spa_namespace_lock);
6323 	while ((spa = spa_next(spa)) != NULL) {
6324 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6325 		    !spa_writeable(spa) || spa_suspended(spa))
6326 			continue;
6327 		spa_open_ref(spa, FTAG);
6328 		mutex_exit(&spa_namespace_lock);
6329 		txg_wait_synced(spa_get_dsl(spa), 0);
6330 		mutex_enter(&spa_namespace_lock);
6331 		spa_close(spa, FTAG);
6332 	}
6333 	mutex_exit(&spa_namespace_lock);
6334 }
6335 
6336 /*
6337  * ==========================================================================
6338  * Miscellaneous routines
6339  * ==========================================================================
6340  */
6341 
6342 /*
6343  * Remove all pools in the system.
6344  */
6345 void
6346 spa_evict_all(void)
6347 {
6348 	spa_t *spa;
6349 
6350 	/*
6351 	 * Remove all cached state.  All pools should be closed now,
6352 	 * so every spa in the AVL tree should be unreferenced.
6353 	 */
6354 	mutex_enter(&spa_namespace_lock);
6355 	while ((spa = spa_next(NULL)) != NULL) {
6356 		/*
6357 		 * Stop async tasks.  The async thread may need to detach
6358 		 * a device that's been replaced, which requires grabbing
6359 		 * spa_namespace_lock, so we must drop it here.
6360 		 */
6361 		spa_open_ref(spa, FTAG);
6362 		mutex_exit(&spa_namespace_lock);
6363 		spa_async_suspend(spa);
6364 		mutex_enter(&spa_namespace_lock);
6365 		spa_close(spa, FTAG);
6366 
6367 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6368 			spa_unload(spa);
6369 			spa_deactivate(spa);
6370 		}
6371 		spa_remove(spa);
6372 	}
6373 	mutex_exit(&spa_namespace_lock);
6374 }
6375 
6376 vdev_t *
6377 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6378 {
6379 	vdev_t *vd;
6380 	int i;
6381 
6382 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6383 		return (vd);
6384 
6385 	if (aux) {
6386 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6387 			vd = spa->spa_l2cache.sav_vdevs[i];
6388 			if (vd->vdev_guid == guid)
6389 				return (vd);
6390 		}
6391 
6392 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6393 			vd = spa->spa_spares.sav_vdevs[i];
6394 			if (vd->vdev_guid == guid)
6395 				return (vd);
6396 		}
6397 	}
6398 
6399 	return (NULL);
6400 }
6401 
6402 void
6403 spa_upgrade(spa_t *spa, uint64_t version)
6404 {
6405 	ASSERT(spa_writeable(spa));
6406 
6407 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6408 
6409 	/*
6410 	 * This should only be called for a non-faulted pool, and since a
6411 	 * future version would result in an unopenable pool, this shouldn't be
6412 	 * possible.
6413 	 */
6414 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6415 	ASSERT(version >= spa->spa_uberblock.ub_version);
6416 
6417 	spa->spa_uberblock.ub_version = version;
6418 	vdev_config_dirty(spa->spa_root_vdev);
6419 
6420 	spa_config_exit(spa, SCL_ALL, FTAG);
6421 
6422 	txg_wait_synced(spa_get_dsl(spa), 0);
6423 }
6424 
6425 boolean_t
6426 spa_has_spare(spa_t *spa, uint64_t guid)
6427 {
6428 	int i;
6429 	uint64_t spareguid;
6430 	spa_aux_vdev_t *sav = &spa->spa_spares;
6431 
6432 	for (i = 0; i < sav->sav_count; i++)
6433 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6434 			return (B_TRUE);
6435 
6436 	for (i = 0; i < sav->sav_npending; i++) {
6437 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6438 		    &spareguid) == 0 && spareguid == guid)
6439 			return (B_TRUE);
6440 	}
6441 
6442 	return (B_FALSE);
6443 }
6444 
6445 /*
6446  * Check if a pool has an active shared spare device.
6447  * Note: reference count of an active spare is 2, as a spare and as a replace
6448  */
6449 static boolean_t
6450 spa_has_active_shared_spare(spa_t *spa)
6451 {
6452 	int i, refcnt;
6453 	uint64_t pool;
6454 	spa_aux_vdev_t *sav = &spa->spa_spares;
6455 
6456 	for (i = 0; i < sav->sav_count; i++) {
6457 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6458 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6459 		    refcnt > 2)
6460 			return (B_TRUE);
6461 	}
6462 
6463 	return (B_FALSE);
6464 }
6465 
6466 /*
6467  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6468  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6469  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6470  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6471  * or zdb as real changes.
6472  */
6473 void
6474 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6475 {
6476 #ifdef _KERNEL
6477 	sysevent_t		*ev;
6478 	sysevent_attr_list_t	*attr = NULL;
6479 	sysevent_value_t	value;
6480 	sysevent_id_t		eid;
6481 
6482 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6483 	    SE_SLEEP);
6484 
6485 	value.value_type = SE_DATA_TYPE_STRING;
6486 	value.value.sv_string = spa_name(spa);
6487 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6488 		goto done;
6489 
6490 	value.value_type = SE_DATA_TYPE_UINT64;
6491 	value.value.sv_uint64 = spa_guid(spa);
6492 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6493 		goto done;
6494 
6495 	if (vd) {
6496 		value.value_type = SE_DATA_TYPE_UINT64;
6497 		value.value.sv_uint64 = vd->vdev_guid;
6498 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6499 		    SE_SLEEP) != 0)
6500 			goto done;
6501 
6502 		if (vd->vdev_path) {
6503 			value.value_type = SE_DATA_TYPE_STRING;
6504 			value.value.sv_string = vd->vdev_path;
6505 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6506 			    &value, SE_SLEEP) != 0)
6507 				goto done;
6508 		}
6509 	}
6510 
6511 	if (sysevent_attach_attributes(ev, attr) != 0)
6512 		goto done;
6513 	attr = NULL;
6514 
6515 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6516 
6517 done:
6518 	if (attr)
6519 		sysevent_free_attr(attr);
6520 	sysevent_free(ev);
6521 #endif
6522 }
6523