1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size, alloc, cap, version; 198 zprop_source_t src = ZPROP_SRC_NONE; 199 spa_config_dirent_t *dp; 200 metaslab_class_t *mc = spa_normal_class(spa); 201 202 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 203 204 if (rvd != NULL) { 205 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 206 size = metaslab_class_get_space(spa_normal_class(spa)); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 211 size - alloc, src); 212 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 214 metaslab_class_fragmentation(mc), src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 216 metaslab_class_expandable_space(mc), src); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 218 (spa_mode(spa) == FREAD), src); 219 220 cap = (size == 0) ? 0 : (alloc * 100 / size); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 224 ddt_get_pool_dedup_ratio(spa), src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 227 rvd->vdev_state, src); 228 229 version = spa_version(spa); 230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 231 src = ZPROP_SRC_DEFAULT; 232 else 233 src = ZPROP_SRC_LOCAL; 234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 235 } 236 237 if (pool != NULL) { 238 /* 239 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 240 * when opening pools before this version freedir will be NULL. 241 */ 242 if (pool->dp_free_dir != NULL) { 243 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 244 pool->dp_free_dir->dd_phys->dd_used_bytes, src); 245 } else { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 247 NULL, 0, src); 248 } 249 250 if (pool->dp_leak_dir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 252 pool->dp_leak_dir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 271 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 272 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 273 } else { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 275 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 276 } 277 278 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 279 if (dp->scd_path == NULL) { 280 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 281 "none", 0, ZPROP_SRC_LOCAL); 282 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 284 dp->scd_path, 0, ZPROP_SRC_LOCAL); 285 } 286 } 287 } 288 289 /* 290 * Get zpool property values. 291 */ 292 int 293 spa_prop_get(spa_t *spa, nvlist_t **nvp) 294 { 295 objset_t *mos = spa->spa_meta_objset; 296 zap_cursor_t zc; 297 zap_attribute_t za; 298 int err; 299 300 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 301 302 mutex_enter(&spa->spa_props_lock); 303 304 /* 305 * Get properties from the spa config. 306 */ 307 spa_prop_get_config(spa, nvp); 308 309 /* If no pool property object, no more prop to get. */ 310 if (mos == NULL || spa->spa_pool_props_object == 0) { 311 mutex_exit(&spa->spa_props_lock); 312 return (0); 313 } 314 315 /* 316 * Get properties from the MOS pool property object. 317 */ 318 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 319 (err = zap_cursor_retrieve(&zc, &za)) == 0; 320 zap_cursor_advance(&zc)) { 321 uint64_t intval = 0; 322 char *strval = NULL; 323 zprop_source_t src = ZPROP_SRC_DEFAULT; 324 zpool_prop_t prop; 325 326 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 327 continue; 328 329 switch (za.za_integer_length) { 330 case 8: 331 /* integer property */ 332 if (za.za_first_integer != 333 zpool_prop_default_numeric(prop)) 334 src = ZPROP_SRC_LOCAL; 335 336 if (prop == ZPOOL_PROP_BOOTFS) { 337 dsl_pool_t *dp; 338 dsl_dataset_t *ds = NULL; 339 340 dp = spa_get_dsl(spa); 341 dsl_pool_config_enter(dp, FTAG); 342 if (err = dsl_dataset_hold_obj(dp, 343 za.za_first_integer, FTAG, &ds)) { 344 dsl_pool_config_exit(dp, FTAG); 345 break; 346 } 347 348 strval = kmem_alloc( 349 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 350 KM_SLEEP); 351 dsl_dataset_name(ds, strval); 352 dsl_dataset_rele(ds, FTAG); 353 dsl_pool_config_exit(dp, FTAG); 354 } else { 355 strval = NULL; 356 intval = za.za_first_integer; 357 } 358 359 spa_prop_add_list(*nvp, prop, strval, intval, src); 360 361 if (strval != NULL) 362 kmem_free(strval, 363 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 364 365 break; 366 367 case 1: 368 /* string property */ 369 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 370 err = zap_lookup(mos, spa->spa_pool_props_object, 371 za.za_name, 1, za.za_num_integers, strval); 372 if (err) { 373 kmem_free(strval, za.za_num_integers); 374 break; 375 } 376 spa_prop_add_list(*nvp, prop, strval, 0, src); 377 kmem_free(strval, za.za_num_integers); 378 break; 379 380 default: 381 break; 382 } 383 } 384 zap_cursor_fini(&zc); 385 mutex_exit(&spa->spa_props_lock); 386 out: 387 if (err && err != ENOENT) { 388 nvlist_free(*nvp); 389 *nvp = NULL; 390 return (err); 391 } 392 393 return (0); 394 } 395 396 /* 397 * Validate the given pool properties nvlist and modify the list 398 * for the property values to be set. 399 */ 400 static int 401 spa_prop_validate(spa_t *spa, nvlist_t *props) 402 { 403 nvpair_t *elem; 404 int error = 0, reset_bootfs = 0; 405 uint64_t objnum = 0; 406 boolean_t has_feature = B_FALSE; 407 408 elem = NULL; 409 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 410 uint64_t intval; 411 char *strval, *slash, *check, *fname; 412 const char *propname = nvpair_name(elem); 413 zpool_prop_t prop = zpool_name_to_prop(propname); 414 415 switch (prop) { 416 case ZPROP_INVAL: 417 if (!zpool_prop_feature(propname)) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 /* 423 * Sanitize the input. 424 */ 425 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 426 error = SET_ERROR(EINVAL); 427 break; 428 } 429 430 if (nvpair_value_uint64(elem, &intval) != 0) { 431 error = SET_ERROR(EINVAL); 432 break; 433 } 434 435 if (intval != 0) { 436 error = SET_ERROR(EINVAL); 437 break; 438 } 439 440 fname = strchr(propname, '@') + 1; 441 if (zfeature_lookup_name(fname, NULL) != 0) { 442 error = SET_ERROR(EINVAL); 443 break; 444 } 445 446 has_feature = B_TRUE; 447 break; 448 449 case ZPOOL_PROP_VERSION: 450 error = nvpair_value_uint64(elem, &intval); 451 if (!error && 452 (intval < spa_version(spa) || 453 intval > SPA_VERSION_BEFORE_FEATURES || 454 has_feature)) 455 error = SET_ERROR(EINVAL); 456 break; 457 458 case ZPOOL_PROP_DELEGATION: 459 case ZPOOL_PROP_AUTOREPLACE: 460 case ZPOOL_PROP_LISTSNAPS: 461 case ZPOOL_PROP_AUTOEXPAND: 462 error = nvpair_value_uint64(elem, &intval); 463 if (!error && intval > 1) 464 error = SET_ERROR(EINVAL); 465 break; 466 467 case ZPOOL_PROP_BOOTFS: 468 /* 469 * If the pool version is less than SPA_VERSION_BOOTFS, 470 * or the pool is still being created (version == 0), 471 * the bootfs property cannot be set. 472 */ 473 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 /* 479 * Make sure the vdev config is bootable 480 */ 481 if (!vdev_is_bootable(spa->spa_root_vdev)) { 482 error = SET_ERROR(ENOTSUP); 483 break; 484 } 485 486 reset_bootfs = 1; 487 488 error = nvpair_value_string(elem, &strval); 489 490 if (!error) { 491 objset_t *os; 492 uint64_t propval; 493 494 if (strval == NULL || strval[0] == '\0') { 495 objnum = zpool_prop_default_numeric( 496 ZPOOL_PROP_BOOTFS); 497 break; 498 } 499 500 if (error = dmu_objset_hold(strval, FTAG, &os)) 501 break; 502 503 /* 504 * Must be ZPL, and its property settings 505 * must be supported by GRUB (compression 506 * is not gzip, and large blocks are not used). 507 */ 508 509 if (dmu_objset_type(os) != DMU_OST_ZFS) { 510 error = SET_ERROR(ENOTSUP); 511 } else if ((error = 512 dsl_prop_get_int_ds(dmu_objset_ds(os), 513 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 514 &propval)) == 0 && 515 !BOOTFS_COMPRESS_VALID(propval)) { 516 error = SET_ERROR(ENOTSUP); 517 } else if ((error = 518 dsl_prop_get_int_ds(dmu_objset_ds(os), 519 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 520 &propval)) == 0 && 521 propval > SPA_OLD_MAXBLOCKSIZE) { 522 error = SET_ERROR(ENOTSUP); 523 } else { 524 objnum = dmu_objset_id(os); 525 } 526 dmu_objset_rele(os, FTAG); 527 } 528 break; 529 530 case ZPOOL_PROP_FAILUREMODE: 531 error = nvpair_value_uint64(elem, &intval); 532 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 533 intval > ZIO_FAILURE_MODE_PANIC)) 534 error = SET_ERROR(EINVAL); 535 536 /* 537 * This is a special case which only occurs when 538 * the pool has completely failed. This allows 539 * the user to change the in-core failmode property 540 * without syncing it out to disk (I/Os might 541 * currently be blocked). We do this by returning 542 * EIO to the caller (spa_prop_set) to trick it 543 * into thinking we encountered a property validation 544 * error. 545 */ 546 if (!error && spa_suspended(spa)) { 547 spa->spa_failmode = intval; 548 error = SET_ERROR(EIO); 549 } 550 break; 551 552 case ZPOOL_PROP_CACHEFILE: 553 if ((error = nvpair_value_string(elem, &strval)) != 0) 554 break; 555 556 if (strval[0] == '\0') 557 break; 558 559 if (strcmp(strval, "none") == 0) 560 break; 561 562 if (strval[0] != '/') { 563 error = SET_ERROR(EINVAL); 564 break; 565 } 566 567 slash = strrchr(strval, '/'); 568 ASSERT(slash != NULL); 569 570 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 571 strcmp(slash, "/..") == 0) 572 error = SET_ERROR(EINVAL); 573 break; 574 575 case ZPOOL_PROP_COMMENT: 576 if ((error = nvpair_value_string(elem, &strval)) != 0) 577 break; 578 for (check = strval; *check != '\0'; check++) { 579 /* 580 * The kernel doesn't have an easy isprint() 581 * check. For this kernel check, we merely 582 * check ASCII apart from DEL. Fix this if 583 * there is an easy-to-use kernel isprint(). 584 */ 585 if (*check >= 0x7f) { 586 error = SET_ERROR(EINVAL); 587 break; 588 } 589 check++; 590 } 591 if (strlen(strval) > ZPROP_MAX_COMMENT) 592 error = E2BIG; 593 break; 594 595 case ZPOOL_PROP_DEDUPDITTO: 596 if (spa_version(spa) < SPA_VERSION_DEDUP) 597 error = SET_ERROR(ENOTSUP); 598 else 599 error = nvpair_value_uint64(elem, &intval); 600 if (error == 0 && 601 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 602 error = SET_ERROR(EINVAL); 603 break; 604 } 605 606 if (error) 607 break; 608 } 609 610 if (!error && reset_bootfs) { 611 error = nvlist_remove(props, 612 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 613 614 if (!error) { 615 error = nvlist_add_uint64(props, 616 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 617 } 618 } 619 620 return (error); 621 } 622 623 void 624 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 625 { 626 char *cachefile; 627 spa_config_dirent_t *dp; 628 629 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 630 &cachefile) != 0) 631 return; 632 633 dp = kmem_alloc(sizeof (spa_config_dirent_t), 634 KM_SLEEP); 635 636 if (cachefile[0] == '\0') 637 dp->scd_path = spa_strdup(spa_config_path); 638 else if (strcmp(cachefile, "none") == 0) 639 dp->scd_path = NULL; 640 else 641 dp->scd_path = spa_strdup(cachefile); 642 643 list_insert_head(&spa->spa_config_list, dp); 644 if (need_sync) 645 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 646 } 647 648 int 649 spa_prop_set(spa_t *spa, nvlist_t *nvp) 650 { 651 int error; 652 nvpair_t *elem = NULL; 653 boolean_t need_sync = B_FALSE; 654 655 if ((error = spa_prop_validate(spa, nvp)) != 0) 656 return (error); 657 658 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 659 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 660 661 if (prop == ZPOOL_PROP_CACHEFILE || 662 prop == ZPOOL_PROP_ALTROOT || 663 prop == ZPOOL_PROP_READONLY) 664 continue; 665 666 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 667 uint64_t ver; 668 669 if (prop == ZPOOL_PROP_VERSION) { 670 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 671 } else { 672 ASSERT(zpool_prop_feature(nvpair_name(elem))); 673 ver = SPA_VERSION_FEATURES; 674 need_sync = B_TRUE; 675 } 676 677 /* Save time if the version is already set. */ 678 if (ver == spa_version(spa)) 679 continue; 680 681 /* 682 * In addition to the pool directory object, we might 683 * create the pool properties object, the features for 684 * read object, the features for write object, or the 685 * feature descriptions object. 686 */ 687 error = dsl_sync_task(spa->spa_name, NULL, 688 spa_sync_version, &ver, 689 6, ZFS_SPACE_CHECK_RESERVED); 690 if (error) 691 return (error); 692 continue; 693 } 694 695 need_sync = B_TRUE; 696 break; 697 } 698 699 if (need_sync) { 700 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 701 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 702 } 703 704 return (0); 705 } 706 707 /* 708 * If the bootfs property value is dsobj, clear it. 709 */ 710 void 711 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 712 { 713 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 714 VERIFY(zap_remove(spa->spa_meta_objset, 715 spa->spa_pool_props_object, 716 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 717 spa->spa_bootfs = 0; 718 } 719 } 720 721 /*ARGSUSED*/ 722 static int 723 spa_change_guid_check(void *arg, dmu_tx_t *tx) 724 { 725 uint64_t *newguid = arg; 726 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 727 vdev_t *rvd = spa->spa_root_vdev; 728 uint64_t vdev_state; 729 730 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 731 vdev_state = rvd->vdev_state; 732 spa_config_exit(spa, SCL_STATE, FTAG); 733 734 if (vdev_state != VDEV_STATE_HEALTHY) 735 return (SET_ERROR(ENXIO)); 736 737 ASSERT3U(spa_guid(spa), !=, *newguid); 738 739 return (0); 740 } 741 742 static void 743 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 744 { 745 uint64_t *newguid = arg; 746 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 747 uint64_t oldguid; 748 vdev_t *rvd = spa->spa_root_vdev; 749 750 oldguid = spa_guid(spa); 751 752 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 753 rvd->vdev_guid = *newguid; 754 rvd->vdev_guid_sum += (*newguid - oldguid); 755 vdev_config_dirty(rvd); 756 spa_config_exit(spa, SCL_STATE, FTAG); 757 758 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 759 oldguid, *newguid); 760 } 761 762 /* 763 * Change the GUID for the pool. This is done so that we can later 764 * re-import a pool built from a clone of our own vdevs. We will modify 765 * the root vdev's guid, our own pool guid, and then mark all of our 766 * vdevs dirty. Note that we must make sure that all our vdevs are 767 * online when we do this, or else any vdevs that weren't present 768 * would be orphaned from our pool. We are also going to issue a 769 * sysevent to update any watchers. 770 */ 771 int 772 spa_change_guid(spa_t *spa) 773 { 774 int error; 775 uint64_t guid; 776 777 mutex_enter(&spa->spa_vdev_top_lock); 778 mutex_enter(&spa_namespace_lock); 779 guid = spa_generate_guid(NULL); 780 781 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 782 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 783 784 if (error == 0) { 785 spa_config_sync(spa, B_FALSE, B_TRUE); 786 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 787 } 788 789 mutex_exit(&spa_namespace_lock); 790 mutex_exit(&spa->spa_vdev_top_lock); 791 792 return (error); 793 } 794 795 /* 796 * ========================================================================== 797 * SPA state manipulation (open/create/destroy/import/export) 798 * ========================================================================== 799 */ 800 801 static int 802 spa_error_entry_compare(const void *a, const void *b) 803 { 804 spa_error_entry_t *sa = (spa_error_entry_t *)a; 805 spa_error_entry_t *sb = (spa_error_entry_t *)b; 806 int ret; 807 808 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 809 sizeof (zbookmark_phys_t)); 810 811 if (ret < 0) 812 return (-1); 813 else if (ret > 0) 814 return (1); 815 else 816 return (0); 817 } 818 819 /* 820 * Utility function which retrieves copies of the current logs and 821 * re-initializes them in the process. 822 */ 823 void 824 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 825 { 826 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 827 828 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 829 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 830 831 avl_create(&spa->spa_errlist_scrub, 832 spa_error_entry_compare, sizeof (spa_error_entry_t), 833 offsetof(spa_error_entry_t, se_avl)); 834 avl_create(&spa->spa_errlist_last, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 } 838 839 static void 840 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 841 { 842 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 843 enum zti_modes mode = ztip->zti_mode; 844 uint_t value = ztip->zti_value; 845 uint_t count = ztip->zti_count; 846 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 847 char name[32]; 848 uint_t flags = 0; 849 boolean_t batch = B_FALSE; 850 851 if (mode == ZTI_MODE_NULL) { 852 tqs->stqs_count = 0; 853 tqs->stqs_taskq = NULL; 854 return; 855 } 856 857 ASSERT3U(count, >, 0); 858 859 tqs->stqs_count = count; 860 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 861 862 switch (mode) { 863 case ZTI_MODE_FIXED: 864 ASSERT3U(value, >=, 1); 865 value = MAX(value, 1); 866 break; 867 868 case ZTI_MODE_BATCH: 869 batch = B_TRUE; 870 flags |= TASKQ_THREADS_CPU_PCT; 871 value = zio_taskq_batch_pct; 872 break; 873 874 default: 875 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 876 "spa_activate()", 877 zio_type_name[t], zio_taskq_types[q], mode, value); 878 break; 879 } 880 881 for (uint_t i = 0; i < count; i++) { 882 taskq_t *tq; 883 884 if (count > 1) { 885 (void) snprintf(name, sizeof (name), "%s_%s_%u", 886 zio_type_name[t], zio_taskq_types[q], i); 887 } else { 888 (void) snprintf(name, sizeof (name), "%s_%s", 889 zio_type_name[t], zio_taskq_types[q]); 890 } 891 892 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 893 if (batch) 894 flags |= TASKQ_DC_BATCH; 895 896 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 897 spa->spa_proc, zio_taskq_basedc, flags); 898 } else { 899 pri_t pri = maxclsyspri; 900 /* 901 * The write issue taskq can be extremely CPU 902 * intensive. Run it at slightly lower priority 903 * than the other taskqs. 904 */ 905 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 906 pri--; 907 908 tq = taskq_create_proc(name, value, pri, 50, 909 INT_MAX, spa->spa_proc, flags); 910 } 911 912 tqs->stqs_taskq[i] = tq; 913 } 914 } 915 916 static void 917 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 918 { 919 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 920 921 if (tqs->stqs_taskq == NULL) { 922 ASSERT0(tqs->stqs_count); 923 return; 924 } 925 926 for (uint_t i = 0; i < tqs->stqs_count; i++) { 927 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 928 taskq_destroy(tqs->stqs_taskq[i]); 929 } 930 931 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 932 tqs->stqs_taskq = NULL; 933 } 934 935 /* 936 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 937 * Note that a type may have multiple discrete taskqs to avoid lock contention 938 * on the taskq itself. In that case we choose which taskq at random by using 939 * the low bits of gethrtime(). 940 */ 941 void 942 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 943 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 944 { 945 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 946 taskq_t *tq; 947 948 ASSERT3P(tqs->stqs_taskq, !=, NULL); 949 ASSERT3U(tqs->stqs_count, !=, 0); 950 951 if (tqs->stqs_count == 1) { 952 tq = tqs->stqs_taskq[0]; 953 } else { 954 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 955 } 956 957 taskq_dispatch_ent(tq, func, arg, flags, ent); 958 } 959 960 static void 961 spa_create_zio_taskqs(spa_t *spa) 962 { 963 for (int t = 0; t < ZIO_TYPES; t++) { 964 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 965 spa_taskqs_init(spa, t, q); 966 } 967 } 968 } 969 970 #ifdef _KERNEL 971 static void 972 spa_thread(void *arg) 973 { 974 callb_cpr_t cprinfo; 975 976 spa_t *spa = arg; 977 user_t *pu = PTOU(curproc); 978 979 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 980 spa->spa_name); 981 982 ASSERT(curproc != &p0); 983 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 984 "zpool-%s", spa->spa_name); 985 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 986 987 /* bind this thread to the requested psrset */ 988 if (zio_taskq_psrset_bind != PS_NONE) { 989 pool_lock(); 990 mutex_enter(&cpu_lock); 991 mutex_enter(&pidlock); 992 mutex_enter(&curproc->p_lock); 993 994 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 995 0, NULL, NULL) == 0) { 996 curthread->t_bind_pset = zio_taskq_psrset_bind; 997 } else { 998 cmn_err(CE_WARN, 999 "Couldn't bind process for zfs pool \"%s\" to " 1000 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1001 } 1002 1003 mutex_exit(&curproc->p_lock); 1004 mutex_exit(&pidlock); 1005 mutex_exit(&cpu_lock); 1006 pool_unlock(); 1007 } 1008 1009 if (zio_taskq_sysdc) { 1010 sysdc_thread_enter(curthread, 100, 0); 1011 } 1012 1013 spa->spa_proc = curproc; 1014 spa->spa_did = curthread->t_did; 1015 1016 spa_create_zio_taskqs(spa); 1017 1018 mutex_enter(&spa->spa_proc_lock); 1019 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1020 1021 spa->spa_proc_state = SPA_PROC_ACTIVE; 1022 cv_broadcast(&spa->spa_proc_cv); 1023 1024 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1025 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1026 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1027 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1028 1029 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1030 spa->spa_proc_state = SPA_PROC_GONE; 1031 spa->spa_proc = &p0; 1032 cv_broadcast(&spa->spa_proc_cv); 1033 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1034 1035 mutex_enter(&curproc->p_lock); 1036 lwp_exit(); 1037 } 1038 #endif 1039 1040 /* 1041 * Activate an uninitialized pool. 1042 */ 1043 static void 1044 spa_activate(spa_t *spa, int mode) 1045 { 1046 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1047 1048 spa->spa_state = POOL_STATE_ACTIVE; 1049 spa->spa_mode = mode; 1050 1051 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1052 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1053 1054 /* Try to create a covering process */ 1055 mutex_enter(&spa->spa_proc_lock); 1056 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1057 ASSERT(spa->spa_proc == &p0); 1058 spa->spa_did = 0; 1059 1060 /* Only create a process if we're going to be around a while. */ 1061 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1062 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1063 NULL, 0) == 0) { 1064 spa->spa_proc_state = SPA_PROC_CREATED; 1065 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1066 cv_wait(&spa->spa_proc_cv, 1067 &spa->spa_proc_lock); 1068 } 1069 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1070 ASSERT(spa->spa_proc != &p0); 1071 ASSERT(spa->spa_did != 0); 1072 } else { 1073 #ifdef _KERNEL 1074 cmn_err(CE_WARN, 1075 "Couldn't create process for zfs pool \"%s\"\n", 1076 spa->spa_name); 1077 #endif 1078 } 1079 } 1080 mutex_exit(&spa->spa_proc_lock); 1081 1082 /* If we didn't create a process, we need to create our taskqs. */ 1083 if (spa->spa_proc == &p0) { 1084 spa_create_zio_taskqs(spa); 1085 } 1086 1087 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1088 offsetof(vdev_t, vdev_config_dirty_node)); 1089 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1090 offsetof(vdev_t, vdev_state_dirty_node)); 1091 1092 txg_list_create(&spa->spa_vdev_txg_list, 1093 offsetof(struct vdev, vdev_txg_node)); 1094 1095 avl_create(&spa->spa_errlist_scrub, 1096 spa_error_entry_compare, sizeof (spa_error_entry_t), 1097 offsetof(spa_error_entry_t, se_avl)); 1098 avl_create(&spa->spa_errlist_last, 1099 spa_error_entry_compare, sizeof (spa_error_entry_t), 1100 offsetof(spa_error_entry_t, se_avl)); 1101 } 1102 1103 /* 1104 * Opposite of spa_activate(). 1105 */ 1106 static void 1107 spa_deactivate(spa_t *spa) 1108 { 1109 ASSERT(spa->spa_sync_on == B_FALSE); 1110 ASSERT(spa->spa_dsl_pool == NULL); 1111 ASSERT(spa->spa_root_vdev == NULL); 1112 ASSERT(spa->spa_async_zio_root == NULL); 1113 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1114 1115 txg_list_destroy(&spa->spa_vdev_txg_list); 1116 1117 list_destroy(&spa->spa_config_dirty_list); 1118 list_destroy(&spa->spa_state_dirty_list); 1119 1120 for (int t = 0; t < ZIO_TYPES; t++) { 1121 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1122 spa_taskqs_fini(spa, t, q); 1123 } 1124 } 1125 1126 metaslab_class_destroy(spa->spa_normal_class); 1127 spa->spa_normal_class = NULL; 1128 1129 metaslab_class_destroy(spa->spa_log_class); 1130 spa->spa_log_class = NULL; 1131 1132 /* 1133 * If this was part of an import or the open otherwise failed, we may 1134 * still have errors left in the queues. Empty them just in case. 1135 */ 1136 spa_errlog_drain(spa); 1137 1138 avl_destroy(&spa->spa_errlist_scrub); 1139 avl_destroy(&spa->spa_errlist_last); 1140 1141 spa->spa_state = POOL_STATE_UNINITIALIZED; 1142 1143 mutex_enter(&spa->spa_proc_lock); 1144 if (spa->spa_proc_state != SPA_PROC_NONE) { 1145 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1146 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1147 cv_broadcast(&spa->spa_proc_cv); 1148 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1149 ASSERT(spa->spa_proc != &p0); 1150 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1151 } 1152 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1153 spa->spa_proc_state = SPA_PROC_NONE; 1154 } 1155 ASSERT(spa->spa_proc == &p0); 1156 mutex_exit(&spa->spa_proc_lock); 1157 1158 /* 1159 * We want to make sure spa_thread() has actually exited the ZFS 1160 * module, so that the module can't be unloaded out from underneath 1161 * it. 1162 */ 1163 if (spa->spa_did != 0) { 1164 thread_join(spa->spa_did); 1165 spa->spa_did = 0; 1166 } 1167 } 1168 1169 /* 1170 * Verify a pool configuration, and construct the vdev tree appropriately. This 1171 * will create all the necessary vdevs in the appropriate layout, with each vdev 1172 * in the CLOSED state. This will prep the pool before open/creation/import. 1173 * All vdev validation is done by the vdev_alloc() routine. 1174 */ 1175 static int 1176 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1177 uint_t id, int atype) 1178 { 1179 nvlist_t **child; 1180 uint_t children; 1181 int error; 1182 1183 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1184 return (error); 1185 1186 if ((*vdp)->vdev_ops->vdev_op_leaf) 1187 return (0); 1188 1189 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1190 &child, &children); 1191 1192 if (error == ENOENT) 1193 return (0); 1194 1195 if (error) { 1196 vdev_free(*vdp); 1197 *vdp = NULL; 1198 return (SET_ERROR(EINVAL)); 1199 } 1200 1201 for (int c = 0; c < children; c++) { 1202 vdev_t *vd; 1203 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1204 atype)) != 0) { 1205 vdev_free(*vdp); 1206 *vdp = NULL; 1207 return (error); 1208 } 1209 } 1210 1211 ASSERT(*vdp != NULL); 1212 1213 return (0); 1214 } 1215 1216 /* 1217 * Opposite of spa_load(). 1218 */ 1219 static void 1220 spa_unload(spa_t *spa) 1221 { 1222 int i; 1223 1224 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1225 1226 /* 1227 * Stop async tasks. 1228 */ 1229 spa_async_suspend(spa); 1230 1231 /* 1232 * Stop syncing. 1233 */ 1234 if (spa->spa_sync_on) { 1235 txg_sync_stop(spa->spa_dsl_pool); 1236 spa->spa_sync_on = B_FALSE; 1237 } 1238 1239 /* 1240 * Wait for any outstanding async I/O to complete. 1241 */ 1242 if (spa->spa_async_zio_root != NULL) { 1243 for (int i = 0; i < max_ncpus; i++) 1244 (void) zio_wait(spa->spa_async_zio_root[i]); 1245 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1246 spa->spa_async_zio_root = NULL; 1247 } 1248 1249 bpobj_close(&spa->spa_deferred_bpobj); 1250 1251 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1252 1253 /* 1254 * Close all vdevs. 1255 */ 1256 if (spa->spa_root_vdev) 1257 vdev_free(spa->spa_root_vdev); 1258 ASSERT(spa->spa_root_vdev == NULL); 1259 1260 /* 1261 * Close the dsl pool. 1262 */ 1263 if (spa->spa_dsl_pool) { 1264 dsl_pool_close(spa->spa_dsl_pool); 1265 spa->spa_dsl_pool = NULL; 1266 spa->spa_meta_objset = NULL; 1267 } 1268 1269 ddt_unload(spa); 1270 1271 1272 /* 1273 * Drop and purge level 2 cache 1274 */ 1275 spa_l2cache_drop(spa); 1276 1277 for (i = 0; i < spa->spa_spares.sav_count; i++) 1278 vdev_free(spa->spa_spares.sav_vdevs[i]); 1279 if (spa->spa_spares.sav_vdevs) { 1280 kmem_free(spa->spa_spares.sav_vdevs, 1281 spa->spa_spares.sav_count * sizeof (void *)); 1282 spa->spa_spares.sav_vdevs = NULL; 1283 } 1284 if (spa->spa_spares.sav_config) { 1285 nvlist_free(spa->spa_spares.sav_config); 1286 spa->spa_spares.sav_config = NULL; 1287 } 1288 spa->spa_spares.sav_count = 0; 1289 1290 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1291 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1292 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1293 } 1294 if (spa->spa_l2cache.sav_vdevs) { 1295 kmem_free(spa->spa_l2cache.sav_vdevs, 1296 spa->spa_l2cache.sav_count * sizeof (void *)); 1297 spa->spa_l2cache.sav_vdevs = NULL; 1298 } 1299 if (spa->spa_l2cache.sav_config) { 1300 nvlist_free(spa->spa_l2cache.sav_config); 1301 spa->spa_l2cache.sav_config = NULL; 1302 } 1303 spa->spa_l2cache.sav_count = 0; 1304 1305 spa->spa_async_suspended = 0; 1306 1307 if (spa->spa_comment != NULL) { 1308 spa_strfree(spa->spa_comment); 1309 spa->spa_comment = NULL; 1310 } 1311 1312 spa_config_exit(spa, SCL_ALL, FTAG); 1313 } 1314 1315 /* 1316 * Load (or re-load) the current list of vdevs describing the active spares for 1317 * this pool. When this is called, we have some form of basic information in 1318 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1319 * then re-generate a more complete list including status information. 1320 */ 1321 static void 1322 spa_load_spares(spa_t *spa) 1323 { 1324 nvlist_t **spares; 1325 uint_t nspares; 1326 int i; 1327 vdev_t *vd, *tvd; 1328 1329 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1330 1331 /* 1332 * First, close and free any existing spare vdevs. 1333 */ 1334 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1335 vd = spa->spa_spares.sav_vdevs[i]; 1336 1337 /* Undo the call to spa_activate() below */ 1338 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1339 B_FALSE)) != NULL && tvd->vdev_isspare) 1340 spa_spare_remove(tvd); 1341 vdev_close(vd); 1342 vdev_free(vd); 1343 } 1344 1345 if (spa->spa_spares.sav_vdevs) 1346 kmem_free(spa->spa_spares.sav_vdevs, 1347 spa->spa_spares.sav_count * sizeof (void *)); 1348 1349 if (spa->spa_spares.sav_config == NULL) 1350 nspares = 0; 1351 else 1352 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1353 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1354 1355 spa->spa_spares.sav_count = (int)nspares; 1356 spa->spa_spares.sav_vdevs = NULL; 1357 1358 if (nspares == 0) 1359 return; 1360 1361 /* 1362 * Construct the array of vdevs, opening them to get status in the 1363 * process. For each spare, there is potentially two different vdev_t 1364 * structures associated with it: one in the list of spares (used only 1365 * for basic validation purposes) and one in the active vdev 1366 * configuration (if it's spared in). During this phase we open and 1367 * validate each vdev on the spare list. If the vdev also exists in the 1368 * active configuration, then we also mark this vdev as an active spare. 1369 */ 1370 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1371 KM_SLEEP); 1372 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1373 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1374 VDEV_ALLOC_SPARE) == 0); 1375 ASSERT(vd != NULL); 1376 1377 spa->spa_spares.sav_vdevs[i] = vd; 1378 1379 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1380 B_FALSE)) != NULL) { 1381 if (!tvd->vdev_isspare) 1382 spa_spare_add(tvd); 1383 1384 /* 1385 * We only mark the spare active if we were successfully 1386 * able to load the vdev. Otherwise, importing a pool 1387 * with a bad active spare would result in strange 1388 * behavior, because multiple pool would think the spare 1389 * is actively in use. 1390 * 1391 * There is a vulnerability here to an equally bizarre 1392 * circumstance, where a dead active spare is later 1393 * brought back to life (onlined or otherwise). Given 1394 * the rarity of this scenario, and the extra complexity 1395 * it adds, we ignore the possibility. 1396 */ 1397 if (!vdev_is_dead(tvd)) 1398 spa_spare_activate(tvd); 1399 } 1400 1401 vd->vdev_top = vd; 1402 vd->vdev_aux = &spa->spa_spares; 1403 1404 if (vdev_open(vd) != 0) 1405 continue; 1406 1407 if (vdev_validate_aux(vd) == 0) 1408 spa_spare_add(vd); 1409 } 1410 1411 /* 1412 * Recompute the stashed list of spares, with status information 1413 * this time. 1414 */ 1415 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1416 DATA_TYPE_NVLIST_ARRAY) == 0); 1417 1418 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1419 KM_SLEEP); 1420 for (i = 0; i < spa->spa_spares.sav_count; i++) 1421 spares[i] = vdev_config_generate(spa, 1422 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1423 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1424 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1425 for (i = 0; i < spa->spa_spares.sav_count; i++) 1426 nvlist_free(spares[i]); 1427 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1428 } 1429 1430 /* 1431 * Load (or re-load) the current list of vdevs describing the active l2cache for 1432 * this pool. When this is called, we have some form of basic information in 1433 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1434 * then re-generate a more complete list including status information. 1435 * Devices which are already active have their details maintained, and are 1436 * not re-opened. 1437 */ 1438 static void 1439 spa_load_l2cache(spa_t *spa) 1440 { 1441 nvlist_t **l2cache; 1442 uint_t nl2cache; 1443 int i, j, oldnvdevs; 1444 uint64_t guid; 1445 vdev_t *vd, **oldvdevs, **newvdevs; 1446 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1447 1448 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1449 1450 if (sav->sav_config != NULL) { 1451 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1452 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1453 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1454 } else { 1455 nl2cache = 0; 1456 newvdevs = NULL; 1457 } 1458 1459 oldvdevs = sav->sav_vdevs; 1460 oldnvdevs = sav->sav_count; 1461 sav->sav_vdevs = NULL; 1462 sav->sav_count = 0; 1463 1464 /* 1465 * Process new nvlist of vdevs. 1466 */ 1467 for (i = 0; i < nl2cache; i++) { 1468 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1469 &guid) == 0); 1470 1471 newvdevs[i] = NULL; 1472 for (j = 0; j < oldnvdevs; j++) { 1473 vd = oldvdevs[j]; 1474 if (vd != NULL && guid == vd->vdev_guid) { 1475 /* 1476 * Retain previous vdev for add/remove ops. 1477 */ 1478 newvdevs[i] = vd; 1479 oldvdevs[j] = NULL; 1480 break; 1481 } 1482 } 1483 1484 if (newvdevs[i] == NULL) { 1485 /* 1486 * Create new vdev 1487 */ 1488 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1489 VDEV_ALLOC_L2CACHE) == 0); 1490 ASSERT(vd != NULL); 1491 newvdevs[i] = vd; 1492 1493 /* 1494 * Commit this vdev as an l2cache device, 1495 * even if it fails to open. 1496 */ 1497 spa_l2cache_add(vd); 1498 1499 vd->vdev_top = vd; 1500 vd->vdev_aux = sav; 1501 1502 spa_l2cache_activate(vd); 1503 1504 if (vdev_open(vd) != 0) 1505 continue; 1506 1507 (void) vdev_validate_aux(vd); 1508 1509 if (!vdev_is_dead(vd)) 1510 l2arc_add_vdev(spa, vd); 1511 } 1512 } 1513 1514 /* 1515 * Purge vdevs that were dropped 1516 */ 1517 for (i = 0; i < oldnvdevs; i++) { 1518 uint64_t pool; 1519 1520 vd = oldvdevs[i]; 1521 if (vd != NULL) { 1522 ASSERT(vd->vdev_isl2cache); 1523 1524 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1525 pool != 0ULL && l2arc_vdev_present(vd)) 1526 l2arc_remove_vdev(vd); 1527 vdev_clear_stats(vd); 1528 vdev_free(vd); 1529 } 1530 } 1531 1532 if (oldvdevs) 1533 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1534 1535 if (sav->sav_config == NULL) 1536 goto out; 1537 1538 sav->sav_vdevs = newvdevs; 1539 sav->sav_count = (int)nl2cache; 1540 1541 /* 1542 * Recompute the stashed list of l2cache devices, with status 1543 * information this time. 1544 */ 1545 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1546 DATA_TYPE_NVLIST_ARRAY) == 0); 1547 1548 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1549 for (i = 0; i < sav->sav_count; i++) 1550 l2cache[i] = vdev_config_generate(spa, 1551 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1552 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1553 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1554 out: 1555 for (i = 0; i < sav->sav_count; i++) 1556 nvlist_free(l2cache[i]); 1557 if (sav->sav_count) 1558 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1559 } 1560 1561 static int 1562 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1563 { 1564 dmu_buf_t *db; 1565 char *packed = NULL; 1566 size_t nvsize = 0; 1567 int error; 1568 *value = NULL; 1569 1570 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1571 nvsize = *(uint64_t *)db->db_data; 1572 dmu_buf_rele(db, FTAG); 1573 1574 packed = kmem_alloc(nvsize, KM_SLEEP); 1575 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1576 DMU_READ_PREFETCH); 1577 if (error == 0) 1578 error = nvlist_unpack(packed, nvsize, value, 0); 1579 kmem_free(packed, nvsize); 1580 1581 return (error); 1582 } 1583 1584 /* 1585 * Checks to see if the given vdev could not be opened, in which case we post a 1586 * sysevent to notify the autoreplace code that the device has been removed. 1587 */ 1588 static void 1589 spa_check_removed(vdev_t *vd) 1590 { 1591 for (int c = 0; c < vd->vdev_children; c++) 1592 spa_check_removed(vd->vdev_child[c]); 1593 1594 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1595 !vd->vdev_ishole) { 1596 zfs_post_autoreplace(vd->vdev_spa, vd); 1597 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1598 } 1599 } 1600 1601 /* 1602 * Validate the current config against the MOS config 1603 */ 1604 static boolean_t 1605 spa_config_valid(spa_t *spa, nvlist_t *config) 1606 { 1607 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1608 nvlist_t *nv; 1609 1610 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1611 1612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1613 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1614 1615 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1616 1617 /* 1618 * If we're doing a normal import, then build up any additional 1619 * diagnostic information about missing devices in this config. 1620 * We'll pass this up to the user for further processing. 1621 */ 1622 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1623 nvlist_t **child, *nv; 1624 uint64_t idx = 0; 1625 1626 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1627 KM_SLEEP); 1628 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1629 1630 for (int c = 0; c < rvd->vdev_children; c++) { 1631 vdev_t *tvd = rvd->vdev_child[c]; 1632 vdev_t *mtvd = mrvd->vdev_child[c]; 1633 1634 if (tvd->vdev_ops == &vdev_missing_ops && 1635 mtvd->vdev_ops != &vdev_missing_ops && 1636 mtvd->vdev_islog) 1637 child[idx++] = vdev_config_generate(spa, mtvd, 1638 B_FALSE, 0); 1639 } 1640 1641 if (idx) { 1642 VERIFY(nvlist_add_nvlist_array(nv, 1643 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1644 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1645 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1646 1647 for (int i = 0; i < idx; i++) 1648 nvlist_free(child[i]); 1649 } 1650 nvlist_free(nv); 1651 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1652 } 1653 1654 /* 1655 * Compare the root vdev tree with the information we have 1656 * from the MOS config (mrvd). Check each top-level vdev 1657 * with the corresponding MOS config top-level (mtvd). 1658 */ 1659 for (int c = 0; c < rvd->vdev_children; c++) { 1660 vdev_t *tvd = rvd->vdev_child[c]; 1661 vdev_t *mtvd = mrvd->vdev_child[c]; 1662 1663 /* 1664 * Resolve any "missing" vdevs in the current configuration. 1665 * If we find that the MOS config has more accurate information 1666 * about the top-level vdev then use that vdev instead. 1667 */ 1668 if (tvd->vdev_ops == &vdev_missing_ops && 1669 mtvd->vdev_ops != &vdev_missing_ops) { 1670 1671 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1672 continue; 1673 1674 /* 1675 * Device specific actions. 1676 */ 1677 if (mtvd->vdev_islog) { 1678 spa_set_log_state(spa, SPA_LOG_CLEAR); 1679 } else { 1680 /* 1681 * XXX - once we have 'readonly' pool 1682 * support we should be able to handle 1683 * missing data devices by transitioning 1684 * the pool to readonly. 1685 */ 1686 continue; 1687 } 1688 1689 /* 1690 * Swap the missing vdev with the data we were 1691 * able to obtain from the MOS config. 1692 */ 1693 vdev_remove_child(rvd, tvd); 1694 vdev_remove_child(mrvd, mtvd); 1695 1696 vdev_add_child(rvd, mtvd); 1697 vdev_add_child(mrvd, tvd); 1698 1699 spa_config_exit(spa, SCL_ALL, FTAG); 1700 vdev_load(mtvd); 1701 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1702 1703 vdev_reopen(rvd); 1704 } else if (mtvd->vdev_islog) { 1705 /* 1706 * Load the slog device's state from the MOS config 1707 * since it's possible that the label does not 1708 * contain the most up-to-date information. 1709 */ 1710 vdev_load_log_state(tvd, mtvd); 1711 vdev_reopen(tvd); 1712 } 1713 } 1714 vdev_free(mrvd); 1715 spa_config_exit(spa, SCL_ALL, FTAG); 1716 1717 /* 1718 * Ensure we were able to validate the config. 1719 */ 1720 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1721 } 1722 1723 /* 1724 * Check for missing log devices 1725 */ 1726 static boolean_t 1727 spa_check_logs(spa_t *spa) 1728 { 1729 boolean_t rv = B_FALSE; 1730 1731 switch (spa->spa_log_state) { 1732 case SPA_LOG_MISSING: 1733 /* need to recheck in case slog has been restored */ 1734 case SPA_LOG_UNKNOWN: 1735 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1736 NULL, DS_FIND_CHILDREN) != 0); 1737 if (rv) 1738 spa_set_log_state(spa, SPA_LOG_MISSING); 1739 break; 1740 } 1741 return (rv); 1742 } 1743 1744 static boolean_t 1745 spa_passivate_log(spa_t *spa) 1746 { 1747 vdev_t *rvd = spa->spa_root_vdev; 1748 boolean_t slog_found = B_FALSE; 1749 1750 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1751 1752 if (!spa_has_slogs(spa)) 1753 return (B_FALSE); 1754 1755 for (int c = 0; c < rvd->vdev_children; c++) { 1756 vdev_t *tvd = rvd->vdev_child[c]; 1757 metaslab_group_t *mg = tvd->vdev_mg; 1758 1759 if (tvd->vdev_islog) { 1760 metaslab_group_passivate(mg); 1761 slog_found = B_TRUE; 1762 } 1763 } 1764 1765 return (slog_found); 1766 } 1767 1768 static void 1769 spa_activate_log(spa_t *spa) 1770 { 1771 vdev_t *rvd = spa->spa_root_vdev; 1772 1773 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1774 1775 for (int c = 0; c < rvd->vdev_children; c++) { 1776 vdev_t *tvd = rvd->vdev_child[c]; 1777 metaslab_group_t *mg = tvd->vdev_mg; 1778 1779 if (tvd->vdev_islog) 1780 metaslab_group_activate(mg); 1781 } 1782 } 1783 1784 int 1785 spa_offline_log(spa_t *spa) 1786 { 1787 int error; 1788 1789 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1790 NULL, DS_FIND_CHILDREN); 1791 if (error == 0) { 1792 /* 1793 * We successfully offlined the log device, sync out the 1794 * current txg so that the "stubby" block can be removed 1795 * by zil_sync(). 1796 */ 1797 txg_wait_synced(spa->spa_dsl_pool, 0); 1798 } 1799 return (error); 1800 } 1801 1802 static void 1803 spa_aux_check_removed(spa_aux_vdev_t *sav) 1804 { 1805 for (int i = 0; i < sav->sav_count; i++) 1806 spa_check_removed(sav->sav_vdevs[i]); 1807 } 1808 1809 void 1810 spa_claim_notify(zio_t *zio) 1811 { 1812 spa_t *spa = zio->io_spa; 1813 1814 if (zio->io_error) 1815 return; 1816 1817 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1818 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1819 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1820 mutex_exit(&spa->spa_props_lock); 1821 } 1822 1823 typedef struct spa_load_error { 1824 uint64_t sle_meta_count; 1825 uint64_t sle_data_count; 1826 } spa_load_error_t; 1827 1828 static void 1829 spa_load_verify_done(zio_t *zio) 1830 { 1831 blkptr_t *bp = zio->io_bp; 1832 spa_load_error_t *sle = zio->io_private; 1833 dmu_object_type_t type = BP_GET_TYPE(bp); 1834 int error = zio->io_error; 1835 spa_t *spa = zio->io_spa; 1836 1837 if (error) { 1838 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1839 type != DMU_OT_INTENT_LOG) 1840 atomic_inc_64(&sle->sle_meta_count); 1841 else 1842 atomic_inc_64(&sle->sle_data_count); 1843 } 1844 zio_data_buf_free(zio->io_data, zio->io_size); 1845 1846 mutex_enter(&spa->spa_scrub_lock); 1847 spa->spa_scrub_inflight--; 1848 cv_broadcast(&spa->spa_scrub_io_cv); 1849 mutex_exit(&spa->spa_scrub_lock); 1850 } 1851 1852 /* 1853 * Maximum number of concurrent scrub i/os to create while verifying 1854 * a pool while importing it. 1855 */ 1856 int spa_load_verify_maxinflight = 10000; 1857 boolean_t spa_load_verify_metadata = B_TRUE; 1858 boolean_t spa_load_verify_data = B_TRUE; 1859 1860 /*ARGSUSED*/ 1861 static int 1862 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1863 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1864 { 1865 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1866 return (0); 1867 /* 1868 * Note: normally this routine will not be called if 1869 * spa_load_verify_metadata is not set. However, it may be useful 1870 * to manually set the flag after the traversal has begun. 1871 */ 1872 if (!spa_load_verify_metadata) 1873 return (0); 1874 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1875 return (0); 1876 1877 zio_t *rio = arg; 1878 size_t size = BP_GET_PSIZE(bp); 1879 void *data = zio_data_buf_alloc(size); 1880 1881 mutex_enter(&spa->spa_scrub_lock); 1882 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1883 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1884 spa->spa_scrub_inflight++; 1885 mutex_exit(&spa->spa_scrub_lock); 1886 1887 zio_nowait(zio_read(rio, spa, bp, data, size, 1888 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1889 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1890 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1891 return (0); 1892 } 1893 1894 static int 1895 spa_load_verify(spa_t *spa) 1896 { 1897 zio_t *rio; 1898 spa_load_error_t sle = { 0 }; 1899 zpool_rewind_policy_t policy; 1900 boolean_t verify_ok = B_FALSE; 1901 int error = 0; 1902 1903 zpool_get_rewind_policy(spa->spa_config, &policy); 1904 1905 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1906 return (0); 1907 1908 rio = zio_root(spa, NULL, &sle, 1909 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1910 1911 if (spa_load_verify_metadata) { 1912 error = traverse_pool(spa, spa->spa_verify_min_txg, 1913 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1914 spa_load_verify_cb, rio); 1915 } 1916 1917 (void) zio_wait(rio); 1918 1919 spa->spa_load_meta_errors = sle.sle_meta_count; 1920 spa->spa_load_data_errors = sle.sle_data_count; 1921 1922 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1923 sle.sle_data_count <= policy.zrp_maxdata) { 1924 int64_t loss = 0; 1925 1926 verify_ok = B_TRUE; 1927 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1928 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1929 1930 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1931 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1932 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1933 VERIFY(nvlist_add_int64(spa->spa_load_info, 1934 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1935 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1936 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1937 } else { 1938 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1939 } 1940 1941 if (error) { 1942 if (error != ENXIO && error != EIO) 1943 error = SET_ERROR(EIO); 1944 return (error); 1945 } 1946 1947 return (verify_ok ? 0 : EIO); 1948 } 1949 1950 /* 1951 * Find a value in the pool props object. 1952 */ 1953 static void 1954 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1955 { 1956 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1957 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1958 } 1959 1960 /* 1961 * Find a value in the pool directory object. 1962 */ 1963 static int 1964 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1965 { 1966 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1967 name, sizeof (uint64_t), 1, val)); 1968 } 1969 1970 static int 1971 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1972 { 1973 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1974 return (err); 1975 } 1976 1977 /* 1978 * Fix up config after a partly-completed split. This is done with the 1979 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1980 * pool have that entry in their config, but only the splitting one contains 1981 * a list of all the guids of the vdevs that are being split off. 1982 * 1983 * This function determines what to do with that list: either rejoin 1984 * all the disks to the pool, or complete the splitting process. To attempt 1985 * the rejoin, each disk that is offlined is marked online again, and 1986 * we do a reopen() call. If the vdev label for every disk that was 1987 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1988 * then we call vdev_split() on each disk, and complete the split. 1989 * 1990 * Otherwise we leave the config alone, with all the vdevs in place in 1991 * the original pool. 1992 */ 1993 static void 1994 spa_try_repair(spa_t *spa, nvlist_t *config) 1995 { 1996 uint_t extracted; 1997 uint64_t *glist; 1998 uint_t i, gcount; 1999 nvlist_t *nvl; 2000 vdev_t **vd; 2001 boolean_t attempt_reopen; 2002 2003 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2004 return; 2005 2006 /* check that the config is complete */ 2007 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2008 &glist, &gcount) != 0) 2009 return; 2010 2011 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2012 2013 /* attempt to online all the vdevs & validate */ 2014 attempt_reopen = B_TRUE; 2015 for (i = 0; i < gcount; i++) { 2016 if (glist[i] == 0) /* vdev is hole */ 2017 continue; 2018 2019 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2020 if (vd[i] == NULL) { 2021 /* 2022 * Don't bother attempting to reopen the disks; 2023 * just do the split. 2024 */ 2025 attempt_reopen = B_FALSE; 2026 } else { 2027 /* attempt to re-online it */ 2028 vd[i]->vdev_offline = B_FALSE; 2029 } 2030 } 2031 2032 if (attempt_reopen) { 2033 vdev_reopen(spa->spa_root_vdev); 2034 2035 /* check each device to see what state it's in */ 2036 for (extracted = 0, i = 0; i < gcount; i++) { 2037 if (vd[i] != NULL && 2038 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2039 break; 2040 ++extracted; 2041 } 2042 } 2043 2044 /* 2045 * If every disk has been moved to the new pool, or if we never 2046 * even attempted to look at them, then we split them off for 2047 * good. 2048 */ 2049 if (!attempt_reopen || gcount == extracted) { 2050 for (i = 0; i < gcount; i++) 2051 if (vd[i] != NULL) 2052 vdev_split(vd[i]); 2053 vdev_reopen(spa->spa_root_vdev); 2054 } 2055 2056 kmem_free(vd, gcount * sizeof (vdev_t *)); 2057 } 2058 2059 static int 2060 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2061 boolean_t mosconfig) 2062 { 2063 nvlist_t *config = spa->spa_config; 2064 char *ereport = FM_EREPORT_ZFS_POOL; 2065 char *comment; 2066 int error; 2067 uint64_t pool_guid; 2068 nvlist_t *nvl; 2069 2070 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2071 return (SET_ERROR(EINVAL)); 2072 2073 ASSERT(spa->spa_comment == NULL); 2074 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2075 spa->spa_comment = spa_strdup(comment); 2076 2077 /* 2078 * Versioning wasn't explicitly added to the label until later, so if 2079 * it's not present treat it as the initial version. 2080 */ 2081 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2082 &spa->spa_ubsync.ub_version) != 0) 2083 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2084 2085 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2086 &spa->spa_config_txg); 2087 2088 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2089 spa_guid_exists(pool_guid, 0)) { 2090 error = SET_ERROR(EEXIST); 2091 } else { 2092 spa->spa_config_guid = pool_guid; 2093 2094 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2095 &nvl) == 0) { 2096 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2097 KM_SLEEP) == 0); 2098 } 2099 2100 nvlist_free(spa->spa_load_info); 2101 spa->spa_load_info = fnvlist_alloc(); 2102 2103 gethrestime(&spa->spa_loaded_ts); 2104 error = spa_load_impl(spa, pool_guid, config, state, type, 2105 mosconfig, &ereport); 2106 } 2107 2108 spa->spa_minref = refcount_count(&spa->spa_refcount); 2109 if (error) { 2110 if (error != EEXIST) { 2111 spa->spa_loaded_ts.tv_sec = 0; 2112 spa->spa_loaded_ts.tv_nsec = 0; 2113 } 2114 if (error != EBADF) { 2115 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2116 } 2117 } 2118 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2119 spa->spa_ena = 0; 2120 2121 return (error); 2122 } 2123 2124 /* 2125 * Load an existing storage pool, using the pool's builtin spa_config as a 2126 * source of configuration information. 2127 */ 2128 static int 2129 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2130 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2131 char **ereport) 2132 { 2133 int error = 0; 2134 nvlist_t *nvroot = NULL; 2135 nvlist_t *label; 2136 vdev_t *rvd; 2137 uberblock_t *ub = &spa->spa_uberblock; 2138 uint64_t children, config_cache_txg = spa->spa_config_txg; 2139 int orig_mode = spa->spa_mode; 2140 int parse; 2141 uint64_t obj; 2142 boolean_t missing_feat_write = B_FALSE; 2143 2144 /* 2145 * If this is an untrusted config, access the pool in read-only mode. 2146 * This prevents things like resilvering recently removed devices. 2147 */ 2148 if (!mosconfig) 2149 spa->spa_mode = FREAD; 2150 2151 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2152 2153 spa->spa_load_state = state; 2154 2155 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2156 return (SET_ERROR(EINVAL)); 2157 2158 parse = (type == SPA_IMPORT_EXISTING ? 2159 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2160 2161 /* 2162 * Create "The Godfather" zio to hold all async IOs 2163 */ 2164 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2165 KM_SLEEP); 2166 for (int i = 0; i < max_ncpus; i++) { 2167 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2168 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2169 ZIO_FLAG_GODFATHER); 2170 } 2171 2172 /* 2173 * Parse the configuration into a vdev tree. We explicitly set the 2174 * value that will be returned by spa_version() since parsing the 2175 * configuration requires knowing the version number. 2176 */ 2177 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2178 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2179 spa_config_exit(spa, SCL_ALL, FTAG); 2180 2181 if (error != 0) 2182 return (error); 2183 2184 ASSERT(spa->spa_root_vdev == rvd); 2185 2186 if (type != SPA_IMPORT_ASSEMBLE) { 2187 ASSERT(spa_guid(spa) == pool_guid); 2188 } 2189 2190 /* 2191 * Try to open all vdevs, loading each label in the process. 2192 */ 2193 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2194 error = vdev_open(rvd); 2195 spa_config_exit(spa, SCL_ALL, FTAG); 2196 if (error != 0) 2197 return (error); 2198 2199 /* 2200 * We need to validate the vdev labels against the configuration that 2201 * we have in hand, which is dependent on the setting of mosconfig. If 2202 * mosconfig is true then we're validating the vdev labels based on 2203 * that config. Otherwise, we're validating against the cached config 2204 * (zpool.cache) that was read when we loaded the zfs module, and then 2205 * later we will recursively call spa_load() and validate against 2206 * the vdev config. 2207 * 2208 * If we're assembling a new pool that's been split off from an 2209 * existing pool, the labels haven't yet been updated so we skip 2210 * validation for now. 2211 */ 2212 if (type != SPA_IMPORT_ASSEMBLE) { 2213 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2214 error = vdev_validate(rvd, mosconfig); 2215 spa_config_exit(spa, SCL_ALL, FTAG); 2216 2217 if (error != 0) 2218 return (error); 2219 2220 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2221 return (SET_ERROR(ENXIO)); 2222 } 2223 2224 /* 2225 * Find the best uberblock. 2226 */ 2227 vdev_uberblock_load(rvd, ub, &label); 2228 2229 /* 2230 * If we weren't able to find a single valid uberblock, return failure. 2231 */ 2232 if (ub->ub_txg == 0) { 2233 nvlist_free(label); 2234 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2235 } 2236 2237 /* 2238 * If the pool has an unsupported version we can't open it. 2239 */ 2240 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2241 nvlist_free(label); 2242 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2243 } 2244 2245 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2246 nvlist_t *features; 2247 2248 /* 2249 * If we weren't able to find what's necessary for reading the 2250 * MOS in the label, return failure. 2251 */ 2252 if (label == NULL || nvlist_lookup_nvlist(label, 2253 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2254 nvlist_free(label); 2255 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2256 ENXIO)); 2257 } 2258 2259 /* 2260 * Update our in-core representation with the definitive values 2261 * from the label. 2262 */ 2263 nvlist_free(spa->spa_label_features); 2264 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2265 } 2266 2267 nvlist_free(label); 2268 2269 /* 2270 * Look through entries in the label nvlist's features_for_read. If 2271 * there is a feature listed there which we don't understand then we 2272 * cannot open a pool. 2273 */ 2274 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2275 nvlist_t *unsup_feat; 2276 2277 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2278 0); 2279 2280 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2281 NULL); nvp != NULL; 2282 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2283 if (!zfeature_is_supported(nvpair_name(nvp))) { 2284 VERIFY(nvlist_add_string(unsup_feat, 2285 nvpair_name(nvp), "") == 0); 2286 } 2287 } 2288 2289 if (!nvlist_empty(unsup_feat)) { 2290 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2291 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2292 nvlist_free(unsup_feat); 2293 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2294 ENOTSUP)); 2295 } 2296 2297 nvlist_free(unsup_feat); 2298 } 2299 2300 /* 2301 * If the vdev guid sum doesn't match the uberblock, we have an 2302 * incomplete configuration. We first check to see if the pool 2303 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2304 * If it is, defer the vdev_guid_sum check till later so we 2305 * can handle missing vdevs. 2306 */ 2307 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2308 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2309 rvd->vdev_guid_sum != ub->ub_guid_sum) 2310 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2311 2312 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2313 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2314 spa_try_repair(spa, config); 2315 spa_config_exit(spa, SCL_ALL, FTAG); 2316 nvlist_free(spa->spa_config_splitting); 2317 spa->spa_config_splitting = NULL; 2318 } 2319 2320 /* 2321 * Initialize internal SPA structures. 2322 */ 2323 spa->spa_state = POOL_STATE_ACTIVE; 2324 spa->spa_ubsync = spa->spa_uberblock; 2325 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2326 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2327 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2328 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2329 spa->spa_claim_max_txg = spa->spa_first_txg; 2330 spa->spa_prev_software_version = ub->ub_software_version; 2331 2332 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2333 if (error) 2334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2335 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2336 2337 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2338 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2339 2340 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2341 boolean_t missing_feat_read = B_FALSE; 2342 nvlist_t *unsup_feat, *enabled_feat; 2343 2344 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2345 &spa->spa_feat_for_read_obj) != 0) { 2346 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2347 } 2348 2349 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2350 &spa->spa_feat_for_write_obj) != 0) { 2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2352 } 2353 2354 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2355 &spa->spa_feat_desc_obj) != 0) { 2356 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2357 } 2358 2359 enabled_feat = fnvlist_alloc(); 2360 unsup_feat = fnvlist_alloc(); 2361 2362 if (!spa_features_check(spa, B_FALSE, 2363 unsup_feat, enabled_feat)) 2364 missing_feat_read = B_TRUE; 2365 2366 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2367 if (!spa_features_check(spa, B_TRUE, 2368 unsup_feat, enabled_feat)) { 2369 missing_feat_write = B_TRUE; 2370 } 2371 } 2372 2373 fnvlist_add_nvlist(spa->spa_load_info, 2374 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2375 2376 if (!nvlist_empty(unsup_feat)) { 2377 fnvlist_add_nvlist(spa->spa_load_info, 2378 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2379 } 2380 2381 fnvlist_free(enabled_feat); 2382 fnvlist_free(unsup_feat); 2383 2384 if (!missing_feat_read) { 2385 fnvlist_add_boolean(spa->spa_load_info, 2386 ZPOOL_CONFIG_CAN_RDONLY); 2387 } 2388 2389 /* 2390 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2391 * twofold: to determine whether the pool is available for 2392 * import in read-write mode and (if it is not) whether the 2393 * pool is available for import in read-only mode. If the pool 2394 * is available for import in read-write mode, it is displayed 2395 * as available in userland; if it is not available for import 2396 * in read-only mode, it is displayed as unavailable in 2397 * userland. If the pool is available for import in read-only 2398 * mode but not read-write mode, it is displayed as unavailable 2399 * in userland with a special note that the pool is actually 2400 * available for open in read-only mode. 2401 * 2402 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2403 * missing a feature for write, we must first determine whether 2404 * the pool can be opened read-only before returning to 2405 * userland in order to know whether to display the 2406 * abovementioned note. 2407 */ 2408 if (missing_feat_read || (missing_feat_write && 2409 spa_writeable(spa))) { 2410 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2411 ENOTSUP)); 2412 } 2413 2414 /* 2415 * Load refcounts for ZFS features from disk into an in-memory 2416 * cache during SPA initialization. 2417 */ 2418 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2419 uint64_t refcount; 2420 2421 error = feature_get_refcount_from_disk(spa, 2422 &spa_feature_table[i], &refcount); 2423 if (error == 0) { 2424 spa->spa_feat_refcount_cache[i] = refcount; 2425 } else if (error == ENOTSUP) { 2426 spa->spa_feat_refcount_cache[i] = 2427 SPA_FEATURE_DISABLED; 2428 } else { 2429 return (spa_vdev_err(rvd, 2430 VDEV_AUX_CORRUPT_DATA, EIO)); 2431 } 2432 } 2433 } 2434 2435 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2436 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2437 &spa->spa_feat_enabled_txg_obj) != 0) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 } 2440 2441 spa->spa_is_initializing = B_TRUE; 2442 error = dsl_pool_open(spa->spa_dsl_pool); 2443 spa->spa_is_initializing = B_FALSE; 2444 if (error != 0) 2445 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2446 2447 if (!mosconfig) { 2448 uint64_t hostid; 2449 nvlist_t *policy = NULL, *nvconfig; 2450 2451 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2453 2454 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2455 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2456 char *hostname; 2457 unsigned long myhostid = 0; 2458 2459 VERIFY(nvlist_lookup_string(nvconfig, 2460 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2461 2462 #ifdef _KERNEL 2463 myhostid = zone_get_hostid(NULL); 2464 #else /* _KERNEL */ 2465 /* 2466 * We're emulating the system's hostid in userland, so 2467 * we can't use zone_get_hostid(). 2468 */ 2469 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2470 #endif /* _KERNEL */ 2471 if (hostid != 0 && myhostid != 0 && 2472 hostid != myhostid) { 2473 nvlist_free(nvconfig); 2474 cmn_err(CE_WARN, "pool '%s' could not be " 2475 "loaded as it was last accessed by " 2476 "another system (host: %s hostid: 0x%lx). " 2477 "See: http://illumos.org/msg/ZFS-8000-EY", 2478 spa_name(spa), hostname, 2479 (unsigned long)hostid); 2480 return (SET_ERROR(EBADF)); 2481 } 2482 } 2483 if (nvlist_lookup_nvlist(spa->spa_config, 2484 ZPOOL_REWIND_POLICY, &policy) == 0) 2485 VERIFY(nvlist_add_nvlist(nvconfig, 2486 ZPOOL_REWIND_POLICY, policy) == 0); 2487 2488 spa_config_set(spa, nvconfig); 2489 spa_unload(spa); 2490 spa_deactivate(spa); 2491 spa_activate(spa, orig_mode); 2492 2493 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2494 } 2495 2496 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2498 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2499 if (error != 0) 2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2501 2502 /* 2503 * Load the bit that tells us to use the new accounting function 2504 * (raid-z deflation). If we have an older pool, this will not 2505 * be present. 2506 */ 2507 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2508 if (error != 0 && error != ENOENT) 2509 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2510 2511 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2512 &spa->spa_creation_version); 2513 if (error != 0 && error != ENOENT) 2514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2515 2516 /* 2517 * Load the persistent error log. If we have an older pool, this will 2518 * not be present. 2519 */ 2520 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2521 if (error != 0 && error != ENOENT) 2522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2523 2524 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2525 &spa->spa_errlog_scrub); 2526 if (error != 0 && error != ENOENT) 2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2528 2529 /* 2530 * Load the history object. If we have an older pool, this 2531 * will not be present. 2532 */ 2533 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2534 if (error != 0 && error != ENOENT) 2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2536 2537 /* 2538 * If we're assembling the pool from the split-off vdevs of 2539 * an existing pool, we don't want to attach the spares & cache 2540 * devices. 2541 */ 2542 2543 /* 2544 * Load any hot spares for this pool. 2545 */ 2546 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2547 if (error != 0 && error != ENOENT) 2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2549 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2550 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2551 if (load_nvlist(spa, spa->spa_spares.sav_object, 2552 &spa->spa_spares.sav_config) != 0) 2553 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2554 2555 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2556 spa_load_spares(spa); 2557 spa_config_exit(spa, SCL_ALL, FTAG); 2558 } else if (error == 0) { 2559 spa->spa_spares.sav_sync = B_TRUE; 2560 } 2561 2562 /* 2563 * Load any level 2 ARC devices for this pool. 2564 */ 2565 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2566 &spa->spa_l2cache.sav_object); 2567 if (error != 0 && error != ENOENT) 2568 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2569 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2570 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2571 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2572 &spa->spa_l2cache.sav_config) != 0) 2573 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2574 2575 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2576 spa_load_l2cache(spa); 2577 spa_config_exit(spa, SCL_ALL, FTAG); 2578 } else if (error == 0) { 2579 spa->spa_l2cache.sav_sync = B_TRUE; 2580 } 2581 2582 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2583 2584 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2585 if (error && error != ENOENT) 2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2587 2588 if (error == 0) { 2589 uint64_t autoreplace; 2590 2591 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2592 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2593 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2594 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2595 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2596 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2597 &spa->spa_dedup_ditto); 2598 2599 spa->spa_autoreplace = (autoreplace != 0); 2600 } 2601 2602 /* 2603 * If the 'autoreplace' property is set, then post a resource notifying 2604 * the ZFS DE that it should not issue any faults for unopenable 2605 * devices. We also iterate over the vdevs, and post a sysevent for any 2606 * unopenable vdevs so that the normal autoreplace handler can take 2607 * over. 2608 */ 2609 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2610 spa_check_removed(spa->spa_root_vdev); 2611 /* 2612 * For the import case, this is done in spa_import(), because 2613 * at this point we're using the spare definitions from 2614 * the MOS config, not necessarily from the userland config. 2615 */ 2616 if (state != SPA_LOAD_IMPORT) { 2617 spa_aux_check_removed(&spa->spa_spares); 2618 spa_aux_check_removed(&spa->spa_l2cache); 2619 } 2620 } 2621 2622 /* 2623 * Load the vdev state for all toplevel vdevs. 2624 */ 2625 vdev_load(rvd); 2626 2627 /* 2628 * Propagate the leaf DTLs we just loaded all the way up the tree. 2629 */ 2630 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2631 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2632 spa_config_exit(spa, SCL_ALL, FTAG); 2633 2634 /* 2635 * Load the DDTs (dedup tables). 2636 */ 2637 error = ddt_load(spa); 2638 if (error != 0) 2639 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2640 2641 spa_update_dspace(spa); 2642 2643 /* 2644 * Validate the config, using the MOS config to fill in any 2645 * information which might be missing. If we fail to validate 2646 * the config then declare the pool unfit for use. If we're 2647 * assembling a pool from a split, the log is not transferred 2648 * over. 2649 */ 2650 if (type != SPA_IMPORT_ASSEMBLE) { 2651 nvlist_t *nvconfig; 2652 2653 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2654 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2655 2656 if (!spa_config_valid(spa, nvconfig)) { 2657 nvlist_free(nvconfig); 2658 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2659 ENXIO)); 2660 } 2661 nvlist_free(nvconfig); 2662 2663 /* 2664 * Now that we've validated the config, check the state of the 2665 * root vdev. If it can't be opened, it indicates one or 2666 * more toplevel vdevs are faulted. 2667 */ 2668 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2669 return (SET_ERROR(ENXIO)); 2670 2671 if (spa_check_logs(spa)) { 2672 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2673 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2674 } 2675 } 2676 2677 if (missing_feat_write) { 2678 ASSERT(state == SPA_LOAD_TRYIMPORT); 2679 2680 /* 2681 * At this point, we know that we can open the pool in 2682 * read-only mode but not read-write mode. We now have enough 2683 * information and can return to userland. 2684 */ 2685 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2686 } 2687 2688 /* 2689 * We've successfully opened the pool, verify that we're ready 2690 * to start pushing transactions. 2691 */ 2692 if (state != SPA_LOAD_TRYIMPORT) { 2693 if (error = spa_load_verify(spa)) 2694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2695 error)); 2696 } 2697 2698 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2699 spa->spa_load_max_txg == UINT64_MAX)) { 2700 dmu_tx_t *tx; 2701 int need_update = B_FALSE; 2702 2703 ASSERT(state != SPA_LOAD_TRYIMPORT); 2704 2705 /* 2706 * Claim log blocks that haven't been committed yet. 2707 * This must all happen in a single txg. 2708 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2709 * invoked from zil_claim_log_block()'s i/o done callback. 2710 * Price of rollback is that we abandon the log. 2711 */ 2712 spa->spa_claiming = B_TRUE; 2713 2714 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2715 spa_first_txg(spa)); 2716 (void) dmu_objset_find(spa_name(spa), 2717 zil_claim, tx, DS_FIND_CHILDREN); 2718 dmu_tx_commit(tx); 2719 2720 spa->spa_claiming = B_FALSE; 2721 2722 spa_set_log_state(spa, SPA_LOG_GOOD); 2723 spa->spa_sync_on = B_TRUE; 2724 txg_sync_start(spa->spa_dsl_pool); 2725 2726 /* 2727 * Wait for all claims to sync. We sync up to the highest 2728 * claimed log block birth time so that claimed log blocks 2729 * don't appear to be from the future. spa_claim_max_txg 2730 * will have been set for us by either zil_check_log_chain() 2731 * (invoked from spa_check_logs()) or zil_claim() above. 2732 */ 2733 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2734 2735 /* 2736 * If the config cache is stale, or we have uninitialized 2737 * metaslabs (see spa_vdev_add()), then update the config. 2738 * 2739 * If this is a verbatim import, trust the current 2740 * in-core spa_config and update the disk labels. 2741 */ 2742 if (config_cache_txg != spa->spa_config_txg || 2743 state == SPA_LOAD_IMPORT || 2744 state == SPA_LOAD_RECOVER || 2745 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2746 need_update = B_TRUE; 2747 2748 for (int c = 0; c < rvd->vdev_children; c++) 2749 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2750 need_update = B_TRUE; 2751 2752 /* 2753 * Update the config cache asychronously in case we're the 2754 * root pool, in which case the config cache isn't writable yet. 2755 */ 2756 if (need_update) 2757 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2758 2759 /* 2760 * Check all DTLs to see if anything needs resilvering. 2761 */ 2762 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2763 vdev_resilver_needed(rvd, NULL, NULL)) 2764 spa_async_request(spa, SPA_ASYNC_RESILVER); 2765 2766 /* 2767 * Log the fact that we booted up (so that we can detect if 2768 * we rebooted in the middle of an operation). 2769 */ 2770 spa_history_log_version(spa, "open"); 2771 2772 /* 2773 * Delete any inconsistent datasets. 2774 */ 2775 (void) dmu_objset_find(spa_name(spa), 2776 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2777 2778 /* 2779 * Clean up any stale temporary dataset userrefs. 2780 */ 2781 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2782 } 2783 2784 return (0); 2785 } 2786 2787 static int 2788 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2789 { 2790 int mode = spa->spa_mode; 2791 2792 spa_unload(spa); 2793 spa_deactivate(spa); 2794 2795 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2796 2797 spa_activate(spa, mode); 2798 spa_async_suspend(spa); 2799 2800 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2801 } 2802 2803 /* 2804 * If spa_load() fails this function will try loading prior txg's. If 2805 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2806 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2807 * function will not rewind the pool and will return the same error as 2808 * spa_load(). 2809 */ 2810 static int 2811 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2812 uint64_t max_request, int rewind_flags) 2813 { 2814 nvlist_t *loadinfo = NULL; 2815 nvlist_t *config = NULL; 2816 int load_error, rewind_error; 2817 uint64_t safe_rewind_txg; 2818 uint64_t min_txg; 2819 2820 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2821 spa->spa_load_max_txg = spa->spa_load_txg; 2822 spa_set_log_state(spa, SPA_LOG_CLEAR); 2823 } else { 2824 spa->spa_load_max_txg = max_request; 2825 if (max_request != UINT64_MAX) 2826 spa->spa_extreme_rewind = B_TRUE; 2827 } 2828 2829 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2830 mosconfig); 2831 if (load_error == 0) 2832 return (0); 2833 2834 if (spa->spa_root_vdev != NULL) 2835 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2836 2837 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2838 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2839 2840 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2841 nvlist_free(config); 2842 return (load_error); 2843 } 2844 2845 if (state == SPA_LOAD_RECOVER) { 2846 /* Price of rolling back is discarding txgs, including log */ 2847 spa_set_log_state(spa, SPA_LOG_CLEAR); 2848 } else { 2849 /* 2850 * If we aren't rolling back save the load info from our first 2851 * import attempt so that we can restore it after attempting 2852 * to rewind. 2853 */ 2854 loadinfo = spa->spa_load_info; 2855 spa->spa_load_info = fnvlist_alloc(); 2856 } 2857 2858 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2859 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2860 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2861 TXG_INITIAL : safe_rewind_txg; 2862 2863 /* 2864 * Continue as long as we're finding errors, we're still within 2865 * the acceptable rewind range, and we're still finding uberblocks 2866 */ 2867 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2868 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2869 if (spa->spa_load_max_txg < safe_rewind_txg) 2870 spa->spa_extreme_rewind = B_TRUE; 2871 rewind_error = spa_load_retry(spa, state, mosconfig); 2872 } 2873 2874 spa->spa_extreme_rewind = B_FALSE; 2875 spa->spa_load_max_txg = UINT64_MAX; 2876 2877 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2878 spa_config_set(spa, config); 2879 2880 if (state == SPA_LOAD_RECOVER) { 2881 ASSERT3P(loadinfo, ==, NULL); 2882 return (rewind_error); 2883 } else { 2884 /* Store the rewind info as part of the initial load info */ 2885 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2886 spa->spa_load_info); 2887 2888 /* Restore the initial load info */ 2889 fnvlist_free(spa->spa_load_info); 2890 spa->spa_load_info = loadinfo; 2891 2892 return (load_error); 2893 } 2894 } 2895 2896 /* 2897 * Pool Open/Import 2898 * 2899 * The import case is identical to an open except that the configuration is sent 2900 * down from userland, instead of grabbed from the configuration cache. For the 2901 * case of an open, the pool configuration will exist in the 2902 * POOL_STATE_UNINITIALIZED state. 2903 * 2904 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2905 * the same time open the pool, without having to keep around the spa_t in some 2906 * ambiguous state. 2907 */ 2908 static int 2909 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2910 nvlist_t **config) 2911 { 2912 spa_t *spa; 2913 spa_load_state_t state = SPA_LOAD_OPEN; 2914 int error; 2915 int locked = B_FALSE; 2916 2917 *spapp = NULL; 2918 2919 /* 2920 * As disgusting as this is, we need to support recursive calls to this 2921 * function because dsl_dir_open() is called during spa_load(), and ends 2922 * up calling spa_open() again. The real fix is to figure out how to 2923 * avoid dsl_dir_open() calling this in the first place. 2924 */ 2925 if (mutex_owner(&spa_namespace_lock) != curthread) { 2926 mutex_enter(&spa_namespace_lock); 2927 locked = B_TRUE; 2928 } 2929 2930 if ((spa = spa_lookup(pool)) == NULL) { 2931 if (locked) 2932 mutex_exit(&spa_namespace_lock); 2933 return (SET_ERROR(ENOENT)); 2934 } 2935 2936 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2937 zpool_rewind_policy_t policy; 2938 2939 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2940 &policy); 2941 if (policy.zrp_request & ZPOOL_DO_REWIND) 2942 state = SPA_LOAD_RECOVER; 2943 2944 spa_activate(spa, spa_mode_global); 2945 2946 if (state != SPA_LOAD_RECOVER) 2947 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2948 2949 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2950 policy.zrp_request); 2951 2952 if (error == EBADF) { 2953 /* 2954 * If vdev_validate() returns failure (indicated by 2955 * EBADF), it indicates that one of the vdevs indicates 2956 * that the pool has been exported or destroyed. If 2957 * this is the case, the config cache is out of sync and 2958 * we should remove the pool from the namespace. 2959 */ 2960 spa_unload(spa); 2961 spa_deactivate(spa); 2962 spa_config_sync(spa, B_TRUE, B_TRUE); 2963 spa_remove(spa); 2964 if (locked) 2965 mutex_exit(&spa_namespace_lock); 2966 return (SET_ERROR(ENOENT)); 2967 } 2968 2969 if (error) { 2970 /* 2971 * We can't open the pool, but we still have useful 2972 * information: the state of each vdev after the 2973 * attempted vdev_open(). Return this to the user. 2974 */ 2975 if (config != NULL && spa->spa_config) { 2976 VERIFY(nvlist_dup(spa->spa_config, config, 2977 KM_SLEEP) == 0); 2978 VERIFY(nvlist_add_nvlist(*config, 2979 ZPOOL_CONFIG_LOAD_INFO, 2980 spa->spa_load_info) == 0); 2981 } 2982 spa_unload(spa); 2983 spa_deactivate(spa); 2984 spa->spa_last_open_failed = error; 2985 if (locked) 2986 mutex_exit(&spa_namespace_lock); 2987 *spapp = NULL; 2988 return (error); 2989 } 2990 } 2991 2992 spa_open_ref(spa, tag); 2993 2994 if (config != NULL) 2995 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2996 2997 /* 2998 * If we've recovered the pool, pass back any information we 2999 * gathered while doing the load. 3000 */ 3001 if (state == SPA_LOAD_RECOVER) { 3002 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3003 spa->spa_load_info) == 0); 3004 } 3005 3006 if (locked) { 3007 spa->spa_last_open_failed = 0; 3008 spa->spa_last_ubsync_txg = 0; 3009 spa->spa_load_txg = 0; 3010 mutex_exit(&spa_namespace_lock); 3011 } 3012 3013 *spapp = spa; 3014 3015 return (0); 3016 } 3017 3018 int 3019 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3020 nvlist_t **config) 3021 { 3022 return (spa_open_common(name, spapp, tag, policy, config)); 3023 } 3024 3025 int 3026 spa_open(const char *name, spa_t **spapp, void *tag) 3027 { 3028 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3029 } 3030 3031 /* 3032 * Lookup the given spa_t, incrementing the inject count in the process, 3033 * preventing it from being exported or destroyed. 3034 */ 3035 spa_t * 3036 spa_inject_addref(char *name) 3037 { 3038 spa_t *spa; 3039 3040 mutex_enter(&spa_namespace_lock); 3041 if ((spa = spa_lookup(name)) == NULL) { 3042 mutex_exit(&spa_namespace_lock); 3043 return (NULL); 3044 } 3045 spa->spa_inject_ref++; 3046 mutex_exit(&spa_namespace_lock); 3047 3048 return (spa); 3049 } 3050 3051 void 3052 spa_inject_delref(spa_t *spa) 3053 { 3054 mutex_enter(&spa_namespace_lock); 3055 spa->spa_inject_ref--; 3056 mutex_exit(&spa_namespace_lock); 3057 } 3058 3059 /* 3060 * Add spares device information to the nvlist. 3061 */ 3062 static void 3063 spa_add_spares(spa_t *spa, nvlist_t *config) 3064 { 3065 nvlist_t **spares; 3066 uint_t i, nspares; 3067 nvlist_t *nvroot; 3068 uint64_t guid; 3069 vdev_stat_t *vs; 3070 uint_t vsc; 3071 uint64_t pool; 3072 3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3074 3075 if (spa->spa_spares.sav_count == 0) 3076 return; 3077 3078 VERIFY(nvlist_lookup_nvlist(config, 3079 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3080 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3081 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3082 if (nspares != 0) { 3083 VERIFY(nvlist_add_nvlist_array(nvroot, 3084 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3085 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3086 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3087 3088 /* 3089 * Go through and find any spares which have since been 3090 * repurposed as an active spare. If this is the case, update 3091 * their status appropriately. 3092 */ 3093 for (i = 0; i < nspares; i++) { 3094 VERIFY(nvlist_lookup_uint64(spares[i], 3095 ZPOOL_CONFIG_GUID, &guid) == 0); 3096 if (spa_spare_exists(guid, &pool, NULL) && 3097 pool != 0ULL) { 3098 VERIFY(nvlist_lookup_uint64_array( 3099 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3100 (uint64_t **)&vs, &vsc) == 0); 3101 vs->vs_state = VDEV_STATE_CANT_OPEN; 3102 vs->vs_aux = VDEV_AUX_SPARED; 3103 } 3104 } 3105 } 3106 } 3107 3108 /* 3109 * Add l2cache device information to the nvlist, including vdev stats. 3110 */ 3111 static void 3112 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3113 { 3114 nvlist_t **l2cache; 3115 uint_t i, j, nl2cache; 3116 nvlist_t *nvroot; 3117 uint64_t guid; 3118 vdev_t *vd; 3119 vdev_stat_t *vs; 3120 uint_t vsc; 3121 3122 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3123 3124 if (spa->spa_l2cache.sav_count == 0) 3125 return; 3126 3127 VERIFY(nvlist_lookup_nvlist(config, 3128 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3129 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3130 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3131 if (nl2cache != 0) { 3132 VERIFY(nvlist_add_nvlist_array(nvroot, 3133 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3134 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3135 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3136 3137 /* 3138 * Update level 2 cache device stats. 3139 */ 3140 3141 for (i = 0; i < nl2cache; i++) { 3142 VERIFY(nvlist_lookup_uint64(l2cache[i], 3143 ZPOOL_CONFIG_GUID, &guid) == 0); 3144 3145 vd = NULL; 3146 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3147 if (guid == 3148 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3149 vd = spa->spa_l2cache.sav_vdevs[j]; 3150 break; 3151 } 3152 } 3153 ASSERT(vd != NULL); 3154 3155 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3156 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3157 == 0); 3158 vdev_get_stats(vd, vs); 3159 } 3160 } 3161 } 3162 3163 static void 3164 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3165 { 3166 nvlist_t *features; 3167 zap_cursor_t zc; 3168 zap_attribute_t za; 3169 3170 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3171 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3172 3173 if (spa->spa_feat_for_read_obj != 0) { 3174 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3175 spa->spa_feat_for_read_obj); 3176 zap_cursor_retrieve(&zc, &za) == 0; 3177 zap_cursor_advance(&zc)) { 3178 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3179 za.za_num_integers == 1); 3180 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3181 za.za_first_integer)); 3182 } 3183 zap_cursor_fini(&zc); 3184 } 3185 3186 if (spa->spa_feat_for_write_obj != 0) { 3187 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3188 spa->spa_feat_for_write_obj); 3189 zap_cursor_retrieve(&zc, &za) == 0; 3190 zap_cursor_advance(&zc)) { 3191 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3192 za.za_num_integers == 1); 3193 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3194 za.za_first_integer)); 3195 } 3196 zap_cursor_fini(&zc); 3197 } 3198 3199 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3200 features) == 0); 3201 nvlist_free(features); 3202 } 3203 3204 int 3205 spa_get_stats(const char *name, nvlist_t **config, 3206 char *altroot, size_t buflen) 3207 { 3208 int error; 3209 spa_t *spa; 3210 3211 *config = NULL; 3212 error = spa_open_common(name, &spa, FTAG, NULL, config); 3213 3214 if (spa != NULL) { 3215 /* 3216 * This still leaves a window of inconsistency where the spares 3217 * or l2cache devices could change and the config would be 3218 * self-inconsistent. 3219 */ 3220 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3221 3222 if (*config != NULL) { 3223 uint64_t loadtimes[2]; 3224 3225 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3226 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3227 VERIFY(nvlist_add_uint64_array(*config, 3228 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3229 3230 VERIFY(nvlist_add_uint64(*config, 3231 ZPOOL_CONFIG_ERRCOUNT, 3232 spa_get_errlog_size(spa)) == 0); 3233 3234 if (spa_suspended(spa)) 3235 VERIFY(nvlist_add_uint64(*config, 3236 ZPOOL_CONFIG_SUSPENDED, 3237 spa->spa_failmode) == 0); 3238 3239 spa_add_spares(spa, *config); 3240 spa_add_l2cache(spa, *config); 3241 spa_add_feature_stats(spa, *config); 3242 } 3243 } 3244 3245 /* 3246 * We want to get the alternate root even for faulted pools, so we cheat 3247 * and call spa_lookup() directly. 3248 */ 3249 if (altroot) { 3250 if (spa == NULL) { 3251 mutex_enter(&spa_namespace_lock); 3252 spa = spa_lookup(name); 3253 if (spa) 3254 spa_altroot(spa, altroot, buflen); 3255 else 3256 altroot[0] = '\0'; 3257 spa = NULL; 3258 mutex_exit(&spa_namespace_lock); 3259 } else { 3260 spa_altroot(spa, altroot, buflen); 3261 } 3262 } 3263 3264 if (spa != NULL) { 3265 spa_config_exit(spa, SCL_CONFIG, FTAG); 3266 spa_close(spa, FTAG); 3267 } 3268 3269 return (error); 3270 } 3271 3272 /* 3273 * Validate that the auxiliary device array is well formed. We must have an 3274 * array of nvlists, each which describes a valid leaf vdev. If this is an 3275 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3276 * specified, as long as they are well-formed. 3277 */ 3278 static int 3279 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3280 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3281 vdev_labeltype_t label) 3282 { 3283 nvlist_t **dev; 3284 uint_t i, ndev; 3285 vdev_t *vd; 3286 int error; 3287 3288 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3289 3290 /* 3291 * It's acceptable to have no devs specified. 3292 */ 3293 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3294 return (0); 3295 3296 if (ndev == 0) 3297 return (SET_ERROR(EINVAL)); 3298 3299 /* 3300 * Make sure the pool is formatted with a version that supports this 3301 * device type. 3302 */ 3303 if (spa_version(spa) < version) 3304 return (SET_ERROR(ENOTSUP)); 3305 3306 /* 3307 * Set the pending device list so we correctly handle device in-use 3308 * checking. 3309 */ 3310 sav->sav_pending = dev; 3311 sav->sav_npending = ndev; 3312 3313 for (i = 0; i < ndev; i++) { 3314 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3315 mode)) != 0) 3316 goto out; 3317 3318 if (!vd->vdev_ops->vdev_op_leaf) { 3319 vdev_free(vd); 3320 error = SET_ERROR(EINVAL); 3321 goto out; 3322 } 3323 3324 /* 3325 * The L2ARC currently only supports disk devices in 3326 * kernel context. For user-level testing, we allow it. 3327 */ 3328 #ifdef _KERNEL 3329 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3330 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3331 error = SET_ERROR(ENOTBLK); 3332 vdev_free(vd); 3333 goto out; 3334 } 3335 #endif 3336 vd->vdev_top = vd; 3337 3338 if ((error = vdev_open(vd)) == 0 && 3339 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3340 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3341 vd->vdev_guid) == 0); 3342 } 3343 3344 vdev_free(vd); 3345 3346 if (error && 3347 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3348 goto out; 3349 else 3350 error = 0; 3351 } 3352 3353 out: 3354 sav->sav_pending = NULL; 3355 sav->sav_npending = 0; 3356 return (error); 3357 } 3358 3359 static int 3360 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3361 { 3362 int error; 3363 3364 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3365 3366 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3367 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3368 VDEV_LABEL_SPARE)) != 0) { 3369 return (error); 3370 } 3371 3372 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3373 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3374 VDEV_LABEL_L2CACHE)); 3375 } 3376 3377 static void 3378 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3379 const char *config) 3380 { 3381 int i; 3382 3383 if (sav->sav_config != NULL) { 3384 nvlist_t **olddevs; 3385 uint_t oldndevs; 3386 nvlist_t **newdevs; 3387 3388 /* 3389 * Generate new dev list by concatentating with the 3390 * current dev list. 3391 */ 3392 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3393 &olddevs, &oldndevs) == 0); 3394 3395 newdevs = kmem_alloc(sizeof (void *) * 3396 (ndevs + oldndevs), KM_SLEEP); 3397 for (i = 0; i < oldndevs; i++) 3398 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3399 KM_SLEEP) == 0); 3400 for (i = 0; i < ndevs; i++) 3401 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3402 KM_SLEEP) == 0); 3403 3404 VERIFY(nvlist_remove(sav->sav_config, config, 3405 DATA_TYPE_NVLIST_ARRAY) == 0); 3406 3407 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3408 config, newdevs, ndevs + oldndevs) == 0); 3409 for (i = 0; i < oldndevs + ndevs; i++) 3410 nvlist_free(newdevs[i]); 3411 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3412 } else { 3413 /* 3414 * Generate a new dev list. 3415 */ 3416 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3417 KM_SLEEP) == 0); 3418 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3419 devs, ndevs) == 0); 3420 } 3421 } 3422 3423 /* 3424 * Stop and drop level 2 ARC devices 3425 */ 3426 void 3427 spa_l2cache_drop(spa_t *spa) 3428 { 3429 vdev_t *vd; 3430 int i; 3431 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3432 3433 for (i = 0; i < sav->sav_count; i++) { 3434 uint64_t pool; 3435 3436 vd = sav->sav_vdevs[i]; 3437 ASSERT(vd != NULL); 3438 3439 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3440 pool != 0ULL && l2arc_vdev_present(vd)) 3441 l2arc_remove_vdev(vd); 3442 } 3443 } 3444 3445 /* 3446 * Pool Creation 3447 */ 3448 int 3449 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3450 nvlist_t *zplprops) 3451 { 3452 spa_t *spa; 3453 char *altroot = NULL; 3454 vdev_t *rvd; 3455 dsl_pool_t *dp; 3456 dmu_tx_t *tx; 3457 int error = 0; 3458 uint64_t txg = TXG_INITIAL; 3459 nvlist_t **spares, **l2cache; 3460 uint_t nspares, nl2cache; 3461 uint64_t version, obj; 3462 boolean_t has_features; 3463 3464 /* 3465 * If this pool already exists, return failure. 3466 */ 3467 mutex_enter(&spa_namespace_lock); 3468 if (spa_lookup(pool) != NULL) { 3469 mutex_exit(&spa_namespace_lock); 3470 return (SET_ERROR(EEXIST)); 3471 } 3472 3473 /* 3474 * Allocate a new spa_t structure. 3475 */ 3476 (void) nvlist_lookup_string(props, 3477 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3478 spa = spa_add(pool, NULL, altroot); 3479 spa_activate(spa, spa_mode_global); 3480 3481 if (props && (error = spa_prop_validate(spa, props))) { 3482 spa_deactivate(spa); 3483 spa_remove(spa); 3484 mutex_exit(&spa_namespace_lock); 3485 return (error); 3486 } 3487 3488 has_features = B_FALSE; 3489 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3490 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3491 if (zpool_prop_feature(nvpair_name(elem))) 3492 has_features = B_TRUE; 3493 } 3494 3495 if (has_features || nvlist_lookup_uint64(props, 3496 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3497 version = SPA_VERSION; 3498 } 3499 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3500 3501 spa->spa_first_txg = txg; 3502 spa->spa_uberblock.ub_txg = txg - 1; 3503 spa->spa_uberblock.ub_version = version; 3504 spa->spa_ubsync = spa->spa_uberblock; 3505 3506 /* 3507 * Create "The Godfather" zio to hold all async IOs 3508 */ 3509 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3510 KM_SLEEP); 3511 for (int i = 0; i < max_ncpus; i++) { 3512 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3513 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3514 ZIO_FLAG_GODFATHER); 3515 } 3516 3517 /* 3518 * Create the root vdev. 3519 */ 3520 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3521 3522 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3523 3524 ASSERT(error != 0 || rvd != NULL); 3525 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3526 3527 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3528 error = SET_ERROR(EINVAL); 3529 3530 if (error == 0 && 3531 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3532 (error = spa_validate_aux(spa, nvroot, txg, 3533 VDEV_ALLOC_ADD)) == 0) { 3534 for (int c = 0; c < rvd->vdev_children; c++) { 3535 vdev_metaslab_set_size(rvd->vdev_child[c]); 3536 vdev_expand(rvd->vdev_child[c], txg); 3537 } 3538 } 3539 3540 spa_config_exit(spa, SCL_ALL, FTAG); 3541 3542 if (error != 0) { 3543 spa_unload(spa); 3544 spa_deactivate(spa); 3545 spa_remove(spa); 3546 mutex_exit(&spa_namespace_lock); 3547 return (error); 3548 } 3549 3550 /* 3551 * Get the list of spares, if specified. 3552 */ 3553 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3554 &spares, &nspares) == 0) { 3555 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3556 KM_SLEEP) == 0); 3557 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3558 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3559 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3560 spa_load_spares(spa); 3561 spa_config_exit(spa, SCL_ALL, FTAG); 3562 spa->spa_spares.sav_sync = B_TRUE; 3563 } 3564 3565 /* 3566 * Get the list of level 2 cache devices, if specified. 3567 */ 3568 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3569 &l2cache, &nl2cache) == 0) { 3570 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3571 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3572 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3573 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3574 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3575 spa_load_l2cache(spa); 3576 spa_config_exit(spa, SCL_ALL, FTAG); 3577 spa->spa_l2cache.sav_sync = B_TRUE; 3578 } 3579 3580 spa->spa_is_initializing = B_TRUE; 3581 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3582 spa->spa_meta_objset = dp->dp_meta_objset; 3583 spa->spa_is_initializing = B_FALSE; 3584 3585 /* 3586 * Create DDTs (dedup tables). 3587 */ 3588 ddt_create(spa); 3589 3590 spa_update_dspace(spa); 3591 3592 tx = dmu_tx_create_assigned(dp, txg); 3593 3594 /* 3595 * Create the pool config object. 3596 */ 3597 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3598 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3599 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3600 3601 if (zap_add(spa->spa_meta_objset, 3602 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3603 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3604 cmn_err(CE_PANIC, "failed to add pool config"); 3605 } 3606 3607 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3608 spa_feature_create_zap_objects(spa, tx); 3609 3610 if (zap_add(spa->spa_meta_objset, 3611 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3612 sizeof (uint64_t), 1, &version, tx) != 0) { 3613 cmn_err(CE_PANIC, "failed to add pool version"); 3614 } 3615 3616 /* Newly created pools with the right version are always deflated. */ 3617 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3618 spa->spa_deflate = TRUE; 3619 if (zap_add(spa->spa_meta_objset, 3620 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3621 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3622 cmn_err(CE_PANIC, "failed to add deflate"); 3623 } 3624 } 3625 3626 /* 3627 * Create the deferred-free bpobj. Turn off compression 3628 * because sync-to-convergence takes longer if the blocksize 3629 * keeps changing. 3630 */ 3631 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3632 dmu_object_set_compress(spa->spa_meta_objset, obj, 3633 ZIO_COMPRESS_OFF, tx); 3634 if (zap_add(spa->spa_meta_objset, 3635 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3636 sizeof (uint64_t), 1, &obj, tx) != 0) { 3637 cmn_err(CE_PANIC, "failed to add bpobj"); 3638 } 3639 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3640 spa->spa_meta_objset, obj)); 3641 3642 /* 3643 * Create the pool's history object. 3644 */ 3645 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3646 spa_history_create_obj(spa, tx); 3647 3648 /* 3649 * Set pool properties. 3650 */ 3651 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3652 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3653 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3654 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3655 3656 if (props != NULL) { 3657 spa_configfile_set(spa, props, B_FALSE); 3658 spa_sync_props(props, tx); 3659 } 3660 3661 dmu_tx_commit(tx); 3662 3663 spa->spa_sync_on = B_TRUE; 3664 txg_sync_start(spa->spa_dsl_pool); 3665 3666 /* 3667 * We explicitly wait for the first transaction to complete so that our 3668 * bean counters are appropriately updated. 3669 */ 3670 txg_wait_synced(spa->spa_dsl_pool, txg); 3671 3672 spa_config_sync(spa, B_FALSE, B_TRUE); 3673 3674 spa_history_log_version(spa, "create"); 3675 3676 spa->spa_minref = refcount_count(&spa->spa_refcount); 3677 3678 mutex_exit(&spa_namespace_lock); 3679 3680 return (0); 3681 } 3682 3683 #ifdef _KERNEL 3684 /* 3685 * Get the root pool information from the root disk, then import the root pool 3686 * during the system boot up time. 3687 */ 3688 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3689 3690 static nvlist_t * 3691 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3692 { 3693 nvlist_t *config; 3694 nvlist_t *nvtop, *nvroot; 3695 uint64_t pgid; 3696 3697 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3698 return (NULL); 3699 3700 /* 3701 * Add this top-level vdev to the child array. 3702 */ 3703 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3704 &nvtop) == 0); 3705 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3706 &pgid) == 0); 3707 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3708 3709 /* 3710 * Put this pool's top-level vdevs into a root vdev. 3711 */ 3712 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3713 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3714 VDEV_TYPE_ROOT) == 0); 3715 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3716 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3717 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3718 &nvtop, 1) == 0); 3719 3720 /* 3721 * Replace the existing vdev_tree with the new root vdev in 3722 * this pool's configuration (remove the old, add the new). 3723 */ 3724 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3725 nvlist_free(nvroot); 3726 return (config); 3727 } 3728 3729 /* 3730 * Walk the vdev tree and see if we can find a device with "better" 3731 * configuration. A configuration is "better" if the label on that 3732 * device has a more recent txg. 3733 */ 3734 static void 3735 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3736 { 3737 for (int c = 0; c < vd->vdev_children; c++) 3738 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3739 3740 if (vd->vdev_ops->vdev_op_leaf) { 3741 nvlist_t *label; 3742 uint64_t label_txg; 3743 3744 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3745 &label) != 0) 3746 return; 3747 3748 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3749 &label_txg) == 0); 3750 3751 /* 3752 * Do we have a better boot device? 3753 */ 3754 if (label_txg > *txg) { 3755 *txg = label_txg; 3756 *avd = vd; 3757 } 3758 nvlist_free(label); 3759 } 3760 } 3761 3762 /* 3763 * Import a root pool. 3764 * 3765 * For x86. devpath_list will consist of devid and/or physpath name of 3766 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3767 * The GRUB "findroot" command will return the vdev we should boot. 3768 * 3769 * For Sparc, devpath_list consists the physpath name of the booting device 3770 * no matter the rootpool is a single device pool or a mirrored pool. 3771 * e.g. 3772 * "/pci@1f,0/ide@d/disk@0,0:a" 3773 */ 3774 int 3775 spa_import_rootpool(char *devpath, char *devid) 3776 { 3777 spa_t *spa; 3778 vdev_t *rvd, *bvd, *avd = NULL; 3779 nvlist_t *config, *nvtop; 3780 uint64_t guid, txg; 3781 char *pname; 3782 int error; 3783 3784 /* 3785 * Read the label from the boot device and generate a configuration. 3786 */ 3787 config = spa_generate_rootconf(devpath, devid, &guid); 3788 #if defined(_OBP) && defined(_KERNEL) 3789 if (config == NULL) { 3790 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3791 /* iscsi boot */ 3792 get_iscsi_bootpath_phy(devpath); 3793 config = spa_generate_rootconf(devpath, devid, &guid); 3794 } 3795 } 3796 #endif 3797 if (config == NULL) { 3798 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3799 devpath); 3800 return (SET_ERROR(EIO)); 3801 } 3802 3803 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3804 &pname) == 0); 3805 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3806 3807 mutex_enter(&spa_namespace_lock); 3808 if ((spa = spa_lookup(pname)) != NULL) { 3809 /* 3810 * Remove the existing root pool from the namespace so that we 3811 * can replace it with the correct config we just read in. 3812 */ 3813 spa_remove(spa); 3814 } 3815 3816 spa = spa_add(pname, config, NULL); 3817 spa->spa_is_root = B_TRUE; 3818 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3819 3820 /* 3821 * Build up a vdev tree based on the boot device's label config. 3822 */ 3823 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3824 &nvtop) == 0); 3825 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3826 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3827 VDEV_ALLOC_ROOTPOOL); 3828 spa_config_exit(spa, SCL_ALL, FTAG); 3829 if (error) { 3830 mutex_exit(&spa_namespace_lock); 3831 nvlist_free(config); 3832 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3833 pname); 3834 return (error); 3835 } 3836 3837 /* 3838 * Get the boot vdev. 3839 */ 3840 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3841 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3842 (u_longlong_t)guid); 3843 error = SET_ERROR(ENOENT); 3844 goto out; 3845 } 3846 3847 /* 3848 * Determine if there is a better boot device. 3849 */ 3850 avd = bvd; 3851 spa_alt_rootvdev(rvd, &avd, &txg); 3852 if (avd != bvd) { 3853 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3854 "try booting from '%s'", avd->vdev_path); 3855 error = SET_ERROR(EINVAL); 3856 goto out; 3857 } 3858 3859 /* 3860 * If the boot device is part of a spare vdev then ensure that 3861 * we're booting off the active spare. 3862 */ 3863 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3864 !bvd->vdev_isspare) { 3865 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3866 "try booting from '%s'", 3867 bvd->vdev_parent-> 3868 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3869 error = SET_ERROR(EINVAL); 3870 goto out; 3871 } 3872 3873 error = 0; 3874 out: 3875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3876 vdev_free(rvd); 3877 spa_config_exit(spa, SCL_ALL, FTAG); 3878 mutex_exit(&spa_namespace_lock); 3879 3880 nvlist_free(config); 3881 return (error); 3882 } 3883 3884 #endif 3885 3886 /* 3887 * Import a non-root pool into the system. 3888 */ 3889 int 3890 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3891 { 3892 spa_t *spa; 3893 char *altroot = NULL; 3894 spa_load_state_t state = SPA_LOAD_IMPORT; 3895 zpool_rewind_policy_t policy; 3896 uint64_t mode = spa_mode_global; 3897 uint64_t readonly = B_FALSE; 3898 int error; 3899 nvlist_t *nvroot; 3900 nvlist_t **spares, **l2cache; 3901 uint_t nspares, nl2cache; 3902 3903 /* 3904 * If a pool with this name exists, return failure. 3905 */ 3906 mutex_enter(&spa_namespace_lock); 3907 if (spa_lookup(pool) != NULL) { 3908 mutex_exit(&spa_namespace_lock); 3909 return (SET_ERROR(EEXIST)); 3910 } 3911 3912 /* 3913 * Create and initialize the spa structure. 3914 */ 3915 (void) nvlist_lookup_string(props, 3916 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3917 (void) nvlist_lookup_uint64(props, 3918 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3919 if (readonly) 3920 mode = FREAD; 3921 spa = spa_add(pool, config, altroot); 3922 spa->spa_import_flags = flags; 3923 3924 /* 3925 * Verbatim import - Take a pool and insert it into the namespace 3926 * as if it had been loaded at boot. 3927 */ 3928 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3929 if (props != NULL) 3930 spa_configfile_set(spa, props, B_FALSE); 3931 3932 spa_config_sync(spa, B_FALSE, B_TRUE); 3933 3934 mutex_exit(&spa_namespace_lock); 3935 return (0); 3936 } 3937 3938 spa_activate(spa, mode); 3939 3940 /* 3941 * Don't start async tasks until we know everything is healthy. 3942 */ 3943 spa_async_suspend(spa); 3944 3945 zpool_get_rewind_policy(config, &policy); 3946 if (policy.zrp_request & ZPOOL_DO_REWIND) 3947 state = SPA_LOAD_RECOVER; 3948 3949 /* 3950 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3951 * because the user-supplied config is actually the one to trust when 3952 * doing an import. 3953 */ 3954 if (state != SPA_LOAD_RECOVER) 3955 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3956 3957 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3958 policy.zrp_request); 3959 3960 /* 3961 * Propagate anything learned while loading the pool and pass it 3962 * back to caller (i.e. rewind info, missing devices, etc). 3963 */ 3964 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3965 spa->spa_load_info) == 0); 3966 3967 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3968 /* 3969 * Toss any existing sparelist, as it doesn't have any validity 3970 * anymore, and conflicts with spa_has_spare(). 3971 */ 3972 if (spa->spa_spares.sav_config) { 3973 nvlist_free(spa->spa_spares.sav_config); 3974 spa->spa_spares.sav_config = NULL; 3975 spa_load_spares(spa); 3976 } 3977 if (spa->spa_l2cache.sav_config) { 3978 nvlist_free(spa->spa_l2cache.sav_config); 3979 spa->spa_l2cache.sav_config = NULL; 3980 spa_load_l2cache(spa); 3981 } 3982 3983 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3984 &nvroot) == 0); 3985 if (error == 0) 3986 error = spa_validate_aux(spa, nvroot, -1ULL, 3987 VDEV_ALLOC_SPARE); 3988 if (error == 0) 3989 error = spa_validate_aux(spa, nvroot, -1ULL, 3990 VDEV_ALLOC_L2CACHE); 3991 spa_config_exit(spa, SCL_ALL, FTAG); 3992 3993 if (props != NULL) 3994 spa_configfile_set(spa, props, B_FALSE); 3995 3996 if (error != 0 || (props && spa_writeable(spa) && 3997 (error = spa_prop_set(spa, props)))) { 3998 spa_unload(spa); 3999 spa_deactivate(spa); 4000 spa_remove(spa); 4001 mutex_exit(&spa_namespace_lock); 4002 return (error); 4003 } 4004 4005 spa_async_resume(spa); 4006 4007 /* 4008 * Override any spares and level 2 cache devices as specified by 4009 * the user, as these may have correct device names/devids, etc. 4010 */ 4011 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4012 &spares, &nspares) == 0) { 4013 if (spa->spa_spares.sav_config) 4014 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4015 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4016 else 4017 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4018 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4019 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4020 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4021 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4022 spa_load_spares(spa); 4023 spa_config_exit(spa, SCL_ALL, FTAG); 4024 spa->spa_spares.sav_sync = B_TRUE; 4025 } 4026 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4027 &l2cache, &nl2cache) == 0) { 4028 if (spa->spa_l2cache.sav_config) 4029 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4030 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4031 else 4032 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4033 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4034 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4035 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4036 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4037 spa_load_l2cache(spa); 4038 spa_config_exit(spa, SCL_ALL, FTAG); 4039 spa->spa_l2cache.sav_sync = B_TRUE; 4040 } 4041 4042 /* 4043 * Check for any removed devices. 4044 */ 4045 if (spa->spa_autoreplace) { 4046 spa_aux_check_removed(&spa->spa_spares); 4047 spa_aux_check_removed(&spa->spa_l2cache); 4048 } 4049 4050 if (spa_writeable(spa)) { 4051 /* 4052 * Update the config cache to include the newly-imported pool. 4053 */ 4054 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4055 } 4056 4057 /* 4058 * It's possible that the pool was expanded while it was exported. 4059 * We kick off an async task to handle this for us. 4060 */ 4061 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4062 4063 mutex_exit(&spa_namespace_lock); 4064 spa_history_log_version(spa, "import"); 4065 4066 return (0); 4067 } 4068 4069 nvlist_t * 4070 spa_tryimport(nvlist_t *tryconfig) 4071 { 4072 nvlist_t *config = NULL; 4073 char *poolname; 4074 spa_t *spa; 4075 uint64_t state; 4076 int error; 4077 4078 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4079 return (NULL); 4080 4081 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4082 return (NULL); 4083 4084 /* 4085 * Create and initialize the spa structure. 4086 */ 4087 mutex_enter(&spa_namespace_lock); 4088 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4089 spa_activate(spa, FREAD); 4090 4091 /* 4092 * Pass off the heavy lifting to spa_load(). 4093 * Pass TRUE for mosconfig because the user-supplied config 4094 * is actually the one to trust when doing an import. 4095 */ 4096 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4097 4098 /* 4099 * If 'tryconfig' was at least parsable, return the current config. 4100 */ 4101 if (spa->spa_root_vdev != NULL) { 4102 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4103 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4104 poolname) == 0); 4105 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4106 state) == 0); 4107 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4108 spa->spa_uberblock.ub_timestamp) == 0); 4109 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4110 spa->spa_load_info) == 0); 4111 4112 /* 4113 * If the bootfs property exists on this pool then we 4114 * copy it out so that external consumers can tell which 4115 * pools are bootable. 4116 */ 4117 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4118 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4119 4120 /* 4121 * We have to play games with the name since the 4122 * pool was opened as TRYIMPORT_NAME. 4123 */ 4124 if (dsl_dsobj_to_dsname(spa_name(spa), 4125 spa->spa_bootfs, tmpname) == 0) { 4126 char *cp; 4127 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4128 4129 cp = strchr(tmpname, '/'); 4130 if (cp == NULL) { 4131 (void) strlcpy(dsname, tmpname, 4132 MAXPATHLEN); 4133 } else { 4134 (void) snprintf(dsname, MAXPATHLEN, 4135 "%s/%s", poolname, ++cp); 4136 } 4137 VERIFY(nvlist_add_string(config, 4138 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4139 kmem_free(dsname, MAXPATHLEN); 4140 } 4141 kmem_free(tmpname, MAXPATHLEN); 4142 } 4143 4144 /* 4145 * Add the list of hot spares and level 2 cache devices. 4146 */ 4147 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4148 spa_add_spares(spa, config); 4149 spa_add_l2cache(spa, config); 4150 spa_config_exit(spa, SCL_CONFIG, FTAG); 4151 } 4152 4153 spa_unload(spa); 4154 spa_deactivate(spa); 4155 spa_remove(spa); 4156 mutex_exit(&spa_namespace_lock); 4157 4158 return (config); 4159 } 4160 4161 /* 4162 * Pool export/destroy 4163 * 4164 * The act of destroying or exporting a pool is very simple. We make sure there 4165 * is no more pending I/O and any references to the pool are gone. Then, we 4166 * update the pool state and sync all the labels to disk, removing the 4167 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4168 * we don't sync the labels or remove the configuration cache. 4169 */ 4170 static int 4171 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4172 boolean_t force, boolean_t hardforce) 4173 { 4174 spa_t *spa; 4175 4176 if (oldconfig) 4177 *oldconfig = NULL; 4178 4179 if (!(spa_mode_global & FWRITE)) 4180 return (SET_ERROR(EROFS)); 4181 4182 mutex_enter(&spa_namespace_lock); 4183 if ((spa = spa_lookup(pool)) == NULL) { 4184 mutex_exit(&spa_namespace_lock); 4185 return (SET_ERROR(ENOENT)); 4186 } 4187 4188 /* 4189 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4190 * reacquire the namespace lock, and see if we can export. 4191 */ 4192 spa_open_ref(spa, FTAG); 4193 mutex_exit(&spa_namespace_lock); 4194 spa_async_suspend(spa); 4195 mutex_enter(&spa_namespace_lock); 4196 spa_close(spa, FTAG); 4197 4198 /* 4199 * The pool will be in core if it's openable, 4200 * in which case we can modify its state. 4201 */ 4202 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4203 /* 4204 * Objsets may be open only because they're dirty, so we 4205 * have to force it to sync before checking spa_refcnt. 4206 */ 4207 txg_wait_synced(spa->spa_dsl_pool, 0); 4208 4209 /* 4210 * A pool cannot be exported or destroyed if there are active 4211 * references. If we are resetting a pool, allow references by 4212 * fault injection handlers. 4213 */ 4214 if (!spa_refcount_zero(spa) || 4215 (spa->spa_inject_ref != 0 && 4216 new_state != POOL_STATE_UNINITIALIZED)) { 4217 spa_async_resume(spa); 4218 mutex_exit(&spa_namespace_lock); 4219 return (SET_ERROR(EBUSY)); 4220 } 4221 4222 /* 4223 * A pool cannot be exported if it has an active shared spare. 4224 * This is to prevent other pools stealing the active spare 4225 * from an exported pool. At user's own will, such pool can 4226 * be forcedly exported. 4227 */ 4228 if (!force && new_state == POOL_STATE_EXPORTED && 4229 spa_has_active_shared_spare(spa)) { 4230 spa_async_resume(spa); 4231 mutex_exit(&spa_namespace_lock); 4232 return (SET_ERROR(EXDEV)); 4233 } 4234 4235 /* 4236 * We want this to be reflected on every label, 4237 * so mark them all dirty. spa_unload() will do the 4238 * final sync that pushes these changes out. 4239 */ 4240 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4241 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4242 spa->spa_state = new_state; 4243 spa->spa_final_txg = spa_last_synced_txg(spa) + 4244 TXG_DEFER_SIZE + 1; 4245 vdev_config_dirty(spa->spa_root_vdev); 4246 spa_config_exit(spa, SCL_ALL, FTAG); 4247 } 4248 } 4249 4250 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4251 4252 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4253 spa_unload(spa); 4254 spa_deactivate(spa); 4255 } 4256 4257 if (oldconfig && spa->spa_config) 4258 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4259 4260 if (new_state != POOL_STATE_UNINITIALIZED) { 4261 if (!hardforce) 4262 spa_config_sync(spa, B_TRUE, B_TRUE); 4263 spa_remove(spa); 4264 } 4265 mutex_exit(&spa_namespace_lock); 4266 4267 return (0); 4268 } 4269 4270 /* 4271 * Destroy a storage pool. 4272 */ 4273 int 4274 spa_destroy(char *pool) 4275 { 4276 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4277 B_FALSE, B_FALSE)); 4278 } 4279 4280 /* 4281 * Export a storage pool. 4282 */ 4283 int 4284 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4285 boolean_t hardforce) 4286 { 4287 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4288 force, hardforce)); 4289 } 4290 4291 /* 4292 * Similar to spa_export(), this unloads the spa_t without actually removing it 4293 * from the namespace in any way. 4294 */ 4295 int 4296 spa_reset(char *pool) 4297 { 4298 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4299 B_FALSE, B_FALSE)); 4300 } 4301 4302 /* 4303 * ========================================================================== 4304 * Device manipulation 4305 * ========================================================================== 4306 */ 4307 4308 /* 4309 * Add a device to a storage pool. 4310 */ 4311 int 4312 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4313 { 4314 uint64_t txg, id; 4315 int error; 4316 vdev_t *rvd = spa->spa_root_vdev; 4317 vdev_t *vd, *tvd; 4318 nvlist_t **spares, **l2cache; 4319 uint_t nspares, nl2cache; 4320 4321 ASSERT(spa_writeable(spa)); 4322 4323 txg = spa_vdev_enter(spa); 4324 4325 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4326 VDEV_ALLOC_ADD)) != 0) 4327 return (spa_vdev_exit(spa, NULL, txg, error)); 4328 4329 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4330 4331 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4332 &nspares) != 0) 4333 nspares = 0; 4334 4335 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4336 &nl2cache) != 0) 4337 nl2cache = 0; 4338 4339 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4340 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4341 4342 if (vd->vdev_children != 0 && 4343 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4344 return (spa_vdev_exit(spa, vd, txg, error)); 4345 4346 /* 4347 * We must validate the spares and l2cache devices after checking the 4348 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4349 */ 4350 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4351 return (spa_vdev_exit(spa, vd, txg, error)); 4352 4353 /* 4354 * Transfer each new top-level vdev from vd to rvd. 4355 */ 4356 for (int c = 0; c < vd->vdev_children; c++) { 4357 4358 /* 4359 * Set the vdev id to the first hole, if one exists. 4360 */ 4361 for (id = 0; id < rvd->vdev_children; id++) { 4362 if (rvd->vdev_child[id]->vdev_ishole) { 4363 vdev_free(rvd->vdev_child[id]); 4364 break; 4365 } 4366 } 4367 tvd = vd->vdev_child[c]; 4368 vdev_remove_child(vd, tvd); 4369 tvd->vdev_id = id; 4370 vdev_add_child(rvd, tvd); 4371 vdev_config_dirty(tvd); 4372 } 4373 4374 if (nspares != 0) { 4375 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4376 ZPOOL_CONFIG_SPARES); 4377 spa_load_spares(spa); 4378 spa->spa_spares.sav_sync = B_TRUE; 4379 } 4380 4381 if (nl2cache != 0) { 4382 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4383 ZPOOL_CONFIG_L2CACHE); 4384 spa_load_l2cache(spa); 4385 spa->spa_l2cache.sav_sync = B_TRUE; 4386 } 4387 4388 /* 4389 * We have to be careful when adding new vdevs to an existing pool. 4390 * If other threads start allocating from these vdevs before we 4391 * sync the config cache, and we lose power, then upon reboot we may 4392 * fail to open the pool because there are DVAs that the config cache 4393 * can't translate. Therefore, we first add the vdevs without 4394 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4395 * and then let spa_config_update() initialize the new metaslabs. 4396 * 4397 * spa_load() checks for added-but-not-initialized vdevs, so that 4398 * if we lose power at any point in this sequence, the remaining 4399 * steps will be completed the next time we load the pool. 4400 */ 4401 (void) spa_vdev_exit(spa, vd, txg, 0); 4402 4403 mutex_enter(&spa_namespace_lock); 4404 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4405 mutex_exit(&spa_namespace_lock); 4406 4407 return (0); 4408 } 4409 4410 /* 4411 * Attach a device to a mirror. The arguments are the path to any device 4412 * in the mirror, and the nvroot for the new device. If the path specifies 4413 * a device that is not mirrored, we automatically insert the mirror vdev. 4414 * 4415 * If 'replacing' is specified, the new device is intended to replace the 4416 * existing device; in this case the two devices are made into their own 4417 * mirror using the 'replacing' vdev, which is functionally identical to 4418 * the mirror vdev (it actually reuses all the same ops) but has a few 4419 * extra rules: you can't attach to it after it's been created, and upon 4420 * completion of resilvering, the first disk (the one being replaced) 4421 * is automatically detached. 4422 */ 4423 int 4424 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4425 { 4426 uint64_t txg, dtl_max_txg; 4427 vdev_t *rvd = spa->spa_root_vdev; 4428 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4429 vdev_ops_t *pvops; 4430 char *oldvdpath, *newvdpath; 4431 int newvd_isspare; 4432 int error; 4433 4434 ASSERT(spa_writeable(spa)); 4435 4436 txg = spa_vdev_enter(spa); 4437 4438 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4439 4440 if (oldvd == NULL) 4441 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4442 4443 if (!oldvd->vdev_ops->vdev_op_leaf) 4444 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4445 4446 pvd = oldvd->vdev_parent; 4447 4448 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4449 VDEV_ALLOC_ATTACH)) != 0) 4450 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4451 4452 if (newrootvd->vdev_children != 1) 4453 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4454 4455 newvd = newrootvd->vdev_child[0]; 4456 4457 if (!newvd->vdev_ops->vdev_op_leaf) 4458 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4459 4460 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4461 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4462 4463 /* 4464 * Spares can't replace logs 4465 */ 4466 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4467 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4468 4469 if (!replacing) { 4470 /* 4471 * For attach, the only allowable parent is a mirror or the root 4472 * vdev. 4473 */ 4474 if (pvd->vdev_ops != &vdev_mirror_ops && 4475 pvd->vdev_ops != &vdev_root_ops) 4476 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4477 4478 pvops = &vdev_mirror_ops; 4479 } else { 4480 /* 4481 * Active hot spares can only be replaced by inactive hot 4482 * spares. 4483 */ 4484 if (pvd->vdev_ops == &vdev_spare_ops && 4485 oldvd->vdev_isspare && 4486 !spa_has_spare(spa, newvd->vdev_guid)) 4487 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4488 4489 /* 4490 * If the source is a hot spare, and the parent isn't already a 4491 * spare, then we want to create a new hot spare. Otherwise, we 4492 * want to create a replacing vdev. The user is not allowed to 4493 * attach to a spared vdev child unless the 'isspare' state is 4494 * the same (spare replaces spare, non-spare replaces 4495 * non-spare). 4496 */ 4497 if (pvd->vdev_ops == &vdev_replacing_ops && 4498 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4499 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4500 } else if (pvd->vdev_ops == &vdev_spare_ops && 4501 newvd->vdev_isspare != oldvd->vdev_isspare) { 4502 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4503 } 4504 4505 if (newvd->vdev_isspare) 4506 pvops = &vdev_spare_ops; 4507 else 4508 pvops = &vdev_replacing_ops; 4509 } 4510 4511 /* 4512 * Make sure the new device is big enough. 4513 */ 4514 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4515 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4516 4517 /* 4518 * The new device cannot have a higher alignment requirement 4519 * than the top-level vdev. 4520 */ 4521 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4522 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4523 4524 /* 4525 * If this is an in-place replacement, update oldvd's path and devid 4526 * to make it distinguishable from newvd, and unopenable from now on. 4527 */ 4528 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4529 spa_strfree(oldvd->vdev_path); 4530 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4531 KM_SLEEP); 4532 (void) sprintf(oldvd->vdev_path, "%s/%s", 4533 newvd->vdev_path, "old"); 4534 if (oldvd->vdev_devid != NULL) { 4535 spa_strfree(oldvd->vdev_devid); 4536 oldvd->vdev_devid = NULL; 4537 } 4538 } 4539 4540 /* mark the device being resilvered */ 4541 newvd->vdev_resilver_txg = txg; 4542 4543 /* 4544 * If the parent is not a mirror, or if we're replacing, insert the new 4545 * mirror/replacing/spare vdev above oldvd. 4546 */ 4547 if (pvd->vdev_ops != pvops) 4548 pvd = vdev_add_parent(oldvd, pvops); 4549 4550 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4551 ASSERT(pvd->vdev_ops == pvops); 4552 ASSERT(oldvd->vdev_parent == pvd); 4553 4554 /* 4555 * Extract the new device from its root and add it to pvd. 4556 */ 4557 vdev_remove_child(newrootvd, newvd); 4558 newvd->vdev_id = pvd->vdev_children; 4559 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4560 vdev_add_child(pvd, newvd); 4561 4562 tvd = newvd->vdev_top; 4563 ASSERT(pvd->vdev_top == tvd); 4564 ASSERT(tvd->vdev_parent == rvd); 4565 4566 vdev_config_dirty(tvd); 4567 4568 /* 4569 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4570 * for any dmu_sync-ed blocks. It will propagate upward when 4571 * spa_vdev_exit() calls vdev_dtl_reassess(). 4572 */ 4573 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4574 4575 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4576 dtl_max_txg - TXG_INITIAL); 4577 4578 if (newvd->vdev_isspare) { 4579 spa_spare_activate(newvd); 4580 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4581 } 4582 4583 oldvdpath = spa_strdup(oldvd->vdev_path); 4584 newvdpath = spa_strdup(newvd->vdev_path); 4585 newvd_isspare = newvd->vdev_isspare; 4586 4587 /* 4588 * Mark newvd's DTL dirty in this txg. 4589 */ 4590 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4591 4592 /* 4593 * Schedule the resilver to restart in the future. We do this to 4594 * ensure that dmu_sync-ed blocks have been stitched into the 4595 * respective datasets. 4596 */ 4597 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4598 4599 /* 4600 * Commit the config 4601 */ 4602 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4603 4604 spa_history_log_internal(spa, "vdev attach", NULL, 4605 "%s vdev=%s %s vdev=%s", 4606 replacing && newvd_isspare ? "spare in" : 4607 replacing ? "replace" : "attach", newvdpath, 4608 replacing ? "for" : "to", oldvdpath); 4609 4610 spa_strfree(oldvdpath); 4611 spa_strfree(newvdpath); 4612 4613 if (spa->spa_bootfs) 4614 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4615 4616 return (0); 4617 } 4618 4619 /* 4620 * Detach a device from a mirror or replacing vdev. 4621 * 4622 * If 'replace_done' is specified, only detach if the parent 4623 * is a replacing vdev. 4624 */ 4625 int 4626 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4627 { 4628 uint64_t txg; 4629 int error; 4630 vdev_t *rvd = spa->spa_root_vdev; 4631 vdev_t *vd, *pvd, *cvd, *tvd; 4632 boolean_t unspare = B_FALSE; 4633 uint64_t unspare_guid = 0; 4634 char *vdpath; 4635 4636 ASSERT(spa_writeable(spa)); 4637 4638 txg = spa_vdev_enter(spa); 4639 4640 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4641 4642 if (vd == NULL) 4643 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4644 4645 if (!vd->vdev_ops->vdev_op_leaf) 4646 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4647 4648 pvd = vd->vdev_parent; 4649 4650 /* 4651 * If the parent/child relationship is not as expected, don't do it. 4652 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4653 * vdev that's replacing B with C. The user's intent in replacing 4654 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4655 * the replace by detaching C, the expected behavior is to end up 4656 * M(A,B). But suppose that right after deciding to detach C, 4657 * the replacement of B completes. We would have M(A,C), and then 4658 * ask to detach C, which would leave us with just A -- not what 4659 * the user wanted. To prevent this, we make sure that the 4660 * parent/child relationship hasn't changed -- in this example, 4661 * that C's parent is still the replacing vdev R. 4662 */ 4663 if (pvd->vdev_guid != pguid && pguid != 0) 4664 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4665 4666 /* 4667 * Only 'replacing' or 'spare' vdevs can be replaced. 4668 */ 4669 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4670 pvd->vdev_ops != &vdev_spare_ops) 4671 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4672 4673 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4674 spa_version(spa) >= SPA_VERSION_SPARES); 4675 4676 /* 4677 * Only mirror, replacing, and spare vdevs support detach. 4678 */ 4679 if (pvd->vdev_ops != &vdev_replacing_ops && 4680 pvd->vdev_ops != &vdev_mirror_ops && 4681 pvd->vdev_ops != &vdev_spare_ops) 4682 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4683 4684 /* 4685 * If this device has the only valid copy of some data, 4686 * we cannot safely detach it. 4687 */ 4688 if (vdev_dtl_required(vd)) 4689 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4690 4691 ASSERT(pvd->vdev_children >= 2); 4692 4693 /* 4694 * If we are detaching the second disk from a replacing vdev, then 4695 * check to see if we changed the original vdev's path to have "/old" 4696 * at the end in spa_vdev_attach(). If so, undo that change now. 4697 */ 4698 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4699 vd->vdev_path != NULL) { 4700 size_t len = strlen(vd->vdev_path); 4701 4702 for (int c = 0; c < pvd->vdev_children; c++) { 4703 cvd = pvd->vdev_child[c]; 4704 4705 if (cvd == vd || cvd->vdev_path == NULL) 4706 continue; 4707 4708 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4709 strcmp(cvd->vdev_path + len, "/old") == 0) { 4710 spa_strfree(cvd->vdev_path); 4711 cvd->vdev_path = spa_strdup(vd->vdev_path); 4712 break; 4713 } 4714 } 4715 } 4716 4717 /* 4718 * If we are detaching the original disk from a spare, then it implies 4719 * that the spare should become a real disk, and be removed from the 4720 * active spare list for the pool. 4721 */ 4722 if (pvd->vdev_ops == &vdev_spare_ops && 4723 vd->vdev_id == 0 && 4724 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4725 unspare = B_TRUE; 4726 4727 /* 4728 * Erase the disk labels so the disk can be used for other things. 4729 * This must be done after all other error cases are handled, 4730 * but before we disembowel vd (so we can still do I/O to it). 4731 * But if we can't do it, don't treat the error as fatal -- 4732 * it may be that the unwritability of the disk is the reason 4733 * it's being detached! 4734 */ 4735 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4736 4737 /* 4738 * Remove vd from its parent and compact the parent's children. 4739 */ 4740 vdev_remove_child(pvd, vd); 4741 vdev_compact_children(pvd); 4742 4743 /* 4744 * Remember one of the remaining children so we can get tvd below. 4745 */ 4746 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4747 4748 /* 4749 * If we need to remove the remaining child from the list of hot spares, 4750 * do it now, marking the vdev as no longer a spare in the process. 4751 * We must do this before vdev_remove_parent(), because that can 4752 * change the GUID if it creates a new toplevel GUID. For a similar 4753 * reason, we must remove the spare now, in the same txg as the detach; 4754 * otherwise someone could attach a new sibling, change the GUID, and 4755 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4756 */ 4757 if (unspare) { 4758 ASSERT(cvd->vdev_isspare); 4759 spa_spare_remove(cvd); 4760 unspare_guid = cvd->vdev_guid; 4761 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4762 cvd->vdev_unspare = B_TRUE; 4763 } 4764 4765 /* 4766 * If the parent mirror/replacing vdev only has one child, 4767 * the parent is no longer needed. Remove it from the tree. 4768 */ 4769 if (pvd->vdev_children == 1) { 4770 if (pvd->vdev_ops == &vdev_spare_ops) 4771 cvd->vdev_unspare = B_FALSE; 4772 vdev_remove_parent(cvd); 4773 } 4774 4775 4776 /* 4777 * We don't set tvd until now because the parent we just removed 4778 * may have been the previous top-level vdev. 4779 */ 4780 tvd = cvd->vdev_top; 4781 ASSERT(tvd->vdev_parent == rvd); 4782 4783 /* 4784 * Reevaluate the parent vdev state. 4785 */ 4786 vdev_propagate_state(cvd); 4787 4788 /* 4789 * If the 'autoexpand' property is set on the pool then automatically 4790 * try to expand the size of the pool. For example if the device we 4791 * just detached was smaller than the others, it may be possible to 4792 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4793 * first so that we can obtain the updated sizes of the leaf vdevs. 4794 */ 4795 if (spa->spa_autoexpand) { 4796 vdev_reopen(tvd); 4797 vdev_expand(tvd, txg); 4798 } 4799 4800 vdev_config_dirty(tvd); 4801 4802 /* 4803 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4804 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4805 * But first make sure we're not on any *other* txg's DTL list, to 4806 * prevent vd from being accessed after it's freed. 4807 */ 4808 vdpath = spa_strdup(vd->vdev_path); 4809 for (int t = 0; t < TXG_SIZE; t++) 4810 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4811 vd->vdev_detached = B_TRUE; 4812 vdev_dirty(tvd, VDD_DTL, vd, txg); 4813 4814 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4815 4816 /* hang on to the spa before we release the lock */ 4817 spa_open_ref(spa, FTAG); 4818 4819 error = spa_vdev_exit(spa, vd, txg, 0); 4820 4821 spa_history_log_internal(spa, "detach", NULL, 4822 "vdev=%s", vdpath); 4823 spa_strfree(vdpath); 4824 4825 /* 4826 * If this was the removal of the original device in a hot spare vdev, 4827 * then we want to go through and remove the device from the hot spare 4828 * list of every other pool. 4829 */ 4830 if (unspare) { 4831 spa_t *altspa = NULL; 4832 4833 mutex_enter(&spa_namespace_lock); 4834 while ((altspa = spa_next(altspa)) != NULL) { 4835 if (altspa->spa_state != POOL_STATE_ACTIVE || 4836 altspa == spa) 4837 continue; 4838 4839 spa_open_ref(altspa, FTAG); 4840 mutex_exit(&spa_namespace_lock); 4841 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4842 mutex_enter(&spa_namespace_lock); 4843 spa_close(altspa, FTAG); 4844 } 4845 mutex_exit(&spa_namespace_lock); 4846 4847 /* search the rest of the vdevs for spares to remove */ 4848 spa_vdev_resilver_done(spa); 4849 } 4850 4851 /* all done with the spa; OK to release */ 4852 mutex_enter(&spa_namespace_lock); 4853 spa_close(spa, FTAG); 4854 mutex_exit(&spa_namespace_lock); 4855 4856 return (error); 4857 } 4858 4859 /* 4860 * Split a set of devices from their mirrors, and create a new pool from them. 4861 */ 4862 int 4863 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4864 nvlist_t *props, boolean_t exp) 4865 { 4866 int error = 0; 4867 uint64_t txg, *glist; 4868 spa_t *newspa; 4869 uint_t c, children, lastlog; 4870 nvlist_t **child, *nvl, *tmp; 4871 dmu_tx_t *tx; 4872 char *altroot = NULL; 4873 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4874 boolean_t activate_slog; 4875 4876 ASSERT(spa_writeable(spa)); 4877 4878 txg = spa_vdev_enter(spa); 4879 4880 /* clear the log and flush everything up to now */ 4881 activate_slog = spa_passivate_log(spa); 4882 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4883 error = spa_offline_log(spa); 4884 txg = spa_vdev_config_enter(spa); 4885 4886 if (activate_slog) 4887 spa_activate_log(spa); 4888 4889 if (error != 0) 4890 return (spa_vdev_exit(spa, NULL, txg, error)); 4891 4892 /* check new spa name before going any further */ 4893 if (spa_lookup(newname) != NULL) 4894 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4895 4896 /* 4897 * scan through all the children to ensure they're all mirrors 4898 */ 4899 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4900 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4901 &children) != 0) 4902 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4903 4904 /* first, check to ensure we've got the right child count */ 4905 rvd = spa->spa_root_vdev; 4906 lastlog = 0; 4907 for (c = 0; c < rvd->vdev_children; c++) { 4908 vdev_t *vd = rvd->vdev_child[c]; 4909 4910 /* don't count the holes & logs as children */ 4911 if (vd->vdev_islog || vd->vdev_ishole) { 4912 if (lastlog == 0) 4913 lastlog = c; 4914 continue; 4915 } 4916 4917 lastlog = 0; 4918 } 4919 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4920 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4921 4922 /* next, ensure no spare or cache devices are part of the split */ 4923 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4924 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4925 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4926 4927 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4928 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4929 4930 /* then, loop over each vdev and validate it */ 4931 for (c = 0; c < children; c++) { 4932 uint64_t is_hole = 0; 4933 4934 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4935 &is_hole); 4936 4937 if (is_hole != 0) { 4938 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4939 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4940 continue; 4941 } else { 4942 error = SET_ERROR(EINVAL); 4943 break; 4944 } 4945 } 4946 4947 /* which disk is going to be split? */ 4948 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4949 &glist[c]) != 0) { 4950 error = SET_ERROR(EINVAL); 4951 break; 4952 } 4953 4954 /* look it up in the spa */ 4955 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4956 if (vml[c] == NULL) { 4957 error = SET_ERROR(ENODEV); 4958 break; 4959 } 4960 4961 /* make sure there's nothing stopping the split */ 4962 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4963 vml[c]->vdev_islog || 4964 vml[c]->vdev_ishole || 4965 vml[c]->vdev_isspare || 4966 vml[c]->vdev_isl2cache || 4967 !vdev_writeable(vml[c]) || 4968 vml[c]->vdev_children != 0 || 4969 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4970 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4971 error = SET_ERROR(EINVAL); 4972 break; 4973 } 4974 4975 if (vdev_dtl_required(vml[c])) { 4976 error = SET_ERROR(EBUSY); 4977 break; 4978 } 4979 4980 /* we need certain info from the top level */ 4981 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4982 vml[c]->vdev_top->vdev_ms_array) == 0); 4983 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4984 vml[c]->vdev_top->vdev_ms_shift) == 0); 4985 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4986 vml[c]->vdev_top->vdev_asize) == 0); 4987 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4988 vml[c]->vdev_top->vdev_ashift) == 0); 4989 } 4990 4991 if (error != 0) { 4992 kmem_free(vml, children * sizeof (vdev_t *)); 4993 kmem_free(glist, children * sizeof (uint64_t)); 4994 return (spa_vdev_exit(spa, NULL, txg, error)); 4995 } 4996 4997 /* stop writers from using the disks */ 4998 for (c = 0; c < children; c++) { 4999 if (vml[c] != NULL) 5000 vml[c]->vdev_offline = B_TRUE; 5001 } 5002 vdev_reopen(spa->spa_root_vdev); 5003 5004 /* 5005 * Temporarily record the splitting vdevs in the spa config. This 5006 * will disappear once the config is regenerated. 5007 */ 5008 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5009 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5010 glist, children) == 0); 5011 kmem_free(glist, children * sizeof (uint64_t)); 5012 5013 mutex_enter(&spa->spa_props_lock); 5014 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5015 nvl) == 0); 5016 mutex_exit(&spa->spa_props_lock); 5017 spa->spa_config_splitting = nvl; 5018 vdev_config_dirty(spa->spa_root_vdev); 5019 5020 /* configure and create the new pool */ 5021 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5022 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5023 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5024 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5025 spa_version(spa)) == 0); 5026 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5027 spa->spa_config_txg) == 0); 5028 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5029 spa_generate_guid(NULL)) == 0); 5030 (void) nvlist_lookup_string(props, 5031 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5032 5033 /* add the new pool to the namespace */ 5034 newspa = spa_add(newname, config, altroot); 5035 newspa->spa_config_txg = spa->spa_config_txg; 5036 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5037 5038 /* release the spa config lock, retaining the namespace lock */ 5039 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5040 5041 if (zio_injection_enabled) 5042 zio_handle_panic_injection(spa, FTAG, 1); 5043 5044 spa_activate(newspa, spa_mode_global); 5045 spa_async_suspend(newspa); 5046 5047 /* create the new pool from the disks of the original pool */ 5048 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5049 if (error) 5050 goto out; 5051 5052 /* if that worked, generate a real config for the new pool */ 5053 if (newspa->spa_root_vdev != NULL) { 5054 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5055 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5056 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5057 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5058 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5059 B_TRUE)); 5060 } 5061 5062 /* set the props */ 5063 if (props != NULL) { 5064 spa_configfile_set(newspa, props, B_FALSE); 5065 error = spa_prop_set(newspa, props); 5066 if (error) 5067 goto out; 5068 } 5069 5070 /* flush everything */ 5071 txg = spa_vdev_config_enter(newspa); 5072 vdev_config_dirty(newspa->spa_root_vdev); 5073 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5074 5075 if (zio_injection_enabled) 5076 zio_handle_panic_injection(spa, FTAG, 2); 5077 5078 spa_async_resume(newspa); 5079 5080 /* finally, update the original pool's config */ 5081 txg = spa_vdev_config_enter(spa); 5082 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5083 error = dmu_tx_assign(tx, TXG_WAIT); 5084 if (error != 0) 5085 dmu_tx_abort(tx); 5086 for (c = 0; c < children; c++) { 5087 if (vml[c] != NULL) { 5088 vdev_split(vml[c]); 5089 if (error == 0) 5090 spa_history_log_internal(spa, "detach", tx, 5091 "vdev=%s", vml[c]->vdev_path); 5092 vdev_free(vml[c]); 5093 } 5094 } 5095 vdev_config_dirty(spa->spa_root_vdev); 5096 spa->spa_config_splitting = NULL; 5097 nvlist_free(nvl); 5098 if (error == 0) 5099 dmu_tx_commit(tx); 5100 (void) spa_vdev_exit(spa, NULL, txg, 0); 5101 5102 if (zio_injection_enabled) 5103 zio_handle_panic_injection(spa, FTAG, 3); 5104 5105 /* split is complete; log a history record */ 5106 spa_history_log_internal(newspa, "split", NULL, 5107 "from pool %s", spa_name(spa)); 5108 5109 kmem_free(vml, children * sizeof (vdev_t *)); 5110 5111 /* if we're not going to mount the filesystems in userland, export */ 5112 if (exp) 5113 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5114 B_FALSE, B_FALSE); 5115 5116 return (error); 5117 5118 out: 5119 spa_unload(newspa); 5120 spa_deactivate(newspa); 5121 spa_remove(newspa); 5122 5123 txg = spa_vdev_config_enter(spa); 5124 5125 /* re-online all offlined disks */ 5126 for (c = 0; c < children; c++) { 5127 if (vml[c] != NULL) 5128 vml[c]->vdev_offline = B_FALSE; 5129 } 5130 vdev_reopen(spa->spa_root_vdev); 5131 5132 nvlist_free(spa->spa_config_splitting); 5133 spa->spa_config_splitting = NULL; 5134 (void) spa_vdev_exit(spa, NULL, txg, error); 5135 5136 kmem_free(vml, children * sizeof (vdev_t *)); 5137 return (error); 5138 } 5139 5140 static nvlist_t * 5141 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5142 { 5143 for (int i = 0; i < count; i++) { 5144 uint64_t guid; 5145 5146 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5147 &guid) == 0); 5148 5149 if (guid == target_guid) 5150 return (nvpp[i]); 5151 } 5152 5153 return (NULL); 5154 } 5155 5156 static void 5157 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5158 nvlist_t *dev_to_remove) 5159 { 5160 nvlist_t **newdev = NULL; 5161 5162 if (count > 1) 5163 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5164 5165 for (int i = 0, j = 0; i < count; i++) { 5166 if (dev[i] == dev_to_remove) 5167 continue; 5168 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5169 } 5170 5171 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5172 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5173 5174 for (int i = 0; i < count - 1; i++) 5175 nvlist_free(newdev[i]); 5176 5177 if (count > 1) 5178 kmem_free(newdev, (count - 1) * sizeof (void *)); 5179 } 5180 5181 /* 5182 * Evacuate the device. 5183 */ 5184 static int 5185 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5186 { 5187 uint64_t txg; 5188 int error = 0; 5189 5190 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5191 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5192 ASSERT(vd == vd->vdev_top); 5193 5194 /* 5195 * Evacuate the device. We don't hold the config lock as writer 5196 * since we need to do I/O but we do keep the 5197 * spa_namespace_lock held. Once this completes the device 5198 * should no longer have any blocks allocated on it. 5199 */ 5200 if (vd->vdev_islog) { 5201 if (vd->vdev_stat.vs_alloc != 0) 5202 error = spa_offline_log(spa); 5203 } else { 5204 error = SET_ERROR(ENOTSUP); 5205 } 5206 5207 if (error) 5208 return (error); 5209 5210 /* 5211 * The evacuation succeeded. Remove any remaining MOS metadata 5212 * associated with this vdev, and wait for these changes to sync. 5213 */ 5214 ASSERT0(vd->vdev_stat.vs_alloc); 5215 txg = spa_vdev_config_enter(spa); 5216 vd->vdev_removing = B_TRUE; 5217 vdev_dirty_leaves(vd, VDD_DTL, txg); 5218 vdev_config_dirty(vd); 5219 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5220 5221 return (0); 5222 } 5223 5224 /* 5225 * Complete the removal by cleaning up the namespace. 5226 */ 5227 static void 5228 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5229 { 5230 vdev_t *rvd = spa->spa_root_vdev; 5231 uint64_t id = vd->vdev_id; 5232 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5233 5234 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5235 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5236 ASSERT(vd == vd->vdev_top); 5237 5238 /* 5239 * Only remove any devices which are empty. 5240 */ 5241 if (vd->vdev_stat.vs_alloc != 0) 5242 return; 5243 5244 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5245 5246 if (list_link_active(&vd->vdev_state_dirty_node)) 5247 vdev_state_clean(vd); 5248 if (list_link_active(&vd->vdev_config_dirty_node)) 5249 vdev_config_clean(vd); 5250 5251 vdev_free(vd); 5252 5253 if (last_vdev) { 5254 vdev_compact_children(rvd); 5255 } else { 5256 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5257 vdev_add_child(rvd, vd); 5258 } 5259 vdev_config_dirty(rvd); 5260 5261 /* 5262 * Reassess the health of our root vdev. 5263 */ 5264 vdev_reopen(rvd); 5265 } 5266 5267 /* 5268 * Remove a device from the pool - 5269 * 5270 * Removing a device from the vdev namespace requires several steps 5271 * and can take a significant amount of time. As a result we use 5272 * the spa_vdev_config_[enter/exit] functions which allow us to 5273 * grab and release the spa_config_lock while still holding the namespace 5274 * lock. During each step the configuration is synced out. 5275 * 5276 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5277 * devices. 5278 */ 5279 int 5280 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5281 { 5282 vdev_t *vd; 5283 metaslab_group_t *mg; 5284 nvlist_t **spares, **l2cache, *nv; 5285 uint64_t txg = 0; 5286 uint_t nspares, nl2cache; 5287 int error = 0; 5288 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5289 5290 ASSERT(spa_writeable(spa)); 5291 5292 if (!locked) 5293 txg = spa_vdev_enter(spa); 5294 5295 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5296 5297 if (spa->spa_spares.sav_vdevs != NULL && 5298 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5299 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5300 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5301 /* 5302 * Only remove the hot spare if it's not currently in use 5303 * in this pool. 5304 */ 5305 if (vd == NULL || unspare) { 5306 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5307 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5308 spa_load_spares(spa); 5309 spa->spa_spares.sav_sync = B_TRUE; 5310 } else { 5311 error = SET_ERROR(EBUSY); 5312 } 5313 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5314 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5315 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5316 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5317 /* 5318 * Cache devices can always be removed. 5319 */ 5320 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5321 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5322 spa_load_l2cache(spa); 5323 spa->spa_l2cache.sav_sync = B_TRUE; 5324 } else if (vd != NULL && vd->vdev_islog) { 5325 ASSERT(!locked); 5326 ASSERT(vd == vd->vdev_top); 5327 5328 mg = vd->vdev_mg; 5329 5330 /* 5331 * Stop allocating from this vdev. 5332 */ 5333 metaslab_group_passivate(mg); 5334 5335 /* 5336 * Wait for the youngest allocations and frees to sync, 5337 * and then wait for the deferral of those frees to finish. 5338 */ 5339 spa_vdev_config_exit(spa, NULL, 5340 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5341 5342 /* 5343 * Attempt to evacuate the vdev. 5344 */ 5345 error = spa_vdev_remove_evacuate(spa, vd); 5346 5347 txg = spa_vdev_config_enter(spa); 5348 5349 /* 5350 * If we couldn't evacuate the vdev, unwind. 5351 */ 5352 if (error) { 5353 metaslab_group_activate(mg); 5354 return (spa_vdev_exit(spa, NULL, txg, error)); 5355 } 5356 5357 /* 5358 * Clean up the vdev namespace. 5359 */ 5360 spa_vdev_remove_from_namespace(spa, vd); 5361 5362 } else if (vd != NULL) { 5363 /* 5364 * Normal vdevs cannot be removed (yet). 5365 */ 5366 error = SET_ERROR(ENOTSUP); 5367 } else { 5368 /* 5369 * There is no vdev of any kind with the specified guid. 5370 */ 5371 error = SET_ERROR(ENOENT); 5372 } 5373 5374 if (!locked) 5375 return (spa_vdev_exit(spa, NULL, txg, error)); 5376 5377 return (error); 5378 } 5379 5380 /* 5381 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5382 * currently spared, so we can detach it. 5383 */ 5384 static vdev_t * 5385 spa_vdev_resilver_done_hunt(vdev_t *vd) 5386 { 5387 vdev_t *newvd, *oldvd; 5388 5389 for (int c = 0; c < vd->vdev_children; c++) { 5390 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5391 if (oldvd != NULL) 5392 return (oldvd); 5393 } 5394 5395 /* 5396 * Check for a completed replacement. We always consider the first 5397 * vdev in the list to be the oldest vdev, and the last one to be 5398 * the newest (see spa_vdev_attach() for how that works). In 5399 * the case where the newest vdev is faulted, we will not automatically 5400 * remove it after a resilver completes. This is OK as it will require 5401 * user intervention to determine which disk the admin wishes to keep. 5402 */ 5403 if (vd->vdev_ops == &vdev_replacing_ops) { 5404 ASSERT(vd->vdev_children > 1); 5405 5406 newvd = vd->vdev_child[vd->vdev_children - 1]; 5407 oldvd = vd->vdev_child[0]; 5408 5409 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5410 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5411 !vdev_dtl_required(oldvd)) 5412 return (oldvd); 5413 } 5414 5415 /* 5416 * Check for a completed resilver with the 'unspare' flag set. 5417 */ 5418 if (vd->vdev_ops == &vdev_spare_ops) { 5419 vdev_t *first = vd->vdev_child[0]; 5420 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5421 5422 if (last->vdev_unspare) { 5423 oldvd = first; 5424 newvd = last; 5425 } else if (first->vdev_unspare) { 5426 oldvd = last; 5427 newvd = first; 5428 } else { 5429 oldvd = NULL; 5430 } 5431 5432 if (oldvd != NULL && 5433 vdev_dtl_empty(newvd, DTL_MISSING) && 5434 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5435 !vdev_dtl_required(oldvd)) 5436 return (oldvd); 5437 5438 /* 5439 * If there are more than two spares attached to a disk, 5440 * and those spares are not required, then we want to 5441 * attempt to free them up now so that they can be used 5442 * by other pools. Once we're back down to a single 5443 * disk+spare, we stop removing them. 5444 */ 5445 if (vd->vdev_children > 2) { 5446 newvd = vd->vdev_child[1]; 5447 5448 if (newvd->vdev_isspare && last->vdev_isspare && 5449 vdev_dtl_empty(last, DTL_MISSING) && 5450 vdev_dtl_empty(last, DTL_OUTAGE) && 5451 !vdev_dtl_required(newvd)) 5452 return (newvd); 5453 } 5454 } 5455 5456 return (NULL); 5457 } 5458 5459 static void 5460 spa_vdev_resilver_done(spa_t *spa) 5461 { 5462 vdev_t *vd, *pvd, *ppvd; 5463 uint64_t guid, sguid, pguid, ppguid; 5464 5465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5466 5467 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5468 pvd = vd->vdev_parent; 5469 ppvd = pvd->vdev_parent; 5470 guid = vd->vdev_guid; 5471 pguid = pvd->vdev_guid; 5472 ppguid = ppvd->vdev_guid; 5473 sguid = 0; 5474 /* 5475 * If we have just finished replacing a hot spared device, then 5476 * we need to detach the parent's first child (the original hot 5477 * spare) as well. 5478 */ 5479 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5480 ppvd->vdev_children == 2) { 5481 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5482 sguid = ppvd->vdev_child[1]->vdev_guid; 5483 } 5484 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5485 5486 spa_config_exit(spa, SCL_ALL, FTAG); 5487 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5488 return; 5489 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5490 return; 5491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5492 } 5493 5494 spa_config_exit(spa, SCL_ALL, FTAG); 5495 } 5496 5497 /* 5498 * Update the stored path or FRU for this vdev. 5499 */ 5500 int 5501 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5502 boolean_t ispath) 5503 { 5504 vdev_t *vd; 5505 boolean_t sync = B_FALSE; 5506 5507 ASSERT(spa_writeable(spa)); 5508 5509 spa_vdev_state_enter(spa, SCL_ALL); 5510 5511 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5512 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5513 5514 if (!vd->vdev_ops->vdev_op_leaf) 5515 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5516 5517 if (ispath) { 5518 if (strcmp(value, vd->vdev_path) != 0) { 5519 spa_strfree(vd->vdev_path); 5520 vd->vdev_path = spa_strdup(value); 5521 sync = B_TRUE; 5522 } 5523 } else { 5524 if (vd->vdev_fru == NULL) { 5525 vd->vdev_fru = spa_strdup(value); 5526 sync = B_TRUE; 5527 } else if (strcmp(value, vd->vdev_fru) != 0) { 5528 spa_strfree(vd->vdev_fru); 5529 vd->vdev_fru = spa_strdup(value); 5530 sync = B_TRUE; 5531 } 5532 } 5533 5534 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5535 } 5536 5537 int 5538 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5539 { 5540 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5541 } 5542 5543 int 5544 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5545 { 5546 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5547 } 5548 5549 /* 5550 * ========================================================================== 5551 * SPA Scanning 5552 * ========================================================================== 5553 */ 5554 5555 int 5556 spa_scan_stop(spa_t *spa) 5557 { 5558 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5559 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5560 return (SET_ERROR(EBUSY)); 5561 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5562 } 5563 5564 int 5565 spa_scan(spa_t *spa, pool_scan_func_t func) 5566 { 5567 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5568 5569 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5570 return (SET_ERROR(ENOTSUP)); 5571 5572 /* 5573 * If a resilver was requested, but there is no DTL on a 5574 * writeable leaf device, we have nothing to do. 5575 */ 5576 if (func == POOL_SCAN_RESILVER && 5577 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5578 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5579 return (0); 5580 } 5581 5582 return (dsl_scan(spa->spa_dsl_pool, func)); 5583 } 5584 5585 /* 5586 * ========================================================================== 5587 * SPA async task processing 5588 * ========================================================================== 5589 */ 5590 5591 static void 5592 spa_async_remove(spa_t *spa, vdev_t *vd) 5593 { 5594 if (vd->vdev_remove_wanted) { 5595 vd->vdev_remove_wanted = B_FALSE; 5596 vd->vdev_delayed_close = B_FALSE; 5597 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5598 5599 /* 5600 * We want to clear the stats, but we don't want to do a full 5601 * vdev_clear() as that will cause us to throw away 5602 * degraded/faulted state as well as attempt to reopen the 5603 * device, all of which is a waste. 5604 */ 5605 vd->vdev_stat.vs_read_errors = 0; 5606 vd->vdev_stat.vs_write_errors = 0; 5607 vd->vdev_stat.vs_checksum_errors = 0; 5608 5609 vdev_state_dirty(vd->vdev_top); 5610 } 5611 5612 for (int c = 0; c < vd->vdev_children; c++) 5613 spa_async_remove(spa, vd->vdev_child[c]); 5614 } 5615 5616 static void 5617 spa_async_probe(spa_t *spa, vdev_t *vd) 5618 { 5619 if (vd->vdev_probe_wanted) { 5620 vd->vdev_probe_wanted = B_FALSE; 5621 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5622 } 5623 5624 for (int c = 0; c < vd->vdev_children; c++) 5625 spa_async_probe(spa, vd->vdev_child[c]); 5626 } 5627 5628 static void 5629 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5630 { 5631 sysevent_id_t eid; 5632 nvlist_t *attr; 5633 char *physpath; 5634 5635 if (!spa->spa_autoexpand) 5636 return; 5637 5638 for (int c = 0; c < vd->vdev_children; c++) { 5639 vdev_t *cvd = vd->vdev_child[c]; 5640 spa_async_autoexpand(spa, cvd); 5641 } 5642 5643 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5644 return; 5645 5646 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5647 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5648 5649 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5650 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5651 5652 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5653 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5654 5655 nvlist_free(attr); 5656 kmem_free(physpath, MAXPATHLEN); 5657 } 5658 5659 static void 5660 spa_async_thread(spa_t *spa) 5661 { 5662 int tasks; 5663 5664 ASSERT(spa->spa_sync_on); 5665 5666 mutex_enter(&spa->spa_async_lock); 5667 tasks = spa->spa_async_tasks; 5668 spa->spa_async_tasks = 0; 5669 mutex_exit(&spa->spa_async_lock); 5670 5671 /* 5672 * See if the config needs to be updated. 5673 */ 5674 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5675 uint64_t old_space, new_space; 5676 5677 mutex_enter(&spa_namespace_lock); 5678 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5679 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5680 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5681 mutex_exit(&spa_namespace_lock); 5682 5683 /* 5684 * If the pool grew as a result of the config update, 5685 * then log an internal history event. 5686 */ 5687 if (new_space != old_space) { 5688 spa_history_log_internal(spa, "vdev online", NULL, 5689 "pool '%s' size: %llu(+%llu)", 5690 spa_name(spa), new_space, new_space - old_space); 5691 } 5692 } 5693 5694 /* 5695 * See if any devices need to be marked REMOVED. 5696 */ 5697 if (tasks & SPA_ASYNC_REMOVE) { 5698 spa_vdev_state_enter(spa, SCL_NONE); 5699 spa_async_remove(spa, spa->spa_root_vdev); 5700 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5701 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5702 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5703 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5704 (void) spa_vdev_state_exit(spa, NULL, 0); 5705 } 5706 5707 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5708 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5709 spa_async_autoexpand(spa, spa->spa_root_vdev); 5710 spa_config_exit(spa, SCL_CONFIG, FTAG); 5711 } 5712 5713 /* 5714 * See if any devices need to be probed. 5715 */ 5716 if (tasks & SPA_ASYNC_PROBE) { 5717 spa_vdev_state_enter(spa, SCL_NONE); 5718 spa_async_probe(spa, spa->spa_root_vdev); 5719 (void) spa_vdev_state_exit(spa, NULL, 0); 5720 } 5721 5722 /* 5723 * If any devices are done replacing, detach them. 5724 */ 5725 if (tasks & SPA_ASYNC_RESILVER_DONE) 5726 spa_vdev_resilver_done(spa); 5727 5728 /* 5729 * Kick off a resilver. 5730 */ 5731 if (tasks & SPA_ASYNC_RESILVER) 5732 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5733 5734 /* 5735 * Let the world know that we're done. 5736 */ 5737 mutex_enter(&spa->spa_async_lock); 5738 spa->spa_async_thread = NULL; 5739 cv_broadcast(&spa->spa_async_cv); 5740 mutex_exit(&spa->spa_async_lock); 5741 thread_exit(); 5742 } 5743 5744 void 5745 spa_async_suspend(spa_t *spa) 5746 { 5747 mutex_enter(&spa->spa_async_lock); 5748 spa->spa_async_suspended++; 5749 while (spa->spa_async_thread != NULL) 5750 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5751 mutex_exit(&spa->spa_async_lock); 5752 } 5753 5754 void 5755 spa_async_resume(spa_t *spa) 5756 { 5757 mutex_enter(&spa->spa_async_lock); 5758 ASSERT(spa->spa_async_suspended != 0); 5759 spa->spa_async_suspended--; 5760 mutex_exit(&spa->spa_async_lock); 5761 } 5762 5763 static boolean_t 5764 spa_async_tasks_pending(spa_t *spa) 5765 { 5766 uint_t non_config_tasks; 5767 uint_t config_task; 5768 boolean_t config_task_suspended; 5769 5770 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5771 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5772 if (spa->spa_ccw_fail_time == 0) { 5773 config_task_suspended = B_FALSE; 5774 } else { 5775 config_task_suspended = 5776 (gethrtime() - spa->spa_ccw_fail_time) < 5777 (zfs_ccw_retry_interval * NANOSEC); 5778 } 5779 5780 return (non_config_tasks || (config_task && !config_task_suspended)); 5781 } 5782 5783 static void 5784 spa_async_dispatch(spa_t *spa) 5785 { 5786 mutex_enter(&spa->spa_async_lock); 5787 if (spa_async_tasks_pending(spa) && 5788 !spa->spa_async_suspended && 5789 spa->spa_async_thread == NULL && 5790 rootdir != NULL) 5791 spa->spa_async_thread = thread_create(NULL, 0, 5792 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5793 mutex_exit(&spa->spa_async_lock); 5794 } 5795 5796 void 5797 spa_async_request(spa_t *spa, int task) 5798 { 5799 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5800 mutex_enter(&spa->spa_async_lock); 5801 spa->spa_async_tasks |= task; 5802 mutex_exit(&spa->spa_async_lock); 5803 } 5804 5805 /* 5806 * ========================================================================== 5807 * SPA syncing routines 5808 * ========================================================================== 5809 */ 5810 5811 static int 5812 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5813 { 5814 bpobj_t *bpo = arg; 5815 bpobj_enqueue(bpo, bp, tx); 5816 return (0); 5817 } 5818 5819 static int 5820 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5821 { 5822 zio_t *zio = arg; 5823 5824 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5825 zio->io_flags)); 5826 return (0); 5827 } 5828 5829 /* 5830 * Note: this simple function is not inlined to make it easier to dtrace the 5831 * amount of time spent syncing frees. 5832 */ 5833 static void 5834 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5835 { 5836 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5837 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5838 VERIFY(zio_wait(zio) == 0); 5839 } 5840 5841 /* 5842 * Note: this simple function is not inlined to make it easier to dtrace the 5843 * amount of time spent syncing deferred frees. 5844 */ 5845 static void 5846 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5847 { 5848 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5849 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5850 spa_free_sync_cb, zio, tx), ==, 0); 5851 VERIFY0(zio_wait(zio)); 5852 } 5853 5854 5855 static void 5856 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5857 { 5858 char *packed = NULL; 5859 size_t bufsize; 5860 size_t nvsize = 0; 5861 dmu_buf_t *db; 5862 5863 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5864 5865 /* 5866 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5867 * information. This avoids the dmu_buf_will_dirty() path and 5868 * saves us a pre-read to get data we don't actually care about. 5869 */ 5870 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5871 packed = kmem_alloc(bufsize, KM_SLEEP); 5872 5873 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5874 KM_SLEEP) == 0); 5875 bzero(packed + nvsize, bufsize - nvsize); 5876 5877 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5878 5879 kmem_free(packed, bufsize); 5880 5881 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5882 dmu_buf_will_dirty(db, tx); 5883 *(uint64_t *)db->db_data = nvsize; 5884 dmu_buf_rele(db, FTAG); 5885 } 5886 5887 static void 5888 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5889 const char *config, const char *entry) 5890 { 5891 nvlist_t *nvroot; 5892 nvlist_t **list; 5893 int i; 5894 5895 if (!sav->sav_sync) 5896 return; 5897 5898 /* 5899 * Update the MOS nvlist describing the list of available devices. 5900 * spa_validate_aux() will have already made sure this nvlist is 5901 * valid and the vdevs are labeled appropriately. 5902 */ 5903 if (sav->sav_object == 0) { 5904 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5905 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5906 sizeof (uint64_t), tx); 5907 VERIFY(zap_update(spa->spa_meta_objset, 5908 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5909 &sav->sav_object, tx) == 0); 5910 } 5911 5912 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5913 if (sav->sav_count == 0) { 5914 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5915 } else { 5916 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5917 for (i = 0; i < sav->sav_count; i++) 5918 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5919 B_FALSE, VDEV_CONFIG_L2CACHE); 5920 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5921 sav->sav_count) == 0); 5922 for (i = 0; i < sav->sav_count; i++) 5923 nvlist_free(list[i]); 5924 kmem_free(list, sav->sav_count * sizeof (void *)); 5925 } 5926 5927 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5928 nvlist_free(nvroot); 5929 5930 sav->sav_sync = B_FALSE; 5931 } 5932 5933 static void 5934 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5935 { 5936 nvlist_t *config; 5937 5938 if (list_is_empty(&spa->spa_config_dirty_list)) 5939 return; 5940 5941 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5942 5943 config = spa_config_generate(spa, spa->spa_root_vdev, 5944 dmu_tx_get_txg(tx), B_FALSE); 5945 5946 /* 5947 * If we're upgrading the spa version then make sure that 5948 * the config object gets updated with the correct version. 5949 */ 5950 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5951 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5952 spa->spa_uberblock.ub_version); 5953 5954 spa_config_exit(spa, SCL_STATE, FTAG); 5955 5956 if (spa->spa_config_syncing) 5957 nvlist_free(spa->spa_config_syncing); 5958 spa->spa_config_syncing = config; 5959 5960 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5961 } 5962 5963 static void 5964 spa_sync_version(void *arg, dmu_tx_t *tx) 5965 { 5966 uint64_t *versionp = arg; 5967 uint64_t version = *versionp; 5968 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5969 5970 /* 5971 * Setting the version is special cased when first creating the pool. 5972 */ 5973 ASSERT(tx->tx_txg != TXG_INITIAL); 5974 5975 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5976 ASSERT(version >= spa_version(spa)); 5977 5978 spa->spa_uberblock.ub_version = version; 5979 vdev_config_dirty(spa->spa_root_vdev); 5980 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5981 } 5982 5983 /* 5984 * Set zpool properties. 5985 */ 5986 static void 5987 spa_sync_props(void *arg, dmu_tx_t *tx) 5988 { 5989 nvlist_t *nvp = arg; 5990 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5991 objset_t *mos = spa->spa_meta_objset; 5992 nvpair_t *elem = NULL; 5993 5994 mutex_enter(&spa->spa_props_lock); 5995 5996 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5997 uint64_t intval; 5998 char *strval, *fname; 5999 zpool_prop_t prop; 6000 const char *propname; 6001 zprop_type_t proptype; 6002 spa_feature_t fid; 6003 6004 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6005 case ZPROP_INVAL: 6006 /* 6007 * We checked this earlier in spa_prop_validate(). 6008 */ 6009 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6010 6011 fname = strchr(nvpair_name(elem), '@') + 1; 6012 VERIFY0(zfeature_lookup_name(fname, &fid)); 6013 6014 spa_feature_enable(spa, fid, tx); 6015 spa_history_log_internal(spa, "set", tx, 6016 "%s=enabled", nvpair_name(elem)); 6017 break; 6018 6019 case ZPOOL_PROP_VERSION: 6020 intval = fnvpair_value_uint64(elem); 6021 /* 6022 * The version is synced seperatly before other 6023 * properties and should be correct by now. 6024 */ 6025 ASSERT3U(spa_version(spa), >=, intval); 6026 break; 6027 6028 case ZPOOL_PROP_ALTROOT: 6029 /* 6030 * 'altroot' is a non-persistent property. It should 6031 * have been set temporarily at creation or import time. 6032 */ 6033 ASSERT(spa->spa_root != NULL); 6034 break; 6035 6036 case ZPOOL_PROP_READONLY: 6037 case ZPOOL_PROP_CACHEFILE: 6038 /* 6039 * 'readonly' and 'cachefile' are also non-persisitent 6040 * properties. 6041 */ 6042 break; 6043 case ZPOOL_PROP_COMMENT: 6044 strval = fnvpair_value_string(elem); 6045 if (spa->spa_comment != NULL) 6046 spa_strfree(spa->spa_comment); 6047 spa->spa_comment = spa_strdup(strval); 6048 /* 6049 * We need to dirty the configuration on all the vdevs 6050 * so that their labels get updated. It's unnecessary 6051 * to do this for pool creation since the vdev's 6052 * configuratoin has already been dirtied. 6053 */ 6054 if (tx->tx_txg != TXG_INITIAL) 6055 vdev_config_dirty(spa->spa_root_vdev); 6056 spa_history_log_internal(spa, "set", tx, 6057 "%s=%s", nvpair_name(elem), strval); 6058 break; 6059 default: 6060 /* 6061 * Set pool property values in the poolprops mos object. 6062 */ 6063 if (spa->spa_pool_props_object == 0) { 6064 spa->spa_pool_props_object = 6065 zap_create_link(mos, DMU_OT_POOL_PROPS, 6066 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6067 tx); 6068 } 6069 6070 /* normalize the property name */ 6071 propname = zpool_prop_to_name(prop); 6072 proptype = zpool_prop_get_type(prop); 6073 6074 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6075 ASSERT(proptype == PROP_TYPE_STRING); 6076 strval = fnvpair_value_string(elem); 6077 VERIFY0(zap_update(mos, 6078 spa->spa_pool_props_object, propname, 6079 1, strlen(strval) + 1, strval, tx)); 6080 spa_history_log_internal(spa, "set", tx, 6081 "%s=%s", nvpair_name(elem), strval); 6082 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6083 intval = fnvpair_value_uint64(elem); 6084 6085 if (proptype == PROP_TYPE_INDEX) { 6086 const char *unused; 6087 VERIFY0(zpool_prop_index_to_string( 6088 prop, intval, &unused)); 6089 } 6090 VERIFY0(zap_update(mos, 6091 spa->spa_pool_props_object, propname, 6092 8, 1, &intval, tx)); 6093 spa_history_log_internal(spa, "set", tx, 6094 "%s=%lld", nvpair_name(elem), intval); 6095 } else { 6096 ASSERT(0); /* not allowed */ 6097 } 6098 6099 switch (prop) { 6100 case ZPOOL_PROP_DELEGATION: 6101 spa->spa_delegation = intval; 6102 break; 6103 case ZPOOL_PROP_BOOTFS: 6104 spa->spa_bootfs = intval; 6105 break; 6106 case ZPOOL_PROP_FAILUREMODE: 6107 spa->spa_failmode = intval; 6108 break; 6109 case ZPOOL_PROP_AUTOEXPAND: 6110 spa->spa_autoexpand = intval; 6111 if (tx->tx_txg != TXG_INITIAL) 6112 spa_async_request(spa, 6113 SPA_ASYNC_AUTOEXPAND); 6114 break; 6115 case ZPOOL_PROP_DEDUPDITTO: 6116 spa->spa_dedup_ditto = intval; 6117 break; 6118 default: 6119 break; 6120 } 6121 } 6122 6123 } 6124 6125 mutex_exit(&spa->spa_props_lock); 6126 } 6127 6128 /* 6129 * Perform one-time upgrade on-disk changes. spa_version() does not 6130 * reflect the new version this txg, so there must be no changes this 6131 * txg to anything that the upgrade code depends on after it executes. 6132 * Therefore this must be called after dsl_pool_sync() does the sync 6133 * tasks. 6134 */ 6135 static void 6136 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6137 { 6138 dsl_pool_t *dp = spa->spa_dsl_pool; 6139 6140 ASSERT(spa->spa_sync_pass == 1); 6141 6142 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6143 6144 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6145 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6146 dsl_pool_create_origin(dp, tx); 6147 6148 /* Keeping the origin open increases spa_minref */ 6149 spa->spa_minref += 3; 6150 } 6151 6152 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6153 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6154 dsl_pool_upgrade_clones(dp, tx); 6155 } 6156 6157 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6158 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6159 dsl_pool_upgrade_dir_clones(dp, tx); 6160 6161 /* Keeping the freedir open increases spa_minref */ 6162 spa->spa_minref += 3; 6163 } 6164 6165 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6166 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6167 spa_feature_create_zap_objects(spa, tx); 6168 } 6169 6170 /* 6171 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6172 * when possibility to use lz4 compression for metadata was added 6173 * Old pools that have this feature enabled must be upgraded to have 6174 * this feature active 6175 */ 6176 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6177 boolean_t lz4_en = spa_feature_is_enabled(spa, 6178 SPA_FEATURE_LZ4_COMPRESS); 6179 boolean_t lz4_ac = spa_feature_is_active(spa, 6180 SPA_FEATURE_LZ4_COMPRESS); 6181 6182 if (lz4_en && !lz4_ac) 6183 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6184 } 6185 rrw_exit(&dp->dp_config_rwlock, FTAG); 6186 } 6187 6188 /* 6189 * Sync the specified transaction group. New blocks may be dirtied as 6190 * part of the process, so we iterate until it converges. 6191 */ 6192 void 6193 spa_sync(spa_t *spa, uint64_t txg) 6194 { 6195 dsl_pool_t *dp = spa->spa_dsl_pool; 6196 objset_t *mos = spa->spa_meta_objset; 6197 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6198 vdev_t *rvd = spa->spa_root_vdev; 6199 vdev_t *vd; 6200 dmu_tx_t *tx; 6201 int error; 6202 6203 VERIFY(spa_writeable(spa)); 6204 6205 /* 6206 * Lock out configuration changes. 6207 */ 6208 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6209 6210 spa->spa_syncing_txg = txg; 6211 spa->spa_sync_pass = 0; 6212 6213 /* 6214 * If there are any pending vdev state changes, convert them 6215 * into config changes that go out with this transaction group. 6216 */ 6217 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6218 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6219 /* 6220 * We need the write lock here because, for aux vdevs, 6221 * calling vdev_config_dirty() modifies sav_config. 6222 * This is ugly and will become unnecessary when we 6223 * eliminate the aux vdev wart by integrating all vdevs 6224 * into the root vdev tree. 6225 */ 6226 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6227 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6228 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6229 vdev_state_clean(vd); 6230 vdev_config_dirty(vd); 6231 } 6232 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6233 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6234 } 6235 spa_config_exit(spa, SCL_STATE, FTAG); 6236 6237 tx = dmu_tx_create_assigned(dp, txg); 6238 6239 spa->spa_sync_starttime = gethrtime(); 6240 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6241 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6242 6243 /* 6244 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6245 * set spa_deflate if we have no raid-z vdevs. 6246 */ 6247 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6248 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6249 int i; 6250 6251 for (i = 0; i < rvd->vdev_children; i++) { 6252 vd = rvd->vdev_child[i]; 6253 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6254 break; 6255 } 6256 if (i == rvd->vdev_children) { 6257 spa->spa_deflate = TRUE; 6258 VERIFY(0 == zap_add(spa->spa_meta_objset, 6259 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6260 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6261 } 6262 } 6263 6264 /* 6265 * If anything has changed in this txg, or if someone is waiting 6266 * for this txg to sync (eg, spa_vdev_remove()), push the 6267 * deferred frees from the previous txg. If not, leave them 6268 * alone so that we don't generate work on an otherwise idle 6269 * system. 6270 */ 6271 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6272 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6273 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6274 ((dsl_scan_active(dp->dp_scan) || 6275 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6276 spa_sync_deferred_frees(spa, tx); 6277 } 6278 6279 /* 6280 * Iterate to convergence. 6281 */ 6282 do { 6283 int pass = ++spa->spa_sync_pass; 6284 6285 spa_sync_config_object(spa, tx); 6286 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6287 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6288 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6289 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6290 spa_errlog_sync(spa, txg); 6291 dsl_pool_sync(dp, txg); 6292 6293 if (pass < zfs_sync_pass_deferred_free) { 6294 spa_sync_frees(spa, free_bpl, tx); 6295 } else { 6296 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6297 &spa->spa_deferred_bpobj, tx); 6298 } 6299 6300 ddt_sync(spa, txg); 6301 dsl_scan_sync(dp, tx); 6302 6303 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6304 vdev_sync(vd, txg); 6305 6306 if (pass == 1) 6307 spa_sync_upgrades(spa, tx); 6308 6309 } while (dmu_objset_is_dirty(mos, txg)); 6310 6311 /* 6312 * Rewrite the vdev configuration (which includes the uberblock) 6313 * to commit the transaction group. 6314 * 6315 * If there are no dirty vdevs, we sync the uberblock to a few 6316 * random top-level vdevs that are known to be visible in the 6317 * config cache (see spa_vdev_add() for a complete description). 6318 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6319 */ 6320 for (;;) { 6321 /* 6322 * We hold SCL_STATE to prevent vdev open/close/etc. 6323 * while we're attempting to write the vdev labels. 6324 */ 6325 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6326 6327 if (list_is_empty(&spa->spa_config_dirty_list)) { 6328 vdev_t *svd[SPA_DVAS_PER_BP]; 6329 int svdcount = 0; 6330 int children = rvd->vdev_children; 6331 int c0 = spa_get_random(children); 6332 6333 for (int c = 0; c < children; c++) { 6334 vd = rvd->vdev_child[(c0 + c) % children]; 6335 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6336 continue; 6337 svd[svdcount++] = vd; 6338 if (svdcount == SPA_DVAS_PER_BP) 6339 break; 6340 } 6341 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6342 if (error != 0) 6343 error = vdev_config_sync(svd, svdcount, txg, 6344 B_TRUE); 6345 } else { 6346 error = vdev_config_sync(rvd->vdev_child, 6347 rvd->vdev_children, txg, B_FALSE); 6348 if (error != 0) 6349 error = vdev_config_sync(rvd->vdev_child, 6350 rvd->vdev_children, txg, B_TRUE); 6351 } 6352 6353 if (error == 0) 6354 spa->spa_last_synced_guid = rvd->vdev_guid; 6355 6356 spa_config_exit(spa, SCL_STATE, FTAG); 6357 6358 if (error == 0) 6359 break; 6360 zio_suspend(spa, NULL); 6361 zio_resume_wait(spa); 6362 } 6363 dmu_tx_commit(tx); 6364 6365 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6366 6367 /* 6368 * Clear the dirty config list. 6369 */ 6370 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6371 vdev_config_clean(vd); 6372 6373 /* 6374 * Now that the new config has synced transactionally, 6375 * let it become visible to the config cache. 6376 */ 6377 if (spa->spa_config_syncing != NULL) { 6378 spa_config_set(spa, spa->spa_config_syncing); 6379 spa->spa_config_txg = txg; 6380 spa->spa_config_syncing = NULL; 6381 } 6382 6383 spa->spa_ubsync = spa->spa_uberblock; 6384 6385 dsl_pool_sync_done(dp, txg); 6386 6387 /* 6388 * Update usable space statistics. 6389 */ 6390 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6391 vdev_sync_done(vd, txg); 6392 6393 spa_update_dspace(spa); 6394 6395 /* 6396 * It had better be the case that we didn't dirty anything 6397 * since vdev_config_sync(). 6398 */ 6399 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6400 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6401 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6402 6403 spa->spa_sync_pass = 0; 6404 6405 spa_config_exit(spa, SCL_CONFIG, FTAG); 6406 6407 spa_handle_ignored_writes(spa); 6408 6409 /* 6410 * If any async tasks have been requested, kick them off. 6411 */ 6412 spa_async_dispatch(spa); 6413 } 6414 6415 /* 6416 * Sync all pools. We don't want to hold the namespace lock across these 6417 * operations, so we take a reference on the spa_t and drop the lock during the 6418 * sync. 6419 */ 6420 void 6421 spa_sync_allpools(void) 6422 { 6423 spa_t *spa = NULL; 6424 mutex_enter(&spa_namespace_lock); 6425 while ((spa = spa_next(spa)) != NULL) { 6426 if (spa_state(spa) != POOL_STATE_ACTIVE || 6427 !spa_writeable(spa) || spa_suspended(spa)) 6428 continue; 6429 spa_open_ref(spa, FTAG); 6430 mutex_exit(&spa_namespace_lock); 6431 txg_wait_synced(spa_get_dsl(spa), 0); 6432 mutex_enter(&spa_namespace_lock); 6433 spa_close(spa, FTAG); 6434 } 6435 mutex_exit(&spa_namespace_lock); 6436 } 6437 6438 /* 6439 * ========================================================================== 6440 * Miscellaneous routines 6441 * ========================================================================== 6442 */ 6443 6444 /* 6445 * Remove all pools in the system. 6446 */ 6447 void 6448 spa_evict_all(void) 6449 { 6450 spa_t *spa; 6451 6452 /* 6453 * Remove all cached state. All pools should be closed now, 6454 * so every spa in the AVL tree should be unreferenced. 6455 */ 6456 mutex_enter(&spa_namespace_lock); 6457 while ((spa = spa_next(NULL)) != NULL) { 6458 /* 6459 * Stop async tasks. The async thread may need to detach 6460 * a device that's been replaced, which requires grabbing 6461 * spa_namespace_lock, so we must drop it here. 6462 */ 6463 spa_open_ref(spa, FTAG); 6464 mutex_exit(&spa_namespace_lock); 6465 spa_async_suspend(spa); 6466 mutex_enter(&spa_namespace_lock); 6467 spa_close(spa, FTAG); 6468 6469 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6470 spa_unload(spa); 6471 spa_deactivate(spa); 6472 } 6473 spa_remove(spa); 6474 } 6475 mutex_exit(&spa_namespace_lock); 6476 } 6477 6478 vdev_t * 6479 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6480 { 6481 vdev_t *vd; 6482 int i; 6483 6484 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6485 return (vd); 6486 6487 if (aux) { 6488 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6489 vd = spa->spa_l2cache.sav_vdevs[i]; 6490 if (vd->vdev_guid == guid) 6491 return (vd); 6492 } 6493 6494 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6495 vd = spa->spa_spares.sav_vdevs[i]; 6496 if (vd->vdev_guid == guid) 6497 return (vd); 6498 } 6499 } 6500 6501 return (NULL); 6502 } 6503 6504 void 6505 spa_upgrade(spa_t *spa, uint64_t version) 6506 { 6507 ASSERT(spa_writeable(spa)); 6508 6509 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6510 6511 /* 6512 * This should only be called for a non-faulted pool, and since a 6513 * future version would result in an unopenable pool, this shouldn't be 6514 * possible. 6515 */ 6516 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6517 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6518 6519 spa->spa_uberblock.ub_version = version; 6520 vdev_config_dirty(spa->spa_root_vdev); 6521 6522 spa_config_exit(spa, SCL_ALL, FTAG); 6523 6524 txg_wait_synced(spa_get_dsl(spa), 0); 6525 } 6526 6527 boolean_t 6528 spa_has_spare(spa_t *spa, uint64_t guid) 6529 { 6530 int i; 6531 uint64_t spareguid; 6532 spa_aux_vdev_t *sav = &spa->spa_spares; 6533 6534 for (i = 0; i < sav->sav_count; i++) 6535 if (sav->sav_vdevs[i]->vdev_guid == guid) 6536 return (B_TRUE); 6537 6538 for (i = 0; i < sav->sav_npending; i++) { 6539 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6540 &spareguid) == 0 && spareguid == guid) 6541 return (B_TRUE); 6542 } 6543 6544 return (B_FALSE); 6545 } 6546 6547 /* 6548 * Check if a pool has an active shared spare device. 6549 * Note: reference count of an active spare is 2, as a spare and as a replace 6550 */ 6551 static boolean_t 6552 spa_has_active_shared_spare(spa_t *spa) 6553 { 6554 int i, refcnt; 6555 uint64_t pool; 6556 spa_aux_vdev_t *sav = &spa->spa_spares; 6557 6558 for (i = 0; i < sav->sav_count; i++) { 6559 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6560 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6561 refcnt > 2) 6562 return (B_TRUE); 6563 } 6564 6565 return (B_FALSE); 6566 } 6567 6568 /* 6569 * Post a sysevent corresponding to the given event. The 'name' must be one of 6570 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6571 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6572 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6573 * or zdb as real changes. 6574 */ 6575 void 6576 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6577 { 6578 #ifdef _KERNEL 6579 sysevent_t *ev; 6580 sysevent_attr_list_t *attr = NULL; 6581 sysevent_value_t value; 6582 sysevent_id_t eid; 6583 6584 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6585 SE_SLEEP); 6586 6587 value.value_type = SE_DATA_TYPE_STRING; 6588 value.value.sv_string = spa_name(spa); 6589 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6590 goto done; 6591 6592 value.value_type = SE_DATA_TYPE_UINT64; 6593 value.value.sv_uint64 = spa_guid(spa); 6594 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6595 goto done; 6596 6597 if (vd) { 6598 value.value_type = SE_DATA_TYPE_UINT64; 6599 value.value.sv_uint64 = vd->vdev_guid; 6600 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6601 SE_SLEEP) != 0) 6602 goto done; 6603 6604 if (vd->vdev_path) { 6605 value.value_type = SE_DATA_TYPE_STRING; 6606 value.value.sv_string = vd->vdev_path; 6607 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6608 &value, SE_SLEEP) != 0) 6609 goto done; 6610 } 6611 } 6612 6613 if (sysevent_attach_attributes(ev, attr) != 0) 6614 goto done; 6615 attr = NULL; 6616 6617 (void) log_sysevent(ev, SE_SLEEP, &eid); 6618 6619 done: 6620 if (attr) 6621 sysevent_free_attr(attr); 6622 sysevent_free(ev); 6623 #endif 6624 } 6625