xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 5d7b4d438c4a51eccc95e77a83a437b4d48380eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size;
198 	uint64_t alloc;
199 	uint64_t space;
200 	uint64_t cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		space = 0;
216 		for (int c = 0; c < rvd->vdev_children; c++) {
217 			vdev_t *tvd = rvd->vdev_child[c];
218 			space += tvd->vdev_max_asize - tvd->vdev_asize;
219 		}
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 		    src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		dsl_dir_t *freedir = pool->dp_free_dir;
245 
246 		/*
247 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 		 * when opening pools before this version freedir will be NULL.
249 		 */
250 		if (freedir != NULL) {
251 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 			    freedir->dd_phys->dd_used_bytes, src);
253 		} else {
254 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 			    NULL, 0, src);
256 		}
257 	}
258 
259 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 
261 	if (spa->spa_comment != NULL) {
262 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 		    0, ZPROP_SRC_LOCAL);
264 	}
265 
266 	if (spa->spa_root != NULL)
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 		    0, ZPROP_SRC_LOCAL);
269 
270 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 		if (dp->scd_path == NULL) {
272 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 			    "none", 0, ZPROP_SRC_LOCAL);
274 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 		}
278 	}
279 }
280 
281 /*
282  * Get zpool property values.
283  */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 	objset_t *mos = spa->spa_meta_objset;
288 	zap_cursor_t zc;
289 	zap_attribute_t za;
290 	int err;
291 
292 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 
294 	mutex_enter(&spa->spa_props_lock);
295 
296 	/*
297 	 * Get properties from the spa config.
298 	 */
299 	spa_prop_get_config(spa, nvp);
300 
301 	/* If no pool property object, no more prop to get. */
302 	if (mos == NULL || spa->spa_pool_props_object == 0) {
303 		mutex_exit(&spa->spa_props_lock);
304 		return (0);
305 	}
306 
307 	/*
308 	 * Get properties from the MOS pool property object.
309 	 */
310 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 	    zap_cursor_advance(&zc)) {
313 		uint64_t intval = 0;
314 		char *strval = NULL;
315 		zprop_source_t src = ZPROP_SRC_DEFAULT;
316 		zpool_prop_t prop;
317 
318 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 			continue;
320 
321 		switch (za.za_integer_length) {
322 		case 8:
323 			/* integer property */
324 			if (za.za_first_integer !=
325 			    zpool_prop_default_numeric(prop))
326 				src = ZPROP_SRC_LOCAL;
327 
328 			if (prop == ZPOOL_PROP_BOOTFS) {
329 				dsl_pool_t *dp;
330 				dsl_dataset_t *ds = NULL;
331 
332 				dp = spa_get_dsl(spa);
333 				dsl_pool_config_enter(dp, FTAG);
334 				if (err = dsl_dataset_hold_obj(dp,
335 				    za.za_first_integer, FTAG, &ds)) {
336 					dsl_pool_config_exit(dp, FTAG);
337 					break;
338 				}
339 
340 				strval = kmem_alloc(
341 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 				    KM_SLEEP);
343 				dsl_dataset_name(ds, strval);
344 				dsl_dataset_rele(ds, FTAG);
345 				dsl_pool_config_exit(dp, FTAG);
346 			} else {
347 				strval = NULL;
348 				intval = za.za_first_integer;
349 			}
350 
351 			spa_prop_add_list(*nvp, prop, strval, intval, src);
352 
353 			if (strval != NULL)
354 				kmem_free(strval,
355 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 
357 			break;
358 
359 		case 1:
360 			/* string property */
361 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 			err = zap_lookup(mos, spa->spa_pool_props_object,
363 			    za.za_name, 1, za.za_num_integers, strval);
364 			if (err) {
365 				kmem_free(strval, za.za_num_integers);
366 				break;
367 			}
368 			spa_prop_add_list(*nvp, prop, strval, 0, src);
369 			kmem_free(strval, za.za_num_integers);
370 			break;
371 
372 		default:
373 			break;
374 		}
375 	}
376 	zap_cursor_fini(&zc);
377 	mutex_exit(&spa->spa_props_lock);
378 out:
379 	if (err && err != ENOENT) {
380 		nvlist_free(*nvp);
381 		*nvp = NULL;
382 		return (err);
383 	}
384 
385 	return (0);
386 }
387 
388 /*
389  * Validate the given pool properties nvlist and modify the list
390  * for the property values to be set.
391  */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 	nvpair_t *elem;
396 	int error = 0, reset_bootfs = 0;
397 	uint64_t objnum = 0;
398 	boolean_t has_feature = B_FALSE;
399 
400 	elem = NULL;
401 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 		uint64_t intval;
403 		char *strval, *slash, *check, *fname;
404 		const char *propname = nvpair_name(elem);
405 		zpool_prop_t prop = zpool_name_to_prop(propname);
406 
407 		switch (prop) {
408 		case ZPROP_INVAL:
409 			if (!zpool_prop_feature(propname)) {
410 				error = SET_ERROR(EINVAL);
411 				break;
412 			}
413 
414 			/*
415 			 * Sanitize the input.
416 			 */
417 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 				error = SET_ERROR(EINVAL);
419 				break;
420 			}
421 
422 			if (nvpair_value_uint64(elem, &intval) != 0) {
423 				error = SET_ERROR(EINVAL);
424 				break;
425 			}
426 
427 			if (intval != 0) {
428 				error = SET_ERROR(EINVAL);
429 				break;
430 			}
431 
432 			fname = strchr(propname, '@') + 1;
433 			if (zfeature_lookup_name(fname, NULL) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			has_feature = B_TRUE;
439 			break;
440 
441 		case ZPOOL_PROP_VERSION:
442 			error = nvpair_value_uint64(elem, &intval);
443 			if (!error &&
444 			    (intval < spa_version(spa) ||
445 			    intval > SPA_VERSION_BEFORE_FEATURES ||
446 			    has_feature))
447 				error = SET_ERROR(EINVAL);
448 			break;
449 
450 		case ZPOOL_PROP_DELEGATION:
451 		case ZPOOL_PROP_AUTOREPLACE:
452 		case ZPOOL_PROP_LISTSNAPS:
453 		case ZPOOL_PROP_AUTOEXPAND:
454 			error = nvpair_value_uint64(elem, &intval);
455 			if (!error && intval > 1)
456 				error = SET_ERROR(EINVAL);
457 			break;
458 
459 		case ZPOOL_PROP_BOOTFS:
460 			/*
461 			 * If the pool version is less than SPA_VERSION_BOOTFS,
462 			 * or the pool is still being created (version == 0),
463 			 * the bootfs property cannot be set.
464 			 */
465 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 				error = SET_ERROR(ENOTSUP);
467 				break;
468 			}
469 
470 			/*
471 			 * Make sure the vdev config is bootable
472 			 */
473 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 				error = SET_ERROR(ENOTSUP);
475 				break;
476 			}
477 
478 			reset_bootfs = 1;
479 
480 			error = nvpair_value_string(elem, &strval);
481 
482 			if (!error) {
483 				objset_t *os;
484 				uint64_t compress;
485 
486 				if (strval == NULL || strval[0] == '\0') {
487 					objnum = zpool_prop_default_numeric(
488 					    ZPOOL_PROP_BOOTFS);
489 					break;
490 				}
491 
492 				if (error = dmu_objset_hold(strval, FTAG, &os))
493 					break;
494 
495 				/* Must be ZPL and not gzip compressed. */
496 
497 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 					error = SET_ERROR(ENOTSUP);
499 				} else if ((error =
500 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
501 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 				    &compress)) == 0 &&
503 				    !BOOTFS_COMPRESS_VALID(compress)) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else {
506 					objnum = dmu_objset_id(os);
507 				}
508 				dmu_objset_rele(os, FTAG);
509 			}
510 			break;
511 
512 		case ZPOOL_PROP_FAILUREMODE:
513 			error = nvpair_value_uint64(elem, &intval);
514 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 			    intval > ZIO_FAILURE_MODE_PANIC))
516 				error = SET_ERROR(EINVAL);
517 
518 			/*
519 			 * This is a special case which only occurs when
520 			 * the pool has completely failed. This allows
521 			 * the user to change the in-core failmode property
522 			 * without syncing it out to disk (I/Os might
523 			 * currently be blocked). We do this by returning
524 			 * EIO to the caller (spa_prop_set) to trick it
525 			 * into thinking we encountered a property validation
526 			 * error.
527 			 */
528 			if (!error && spa_suspended(spa)) {
529 				spa->spa_failmode = intval;
530 				error = SET_ERROR(EIO);
531 			}
532 			break;
533 
534 		case ZPOOL_PROP_CACHEFILE:
535 			if ((error = nvpair_value_string(elem, &strval)) != 0)
536 				break;
537 
538 			if (strval[0] == '\0')
539 				break;
540 
541 			if (strcmp(strval, "none") == 0)
542 				break;
543 
544 			if (strval[0] != '/') {
545 				error = SET_ERROR(EINVAL);
546 				break;
547 			}
548 
549 			slash = strrchr(strval, '/');
550 			ASSERT(slash != NULL);
551 
552 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 			    strcmp(slash, "/..") == 0)
554 				error = SET_ERROR(EINVAL);
555 			break;
556 
557 		case ZPOOL_PROP_COMMENT:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 			for (check = strval; *check != '\0'; check++) {
561 				/*
562 				 * The kernel doesn't have an easy isprint()
563 				 * check.  For this kernel check, we merely
564 				 * check ASCII apart from DEL.  Fix this if
565 				 * there is an easy-to-use kernel isprint().
566 				 */
567 				if (*check >= 0x7f) {
568 					error = SET_ERROR(EINVAL);
569 					break;
570 				}
571 				check++;
572 			}
573 			if (strlen(strval) > ZPROP_MAX_COMMENT)
574 				error = E2BIG;
575 			break;
576 
577 		case ZPOOL_PROP_DEDUPDITTO:
578 			if (spa_version(spa) < SPA_VERSION_DEDUP)
579 				error = SET_ERROR(ENOTSUP);
580 			else
581 				error = nvpair_value_uint64(elem, &intval);
582 			if (error == 0 &&
583 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 				error = SET_ERROR(EINVAL);
585 			break;
586 		}
587 
588 		if (error)
589 			break;
590 	}
591 
592 	if (!error && reset_bootfs) {
593 		error = nvlist_remove(props,
594 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 
596 		if (!error) {
597 			error = nvlist_add_uint64(props,
598 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 		}
600 	}
601 
602 	return (error);
603 }
604 
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 	char *cachefile;
609 	spa_config_dirent_t *dp;
610 
611 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 	    &cachefile) != 0)
613 		return;
614 
615 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 	    KM_SLEEP);
617 
618 	if (cachefile[0] == '\0')
619 		dp->scd_path = spa_strdup(spa_config_path);
620 	else if (strcmp(cachefile, "none") == 0)
621 		dp->scd_path = NULL;
622 	else
623 		dp->scd_path = spa_strdup(cachefile);
624 
625 	list_insert_head(&spa->spa_config_list, dp);
626 	if (need_sync)
627 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629 
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 	int error;
634 	nvpair_t *elem = NULL;
635 	boolean_t need_sync = B_FALSE;
636 
637 	if ((error = spa_prop_validate(spa, nvp)) != 0)
638 		return (error);
639 
640 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 
643 		if (prop == ZPOOL_PROP_CACHEFILE ||
644 		    prop == ZPOOL_PROP_ALTROOT ||
645 		    prop == ZPOOL_PROP_READONLY)
646 			continue;
647 
648 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 			uint64_t ver;
650 
651 			if (prop == ZPOOL_PROP_VERSION) {
652 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 			} else {
654 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 				ver = SPA_VERSION_FEATURES;
656 				need_sync = B_TRUE;
657 			}
658 
659 			/* Save time if the version is already set. */
660 			if (ver == spa_version(spa))
661 				continue;
662 
663 			/*
664 			 * In addition to the pool directory object, we might
665 			 * create the pool properties object, the features for
666 			 * read object, the features for write object, or the
667 			 * feature descriptions object.
668 			 */
669 			error = dsl_sync_task(spa->spa_name, NULL,
670 			    spa_sync_version, &ver, 6);
671 			if (error)
672 				return (error);
673 			continue;
674 		}
675 
676 		need_sync = B_TRUE;
677 		break;
678 	}
679 
680 	if (need_sync) {
681 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 		    nvp, 6));
683 	}
684 
685 	return (0);
686 }
687 
688 /*
689  * If the bootfs property value is dsobj, clear it.
690  */
691 void
692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 {
694 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 		VERIFY(zap_remove(spa->spa_meta_objset,
696 		    spa->spa_pool_props_object,
697 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 		spa->spa_bootfs = 0;
699 	}
700 }
701 
702 /*ARGSUSED*/
703 static int
704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 {
706 	uint64_t *newguid = arg;
707 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 	vdev_t *rvd = spa->spa_root_vdev;
709 	uint64_t vdev_state;
710 
711 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 	vdev_state = rvd->vdev_state;
713 	spa_config_exit(spa, SCL_STATE, FTAG);
714 
715 	if (vdev_state != VDEV_STATE_HEALTHY)
716 		return (SET_ERROR(ENXIO));
717 
718 	ASSERT3U(spa_guid(spa), !=, *newguid);
719 
720 	return (0);
721 }
722 
723 static void
724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 {
726 	uint64_t *newguid = arg;
727 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 	uint64_t oldguid;
729 	vdev_t *rvd = spa->spa_root_vdev;
730 
731 	oldguid = spa_guid(spa);
732 
733 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 	rvd->vdev_guid = *newguid;
735 	rvd->vdev_guid_sum += (*newguid - oldguid);
736 	vdev_config_dirty(rvd);
737 	spa_config_exit(spa, SCL_STATE, FTAG);
738 
739 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 	    oldguid, *newguid);
741 }
742 
743 /*
744  * Change the GUID for the pool.  This is done so that we can later
745  * re-import a pool built from a clone of our own vdevs.  We will modify
746  * the root vdev's guid, our own pool guid, and then mark all of our
747  * vdevs dirty.  Note that we must make sure that all our vdevs are
748  * online when we do this, or else any vdevs that weren't present
749  * would be orphaned from our pool.  We are also going to issue a
750  * sysevent to update any watchers.
751  */
752 int
753 spa_change_guid(spa_t *spa)
754 {
755 	int error;
756 	uint64_t guid;
757 
758 	mutex_enter(&spa->spa_vdev_top_lock);
759 	mutex_enter(&spa_namespace_lock);
760 	guid = spa_generate_guid(NULL);
761 
762 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 	    spa_change_guid_sync, &guid, 5);
764 
765 	if (error == 0) {
766 		spa_config_sync(spa, B_FALSE, B_TRUE);
767 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 	}
769 
770 	mutex_exit(&spa_namespace_lock);
771 	mutex_exit(&spa->spa_vdev_top_lock);
772 
773 	return (error);
774 }
775 
776 /*
777  * ==========================================================================
778  * SPA state manipulation (open/create/destroy/import/export)
779  * ==========================================================================
780  */
781 
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 	int ret;
788 
789 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 	    sizeof (zbookmark_t));
791 
792 	if (ret < 0)
793 		return (-1);
794 	else if (ret > 0)
795 		return (1);
796 	else
797 		return (0);
798 }
799 
800 /*
801  * Utility function which retrieves copies of the current logs and
802  * re-initializes them in the process.
803  */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 
809 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 
812 	avl_create(&spa->spa_errlist_scrub,
813 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
814 	    offsetof(spa_error_entry_t, se_avl));
815 	avl_create(&spa->spa_errlist_last,
816 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
817 	    offsetof(spa_error_entry_t, se_avl));
818 }
819 
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 	enum zti_modes mode = ztip->zti_mode;
825 	uint_t value = ztip->zti_value;
826 	uint_t count = ztip->zti_count;
827 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 	char name[32];
829 	uint_t flags = 0;
830 	boolean_t batch = B_FALSE;
831 
832 	if (mode == ZTI_MODE_NULL) {
833 		tqs->stqs_count = 0;
834 		tqs->stqs_taskq = NULL;
835 		return;
836 	}
837 
838 	ASSERT3U(count, >, 0);
839 
840 	tqs->stqs_count = count;
841 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 
843 	switch (mode) {
844 	case ZTI_MODE_FIXED:
845 		ASSERT3U(value, >=, 1);
846 		value = MAX(value, 1);
847 		break;
848 
849 	case ZTI_MODE_BATCH:
850 		batch = B_TRUE;
851 		flags |= TASKQ_THREADS_CPU_PCT;
852 		value = zio_taskq_batch_pct;
853 		break;
854 
855 	default:
856 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 		    "spa_activate()",
858 		    zio_type_name[t], zio_taskq_types[q], mode, value);
859 		break;
860 	}
861 
862 	for (uint_t i = 0; i < count; i++) {
863 		taskq_t *tq;
864 
865 		if (count > 1) {
866 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
867 			    zio_type_name[t], zio_taskq_types[q], i);
868 		} else {
869 			(void) snprintf(name, sizeof (name), "%s_%s",
870 			    zio_type_name[t], zio_taskq_types[q]);
871 		}
872 
873 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 			if (batch)
875 				flags |= TASKQ_DC_BATCH;
876 
877 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 			    spa->spa_proc, zio_taskq_basedc, flags);
879 		} else {
880 			pri_t pri = maxclsyspri;
881 			/*
882 			 * The write issue taskq can be extremely CPU
883 			 * intensive.  Run it at slightly lower priority
884 			 * than the other taskqs.
885 			 */
886 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 				pri--;
888 
889 			tq = taskq_create_proc(name, value, pri, 50,
890 			    INT_MAX, spa->spa_proc, flags);
891 		}
892 
893 		tqs->stqs_taskq[i] = tq;
894 	}
895 }
896 
897 static void
898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 {
900 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901 
902 	if (tqs->stqs_taskq == NULL) {
903 		ASSERT0(tqs->stqs_count);
904 		return;
905 	}
906 
907 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 		taskq_destroy(tqs->stqs_taskq[i]);
910 	}
911 
912 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 	tqs->stqs_taskq = NULL;
914 }
915 
916 /*
917  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918  * Note that a type may have multiple discrete taskqs to avoid lock contention
919  * on the taskq itself. In that case we choose which taskq at random by using
920  * the low bits of gethrtime().
921  */
922 void
923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 {
926 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 	taskq_t *tq;
928 
929 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 	ASSERT3U(tqs->stqs_count, !=, 0);
931 
932 	if (tqs->stqs_count == 1) {
933 		tq = tqs->stqs_taskq[0];
934 	} else {
935 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 	}
937 
938 	taskq_dispatch_ent(tq, func, arg, flags, ent);
939 }
940 
941 static void
942 spa_create_zio_taskqs(spa_t *spa)
943 {
944 	for (int t = 0; t < ZIO_TYPES; t++) {
945 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 			spa_taskqs_init(spa, t, q);
947 		}
948 	}
949 }
950 
951 #ifdef _KERNEL
952 static void
953 spa_thread(void *arg)
954 {
955 	callb_cpr_t cprinfo;
956 
957 	spa_t *spa = arg;
958 	user_t *pu = PTOU(curproc);
959 
960 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 	    spa->spa_name);
962 
963 	ASSERT(curproc != &p0);
964 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 	    "zpool-%s", spa->spa_name);
966 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967 
968 	/* bind this thread to the requested psrset */
969 	if (zio_taskq_psrset_bind != PS_NONE) {
970 		pool_lock();
971 		mutex_enter(&cpu_lock);
972 		mutex_enter(&pidlock);
973 		mutex_enter(&curproc->p_lock);
974 
975 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 		    0, NULL, NULL) == 0)  {
977 			curthread->t_bind_pset = zio_taskq_psrset_bind;
978 		} else {
979 			cmn_err(CE_WARN,
980 			    "Couldn't bind process for zfs pool \"%s\" to "
981 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 		}
983 
984 		mutex_exit(&curproc->p_lock);
985 		mutex_exit(&pidlock);
986 		mutex_exit(&cpu_lock);
987 		pool_unlock();
988 	}
989 
990 	if (zio_taskq_sysdc) {
991 		sysdc_thread_enter(curthread, 100, 0);
992 	}
993 
994 	spa->spa_proc = curproc;
995 	spa->spa_did = curthread->t_did;
996 
997 	spa_create_zio_taskqs(spa);
998 
999 	mutex_enter(&spa->spa_proc_lock);
1000 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 
1002 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 	cv_broadcast(&spa->spa_proc_cv);
1004 
1005 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 
1010 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 	spa->spa_proc_state = SPA_PROC_GONE;
1012 	spa->spa_proc = &p0;
1013 	cv_broadcast(&spa->spa_proc_cv);
1014 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1015 
1016 	mutex_enter(&curproc->p_lock);
1017 	lwp_exit();
1018 }
1019 #endif
1020 
1021 /*
1022  * Activate an uninitialized pool.
1023  */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 
1029 	spa->spa_state = POOL_STATE_ACTIVE;
1030 	spa->spa_mode = mode;
1031 
1032 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 
1035 	/* Try to create a covering process */
1036 	mutex_enter(&spa->spa_proc_lock);
1037 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 	ASSERT(spa->spa_proc == &p0);
1039 	spa->spa_did = 0;
1040 
1041 	/* Only create a process if we're going to be around a while. */
1042 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 		    NULL, 0) == 0) {
1045 			spa->spa_proc_state = SPA_PROC_CREATED;
1046 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 				cv_wait(&spa->spa_proc_cv,
1048 				    &spa->spa_proc_lock);
1049 			}
1050 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 			ASSERT(spa->spa_proc != &p0);
1052 			ASSERT(spa->spa_did != 0);
1053 		} else {
1054 #ifdef _KERNEL
1055 			cmn_err(CE_WARN,
1056 			    "Couldn't create process for zfs pool \"%s\"\n",
1057 			    spa->spa_name);
1058 #endif
1059 		}
1060 	}
1061 	mutex_exit(&spa->spa_proc_lock);
1062 
1063 	/* If we didn't create a process, we need to create our taskqs. */
1064 	if (spa->spa_proc == &p0) {
1065 		spa_create_zio_taskqs(spa);
1066 	}
1067 
1068 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 	    offsetof(vdev_t, vdev_config_dirty_node));
1070 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 	    offsetof(vdev_t, vdev_state_dirty_node));
1072 
1073 	txg_list_create(&spa->spa_vdev_txg_list,
1074 	    offsetof(struct vdev, vdev_txg_node));
1075 
1076 	avl_create(&spa->spa_errlist_scrub,
1077 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 	    offsetof(spa_error_entry_t, se_avl));
1079 	avl_create(&spa->spa_errlist_last,
1080 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 	    offsetof(spa_error_entry_t, se_avl));
1082 }
1083 
1084 /*
1085  * Opposite of spa_activate().
1086  */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090 	ASSERT(spa->spa_sync_on == B_FALSE);
1091 	ASSERT(spa->spa_dsl_pool == NULL);
1092 	ASSERT(spa->spa_root_vdev == NULL);
1093 	ASSERT(spa->spa_async_zio_root == NULL);
1094 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 
1096 	txg_list_destroy(&spa->spa_vdev_txg_list);
1097 
1098 	list_destroy(&spa->spa_config_dirty_list);
1099 	list_destroy(&spa->spa_state_dirty_list);
1100 
1101 	for (int t = 0; t < ZIO_TYPES; t++) {
1102 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 			spa_taskqs_fini(spa, t, q);
1104 		}
1105 	}
1106 
1107 	metaslab_class_destroy(spa->spa_normal_class);
1108 	spa->spa_normal_class = NULL;
1109 
1110 	metaslab_class_destroy(spa->spa_log_class);
1111 	spa->spa_log_class = NULL;
1112 
1113 	/*
1114 	 * If this was part of an import or the open otherwise failed, we may
1115 	 * still have errors left in the queues.  Empty them just in case.
1116 	 */
1117 	spa_errlog_drain(spa);
1118 
1119 	avl_destroy(&spa->spa_errlist_scrub);
1120 	avl_destroy(&spa->spa_errlist_last);
1121 
1122 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 
1124 	mutex_enter(&spa->spa_proc_lock);
1125 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 		cv_broadcast(&spa->spa_proc_cv);
1129 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 			ASSERT(spa->spa_proc != &p0);
1131 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 		}
1133 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 		spa->spa_proc_state = SPA_PROC_NONE;
1135 	}
1136 	ASSERT(spa->spa_proc == &p0);
1137 	mutex_exit(&spa->spa_proc_lock);
1138 
1139 	/*
1140 	 * We want to make sure spa_thread() has actually exited the ZFS
1141 	 * module, so that the module can't be unloaded out from underneath
1142 	 * it.
1143 	 */
1144 	if (spa->spa_did != 0) {
1145 		thread_join(spa->spa_did);
1146 		spa->spa_did = 0;
1147 	}
1148 }
1149 
1150 /*
1151  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1152  * will create all the necessary vdevs in the appropriate layout, with each vdev
1153  * in the CLOSED state.  This will prep the pool before open/creation/import.
1154  * All vdev validation is done by the vdev_alloc() routine.
1155  */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158     uint_t id, int atype)
1159 {
1160 	nvlist_t **child;
1161 	uint_t children;
1162 	int error;
1163 
1164 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 		return (error);
1166 
1167 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 		return (0);
1169 
1170 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 	    &child, &children);
1172 
1173 	if (error == ENOENT)
1174 		return (0);
1175 
1176 	if (error) {
1177 		vdev_free(*vdp);
1178 		*vdp = NULL;
1179 		return (SET_ERROR(EINVAL));
1180 	}
1181 
1182 	for (int c = 0; c < children; c++) {
1183 		vdev_t *vd;
1184 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 		    atype)) != 0) {
1186 			vdev_free(*vdp);
1187 			*vdp = NULL;
1188 			return (error);
1189 		}
1190 	}
1191 
1192 	ASSERT(*vdp != NULL);
1193 
1194 	return (0);
1195 }
1196 
1197 /*
1198  * Opposite of spa_load().
1199  */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203 	int i;
1204 
1205 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 
1207 	/*
1208 	 * Stop async tasks.
1209 	 */
1210 	spa_async_suspend(spa);
1211 
1212 	/*
1213 	 * Stop syncing.
1214 	 */
1215 	if (spa->spa_sync_on) {
1216 		txg_sync_stop(spa->spa_dsl_pool);
1217 		spa->spa_sync_on = B_FALSE;
1218 	}
1219 
1220 	/*
1221 	 * Wait for any outstanding async I/O to complete.
1222 	 */
1223 	if (spa->spa_async_zio_root != NULL) {
1224 		(void) zio_wait(spa->spa_async_zio_root);
1225 		spa->spa_async_zio_root = NULL;
1226 	}
1227 
1228 	bpobj_close(&spa->spa_deferred_bpobj);
1229 
1230 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 
1232 	/*
1233 	 * Close all vdevs.
1234 	 */
1235 	if (spa->spa_root_vdev)
1236 		vdev_free(spa->spa_root_vdev);
1237 	ASSERT(spa->spa_root_vdev == NULL);
1238 
1239 	/*
1240 	 * Close the dsl pool.
1241 	 */
1242 	if (spa->spa_dsl_pool) {
1243 		dsl_pool_close(spa->spa_dsl_pool);
1244 		spa->spa_dsl_pool = NULL;
1245 		spa->spa_meta_objset = NULL;
1246 	}
1247 
1248 	ddt_unload(spa);
1249 
1250 
1251 	/*
1252 	 * Drop and purge level 2 cache
1253 	 */
1254 	spa_l2cache_drop(spa);
1255 
1256 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1257 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1258 	if (spa->spa_spares.sav_vdevs) {
1259 		kmem_free(spa->spa_spares.sav_vdevs,
1260 		    spa->spa_spares.sav_count * sizeof (void *));
1261 		spa->spa_spares.sav_vdevs = NULL;
1262 	}
1263 	if (spa->spa_spares.sav_config) {
1264 		nvlist_free(spa->spa_spares.sav_config);
1265 		spa->spa_spares.sav_config = NULL;
1266 	}
1267 	spa->spa_spares.sav_count = 0;
1268 
1269 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272 	}
1273 	if (spa->spa_l2cache.sav_vdevs) {
1274 		kmem_free(spa->spa_l2cache.sav_vdevs,
1275 		    spa->spa_l2cache.sav_count * sizeof (void *));
1276 		spa->spa_l2cache.sav_vdevs = NULL;
1277 	}
1278 	if (spa->spa_l2cache.sav_config) {
1279 		nvlist_free(spa->spa_l2cache.sav_config);
1280 		spa->spa_l2cache.sav_config = NULL;
1281 	}
1282 	spa->spa_l2cache.sav_count = 0;
1283 
1284 	spa->spa_async_suspended = 0;
1285 
1286 	if (spa->spa_comment != NULL) {
1287 		spa_strfree(spa->spa_comment);
1288 		spa->spa_comment = NULL;
1289 	}
1290 
1291 	spa_config_exit(spa, SCL_ALL, FTAG);
1292 }
1293 
1294 /*
1295  * Load (or re-load) the current list of vdevs describing the active spares for
1296  * this pool.  When this is called, we have some form of basic information in
1297  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1298  * then re-generate a more complete list including status information.
1299  */
1300 static void
1301 spa_load_spares(spa_t *spa)
1302 {
1303 	nvlist_t **spares;
1304 	uint_t nspares;
1305 	int i;
1306 	vdev_t *vd, *tvd;
1307 
1308 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309 
1310 	/*
1311 	 * First, close and free any existing spare vdevs.
1312 	 */
1313 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314 		vd = spa->spa_spares.sav_vdevs[i];
1315 
1316 		/* Undo the call to spa_activate() below */
1317 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1319 			spa_spare_remove(tvd);
1320 		vdev_close(vd);
1321 		vdev_free(vd);
1322 	}
1323 
1324 	if (spa->spa_spares.sav_vdevs)
1325 		kmem_free(spa->spa_spares.sav_vdevs,
1326 		    spa->spa_spares.sav_count * sizeof (void *));
1327 
1328 	if (spa->spa_spares.sav_config == NULL)
1329 		nspares = 0;
1330 	else
1331 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333 
1334 	spa->spa_spares.sav_count = (int)nspares;
1335 	spa->spa_spares.sav_vdevs = NULL;
1336 
1337 	if (nspares == 0)
1338 		return;
1339 
1340 	/*
1341 	 * Construct the array of vdevs, opening them to get status in the
1342 	 * process.   For each spare, there is potentially two different vdev_t
1343 	 * structures associated with it: one in the list of spares (used only
1344 	 * for basic validation purposes) and one in the active vdev
1345 	 * configuration (if it's spared in).  During this phase we open and
1346 	 * validate each vdev on the spare list.  If the vdev also exists in the
1347 	 * active configuration, then we also mark this vdev as an active spare.
1348 	 */
1349 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350 	    KM_SLEEP);
1351 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353 		    VDEV_ALLOC_SPARE) == 0);
1354 		ASSERT(vd != NULL);
1355 
1356 		spa->spa_spares.sav_vdevs[i] = vd;
1357 
1358 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 		    B_FALSE)) != NULL) {
1360 			if (!tvd->vdev_isspare)
1361 				spa_spare_add(tvd);
1362 
1363 			/*
1364 			 * We only mark the spare active if we were successfully
1365 			 * able to load the vdev.  Otherwise, importing a pool
1366 			 * with a bad active spare would result in strange
1367 			 * behavior, because multiple pool would think the spare
1368 			 * is actively in use.
1369 			 *
1370 			 * There is a vulnerability here to an equally bizarre
1371 			 * circumstance, where a dead active spare is later
1372 			 * brought back to life (onlined or otherwise).  Given
1373 			 * the rarity of this scenario, and the extra complexity
1374 			 * it adds, we ignore the possibility.
1375 			 */
1376 			if (!vdev_is_dead(tvd))
1377 				spa_spare_activate(tvd);
1378 		}
1379 
1380 		vd->vdev_top = vd;
1381 		vd->vdev_aux = &spa->spa_spares;
1382 
1383 		if (vdev_open(vd) != 0)
1384 			continue;
1385 
1386 		if (vdev_validate_aux(vd) == 0)
1387 			spa_spare_add(vd);
1388 	}
1389 
1390 	/*
1391 	 * Recompute the stashed list of spares, with status information
1392 	 * this time.
1393 	 */
1394 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1396 
1397 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398 	    KM_SLEEP);
1399 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1400 		spares[i] = vdev_config_generate(spa,
1401 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1405 		nvlist_free(spares[i]);
1406 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 }
1408 
1409 /*
1410  * Load (or re-load) the current list of vdevs describing the active l2cache for
1411  * this pool.  When this is called, we have some form of basic information in
1412  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1413  * then re-generate a more complete list including status information.
1414  * Devices which are already active have their details maintained, and are
1415  * not re-opened.
1416  */
1417 static void
1418 spa_load_l2cache(spa_t *spa)
1419 {
1420 	nvlist_t **l2cache;
1421 	uint_t nl2cache;
1422 	int i, j, oldnvdevs;
1423 	uint64_t guid;
1424 	vdev_t *vd, **oldvdevs, **newvdevs;
1425 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426 
1427 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428 
1429 	if (sav->sav_config != NULL) {
1430 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433 	} else {
1434 		nl2cache = 0;
1435 		newvdevs = NULL;
1436 	}
1437 
1438 	oldvdevs = sav->sav_vdevs;
1439 	oldnvdevs = sav->sav_count;
1440 	sav->sav_vdevs = NULL;
1441 	sav->sav_count = 0;
1442 
1443 	/*
1444 	 * Process new nvlist of vdevs.
1445 	 */
1446 	for (i = 0; i < nl2cache; i++) {
1447 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448 		    &guid) == 0);
1449 
1450 		newvdevs[i] = NULL;
1451 		for (j = 0; j < oldnvdevs; j++) {
1452 			vd = oldvdevs[j];
1453 			if (vd != NULL && guid == vd->vdev_guid) {
1454 				/*
1455 				 * Retain previous vdev for add/remove ops.
1456 				 */
1457 				newvdevs[i] = vd;
1458 				oldvdevs[j] = NULL;
1459 				break;
1460 			}
1461 		}
1462 
1463 		if (newvdevs[i] == NULL) {
1464 			/*
1465 			 * Create new vdev
1466 			 */
1467 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468 			    VDEV_ALLOC_L2CACHE) == 0);
1469 			ASSERT(vd != NULL);
1470 			newvdevs[i] = vd;
1471 
1472 			/*
1473 			 * Commit this vdev as an l2cache device,
1474 			 * even if it fails to open.
1475 			 */
1476 			spa_l2cache_add(vd);
1477 
1478 			vd->vdev_top = vd;
1479 			vd->vdev_aux = sav;
1480 
1481 			spa_l2cache_activate(vd);
1482 
1483 			if (vdev_open(vd) != 0)
1484 				continue;
1485 
1486 			(void) vdev_validate_aux(vd);
1487 
1488 			if (!vdev_is_dead(vd))
1489 				l2arc_add_vdev(spa, vd);
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * Purge vdevs that were dropped
1495 	 */
1496 	for (i = 0; i < oldnvdevs; i++) {
1497 		uint64_t pool;
1498 
1499 		vd = oldvdevs[i];
1500 		if (vd != NULL) {
1501 			ASSERT(vd->vdev_isl2cache);
1502 
1503 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504 			    pool != 0ULL && l2arc_vdev_present(vd))
1505 				l2arc_remove_vdev(vd);
1506 			vdev_clear_stats(vd);
1507 			vdev_free(vd);
1508 		}
1509 	}
1510 
1511 	if (oldvdevs)
1512 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513 
1514 	if (sav->sav_config == NULL)
1515 		goto out;
1516 
1517 	sav->sav_vdevs = newvdevs;
1518 	sav->sav_count = (int)nl2cache;
1519 
1520 	/*
1521 	 * Recompute the stashed list of l2cache devices, with status
1522 	 * information this time.
1523 	 */
1524 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1526 
1527 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528 	for (i = 0; i < sav->sav_count; i++)
1529 		l2cache[i] = vdev_config_generate(spa,
1530 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 out:
1534 	for (i = 0; i < sav->sav_count; i++)
1535 		nvlist_free(l2cache[i]);
1536 	if (sav->sav_count)
1537 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 }
1539 
1540 static int
1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 {
1543 	dmu_buf_t *db;
1544 	char *packed = NULL;
1545 	size_t nvsize = 0;
1546 	int error;
1547 	*value = NULL;
1548 
1549 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550 	nvsize = *(uint64_t *)db->db_data;
1551 	dmu_buf_rele(db, FTAG);
1552 
1553 	packed = kmem_alloc(nvsize, KM_SLEEP);
1554 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555 	    DMU_READ_PREFETCH);
1556 	if (error == 0)
1557 		error = nvlist_unpack(packed, nvsize, value, 0);
1558 	kmem_free(packed, nvsize);
1559 
1560 	return (error);
1561 }
1562 
1563 /*
1564  * Checks to see if the given vdev could not be opened, in which case we post a
1565  * sysevent to notify the autoreplace code that the device has been removed.
1566  */
1567 static void
1568 spa_check_removed(vdev_t *vd)
1569 {
1570 	for (int c = 0; c < vd->vdev_children; c++)
1571 		spa_check_removed(vd->vdev_child[c]);
1572 
1573 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574 	    !vd->vdev_ishole) {
1575 		zfs_post_autoreplace(vd->vdev_spa, vd);
1576 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577 	}
1578 }
1579 
1580 /*
1581  * Validate the current config against the MOS config
1582  */
1583 static boolean_t
1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 {
1586 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587 	nvlist_t *nv;
1588 
1589 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590 
1591 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593 
1594 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595 
1596 	/*
1597 	 * If we're doing a normal import, then build up any additional
1598 	 * diagnostic information about missing devices in this config.
1599 	 * We'll pass this up to the user for further processing.
1600 	 */
1601 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602 		nvlist_t **child, *nv;
1603 		uint64_t idx = 0;
1604 
1605 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606 		    KM_SLEEP);
1607 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608 
1609 		for (int c = 0; c < rvd->vdev_children; c++) {
1610 			vdev_t *tvd = rvd->vdev_child[c];
1611 			vdev_t *mtvd  = mrvd->vdev_child[c];
1612 
1613 			if (tvd->vdev_ops == &vdev_missing_ops &&
1614 			    mtvd->vdev_ops != &vdev_missing_ops &&
1615 			    mtvd->vdev_islog)
1616 				child[idx++] = vdev_config_generate(spa, mtvd,
1617 				    B_FALSE, 0);
1618 		}
1619 
1620 		if (idx) {
1621 			VERIFY(nvlist_add_nvlist_array(nv,
1622 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625 
1626 			for (int i = 0; i < idx; i++)
1627 				nvlist_free(child[i]);
1628 		}
1629 		nvlist_free(nv);
1630 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1631 	}
1632 
1633 	/*
1634 	 * Compare the root vdev tree with the information we have
1635 	 * from the MOS config (mrvd). Check each top-level vdev
1636 	 * with the corresponding MOS config top-level (mtvd).
1637 	 */
1638 	for (int c = 0; c < rvd->vdev_children; c++) {
1639 		vdev_t *tvd = rvd->vdev_child[c];
1640 		vdev_t *mtvd  = mrvd->vdev_child[c];
1641 
1642 		/*
1643 		 * Resolve any "missing" vdevs in the current configuration.
1644 		 * If we find that the MOS config has more accurate information
1645 		 * about the top-level vdev then use that vdev instead.
1646 		 */
1647 		if (tvd->vdev_ops == &vdev_missing_ops &&
1648 		    mtvd->vdev_ops != &vdev_missing_ops) {
1649 
1650 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651 				continue;
1652 
1653 			/*
1654 			 * Device specific actions.
1655 			 */
1656 			if (mtvd->vdev_islog) {
1657 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1658 			} else {
1659 				/*
1660 				 * XXX - once we have 'readonly' pool
1661 				 * support we should be able to handle
1662 				 * missing data devices by transitioning
1663 				 * the pool to readonly.
1664 				 */
1665 				continue;
1666 			}
1667 
1668 			/*
1669 			 * Swap the missing vdev with the data we were
1670 			 * able to obtain from the MOS config.
1671 			 */
1672 			vdev_remove_child(rvd, tvd);
1673 			vdev_remove_child(mrvd, mtvd);
1674 
1675 			vdev_add_child(rvd, mtvd);
1676 			vdev_add_child(mrvd, tvd);
1677 
1678 			spa_config_exit(spa, SCL_ALL, FTAG);
1679 			vdev_load(mtvd);
1680 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681 
1682 			vdev_reopen(rvd);
1683 		} else if (mtvd->vdev_islog) {
1684 			/*
1685 			 * Load the slog device's state from the MOS config
1686 			 * since it's possible that the label does not
1687 			 * contain the most up-to-date information.
1688 			 */
1689 			vdev_load_log_state(tvd, mtvd);
1690 			vdev_reopen(tvd);
1691 		}
1692 	}
1693 	vdev_free(mrvd);
1694 	spa_config_exit(spa, SCL_ALL, FTAG);
1695 
1696 	/*
1697 	 * Ensure we were able to validate the config.
1698 	 */
1699 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 }
1701 
1702 /*
1703  * Check for missing log devices
1704  */
1705 static boolean_t
1706 spa_check_logs(spa_t *spa)
1707 {
1708 	boolean_t rv = B_FALSE;
1709 
1710 	switch (spa->spa_log_state) {
1711 	case SPA_LOG_MISSING:
1712 		/* need to recheck in case slog has been restored */
1713 	case SPA_LOG_UNKNOWN:
1714 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715 		    NULL, DS_FIND_CHILDREN) != 0);
1716 		if (rv)
1717 			spa_set_log_state(spa, SPA_LOG_MISSING);
1718 		break;
1719 	}
1720 	return (rv);
1721 }
1722 
1723 static boolean_t
1724 spa_passivate_log(spa_t *spa)
1725 {
1726 	vdev_t *rvd = spa->spa_root_vdev;
1727 	boolean_t slog_found = B_FALSE;
1728 
1729 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730 
1731 	if (!spa_has_slogs(spa))
1732 		return (B_FALSE);
1733 
1734 	for (int c = 0; c < rvd->vdev_children; c++) {
1735 		vdev_t *tvd = rvd->vdev_child[c];
1736 		metaslab_group_t *mg = tvd->vdev_mg;
1737 
1738 		if (tvd->vdev_islog) {
1739 			metaslab_group_passivate(mg);
1740 			slog_found = B_TRUE;
1741 		}
1742 	}
1743 
1744 	return (slog_found);
1745 }
1746 
1747 static void
1748 spa_activate_log(spa_t *spa)
1749 {
1750 	vdev_t *rvd = spa->spa_root_vdev;
1751 
1752 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753 
1754 	for (int c = 0; c < rvd->vdev_children; c++) {
1755 		vdev_t *tvd = rvd->vdev_child[c];
1756 		metaslab_group_t *mg = tvd->vdev_mg;
1757 
1758 		if (tvd->vdev_islog)
1759 			metaslab_group_activate(mg);
1760 	}
1761 }
1762 
1763 int
1764 spa_offline_log(spa_t *spa)
1765 {
1766 	int error;
1767 
1768 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769 	    NULL, DS_FIND_CHILDREN);
1770 	if (error == 0) {
1771 		/*
1772 		 * We successfully offlined the log device, sync out the
1773 		 * current txg so that the "stubby" block can be removed
1774 		 * by zil_sync().
1775 		 */
1776 		txg_wait_synced(spa->spa_dsl_pool, 0);
1777 	}
1778 	return (error);
1779 }
1780 
1781 static void
1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 {
1784 	for (int i = 0; i < sav->sav_count; i++)
1785 		spa_check_removed(sav->sav_vdevs[i]);
1786 }
1787 
1788 void
1789 spa_claim_notify(zio_t *zio)
1790 {
1791 	spa_t *spa = zio->io_spa;
1792 
1793 	if (zio->io_error)
1794 		return;
1795 
1796 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1797 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799 	mutex_exit(&spa->spa_props_lock);
1800 }
1801 
1802 typedef struct spa_load_error {
1803 	uint64_t	sle_meta_count;
1804 	uint64_t	sle_data_count;
1805 } spa_load_error_t;
1806 
1807 static void
1808 spa_load_verify_done(zio_t *zio)
1809 {
1810 	blkptr_t *bp = zio->io_bp;
1811 	spa_load_error_t *sle = zio->io_private;
1812 	dmu_object_type_t type = BP_GET_TYPE(bp);
1813 	int error = zio->io_error;
1814 
1815 	if (error) {
1816 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817 		    type != DMU_OT_INTENT_LOG)
1818 			atomic_add_64(&sle->sle_meta_count, 1);
1819 		else
1820 			atomic_add_64(&sle->sle_data_count, 1);
1821 	}
1822 	zio_data_buf_free(zio->io_data, zio->io_size);
1823 }
1824 
1825 /*ARGSUSED*/
1826 static int
1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 {
1830 	if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1831 		zio_t *rio = arg;
1832 		size_t size = BP_GET_PSIZE(bp);
1833 		void *data = zio_data_buf_alloc(size);
1834 
1835 		zio_nowait(zio_read(rio, spa, bp, data, size,
1836 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839 	}
1840 	return (0);
1841 }
1842 
1843 static int
1844 spa_load_verify(spa_t *spa)
1845 {
1846 	zio_t *rio;
1847 	spa_load_error_t sle = { 0 };
1848 	zpool_rewind_policy_t policy;
1849 	boolean_t verify_ok = B_FALSE;
1850 	int error;
1851 
1852 	zpool_get_rewind_policy(spa->spa_config, &policy);
1853 
1854 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855 		return (0);
1856 
1857 	rio = zio_root(spa, NULL, &sle,
1858 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859 
1860 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1861 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862 
1863 	(void) zio_wait(rio);
1864 
1865 	spa->spa_load_meta_errors = sle.sle_meta_count;
1866 	spa->spa_load_data_errors = sle.sle_data_count;
1867 
1868 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869 	    sle.sle_data_count <= policy.zrp_maxdata) {
1870 		int64_t loss = 0;
1871 
1872 		verify_ok = B_TRUE;
1873 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875 
1876 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1880 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883 	} else {
1884 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885 	}
1886 
1887 	if (error) {
1888 		if (error != ENXIO && error != EIO)
1889 			error = SET_ERROR(EIO);
1890 		return (error);
1891 	}
1892 
1893 	return (verify_ok ? 0 : EIO);
1894 }
1895 
1896 /*
1897  * Find a value in the pool props object.
1898  */
1899 static void
1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 {
1902 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 }
1905 
1906 /*
1907  * Find a value in the pool directory object.
1908  */
1909 static int
1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 {
1912 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913 	    name, sizeof (uint64_t), 1, val));
1914 }
1915 
1916 static int
1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 {
1919 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920 	return (err);
1921 }
1922 
1923 /*
1924  * Fix up config after a partly-completed split.  This is done with the
1925  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1926  * pool have that entry in their config, but only the splitting one contains
1927  * a list of all the guids of the vdevs that are being split off.
1928  *
1929  * This function determines what to do with that list: either rejoin
1930  * all the disks to the pool, or complete the splitting process.  To attempt
1931  * the rejoin, each disk that is offlined is marked online again, and
1932  * we do a reopen() call.  If the vdev label for every disk that was
1933  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934  * then we call vdev_split() on each disk, and complete the split.
1935  *
1936  * Otherwise we leave the config alone, with all the vdevs in place in
1937  * the original pool.
1938  */
1939 static void
1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 {
1942 	uint_t extracted;
1943 	uint64_t *glist;
1944 	uint_t i, gcount;
1945 	nvlist_t *nvl;
1946 	vdev_t **vd;
1947 	boolean_t attempt_reopen;
1948 
1949 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950 		return;
1951 
1952 	/* check that the config is complete */
1953 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954 	    &glist, &gcount) != 0)
1955 		return;
1956 
1957 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958 
1959 	/* attempt to online all the vdevs & validate */
1960 	attempt_reopen = B_TRUE;
1961 	for (i = 0; i < gcount; i++) {
1962 		if (glist[i] == 0)	/* vdev is hole */
1963 			continue;
1964 
1965 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966 		if (vd[i] == NULL) {
1967 			/*
1968 			 * Don't bother attempting to reopen the disks;
1969 			 * just do the split.
1970 			 */
1971 			attempt_reopen = B_FALSE;
1972 		} else {
1973 			/* attempt to re-online it */
1974 			vd[i]->vdev_offline = B_FALSE;
1975 		}
1976 	}
1977 
1978 	if (attempt_reopen) {
1979 		vdev_reopen(spa->spa_root_vdev);
1980 
1981 		/* check each device to see what state it's in */
1982 		for (extracted = 0, i = 0; i < gcount; i++) {
1983 			if (vd[i] != NULL &&
1984 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985 				break;
1986 			++extracted;
1987 		}
1988 	}
1989 
1990 	/*
1991 	 * If every disk has been moved to the new pool, or if we never
1992 	 * even attempted to look at them, then we split them off for
1993 	 * good.
1994 	 */
1995 	if (!attempt_reopen || gcount == extracted) {
1996 		for (i = 0; i < gcount; i++)
1997 			if (vd[i] != NULL)
1998 				vdev_split(vd[i]);
1999 		vdev_reopen(spa->spa_root_vdev);
2000 	}
2001 
2002 	kmem_free(vd, gcount * sizeof (vdev_t *));
2003 }
2004 
2005 static int
2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007     boolean_t mosconfig)
2008 {
2009 	nvlist_t *config = spa->spa_config;
2010 	char *ereport = FM_EREPORT_ZFS_POOL;
2011 	char *comment;
2012 	int error;
2013 	uint64_t pool_guid;
2014 	nvlist_t *nvl;
2015 
2016 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017 		return (SET_ERROR(EINVAL));
2018 
2019 	ASSERT(spa->spa_comment == NULL);
2020 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021 		spa->spa_comment = spa_strdup(comment);
2022 
2023 	/*
2024 	 * Versioning wasn't explicitly added to the label until later, so if
2025 	 * it's not present treat it as the initial version.
2026 	 */
2027 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028 	    &spa->spa_ubsync.ub_version) != 0)
2029 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030 
2031 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032 	    &spa->spa_config_txg);
2033 
2034 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035 	    spa_guid_exists(pool_guid, 0)) {
2036 		error = SET_ERROR(EEXIST);
2037 	} else {
2038 		spa->spa_config_guid = pool_guid;
2039 
2040 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041 		    &nvl) == 0) {
2042 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043 			    KM_SLEEP) == 0);
2044 		}
2045 
2046 		nvlist_free(spa->spa_load_info);
2047 		spa->spa_load_info = fnvlist_alloc();
2048 
2049 		gethrestime(&spa->spa_loaded_ts);
2050 		error = spa_load_impl(spa, pool_guid, config, state, type,
2051 		    mosconfig, &ereport);
2052 	}
2053 
2054 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 	if (error) {
2056 		if (error != EEXIST) {
2057 			spa->spa_loaded_ts.tv_sec = 0;
2058 			spa->spa_loaded_ts.tv_nsec = 0;
2059 		}
2060 		if (error != EBADF) {
2061 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062 		}
2063 	}
2064 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065 	spa->spa_ena = 0;
2066 
2067 	return (error);
2068 }
2069 
2070 /*
2071  * Load an existing storage pool, using the pool's builtin spa_config as a
2072  * source of configuration information.
2073  */
2074 static int
2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077     char **ereport)
2078 {
2079 	int error = 0;
2080 	nvlist_t *nvroot = NULL;
2081 	nvlist_t *label;
2082 	vdev_t *rvd;
2083 	uberblock_t *ub = &spa->spa_uberblock;
2084 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2085 	int orig_mode = spa->spa_mode;
2086 	int parse;
2087 	uint64_t obj;
2088 	boolean_t missing_feat_write = B_FALSE;
2089 
2090 	/*
2091 	 * If this is an untrusted config, access the pool in read-only mode.
2092 	 * This prevents things like resilvering recently removed devices.
2093 	 */
2094 	if (!mosconfig)
2095 		spa->spa_mode = FREAD;
2096 
2097 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 
2099 	spa->spa_load_state = state;
2100 
2101 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102 		return (SET_ERROR(EINVAL));
2103 
2104 	parse = (type == SPA_IMPORT_EXISTING ?
2105 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106 
2107 	/*
2108 	 * Create "The Godfather" zio to hold all async IOs
2109 	 */
2110 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112 
2113 	/*
2114 	 * Parse the configuration into a vdev tree.  We explicitly set the
2115 	 * value that will be returned by spa_version() since parsing the
2116 	 * configuration requires knowing the version number.
2117 	 */
2118 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120 	spa_config_exit(spa, SCL_ALL, FTAG);
2121 
2122 	if (error != 0)
2123 		return (error);
2124 
2125 	ASSERT(spa->spa_root_vdev == rvd);
2126 
2127 	if (type != SPA_IMPORT_ASSEMBLE) {
2128 		ASSERT(spa_guid(spa) == pool_guid);
2129 	}
2130 
2131 	/*
2132 	 * Try to open all vdevs, loading each label in the process.
2133 	 */
2134 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135 	error = vdev_open(rvd);
2136 	spa_config_exit(spa, SCL_ALL, FTAG);
2137 	if (error != 0)
2138 		return (error);
2139 
2140 	/*
2141 	 * We need to validate the vdev labels against the configuration that
2142 	 * we have in hand, which is dependent on the setting of mosconfig. If
2143 	 * mosconfig is true then we're validating the vdev labels based on
2144 	 * that config.  Otherwise, we're validating against the cached config
2145 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2146 	 * later we will recursively call spa_load() and validate against
2147 	 * the vdev config.
2148 	 *
2149 	 * If we're assembling a new pool that's been split off from an
2150 	 * existing pool, the labels haven't yet been updated so we skip
2151 	 * validation for now.
2152 	 */
2153 	if (type != SPA_IMPORT_ASSEMBLE) {
2154 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155 		error = vdev_validate(rvd, mosconfig);
2156 		spa_config_exit(spa, SCL_ALL, FTAG);
2157 
2158 		if (error != 0)
2159 			return (error);
2160 
2161 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162 			return (SET_ERROR(ENXIO));
2163 	}
2164 
2165 	/*
2166 	 * Find the best uberblock.
2167 	 */
2168 	vdev_uberblock_load(rvd, ub, &label);
2169 
2170 	/*
2171 	 * If we weren't able to find a single valid uberblock, return failure.
2172 	 */
2173 	if (ub->ub_txg == 0) {
2174 		nvlist_free(label);
2175 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176 	}
2177 
2178 	/*
2179 	 * If the pool has an unsupported version we can't open it.
2180 	 */
2181 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182 		nvlist_free(label);
2183 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184 	}
2185 
2186 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187 		nvlist_t *features;
2188 
2189 		/*
2190 		 * If we weren't able to find what's necessary for reading the
2191 		 * MOS in the label, return failure.
2192 		 */
2193 		if (label == NULL || nvlist_lookup_nvlist(label,
2194 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195 			nvlist_free(label);
2196 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197 			    ENXIO));
2198 		}
2199 
2200 		/*
2201 		 * Update our in-core representation with the definitive values
2202 		 * from the label.
2203 		 */
2204 		nvlist_free(spa->spa_label_features);
2205 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206 	}
2207 
2208 	nvlist_free(label);
2209 
2210 	/*
2211 	 * Look through entries in the label nvlist's features_for_read. If
2212 	 * there is a feature listed there which we don't understand then we
2213 	 * cannot open a pool.
2214 	 */
2215 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216 		nvlist_t *unsup_feat;
2217 
2218 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219 		    0);
2220 
2221 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222 		    NULL); nvp != NULL;
2223 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2225 				VERIFY(nvlist_add_string(unsup_feat,
2226 				    nvpair_name(nvp), "") == 0);
2227 			}
2228 		}
2229 
2230 		if (!nvlist_empty(unsup_feat)) {
2231 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233 			nvlist_free(unsup_feat);
2234 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235 			    ENOTSUP));
2236 		}
2237 
2238 		nvlist_free(unsup_feat);
2239 	}
2240 
2241 	/*
2242 	 * If the vdev guid sum doesn't match the uberblock, we have an
2243 	 * incomplete configuration.  We first check to see if the pool
2244 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245 	 * If it is, defer the vdev_guid_sum check till later so we
2246 	 * can handle missing vdevs.
2247 	 */
2248 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2251 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252 
2253 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255 		spa_try_repair(spa, config);
2256 		spa_config_exit(spa, SCL_ALL, FTAG);
2257 		nvlist_free(spa->spa_config_splitting);
2258 		spa->spa_config_splitting = NULL;
2259 	}
2260 
2261 	/*
2262 	 * Initialize internal SPA structures.
2263 	 */
2264 	spa->spa_state = POOL_STATE_ACTIVE;
2265 	spa->spa_ubsync = spa->spa_uberblock;
2266 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270 	spa->spa_claim_max_txg = spa->spa_first_txg;
2271 	spa->spa_prev_software_version = ub->ub_software_version;
2272 
2273 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274 	if (error)
2275 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277 
2278 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280 
2281 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282 		boolean_t missing_feat_read = B_FALSE;
2283 		nvlist_t *unsup_feat, *enabled_feat;
2284 
2285 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286 		    &spa->spa_feat_for_read_obj) != 0) {
2287 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288 		}
2289 
2290 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291 		    &spa->spa_feat_for_write_obj) != 0) {
2292 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293 		}
2294 
2295 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296 		    &spa->spa_feat_desc_obj) != 0) {
2297 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298 		}
2299 
2300 		enabled_feat = fnvlist_alloc();
2301 		unsup_feat = fnvlist_alloc();
2302 
2303 		if (!spa_features_check(spa, B_FALSE,
2304 		    unsup_feat, enabled_feat))
2305 			missing_feat_read = B_TRUE;
2306 
2307 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 			if (!spa_features_check(spa, B_TRUE,
2309 			    unsup_feat, enabled_feat)) {
2310 				missing_feat_write = B_TRUE;
2311 			}
2312 		}
2313 
2314 		fnvlist_add_nvlist(spa->spa_load_info,
2315 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2316 
2317 		if (!nvlist_empty(unsup_feat)) {
2318 			fnvlist_add_nvlist(spa->spa_load_info,
2319 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2320 		}
2321 
2322 		fnvlist_free(enabled_feat);
2323 		fnvlist_free(unsup_feat);
2324 
2325 		if (!missing_feat_read) {
2326 			fnvlist_add_boolean(spa->spa_load_info,
2327 			    ZPOOL_CONFIG_CAN_RDONLY);
2328 		}
2329 
2330 		/*
2331 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2332 		 * twofold: to determine whether the pool is available for
2333 		 * import in read-write mode and (if it is not) whether the
2334 		 * pool is available for import in read-only mode. If the pool
2335 		 * is available for import in read-write mode, it is displayed
2336 		 * as available in userland; if it is not available for import
2337 		 * in read-only mode, it is displayed as unavailable in
2338 		 * userland. If the pool is available for import in read-only
2339 		 * mode but not read-write mode, it is displayed as unavailable
2340 		 * in userland with a special note that the pool is actually
2341 		 * available for open in read-only mode.
2342 		 *
2343 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2344 		 * missing a feature for write, we must first determine whether
2345 		 * the pool can be opened read-only before returning to
2346 		 * userland in order to know whether to display the
2347 		 * abovementioned note.
2348 		 */
2349 		if (missing_feat_read || (missing_feat_write &&
2350 		    spa_writeable(spa))) {
2351 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2352 			    ENOTSUP));
2353 		}
2354 
2355 		/*
2356 		 * Load refcounts for ZFS features from disk into an in-memory
2357 		 * cache during SPA initialization.
2358 		 */
2359 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2360 			uint64_t refcount;
2361 
2362 			error = feature_get_refcount_from_disk(spa,
2363 			    &spa_feature_table[i], &refcount);
2364 			if (error == 0) {
2365 				spa->spa_feat_refcount_cache[i] = refcount;
2366 			} else if (error == ENOTSUP) {
2367 				spa->spa_feat_refcount_cache[i] =
2368 				    SPA_FEATURE_DISABLED;
2369 			} else {
2370 				return (spa_vdev_err(rvd,
2371 				    VDEV_AUX_CORRUPT_DATA, EIO));
2372 			}
2373 		}
2374 	}
2375 
2376 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2377 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2378 		    &spa->spa_feat_enabled_txg_obj) != 0)
2379 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2380 	}
2381 
2382 	spa->spa_is_initializing = B_TRUE;
2383 	error = dsl_pool_open(spa->spa_dsl_pool);
2384 	spa->spa_is_initializing = B_FALSE;
2385 	if (error != 0)
2386 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2387 
2388 	if (!mosconfig) {
2389 		uint64_t hostid;
2390 		nvlist_t *policy = NULL, *nvconfig;
2391 
2392 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2393 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2394 
2395 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2396 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2397 			char *hostname;
2398 			unsigned long myhostid = 0;
2399 
2400 			VERIFY(nvlist_lookup_string(nvconfig,
2401 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2402 
2403 #ifdef	_KERNEL
2404 			myhostid = zone_get_hostid(NULL);
2405 #else	/* _KERNEL */
2406 			/*
2407 			 * We're emulating the system's hostid in userland, so
2408 			 * we can't use zone_get_hostid().
2409 			 */
2410 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2411 #endif	/* _KERNEL */
2412 			if (hostid != 0 && myhostid != 0 &&
2413 			    hostid != myhostid) {
2414 				nvlist_free(nvconfig);
2415 				cmn_err(CE_WARN, "pool '%s' could not be "
2416 				    "loaded as it was last accessed by "
2417 				    "another system (host: %s hostid: 0x%lx). "
2418 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2419 				    spa_name(spa), hostname,
2420 				    (unsigned long)hostid);
2421 				return (SET_ERROR(EBADF));
2422 			}
2423 		}
2424 		if (nvlist_lookup_nvlist(spa->spa_config,
2425 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2426 			VERIFY(nvlist_add_nvlist(nvconfig,
2427 			    ZPOOL_REWIND_POLICY, policy) == 0);
2428 
2429 		spa_config_set(spa, nvconfig);
2430 		spa_unload(spa);
2431 		spa_deactivate(spa);
2432 		spa_activate(spa, orig_mode);
2433 
2434 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2435 	}
2436 
2437 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2438 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2440 	if (error != 0)
2441 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442 
2443 	/*
2444 	 * Load the bit that tells us to use the new accounting function
2445 	 * (raid-z deflation).  If we have an older pool, this will not
2446 	 * be present.
2447 	 */
2448 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2449 	if (error != 0 && error != ENOENT)
2450 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2451 
2452 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2453 	    &spa->spa_creation_version);
2454 	if (error != 0 && error != ENOENT)
2455 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2456 
2457 	/*
2458 	 * Load the persistent error log.  If we have an older pool, this will
2459 	 * not be present.
2460 	 */
2461 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2462 	if (error != 0 && error != ENOENT)
2463 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464 
2465 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2466 	    &spa->spa_errlog_scrub);
2467 	if (error != 0 && error != ENOENT)
2468 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469 
2470 	/*
2471 	 * Load the history object.  If we have an older pool, this
2472 	 * will not be present.
2473 	 */
2474 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2475 	if (error != 0 && error != ENOENT)
2476 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2477 
2478 	/*
2479 	 * If we're assembling the pool from the split-off vdevs of
2480 	 * an existing pool, we don't want to attach the spares & cache
2481 	 * devices.
2482 	 */
2483 
2484 	/*
2485 	 * Load any hot spares for this pool.
2486 	 */
2487 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2488 	if (error != 0 && error != ENOENT)
2489 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2491 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2492 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2493 		    &spa->spa_spares.sav_config) != 0)
2494 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2495 
2496 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2497 		spa_load_spares(spa);
2498 		spa_config_exit(spa, SCL_ALL, FTAG);
2499 	} else if (error == 0) {
2500 		spa->spa_spares.sav_sync = B_TRUE;
2501 	}
2502 
2503 	/*
2504 	 * Load any level 2 ARC devices for this pool.
2505 	 */
2506 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2507 	    &spa->spa_l2cache.sav_object);
2508 	if (error != 0 && error != ENOENT)
2509 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2510 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2511 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2512 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2513 		    &spa->spa_l2cache.sav_config) != 0)
2514 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515 
2516 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2517 		spa_load_l2cache(spa);
2518 		spa_config_exit(spa, SCL_ALL, FTAG);
2519 	} else if (error == 0) {
2520 		spa->spa_l2cache.sav_sync = B_TRUE;
2521 	}
2522 
2523 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2524 
2525 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2526 	if (error && error != ENOENT)
2527 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528 
2529 	if (error == 0) {
2530 		uint64_t autoreplace;
2531 
2532 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2533 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2534 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2535 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2536 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2537 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2538 		    &spa->spa_dedup_ditto);
2539 
2540 		spa->spa_autoreplace = (autoreplace != 0);
2541 	}
2542 
2543 	/*
2544 	 * If the 'autoreplace' property is set, then post a resource notifying
2545 	 * the ZFS DE that it should not issue any faults for unopenable
2546 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2547 	 * unopenable vdevs so that the normal autoreplace handler can take
2548 	 * over.
2549 	 */
2550 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2551 		spa_check_removed(spa->spa_root_vdev);
2552 		/*
2553 		 * For the import case, this is done in spa_import(), because
2554 		 * at this point we're using the spare definitions from
2555 		 * the MOS config, not necessarily from the userland config.
2556 		 */
2557 		if (state != SPA_LOAD_IMPORT) {
2558 			spa_aux_check_removed(&spa->spa_spares);
2559 			spa_aux_check_removed(&spa->spa_l2cache);
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * Load the vdev state for all toplevel vdevs.
2565 	 */
2566 	vdev_load(rvd);
2567 
2568 	/*
2569 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2570 	 */
2571 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2572 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2573 	spa_config_exit(spa, SCL_ALL, FTAG);
2574 
2575 	/*
2576 	 * Load the DDTs (dedup tables).
2577 	 */
2578 	error = ddt_load(spa);
2579 	if (error != 0)
2580 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2581 
2582 	spa_update_dspace(spa);
2583 
2584 	/*
2585 	 * Validate the config, using the MOS config to fill in any
2586 	 * information which might be missing.  If we fail to validate
2587 	 * the config then declare the pool unfit for use. If we're
2588 	 * assembling a pool from a split, the log is not transferred
2589 	 * over.
2590 	 */
2591 	if (type != SPA_IMPORT_ASSEMBLE) {
2592 		nvlist_t *nvconfig;
2593 
2594 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2595 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596 
2597 		if (!spa_config_valid(spa, nvconfig)) {
2598 			nvlist_free(nvconfig);
2599 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2600 			    ENXIO));
2601 		}
2602 		nvlist_free(nvconfig);
2603 
2604 		/*
2605 		 * Now that we've validated the config, check the state of the
2606 		 * root vdev.  If it can't be opened, it indicates one or
2607 		 * more toplevel vdevs are faulted.
2608 		 */
2609 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2610 			return (SET_ERROR(ENXIO));
2611 
2612 		if (spa_check_logs(spa)) {
2613 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2614 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2615 		}
2616 	}
2617 
2618 	if (missing_feat_write) {
2619 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2620 
2621 		/*
2622 		 * At this point, we know that we can open the pool in
2623 		 * read-only mode but not read-write mode. We now have enough
2624 		 * information and can return to userland.
2625 		 */
2626 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2627 	}
2628 
2629 	/*
2630 	 * We've successfully opened the pool, verify that we're ready
2631 	 * to start pushing transactions.
2632 	 */
2633 	if (state != SPA_LOAD_TRYIMPORT) {
2634 		if (error = spa_load_verify(spa))
2635 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2636 			    error));
2637 	}
2638 
2639 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2640 	    spa->spa_load_max_txg == UINT64_MAX)) {
2641 		dmu_tx_t *tx;
2642 		int need_update = B_FALSE;
2643 
2644 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2645 
2646 		/*
2647 		 * Claim log blocks that haven't been committed yet.
2648 		 * This must all happen in a single txg.
2649 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2650 		 * invoked from zil_claim_log_block()'s i/o done callback.
2651 		 * Price of rollback is that we abandon the log.
2652 		 */
2653 		spa->spa_claiming = B_TRUE;
2654 
2655 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2656 		    spa_first_txg(spa));
2657 		(void) dmu_objset_find(spa_name(spa),
2658 		    zil_claim, tx, DS_FIND_CHILDREN);
2659 		dmu_tx_commit(tx);
2660 
2661 		spa->spa_claiming = B_FALSE;
2662 
2663 		spa_set_log_state(spa, SPA_LOG_GOOD);
2664 		spa->spa_sync_on = B_TRUE;
2665 		txg_sync_start(spa->spa_dsl_pool);
2666 
2667 		/*
2668 		 * Wait for all claims to sync.  We sync up to the highest
2669 		 * claimed log block birth time so that claimed log blocks
2670 		 * don't appear to be from the future.  spa_claim_max_txg
2671 		 * will have been set for us by either zil_check_log_chain()
2672 		 * (invoked from spa_check_logs()) or zil_claim() above.
2673 		 */
2674 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2675 
2676 		/*
2677 		 * If the config cache is stale, or we have uninitialized
2678 		 * metaslabs (see spa_vdev_add()), then update the config.
2679 		 *
2680 		 * If this is a verbatim import, trust the current
2681 		 * in-core spa_config and update the disk labels.
2682 		 */
2683 		if (config_cache_txg != spa->spa_config_txg ||
2684 		    state == SPA_LOAD_IMPORT ||
2685 		    state == SPA_LOAD_RECOVER ||
2686 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2687 			need_update = B_TRUE;
2688 
2689 		for (int c = 0; c < rvd->vdev_children; c++)
2690 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2691 				need_update = B_TRUE;
2692 
2693 		/*
2694 		 * Update the config cache asychronously in case we're the
2695 		 * root pool, in which case the config cache isn't writable yet.
2696 		 */
2697 		if (need_update)
2698 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2699 
2700 		/*
2701 		 * Check all DTLs to see if anything needs resilvering.
2702 		 */
2703 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2704 		    vdev_resilver_needed(rvd, NULL, NULL))
2705 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2706 
2707 		/*
2708 		 * Log the fact that we booted up (so that we can detect if
2709 		 * we rebooted in the middle of an operation).
2710 		 */
2711 		spa_history_log_version(spa, "open");
2712 
2713 		/*
2714 		 * Delete any inconsistent datasets.
2715 		 */
2716 		(void) dmu_objset_find(spa_name(spa),
2717 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2718 
2719 		/*
2720 		 * Clean up any stale temporary dataset userrefs.
2721 		 */
2722 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2723 	}
2724 
2725 	return (0);
2726 }
2727 
2728 static int
2729 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2730 {
2731 	int mode = spa->spa_mode;
2732 
2733 	spa_unload(spa);
2734 	spa_deactivate(spa);
2735 
2736 	spa->spa_load_max_txg--;
2737 
2738 	spa_activate(spa, mode);
2739 	spa_async_suspend(spa);
2740 
2741 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2742 }
2743 
2744 /*
2745  * If spa_load() fails this function will try loading prior txg's. If
2746  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2747  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2748  * function will not rewind the pool and will return the same error as
2749  * spa_load().
2750  */
2751 static int
2752 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2753     uint64_t max_request, int rewind_flags)
2754 {
2755 	nvlist_t *loadinfo = NULL;
2756 	nvlist_t *config = NULL;
2757 	int load_error, rewind_error;
2758 	uint64_t safe_rewind_txg;
2759 	uint64_t min_txg;
2760 
2761 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2762 		spa->spa_load_max_txg = spa->spa_load_txg;
2763 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2764 	} else {
2765 		spa->spa_load_max_txg = max_request;
2766 	}
2767 
2768 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2769 	    mosconfig);
2770 	if (load_error == 0)
2771 		return (0);
2772 
2773 	if (spa->spa_root_vdev != NULL)
2774 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2775 
2776 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2777 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2778 
2779 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2780 		nvlist_free(config);
2781 		return (load_error);
2782 	}
2783 
2784 	if (state == SPA_LOAD_RECOVER) {
2785 		/* Price of rolling back is discarding txgs, including log */
2786 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2787 	} else {
2788 		/*
2789 		 * If we aren't rolling back save the load info from our first
2790 		 * import attempt so that we can restore it after attempting
2791 		 * to rewind.
2792 		 */
2793 		loadinfo = spa->spa_load_info;
2794 		spa->spa_load_info = fnvlist_alloc();
2795 	}
2796 
2797 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2798 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2799 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2800 	    TXG_INITIAL : safe_rewind_txg;
2801 
2802 	/*
2803 	 * Continue as long as we're finding errors, we're still within
2804 	 * the acceptable rewind range, and we're still finding uberblocks
2805 	 */
2806 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2807 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2808 		if (spa->spa_load_max_txg < safe_rewind_txg)
2809 			spa->spa_extreme_rewind = B_TRUE;
2810 		rewind_error = spa_load_retry(spa, state, mosconfig);
2811 	}
2812 
2813 	spa->spa_extreme_rewind = B_FALSE;
2814 	spa->spa_load_max_txg = UINT64_MAX;
2815 
2816 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2817 		spa_config_set(spa, config);
2818 
2819 	if (state == SPA_LOAD_RECOVER) {
2820 		ASSERT3P(loadinfo, ==, NULL);
2821 		return (rewind_error);
2822 	} else {
2823 		/* Store the rewind info as part of the initial load info */
2824 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2825 		    spa->spa_load_info);
2826 
2827 		/* Restore the initial load info */
2828 		fnvlist_free(spa->spa_load_info);
2829 		spa->spa_load_info = loadinfo;
2830 
2831 		return (load_error);
2832 	}
2833 }
2834 
2835 /*
2836  * Pool Open/Import
2837  *
2838  * The import case is identical to an open except that the configuration is sent
2839  * down from userland, instead of grabbed from the configuration cache.  For the
2840  * case of an open, the pool configuration will exist in the
2841  * POOL_STATE_UNINITIALIZED state.
2842  *
2843  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2844  * the same time open the pool, without having to keep around the spa_t in some
2845  * ambiguous state.
2846  */
2847 static int
2848 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2849     nvlist_t **config)
2850 {
2851 	spa_t *spa;
2852 	spa_load_state_t state = SPA_LOAD_OPEN;
2853 	int error;
2854 	int locked = B_FALSE;
2855 
2856 	*spapp = NULL;
2857 
2858 	/*
2859 	 * As disgusting as this is, we need to support recursive calls to this
2860 	 * function because dsl_dir_open() is called during spa_load(), and ends
2861 	 * up calling spa_open() again.  The real fix is to figure out how to
2862 	 * avoid dsl_dir_open() calling this in the first place.
2863 	 */
2864 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2865 		mutex_enter(&spa_namespace_lock);
2866 		locked = B_TRUE;
2867 	}
2868 
2869 	if ((spa = spa_lookup(pool)) == NULL) {
2870 		if (locked)
2871 			mutex_exit(&spa_namespace_lock);
2872 		return (SET_ERROR(ENOENT));
2873 	}
2874 
2875 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2876 		zpool_rewind_policy_t policy;
2877 
2878 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2879 		    &policy);
2880 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2881 			state = SPA_LOAD_RECOVER;
2882 
2883 		spa_activate(spa, spa_mode_global);
2884 
2885 		if (state != SPA_LOAD_RECOVER)
2886 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2887 
2888 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2889 		    policy.zrp_request);
2890 
2891 		if (error == EBADF) {
2892 			/*
2893 			 * If vdev_validate() returns failure (indicated by
2894 			 * EBADF), it indicates that one of the vdevs indicates
2895 			 * that the pool has been exported or destroyed.  If
2896 			 * this is the case, the config cache is out of sync and
2897 			 * we should remove the pool from the namespace.
2898 			 */
2899 			spa_unload(spa);
2900 			spa_deactivate(spa);
2901 			spa_config_sync(spa, B_TRUE, B_TRUE);
2902 			spa_remove(spa);
2903 			if (locked)
2904 				mutex_exit(&spa_namespace_lock);
2905 			return (SET_ERROR(ENOENT));
2906 		}
2907 
2908 		if (error) {
2909 			/*
2910 			 * We can't open the pool, but we still have useful
2911 			 * information: the state of each vdev after the
2912 			 * attempted vdev_open().  Return this to the user.
2913 			 */
2914 			if (config != NULL && spa->spa_config) {
2915 				VERIFY(nvlist_dup(spa->spa_config, config,
2916 				    KM_SLEEP) == 0);
2917 				VERIFY(nvlist_add_nvlist(*config,
2918 				    ZPOOL_CONFIG_LOAD_INFO,
2919 				    spa->spa_load_info) == 0);
2920 			}
2921 			spa_unload(spa);
2922 			spa_deactivate(spa);
2923 			spa->spa_last_open_failed = error;
2924 			if (locked)
2925 				mutex_exit(&spa_namespace_lock);
2926 			*spapp = NULL;
2927 			return (error);
2928 		}
2929 	}
2930 
2931 	spa_open_ref(spa, tag);
2932 
2933 	if (config != NULL)
2934 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2935 
2936 	/*
2937 	 * If we've recovered the pool, pass back any information we
2938 	 * gathered while doing the load.
2939 	 */
2940 	if (state == SPA_LOAD_RECOVER) {
2941 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2942 		    spa->spa_load_info) == 0);
2943 	}
2944 
2945 	if (locked) {
2946 		spa->spa_last_open_failed = 0;
2947 		spa->spa_last_ubsync_txg = 0;
2948 		spa->spa_load_txg = 0;
2949 		mutex_exit(&spa_namespace_lock);
2950 	}
2951 
2952 	*spapp = spa;
2953 
2954 	return (0);
2955 }
2956 
2957 int
2958 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2959     nvlist_t **config)
2960 {
2961 	return (spa_open_common(name, spapp, tag, policy, config));
2962 }
2963 
2964 int
2965 spa_open(const char *name, spa_t **spapp, void *tag)
2966 {
2967 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2968 }
2969 
2970 /*
2971  * Lookup the given spa_t, incrementing the inject count in the process,
2972  * preventing it from being exported or destroyed.
2973  */
2974 spa_t *
2975 spa_inject_addref(char *name)
2976 {
2977 	spa_t *spa;
2978 
2979 	mutex_enter(&spa_namespace_lock);
2980 	if ((spa = spa_lookup(name)) == NULL) {
2981 		mutex_exit(&spa_namespace_lock);
2982 		return (NULL);
2983 	}
2984 	spa->spa_inject_ref++;
2985 	mutex_exit(&spa_namespace_lock);
2986 
2987 	return (spa);
2988 }
2989 
2990 void
2991 spa_inject_delref(spa_t *spa)
2992 {
2993 	mutex_enter(&spa_namespace_lock);
2994 	spa->spa_inject_ref--;
2995 	mutex_exit(&spa_namespace_lock);
2996 }
2997 
2998 /*
2999  * Add spares device information to the nvlist.
3000  */
3001 static void
3002 spa_add_spares(spa_t *spa, nvlist_t *config)
3003 {
3004 	nvlist_t **spares;
3005 	uint_t i, nspares;
3006 	nvlist_t *nvroot;
3007 	uint64_t guid;
3008 	vdev_stat_t *vs;
3009 	uint_t vsc;
3010 	uint64_t pool;
3011 
3012 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3013 
3014 	if (spa->spa_spares.sav_count == 0)
3015 		return;
3016 
3017 	VERIFY(nvlist_lookup_nvlist(config,
3018 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3019 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3020 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3021 	if (nspares != 0) {
3022 		VERIFY(nvlist_add_nvlist_array(nvroot,
3023 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3024 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3025 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3026 
3027 		/*
3028 		 * Go through and find any spares which have since been
3029 		 * repurposed as an active spare.  If this is the case, update
3030 		 * their status appropriately.
3031 		 */
3032 		for (i = 0; i < nspares; i++) {
3033 			VERIFY(nvlist_lookup_uint64(spares[i],
3034 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3035 			if (spa_spare_exists(guid, &pool, NULL) &&
3036 			    pool != 0ULL) {
3037 				VERIFY(nvlist_lookup_uint64_array(
3038 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3039 				    (uint64_t **)&vs, &vsc) == 0);
3040 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3041 				vs->vs_aux = VDEV_AUX_SPARED;
3042 			}
3043 		}
3044 	}
3045 }
3046 
3047 /*
3048  * Add l2cache device information to the nvlist, including vdev stats.
3049  */
3050 static void
3051 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3052 {
3053 	nvlist_t **l2cache;
3054 	uint_t i, j, nl2cache;
3055 	nvlist_t *nvroot;
3056 	uint64_t guid;
3057 	vdev_t *vd;
3058 	vdev_stat_t *vs;
3059 	uint_t vsc;
3060 
3061 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3062 
3063 	if (spa->spa_l2cache.sav_count == 0)
3064 		return;
3065 
3066 	VERIFY(nvlist_lookup_nvlist(config,
3067 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3068 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3069 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3070 	if (nl2cache != 0) {
3071 		VERIFY(nvlist_add_nvlist_array(nvroot,
3072 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3073 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3074 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3075 
3076 		/*
3077 		 * Update level 2 cache device stats.
3078 		 */
3079 
3080 		for (i = 0; i < nl2cache; i++) {
3081 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3082 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3083 
3084 			vd = NULL;
3085 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3086 				if (guid ==
3087 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3088 					vd = spa->spa_l2cache.sav_vdevs[j];
3089 					break;
3090 				}
3091 			}
3092 			ASSERT(vd != NULL);
3093 
3094 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3095 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3096 			    == 0);
3097 			vdev_get_stats(vd, vs);
3098 		}
3099 	}
3100 }
3101 
3102 static void
3103 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3104 {
3105 	nvlist_t *features;
3106 	zap_cursor_t zc;
3107 	zap_attribute_t za;
3108 
3109 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3110 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3111 
3112 	if (spa->spa_feat_for_read_obj != 0) {
3113 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3114 		    spa->spa_feat_for_read_obj);
3115 		    zap_cursor_retrieve(&zc, &za) == 0;
3116 		    zap_cursor_advance(&zc)) {
3117 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3118 			    za.za_num_integers == 1);
3119 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3120 			    za.za_first_integer));
3121 		}
3122 		zap_cursor_fini(&zc);
3123 	}
3124 
3125 	if (spa->spa_feat_for_write_obj != 0) {
3126 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3127 		    spa->spa_feat_for_write_obj);
3128 		    zap_cursor_retrieve(&zc, &za) == 0;
3129 		    zap_cursor_advance(&zc)) {
3130 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3131 			    za.za_num_integers == 1);
3132 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3133 			    za.za_first_integer));
3134 		}
3135 		zap_cursor_fini(&zc);
3136 	}
3137 
3138 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3139 	    features) == 0);
3140 	nvlist_free(features);
3141 }
3142 
3143 int
3144 spa_get_stats(const char *name, nvlist_t **config,
3145     char *altroot, size_t buflen)
3146 {
3147 	int error;
3148 	spa_t *spa;
3149 
3150 	*config = NULL;
3151 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3152 
3153 	if (spa != NULL) {
3154 		/*
3155 		 * This still leaves a window of inconsistency where the spares
3156 		 * or l2cache devices could change and the config would be
3157 		 * self-inconsistent.
3158 		 */
3159 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3160 
3161 		if (*config != NULL) {
3162 			uint64_t loadtimes[2];
3163 
3164 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3165 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3166 			VERIFY(nvlist_add_uint64_array(*config,
3167 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3168 
3169 			VERIFY(nvlist_add_uint64(*config,
3170 			    ZPOOL_CONFIG_ERRCOUNT,
3171 			    spa_get_errlog_size(spa)) == 0);
3172 
3173 			if (spa_suspended(spa))
3174 				VERIFY(nvlist_add_uint64(*config,
3175 				    ZPOOL_CONFIG_SUSPENDED,
3176 				    spa->spa_failmode) == 0);
3177 
3178 			spa_add_spares(spa, *config);
3179 			spa_add_l2cache(spa, *config);
3180 			spa_add_feature_stats(spa, *config);
3181 		}
3182 	}
3183 
3184 	/*
3185 	 * We want to get the alternate root even for faulted pools, so we cheat
3186 	 * and call spa_lookup() directly.
3187 	 */
3188 	if (altroot) {
3189 		if (spa == NULL) {
3190 			mutex_enter(&spa_namespace_lock);
3191 			spa = spa_lookup(name);
3192 			if (spa)
3193 				spa_altroot(spa, altroot, buflen);
3194 			else
3195 				altroot[0] = '\0';
3196 			spa = NULL;
3197 			mutex_exit(&spa_namespace_lock);
3198 		} else {
3199 			spa_altroot(spa, altroot, buflen);
3200 		}
3201 	}
3202 
3203 	if (spa != NULL) {
3204 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3205 		spa_close(spa, FTAG);
3206 	}
3207 
3208 	return (error);
3209 }
3210 
3211 /*
3212  * Validate that the auxiliary device array is well formed.  We must have an
3213  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3214  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3215  * specified, as long as they are well-formed.
3216  */
3217 static int
3218 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3219     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3220     vdev_labeltype_t label)
3221 {
3222 	nvlist_t **dev;
3223 	uint_t i, ndev;
3224 	vdev_t *vd;
3225 	int error;
3226 
3227 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3228 
3229 	/*
3230 	 * It's acceptable to have no devs specified.
3231 	 */
3232 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3233 		return (0);
3234 
3235 	if (ndev == 0)
3236 		return (SET_ERROR(EINVAL));
3237 
3238 	/*
3239 	 * Make sure the pool is formatted with a version that supports this
3240 	 * device type.
3241 	 */
3242 	if (spa_version(spa) < version)
3243 		return (SET_ERROR(ENOTSUP));
3244 
3245 	/*
3246 	 * Set the pending device list so we correctly handle device in-use
3247 	 * checking.
3248 	 */
3249 	sav->sav_pending = dev;
3250 	sav->sav_npending = ndev;
3251 
3252 	for (i = 0; i < ndev; i++) {
3253 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3254 		    mode)) != 0)
3255 			goto out;
3256 
3257 		if (!vd->vdev_ops->vdev_op_leaf) {
3258 			vdev_free(vd);
3259 			error = SET_ERROR(EINVAL);
3260 			goto out;
3261 		}
3262 
3263 		/*
3264 		 * The L2ARC currently only supports disk devices in
3265 		 * kernel context.  For user-level testing, we allow it.
3266 		 */
3267 #ifdef _KERNEL
3268 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3269 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3270 			error = SET_ERROR(ENOTBLK);
3271 			vdev_free(vd);
3272 			goto out;
3273 		}
3274 #endif
3275 		vd->vdev_top = vd;
3276 
3277 		if ((error = vdev_open(vd)) == 0 &&
3278 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3279 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3280 			    vd->vdev_guid) == 0);
3281 		}
3282 
3283 		vdev_free(vd);
3284 
3285 		if (error &&
3286 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3287 			goto out;
3288 		else
3289 			error = 0;
3290 	}
3291 
3292 out:
3293 	sav->sav_pending = NULL;
3294 	sav->sav_npending = 0;
3295 	return (error);
3296 }
3297 
3298 static int
3299 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3300 {
3301 	int error;
3302 
3303 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3304 
3305 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3306 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3307 	    VDEV_LABEL_SPARE)) != 0) {
3308 		return (error);
3309 	}
3310 
3311 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3312 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3313 	    VDEV_LABEL_L2CACHE));
3314 }
3315 
3316 static void
3317 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3318     const char *config)
3319 {
3320 	int i;
3321 
3322 	if (sav->sav_config != NULL) {
3323 		nvlist_t **olddevs;
3324 		uint_t oldndevs;
3325 		nvlist_t **newdevs;
3326 
3327 		/*
3328 		 * Generate new dev list by concatentating with the
3329 		 * current dev list.
3330 		 */
3331 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3332 		    &olddevs, &oldndevs) == 0);
3333 
3334 		newdevs = kmem_alloc(sizeof (void *) *
3335 		    (ndevs + oldndevs), KM_SLEEP);
3336 		for (i = 0; i < oldndevs; i++)
3337 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3338 			    KM_SLEEP) == 0);
3339 		for (i = 0; i < ndevs; i++)
3340 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3341 			    KM_SLEEP) == 0);
3342 
3343 		VERIFY(nvlist_remove(sav->sav_config, config,
3344 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3345 
3346 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3347 		    config, newdevs, ndevs + oldndevs) == 0);
3348 		for (i = 0; i < oldndevs + ndevs; i++)
3349 			nvlist_free(newdevs[i]);
3350 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3351 	} else {
3352 		/*
3353 		 * Generate a new dev list.
3354 		 */
3355 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3356 		    KM_SLEEP) == 0);
3357 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3358 		    devs, ndevs) == 0);
3359 	}
3360 }
3361 
3362 /*
3363  * Stop and drop level 2 ARC devices
3364  */
3365 void
3366 spa_l2cache_drop(spa_t *spa)
3367 {
3368 	vdev_t *vd;
3369 	int i;
3370 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3371 
3372 	for (i = 0; i < sav->sav_count; i++) {
3373 		uint64_t pool;
3374 
3375 		vd = sav->sav_vdevs[i];
3376 		ASSERT(vd != NULL);
3377 
3378 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3379 		    pool != 0ULL && l2arc_vdev_present(vd))
3380 			l2arc_remove_vdev(vd);
3381 	}
3382 }
3383 
3384 /*
3385  * Pool Creation
3386  */
3387 int
3388 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3389     nvlist_t *zplprops)
3390 {
3391 	spa_t *spa;
3392 	char *altroot = NULL;
3393 	vdev_t *rvd;
3394 	dsl_pool_t *dp;
3395 	dmu_tx_t *tx;
3396 	int error = 0;
3397 	uint64_t txg = TXG_INITIAL;
3398 	nvlist_t **spares, **l2cache;
3399 	uint_t nspares, nl2cache;
3400 	uint64_t version, obj;
3401 	boolean_t has_features;
3402 
3403 	/*
3404 	 * If this pool already exists, return failure.
3405 	 */
3406 	mutex_enter(&spa_namespace_lock);
3407 	if (spa_lookup(pool) != NULL) {
3408 		mutex_exit(&spa_namespace_lock);
3409 		return (SET_ERROR(EEXIST));
3410 	}
3411 
3412 	/*
3413 	 * Allocate a new spa_t structure.
3414 	 */
3415 	(void) nvlist_lookup_string(props,
3416 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3417 	spa = spa_add(pool, NULL, altroot);
3418 	spa_activate(spa, spa_mode_global);
3419 
3420 	if (props && (error = spa_prop_validate(spa, props))) {
3421 		spa_deactivate(spa);
3422 		spa_remove(spa);
3423 		mutex_exit(&spa_namespace_lock);
3424 		return (error);
3425 	}
3426 
3427 	has_features = B_FALSE;
3428 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3429 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3430 		if (zpool_prop_feature(nvpair_name(elem)))
3431 			has_features = B_TRUE;
3432 	}
3433 
3434 	if (has_features || nvlist_lookup_uint64(props,
3435 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3436 		version = SPA_VERSION;
3437 	}
3438 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3439 
3440 	spa->spa_first_txg = txg;
3441 	spa->spa_uberblock.ub_txg = txg - 1;
3442 	spa->spa_uberblock.ub_version = version;
3443 	spa->spa_ubsync = spa->spa_uberblock;
3444 
3445 	/*
3446 	 * Create "The Godfather" zio to hold all async IOs
3447 	 */
3448 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3449 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3450 
3451 	/*
3452 	 * Create the root vdev.
3453 	 */
3454 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3455 
3456 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3457 
3458 	ASSERT(error != 0 || rvd != NULL);
3459 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3460 
3461 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3462 		error = SET_ERROR(EINVAL);
3463 
3464 	if (error == 0 &&
3465 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3466 	    (error = spa_validate_aux(spa, nvroot, txg,
3467 	    VDEV_ALLOC_ADD)) == 0) {
3468 		for (int c = 0; c < rvd->vdev_children; c++) {
3469 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3470 			vdev_expand(rvd->vdev_child[c], txg);
3471 		}
3472 	}
3473 
3474 	spa_config_exit(spa, SCL_ALL, FTAG);
3475 
3476 	if (error != 0) {
3477 		spa_unload(spa);
3478 		spa_deactivate(spa);
3479 		spa_remove(spa);
3480 		mutex_exit(&spa_namespace_lock);
3481 		return (error);
3482 	}
3483 
3484 	/*
3485 	 * Get the list of spares, if specified.
3486 	 */
3487 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3488 	    &spares, &nspares) == 0) {
3489 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3490 		    KM_SLEEP) == 0);
3491 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3492 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3493 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3494 		spa_load_spares(spa);
3495 		spa_config_exit(spa, SCL_ALL, FTAG);
3496 		spa->spa_spares.sav_sync = B_TRUE;
3497 	}
3498 
3499 	/*
3500 	 * Get the list of level 2 cache devices, if specified.
3501 	 */
3502 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3503 	    &l2cache, &nl2cache) == 0) {
3504 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3505 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3506 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3507 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3508 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3509 		spa_load_l2cache(spa);
3510 		spa_config_exit(spa, SCL_ALL, FTAG);
3511 		spa->spa_l2cache.sav_sync = B_TRUE;
3512 	}
3513 
3514 	spa->spa_is_initializing = B_TRUE;
3515 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3516 	spa->spa_meta_objset = dp->dp_meta_objset;
3517 	spa->spa_is_initializing = B_FALSE;
3518 
3519 	/*
3520 	 * Create DDTs (dedup tables).
3521 	 */
3522 	ddt_create(spa);
3523 
3524 	spa_update_dspace(spa);
3525 
3526 	tx = dmu_tx_create_assigned(dp, txg);
3527 
3528 	/*
3529 	 * Create the pool config object.
3530 	 */
3531 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3532 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3533 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3534 
3535 	if (zap_add(spa->spa_meta_objset,
3536 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3537 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3538 		cmn_err(CE_PANIC, "failed to add pool config");
3539 	}
3540 
3541 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3542 		spa_feature_create_zap_objects(spa, tx);
3543 
3544 	if (zap_add(spa->spa_meta_objset,
3545 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3546 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3547 		cmn_err(CE_PANIC, "failed to add pool version");
3548 	}
3549 
3550 	/* Newly created pools with the right version are always deflated. */
3551 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3552 		spa->spa_deflate = TRUE;
3553 		if (zap_add(spa->spa_meta_objset,
3554 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3555 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3556 			cmn_err(CE_PANIC, "failed to add deflate");
3557 		}
3558 	}
3559 
3560 	/*
3561 	 * Create the deferred-free bpobj.  Turn off compression
3562 	 * because sync-to-convergence takes longer if the blocksize
3563 	 * keeps changing.
3564 	 */
3565 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3566 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3567 	    ZIO_COMPRESS_OFF, tx);
3568 	if (zap_add(spa->spa_meta_objset,
3569 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3570 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3571 		cmn_err(CE_PANIC, "failed to add bpobj");
3572 	}
3573 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3574 	    spa->spa_meta_objset, obj));
3575 
3576 	/*
3577 	 * Create the pool's history object.
3578 	 */
3579 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3580 		spa_history_create_obj(spa, tx);
3581 
3582 	/*
3583 	 * Set pool properties.
3584 	 */
3585 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3586 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3587 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3588 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3589 
3590 	if (props != NULL) {
3591 		spa_configfile_set(spa, props, B_FALSE);
3592 		spa_sync_props(props, tx);
3593 	}
3594 
3595 	dmu_tx_commit(tx);
3596 
3597 	spa->spa_sync_on = B_TRUE;
3598 	txg_sync_start(spa->spa_dsl_pool);
3599 
3600 	/*
3601 	 * We explicitly wait for the first transaction to complete so that our
3602 	 * bean counters are appropriately updated.
3603 	 */
3604 	txg_wait_synced(spa->spa_dsl_pool, txg);
3605 
3606 	spa_config_sync(spa, B_FALSE, B_TRUE);
3607 
3608 	spa_history_log_version(spa, "create");
3609 
3610 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3611 
3612 	mutex_exit(&spa_namespace_lock);
3613 
3614 	return (0);
3615 }
3616 
3617 #ifdef _KERNEL
3618 /*
3619  * Get the root pool information from the root disk, then import the root pool
3620  * during the system boot up time.
3621  */
3622 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3623 
3624 static nvlist_t *
3625 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3626 {
3627 	nvlist_t *config;
3628 	nvlist_t *nvtop, *nvroot;
3629 	uint64_t pgid;
3630 
3631 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3632 		return (NULL);
3633 
3634 	/*
3635 	 * Add this top-level vdev to the child array.
3636 	 */
3637 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3638 	    &nvtop) == 0);
3639 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3640 	    &pgid) == 0);
3641 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3642 
3643 	/*
3644 	 * Put this pool's top-level vdevs into a root vdev.
3645 	 */
3646 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3647 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3648 	    VDEV_TYPE_ROOT) == 0);
3649 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3650 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3651 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3652 	    &nvtop, 1) == 0);
3653 
3654 	/*
3655 	 * Replace the existing vdev_tree with the new root vdev in
3656 	 * this pool's configuration (remove the old, add the new).
3657 	 */
3658 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3659 	nvlist_free(nvroot);
3660 	return (config);
3661 }
3662 
3663 /*
3664  * Walk the vdev tree and see if we can find a device with "better"
3665  * configuration. A configuration is "better" if the label on that
3666  * device has a more recent txg.
3667  */
3668 static void
3669 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3670 {
3671 	for (int c = 0; c < vd->vdev_children; c++)
3672 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3673 
3674 	if (vd->vdev_ops->vdev_op_leaf) {
3675 		nvlist_t *label;
3676 		uint64_t label_txg;
3677 
3678 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3679 		    &label) != 0)
3680 			return;
3681 
3682 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3683 		    &label_txg) == 0);
3684 
3685 		/*
3686 		 * Do we have a better boot device?
3687 		 */
3688 		if (label_txg > *txg) {
3689 			*txg = label_txg;
3690 			*avd = vd;
3691 		}
3692 		nvlist_free(label);
3693 	}
3694 }
3695 
3696 /*
3697  * Import a root pool.
3698  *
3699  * For x86. devpath_list will consist of devid and/or physpath name of
3700  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3701  * The GRUB "findroot" command will return the vdev we should boot.
3702  *
3703  * For Sparc, devpath_list consists the physpath name of the booting device
3704  * no matter the rootpool is a single device pool or a mirrored pool.
3705  * e.g.
3706  *	"/pci@1f,0/ide@d/disk@0,0:a"
3707  */
3708 int
3709 spa_import_rootpool(char *devpath, char *devid)
3710 {
3711 	spa_t *spa;
3712 	vdev_t *rvd, *bvd, *avd = NULL;
3713 	nvlist_t *config, *nvtop;
3714 	uint64_t guid, txg;
3715 	char *pname;
3716 	int error;
3717 
3718 	/*
3719 	 * Read the label from the boot device and generate a configuration.
3720 	 */
3721 	config = spa_generate_rootconf(devpath, devid, &guid);
3722 #if defined(_OBP) && defined(_KERNEL)
3723 	if (config == NULL) {
3724 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3725 			/* iscsi boot */
3726 			get_iscsi_bootpath_phy(devpath);
3727 			config = spa_generate_rootconf(devpath, devid, &guid);
3728 		}
3729 	}
3730 #endif
3731 	if (config == NULL) {
3732 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3733 		    devpath);
3734 		return (SET_ERROR(EIO));
3735 	}
3736 
3737 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3738 	    &pname) == 0);
3739 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3740 
3741 	mutex_enter(&spa_namespace_lock);
3742 	if ((spa = spa_lookup(pname)) != NULL) {
3743 		/*
3744 		 * Remove the existing root pool from the namespace so that we
3745 		 * can replace it with the correct config we just read in.
3746 		 */
3747 		spa_remove(spa);
3748 	}
3749 
3750 	spa = spa_add(pname, config, NULL);
3751 	spa->spa_is_root = B_TRUE;
3752 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3753 
3754 	/*
3755 	 * Build up a vdev tree based on the boot device's label config.
3756 	 */
3757 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3758 	    &nvtop) == 0);
3759 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3760 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3761 	    VDEV_ALLOC_ROOTPOOL);
3762 	spa_config_exit(spa, SCL_ALL, FTAG);
3763 	if (error) {
3764 		mutex_exit(&spa_namespace_lock);
3765 		nvlist_free(config);
3766 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3767 		    pname);
3768 		return (error);
3769 	}
3770 
3771 	/*
3772 	 * Get the boot vdev.
3773 	 */
3774 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3775 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3776 		    (u_longlong_t)guid);
3777 		error = SET_ERROR(ENOENT);
3778 		goto out;
3779 	}
3780 
3781 	/*
3782 	 * Determine if there is a better boot device.
3783 	 */
3784 	avd = bvd;
3785 	spa_alt_rootvdev(rvd, &avd, &txg);
3786 	if (avd != bvd) {
3787 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3788 		    "try booting from '%s'", avd->vdev_path);
3789 		error = SET_ERROR(EINVAL);
3790 		goto out;
3791 	}
3792 
3793 	/*
3794 	 * If the boot device is part of a spare vdev then ensure that
3795 	 * we're booting off the active spare.
3796 	 */
3797 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3798 	    !bvd->vdev_isspare) {
3799 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3800 		    "try booting from '%s'",
3801 		    bvd->vdev_parent->
3802 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3803 		error = SET_ERROR(EINVAL);
3804 		goto out;
3805 	}
3806 
3807 	error = 0;
3808 out:
3809 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3810 	vdev_free(rvd);
3811 	spa_config_exit(spa, SCL_ALL, FTAG);
3812 	mutex_exit(&spa_namespace_lock);
3813 
3814 	nvlist_free(config);
3815 	return (error);
3816 }
3817 
3818 #endif
3819 
3820 /*
3821  * Import a non-root pool into the system.
3822  */
3823 int
3824 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3825 {
3826 	spa_t *spa;
3827 	char *altroot = NULL;
3828 	spa_load_state_t state = SPA_LOAD_IMPORT;
3829 	zpool_rewind_policy_t policy;
3830 	uint64_t mode = spa_mode_global;
3831 	uint64_t readonly = B_FALSE;
3832 	int error;
3833 	nvlist_t *nvroot;
3834 	nvlist_t **spares, **l2cache;
3835 	uint_t nspares, nl2cache;
3836 
3837 	/*
3838 	 * If a pool with this name exists, return failure.
3839 	 */
3840 	mutex_enter(&spa_namespace_lock);
3841 	if (spa_lookup(pool) != NULL) {
3842 		mutex_exit(&spa_namespace_lock);
3843 		return (SET_ERROR(EEXIST));
3844 	}
3845 
3846 	/*
3847 	 * Create and initialize the spa structure.
3848 	 */
3849 	(void) nvlist_lookup_string(props,
3850 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3851 	(void) nvlist_lookup_uint64(props,
3852 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3853 	if (readonly)
3854 		mode = FREAD;
3855 	spa = spa_add(pool, config, altroot);
3856 	spa->spa_import_flags = flags;
3857 
3858 	/*
3859 	 * Verbatim import - Take a pool and insert it into the namespace
3860 	 * as if it had been loaded at boot.
3861 	 */
3862 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3863 		if (props != NULL)
3864 			spa_configfile_set(spa, props, B_FALSE);
3865 
3866 		spa_config_sync(spa, B_FALSE, B_TRUE);
3867 
3868 		mutex_exit(&spa_namespace_lock);
3869 		return (0);
3870 	}
3871 
3872 	spa_activate(spa, mode);
3873 
3874 	/*
3875 	 * Don't start async tasks until we know everything is healthy.
3876 	 */
3877 	spa_async_suspend(spa);
3878 
3879 	zpool_get_rewind_policy(config, &policy);
3880 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3881 		state = SPA_LOAD_RECOVER;
3882 
3883 	/*
3884 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3885 	 * because the user-supplied config is actually the one to trust when
3886 	 * doing an import.
3887 	 */
3888 	if (state != SPA_LOAD_RECOVER)
3889 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3890 
3891 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3892 	    policy.zrp_request);
3893 
3894 	/*
3895 	 * Propagate anything learned while loading the pool and pass it
3896 	 * back to caller (i.e. rewind info, missing devices, etc).
3897 	 */
3898 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3899 	    spa->spa_load_info) == 0);
3900 
3901 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3902 	/*
3903 	 * Toss any existing sparelist, as it doesn't have any validity
3904 	 * anymore, and conflicts with spa_has_spare().
3905 	 */
3906 	if (spa->spa_spares.sav_config) {
3907 		nvlist_free(spa->spa_spares.sav_config);
3908 		spa->spa_spares.sav_config = NULL;
3909 		spa_load_spares(spa);
3910 	}
3911 	if (spa->spa_l2cache.sav_config) {
3912 		nvlist_free(spa->spa_l2cache.sav_config);
3913 		spa->spa_l2cache.sav_config = NULL;
3914 		spa_load_l2cache(spa);
3915 	}
3916 
3917 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3918 	    &nvroot) == 0);
3919 	if (error == 0)
3920 		error = spa_validate_aux(spa, nvroot, -1ULL,
3921 		    VDEV_ALLOC_SPARE);
3922 	if (error == 0)
3923 		error = spa_validate_aux(spa, nvroot, -1ULL,
3924 		    VDEV_ALLOC_L2CACHE);
3925 	spa_config_exit(spa, SCL_ALL, FTAG);
3926 
3927 	if (props != NULL)
3928 		spa_configfile_set(spa, props, B_FALSE);
3929 
3930 	if (error != 0 || (props && spa_writeable(spa) &&
3931 	    (error = spa_prop_set(spa, props)))) {
3932 		spa_unload(spa);
3933 		spa_deactivate(spa);
3934 		spa_remove(spa);
3935 		mutex_exit(&spa_namespace_lock);
3936 		return (error);
3937 	}
3938 
3939 	spa_async_resume(spa);
3940 
3941 	/*
3942 	 * Override any spares and level 2 cache devices as specified by
3943 	 * the user, as these may have correct device names/devids, etc.
3944 	 */
3945 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3946 	    &spares, &nspares) == 0) {
3947 		if (spa->spa_spares.sav_config)
3948 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3949 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3950 		else
3951 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3952 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3953 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3954 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3955 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3956 		spa_load_spares(spa);
3957 		spa_config_exit(spa, SCL_ALL, FTAG);
3958 		spa->spa_spares.sav_sync = B_TRUE;
3959 	}
3960 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3961 	    &l2cache, &nl2cache) == 0) {
3962 		if (spa->spa_l2cache.sav_config)
3963 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3964 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3965 		else
3966 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3967 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3968 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3969 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3970 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3971 		spa_load_l2cache(spa);
3972 		spa_config_exit(spa, SCL_ALL, FTAG);
3973 		spa->spa_l2cache.sav_sync = B_TRUE;
3974 	}
3975 
3976 	/*
3977 	 * Check for any removed devices.
3978 	 */
3979 	if (spa->spa_autoreplace) {
3980 		spa_aux_check_removed(&spa->spa_spares);
3981 		spa_aux_check_removed(&spa->spa_l2cache);
3982 	}
3983 
3984 	if (spa_writeable(spa)) {
3985 		/*
3986 		 * Update the config cache to include the newly-imported pool.
3987 		 */
3988 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3989 	}
3990 
3991 	/*
3992 	 * It's possible that the pool was expanded while it was exported.
3993 	 * We kick off an async task to handle this for us.
3994 	 */
3995 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3996 
3997 	mutex_exit(&spa_namespace_lock);
3998 	spa_history_log_version(spa, "import");
3999 
4000 	return (0);
4001 }
4002 
4003 nvlist_t *
4004 spa_tryimport(nvlist_t *tryconfig)
4005 {
4006 	nvlist_t *config = NULL;
4007 	char *poolname;
4008 	spa_t *spa;
4009 	uint64_t state;
4010 	int error;
4011 
4012 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4013 		return (NULL);
4014 
4015 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4016 		return (NULL);
4017 
4018 	/*
4019 	 * Create and initialize the spa structure.
4020 	 */
4021 	mutex_enter(&spa_namespace_lock);
4022 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4023 	spa_activate(spa, FREAD);
4024 
4025 	/*
4026 	 * Pass off the heavy lifting to spa_load().
4027 	 * Pass TRUE for mosconfig because the user-supplied config
4028 	 * is actually the one to trust when doing an import.
4029 	 */
4030 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4031 
4032 	/*
4033 	 * If 'tryconfig' was at least parsable, return the current config.
4034 	 */
4035 	if (spa->spa_root_vdev != NULL) {
4036 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4037 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4038 		    poolname) == 0);
4039 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4040 		    state) == 0);
4041 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4042 		    spa->spa_uberblock.ub_timestamp) == 0);
4043 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4044 		    spa->spa_load_info) == 0);
4045 
4046 		/*
4047 		 * If the bootfs property exists on this pool then we
4048 		 * copy it out so that external consumers can tell which
4049 		 * pools are bootable.
4050 		 */
4051 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4052 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4053 
4054 			/*
4055 			 * We have to play games with the name since the
4056 			 * pool was opened as TRYIMPORT_NAME.
4057 			 */
4058 			if (dsl_dsobj_to_dsname(spa_name(spa),
4059 			    spa->spa_bootfs, tmpname) == 0) {
4060 				char *cp;
4061 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4062 
4063 				cp = strchr(tmpname, '/');
4064 				if (cp == NULL) {
4065 					(void) strlcpy(dsname, tmpname,
4066 					    MAXPATHLEN);
4067 				} else {
4068 					(void) snprintf(dsname, MAXPATHLEN,
4069 					    "%s/%s", poolname, ++cp);
4070 				}
4071 				VERIFY(nvlist_add_string(config,
4072 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4073 				kmem_free(dsname, MAXPATHLEN);
4074 			}
4075 			kmem_free(tmpname, MAXPATHLEN);
4076 		}
4077 
4078 		/*
4079 		 * Add the list of hot spares and level 2 cache devices.
4080 		 */
4081 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4082 		spa_add_spares(spa, config);
4083 		spa_add_l2cache(spa, config);
4084 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4085 	}
4086 
4087 	spa_unload(spa);
4088 	spa_deactivate(spa);
4089 	spa_remove(spa);
4090 	mutex_exit(&spa_namespace_lock);
4091 
4092 	return (config);
4093 }
4094 
4095 /*
4096  * Pool export/destroy
4097  *
4098  * The act of destroying or exporting a pool is very simple.  We make sure there
4099  * is no more pending I/O and any references to the pool are gone.  Then, we
4100  * update the pool state and sync all the labels to disk, removing the
4101  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4102  * we don't sync the labels or remove the configuration cache.
4103  */
4104 static int
4105 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4106     boolean_t force, boolean_t hardforce)
4107 {
4108 	spa_t *spa;
4109 
4110 	if (oldconfig)
4111 		*oldconfig = NULL;
4112 
4113 	if (!(spa_mode_global & FWRITE))
4114 		return (SET_ERROR(EROFS));
4115 
4116 	mutex_enter(&spa_namespace_lock);
4117 	if ((spa = spa_lookup(pool)) == NULL) {
4118 		mutex_exit(&spa_namespace_lock);
4119 		return (SET_ERROR(ENOENT));
4120 	}
4121 
4122 	/*
4123 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4124 	 * reacquire the namespace lock, and see if we can export.
4125 	 */
4126 	spa_open_ref(spa, FTAG);
4127 	mutex_exit(&spa_namespace_lock);
4128 	spa_async_suspend(spa);
4129 	mutex_enter(&spa_namespace_lock);
4130 	spa_close(spa, FTAG);
4131 
4132 	/*
4133 	 * The pool will be in core if it's openable,
4134 	 * in which case we can modify its state.
4135 	 */
4136 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4137 		/*
4138 		 * Objsets may be open only because they're dirty, so we
4139 		 * have to force it to sync before checking spa_refcnt.
4140 		 */
4141 		txg_wait_synced(spa->spa_dsl_pool, 0);
4142 
4143 		/*
4144 		 * A pool cannot be exported or destroyed if there are active
4145 		 * references.  If we are resetting a pool, allow references by
4146 		 * fault injection handlers.
4147 		 */
4148 		if (!spa_refcount_zero(spa) ||
4149 		    (spa->spa_inject_ref != 0 &&
4150 		    new_state != POOL_STATE_UNINITIALIZED)) {
4151 			spa_async_resume(spa);
4152 			mutex_exit(&spa_namespace_lock);
4153 			return (SET_ERROR(EBUSY));
4154 		}
4155 
4156 		/*
4157 		 * A pool cannot be exported if it has an active shared spare.
4158 		 * This is to prevent other pools stealing the active spare
4159 		 * from an exported pool. At user's own will, such pool can
4160 		 * be forcedly exported.
4161 		 */
4162 		if (!force && new_state == POOL_STATE_EXPORTED &&
4163 		    spa_has_active_shared_spare(spa)) {
4164 			spa_async_resume(spa);
4165 			mutex_exit(&spa_namespace_lock);
4166 			return (SET_ERROR(EXDEV));
4167 		}
4168 
4169 		/*
4170 		 * We want this to be reflected on every label,
4171 		 * so mark them all dirty.  spa_unload() will do the
4172 		 * final sync that pushes these changes out.
4173 		 */
4174 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4175 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4176 			spa->spa_state = new_state;
4177 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4178 			    TXG_DEFER_SIZE + 1;
4179 			vdev_config_dirty(spa->spa_root_vdev);
4180 			spa_config_exit(spa, SCL_ALL, FTAG);
4181 		}
4182 	}
4183 
4184 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4185 
4186 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4187 		spa_unload(spa);
4188 		spa_deactivate(spa);
4189 	}
4190 
4191 	if (oldconfig && spa->spa_config)
4192 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4193 
4194 	if (new_state != POOL_STATE_UNINITIALIZED) {
4195 		if (!hardforce)
4196 			spa_config_sync(spa, B_TRUE, B_TRUE);
4197 		spa_remove(spa);
4198 	}
4199 	mutex_exit(&spa_namespace_lock);
4200 
4201 	return (0);
4202 }
4203 
4204 /*
4205  * Destroy a storage pool.
4206  */
4207 int
4208 spa_destroy(char *pool)
4209 {
4210 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4211 	    B_FALSE, B_FALSE));
4212 }
4213 
4214 /*
4215  * Export a storage pool.
4216  */
4217 int
4218 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4219     boolean_t hardforce)
4220 {
4221 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4222 	    force, hardforce));
4223 }
4224 
4225 /*
4226  * Similar to spa_export(), this unloads the spa_t without actually removing it
4227  * from the namespace in any way.
4228  */
4229 int
4230 spa_reset(char *pool)
4231 {
4232 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4233 	    B_FALSE, B_FALSE));
4234 }
4235 
4236 /*
4237  * ==========================================================================
4238  * Device manipulation
4239  * ==========================================================================
4240  */
4241 
4242 /*
4243  * Add a device to a storage pool.
4244  */
4245 int
4246 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4247 {
4248 	uint64_t txg, id;
4249 	int error;
4250 	vdev_t *rvd = spa->spa_root_vdev;
4251 	vdev_t *vd, *tvd;
4252 	nvlist_t **spares, **l2cache;
4253 	uint_t nspares, nl2cache;
4254 
4255 	ASSERT(spa_writeable(spa));
4256 
4257 	txg = spa_vdev_enter(spa);
4258 
4259 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4260 	    VDEV_ALLOC_ADD)) != 0)
4261 		return (spa_vdev_exit(spa, NULL, txg, error));
4262 
4263 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4264 
4265 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4266 	    &nspares) != 0)
4267 		nspares = 0;
4268 
4269 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4270 	    &nl2cache) != 0)
4271 		nl2cache = 0;
4272 
4273 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4274 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4275 
4276 	if (vd->vdev_children != 0 &&
4277 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4278 		return (spa_vdev_exit(spa, vd, txg, error));
4279 
4280 	/*
4281 	 * We must validate the spares and l2cache devices after checking the
4282 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4283 	 */
4284 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4285 		return (spa_vdev_exit(spa, vd, txg, error));
4286 
4287 	/*
4288 	 * Transfer each new top-level vdev from vd to rvd.
4289 	 */
4290 	for (int c = 0; c < vd->vdev_children; c++) {
4291 
4292 		/*
4293 		 * Set the vdev id to the first hole, if one exists.
4294 		 */
4295 		for (id = 0; id < rvd->vdev_children; id++) {
4296 			if (rvd->vdev_child[id]->vdev_ishole) {
4297 				vdev_free(rvd->vdev_child[id]);
4298 				break;
4299 			}
4300 		}
4301 		tvd = vd->vdev_child[c];
4302 		vdev_remove_child(vd, tvd);
4303 		tvd->vdev_id = id;
4304 		vdev_add_child(rvd, tvd);
4305 		vdev_config_dirty(tvd);
4306 	}
4307 
4308 	if (nspares != 0) {
4309 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4310 		    ZPOOL_CONFIG_SPARES);
4311 		spa_load_spares(spa);
4312 		spa->spa_spares.sav_sync = B_TRUE;
4313 	}
4314 
4315 	if (nl2cache != 0) {
4316 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4317 		    ZPOOL_CONFIG_L2CACHE);
4318 		spa_load_l2cache(spa);
4319 		spa->spa_l2cache.sav_sync = B_TRUE;
4320 	}
4321 
4322 	/*
4323 	 * We have to be careful when adding new vdevs to an existing pool.
4324 	 * If other threads start allocating from these vdevs before we
4325 	 * sync the config cache, and we lose power, then upon reboot we may
4326 	 * fail to open the pool because there are DVAs that the config cache
4327 	 * can't translate.  Therefore, we first add the vdevs without
4328 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4329 	 * and then let spa_config_update() initialize the new metaslabs.
4330 	 *
4331 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4332 	 * if we lose power at any point in this sequence, the remaining
4333 	 * steps will be completed the next time we load the pool.
4334 	 */
4335 	(void) spa_vdev_exit(spa, vd, txg, 0);
4336 
4337 	mutex_enter(&spa_namespace_lock);
4338 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4339 	mutex_exit(&spa_namespace_lock);
4340 
4341 	return (0);
4342 }
4343 
4344 /*
4345  * Attach a device to a mirror.  The arguments are the path to any device
4346  * in the mirror, and the nvroot for the new device.  If the path specifies
4347  * a device that is not mirrored, we automatically insert the mirror vdev.
4348  *
4349  * If 'replacing' is specified, the new device is intended to replace the
4350  * existing device; in this case the two devices are made into their own
4351  * mirror using the 'replacing' vdev, which is functionally identical to
4352  * the mirror vdev (it actually reuses all the same ops) but has a few
4353  * extra rules: you can't attach to it after it's been created, and upon
4354  * completion of resilvering, the first disk (the one being replaced)
4355  * is automatically detached.
4356  */
4357 int
4358 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4359 {
4360 	uint64_t txg, dtl_max_txg;
4361 	vdev_t *rvd = spa->spa_root_vdev;
4362 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4363 	vdev_ops_t *pvops;
4364 	char *oldvdpath, *newvdpath;
4365 	int newvd_isspare;
4366 	int error;
4367 
4368 	ASSERT(spa_writeable(spa));
4369 
4370 	txg = spa_vdev_enter(spa);
4371 
4372 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4373 
4374 	if (oldvd == NULL)
4375 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4376 
4377 	if (!oldvd->vdev_ops->vdev_op_leaf)
4378 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4379 
4380 	pvd = oldvd->vdev_parent;
4381 
4382 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4383 	    VDEV_ALLOC_ATTACH)) != 0)
4384 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4385 
4386 	if (newrootvd->vdev_children != 1)
4387 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4388 
4389 	newvd = newrootvd->vdev_child[0];
4390 
4391 	if (!newvd->vdev_ops->vdev_op_leaf)
4392 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4393 
4394 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4395 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4396 
4397 	/*
4398 	 * Spares can't replace logs
4399 	 */
4400 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4401 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4402 
4403 	if (!replacing) {
4404 		/*
4405 		 * For attach, the only allowable parent is a mirror or the root
4406 		 * vdev.
4407 		 */
4408 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4409 		    pvd->vdev_ops != &vdev_root_ops)
4410 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4411 
4412 		pvops = &vdev_mirror_ops;
4413 	} else {
4414 		/*
4415 		 * Active hot spares can only be replaced by inactive hot
4416 		 * spares.
4417 		 */
4418 		if (pvd->vdev_ops == &vdev_spare_ops &&
4419 		    oldvd->vdev_isspare &&
4420 		    !spa_has_spare(spa, newvd->vdev_guid))
4421 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4422 
4423 		/*
4424 		 * If the source is a hot spare, and the parent isn't already a
4425 		 * spare, then we want to create a new hot spare.  Otherwise, we
4426 		 * want to create a replacing vdev.  The user is not allowed to
4427 		 * attach to a spared vdev child unless the 'isspare' state is
4428 		 * the same (spare replaces spare, non-spare replaces
4429 		 * non-spare).
4430 		 */
4431 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4432 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4433 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4434 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4435 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4436 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4437 		}
4438 
4439 		if (newvd->vdev_isspare)
4440 			pvops = &vdev_spare_ops;
4441 		else
4442 			pvops = &vdev_replacing_ops;
4443 	}
4444 
4445 	/*
4446 	 * Make sure the new device is big enough.
4447 	 */
4448 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4449 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4450 
4451 	/*
4452 	 * The new device cannot have a higher alignment requirement
4453 	 * than the top-level vdev.
4454 	 */
4455 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4456 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4457 
4458 	/*
4459 	 * If this is an in-place replacement, update oldvd's path and devid
4460 	 * to make it distinguishable from newvd, and unopenable from now on.
4461 	 */
4462 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4463 		spa_strfree(oldvd->vdev_path);
4464 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4465 		    KM_SLEEP);
4466 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4467 		    newvd->vdev_path, "old");
4468 		if (oldvd->vdev_devid != NULL) {
4469 			spa_strfree(oldvd->vdev_devid);
4470 			oldvd->vdev_devid = NULL;
4471 		}
4472 	}
4473 
4474 	/* mark the device being resilvered */
4475 	newvd->vdev_resilver_txg = txg;
4476 
4477 	/*
4478 	 * If the parent is not a mirror, or if we're replacing, insert the new
4479 	 * mirror/replacing/spare vdev above oldvd.
4480 	 */
4481 	if (pvd->vdev_ops != pvops)
4482 		pvd = vdev_add_parent(oldvd, pvops);
4483 
4484 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4485 	ASSERT(pvd->vdev_ops == pvops);
4486 	ASSERT(oldvd->vdev_parent == pvd);
4487 
4488 	/*
4489 	 * Extract the new device from its root and add it to pvd.
4490 	 */
4491 	vdev_remove_child(newrootvd, newvd);
4492 	newvd->vdev_id = pvd->vdev_children;
4493 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4494 	vdev_add_child(pvd, newvd);
4495 
4496 	tvd = newvd->vdev_top;
4497 	ASSERT(pvd->vdev_top == tvd);
4498 	ASSERT(tvd->vdev_parent == rvd);
4499 
4500 	vdev_config_dirty(tvd);
4501 
4502 	/*
4503 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4504 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4505 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4506 	 */
4507 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4508 
4509 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4510 	    dtl_max_txg - TXG_INITIAL);
4511 
4512 	if (newvd->vdev_isspare) {
4513 		spa_spare_activate(newvd);
4514 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4515 	}
4516 
4517 	oldvdpath = spa_strdup(oldvd->vdev_path);
4518 	newvdpath = spa_strdup(newvd->vdev_path);
4519 	newvd_isspare = newvd->vdev_isspare;
4520 
4521 	/*
4522 	 * Mark newvd's DTL dirty in this txg.
4523 	 */
4524 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4525 
4526 	/*
4527 	 * Schedule the resilver to restart in the future. We do this to
4528 	 * ensure that dmu_sync-ed blocks have been stitched into the
4529 	 * respective datasets.
4530 	 */
4531 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4532 
4533 	/*
4534 	 * Commit the config
4535 	 */
4536 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4537 
4538 	spa_history_log_internal(spa, "vdev attach", NULL,
4539 	    "%s vdev=%s %s vdev=%s",
4540 	    replacing && newvd_isspare ? "spare in" :
4541 	    replacing ? "replace" : "attach", newvdpath,
4542 	    replacing ? "for" : "to", oldvdpath);
4543 
4544 	spa_strfree(oldvdpath);
4545 	spa_strfree(newvdpath);
4546 
4547 	if (spa->spa_bootfs)
4548 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4549 
4550 	return (0);
4551 }
4552 
4553 /*
4554  * Detach a device from a mirror or replacing vdev.
4555  *
4556  * If 'replace_done' is specified, only detach if the parent
4557  * is a replacing vdev.
4558  */
4559 int
4560 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4561 {
4562 	uint64_t txg;
4563 	int error;
4564 	vdev_t *rvd = spa->spa_root_vdev;
4565 	vdev_t *vd, *pvd, *cvd, *tvd;
4566 	boolean_t unspare = B_FALSE;
4567 	uint64_t unspare_guid = 0;
4568 	char *vdpath;
4569 
4570 	ASSERT(spa_writeable(spa));
4571 
4572 	txg = spa_vdev_enter(spa);
4573 
4574 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4575 
4576 	if (vd == NULL)
4577 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4578 
4579 	if (!vd->vdev_ops->vdev_op_leaf)
4580 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4581 
4582 	pvd = vd->vdev_parent;
4583 
4584 	/*
4585 	 * If the parent/child relationship is not as expected, don't do it.
4586 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4587 	 * vdev that's replacing B with C.  The user's intent in replacing
4588 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4589 	 * the replace by detaching C, the expected behavior is to end up
4590 	 * M(A,B).  But suppose that right after deciding to detach C,
4591 	 * the replacement of B completes.  We would have M(A,C), and then
4592 	 * ask to detach C, which would leave us with just A -- not what
4593 	 * the user wanted.  To prevent this, we make sure that the
4594 	 * parent/child relationship hasn't changed -- in this example,
4595 	 * that C's parent is still the replacing vdev R.
4596 	 */
4597 	if (pvd->vdev_guid != pguid && pguid != 0)
4598 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4599 
4600 	/*
4601 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4602 	 */
4603 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4604 	    pvd->vdev_ops != &vdev_spare_ops)
4605 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4606 
4607 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4608 	    spa_version(spa) >= SPA_VERSION_SPARES);
4609 
4610 	/*
4611 	 * Only mirror, replacing, and spare vdevs support detach.
4612 	 */
4613 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4614 	    pvd->vdev_ops != &vdev_mirror_ops &&
4615 	    pvd->vdev_ops != &vdev_spare_ops)
4616 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4617 
4618 	/*
4619 	 * If this device has the only valid copy of some data,
4620 	 * we cannot safely detach it.
4621 	 */
4622 	if (vdev_dtl_required(vd))
4623 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4624 
4625 	ASSERT(pvd->vdev_children >= 2);
4626 
4627 	/*
4628 	 * If we are detaching the second disk from a replacing vdev, then
4629 	 * check to see if we changed the original vdev's path to have "/old"
4630 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4631 	 */
4632 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4633 	    vd->vdev_path != NULL) {
4634 		size_t len = strlen(vd->vdev_path);
4635 
4636 		for (int c = 0; c < pvd->vdev_children; c++) {
4637 			cvd = pvd->vdev_child[c];
4638 
4639 			if (cvd == vd || cvd->vdev_path == NULL)
4640 				continue;
4641 
4642 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4643 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4644 				spa_strfree(cvd->vdev_path);
4645 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4646 				break;
4647 			}
4648 		}
4649 	}
4650 
4651 	/*
4652 	 * If we are detaching the original disk from a spare, then it implies
4653 	 * that the spare should become a real disk, and be removed from the
4654 	 * active spare list for the pool.
4655 	 */
4656 	if (pvd->vdev_ops == &vdev_spare_ops &&
4657 	    vd->vdev_id == 0 &&
4658 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4659 		unspare = B_TRUE;
4660 
4661 	/*
4662 	 * Erase the disk labels so the disk can be used for other things.
4663 	 * This must be done after all other error cases are handled,
4664 	 * but before we disembowel vd (so we can still do I/O to it).
4665 	 * But if we can't do it, don't treat the error as fatal --
4666 	 * it may be that the unwritability of the disk is the reason
4667 	 * it's being detached!
4668 	 */
4669 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4670 
4671 	/*
4672 	 * Remove vd from its parent and compact the parent's children.
4673 	 */
4674 	vdev_remove_child(pvd, vd);
4675 	vdev_compact_children(pvd);
4676 
4677 	/*
4678 	 * Remember one of the remaining children so we can get tvd below.
4679 	 */
4680 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4681 
4682 	/*
4683 	 * If we need to remove the remaining child from the list of hot spares,
4684 	 * do it now, marking the vdev as no longer a spare in the process.
4685 	 * We must do this before vdev_remove_parent(), because that can
4686 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4687 	 * reason, we must remove the spare now, in the same txg as the detach;
4688 	 * otherwise someone could attach a new sibling, change the GUID, and
4689 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4690 	 */
4691 	if (unspare) {
4692 		ASSERT(cvd->vdev_isspare);
4693 		spa_spare_remove(cvd);
4694 		unspare_guid = cvd->vdev_guid;
4695 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4696 		cvd->vdev_unspare = B_TRUE;
4697 	}
4698 
4699 	/*
4700 	 * If the parent mirror/replacing vdev only has one child,
4701 	 * the parent is no longer needed.  Remove it from the tree.
4702 	 */
4703 	if (pvd->vdev_children == 1) {
4704 		if (pvd->vdev_ops == &vdev_spare_ops)
4705 			cvd->vdev_unspare = B_FALSE;
4706 		vdev_remove_parent(cvd);
4707 	}
4708 
4709 
4710 	/*
4711 	 * We don't set tvd until now because the parent we just removed
4712 	 * may have been the previous top-level vdev.
4713 	 */
4714 	tvd = cvd->vdev_top;
4715 	ASSERT(tvd->vdev_parent == rvd);
4716 
4717 	/*
4718 	 * Reevaluate the parent vdev state.
4719 	 */
4720 	vdev_propagate_state(cvd);
4721 
4722 	/*
4723 	 * If the 'autoexpand' property is set on the pool then automatically
4724 	 * try to expand the size of the pool. For example if the device we
4725 	 * just detached was smaller than the others, it may be possible to
4726 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4727 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4728 	 */
4729 	if (spa->spa_autoexpand) {
4730 		vdev_reopen(tvd);
4731 		vdev_expand(tvd, txg);
4732 	}
4733 
4734 	vdev_config_dirty(tvd);
4735 
4736 	/*
4737 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4738 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4739 	 * But first make sure we're not on any *other* txg's DTL list, to
4740 	 * prevent vd from being accessed after it's freed.
4741 	 */
4742 	vdpath = spa_strdup(vd->vdev_path);
4743 	for (int t = 0; t < TXG_SIZE; t++)
4744 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4745 	vd->vdev_detached = B_TRUE;
4746 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4747 
4748 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4749 
4750 	/* hang on to the spa before we release the lock */
4751 	spa_open_ref(spa, FTAG);
4752 
4753 	error = spa_vdev_exit(spa, vd, txg, 0);
4754 
4755 	spa_history_log_internal(spa, "detach", NULL,
4756 	    "vdev=%s", vdpath);
4757 	spa_strfree(vdpath);
4758 
4759 	/*
4760 	 * If this was the removal of the original device in a hot spare vdev,
4761 	 * then we want to go through and remove the device from the hot spare
4762 	 * list of every other pool.
4763 	 */
4764 	if (unspare) {
4765 		spa_t *altspa = NULL;
4766 
4767 		mutex_enter(&spa_namespace_lock);
4768 		while ((altspa = spa_next(altspa)) != NULL) {
4769 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4770 			    altspa == spa)
4771 				continue;
4772 
4773 			spa_open_ref(altspa, FTAG);
4774 			mutex_exit(&spa_namespace_lock);
4775 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4776 			mutex_enter(&spa_namespace_lock);
4777 			spa_close(altspa, FTAG);
4778 		}
4779 		mutex_exit(&spa_namespace_lock);
4780 
4781 		/* search the rest of the vdevs for spares to remove */
4782 		spa_vdev_resilver_done(spa);
4783 	}
4784 
4785 	/* all done with the spa; OK to release */
4786 	mutex_enter(&spa_namespace_lock);
4787 	spa_close(spa, FTAG);
4788 	mutex_exit(&spa_namespace_lock);
4789 
4790 	return (error);
4791 }
4792 
4793 /*
4794  * Split a set of devices from their mirrors, and create a new pool from them.
4795  */
4796 int
4797 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4798     nvlist_t *props, boolean_t exp)
4799 {
4800 	int error = 0;
4801 	uint64_t txg, *glist;
4802 	spa_t *newspa;
4803 	uint_t c, children, lastlog;
4804 	nvlist_t **child, *nvl, *tmp;
4805 	dmu_tx_t *tx;
4806 	char *altroot = NULL;
4807 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4808 	boolean_t activate_slog;
4809 
4810 	ASSERT(spa_writeable(spa));
4811 
4812 	txg = spa_vdev_enter(spa);
4813 
4814 	/* clear the log and flush everything up to now */
4815 	activate_slog = spa_passivate_log(spa);
4816 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4817 	error = spa_offline_log(spa);
4818 	txg = spa_vdev_config_enter(spa);
4819 
4820 	if (activate_slog)
4821 		spa_activate_log(spa);
4822 
4823 	if (error != 0)
4824 		return (spa_vdev_exit(spa, NULL, txg, error));
4825 
4826 	/* check new spa name before going any further */
4827 	if (spa_lookup(newname) != NULL)
4828 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4829 
4830 	/*
4831 	 * scan through all the children to ensure they're all mirrors
4832 	 */
4833 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4834 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4835 	    &children) != 0)
4836 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4837 
4838 	/* first, check to ensure we've got the right child count */
4839 	rvd = spa->spa_root_vdev;
4840 	lastlog = 0;
4841 	for (c = 0; c < rvd->vdev_children; c++) {
4842 		vdev_t *vd = rvd->vdev_child[c];
4843 
4844 		/* don't count the holes & logs as children */
4845 		if (vd->vdev_islog || vd->vdev_ishole) {
4846 			if (lastlog == 0)
4847 				lastlog = c;
4848 			continue;
4849 		}
4850 
4851 		lastlog = 0;
4852 	}
4853 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4854 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4855 
4856 	/* next, ensure no spare or cache devices are part of the split */
4857 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4858 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4859 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4860 
4861 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4862 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4863 
4864 	/* then, loop over each vdev and validate it */
4865 	for (c = 0; c < children; c++) {
4866 		uint64_t is_hole = 0;
4867 
4868 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4869 		    &is_hole);
4870 
4871 		if (is_hole != 0) {
4872 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4873 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4874 				continue;
4875 			} else {
4876 				error = SET_ERROR(EINVAL);
4877 				break;
4878 			}
4879 		}
4880 
4881 		/* which disk is going to be split? */
4882 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4883 		    &glist[c]) != 0) {
4884 			error = SET_ERROR(EINVAL);
4885 			break;
4886 		}
4887 
4888 		/* look it up in the spa */
4889 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4890 		if (vml[c] == NULL) {
4891 			error = SET_ERROR(ENODEV);
4892 			break;
4893 		}
4894 
4895 		/* make sure there's nothing stopping the split */
4896 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4897 		    vml[c]->vdev_islog ||
4898 		    vml[c]->vdev_ishole ||
4899 		    vml[c]->vdev_isspare ||
4900 		    vml[c]->vdev_isl2cache ||
4901 		    !vdev_writeable(vml[c]) ||
4902 		    vml[c]->vdev_children != 0 ||
4903 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4904 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4905 			error = SET_ERROR(EINVAL);
4906 			break;
4907 		}
4908 
4909 		if (vdev_dtl_required(vml[c])) {
4910 			error = SET_ERROR(EBUSY);
4911 			break;
4912 		}
4913 
4914 		/* we need certain info from the top level */
4915 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4916 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4917 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4918 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4919 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4920 		    vml[c]->vdev_top->vdev_asize) == 0);
4921 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4922 		    vml[c]->vdev_top->vdev_ashift) == 0);
4923 	}
4924 
4925 	if (error != 0) {
4926 		kmem_free(vml, children * sizeof (vdev_t *));
4927 		kmem_free(glist, children * sizeof (uint64_t));
4928 		return (spa_vdev_exit(spa, NULL, txg, error));
4929 	}
4930 
4931 	/* stop writers from using the disks */
4932 	for (c = 0; c < children; c++) {
4933 		if (vml[c] != NULL)
4934 			vml[c]->vdev_offline = B_TRUE;
4935 	}
4936 	vdev_reopen(spa->spa_root_vdev);
4937 
4938 	/*
4939 	 * Temporarily record the splitting vdevs in the spa config.  This
4940 	 * will disappear once the config is regenerated.
4941 	 */
4942 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4943 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4944 	    glist, children) == 0);
4945 	kmem_free(glist, children * sizeof (uint64_t));
4946 
4947 	mutex_enter(&spa->spa_props_lock);
4948 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4949 	    nvl) == 0);
4950 	mutex_exit(&spa->spa_props_lock);
4951 	spa->spa_config_splitting = nvl;
4952 	vdev_config_dirty(spa->spa_root_vdev);
4953 
4954 	/* configure and create the new pool */
4955 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4956 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4957 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4958 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4959 	    spa_version(spa)) == 0);
4960 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4961 	    spa->spa_config_txg) == 0);
4962 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4963 	    spa_generate_guid(NULL)) == 0);
4964 	(void) nvlist_lookup_string(props,
4965 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4966 
4967 	/* add the new pool to the namespace */
4968 	newspa = spa_add(newname, config, altroot);
4969 	newspa->spa_config_txg = spa->spa_config_txg;
4970 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4971 
4972 	/* release the spa config lock, retaining the namespace lock */
4973 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4974 
4975 	if (zio_injection_enabled)
4976 		zio_handle_panic_injection(spa, FTAG, 1);
4977 
4978 	spa_activate(newspa, spa_mode_global);
4979 	spa_async_suspend(newspa);
4980 
4981 	/* create the new pool from the disks of the original pool */
4982 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4983 	if (error)
4984 		goto out;
4985 
4986 	/* if that worked, generate a real config for the new pool */
4987 	if (newspa->spa_root_vdev != NULL) {
4988 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4989 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4990 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4991 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4992 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4993 		    B_TRUE));
4994 	}
4995 
4996 	/* set the props */
4997 	if (props != NULL) {
4998 		spa_configfile_set(newspa, props, B_FALSE);
4999 		error = spa_prop_set(newspa, props);
5000 		if (error)
5001 			goto out;
5002 	}
5003 
5004 	/* flush everything */
5005 	txg = spa_vdev_config_enter(newspa);
5006 	vdev_config_dirty(newspa->spa_root_vdev);
5007 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5008 
5009 	if (zio_injection_enabled)
5010 		zio_handle_panic_injection(spa, FTAG, 2);
5011 
5012 	spa_async_resume(newspa);
5013 
5014 	/* finally, update the original pool's config */
5015 	txg = spa_vdev_config_enter(spa);
5016 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5017 	error = dmu_tx_assign(tx, TXG_WAIT);
5018 	if (error != 0)
5019 		dmu_tx_abort(tx);
5020 	for (c = 0; c < children; c++) {
5021 		if (vml[c] != NULL) {
5022 			vdev_split(vml[c]);
5023 			if (error == 0)
5024 				spa_history_log_internal(spa, "detach", tx,
5025 				    "vdev=%s", vml[c]->vdev_path);
5026 			vdev_free(vml[c]);
5027 		}
5028 	}
5029 	vdev_config_dirty(spa->spa_root_vdev);
5030 	spa->spa_config_splitting = NULL;
5031 	nvlist_free(nvl);
5032 	if (error == 0)
5033 		dmu_tx_commit(tx);
5034 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5035 
5036 	if (zio_injection_enabled)
5037 		zio_handle_panic_injection(spa, FTAG, 3);
5038 
5039 	/* split is complete; log a history record */
5040 	spa_history_log_internal(newspa, "split", NULL,
5041 	    "from pool %s", spa_name(spa));
5042 
5043 	kmem_free(vml, children * sizeof (vdev_t *));
5044 
5045 	/* if we're not going to mount the filesystems in userland, export */
5046 	if (exp)
5047 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5048 		    B_FALSE, B_FALSE);
5049 
5050 	return (error);
5051 
5052 out:
5053 	spa_unload(newspa);
5054 	spa_deactivate(newspa);
5055 	spa_remove(newspa);
5056 
5057 	txg = spa_vdev_config_enter(spa);
5058 
5059 	/* re-online all offlined disks */
5060 	for (c = 0; c < children; c++) {
5061 		if (vml[c] != NULL)
5062 			vml[c]->vdev_offline = B_FALSE;
5063 	}
5064 	vdev_reopen(spa->spa_root_vdev);
5065 
5066 	nvlist_free(spa->spa_config_splitting);
5067 	spa->spa_config_splitting = NULL;
5068 	(void) spa_vdev_exit(spa, NULL, txg, error);
5069 
5070 	kmem_free(vml, children * sizeof (vdev_t *));
5071 	return (error);
5072 }
5073 
5074 static nvlist_t *
5075 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5076 {
5077 	for (int i = 0; i < count; i++) {
5078 		uint64_t guid;
5079 
5080 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5081 		    &guid) == 0);
5082 
5083 		if (guid == target_guid)
5084 			return (nvpp[i]);
5085 	}
5086 
5087 	return (NULL);
5088 }
5089 
5090 static void
5091 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5092 	nvlist_t *dev_to_remove)
5093 {
5094 	nvlist_t **newdev = NULL;
5095 
5096 	if (count > 1)
5097 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5098 
5099 	for (int i = 0, j = 0; i < count; i++) {
5100 		if (dev[i] == dev_to_remove)
5101 			continue;
5102 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5103 	}
5104 
5105 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5106 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5107 
5108 	for (int i = 0; i < count - 1; i++)
5109 		nvlist_free(newdev[i]);
5110 
5111 	if (count > 1)
5112 		kmem_free(newdev, (count - 1) * sizeof (void *));
5113 }
5114 
5115 /*
5116  * Evacuate the device.
5117  */
5118 static int
5119 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5120 {
5121 	uint64_t txg;
5122 	int error = 0;
5123 
5124 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5125 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5126 	ASSERT(vd == vd->vdev_top);
5127 
5128 	/*
5129 	 * Evacuate the device.  We don't hold the config lock as writer
5130 	 * since we need to do I/O but we do keep the
5131 	 * spa_namespace_lock held.  Once this completes the device
5132 	 * should no longer have any blocks allocated on it.
5133 	 */
5134 	if (vd->vdev_islog) {
5135 		if (vd->vdev_stat.vs_alloc != 0)
5136 			error = spa_offline_log(spa);
5137 	} else {
5138 		error = SET_ERROR(ENOTSUP);
5139 	}
5140 
5141 	if (error)
5142 		return (error);
5143 
5144 	/*
5145 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5146 	 * associated with this vdev, and wait for these changes to sync.
5147 	 */
5148 	ASSERT0(vd->vdev_stat.vs_alloc);
5149 	txg = spa_vdev_config_enter(spa);
5150 	vd->vdev_removing = B_TRUE;
5151 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5152 	vdev_config_dirty(vd);
5153 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5154 
5155 	return (0);
5156 }
5157 
5158 /*
5159  * Complete the removal by cleaning up the namespace.
5160  */
5161 static void
5162 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5163 {
5164 	vdev_t *rvd = spa->spa_root_vdev;
5165 	uint64_t id = vd->vdev_id;
5166 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5167 
5168 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5169 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5170 	ASSERT(vd == vd->vdev_top);
5171 
5172 	/*
5173 	 * Only remove any devices which are empty.
5174 	 */
5175 	if (vd->vdev_stat.vs_alloc != 0)
5176 		return;
5177 
5178 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5179 
5180 	if (list_link_active(&vd->vdev_state_dirty_node))
5181 		vdev_state_clean(vd);
5182 	if (list_link_active(&vd->vdev_config_dirty_node))
5183 		vdev_config_clean(vd);
5184 
5185 	vdev_free(vd);
5186 
5187 	if (last_vdev) {
5188 		vdev_compact_children(rvd);
5189 	} else {
5190 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5191 		vdev_add_child(rvd, vd);
5192 	}
5193 	vdev_config_dirty(rvd);
5194 
5195 	/*
5196 	 * Reassess the health of our root vdev.
5197 	 */
5198 	vdev_reopen(rvd);
5199 }
5200 
5201 /*
5202  * Remove a device from the pool -
5203  *
5204  * Removing a device from the vdev namespace requires several steps
5205  * and can take a significant amount of time.  As a result we use
5206  * the spa_vdev_config_[enter/exit] functions which allow us to
5207  * grab and release the spa_config_lock while still holding the namespace
5208  * lock.  During each step the configuration is synced out.
5209  *
5210  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5211  * devices.
5212  */
5213 int
5214 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5215 {
5216 	vdev_t *vd;
5217 	metaslab_group_t *mg;
5218 	nvlist_t **spares, **l2cache, *nv;
5219 	uint64_t txg = 0;
5220 	uint_t nspares, nl2cache;
5221 	int error = 0;
5222 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5223 
5224 	ASSERT(spa_writeable(spa));
5225 
5226 	if (!locked)
5227 		txg = spa_vdev_enter(spa);
5228 
5229 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5230 
5231 	if (spa->spa_spares.sav_vdevs != NULL &&
5232 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5233 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5234 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5235 		/*
5236 		 * Only remove the hot spare if it's not currently in use
5237 		 * in this pool.
5238 		 */
5239 		if (vd == NULL || unspare) {
5240 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5241 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5242 			spa_load_spares(spa);
5243 			spa->spa_spares.sav_sync = B_TRUE;
5244 		} else {
5245 			error = SET_ERROR(EBUSY);
5246 		}
5247 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5248 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5249 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5250 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5251 		/*
5252 		 * Cache devices can always be removed.
5253 		 */
5254 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5255 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5256 		spa_load_l2cache(spa);
5257 		spa->spa_l2cache.sav_sync = B_TRUE;
5258 	} else if (vd != NULL && vd->vdev_islog) {
5259 		ASSERT(!locked);
5260 		ASSERT(vd == vd->vdev_top);
5261 
5262 		mg = vd->vdev_mg;
5263 
5264 		/*
5265 		 * Stop allocating from this vdev.
5266 		 */
5267 		metaslab_group_passivate(mg);
5268 
5269 		/*
5270 		 * Wait for the youngest allocations and frees to sync,
5271 		 * and then wait for the deferral of those frees to finish.
5272 		 */
5273 		spa_vdev_config_exit(spa, NULL,
5274 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5275 
5276 		/*
5277 		 * Attempt to evacuate the vdev.
5278 		 */
5279 		error = spa_vdev_remove_evacuate(spa, vd);
5280 
5281 		txg = spa_vdev_config_enter(spa);
5282 
5283 		/*
5284 		 * If we couldn't evacuate the vdev, unwind.
5285 		 */
5286 		if (error) {
5287 			metaslab_group_activate(mg);
5288 			return (spa_vdev_exit(spa, NULL, txg, error));
5289 		}
5290 
5291 		/*
5292 		 * Clean up the vdev namespace.
5293 		 */
5294 		spa_vdev_remove_from_namespace(spa, vd);
5295 
5296 	} else if (vd != NULL) {
5297 		/*
5298 		 * Normal vdevs cannot be removed (yet).
5299 		 */
5300 		error = SET_ERROR(ENOTSUP);
5301 	} else {
5302 		/*
5303 		 * There is no vdev of any kind with the specified guid.
5304 		 */
5305 		error = SET_ERROR(ENOENT);
5306 	}
5307 
5308 	if (!locked)
5309 		return (spa_vdev_exit(spa, NULL, txg, error));
5310 
5311 	return (error);
5312 }
5313 
5314 /*
5315  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5316  * currently spared, so we can detach it.
5317  */
5318 static vdev_t *
5319 spa_vdev_resilver_done_hunt(vdev_t *vd)
5320 {
5321 	vdev_t *newvd, *oldvd;
5322 
5323 	for (int c = 0; c < vd->vdev_children; c++) {
5324 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5325 		if (oldvd != NULL)
5326 			return (oldvd);
5327 	}
5328 
5329 	/*
5330 	 * Check for a completed replacement.  We always consider the first
5331 	 * vdev in the list to be the oldest vdev, and the last one to be
5332 	 * the newest (see spa_vdev_attach() for how that works).  In
5333 	 * the case where the newest vdev is faulted, we will not automatically
5334 	 * remove it after a resilver completes.  This is OK as it will require
5335 	 * user intervention to determine which disk the admin wishes to keep.
5336 	 */
5337 	if (vd->vdev_ops == &vdev_replacing_ops) {
5338 		ASSERT(vd->vdev_children > 1);
5339 
5340 		newvd = vd->vdev_child[vd->vdev_children - 1];
5341 		oldvd = vd->vdev_child[0];
5342 
5343 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5344 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5345 		    !vdev_dtl_required(oldvd))
5346 			return (oldvd);
5347 	}
5348 
5349 	/*
5350 	 * Check for a completed resilver with the 'unspare' flag set.
5351 	 */
5352 	if (vd->vdev_ops == &vdev_spare_ops) {
5353 		vdev_t *first = vd->vdev_child[0];
5354 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5355 
5356 		if (last->vdev_unspare) {
5357 			oldvd = first;
5358 			newvd = last;
5359 		} else if (first->vdev_unspare) {
5360 			oldvd = last;
5361 			newvd = first;
5362 		} else {
5363 			oldvd = NULL;
5364 		}
5365 
5366 		if (oldvd != NULL &&
5367 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5368 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5369 		    !vdev_dtl_required(oldvd))
5370 			return (oldvd);
5371 
5372 		/*
5373 		 * If there are more than two spares attached to a disk,
5374 		 * and those spares are not required, then we want to
5375 		 * attempt to free them up now so that they can be used
5376 		 * by other pools.  Once we're back down to a single
5377 		 * disk+spare, we stop removing them.
5378 		 */
5379 		if (vd->vdev_children > 2) {
5380 			newvd = vd->vdev_child[1];
5381 
5382 			if (newvd->vdev_isspare && last->vdev_isspare &&
5383 			    vdev_dtl_empty(last, DTL_MISSING) &&
5384 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5385 			    !vdev_dtl_required(newvd))
5386 				return (newvd);
5387 		}
5388 	}
5389 
5390 	return (NULL);
5391 }
5392 
5393 static void
5394 spa_vdev_resilver_done(spa_t *spa)
5395 {
5396 	vdev_t *vd, *pvd, *ppvd;
5397 	uint64_t guid, sguid, pguid, ppguid;
5398 
5399 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5400 
5401 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5402 		pvd = vd->vdev_parent;
5403 		ppvd = pvd->vdev_parent;
5404 		guid = vd->vdev_guid;
5405 		pguid = pvd->vdev_guid;
5406 		ppguid = ppvd->vdev_guid;
5407 		sguid = 0;
5408 		/*
5409 		 * If we have just finished replacing a hot spared device, then
5410 		 * we need to detach the parent's first child (the original hot
5411 		 * spare) as well.
5412 		 */
5413 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5414 		    ppvd->vdev_children == 2) {
5415 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5416 			sguid = ppvd->vdev_child[1]->vdev_guid;
5417 		}
5418 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5419 
5420 		spa_config_exit(spa, SCL_ALL, FTAG);
5421 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5422 			return;
5423 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5424 			return;
5425 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5426 	}
5427 
5428 	spa_config_exit(spa, SCL_ALL, FTAG);
5429 }
5430 
5431 /*
5432  * Update the stored path or FRU for this vdev.
5433  */
5434 int
5435 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5436     boolean_t ispath)
5437 {
5438 	vdev_t *vd;
5439 	boolean_t sync = B_FALSE;
5440 
5441 	ASSERT(spa_writeable(spa));
5442 
5443 	spa_vdev_state_enter(spa, SCL_ALL);
5444 
5445 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5446 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5447 
5448 	if (!vd->vdev_ops->vdev_op_leaf)
5449 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5450 
5451 	if (ispath) {
5452 		if (strcmp(value, vd->vdev_path) != 0) {
5453 			spa_strfree(vd->vdev_path);
5454 			vd->vdev_path = spa_strdup(value);
5455 			sync = B_TRUE;
5456 		}
5457 	} else {
5458 		if (vd->vdev_fru == NULL) {
5459 			vd->vdev_fru = spa_strdup(value);
5460 			sync = B_TRUE;
5461 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5462 			spa_strfree(vd->vdev_fru);
5463 			vd->vdev_fru = spa_strdup(value);
5464 			sync = B_TRUE;
5465 		}
5466 	}
5467 
5468 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5469 }
5470 
5471 int
5472 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5473 {
5474 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5475 }
5476 
5477 int
5478 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5479 {
5480 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5481 }
5482 
5483 /*
5484  * ==========================================================================
5485  * SPA Scanning
5486  * ==========================================================================
5487  */
5488 
5489 int
5490 spa_scan_stop(spa_t *spa)
5491 {
5492 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5493 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5494 		return (SET_ERROR(EBUSY));
5495 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5496 }
5497 
5498 int
5499 spa_scan(spa_t *spa, pool_scan_func_t func)
5500 {
5501 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5502 
5503 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5504 		return (SET_ERROR(ENOTSUP));
5505 
5506 	/*
5507 	 * If a resilver was requested, but there is no DTL on a
5508 	 * writeable leaf device, we have nothing to do.
5509 	 */
5510 	if (func == POOL_SCAN_RESILVER &&
5511 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5512 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5513 		return (0);
5514 	}
5515 
5516 	return (dsl_scan(spa->spa_dsl_pool, func));
5517 }
5518 
5519 /*
5520  * ==========================================================================
5521  * SPA async task processing
5522  * ==========================================================================
5523  */
5524 
5525 static void
5526 spa_async_remove(spa_t *spa, vdev_t *vd)
5527 {
5528 	if (vd->vdev_remove_wanted) {
5529 		vd->vdev_remove_wanted = B_FALSE;
5530 		vd->vdev_delayed_close = B_FALSE;
5531 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5532 
5533 		/*
5534 		 * We want to clear the stats, but we don't want to do a full
5535 		 * vdev_clear() as that will cause us to throw away
5536 		 * degraded/faulted state as well as attempt to reopen the
5537 		 * device, all of which is a waste.
5538 		 */
5539 		vd->vdev_stat.vs_read_errors = 0;
5540 		vd->vdev_stat.vs_write_errors = 0;
5541 		vd->vdev_stat.vs_checksum_errors = 0;
5542 
5543 		vdev_state_dirty(vd->vdev_top);
5544 	}
5545 
5546 	for (int c = 0; c < vd->vdev_children; c++)
5547 		spa_async_remove(spa, vd->vdev_child[c]);
5548 }
5549 
5550 static void
5551 spa_async_probe(spa_t *spa, vdev_t *vd)
5552 {
5553 	if (vd->vdev_probe_wanted) {
5554 		vd->vdev_probe_wanted = B_FALSE;
5555 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5556 	}
5557 
5558 	for (int c = 0; c < vd->vdev_children; c++)
5559 		spa_async_probe(spa, vd->vdev_child[c]);
5560 }
5561 
5562 static void
5563 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5564 {
5565 	sysevent_id_t eid;
5566 	nvlist_t *attr;
5567 	char *physpath;
5568 
5569 	if (!spa->spa_autoexpand)
5570 		return;
5571 
5572 	for (int c = 0; c < vd->vdev_children; c++) {
5573 		vdev_t *cvd = vd->vdev_child[c];
5574 		spa_async_autoexpand(spa, cvd);
5575 	}
5576 
5577 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5578 		return;
5579 
5580 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5581 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5582 
5583 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5584 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5585 
5586 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5587 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5588 
5589 	nvlist_free(attr);
5590 	kmem_free(physpath, MAXPATHLEN);
5591 }
5592 
5593 static void
5594 spa_async_thread(spa_t *spa)
5595 {
5596 	int tasks;
5597 
5598 	ASSERT(spa->spa_sync_on);
5599 
5600 	mutex_enter(&spa->spa_async_lock);
5601 	tasks = spa->spa_async_tasks;
5602 	spa->spa_async_tasks = 0;
5603 	mutex_exit(&spa->spa_async_lock);
5604 
5605 	/*
5606 	 * See if the config needs to be updated.
5607 	 */
5608 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5609 		uint64_t old_space, new_space;
5610 
5611 		mutex_enter(&spa_namespace_lock);
5612 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5613 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5614 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5615 		mutex_exit(&spa_namespace_lock);
5616 
5617 		/*
5618 		 * If the pool grew as a result of the config update,
5619 		 * then log an internal history event.
5620 		 */
5621 		if (new_space != old_space) {
5622 			spa_history_log_internal(spa, "vdev online", NULL,
5623 			    "pool '%s' size: %llu(+%llu)",
5624 			    spa_name(spa), new_space, new_space - old_space);
5625 		}
5626 	}
5627 
5628 	/*
5629 	 * See if any devices need to be marked REMOVED.
5630 	 */
5631 	if (tasks & SPA_ASYNC_REMOVE) {
5632 		spa_vdev_state_enter(spa, SCL_NONE);
5633 		spa_async_remove(spa, spa->spa_root_vdev);
5634 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5635 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5636 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5637 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5638 		(void) spa_vdev_state_exit(spa, NULL, 0);
5639 	}
5640 
5641 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5642 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5643 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5644 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5645 	}
5646 
5647 	/*
5648 	 * See if any devices need to be probed.
5649 	 */
5650 	if (tasks & SPA_ASYNC_PROBE) {
5651 		spa_vdev_state_enter(spa, SCL_NONE);
5652 		spa_async_probe(spa, spa->spa_root_vdev);
5653 		(void) spa_vdev_state_exit(spa, NULL, 0);
5654 	}
5655 
5656 	/*
5657 	 * If any devices are done replacing, detach them.
5658 	 */
5659 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5660 		spa_vdev_resilver_done(spa);
5661 
5662 	/*
5663 	 * Kick off a resilver.
5664 	 */
5665 	if (tasks & SPA_ASYNC_RESILVER)
5666 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5667 
5668 	/*
5669 	 * Let the world know that we're done.
5670 	 */
5671 	mutex_enter(&spa->spa_async_lock);
5672 	spa->spa_async_thread = NULL;
5673 	cv_broadcast(&spa->spa_async_cv);
5674 	mutex_exit(&spa->spa_async_lock);
5675 	thread_exit();
5676 }
5677 
5678 void
5679 spa_async_suspend(spa_t *spa)
5680 {
5681 	mutex_enter(&spa->spa_async_lock);
5682 	spa->spa_async_suspended++;
5683 	while (spa->spa_async_thread != NULL)
5684 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5685 	mutex_exit(&spa->spa_async_lock);
5686 }
5687 
5688 void
5689 spa_async_resume(spa_t *spa)
5690 {
5691 	mutex_enter(&spa->spa_async_lock);
5692 	ASSERT(spa->spa_async_suspended != 0);
5693 	spa->spa_async_suspended--;
5694 	mutex_exit(&spa->spa_async_lock);
5695 }
5696 
5697 static boolean_t
5698 spa_async_tasks_pending(spa_t *spa)
5699 {
5700 	uint_t non_config_tasks;
5701 	uint_t config_task;
5702 	boolean_t config_task_suspended;
5703 
5704 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5705 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5706 	if (spa->spa_ccw_fail_time == 0) {
5707 		config_task_suspended = B_FALSE;
5708 	} else {
5709 		config_task_suspended =
5710 		    (gethrtime() - spa->spa_ccw_fail_time) <
5711 		    (zfs_ccw_retry_interval * NANOSEC);
5712 	}
5713 
5714 	return (non_config_tasks || (config_task && !config_task_suspended));
5715 }
5716 
5717 static void
5718 spa_async_dispatch(spa_t *spa)
5719 {
5720 	mutex_enter(&spa->spa_async_lock);
5721 	if (spa_async_tasks_pending(spa) &&
5722 	    !spa->spa_async_suspended &&
5723 	    spa->spa_async_thread == NULL &&
5724 	    rootdir != NULL)
5725 		spa->spa_async_thread = thread_create(NULL, 0,
5726 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5727 	mutex_exit(&spa->spa_async_lock);
5728 }
5729 
5730 void
5731 spa_async_request(spa_t *spa, int task)
5732 {
5733 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5734 	mutex_enter(&spa->spa_async_lock);
5735 	spa->spa_async_tasks |= task;
5736 	mutex_exit(&spa->spa_async_lock);
5737 }
5738 
5739 /*
5740  * ==========================================================================
5741  * SPA syncing routines
5742  * ==========================================================================
5743  */
5744 
5745 static int
5746 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5747 {
5748 	bpobj_t *bpo = arg;
5749 	bpobj_enqueue(bpo, bp, tx);
5750 	return (0);
5751 }
5752 
5753 static int
5754 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5755 {
5756 	zio_t *zio = arg;
5757 
5758 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5759 	    zio->io_flags));
5760 	return (0);
5761 }
5762 
5763 /*
5764  * Note: this simple function is not inlined to make it easier to dtrace the
5765  * amount of time spent syncing frees.
5766  */
5767 static void
5768 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5769 {
5770 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5771 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5772 	VERIFY(zio_wait(zio) == 0);
5773 }
5774 
5775 /*
5776  * Note: this simple function is not inlined to make it easier to dtrace the
5777  * amount of time spent syncing deferred frees.
5778  */
5779 static void
5780 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5781 {
5782 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5783 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5784 	    spa_free_sync_cb, zio, tx), ==, 0);
5785 	VERIFY0(zio_wait(zio));
5786 }
5787 
5788 
5789 static void
5790 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5791 {
5792 	char *packed = NULL;
5793 	size_t bufsize;
5794 	size_t nvsize = 0;
5795 	dmu_buf_t *db;
5796 
5797 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5798 
5799 	/*
5800 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5801 	 * information.  This avoids the dmu_buf_will_dirty() path and
5802 	 * saves us a pre-read to get data we don't actually care about.
5803 	 */
5804 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5805 	packed = kmem_alloc(bufsize, KM_SLEEP);
5806 
5807 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5808 	    KM_SLEEP) == 0);
5809 	bzero(packed + nvsize, bufsize - nvsize);
5810 
5811 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5812 
5813 	kmem_free(packed, bufsize);
5814 
5815 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5816 	dmu_buf_will_dirty(db, tx);
5817 	*(uint64_t *)db->db_data = nvsize;
5818 	dmu_buf_rele(db, FTAG);
5819 }
5820 
5821 static void
5822 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5823     const char *config, const char *entry)
5824 {
5825 	nvlist_t *nvroot;
5826 	nvlist_t **list;
5827 	int i;
5828 
5829 	if (!sav->sav_sync)
5830 		return;
5831 
5832 	/*
5833 	 * Update the MOS nvlist describing the list of available devices.
5834 	 * spa_validate_aux() will have already made sure this nvlist is
5835 	 * valid and the vdevs are labeled appropriately.
5836 	 */
5837 	if (sav->sav_object == 0) {
5838 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5839 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5840 		    sizeof (uint64_t), tx);
5841 		VERIFY(zap_update(spa->spa_meta_objset,
5842 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5843 		    &sav->sav_object, tx) == 0);
5844 	}
5845 
5846 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5847 	if (sav->sav_count == 0) {
5848 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5849 	} else {
5850 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5851 		for (i = 0; i < sav->sav_count; i++)
5852 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5853 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5854 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5855 		    sav->sav_count) == 0);
5856 		for (i = 0; i < sav->sav_count; i++)
5857 			nvlist_free(list[i]);
5858 		kmem_free(list, sav->sav_count * sizeof (void *));
5859 	}
5860 
5861 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5862 	nvlist_free(nvroot);
5863 
5864 	sav->sav_sync = B_FALSE;
5865 }
5866 
5867 static void
5868 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5869 {
5870 	nvlist_t *config;
5871 
5872 	if (list_is_empty(&spa->spa_config_dirty_list))
5873 		return;
5874 
5875 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5876 
5877 	config = spa_config_generate(spa, spa->spa_root_vdev,
5878 	    dmu_tx_get_txg(tx), B_FALSE);
5879 
5880 	/*
5881 	 * If we're upgrading the spa version then make sure that
5882 	 * the config object gets updated with the correct version.
5883 	 */
5884 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5885 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5886 		    spa->spa_uberblock.ub_version);
5887 
5888 	spa_config_exit(spa, SCL_STATE, FTAG);
5889 
5890 	if (spa->spa_config_syncing)
5891 		nvlist_free(spa->spa_config_syncing);
5892 	spa->spa_config_syncing = config;
5893 
5894 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5895 }
5896 
5897 static void
5898 spa_sync_version(void *arg, dmu_tx_t *tx)
5899 {
5900 	uint64_t *versionp = arg;
5901 	uint64_t version = *versionp;
5902 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5903 
5904 	/*
5905 	 * Setting the version is special cased when first creating the pool.
5906 	 */
5907 	ASSERT(tx->tx_txg != TXG_INITIAL);
5908 
5909 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5910 	ASSERT(version >= spa_version(spa));
5911 
5912 	spa->spa_uberblock.ub_version = version;
5913 	vdev_config_dirty(spa->spa_root_vdev);
5914 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5915 }
5916 
5917 /*
5918  * Set zpool properties.
5919  */
5920 static void
5921 spa_sync_props(void *arg, dmu_tx_t *tx)
5922 {
5923 	nvlist_t *nvp = arg;
5924 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5925 	objset_t *mos = spa->spa_meta_objset;
5926 	nvpair_t *elem = NULL;
5927 
5928 	mutex_enter(&spa->spa_props_lock);
5929 
5930 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5931 		uint64_t intval;
5932 		char *strval, *fname;
5933 		zpool_prop_t prop;
5934 		const char *propname;
5935 		zprop_type_t proptype;
5936 		spa_feature_t fid;
5937 
5938 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5939 		case ZPROP_INVAL:
5940 			/*
5941 			 * We checked this earlier in spa_prop_validate().
5942 			 */
5943 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5944 
5945 			fname = strchr(nvpair_name(elem), '@') + 1;
5946 			VERIFY0(zfeature_lookup_name(fname, &fid));
5947 
5948 			spa_feature_enable(spa, fid, tx);
5949 			spa_history_log_internal(spa, "set", tx,
5950 			    "%s=enabled", nvpair_name(elem));
5951 			break;
5952 
5953 		case ZPOOL_PROP_VERSION:
5954 			intval = fnvpair_value_uint64(elem);
5955 			/*
5956 			 * The version is synced seperatly before other
5957 			 * properties and should be correct by now.
5958 			 */
5959 			ASSERT3U(spa_version(spa), >=, intval);
5960 			break;
5961 
5962 		case ZPOOL_PROP_ALTROOT:
5963 			/*
5964 			 * 'altroot' is a non-persistent property. It should
5965 			 * have been set temporarily at creation or import time.
5966 			 */
5967 			ASSERT(spa->spa_root != NULL);
5968 			break;
5969 
5970 		case ZPOOL_PROP_READONLY:
5971 		case ZPOOL_PROP_CACHEFILE:
5972 			/*
5973 			 * 'readonly' and 'cachefile' are also non-persisitent
5974 			 * properties.
5975 			 */
5976 			break;
5977 		case ZPOOL_PROP_COMMENT:
5978 			strval = fnvpair_value_string(elem);
5979 			if (spa->spa_comment != NULL)
5980 				spa_strfree(spa->spa_comment);
5981 			spa->spa_comment = spa_strdup(strval);
5982 			/*
5983 			 * We need to dirty the configuration on all the vdevs
5984 			 * so that their labels get updated.  It's unnecessary
5985 			 * to do this for pool creation since the vdev's
5986 			 * configuratoin has already been dirtied.
5987 			 */
5988 			if (tx->tx_txg != TXG_INITIAL)
5989 				vdev_config_dirty(spa->spa_root_vdev);
5990 			spa_history_log_internal(spa, "set", tx,
5991 			    "%s=%s", nvpair_name(elem), strval);
5992 			break;
5993 		default:
5994 			/*
5995 			 * Set pool property values in the poolprops mos object.
5996 			 */
5997 			if (spa->spa_pool_props_object == 0) {
5998 				spa->spa_pool_props_object =
5999 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6000 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6001 				    tx);
6002 			}
6003 
6004 			/* normalize the property name */
6005 			propname = zpool_prop_to_name(prop);
6006 			proptype = zpool_prop_get_type(prop);
6007 
6008 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6009 				ASSERT(proptype == PROP_TYPE_STRING);
6010 				strval = fnvpair_value_string(elem);
6011 				VERIFY0(zap_update(mos,
6012 				    spa->spa_pool_props_object, propname,
6013 				    1, strlen(strval) + 1, strval, tx));
6014 				spa_history_log_internal(spa, "set", tx,
6015 				    "%s=%s", nvpair_name(elem), strval);
6016 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6017 				intval = fnvpair_value_uint64(elem);
6018 
6019 				if (proptype == PROP_TYPE_INDEX) {
6020 					const char *unused;
6021 					VERIFY0(zpool_prop_index_to_string(
6022 					    prop, intval, &unused));
6023 				}
6024 				VERIFY0(zap_update(mos,
6025 				    spa->spa_pool_props_object, propname,
6026 				    8, 1, &intval, tx));
6027 				spa_history_log_internal(spa, "set", tx,
6028 				    "%s=%lld", nvpair_name(elem), intval);
6029 			} else {
6030 				ASSERT(0); /* not allowed */
6031 			}
6032 
6033 			switch (prop) {
6034 			case ZPOOL_PROP_DELEGATION:
6035 				spa->spa_delegation = intval;
6036 				break;
6037 			case ZPOOL_PROP_BOOTFS:
6038 				spa->spa_bootfs = intval;
6039 				break;
6040 			case ZPOOL_PROP_FAILUREMODE:
6041 				spa->spa_failmode = intval;
6042 				break;
6043 			case ZPOOL_PROP_AUTOEXPAND:
6044 				spa->spa_autoexpand = intval;
6045 				if (tx->tx_txg != TXG_INITIAL)
6046 					spa_async_request(spa,
6047 					    SPA_ASYNC_AUTOEXPAND);
6048 				break;
6049 			case ZPOOL_PROP_DEDUPDITTO:
6050 				spa->spa_dedup_ditto = intval;
6051 				break;
6052 			default:
6053 				break;
6054 			}
6055 		}
6056 
6057 	}
6058 
6059 	mutex_exit(&spa->spa_props_lock);
6060 }
6061 
6062 /*
6063  * Perform one-time upgrade on-disk changes.  spa_version() does not
6064  * reflect the new version this txg, so there must be no changes this
6065  * txg to anything that the upgrade code depends on after it executes.
6066  * Therefore this must be called after dsl_pool_sync() does the sync
6067  * tasks.
6068  */
6069 static void
6070 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6071 {
6072 	dsl_pool_t *dp = spa->spa_dsl_pool;
6073 
6074 	ASSERT(spa->spa_sync_pass == 1);
6075 
6076 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6077 
6078 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6079 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6080 		dsl_pool_create_origin(dp, tx);
6081 
6082 		/* Keeping the origin open increases spa_minref */
6083 		spa->spa_minref += 3;
6084 	}
6085 
6086 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6087 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6088 		dsl_pool_upgrade_clones(dp, tx);
6089 	}
6090 
6091 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6092 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6093 		dsl_pool_upgrade_dir_clones(dp, tx);
6094 
6095 		/* Keeping the freedir open increases spa_minref */
6096 		spa->spa_minref += 3;
6097 	}
6098 
6099 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6100 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6101 		spa_feature_create_zap_objects(spa, tx);
6102 	}
6103 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6104 }
6105 
6106 /*
6107  * Sync the specified transaction group.  New blocks may be dirtied as
6108  * part of the process, so we iterate until it converges.
6109  */
6110 void
6111 spa_sync(spa_t *spa, uint64_t txg)
6112 {
6113 	dsl_pool_t *dp = spa->spa_dsl_pool;
6114 	objset_t *mos = spa->spa_meta_objset;
6115 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6116 	vdev_t *rvd = spa->spa_root_vdev;
6117 	vdev_t *vd;
6118 	dmu_tx_t *tx;
6119 	int error;
6120 
6121 	VERIFY(spa_writeable(spa));
6122 
6123 	/*
6124 	 * Lock out configuration changes.
6125 	 */
6126 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6127 
6128 	spa->spa_syncing_txg = txg;
6129 	spa->spa_sync_pass = 0;
6130 
6131 	/*
6132 	 * If there are any pending vdev state changes, convert them
6133 	 * into config changes that go out with this transaction group.
6134 	 */
6135 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6136 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6137 		/*
6138 		 * We need the write lock here because, for aux vdevs,
6139 		 * calling vdev_config_dirty() modifies sav_config.
6140 		 * This is ugly and will become unnecessary when we
6141 		 * eliminate the aux vdev wart by integrating all vdevs
6142 		 * into the root vdev tree.
6143 		 */
6144 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6145 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6146 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6147 			vdev_state_clean(vd);
6148 			vdev_config_dirty(vd);
6149 		}
6150 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6151 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6152 	}
6153 	spa_config_exit(spa, SCL_STATE, FTAG);
6154 
6155 	tx = dmu_tx_create_assigned(dp, txg);
6156 
6157 	spa->spa_sync_starttime = gethrtime();
6158 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6159 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6160 
6161 	/*
6162 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6163 	 * set spa_deflate if we have no raid-z vdevs.
6164 	 */
6165 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6166 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6167 		int i;
6168 
6169 		for (i = 0; i < rvd->vdev_children; i++) {
6170 			vd = rvd->vdev_child[i];
6171 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6172 				break;
6173 		}
6174 		if (i == rvd->vdev_children) {
6175 			spa->spa_deflate = TRUE;
6176 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6177 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6178 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6179 		}
6180 	}
6181 
6182 	/*
6183 	 * If anything has changed in this txg, or if someone is waiting
6184 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6185 	 * deferred frees from the previous txg.  If not, leave them
6186 	 * alone so that we don't generate work on an otherwise idle
6187 	 * system.
6188 	 */
6189 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6190 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6191 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6192 	    ((dsl_scan_active(dp->dp_scan) ||
6193 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6194 		spa_sync_deferred_frees(spa, tx);
6195 	}
6196 
6197 	/*
6198 	 * Iterate to convergence.
6199 	 */
6200 	do {
6201 		int pass = ++spa->spa_sync_pass;
6202 
6203 		spa_sync_config_object(spa, tx);
6204 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6205 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6206 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6207 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6208 		spa_errlog_sync(spa, txg);
6209 		dsl_pool_sync(dp, txg);
6210 
6211 		if (pass < zfs_sync_pass_deferred_free) {
6212 			spa_sync_frees(spa, free_bpl, tx);
6213 		} else {
6214 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6215 			    &spa->spa_deferred_bpobj, tx);
6216 		}
6217 
6218 		ddt_sync(spa, txg);
6219 		dsl_scan_sync(dp, tx);
6220 
6221 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6222 			vdev_sync(vd, txg);
6223 
6224 		if (pass == 1)
6225 			spa_sync_upgrades(spa, tx);
6226 
6227 	} while (dmu_objset_is_dirty(mos, txg));
6228 
6229 	/*
6230 	 * Rewrite the vdev configuration (which includes the uberblock)
6231 	 * to commit the transaction group.
6232 	 *
6233 	 * If there are no dirty vdevs, we sync the uberblock to a few
6234 	 * random top-level vdevs that are known to be visible in the
6235 	 * config cache (see spa_vdev_add() for a complete description).
6236 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6237 	 */
6238 	for (;;) {
6239 		/*
6240 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6241 		 * while we're attempting to write the vdev labels.
6242 		 */
6243 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6244 
6245 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6246 			vdev_t *svd[SPA_DVAS_PER_BP];
6247 			int svdcount = 0;
6248 			int children = rvd->vdev_children;
6249 			int c0 = spa_get_random(children);
6250 
6251 			for (int c = 0; c < children; c++) {
6252 				vd = rvd->vdev_child[(c0 + c) % children];
6253 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6254 					continue;
6255 				svd[svdcount++] = vd;
6256 				if (svdcount == SPA_DVAS_PER_BP)
6257 					break;
6258 			}
6259 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6260 			if (error != 0)
6261 				error = vdev_config_sync(svd, svdcount, txg,
6262 				    B_TRUE);
6263 		} else {
6264 			error = vdev_config_sync(rvd->vdev_child,
6265 			    rvd->vdev_children, txg, B_FALSE);
6266 			if (error != 0)
6267 				error = vdev_config_sync(rvd->vdev_child,
6268 				    rvd->vdev_children, txg, B_TRUE);
6269 		}
6270 
6271 		if (error == 0)
6272 			spa->spa_last_synced_guid = rvd->vdev_guid;
6273 
6274 		spa_config_exit(spa, SCL_STATE, FTAG);
6275 
6276 		if (error == 0)
6277 			break;
6278 		zio_suspend(spa, NULL);
6279 		zio_resume_wait(spa);
6280 	}
6281 	dmu_tx_commit(tx);
6282 
6283 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6284 
6285 	/*
6286 	 * Clear the dirty config list.
6287 	 */
6288 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6289 		vdev_config_clean(vd);
6290 
6291 	/*
6292 	 * Now that the new config has synced transactionally,
6293 	 * let it become visible to the config cache.
6294 	 */
6295 	if (spa->spa_config_syncing != NULL) {
6296 		spa_config_set(spa, spa->spa_config_syncing);
6297 		spa->spa_config_txg = txg;
6298 		spa->spa_config_syncing = NULL;
6299 	}
6300 
6301 	spa->spa_ubsync = spa->spa_uberblock;
6302 
6303 	dsl_pool_sync_done(dp, txg);
6304 
6305 	/*
6306 	 * Update usable space statistics.
6307 	 */
6308 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6309 		vdev_sync_done(vd, txg);
6310 
6311 	spa_update_dspace(spa);
6312 
6313 	/*
6314 	 * It had better be the case that we didn't dirty anything
6315 	 * since vdev_config_sync().
6316 	 */
6317 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6318 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6319 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6320 
6321 	spa->spa_sync_pass = 0;
6322 
6323 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6324 
6325 	spa_handle_ignored_writes(spa);
6326 
6327 	/*
6328 	 * If any async tasks have been requested, kick them off.
6329 	 */
6330 	spa_async_dispatch(spa);
6331 }
6332 
6333 /*
6334  * Sync all pools.  We don't want to hold the namespace lock across these
6335  * operations, so we take a reference on the spa_t and drop the lock during the
6336  * sync.
6337  */
6338 void
6339 spa_sync_allpools(void)
6340 {
6341 	spa_t *spa = NULL;
6342 	mutex_enter(&spa_namespace_lock);
6343 	while ((spa = spa_next(spa)) != NULL) {
6344 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6345 		    !spa_writeable(spa) || spa_suspended(spa))
6346 			continue;
6347 		spa_open_ref(spa, FTAG);
6348 		mutex_exit(&spa_namespace_lock);
6349 		txg_wait_synced(spa_get_dsl(spa), 0);
6350 		mutex_enter(&spa_namespace_lock);
6351 		spa_close(spa, FTAG);
6352 	}
6353 	mutex_exit(&spa_namespace_lock);
6354 }
6355 
6356 /*
6357  * ==========================================================================
6358  * Miscellaneous routines
6359  * ==========================================================================
6360  */
6361 
6362 /*
6363  * Remove all pools in the system.
6364  */
6365 void
6366 spa_evict_all(void)
6367 {
6368 	spa_t *spa;
6369 
6370 	/*
6371 	 * Remove all cached state.  All pools should be closed now,
6372 	 * so every spa in the AVL tree should be unreferenced.
6373 	 */
6374 	mutex_enter(&spa_namespace_lock);
6375 	while ((spa = spa_next(NULL)) != NULL) {
6376 		/*
6377 		 * Stop async tasks.  The async thread may need to detach
6378 		 * a device that's been replaced, which requires grabbing
6379 		 * spa_namespace_lock, so we must drop it here.
6380 		 */
6381 		spa_open_ref(spa, FTAG);
6382 		mutex_exit(&spa_namespace_lock);
6383 		spa_async_suspend(spa);
6384 		mutex_enter(&spa_namespace_lock);
6385 		spa_close(spa, FTAG);
6386 
6387 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6388 			spa_unload(spa);
6389 			spa_deactivate(spa);
6390 		}
6391 		spa_remove(spa);
6392 	}
6393 	mutex_exit(&spa_namespace_lock);
6394 }
6395 
6396 vdev_t *
6397 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6398 {
6399 	vdev_t *vd;
6400 	int i;
6401 
6402 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6403 		return (vd);
6404 
6405 	if (aux) {
6406 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6407 			vd = spa->spa_l2cache.sav_vdevs[i];
6408 			if (vd->vdev_guid == guid)
6409 				return (vd);
6410 		}
6411 
6412 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6413 			vd = spa->spa_spares.sav_vdevs[i];
6414 			if (vd->vdev_guid == guid)
6415 				return (vd);
6416 		}
6417 	}
6418 
6419 	return (NULL);
6420 }
6421 
6422 void
6423 spa_upgrade(spa_t *spa, uint64_t version)
6424 {
6425 	ASSERT(spa_writeable(spa));
6426 
6427 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6428 
6429 	/*
6430 	 * This should only be called for a non-faulted pool, and since a
6431 	 * future version would result in an unopenable pool, this shouldn't be
6432 	 * possible.
6433 	 */
6434 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6435 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6436 
6437 	spa->spa_uberblock.ub_version = version;
6438 	vdev_config_dirty(spa->spa_root_vdev);
6439 
6440 	spa_config_exit(spa, SCL_ALL, FTAG);
6441 
6442 	txg_wait_synced(spa_get_dsl(spa), 0);
6443 }
6444 
6445 boolean_t
6446 spa_has_spare(spa_t *spa, uint64_t guid)
6447 {
6448 	int i;
6449 	uint64_t spareguid;
6450 	spa_aux_vdev_t *sav = &spa->spa_spares;
6451 
6452 	for (i = 0; i < sav->sav_count; i++)
6453 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6454 			return (B_TRUE);
6455 
6456 	for (i = 0; i < sav->sav_npending; i++) {
6457 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6458 		    &spareguid) == 0 && spareguid == guid)
6459 			return (B_TRUE);
6460 	}
6461 
6462 	return (B_FALSE);
6463 }
6464 
6465 /*
6466  * Check if a pool has an active shared spare device.
6467  * Note: reference count of an active spare is 2, as a spare and as a replace
6468  */
6469 static boolean_t
6470 spa_has_active_shared_spare(spa_t *spa)
6471 {
6472 	int i, refcnt;
6473 	uint64_t pool;
6474 	spa_aux_vdev_t *sav = &spa->spa_spares;
6475 
6476 	for (i = 0; i < sav->sav_count; i++) {
6477 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6478 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6479 		    refcnt > 2)
6480 			return (B_TRUE);
6481 	}
6482 
6483 	return (B_FALSE);
6484 }
6485 
6486 /*
6487  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6488  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6489  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6490  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6491  * or zdb as real changes.
6492  */
6493 void
6494 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6495 {
6496 #ifdef _KERNEL
6497 	sysevent_t		*ev;
6498 	sysevent_attr_list_t	*attr = NULL;
6499 	sysevent_value_t	value;
6500 	sysevent_id_t		eid;
6501 
6502 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6503 	    SE_SLEEP);
6504 
6505 	value.value_type = SE_DATA_TYPE_STRING;
6506 	value.value.sv_string = spa_name(spa);
6507 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6508 		goto done;
6509 
6510 	value.value_type = SE_DATA_TYPE_UINT64;
6511 	value.value.sv_uint64 = spa_guid(spa);
6512 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6513 		goto done;
6514 
6515 	if (vd) {
6516 		value.value_type = SE_DATA_TYPE_UINT64;
6517 		value.value.sv_uint64 = vd->vdev_guid;
6518 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6519 		    SE_SLEEP) != 0)
6520 			goto done;
6521 
6522 		if (vd->vdev_path) {
6523 			value.value_type = SE_DATA_TYPE_STRING;
6524 			value.value.sv_string = vd->vdev_path;
6525 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6526 			    &value, SE_SLEEP) != 0)
6527 				goto done;
6528 		}
6529 	}
6530 
6531 	if (sysevent_attach_attributes(ev, attr) != 0)
6532 		goto done;
6533 	attr = NULL;
6534 
6535 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6536 
6537 done:
6538 	if (attr)
6539 		sysevent_free_attr(attr);
6540 	sysevent_free(ev);
6541 #endif
6542 }
6543