1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Close all vdevs. 1234 */ 1235 if (spa->spa_root_vdev) 1236 vdev_free(spa->spa_root_vdev); 1237 ASSERT(spa->spa_root_vdev == NULL); 1238 1239 /* 1240 * Close the dsl pool. 1241 */ 1242 if (spa->spa_dsl_pool) { 1243 dsl_pool_close(spa->spa_dsl_pool); 1244 spa->spa_dsl_pool = NULL; 1245 spa->spa_meta_objset = NULL; 1246 } 1247 1248 ddt_unload(spa); 1249 1250 1251 /* 1252 * Drop and purge level 2 cache 1253 */ 1254 spa_l2cache_drop(spa); 1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++) 1257 vdev_free(spa->spa_spares.sav_vdevs[i]); 1258 if (spa->spa_spares.sav_vdevs) { 1259 kmem_free(spa->spa_spares.sav_vdevs, 1260 spa->spa_spares.sav_count * sizeof (void *)); 1261 spa->spa_spares.sav_vdevs = NULL; 1262 } 1263 if (spa->spa_spares.sav_config) { 1264 nvlist_free(spa->spa_spares.sav_config); 1265 spa->spa_spares.sav_config = NULL; 1266 } 1267 spa->spa_spares.sav_count = 0; 1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1272 } 1273 if (spa->spa_l2cache.sav_vdevs) { 1274 kmem_free(spa->spa_l2cache.sav_vdevs, 1275 spa->spa_l2cache.sav_count * sizeof (void *)); 1276 spa->spa_l2cache.sav_vdevs = NULL; 1277 } 1278 if (spa->spa_l2cache.sav_config) { 1279 nvlist_free(spa->spa_l2cache.sav_config); 1280 spa->spa_l2cache.sav_config = NULL; 1281 } 1282 spa->spa_l2cache.sav_count = 0; 1283 1284 spa->spa_async_suspended = 0; 1285 1286 if (spa->spa_comment != NULL) { 1287 spa_strfree(spa->spa_comment); 1288 spa->spa_comment = NULL; 1289 } 1290 1291 spa_config_exit(spa, SCL_ALL, FTAG); 1292 } 1293 1294 /* 1295 * Load (or re-load) the current list of vdevs describing the active spares for 1296 * this pool. When this is called, we have some form of basic information in 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1298 * then re-generate a more complete list including status information. 1299 */ 1300 static void 1301 spa_load_spares(spa_t *spa) 1302 { 1303 nvlist_t **spares; 1304 uint_t nspares; 1305 int i; 1306 vdev_t *vd, *tvd; 1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1309 1310 /* 1311 * First, close and free any existing spare vdevs. 1312 */ 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1314 vd = spa->spa_spares.sav_vdevs[i]; 1315 1316 /* Undo the call to spa_activate() below */ 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1318 B_FALSE)) != NULL && tvd->vdev_isspare) 1319 spa_spare_remove(tvd); 1320 vdev_close(vd); 1321 vdev_free(vd); 1322 } 1323 1324 if (spa->spa_spares.sav_vdevs) 1325 kmem_free(spa->spa_spares.sav_vdevs, 1326 spa->spa_spares.sav_count * sizeof (void *)); 1327 1328 if (spa->spa_spares.sav_config == NULL) 1329 nspares = 0; 1330 else 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1333 1334 spa->spa_spares.sav_count = (int)nspares; 1335 spa->spa_spares.sav_vdevs = NULL; 1336 1337 if (nspares == 0) 1338 return; 1339 1340 /* 1341 * Construct the array of vdevs, opening them to get status in the 1342 * process. For each spare, there is potentially two different vdev_t 1343 * structures associated with it: one in the list of spares (used only 1344 * for basic validation purposes) and one in the active vdev 1345 * configuration (if it's spared in). During this phase we open and 1346 * validate each vdev on the spare list. If the vdev also exists in the 1347 * active configuration, then we also mark this vdev as an active spare. 1348 */ 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1350 KM_SLEEP); 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1353 VDEV_ALLOC_SPARE) == 0); 1354 ASSERT(vd != NULL); 1355 1356 spa->spa_spares.sav_vdevs[i] = vd; 1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL) { 1360 if (!tvd->vdev_isspare) 1361 spa_spare_add(tvd); 1362 1363 /* 1364 * We only mark the spare active if we were successfully 1365 * able to load the vdev. Otherwise, importing a pool 1366 * with a bad active spare would result in strange 1367 * behavior, because multiple pool would think the spare 1368 * is actively in use. 1369 * 1370 * There is a vulnerability here to an equally bizarre 1371 * circumstance, where a dead active spare is later 1372 * brought back to life (onlined or otherwise). Given 1373 * the rarity of this scenario, and the extra complexity 1374 * it adds, we ignore the possibility. 1375 */ 1376 if (!vdev_is_dead(tvd)) 1377 spa_spare_activate(tvd); 1378 } 1379 1380 vd->vdev_top = vd; 1381 vd->vdev_aux = &spa->spa_spares; 1382 1383 if (vdev_open(vd) != 0) 1384 continue; 1385 1386 if (vdev_validate_aux(vd) == 0) 1387 spa_spare_add(vd); 1388 } 1389 1390 /* 1391 * Recompute the stashed list of spares, with status information 1392 * this time. 1393 */ 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1395 DATA_TYPE_NVLIST_ARRAY) == 0); 1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1398 KM_SLEEP); 1399 for (i = 0; i < spa->spa_spares.sav_count; i++) 1400 spares[i] = vdev_config_generate(spa, 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1404 for (i = 0; i < spa->spa_spares.sav_count; i++) 1405 nvlist_free(spares[i]); 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1407 } 1408 1409 /* 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for 1411 * this pool. When this is called, we have some form of basic information in 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1413 * then re-generate a more complete list including status information. 1414 * Devices which are already active have their details maintained, and are 1415 * not re-opened. 1416 */ 1417 static void 1418 spa_load_l2cache(spa_t *spa) 1419 { 1420 nvlist_t **l2cache; 1421 uint_t nl2cache; 1422 int i, j, oldnvdevs; 1423 uint64_t guid; 1424 vdev_t *vd, **oldvdevs, **newvdevs; 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1428 1429 if (sav->sav_config != NULL) { 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1433 } else { 1434 nl2cache = 0; 1435 newvdevs = NULL; 1436 } 1437 1438 oldvdevs = sav->sav_vdevs; 1439 oldnvdevs = sav->sav_count; 1440 sav->sav_vdevs = NULL; 1441 sav->sav_count = 0; 1442 1443 /* 1444 * Process new nvlist of vdevs. 1445 */ 1446 for (i = 0; i < nl2cache; i++) { 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1448 &guid) == 0); 1449 1450 newvdevs[i] = NULL; 1451 for (j = 0; j < oldnvdevs; j++) { 1452 vd = oldvdevs[j]; 1453 if (vd != NULL && guid == vd->vdev_guid) { 1454 /* 1455 * Retain previous vdev for add/remove ops. 1456 */ 1457 newvdevs[i] = vd; 1458 oldvdevs[j] = NULL; 1459 break; 1460 } 1461 } 1462 1463 if (newvdevs[i] == NULL) { 1464 /* 1465 * Create new vdev 1466 */ 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1468 VDEV_ALLOC_L2CACHE) == 0); 1469 ASSERT(vd != NULL); 1470 newvdevs[i] = vd; 1471 1472 /* 1473 * Commit this vdev as an l2cache device, 1474 * even if it fails to open. 1475 */ 1476 spa_l2cache_add(vd); 1477 1478 vd->vdev_top = vd; 1479 vd->vdev_aux = sav; 1480 1481 spa_l2cache_activate(vd); 1482 1483 if (vdev_open(vd) != 0) 1484 continue; 1485 1486 (void) vdev_validate_aux(vd); 1487 1488 if (!vdev_is_dead(vd)) 1489 l2arc_add_vdev(spa, vd); 1490 } 1491 } 1492 1493 /* 1494 * Purge vdevs that were dropped 1495 */ 1496 for (i = 0; i < oldnvdevs; i++) { 1497 uint64_t pool; 1498 1499 vd = oldvdevs[i]; 1500 if (vd != NULL) { 1501 ASSERT(vd->vdev_isl2cache); 1502 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1504 pool != 0ULL && l2arc_vdev_present(vd)) 1505 l2arc_remove_vdev(vd); 1506 vdev_clear_stats(vd); 1507 vdev_free(vd); 1508 } 1509 } 1510 1511 if (oldvdevs) 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1513 1514 if (sav->sav_config == NULL) 1515 goto out; 1516 1517 sav->sav_vdevs = newvdevs; 1518 sav->sav_count = (int)nl2cache; 1519 1520 /* 1521 * Recompute the stashed list of l2cache devices, with status 1522 * information this time. 1523 */ 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1525 DATA_TYPE_NVLIST_ARRAY) == 0); 1526 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1528 for (i = 0; i < sav->sav_count; i++) 1529 l2cache[i] = vdev_config_generate(spa, 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1533 out: 1534 for (i = 0; i < sav->sav_count; i++) 1535 nvlist_free(l2cache[i]); 1536 if (sav->sav_count) 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1538 } 1539 1540 static int 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1542 { 1543 dmu_buf_t *db; 1544 char *packed = NULL; 1545 size_t nvsize = 0; 1546 int error; 1547 *value = NULL; 1548 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1550 nvsize = *(uint64_t *)db->db_data; 1551 dmu_buf_rele(db, FTAG); 1552 1553 packed = kmem_alloc(nvsize, KM_SLEEP); 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1555 DMU_READ_PREFETCH); 1556 if (error == 0) 1557 error = nvlist_unpack(packed, nvsize, value, 0); 1558 kmem_free(packed, nvsize); 1559 1560 return (error); 1561 } 1562 1563 /* 1564 * Checks to see if the given vdev could not be opened, in which case we post a 1565 * sysevent to notify the autoreplace code that the device has been removed. 1566 */ 1567 static void 1568 spa_check_removed(vdev_t *vd) 1569 { 1570 for (int c = 0; c < vd->vdev_children; c++) 1571 spa_check_removed(vd->vdev_child[c]); 1572 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1574 !vd->vdev_ishole) { 1575 zfs_post_autoreplace(vd->vdev_spa, vd); 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1577 } 1578 } 1579 1580 /* 1581 * Validate the current config against the MOS config 1582 */ 1583 static boolean_t 1584 spa_config_valid(spa_t *spa, nvlist_t *config) 1585 { 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1587 nvlist_t *nv; 1588 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1590 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1593 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1595 1596 /* 1597 * If we're doing a normal import, then build up any additional 1598 * diagnostic information about missing devices in this config. 1599 * We'll pass this up to the user for further processing. 1600 */ 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1602 nvlist_t **child, *nv; 1603 uint64_t idx = 0; 1604 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1606 KM_SLEEP); 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1608 1609 for (int c = 0; c < rvd->vdev_children; c++) { 1610 vdev_t *tvd = rvd->vdev_child[c]; 1611 vdev_t *mtvd = mrvd->vdev_child[c]; 1612 1613 if (tvd->vdev_ops == &vdev_missing_ops && 1614 mtvd->vdev_ops != &vdev_missing_ops && 1615 mtvd->vdev_islog) 1616 child[idx++] = vdev_config_generate(spa, mtvd, 1617 B_FALSE, 0); 1618 } 1619 1620 if (idx) { 1621 VERIFY(nvlist_add_nvlist_array(nv, 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1625 1626 for (int i = 0; i < idx; i++) 1627 nvlist_free(child[i]); 1628 } 1629 nvlist_free(nv); 1630 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1631 } 1632 1633 /* 1634 * Compare the root vdev tree with the information we have 1635 * from the MOS config (mrvd). Check each top-level vdev 1636 * with the corresponding MOS config top-level (mtvd). 1637 */ 1638 for (int c = 0; c < rvd->vdev_children; c++) { 1639 vdev_t *tvd = rvd->vdev_child[c]; 1640 vdev_t *mtvd = mrvd->vdev_child[c]; 1641 1642 /* 1643 * Resolve any "missing" vdevs in the current configuration. 1644 * If we find that the MOS config has more accurate information 1645 * about the top-level vdev then use that vdev instead. 1646 */ 1647 if (tvd->vdev_ops == &vdev_missing_ops && 1648 mtvd->vdev_ops != &vdev_missing_ops) { 1649 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1651 continue; 1652 1653 /* 1654 * Device specific actions. 1655 */ 1656 if (mtvd->vdev_islog) { 1657 spa_set_log_state(spa, SPA_LOG_CLEAR); 1658 } else { 1659 /* 1660 * XXX - once we have 'readonly' pool 1661 * support we should be able to handle 1662 * missing data devices by transitioning 1663 * the pool to readonly. 1664 */ 1665 continue; 1666 } 1667 1668 /* 1669 * Swap the missing vdev with the data we were 1670 * able to obtain from the MOS config. 1671 */ 1672 vdev_remove_child(rvd, tvd); 1673 vdev_remove_child(mrvd, mtvd); 1674 1675 vdev_add_child(rvd, mtvd); 1676 vdev_add_child(mrvd, tvd); 1677 1678 spa_config_exit(spa, SCL_ALL, FTAG); 1679 vdev_load(mtvd); 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1681 1682 vdev_reopen(rvd); 1683 } else if (mtvd->vdev_islog) { 1684 /* 1685 * Load the slog device's state from the MOS config 1686 * since it's possible that the label does not 1687 * contain the most up-to-date information. 1688 */ 1689 vdev_load_log_state(tvd, mtvd); 1690 vdev_reopen(tvd); 1691 } 1692 } 1693 vdev_free(mrvd); 1694 spa_config_exit(spa, SCL_ALL, FTAG); 1695 1696 /* 1697 * Ensure we were able to validate the config. 1698 */ 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1700 } 1701 1702 /* 1703 * Check for missing log devices 1704 */ 1705 static boolean_t 1706 spa_check_logs(spa_t *spa) 1707 { 1708 boolean_t rv = B_FALSE; 1709 1710 switch (spa->spa_log_state) { 1711 case SPA_LOG_MISSING: 1712 /* need to recheck in case slog has been restored */ 1713 case SPA_LOG_UNKNOWN: 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1715 NULL, DS_FIND_CHILDREN) != 0); 1716 if (rv) 1717 spa_set_log_state(spa, SPA_LOG_MISSING); 1718 break; 1719 } 1720 return (rv); 1721 } 1722 1723 static boolean_t 1724 spa_passivate_log(spa_t *spa) 1725 { 1726 vdev_t *rvd = spa->spa_root_vdev; 1727 boolean_t slog_found = B_FALSE; 1728 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1730 1731 if (!spa_has_slogs(spa)) 1732 return (B_FALSE); 1733 1734 for (int c = 0; c < rvd->vdev_children; c++) { 1735 vdev_t *tvd = rvd->vdev_child[c]; 1736 metaslab_group_t *mg = tvd->vdev_mg; 1737 1738 if (tvd->vdev_islog) { 1739 metaslab_group_passivate(mg); 1740 slog_found = B_TRUE; 1741 } 1742 } 1743 1744 return (slog_found); 1745 } 1746 1747 static void 1748 spa_activate_log(spa_t *spa) 1749 { 1750 vdev_t *rvd = spa->spa_root_vdev; 1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1753 1754 for (int c = 0; c < rvd->vdev_children; c++) { 1755 vdev_t *tvd = rvd->vdev_child[c]; 1756 metaslab_group_t *mg = tvd->vdev_mg; 1757 1758 if (tvd->vdev_islog) 1759 metaslab_group_activate(mg); 1760 } 1761 } 1762 1763 int 1764 spa_offline_log(spa_t *spa) 1765 { 1766 int error; 1767 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1769 NULL, DS_FIND_CHILDREN); 1770 if (error == 0) { 1771 /* 1772 * We successfully offlined the log device, sync out the 1773 * current txg so that the "stubby" block can be removed 1774 * by zil_sync(). 1775 */ 1776 txg_wait_synced(spa->spa_dsl_pool, 0); 1777 } 1778 return (error); 1779 } 1780 1781 static void 1782 spa_aux_check_removed(spa_aux_vdev_t *sav) 1783 { 1784 for (int i = 0; i < sav->sav_count; i++) 1785 spa_check_removed(sav->sav_vdevs[i]); 1786 } 1787 1788 void 1789 spa_claim_notify(zio_t *zio) 1790 { 1791 spa_t *spa = zio->io_spa; 1792 1793 if (zio->io_error) 1794 return; 1795 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1799 mutex_exit(&spa->spa_props_lock); 1800 } 1801 1802 typedef struct spa_load_error { 1803 uint64_t sle_meta_count; 1804 uint64_t sle_data_count; 1805 } spa_load_error_t; 1806 1807 static void 1808 spa_load_verify_done(zio_t *zio) 1809 { 1810 blkptr_t *bp = zio->io_bp; 1811 spa_load_error_t *sle = zio->io_private; 1812 dmu_object_type_t type = BP_GET_TYPE(bp); 1813 int error = zio->io_error; 1814 1815 if (error) { 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1817 type != DMU_OT_INTENT_LOG) 1818 atomic_add_64(&sle->sle_meta_count, 1); 1819 else 1820 atomic_add_64(&sle->sle_data_count, 1); 1821 } 1822 zio_data_buf_free(zio->io_data, zio->io_size); 1823 } 1824 1825 /*ARGSUSED*/ 1826 static int 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1829 { 1830 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 1831 zio_t *rio = arg; 1832 size_t size = BP_GET_PSIZE(bp); 1833 void *data = zio_data_buf_alloc(size); 1834 1835 zio_nowait(zio_read(rio, spa, bp, data, size, 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1839 } 1840 return (0); 1841 } 1842 1843 static int 1844 spa_load_verify(spa_t *spa) 1845 { 1846 zio_t *rio; 1847 spa_load_error_t sle = { 0 }; 1848 zpool_rewind_policy_t policy; 1849 boolean_t verify_ok = B_FALSE; 1850 int error; 1851 1852 zpool_get_rewind_policy(spa->spa_config, &policy); 1853 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1855 return (0); 1856 1857 rio = zio_root(spa, NULL, &sle, 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1859 1860 error = traverse_pool(spa, spa->spa_verify_min_txg, 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1862 1863 (void) zio_wait(rio); 1864 1865 spa->spa_load_meta_errors = sle.sle_meta_count; 1866 spa->spa_load_data_errors = sle.sle_data_count; 1867 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1869 sle.sle_data_count <= policy.zrp_maxdata) { 1870 int64_t loss = 0; 1871 1872 verify_ok = B_TRUE; 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1875 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1879 VERIFY(nvlist_add_int64(spa->spa_load_info, 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1883 } else { 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1885 } 1886 1887 if (error) { 1888 if (error != ENXIO && error != EIO) 1889 error = SET_ERROR(EIO); 1890 return (error); 1891 } 1892 1893 return (verify_ok ? 0 : EIO); 1894 } 1895 1896 /* 1897 * Find a value in the pool props object. 1898 */ 1899 static void 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1901 { 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1904 } 1905 1906 /* 1907 * Find a value in the pool directory object. 1908 */ 1909 static int 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1911 { 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1913 name, sizeof (uint64_t), 1, val)); 1914 } 1915 1916 static int 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1918 { 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1920 return (err); 1921 } 1922 1923 /* 1924 * Fix up config after a partly-completed split. This is done with the 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1926 * pool have that entry in their config, but only the splitting one contains 1927 * a list of all the guids of the vdevs that are being split off. 1928 * 1929 * This function determines what to do with that list: either rejoin 1930 * all the disks to the pool, or complete the splitting process. To attempt 1931 * the rejoin, each disk that is offlined is marked online again, and 1932 * we do a reopen() call. If the vdev label for every disk that was 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1934 * then we call vdev_split() on each disk, and complete the split. 1935 * 1936 * Otherwise we leave the config alone, with all the vdevs in place in 1937 * the original pool. 1938 */ 1939 static void 1940 spa_try_repair(spa_t *spa, nvlist_t *config) 1941 { 1942 uint_t extracted; 1943 uint64_t *glist; 1944 uint_t i, gcount; 1945 nvlist_t *nvl; 1946 vdev_t **vd; 1947 boolean_t attempt_reopen; 1948 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1950 return; 1951 1952 /* check that the config is complete */ 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1954 &glist, &gcount) != 0) 1955 return; 1956 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1958 1959 /* attempt to online all the vdevs & validate */ 1960 attempt_reopen = B_TRUE; 1961 for (i = 0; i < gcount; i++) { 1962 if (glist[i] == 0) /* vdev is hole */ 1963 continue; 1964 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1966 if (vd[i] == NULL) { 1967 /* 1968 * Don't bother attempting to reopen the disks; 1969 * just do the split. 1970 */ 1971 attempt_reopen = B_FALSE; 1972 } else { 1973 /* attempt to re-online it */ 1974 vd[i]->vdev_offline = B_FALSE; 1975 } 1976 } 1977 1978 if (attempt_reopen) { 1979 vdev_reopen(spa->spa_root_vdev); 1980 1981 /* check each device to see what state it's in */ 1982 for (extracted = 0, i = 0; i < gcount; i++) { 1983 if (vd[i] != NULL && 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1985 break; 1986 ++extracted; 1987 } 1988 } 1989 1990 /* 1991 * If every disk has been moved to the new pool, or if we never 1992 * even attempted to look at them, then we split them off for 1993 * good. 1994 */ 1995 if (!attempt_reopen || gcount == extracted) { 1996 for (i = 0; i < gcount; i++) 1997 if (vd[i] != NULL) 1998 vdev_split(vd[i]); 1999 vdev_reopen(spa->spa_root_vdev); 2000 } 2001 2002 kmem_free(vd, gcount * sizeof (vdev_t *)); 2003 } 2004 2005 static int 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2007 boolean_t mosconfig) 2008 { 2009 nvlist_t *config = spa->spa_config; 2010 char *ereport = FM_EREPORT_ZFS_POOL; 2011 char *comment; 2012 int error; 2013 uint64_t pool_guid; 2014 nvlist_t *nvl; 2015 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2017 return (SET_ERROR(EINVAL)); 2018 2019 ASSERT(spa->spa_comment == NULL); 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2021 spa->spa_comment = spa_strdup(comment); 2022 2023 /* 2024 * Versioning wasn't explicitly added to the label until later, so if 2025 * it's not present treat it as the initial version. 2026 */ 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2028 &spa->spa_ubsync.ub_version) != 0) 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2030 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2032 &spa->spa_config_txg); 2033 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2035 spa_guid_exists(pool_guid, 0)) { 2036 error = SET_ERROR(EEXIST); 2037 } else { 2038 spa->spa_config_guid = pool_guid; 2039 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2041 &nvl) == 0) { 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2043 KM_SLEEP) == 0); 2044 } 2045 2046 nvlist_free(spa->spa_load_info); 2047 spa->spa_load_info = fnvlist_alloc(); 2048 2049 gethrestime(&spa->spa_loaded_ts); 2050 error = spa_load_impl(spa, pool_guid, config, state, type, 2051 mosconfig, &ereport); 2052 } 2053 2054 spa->spa_minref = refcount_count(&spa->spa_refcount); 2055 if (error) { 2056 if (error != EEXIST) { 2057 spa->spa_loaded_ts.tv_sec = 0; 2058 spa->spa_loaded_ts.tv_nsec = 0; 2059 } 2060 if (error != EBADF) { 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2062 } 2063 } 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2065 spa->spa_ena = 0; 2066 2067 return (error); 2068 } 2069 2070 /* 2071 * Load an existing storage pool, using the pool's builtin spa_config as a 2072 * source of configuration information. 2073 */ 2074 static int 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2077 char **ereport) 2078 { 2079 int error = 0; 2080 nvlist_t *nvroot = NULL; 2081 nvlist_t *label; 2082 vdev_t *rvd; 2083 uberblock_t *ub = &spa->spa_uberblock; 2084 uint64_t children, config_cache_txg = spa->spa_config_txg; 2085 int orig_mode = spa->spa_mode; 2086 int parse; 2087 uint64_t obj; 2088 boolean_t missing_feat_write = B_FALSE; 2089 2090 /* 2091 * If this is an untrusted config, access the pool in read-only mode. 2092 * This prevents things like resilvering recently removed devices. 2093 */ 2094 if (!mosconfig) 2095 spa->spa_mode = FREAD; 2096 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2098 2099 spa->spa_load_state = state; 2100 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2102 return (SET_ERROR(EINVAL)); 2103 2104 parse = (type == SPA_IMPORT_EXISTING ? 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2106 2107 /* 2108 * Create "The Godfather" zio to hold all async IOs 2109 */ 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2112 2113 /* 2114 * Parse the configuration into a vdev tree. We explicitly set the 2115 * value that will be returned by spa_version() since parsing the 2116 * configuration requires knowing the version number. 2117 */ 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2120 spa_config_exit(spa, SCL_ALL, FTAG); 2121 2122 if (error != 0) 2123 return (error); 2124 2125 ASSERT(spa->spa_root_vdev == rvd); 2126 2127 if (type != SPA_IMPORT_ASSEMBLE) { 2128 ASSERT(spa_guid(spa) == pool_guid); 2129 } 2130 2131 /* 2132 * Try to open all vdevs, loading each label in the process. 2133 */ 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2135 error = vdev_open(rvd); 2136 spa_config_exit(spa, SCL_ALL, FTAG); 2137 if (error != 0) 2138 return (error); 2139 2140 /* 2141 * We need to validate the vdev labels against the configuration that 2142 * we have in hand, which is dependent on the setting of mosconfig. If 2143 * mosconfig is true then we're validating the vdev labels based on 2144 * that config. Otherwise, we're validating against the cached config 2145 * (zpool.cache) that was read when we loaded the zfs module, and then 2146 * later we will recursively call spa_load() and validate against 2147 * the vdev config. 2148 * 2149 * If we're assembling a new pool that's been split off from an 2150 * existing pool, the labels haven't yet been updated so we skip 2151 * validation for now. 2152 */ 2153 if (type != SPA_IMPORT_ASSEMBLE) { 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2155 error = vdev_validate(rvd, mosconfig); 2156 spa_config_exit(spa, SCL_ALL, FTAG); 2157 2158 if (error != 0) 2159 return (error); 2160 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2162 return (SET_ERROR(ENXIO)); 2163 } 2164 2165 /* 2166 * Find the best uberblock. 2167 */ 2168 vdev_uberblock_load(rvd, ub, &label); 2169 2170 /* 2171 * If we weren't able to find a single valid uberblock, return failure. 2172 */ 2173 if (ub->ub_txg == 0) { 2174 nvlist_free(label); 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2176 } 2177 2178 /* 2179 * If the pool has an unsupported version we can't open it. 2180 */ 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2182 nvlist_free(label); 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2184 } 2185 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2187 nvlist_t *features; 2188 2189 /* 2190 * If we weren't able to find what's necessary for reading the 2191 * MOS in the label, return failure. 2192 */ 2193 if (label == NULL || nvlist_lookup_nvlist(label, 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2195 nvlist_free(label); 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2197 ENXIO)); 2198 } 2199 2200 /* 2201 * Update our in-core representation with the definitive values 2202 * from the label. 2203 */ 2204 nvlist_free(spa->spa_label_features); 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2206 } 2207 2208 nvlist_free(label); 2209 2210 /* 2211 * Look through entries in the label nvlist's features_for_read. If 2212 * there is a feature listed there which we don't understand then we 2213 * cannot open a pool. 2214 */ 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2216 nvlist_t *unsup_feat; 2217 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2219 0); 2220 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2222 NULL); nvp != NULL; 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2224 if (!zfeature_is_supported(nvpair_name(nvp))) { 2225 VERIFY(nvlist_add_string(unsup_feat, 2226 nvpair_name(nvp), "") == 0); 2227 } 2228 } 2229 2230 if (!nvlist_empty(unsup_feat)) { 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2233 nvlist_free(unsup_feat); 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2235 ENOTSUP)); 2236 } 2237 2238 nvlist_free(unsup_feat); 2239 } 2240 2241 /* 2242 * If the vdev guid sum doesn't match the uberblock, we have an 2243 * incomplete configuration. We first check to see if the pool 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2245 * If it is, defer the vdev_guid_sum check till later so we 2246 * can handle missing vdevs. 2247 */ 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2250 rvd->vdev_guid_sum != ub->ub_guid_sum) 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2252 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2255 spa_try_repair(spa, config); 2256 spa_config_exit(spa, SCL_ALL, FTAG); 2257 nvlist_free(spa->spa_config_splitting); 2258 spa->spa_config_splitting = NULL; 2259 } 2260 2261 /* 2262 * Initialize internal SPA structures. 2263 */ 2264 spa->spa_state = POOL_STATE_ACTIVE; 2265 spa->spa_ubsync = spa->spa_uberblock; 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2270 spa->spa_claim_max_txg = spa->spa_first_txg; 2271 spa->spa_prev_software_version = ub->ub_software_version; 2272 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2274 if (error) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2277 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2280 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2282 boolean_t missing_feat_read = B_FALSE; 2283 nvlist_t *unsup_feat, *enabled_feat; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2286 &spa->spa_feat_for_read_obj) != 0) { 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2288 } 2289 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2291 &spa->spa_feat_for_write_obj) != 0) { 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2293 } 2294 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2296 &spa->spa_feat_desc_obj) != 0) { 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2298 } 2299 2300 enabled_feat = fnvlist_alloc(); 2301 unsup_feat = fnvlist_alloc(); 2302 2303 if (!spa_features_check(spa, B_FALSE, 2304 unsup_feat, enabled_feat)) 2305 missing_feat_read = B_TRUE; 2306 2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2308 if (!spa_features_check(spa, B_TRUE, 2309 unsup_feat, enabled_feat)) { 2310 missing_feat_write = B_TRUE; 2311 } 2312 } 2313 2314 fnvlist_add_nvlist(spa->spa_load_info, 2315 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2316 2317 if (!nvlist_empty(unsup_feat)) { 2318 fnvlist_add_nvlist(spa->spa_load_info, 2319 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2320 } 2321 2322 fnvlist_free(enabled_feat); 2323 fnvlist_free(unsup_feat); 2324 2325 if (!missing_feat_read) { 2326 fnvlist_add_boolean(spa->spa_load_info, 2327 ZPOOL_CONFIG_CAN_RDONLY); 2328 } 2329 2330 /* 2331 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2332 * twofold: to determine whether the pool is available for 2333 * import in read-write mode and (if it is not) whether the 2334 * pool is available for import in read-only mode. If the pool 2335 * is available for import in read-write mode, it is displayed 2336 * as available in userland; if it is not available for import 2337 * in read-only mode, it is displayed as unavailable in 2338 * userland. If the pool is available for import in read-only 2339 * mode but not read-write mode, it is displayed as unavailable 2340 * in userland with a special note that the pool is actually 2341 * available for open in read-only mode. 2342 * 2343 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2344 * missing a feature for write, we must first determine whether 2345 * the pool can be opened read-only before returning to 2346 * userland in order to know whether to display the 2347 * abovementioned note. 2348 */ 2349 if (missing_feat_read || (missing_feat_write && 2350 spa_writeable(spa))) { 2351 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2352 ENOTSUP)); 2353 } 2354 2355 /* 2356 * Load refcounts for ZFS features from disk into an in-memory 2357 * cache during SPA initialization. 2358 */ 2359 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2360 uint64_t refcount; 2361 2362 error = feature_get_refcount_from_disk(spa, 2363 &spa_feature_table[i], &refcount); 2364 if (error == 0) { 2365 spa->spa_feat_refcount_cache[i] = refcount; 2366 } else if (error == ENOTSUP) { 2367 spa->spa_feat_refcount_cache[i] = 2368 SPA_FEATURE_DISABLED; 2369 } else { 2370 return (spa_vdev_err(rvd, 2371 VDEV_AUX_CORRUPT_DATA, EIO)); 2372 } 2373 } 2374 } 2375 2376 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2378 &spa->spa_feat_enabled_txg_obj) != 0) 2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2380 } 2381 2382 spa->spa_is_initializing = B_TRUE; 2383 error = dsl_pool_open(spa->spa_dsl_pool); 2384 spa->spa_is_initializing = B_FALSE; 2385 if (error != 0) 2386 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2387 2388 if (!mosconfig) { 2389 uint64_t hostid; 2390 nvlist_t *policy = NULL, *nvconfig; 2391 2392 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2393 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2394 2395 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2396 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2397 char *hostname; 2398 unsigned long myhostid = 0; 2399 2400 VERIFY(nvlist_lookup_string(nvconfig, 2401 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2402 2403 #ifdef _KERNEL 2404 myhostid = zone_get_hostid(NULL); 2405 #else /* _KERNEL */ 2406 /* 2407 * We're emulating the system's hostid in userland, so 2408 * we can't use zone_get_hostid(). 2409 */ 2410 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2411 #endif /* _KERNEL */ 2412 if (hostid != 0 && myhostid != 0 && 2413 hostid != myhostid) { 2414 nvlist_free(nvconfig); 2415 cmn_err(CE_WARN, "pool '%s' could not be " 2416 "loaded as it was last accessed by " 2417 "another system (host: %s hostid: 0x%lx). " 2418 "See: http://illumos.org/msg/ZFS-8000-EY", 2419 spa_name(spa), hostname, 2420 (unsigned long)hostid); 2421 return (SET_ERROR(EBADF)); 2422 } 2423 } 2424 if (nvlist_lookup_nvlist(spa->spa_config, 2425 ZPOOL_REWIND_POLICY, &policy) == 0) 2426 VERIFY(nvlist_add_nvlist(nvconfig, 2427 ZPOOL_REWIND_POLICY, policy) == 0); 2428 2429 spa_config_set(spa, nvconfig); 2430 spa_unload(spa); 2431 spa_deactivate(spa); 2432 spa_activate(spa, orig_mode); 2433 2434 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2435 } 2436 2437 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2439 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2440 if (error != 0) 2441 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2442 2443 /* 2444 * Load the bit that tells us to use the new accounting function 2445 * (raid-z deflation). If we have an older pool, this will not 2446 * be present. 2447 */ 2448 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2449 if (error != 0 && error != ENOENT) 2450 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2451 2452 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2453 &spa->spa_creation_version); 2454 if (error != 0 && error != ENOENT) 2455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2456 2457 /* 2458 * Load the persistent error log. If we have an older pool, this will 2459 * not be present. 2460 */ 2461 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2462 if (error != 0 && error != ENOENT) 2463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2464 2465 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2466 &spa->spa_errlog_scrub); 2467 if (error != 0 && error != ENOENT) 2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2469 2470 /* 2471 * Load the history object. If we have an older pool, this 2472 * will not be present. 2473 */ 2474 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2475 if (error != 0 && error != ENOENT) 2476 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2477 2478 /* 2479 * If we're assembling the pool from the split-off vdevs of 2480 * an existing pool, we don't want to attach the spares & cache 2481 * devices. 2482 */ 2483 2484 /* 2485 * Load any hot spares for this pool. 2486 */ 2487 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2488 if (error != 0 && error != ENOENT) 2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2490 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2491 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2492 if (load_nvlist(spa, spa->spa_spares.sav_object, 2493 &spa->spa_spares.sav_config) != 0) 2494 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2495 2496 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2497 spa_load_spares(spa); 2498 spa_config_exit(spa, SCL_ALL, FTAG); 2499 } else if (error == 0) { 2500 spa->spa_spares.sav_sync = B_TRUE; 2501 } 2502 2503 /* 2504 * Load any level 2 ARC devices for this pool. 2505 */ 2506 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2507 &spa->spa_l2cache.sav_object); 2508 if (error != 0 && error != ENOENT) 2509 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2510 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2511 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2512 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2513 &spa->spa_l2cache.sav_config) != 0) 2514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2515 2516 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2517 spa_load_l2cache(spa); 2518 spa_config_exit(spa, SCL_ALL, FTAG); 2519 } else if (error == 0) { 2520 spa->spa_l2cache.sav_sync = B_TRUE; 2521 } 2522 2523 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2524 2525 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2526 if (error && error != ENOENT) 2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2528 2529 if (error == 0) { 2530 uint64_t autoreplace; 2531 2532 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2533 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2534 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2535 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2536 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2537 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2538 &spa->spa_dedup_ditto); 2539 2540 spa->spa_autoreplace = (autoreplace != 0); 2541 } 2542 2543 /* 2544 * If the 'autoreplace' property is set, then post a resource notifying 2545 * the ZFS DE that it should not issue any faults for unopenable 2546 * devices. We also iterate over the vdevs, and post a sysevent for any 2547 * unopenable vdevs so that the normal autoreplace handler can take 2548 * over. 2549 */ 2550 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2551 spa_check_removed(spa->spa_root_vdev); 2552 /* 2553 * For the import case, this is done in spa_import(), because 2554 * at this point we're using the spare definitions from 2555 * the MOS config, not necessarily from the userland config. 2556 */ 2557 if (state != SPA_LOAD_IMPORT) { 2558 spa_aux_check_removed(&spa->spa_spares); 2559 spa_aux_check_removed(&spa->spa_l2cache); 2560 } 2561 } 2562 2563 /* 2564 * Load the vdev state for all toplevel vdevs. 2565 */ 2566 vdev_load(rvd); 2567 2568 /* 2569 * Propagate the leaf DTLs we just loaded all the way up the tree. 2570 */ 2571 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2572 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2573 spa_config_exit(spa, SCL_ALL, FTAG); 2574 2575 /* 2576 * Load the DDTs (dedup tables). 2577 */ 2578 error = ddt_load(spa); 2579 if (error != 0) 2580 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2581 2582 spa_update_dspace(spa); 2583 2584 /* 2585 * Validate the config, using the MOS config to fill in any 2586 * information which might be missing. If we fail to validate 2587 * the config then declare the pool unfit for use. If we're 2588 * assembling a pool from a split, the log is not transferred 2589 * over. 2590 */ 2591 if (type != SPA_IMPORT_ASSEMBLE) { 2592 nvlist_t *nvconfig; 2593 2594 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2595 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2596 2597 if (!spa_config_valid(spa, nvconfig)) { 2598 nvlist_free(nvconfig); 2599 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2600 ENXIO)); 2601 } 2602 nvlist_free(nvconfig); 2603 2604 /* 2605 * Now that we've validated the config, check the state of the 2606 * root vdev. If it can't be opened, it indicates one or 2607 * more toplevel vdevs are faulted. 2608 */ 2609 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2610 return (SET_ERROR(ENXIO)); 2611 2612 if (spa_check_logs(spa)) { 2613 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2614 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2615 } 2616 } 2617 2618 if (missing_feat_write) { 2619 ASSERT(state == SPA_LOAD_TRYIMPORT); 2620 2621 /* 2622 * At this point, we know that we can open the pool in 2623 * read-only mode but not read-write mode. We now have enough 2624 * information and can return to userland. 2625 */ 2626 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2627 } 2628 2629 /* 2630 * We've successfully opened the pool, verify that we're ready 2631 * to start pushing transactions. 2632 */ 2633 if (state != SPA_LOAD_TRYIMPORT) { 2634 if (error = spa_load_verify(spa)) 2635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2636 error)); 2637 } 2638 2639 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2640 spa->spa_load_max_txg == UINT64_MAX)) { 2641 dmu_tx_t *tx; 2642 int need_update = B_FALSE; 2643 2644 ASSERT(state != SPA_LOAD_TRYIMPORT); 2645 2646 /* 2647 * Claim log blocks that haven't been committed yet. 2648 * This must all happen in a single txg. 2649 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2650 * invoked from zil_claim_log_block()'s i/o done callback. 2651 * Price of rollback is that we abandon the log. 2652 */ 2653 spa->spa_claiming = B_TRUE; 2654 2655 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2656 spa_first_txg(spa)); 2657 (void) dmu_objset_find(spa_name(spa), 2658 zil_claim, tx, DS_FIND_CHILDREN); 2659 dmu_tx_commit(tx); 2660 2661 spa->spa_claiming = B_FALSE; 2662 2663 spa_set_log_state(spa, SPA_LOG_GOOD); 2664 spa->spa_sync_on = B_TRUE; 2665 txg_sync_start(spa->spa_dsl_pool); 2666 2667 /* 2668 * Wait for all claims to sync. We sync up to the highest 2669 * claimed log block birth time so that claimed log blocks 2670 * don't appear to be from the future. spa_claim_max_txg 2671 * will have been set for us by either zil_check_log_chain() 2672 * (invoked from spa_check_logs()) or zil_claim() above. 2673 */ 2674 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2675 2676 /* 2677 * If the config cache is stale, or we have uninitialized 2678 * metaslabs (see spa_vdev_add()), then update the config. 2679 * 2680 * If this is a verbatim import, trust the current 2681 * in-core spa_config and update the disk labels. 2682 */ 2683 if (config_cache_txg != spa->spa_config_txg || 2684 state == SPA_LOAD_IMPORT || 2685 state == SPA_LOAD_RECOVER || 2686 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2687 need_update = B_TRUE; 2688 2689 for (int c = 0; c < rvd->vdev_children; c++) 2690 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2691 need_update = B_TRUE; 2692 2693 /* 2694 * Update the config cache asychronously in case we're the 2695 * root pool, in which case the config cache isn't writable yet. 2696 */ 2697 if (need_update) 2698 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2699 2700 /* 2701 * Check all DTLs to see if anything needs resilvering. 2702 */ 2703 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2704 vdev_resilver_needed(rvd, NULL, NULL)) 2705 spa_async_request(spa, SPA_ASYNC_RESILVER); 2706 2707 /* 2708 * Log the fact that we booted up (so that we can detect if 2709 * we rebooted in the middle of an operation). 2710 */ 2711 spa_history_log_version(spa, "open"); 2712 2713 /* 2714 * Delete any inconsistent datasets. 2715 */ 2716 (void) dmu_objset_find(spa_name(spa), 2717 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2718 2719 /* 2720 * Clean up any stale temporary dataset userrefs. 2721 */ 2722 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2723 } 2724 2725 return (0); 2726 } 2727 2728 static int 2729 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2730 { 2731 int mode = spa->spa_mode; 2732 2733 spa_unload(spa); 2734 spa_deactivate(spa); 2735 2736 spa->spa_load_max_txg--; 2737 2738 spa_activate(spa, mode); 2739 spa_async_suspend(spa); 2740 2741 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2742 } 2743 2744 /* 2745 * If spa_load() fails this function will try loading prior txg's. If 2746 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2747 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2748 * function will not rewind the pool and will return the same error as 2749 * spa_load(). 2750 */ 2751 static int 2752 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2753 uint64_t max_request, int rewind_flags) 2754 { 2755 nvlist_t *loadinfo = NULL; 2756 nvlist_t *config = NULL; 2757 int load_error, rewind_error; 2758 uint64_t safe_rewind_txg; 2759 uint64_t min_txg; 2760 2761 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2762 spa->spa_load_max_txg = spa->spa_load_txg; 2763 spa_set_log_state(spa, SPA_LOG_CLEAR); 2764 } else { 2765 spa->spa_load_max_txg = max_request; 2766 } 2767 2768 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2769 mosconfig); 2770 if (load_error == 0) 2771 return (0); 2772 2773 if (spa->spa_root_vdev != NULL) 2774 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2775 2776 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2777 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2778 2779 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2780 nvlist_free(config); 2781 return (load_error); 2782 } 2783 2784 if (state == SPA_LOAD_RECOVER) { 2785 /* Price of rolling back is discarding txgs, including log */ 2786 spa_set_log_state(spa, SPA_LOG_CLEAR); 2787 } else { 2788 /* 2789 * If we aren't rolling back save the load info from our first 2790 * import attempt so that we can restore it after attempting 2791 * to rewind. 2792 */ 2793 loadinfo = spa->spa_load_info; 2794 spa->spa_load_info = fnvlist_alloc(); 2795 } 2796 2797 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2798 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2799 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2800 TXG_INITIAL : safe_rewind_txg; 2801 2802 /* 2803 * Continue as long as we're finding errors, we're still within 2804 * the acceptable rewind range, and we're still finding uberblocks 2805 */ 2806 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2807 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2808 if (spa->spa_load_max_txg < safe_rewind_txg) 2809 spa->spa_extreme_rewind = B_TRUE; 2810 rewind_error = spa_load_retry(spa, state, mosconfig); 2811 } 2812 2813 spa->spa_extreme_rewind = B_FALSE; 2814 spa->spa_load_max_txg = UINT64_MAX; 2815 2816 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2817 spa_config_set(spa, config); 2818 2819 if (state == SPA_LOAD_RECOVER) { 2820 ASSERT3P(loadinfo, ==, NULL); 2821 return (rewind_error); 2822 } else { 2823 /* Store the rewind info as part of the initial load info */ 2824 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2825 spa->spa_load_info); 2826 2827 /* Restore the initial load info */ 2828 fnvlist_free(spa->spa_load_info); 2829 spa->spa_load_info = loadinfo; 2830 2831 return (load_error); 2832 } 2833 } 2834 2835 /* 2836 * Pool Open/Import 2837 * 2838 * The import case is identical to an open except that the configuration is sent 2839 * down from userland, instead of grabbed from the configuration cache. For the 2840 * case of an open, the pool configuration will exist in the 2841 * POOL_STATE_UNINITIALIZED state. 2842 * 2843 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2844 * the same time open the pool, without having to keep around the spa_t in some 2845 * ambiguous state. 2846 */ 2847 static int 2848 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2849 nvlist_t **config) 2850 { 2851 spa_t *spa; 2852 spa_load_state_t state = SPA_LOAD_OPEN; 2853 int error; 2854 int locked = B_FALSE; 2855 2856 *spapp = NULL; 2857 2858 /* 2859 * As disgusting as this is, we need to support recursive calls to this 2860 * function because dsl_dir_open() is called during spa_load(), and ends 2861 * up calling spa_open() again. The real fix is to figure out how to 2862 * avoid dsl_dir_open() calling this in the first place. 2863 */ 2864 if (mutex_owner(&spa_namespace_lock) != curthread) { 2865 mutex_enter(&spa_namespace_lock); 2866 locked = B_TRUE; 2867 } 2868 2869 if ((spa = spa_lookup(pool)) == NULL) { 2870 if (locked) 2871 mutex_exit(&spa_namespace_lock); 2872 return (SET_ERROR(ENOENT)); 2873 } 2874 2875 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2876 zpool_rewind_policy_t policy; 2877 2878 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2879 &policy); 2880 if (policy.zrp_request & ZPOOL_DO_REWIND) 2881 state = SPA_LOAD_RECOVER; 2882 2883 spa_activate(spa, spa_mode_global); 2884 2885 if (state != SPA_LOAD_RECOVER) 2886 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2887 2888 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2889 policy.zrp_request); 2890 2891 if (error == EBADF) { 2892 /* 2893 * If vdev_validate() returns failure (indicated by 2894 * EBADF), it indicates that one of the vdevs indicates 2895 * that the pool has been exported or destroyed. If 2896 * this is the case, the config cache is out of sync and 2897 * we should remove the pool from the namespace. 2898 */ 2899 spa_unload(spa); 2900 spa_deactivate(spa); 2901 spa_config_sync(spa, B_TRUE, B_TRUE); 2902 spa_remove(spa); 2903 if (locked) 2904 mutex_exit(&spa_namespace_lock); 2905 return (SET_ERROR(ENOENT)); 2906 } 2907 2908 if (error) { 2909 /* 2910 * We can't open the pool, but we still have useful 2911 * information: the state of each vdev after the 2912 * attempted vdev_open(). Return this to the user. 2913 */ 2914 if (config != NULL && spa->spa_config) { 2915 VERIFY(nvlist_dup(spa->spa_config, config, 2916 KM_SLEEP) == 0); 2917 VERIFY(nvlist_add_nvlist(*config, 2918 ZPOOL_CONFIG_LOAD_INFO, 2919 spa->spa_load_info) == 0); 2920 } 2921 spa_unload(spa); 2922 spa_deactivate(spa); 2923 spa->spa_last_open_failed = error; 2924 if (locked) 2925 mutex_exit(&spa_namespace_lock); 2926 *spapp = NULL; 2927 return (error); 2928 } 2929 } 2930 2931 spa_open_ref(spa, tag); 2932 2933 if (config != NULL) 2934 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2935 2936 /* 2937 * If we've recovered the pool, pass back any information we 2938 * gathered while doing the load. 2939 */ 2940 if (state == SPA_LOAD_RECOVER) { 2941 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2942 spa->spa_load_info) == 0); 2943 } 2944 2945 if (locked) { 2946 spa->spa_last_open_failed = 0; 2947 spa->spa_last_ubsync_txg = 0; 2948 spa->spa_load_txg = 0; 2949 mutex_exit(&spa_namespace_lock); 2950 } 2951 2952 *spapp = spa; 2953 2954 return (0); 2955 } 2956 2957 int 2958 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2959 nvlist_t **config) 2960 { 2961 return (spa_open_common(name, spapp, tag, policy, config)); 2962 } 2963 2964 int 2965 spa_open(const char *name, spa_t **spapp, void *tag) 2966 { 2967 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2968 } 2969 2970 /* 2971 * Lookup the given spa_t, incrementing the inject count in the process, 2972 * preventing it from being exported or destroyed. 2973 */ 2974 spa_t * 2975 spa_inject_addref(char *name) 2976 { 2977 spa_t *spa; 2978 2979 mutex_enter(&spa_namespace_lock); 2980 if ((spa = spa_lookup(name)) == NULL) { 2981 mutex_exit(&spa_namespace_lock); 2982 return (NULL); 2983 } 2984 spa->spa_inject_ref++; 2985 mutex_exit(&spa_namespace_lock); 2986 2987 return (spa); 2988 } 2989 2990 void 2991 spa_inject_delref(spa_t *spa) 2992 { 2993 mutex_enter(&spa_namespace_lock); 2994 spa->spa_inject_ref--; 2995 mutex_exit(&spa_namespace_lock); 2996 } 2997 2998 /* 2999 * Add spares device information to the nvlist. 3000 */ 3001 static void 3002 spa_add_spares(spa_t *spa, nvlist_t *config) 3003 { 3004 nvlist_t **spares; 3005 uint_t i, nspares; 3006 nvlist_t *nvroot; 3007 uint64_t guid; 3008 vdev_stat_t *vs; 3009 uint_t vsc; 3010 uint64_t pool; 3011 3012 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3013 3014 if (spa->spa_spares.sav_count == 0) 3015 return; 3016 3017 VERIFY(nvlist_lookup_nvlist(config, 3018 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3019 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3020 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3021 if (nspares != 0) { 3022 VERIFY(nvlist_add_nvlist_array(nvroot, 3023 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3024 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3025 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3026 3027 /* 3028 * Go through and find any spares which have since been 3029 * repurposed as an active spare. If this is the case, update 3030 * their status appropriately. 3031 */ 3032 for (i = 0; i < nspares; i++) { 3033 VERIFY(nvlist_lookup_uint64(spares[i], 3034 ZPOOL_CONFIG_GUID, &guid) == 0); 3035 if (spa_spare_exists(guid, &pool, NULL) && 3036 pool != 0ULL) { 3037 VERIFY(nvlist_lookup_uint64_array( 3038 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3039 (uint64_t **)&vs, &vsc) == 0); 3040 vs->vs_state = VDEV_STATE_CANT_OPEN; 3041 vs->vs_aux = VDEV_AUX_SPARED; 3042 } 3043 } 3044 } 3045 } 3046 3047 /* 3048 * Add l2cache device information to the nvlist, including vdev stats. 3049 */ 3050 static void 3051 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3052 { 3053 nvlist_t **l2cache; 3054 uint_t i, j, nl2cache; 3055 nvlist_t *nvroot; 3056 uint64_t guid; 3057 vdev_t *vd; 3058 vdev_stat_t *vs; 3059 uint_t vsc; 3060 3061 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3062 3063 if (spa->spa_l2cache.sav_count == 0) 3064 return; 3065 3066 VERIFY(nvlist_lookup_nvlist(config, 3067 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3068 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3069 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3070 if (nl2cache != 0) { 3071 VERIFY(nvlist_add_nvlist_array(nvroot, 3072 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3073 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3074 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3075 3076 /* 3077 * Update level 2 cache device stats. 3078 */ 3079 3080 for (i = 0; i < nl2cache; i++) { 3081 VERIFY(nvlist_lookup_uint64(l2cache[i], 3082 ZPOOL_CONFIG_GUID, &guid) == 0); 3083 3084 vd = NULL; 3085 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3086 if (guid == 3087 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3088 vd = spa->spa_l2cache.sav_vdevs[j]; 3089 break; 3090 } 3091 } 3092 ASSERT(vd != NULL); 3093 3094 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3095 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3096 == 0); 3097 vdev_get_stats(vd, vs); 3098 } 3099 } 3100 } 3101 3102 static void 3103 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3104 { 3105 nvlist_t *features; 3106 zap_cursor_t zc; 3107 zap_attribute_t za; 3108 3109 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3110 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3111 3112 if (spa->spa_feat_for_read_obj != 0) { 3113 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3114 spa->spa_feat_for_read_obj); 3115 zap_cursor_retrieve(&zc, &za) == 0; 3116 zap_cursor_advance(&zc)) { 3117 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3118 za.za_num_integers == 1); 3119 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3120 za.za_first_integer)); 3121 } 3122 zap_cursor_fini(&zc); 3123 } 3124 3125 if (spa->spa_feat_for_write_obj != 0) { 3126 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3127 spa->spa_feat_for_write_obj); 3128 zap_cursor_retrieve(&zc, &za) == 0; 3129 zap_cursor_advance(&zc)) { 3130 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3131 za.za_num_integers == 1); 3132 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3133 za.za_first_integer)); 3134 } 3135 zap_cursor_fini(&zc); 3136 } 3137 3138 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3139 features) == 0); 3140 nvlist_free(features); 3141 } 3142 3143 int 3144 spa_get_stats(const char *name, nvlist_t **config, 3145 char *altroot, size_t buflen) 3146 { 3147 int error; 3148 spa_t *spa; 3149 3150 *config = NULL; 3151 error = spa_open_common(name, &spa, FTAG, NULL, config); 3152 3153 if (spa != NULL) { 3154 /* 3155 * This still leaves a window of inconsistency where the spares 3156 * or l2cache devices could change and the config would be 3157 * self-inconsistent. 3158 */ 3159 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3160 3161 if (*config != NULL) { 3162 uint64_t loadtimes[2]; 3163 3164 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3165 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3166 VERIFY(nvlist_add_uint64_array(*config, 3167 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3168 3169 VERIFY(nvlist_add_uint64(*config, 3170 ZPOOL_CONFIG_ERRCOUNT, 3171 spa_get_errlog_size(spa)) == 0); 3172 3173 if (spa_suspended(spa)) 3174 VERIFY(nvlist_add_uint64(*config, 3175 ZPOOL_CONFIG_SUSPENDED, 3176 spa->spa_failmode) == 0); 3177 3178 spa_add_spares(spa, *config); 3179 spa_add_l2cache(spa, *config); 3180 spa_add_feature_stats(spa, *config); 3181 } 3182 } 3183 3184 /* 3185 * We want to get the alternate root even for faulted pools, so we cheat 3186 * and call spa_lookup() directly. 3187 */ 3188 if (altroot) { 3189 if (spa == NULL) { 3190 mutex_enter(&spa_namespace_lock); 3191 spa = spa_lookup(name); 3192 if (spa) 3193 spa_altroot(spa, altroot, buflen); 3194 else 3195 altroot[0] = '\0'; 3196 spa = NULL; 3197 mutex_exit(&spa_namespace_lock); 3198 } else { 3199 spa_altroot(spa, altroot, buflen); 3200 } 3201 } 3202 3203 if (spa != NULL) { 3204 spa_config_exit(spa, SCL_CONFIG, FTAG); 3205 spa_close(spa, FTAG); 3206 } 3207 3208 return (error); 3209 } 3210 3211 /* 3212 * Validate that the auxiliary device array is well formed. We must have an 3213 * array of nvlists, each which describes a valid leaf vdev. If this is an 3214 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3215 * specified, as long as they are well-formed. 3216 */ 3217 static int 3218 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3219 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3220 vdev_labeltype_t label) 3221 { 3222 nvlist_t **dev; 3223 uint_t i, ndev; 3224 vdev_t *vd; 3225 int error; 3226 3227 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3228 3229 /* 3230 * It's acceptable to have no devs specified. 3231 */ 3232 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3233 return (0); 3234 3235 if (ndev == 0) 3236 return (SET_ERROR(EINVAL)); 3237 3238 /* 3239 * Make sure the pool is formatted with a version that supports this 3240 * device type. 3241 */ 3242 if (spa_version(spa) < version) 3243 return (SET_ERROR(ENOTSUP)); 3244 3245 /* 3246 * Set the pending device list so we correctly handle device in-use 3247 * checking. 3248 */ 3249 sav->sav_pending = dev; 3250 sav->sav_npending = ndev; 3251 3252 for (i = 0; i < ndev; i++) { 3253 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3254 mode)) != 0) 3255 goto out; 3256 3257 if (!vd->vdev_ops->vdev_op_leaf) { 3258 vdev_free(vd); 3259 error = SET_ERROR(EINVAL); 3260 goto out; 3261 } 3262 3263 /* 3264 * The L2ARC currently only supports disk devices in 3265 * kernel context. For user-level testing, we allow it. 3266 */ 3267 #ifdef _KERNEL 3268 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3269 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3270 error = SET_ERROR(ENOTBLK); 3271 vdev_free(vd); 3272 goto out; 3273 } 3274 #endif 3275 vd->vdev_top = vd; 3276 3277 if ((error = vdev_open(vd)) == 0 && 3278 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3279 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3280 vd->vdev_guid) == 0); 3281 } 3282 3283 vdev_free(vd); 3284 3285 if (error && 3286 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3287 goto out; 3288 else 3289 error = 0; 3290 } 3291 3292 out: 3293 sav->sav_pending = NULL; 3294 sav->sav_npending = 0; 3295 return (error); 3296 } 3297 3298 static int 3299 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3300 { 3301 int error; 3302 3303 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3304 3305 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3306 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3307 VDEV_LABEL_SPARE)) != 0) { 3308 return (error); 3309 } 3310 3311 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3312 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3313 VDEV_LABEL_L2CACHE)); 3314 } 3315 3316 static void 3317 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3318 const char *config) 3319 { 3320 int i; 3321 3322 if (sav->sav_config != NULL) { 3323 nvlist_t **olddevs; 3324 uint_t oldndevs; 3325 nvlist_t **newdevs; 3326 3327 /* 3328 * Generate new dev list by concatentating with the 3329 * current dev list. 3330 */ 3331 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3332 &olddevs, &oldndevs) == 0); 3333 3334 newdevs = kmem_alloc(sizeof (void *) * 3335 (ndevs + oldndevs), KM_SLEEP); 3336 for (i = 0; i < oldndevs; i++) 3337 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3338 KM_SLEEP) == 0); 3339 for (i = 0; i < ndevs; i++) 3340 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3341 KM_SLEEP) == 0); 3342 3343 VERIFY(nvlist_remove(sav->sav_config, config, 3344 DATA_TYPE_NVLIST_ARRAY) == 0); 3345 3346 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3347 config, newdevs, ndevs + oldndevs) == 0); 3348 for (i = 0; i < oldndevs + ndevs; i++) 3349 nvlist_free(newdevs[i]); 3350 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3351 } else { 3352 /* 3353 * Generate a new dev list. 3354 */ 3355 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3356 KM_SLEEP) == 0); 3357 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3358 devs, ndevs) == 0); 3359 } 3360 } 3361 3362 /* 3363 * Stop and drop level 2 ARC devices 3364 */ 3365 void 3366 spa_l2cache_drop(spa_t *spa) 3367 { 3368 vdev_t *vd; 3369 int i; 3370 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3371 3372 for (i = 0; i < sav->sav_count; i++) { 3373 uint64_t pool; 3374 3375 vd = sav->sav_vdevs[i]; 3376 ASSERT(vd != NULL); 3377 3378 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3379 pool != 0ULL && l2arc_vdev_present(vd)) 3380 l2arc_remove_vdev(vd); 3381 } 3382 } 3383 3384 /* 3385 * Pool Creation 3386 */ 3387 int 3388 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3389 nvlist_t *zplprops) 3390 { 3391 spa_t *spa; 3392 char *altroot = NULL; 3393 vdev_t *rvd; 3394 dsl_pool_t *dp; 3395 dmu_tx_t *tx; 3396 int error = 0; 3397 uint64_t txg = TXG_INITIAL; 3398 nvlist_t **spares, **l2cache; 3399 uint_t nspares, nl2cache; 3400 uint64_t version, obj; 3401 boolean_t has_features; 3402 3403 /* 3404 * If this pool already exists, return failure. 3405 */ 3406 mutex_enter(&spa_namespace_lock); 3407 if (spa_lookup(pool) != NULL) { 3408 mutex_exit(&spa_namespace_lock); 3409 return (SET_ERROR(EEXIST)); 3410 } 3411 3412 /* 3413 * Allocate a new spa_t structure. 3414 */ 3415 (void) nvlist_lookup_string(props, 3416 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3417 spa = spa_add(pool, NULL, altroot); 3418 spa_activate(spa, spa_mode_global); 3419 3420 if (props && (error = spa_prop_validate(spa, props))) { 3421 spa_deactivate(spa); 3422 spa_remove(spa); 3423 mutex_exit(&spa_namespace_lock); 3424 return (error); 3425 } 3426 3427 has_features = B_FALSE; 3428 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3429 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3430 if (zpool_prop_feature(nvpair_name(elem))) 3431 has_features = B_TRUE; 3432 } 3433 3434 if (has_features || nvlist_lookup_uint64(props, 3435 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3436 version = SPA_VERSION; 3437 } 3438 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3439 3440 spa->spa_first_txg = txg; 3441 spa->spa_uberblock.ub_txg = txg - 1; 3442 spa->spa_uberblock.ub_version = version; 3443 spa->spa_ubsync = spa->spa_uberblock; 3444 3445 /* 3446 * Create "The Godfather" zio to hold all async IOs 3447 */ 3448 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3449 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3450 3451 /* 3452 * Create the root vdev. 3453 */ 3454 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3455 3456 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3457 3458 ASSERT(error != 0 || rvd != NULL); 3459 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3460 3461 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3462 error = SET_ERROR(EINVAL); 3463 3464 if (error == 0 && 3465 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3466 (error = spa_validate_aux(spa, nvroot, txg, 3467 VDEV_ALLOC_ADD)) == 0) { 3468 for (int c = 0; c < rvd->vdev_children; c++) { 3469 vdev_metaslab_set_size(rvd->vdev_child[c]); 3470 vdev_expand(rvd->vdev_child[c], txg); 3471 } 3472 } 3473 3474 spa_config_exit(spa, SCL_ALL, FTAG); 3475 3476 if (error != 0) { 3477 spa_unload(spa); 3478 spa_deactivate(spa); 3479 spa_remove(spa); 3480 mutex_exit(&spa_namespace_lock); 3481 return (error); 3482 } 3483 3484 /* 3485 * Get the list of spares, if specified. 3486 */ 3487 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3488 &spares, &nspares) == 0) { 3489 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3490 KM_SLEEP) == 0); 3491 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3492 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3493 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3494 spa_load_spares(spa); 3495 spa_config_exit(spa, SCL_ALL, FTAG); 3496 spa->spa_spares.sav_sync = B_TRUE; 3497 } 3498 3499 /* 3500 * Get the list of level 2 cache devices, if specified. 3501 */ 3502 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3503 &l2cache, &nl2cache) == 0) { 3504 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3505 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3506 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3507 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3508 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3509 spa_load_l2cache(spa); 3510 spa_config_exit(spa, SCL_ALL, FTAG); 3511 spa->spa_l2cache.sav_sync = B_TRUE; 3512 } 3513 3514 spa->spa_is_initializing = B_TRUE; 3515 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3516 spa->spa_meta_objset = dp->dp_meta_objset; 3517 spa->spa_is_initializing = B_FALSE; 3518 3519 /* 3520 * Create DDTs (dedup tables). 3521 */ 3522 ddt_create(spa); 3523 3524 spa_update_dspace(spa); 3525 3526 tx = dmu_tx_create_assigned(dp, txg); 3527 3528 /* 3529 * Create the pool config object. 3530 */ 3531 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3532 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3533 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3534 3535 if (zap_add(spa->spa_meta_objset, 3536 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3537 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3538 cmn_err(CE_PANIC, "failed to add pool config"); 3539 } 3540 3541 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3542 spa_feature_create_zap_objects(spa, tx); 3543 3544 if (zap_add(spa->spa_meta_objset, 3545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3546 sizeof (uint64_t), 1, &version, tx) != 0) { 3547 cmn_err(CE_PANIC, "failed to add pool version"); 3548 } 3549 3550 /* Newly created pools with the right version are always deflated. */ 3551 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3552 spa->spa_deflate = TRUE; 3553 if (zap_add(spa->spa_meta_objset, 3554 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3555 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3556 cmn_err(CE_PANIC, "failed to add deflate"); 3557 } 3558 } 3559 3560 /* 3561 * Create the deferred-free bpobj. Turn off compression 3562 * because sync-to-convergence takes longer if the blocksize 3563 * keeps changing. 3564 */ 3565 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3566 dmu_object_set_compress(spa->spa_meta_objset, obj, 3567 ZIO_COMPRESS_OFF, tx); 3568 if (zap_add(spa->spa_meta_objset, 3569 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3570 sizeof (uint64_t), 1, &obj, tx) != 0) { 3571 cmn_err(CE_PANIC, "failed to add bpobj"); 3572 } 3573 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3574 spa->spa_meta_objset, obj)); 3575 3576 /* 3577 * Create the pool's history object. 3578 */ 3579 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3580 spa_history_create_obj(spa, tx); 3581 3582 /* 3583 * Set pool properties. 3584 */ 3585 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3586 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3587 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3588 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3589 3590 if (props != NULL) { 3591 spa_configfile_set(spa, props, B_FALSE); 3592 spa_sync_props(props, tx); 3593 } 3594 3595 dmu_tx_commit(tx); 3596 3597 spa->spa_sync_on = B_TRUE; 3598 txg_sync_start(spa->spa_dsl_pool); 3599 3600 /* 3601 * We explicitly wait for the first transaction to complete so that our 3602 * bean counters are appropriately updated. 3603 */ 3604 txg_wait_synced(spa->spa_dsl_pool, txg); 3605 3606 spa_config_sync(spa, B_FALSE, B_TRUE); 3607 3608 spa_history_log_version(spa, "create"); 3609 3610 spa->spa_minref = refcount_count(&spa->spa_refcount); 3611 3612 mutex_exit(&spa_namespace_lock); 3613 3614 return (0); 3615 } 3616 3617 #ifdef _KERNEL 3618 /* 3619 * Get the root pool information from the root disk, then import the root pool 3620 * during the system boot up time. 3621 */ 3622 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3623 3624 static nvlist_t * 3625 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3626 { 3627 nvlist_t *config; 3628 nvlist_t *nvtop, *nvroot; 3629 uint64_t pgid; 3630 3631 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3632 return (NULL); 3633 3634 /* 3635 * Add this top-level vdev to the child array. 3636 */ 3637 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3638 &nvtop) == 0); 3639 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3640 &pgid) == 0); 3641 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3642 3643 /* 3644 * Put this pool's top-level vdevs into a root vdev. 3645 */ 3646 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3647 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3648 VDEV_TYPE_ROOT) == 0); 3649 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3650 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3651 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3652 &nvtop, 1) == 0); 3653 3654 /* 3655 * Replace the existing vdev_tree with the new root vdev in 3656 * this pool's configuration (remove the old, add the new). 3657 */ 3658 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3659 nvlist_free(nvroot); 3660 return (config); 3661 } 3662 3663 /* 3664 * Walk the vdev tree and see if we can find a device with "better" 3665 * configuration. A configuration is "better" if the label on that 3666 * device has a more recent txg. 3667 */ 3668 static void 3669 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3670 { 3671 for (int c = 0; c < vd->vdev_children; c++) 3672 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3673 3674 if (vd->vdev_ops->vdev_op_leaf) { 3675 nvlist_t *label; 3676 uint64_t label_txg; 3677 3678 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3679 &label) != 0) 3680 return; 3681 3682 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3683 &label_txg) == 0); 3684 3685 /* 3686 * Do we have a better boot device? 3687 */ 3688 if (label_txg > *txg) { 3689 *txg = label_txg; 3690 *avd = vd; 3691 } 3692 nvlist_free(label); 3693 } 3694 } 3695 3696 /* 3697 * Import a root pool. 3698 * 3699 * For x86. devpath_list will consist of devid and/or physpath name of 3700 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3701 * The GRUB "findroot" command will return the vdev we should boot. 3702 * 3703 * For Sparc, devpath_list consists the physpath name of the booting device 3704 * no matter the rootpool is a single device pool or a mirrored pool. 3705 * e.g. 3706 * "/pci@1f,0/ide@d/disk@0,0:a" 3707 */ 3708 int 3709 spa_import_rootpool(char *devpath, char *devid) 3710 { 3711 spa_t *spa; 3712 vdev_t *rvd, *bvd, *avd = NULL; 3713 nvlist_t *config, *nvtop; 3714 uint64_t guid, txg; 3715 char *pname; 3716 int error; 3717 3718 /* 3719 * Read the label from the boot device and generate a configuration. 3720 */ 3721 config = spa_generate_rootconf(devpath, devid, &guid); 3722 #if defined(_OBP) && defined(_KERNEL) 3723 if (config == NULL) { 3724 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3725 /* iscsi boot */ 3726 get_iscsi_bootpath_phy(devpath); 3727 config = spa_generate_rootconf(devpath, devid, &guid); 3728 } 3729 } 3730 #endif 3731 if (config == NULL) { 3732 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3733 devpath); 3734 return (SET_ERROR(EIO)); 3735 } 3736 3737 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3738 &pname) == 0); 3739 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3740 3741 mutex_enter(&spa_namespace_lock); 3742 if ((spa = spa_lookup(pname)) != NULL) { 3743 /* 3744 * Remove the existing root pool from the namespace so that we 3745 * can replace it with the correct config we just read in. 3746 */ 3747 spa_remove(spa); 3748 } 3749 3750 spa = spa_add(pname, config, NULL); 3751 spa->spa_is_root = B_TRUE; 3752 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3753 3754 /* 3755 * Build up a vdev tree based on the boot device's label config. 3756 */ 3757 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3758 &nvtop) == 0); 3759 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3760 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3761 VDEV_ALLOC_ROOTPOOL); 3762 spa_config_exit(spa, SCL_ALL, FTAG); 3763 if (error) { 3764 mutex_exit(&spa_namespace_lock); 3765 nvlist_free(config); 3766 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3767 pname); 3768 return (error); 3769 } 3770 3771 /* 3772 * Get the boot vdev. 3773 */ 3774 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3775 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3776 (u_longlong_t)guid); 3777 error = SET_ERROR(ENOENT); 3778 goto out; 3779 } 3780 3781 /* 3782 * Determine if there is a better boot device. 3783 */ 3784 avd = bvd; 3785 spa_alt_rootvdev(rvd, &avd, &txg); 3786 if (avd != bvd) { 3787 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3788 "try booting from '%s'", avd->vdev_path); 3789 error = SET_ERROR(EINVAL); 3790 goto out; 3791 } 3792 3793 /* 3794 * If the boot device is part of a spare vdev then ensure that 3795 * we're booting off the active spare. 3796 */ 3797 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3798 !bvd->vdev_isspare) { 3799 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3800 "try booting from '%s'", 3801 bvd->vdev_parent-> 3802 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3803 error = SET_ERROR(EINVAL); 3804 goto out; 3805 } 3806 3807 error = 0; 3808 out: 3809 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3810 vdev_free(rvd); 3811 spa_config_exit(spa, SCL_ALL, FTAG); 3812 mutex_exit(&spa_namespace_lock); 3813 3814 nvlist_free(config); 3815 return (error); 3816 } 3817 3818 #endif 3819 3820 /* 3821 * Import a non-root pool into the system. 3822 */ 3823 int 3824 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3825 { 3826 spa_t *spa; 3827 char *altroot = NULL; 3828 spa_load_state_t state = SPA_LOAD_IMPORT; 3829 zpool_rewind_policy_t policy; 3830 uint64_t mode = spa_mode_global; 3831 uint64_t readonly = B_FALSE; 3832 int error; 3833 nvlist_t *nvroot; 3834 nvlist_t **spares, **l2cache; 3835 uint_t nspares, nl2cache; 3836 3837 /* 3838 * If a pool with this name exists, return failure. 3839 */ 3840 mutex_enter(&spa_namespace_lock); 3841 if (spa_lookup(pool) != NULL) { 3842 mutex_exit(&spa_namespace_lock); 3843 return (SET_ERROR(EEXIST)); 3844 } 3845 3846 /* 3847 * Create and initialize the spa structure. 3848 */ 3849 (void) nvlist_lookup_string(props, 3850 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3851 (void) nvlist_lookup_uint64(props, 3852 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3853 if (readonly) 3854 mode = FREAD; 3855 spa = spa_add(pool, config, altroot); 3856 spa->spa_import_flags = flags; 3857 3858 /* 3859 * Verbatim import - Take a pool and insert it into the namespace 3860 * as if it had been loaded at boot. 3861 */ 3862 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3863 if (props != NULL) 3864 spa_configfile_set(spa, props, B_FALSE); 3865 3866 spa_config_sync(spa, B_FALSE, B_TRUE); 3867 3868 mutex_exit(&spa_namespace_lock); 3869 return (0); 3870 } 3871 3872 spa_activate(spa, mode); 3873 3874 /* 3875 * Don't start async tasks until we know everything is healthy. 3876 */ 3877 spa_async_suspend(spa); 3878 3879 zpool_get_rewind_policy(config, &policy); 3880 if (policy.zrp_request & ZPOOL_DO_REWIND) 3881 state = SPA_LOAD_RECOVER; 3882 3883 /* 3884 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3885 * because the user-supplied config is actually the one to trust when 3886 * doing an import. 3887 */ 3888 if (state != SPA_LOAD_RECOVER) 3889 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3890 3891 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3892 policy.zrp_request); 3893 3894 /* 3895 * Propagate anything learned while loading the pool and pass it 3896 * back to caller (i.e. rewind info, missing devices, etc). 3897 */ 3898 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3899 spa->spa_load_info) == 0); 3900 3901 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3902 /* 3903 * Toss any existing sparelist, as it doesn't have any validity 3904 * anymore, and conflicts with spa_has_spare(). 3905 */ 3906 if (spa->spa_spares.sav_config) { 3907 nvlist_free(spa->spa_spares.sav_config); 3908 spa->spa_spares.sav_config = NULL; 3909 spa_load_spares(spa); 3910 } 3911 if (spa->spa_l2cache.sav_config) { 3912 nvlist_free(spa->spa_l2cache.sav_config); 3913 spa->spa_l2cache.sav_config = NULL; 3914 spa_load_l2cache(spa); 3915 } 3916 3917 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3918 &nvroot) == 0); 3919 if (error == 0) 3920 error = spa_validate_aux(spa, nvroot, -1ULL, 3921 VDEV_ALLOC_SPARE); 3922 if (error == 0) 3923 error = spa_validate_aux(spa, nvroot, -1ULL, 3924 VDEV_ALLOC_L2CACHE); 3925 spa_config_exit(spa, SCL_ALL, FTAG); 3926 3927 if (props != NULL) 3928 spa_configfile_set(spa, props, B_FALSE); 3929 3930 if (error != 0 || (props && spa_writeable(spa) && 3931 (error = spa_prop_set(spa, props)))) { 3932 spa_unload(spa); 3933 spa_deactivate(spa); 3934 spa_remove(spa); 3935 mutex_exit(&spa_namespace_lock); 3936 return (error); 3937 } 3938 3939 spa_async_resume(spa); 3940 3941 /* 3942 * Override any spares and level 2 cache devices as specified by 3943 * the user, as these may have correct device names/devids, etc. 3944 */ 3945 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3946 &spares, &nspares) == 0) { 3947 if (spa->spa_spares.sav_config) 3948 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3949 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3950 else 3951 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3952 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3953 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3954 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3955 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3956 spa_load_spares(spa); 3957 spa_config_exit(spa, SCL_ALL, FTAG); 3958 spa->spa_spares.sav_sync = B_TRUE; 3959 } 3960 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3961 &l2cache, &nl2cache) == 0) { 3962 if (spa->spa_l2cache.sav_config) 3963 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3964 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3965 else 3966 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3967 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3968 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3969 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3970 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3971 spa_load_l2cache(spa); 3972 spa_config_exit(spa, SCL_ALL, FTAG); 3973 spa->spa_l2cache.sav_sync = B_TRUE; 3974 } 3975 3976 /* 3977 * Check for any removed devices. 3978 */ 3979 if (spa->spa_autoreplace) { 3980 spa_aux_check_removed(&spa->spa_spares); 3981 spa_aux_check_removed(&spa->spa_l2cache); 3982 } 3983 3984 if (spa_writeable(spa)) { 3985 /* 3986 * Update the config cache to include the newly-imported pool. 3987 */ 3988 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3989 } 3990 3991 /* 3992 * It's possible that the pool was expanded while it was exported. 3993 * We kick off an async task to handle this for us. 3994 */ 3995 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3996 3997 mutex_exit(&spa_namespace_lock); 3998 spa_history_log_version(spa, "import"); 3999 4000 return (0); 4001 } 4002 4003 nvlist_t * 4004 spa_tryimport(nvlist_t *tryconfig) 4005 { 4006 nvlist_t *config = NULL; 4007 char *poolname; 4008 spa_t *spa; 4009 uint64_t state; 4010 int error; 4011 4012 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4013 return (NULL); 4014 4015 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4016 return (NULL); 4017 4018 /* 4019 * Create and initialize the spa structure. 4020 */ 4021 mutex_enter(&spa_namespace_lock); 4022 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4023 spa_activate(spa, FREAD); 4024 4025 /* 4026 * Pass off the heavy lifting to spa_load(). 4027 * Pass TRUE for mosconfig because the user-supplied config 4028 * is actually the one to trust when doing an import. 4029 */ 4030 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4031 4032 /* 4033 * If 'tryconfig' was at least parsable, return the current config. 4034 */ 4035 if (spa->spa_root_vdev != NULL) { 4036 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4037 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4038 poolname) == 0); 4039 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4040 state) == 0); 4041 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4042 spa->spa_uberblock.ub_timestamp) == 0); 4043 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4044 spa->spa_load_info) == 0); 4045 4046 /* 4047 * If the bootfs property exists on this pool then we 4048 * copy it out so that external consumers can tell which 4049 * pools are bootable. 4050 */ 4051 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4052 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4053 4054 /* 4055 * We have to play games with the name since the 4056 * pool was opened as TRYIMPORT_NAME. 4057 */ 4058 if (dsl_dsobj_to_dsname(spa_name(spa), 4059 spa->spa_bootfs, tmpname) == 0) { 4060 char *cp; 4061 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4062 4063 cp = strchr(tmpname, '/'); 4064 if (cp == NULL) { 4065 (void) strlcpy(dsname, tmpname, 4066 MAXPATHLEN); 4067 } else { 4068 (void) snprintf(dsname, MAXPATHLEN, 4069 "%s/%s", poolname, ++cp); 4070 } 4071 VERIFY(nvlist_add_string(config, 4072 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4073 kmem_free(dsname, MAXPATHLEN); 4074 } 4075 kmem_free(tmpname, MAXPATHLEN); 4076 } 4077 4078 /* 4079 * Add the list of hot spares and level 2 cache devices. 4080 */ 4081 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4082 spa_add_spares(spa, config); 4083 spa_add_l2cache(spa, config); 4084 spa_config_exit(spa, SCL_CONFIG, FTAG); 4085 } 4086 4087 spa_unload(spa); 4088 spa_deactivate(spa); 4089 spa_remove(spa); 4090 mutex_exit(&spa_namespace_lock); 4091 4092 return (config); 4093 } 4094 4095 /* 4096 * Pool export/destroy 4097 * 4098 * The act of destroying or exporting a pool is very simple. We make sure there 4099 * is no more pending I/O and any references to the pool are gone. Then, we 4100 * update the pool state and sync all the labels to disk, removing the 4101 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4102 * we don't sync the labels or remove the configuration cache. 4103 */ 4104 static int 4105 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4106 boolean_t force, boolean_t hardforce) 4107 { 4108 spa_t *spa; 4109 4110 if (oldconfig) 4111 *oldconfig = NULL; 4112 4113 if (!(spa_mode_global & FWRITE)) 4114 return (SET_ERROR(EROFS)); 4115 4116 mutex_enter(&spa_namespace_lock); 4117 if ((spa = spa_lookup(pool)) == NULL) { 4118 mutex_exit(&spa_namespace_lock); 4119 return (SET_ERROR(ENOENT)); 4120 } 4121 4122 /* 4123 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4124 * reacquire the namespace lock, and see if we can export. 4125 */ 4126 spa_open_ref(spa, FTAG); 4127 mutex_exit(&spa_namespace_lock); 4128 spa_async_suspend(spa); 4129 mutex_enter(&spa_namespace_lock); 4130 spa_close(spa, FTAG); 4131 4132 /* 4133 * The pool will be in core if it's openable, 4134 * in which case we can modify its state. 4135 */ 4136 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4137 /* 4138 * Objsets may be open only because they're dirty, so we 4139 * have to force it to sync before checking spa_refcnt. 4140 */ 4141 txg_wait_synced(spa->spa_dsl_pool, 0); 4142 4143 /* 4144 * A pool cannot be exported or destroyed if there are active 4145 * references. If we are resetting a pool, allow references by 4146 * fault injection handlers. 4147 */ 4148 if (!spa_refcount_zero(spa) || 4149 (spa->spa_inject_ref != 0 && 4150 new_state != POOL_STATE_UNINITIALIZED)) { 4151 spa_async_resume(spa); 4152 mutex_exit(&spa_namespace_lock); 4153 return (SET_ERROR(EBUSY)); 4154 } 4155 4156 /* 4157 * A pool cannot be exported if it has an active shared spare. 4158 * This is to prevent other pools stealing the active spare 4159 * from an exported pool. At user's own will, such pool can 4160 * be forcedly exported. 4161 */ 4162 if (!force && new_state == POOL_STATE_EXPORTED && 4163 spa_has_active_shared_spare(spa)) { 4164 spa_async_resume(spa); 4165 mutex_exit(&spa_namespace_lock); 4166 return (SET_ERROR(EXDEV)); 4167 } 4168 4169 /* 4170 * We want this to be reflected on every label, 4171 * so mark them all dirty. spa_unload() will do the 4172 * final sync that pushes these changes out. 4173 */ 4174 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4175 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4176 spa->spa_state = new_state; 4177 spa->spa_final_txg = spa_last_synced_txg(spa) + 4178 TXG_DEFER_SIZE + 1; 4179 vdev_config_dirty(spa->spa_root_vdev); 4180 spa_config_exit(spa, SCL_ALL, FTAG); 4181 } 4182 } 4183 4184 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4185 4186 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4187 spa_unload(spa); 4188 spa_deactivate(spa); 4189 } 4190 4191 if (oldconfig && spa->spa_config) 4192 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4193 4194 if (new_state != POOL_STATE_UNINITIALIZED) { 4195 if (!hardforce) 4196 spa_config_sync(spa, B_TRUE, B_TRUE); 4197 spa_remove(spa); 4198 } 4199 mutex_exit(&spa_namespace_lock); 4200 4201 return (0); 4202 } 4203 4204 /* 4205 * Destroy a storage pool. 4206 */ 4207 int 4208 spa_destroy(char *pool) 4209 { 4210 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4211 B_FALSE, B_FALSE)); 4212 } 4213 4214 /* 4215 * Export a storage pool. 4216 */ 4217 int 4218 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4219 boolean_t hardforce) 4220 { 4221 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4222 force, hardforce)); 4223 } 4224 4225 /* 4226 * Similar to spa_export(), this unloads the spa_t without actually removing it 4227 * from the namespace in any way. 4228 */ 4229 int 4230 spa_reset(char *pool) 4231 { 4232 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4233 B_FALSE, B_FALSE)); 4234 } 4235 4236 /* 4237 * ========================================================================== 4238 * Device manipulation 4239 * ========================================================================== 4240 */ 4241 4242 /* 4243 * Add a device to a storage pool. 4244 */ 4245 int 4246 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4247 { 4248 uint64_t txg, id; 4249 int error; 4250 vdev_t *rvd = spa->spa_root_vdev; 4251 vdev_t *vd, *tvd; 4252 nvlist_t **spares, **l2cache; 4253 uint_t nspares, nl2cache; 4254 4255 ASSERT(spa_writeable(spa)); 4256 4257 txg = spa_vdev_enter(spa); 4258 4259 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4260 VDEV_ALLOC_ADD)) != 0) 4261 return (spa_vdev_exit(spa, NULL, txg, error)); 4262 4263 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4264 4265 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4266 &nspares) != 0) 4267 nspares = 0; 4268 4269 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4270 &nl2cache) != 0) 4271 nl2cache = 0; 4272 4273 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4274 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4275 4276 if (vd->vdev_children != 0 && 4277 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4278 return (spa_vdev_exit(spa, vd, txg, error)); 4279 4280 /* 4281 * We must validate the spares and l2cache devices after checking the 4282 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4283 */ 4284 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4285 return (spa_vdev_exit(spa, vd, txg, error)); 4286 4287 /* 4288 * Transfer each new top-level vdev from vd to rvd. 4289 */ 4290 for (int c = 0; c < vd->vdev_children; c++) { 4291 4292 /* 4293 * Set the vdev id to the first hole, if one exists. 4294 */ 4295 for (id = 0; id < rvd->vdev_children; id++) { 4296 if (rvd->vdev_child[id]->vdev_ishole) { 4297 vdev_free(rvd->vdev_child[id]); 4298 break; 4299 } 4300 } 4301 tvd = vd->vdev_child[c]; 4302 vdev_remove_child(vd, tvd); 4303 tvd->vdev_id = id; 4304 vdev_add_child(rvd, tvd); 4305 vdev_config_dirty(tvd); 4306 } 4307 4308 if (nspares != 0) { 4309 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4310 ZPOOL_CONFIG_SPARES); 4311 spa_load_spares(spa); 4312 spa->spa_spares.sav_sync = B_TRUE; 4313 } 4314 4315 if (nl2cache != 0) { 4316 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4317 ZPOOL_CONFIG_L2CACHE); 4318 spa_load_l2cache(spa); 4319 spa->spa_l2cache.sav_sync = B_TRUE; 4320 } 4321 4322 /* 4323 * We have to be careful when adding new vdevs to an existing pool. 4324 * If other threads start allocating from these vdevs before we 4325 * sync the config cache, and we lose power, then upon reboot we may 4326 * fail to open the pool because there are DVAs that the config cache 4327 * can't translate. Therefore, we first add the vdevs without 4328 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4329 * and then let spa_config_update() initialize the new metaslabs. 4330 * 4331 * spa_load() checks for added-but-not-initialized vdevs, so that 4332 * if we lose power at any point in this sequence, the remaining 4333 * steps will be completed the next time we load the pool. 4334 */ 4335 (void) spa_vdev_exit(spa, vd, txg, 0); 4336 4337 mutex_enter(&spa_namespace_lock); 4338 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4339 mutex_exit(&spa_namespace_lock); 4340 4341 return (0); 4342 } 4343 4344 /* 4345 * Attach a device to a mirror. The arguments are the path to any device 4346 * in the mirror, and the nvroot for the new device. If the path specifies 4347 * a device that is not mirrored, we automatically insert the mirror vdev. 4348 * 4349 * If 'replacing' is specified, the new device is intended to replace the 4350 * existing device; in this case the two devices are made into their own 4351 * mirror using the 'replacing' vdev, which is functionally identical to 4352 * the mirror vdev (it actually reuses all the same ops) but has a few 4353 * extra rules: you can't attach to it after it's been created, and upon 4354 * completion of resilvering, the first disk (the one being replaced) 4355 * is automatically detached. 4356 */ 4357 int 4358 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4359 { 4360 uint64_t txg, dtl_max_txg; 4361 vdev_t *rvd = spa->spa_root_vdev; 4362 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4363 vdev_ops_t *pvops; 4364 char *oldvdpath, *newvdpath; 4365 int newvd_isspare; 4366 int error; 4367 4368 ASSERT(spa_writeable(spa)); 4369 4370 txg = spa_vdev_enter(spa); 4371 4372 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4373 4374 if (oldvd == NULL) 4375 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4376 4377 if (!oldvd->vdev_ops->vdev_op_leaf) 4378 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4379 4380 pvd = oldvd->vdev_parent; 4381 4382 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4383 VDEV_ALLOC_ATTACH)) != 0) 4384 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4385 4386 if (newrootvd->vdev_children != 1) 4387 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4388 4389 newvd = newrootvd->vdev_child[0]; 4390 4391 if (!newvd->vdev_ops->vdev_op_leaf) 4392 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4393 4394 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4395 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4396 4397 /* 4398 * Spares can't replace logs 4399 */ 4400 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4401 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4402 4403 if (!replacing) { 4404 /* 4405 * For attach, the only allowable parent is a mirror or the root 4406 * vdev. 4407 */ 4408 if (pvd->vdev_ops != &vdev_mirror_ops && 4409 pvd->vdev_ops != &vdev_root_ops) 4410 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4411 4412 pvops = &vdev_mirror_ops; 4413 } else { 4414 /* 4415 * Active hot spares can only be replaced by inactive hot 4416 * spares. 4417 */ 4418 if (pvd->vdev_ops == &vdev_spare_ops && 4419 oldvd->vdev_isspare && 4420 !spa_has_spare(spa, newvd->vdev_guid)) 4421 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4422 4423 /* 4424 * If the source is a hot spare, and the parent isn't already a 4425 * spare, then we want to create a new hot spare. Otherwise, we 4426 * want to create a replacing vdev. The user is not allowed to 4427 * attach to a spared vdev child unless the 'isspare' state is 4428 * the same (spare replaces spare, non-spare replaces 4429 * non-spare). 4430 */ 4431 if (pvd->vdev_ops == &vdev_replacing_ops && 4432 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4433 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4434 } else if (pvd->vdev_ops == &vdev_spare_ops && 4435 newvd->vdev_isspare != oldvd->vdev_isspare) { 4436 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4437 } 4438 4439 if (newvd->vdev_isspare) 4440 pvops = &vdev_spare_ops; 4441 else 4442 pvops = &vdev_replacing_ops; 4443 } 4444 4445 /* 4446 * Make sure the new device is big enough. 4447 */ 4448 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4449 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4450 4451 /* 4452 * The new device cannot have a higher alignment requirement 4453 * than the top-level vdev. 4454 */ 4455 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4456 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4457 4458 /* 4459 * If this is an in-place replacement, update oldvd's path and devid 4460 * to make it distinguishable from newvd, and unopenable from now on. 4461 */ 4462 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4463 spa_strfree(oldvd->vdev_path); 4464 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4465 KM_SLEEP); 4466 (void) sprintf(oldvd->vdev_path, "%s/%s", 4467 newvd->vdev_path, "old"); 4468 if (oldvd->vdev_devid != NULL) { 4469 spa_strfree(oldvd->vdev_devid); 4470 oldvd->vdev_devid = NULL; 4471 } 4472 } 4473 4474 /* mark the device being resilvered */ 4475 newvd->vdev_resilver_txg = txg; 4476 4477 /* 4478 * If the parent is not a mirror, or if we're replacing, insert the new 4479 * mirror/replacing/spare vdev above oldvd. 4480 */ 4481 if (pvd->vdev_ops != pvops) 4482 pvd = vdev_add_parent(oldvd, pvops); 4483 4484 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4485 ASSERT(pvd->vdev_ops == pvops); 4486 ASSERT(oldvd->vdev_parent == pvd); 4487 4488 /* 4489 * Extract the new device from its root and add it to pvd. 4490 */ 4491 vdev_remove_child(newrootvd, newvd); 4492 newvd->vdev_id = pvd->vdev_children; 4493 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4494 vdev_add_child(pvd, newvd); 4495 4496 tvd = newvd->vdev_top; 4497 ASSERT(pvd->vdev_top == tvd); 4498 ASSERT(tvd->vdev_parent == rvd); 4499 4500 vdev_config_dirty(tvd); 4501 4502 /* 4503 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4504 * for any dmu_sync-ed blocks. It will propagate upward when 4505 * spa_vdev_exit() calls vdev_dtl_reassess(). 4506 */ 4507 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4508 4509 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4510 dtl_max_txg - TXG_INITIAL); 4511 4512 if (newvd->vdev_isspare) { 4513 spa_spare_activate(newvd); 4514 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4515 } 4516 4517 oldvdpath = spa_strdup(oldvd->vdev_path); 4518 newvdpath = spa_strdup(newvd->vdev_path); 4519 newvd_isspare = newvd->vdev_isspare; 4520 4521 /* 4522 * Mark newvd's DTL dirty in this txg. 4523 */ 4524 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4525 4526 /* 4527 * Schedule the resilver to restart in the future. We do this to 4528 * ensure that dmu_sync-ed blocks have been stitched into the 4529 * respective datasets. 4530 */ 4531 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4532 4533 /* 4534 * Commit the config 4535 */ 4536 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4537 4538 spa_history_log_internal(spa, "vdev attach", NULL, 4539 "%s vdev=%s %s vdev=%s", 4540 replacing && newvd_isspare ? "spare in" : 4541 replacing ? "replace" : "attach", newvdpath, 4542 replacing ? "for" : "to", oldvdpath); 4543 4544 spa_strfree(oldvdpath); 4545 spa_strfree(newvdpath); 4546 4547 if (spa->spa_bootfs) 4548 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4549 4550 return (0); 4551 } 4552 4553 /* 4554 * Detach a device from a mirror or replacing vdev. 4555 * 4556 * If 'replace_done' is specified, only detach if the parent 4557 * is a replacing vdev. 4558 */ 4559 int 4560 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4561 { 4562 uint64_t txg; 4563 int error; 4564 vdev_t *rvd = spa->spa_root_vdev; 4565 vdev_t *vd, *pvd, *cvd, *tvd; 4566 boolean_t unspare = B_FALSE; 4567 uint64_t unspare_guid = 0; 4568 char *vdpath; 4569 4570 ASSERT(spa_writeable(spa)); 4571 4572 txg = spa_vdev_enter(spa); 4573 4574 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4575 4576 if (vd == NULL) 4577 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4578 4579 if (!vd->vdev_ops->vdev_op_leaf) 4580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4581 4582 pvd = vd->vdev_parent; 4583 4584 /* 4585 * If the parent/child relationship is not as expected, don't do it. 4586 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4587 * vdev that's replacing B with C. The user's intent in replacing 4588 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4589 * the replace by detaching C, the expected behavior is to end up 4590 * M(A,B). But suppose that right after deciding to detach C, 4591 * the replacement of B completes. We would have M(A,C), and then 4592 * ask to detach C, which would leave us with just A -- not what 4593 * the user wanted. To prevent this, we make sure that the 4594 * parent/child relationship hasn't changed -- in this example, 4595 * that C's parent is still the replacing vdev R. 4596 */ 4597 if (pvd->vdev_guid != pguid && pguid != 0) 4598 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4599 4600 /* 4601 * Only 'replacing' or 'spare' vdevs can be replaced. 4602 */ 4603 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4604 pvd->vdev_ops != &vdev_spare_ops) 4605 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4606 4607 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4608 spa_version(spa) >= SPA_VERSION_SPARES); 4609 4610 /* 4611 * Only mirror, replacing, and spare vdevs support detach. 4612 */ 4613 if (pvd->vdev_ops != &vdev_replacing_ops && 4614 pvd->vdev_ops != &vdev_mirror_ops && 4615 pvd->vdev_ops != &vdev_spare_ops) 4616 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4617 4618 /* 4619 * If this device has the only valid copy of some data, 4620 * we cannot safely detach it. 4621 */ 4622 if (vdev_dtl_required(vd)) 4623 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4624 4625 ASSERT(pvd->vdev_children >= 2); 4626 4627 /* 4628 * If we are detaching the second disk from a replacing vdev, then 4629 * check to see if we changed the original vdev's path to have "/old" 4630 * at the end in spa_vdev_attach(). If so, undo that change now. 4631 */ 4632 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4633 vd->vdev_path != NULL) { 4634 size_t len = strlen(vd->vdev_path); 4635 4636 for (int c = 0; c < pvd->vdev_children; c++) { 4637 cvd = pvd->vdev_child[c]; 4638 4639 if (cvd == vd || cvd->vdev_path == NULL) 4640 continue; 4641 4642 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4643 strcmp(cvd->vdev_path + len, "/old") == 0) { 4644 spa_strfree(cvd->vdev_path); 4645 cvd->vdev_path = spa_strdup(vd->vdev_path); 4646 break; 4647 } 4648 } 4649 } 4650 4651 /* 4652 * If we are detaching the original disk from a spare, then it implies 4653 * that the spare should become a real disk, and be removed from the 4654 * active spare list for the pool. 4655 */ 4656 if (pvd->vdev_ops == &vdev_spare_ops && 4657 vd->vdev_id == 0 && 4658 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4659 unspare = B_TRUE; 4660 4661 /* 4662 * Erase the disk labels so the disk can be used for other things. 4663 * This must be done after all other error cases are handled, 4664 * but before we disembowel vd (so we can still do I/O to it). 4665 * But if we can't do it, don't treat the error as fatal -- 4666 * it may be that the unwritability of the disk is the reason 4667 * it's being detached! 4668 */ 4669 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4670 4671 /* 4672 * Remove vd from its parent and compact the parent's children. 4673 */ 4674 vdev_remove_child(pvd, vd); 4675 vdev_compact_children(pvd); 4676 4677 /* 4678 * Remember one of the remaining children so we can get tvd below. 4679 */ 4680 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4681 4682 /* 4683 * If we need to remove the remaining child from the list of hot spares, 4684 * do it now, marking the vdev as no longer a spare in the process. 4685 * We must do this before vdev_remove_parent(), because that can 4686 * change the GUID if it creates a new toplevel GUID. For a similar 4687 * reason, we must remove the spare now, in the same txg as the detach; 4688 * otherwise someone could attach a new sibling, change the GUID, and 4689 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4690 */ 4691 if (unspare) { 4692 ASSERT(cvd->vdev_isspare); 4693 spa_spare_remove(cvd); 4694 unspare_guid = cvd->vdev_guid; 4695 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4696 cvd->vdev_unspare = B_TRUE; 4697 } 4698 4699 /* 4700 * If the parent mirror/replacing vdev only has one child, 4701 * the parent is no longer needed. Remove it from the tree. 4702 */ 4703 if (pvd->vdev_children == 1) { 4704 if (pvd->vdev_ops == &vdev_spare_ops) 4705 cvd->vdev_unspare = B_FALSE; 4706 vdev_remove_parent(cvd); 4707 } 4708 4709 4710 /* 4711 * We don't set tvd until now because the parent we just removed 4712 * may have been the previous top-level vdev. 4713 */ 4714 tvd = cvd->vdev_top; 4715 ASSERT(tvd->vdev_parent == rvd); 4716 4717 /* 4718 * Reevaluate the parent vdev state. 4719 */ 4720 vdev_propagate_state(cvd); 4721 4722 /* 4723 * If the 'autoexpand' property is set on the pool then automatically 4724 * try to expand the size of the pool. For example if the device we 4725 * just detached was smaller than the others, it may be possible to 4726 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4727 * first so that we can obtain the updated sizes of the leaf vdevs. 4728 */ 4729 if (spa->spa_autoexpand) { 4730 vdev_reopen(tvd); 4731 vdev_expand(tvd, txg); 4732 } 4733 4734 vdev_config_dirty(tvd); 4735 4736 /* 4737 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4738 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4739 * But first make sure we're not on any *other* txg's DTL list, to 4740 * prevent vd from being accessed after it's freed. 4741 */ 4742 vdpath = spa_strdup(vd->vdev_path); 4743 for (int t = 0; t < TXG_SIZE; t++) 4744 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4745 vd->vdev_detached = B_TRUE; 4746 vdev_dirty(tvd, VDD_DTL, vd, txg); 4747 4748 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4749 4750 /* hang on to the spa before we release the lock */ 4751 spa_open_ref(spa, FTAG); 4752 4753 error = spa_vdev_exit(spa, vd, txg, 0); 4754 4755 spa_history_log_internal(spa, "detach", NULL, 4756 "vdev=%s", vdpath); 4757 spa_strfree(vdpath); 4758 4759 /* 4760 * If this was the removal of the original device in a hot spare vdev, 4761 * then we want to go through and remove the device from the hot spare 4762 * list of every other pool. 4763 */ 4764 if (unspare) { 4765 spa_t *altspa = NULL; 4766 4767 mutex_enter(&spa_namespace_lock); 4768 while ((altspa = spa_next(altspa)) != NULL) { 4769 if (altspa->spa_state != POOL_STATE_ACTIVE || 4770 altspa == spa) 4771 continue; 4772 4773 spa_open_ref(altspa, FTAG); 4774 mutex_exit(&spa_namespace_lock); 4775 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4776 mutex_enter(&spa_namespace_lock); 4777 spa_close(altspa, FTAG); 4778 } 4779 mutex_exit(&spa_namespace_lock); 4780 4781 /* search the rest of the vdevs for spares to remove */ 4782 spa_vdev_resilver_done(spa); 4783 } 4784 4785 /* all done with the spa; OK to release */ 4786 mutex_enter(&spa_namespace_lock); 4787 spa_close(spa, FTAG); 4788 mutex_exit(&spa_namespace_lock); 4789 4790 return (error); 4791 } 4792 4793 /* 4794 * Split a set of devices from their mirrors, and create a new pool from them. 4795 */ 4796 int 4797 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4798 nvlist_t *props, boolean_t exp) 4799 { 4800 int error = 0; 4801 uint64_t txg, *glist; 4802 spa_t *newspa; 4803 uint_t c, children, lastlog; 4804 nvlist_t **child, *nvl, *tmp; 4805 dmu_tx_t *tx; 4806 char *altroot = NULL; 4807 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4808 boolean_t activate_slog; 4809 4810 ASSERT(spa_writeable(spa)); 4811 4812 txg = spa_vdev_enter(spa); 4813 4814 /* clear the log and flush everything up to now */ 4815 activate_slog = spa_passivate_log(spa); 4816 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4817 error = spa_offline_log(spa); 4818 txg = spa_vdev_config_enter(spa); 4819 4820 if (activate_slog) 4821 spa_activate_log(spa); 4822 4823 if (error != 0) 4824 return (spa_vdev_exit(spa, NULL, txg, error)); 4825 4826 /* check new spa name before going any further */ 4827 if (spa_lookup(newname) != NULL) 4828 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4829 4830 /* 4831 * scan through all the children to ensure they're all mirrors 4832 */ 4833 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4834 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4835 &children) != 0) 4836 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4837 4838 /* first, check to ensure we've got the right child count */ 4839 rvd = spa->spa_root_vdev; 4840 lastlog = 0; 4841 for (c = 0; c < rvd->vdev_children; c++) { 4842 vdev_t *vd = rvd->vdev_child[c]; 4843 4844 /* don't count the holes & logs as children */ 4845 if (vd->vdev_islog || vd->vdev_ishole) { 4846 if (lastlog == 0) 4847 lastlog = c; 4848 continue; 4849 } 4850 4851 lastlog = 0; 4852 } 4853 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4854 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4855 4856 /* next, ensure no spare or cache devices are part of the split */ 4857 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4858 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4859 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4860 4861 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4862 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4863 4864 /* then, loop over each vdev and validate it */ 4865 for (c = 0; c < children; c++) { 4866 uint64_t is_hole = 0; 4867 4868 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4869 &is_hole); 4870 4871 if (is_hole != 0) { 4872 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4873 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4874 continue; 4875 } else { 4876 error = SET_ERROR(EINVAL); 4877 break; 4878 } 4879 } 4880 4881 /* which disk is going to be split? */ 4882 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4883 &glist[c]) != 0) { 4884 error = SET_ERROR(EINVAL); 4885 break; 4886 } 4887 4888 /* look it up in the spa */ 4889 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4890 if (vml[c] == NULL) { 4891 error = SET_ERROR(ENODEV); 4892 break; 4893 } 4894 4895 /* make sure there's nothing stopping the split */ 4896 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4897 vml[c]->vdev_islog || 4898 vml[c]->vdev_ishole || 4899 vml[c]->vdev_isspare || 4900 vml[c]->vdev_isl2cache || 4901 !vdev_writeable(vml[c]) || 4902 vml[c]->vdev_children != 0 || 4903 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4904 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4905 error = SET_ERROR(EINVAL); 4906 break; 4907 } 4908 4909 if (vdev_dtl_required(vml[c])) { 4910 error = SET_ERROR(EBUSY); 4911 break; 4912 } 4913 4914 /* we need certain info from the top level */ 4915 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4916 vml[c]->vdev_top->vdev_ms_array) == 0); 4917 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4918 vml[c]->vdev_top->vdev_ms_shift) == 0); 4919 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4920 vml[c]->vdev_top->vdev_asize) == 0); 4921 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4922 vml[c]->vdev_top->vdev_ashift) == 0); 4923 } 4924 4925 if (error != 0) { 4926 kmem_free(vml, children * sizeof (vdev_t *)); 4927 kmem_free(glist, children * sizeof (uint64_t)); 4928 return (spa_vdev_exit(spa, NULL, txg, error)); 4929 } 4930 4931 /* stop writers from using the disks */ 4932 for (c = 0; c < children; c++) { 4933 if (vml[c] != NULL) 4934 vml[c]->vdev_offline = B_TRUE; 4935 } 4936 vdev_reopen(spa->spa_root_vdev); 4937 4938 /* 4939 * Temporarily record the splitting vdevs in the spa config. This 4940 * will disappear once the config is regenerated. 4941 */ 4942 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4943 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4944 glist, children) == 0); 4945 kmem_free(glist, children * sizeof (uint64_t)); 4946 4947 mutex_enter(&spa->spa_props_lock); 4948 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4949 nvl) == 0); 4950 mutex_exit(&spa->spa_props_lock); 4951 spa->spa_config_splitting = nvl; 4952 vdev_config_dirty(spa->spa_root_vdev); 4953 4954 /* configure and create the new pool */ 4955 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4956 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4957 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4958 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4959 spa_version(spa)) == 0); 4960 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4961 spa->spa_config_txg) == 0); 4962 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4963 spa_generate_guid(NULL)) == 0); 4964 (void) nvlist_lookup_string(props, 4965 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4966 4967 /* add the new pool to the namespace */ 4968 newspa = spa_add(newname, config, altroot); 4969 newspa->spa_config_txg = spa->spa_config_txg; 4970 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4971 4972 /* release the spa config lock, retaining the namespace lock */ 4973 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4974 4975 if (zio_injection_enabled) 4976 zio_handle_panic_injection(spa, FTAG, 1); 4977 4978 spa_activate(newspa, spa_mode_global); 4979 spa_async_suspend(newspa); 4980 4981 /* create the new pool from the disks of the original pool */ 4982 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4983 if (error) 4984 goto out; 4985 4986 /* if that worked, generate a real config for the new pool */ 4987 if (newspa->spa_root_vdev != NULL) { 4988 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4989 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4990 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4991 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4992 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4993 B_TRUE)); 4994 } 4995 4996 /* set the props */ 4997 if (props != NULL) { 4998 spa_configfile_set(newspa, props, B_FALSE); 4999 error = spa_prop_set(newspa, props); 5000 if (error) 5001 goto out; 5002 } 5003 5004 /* flush everything */ 5005 txg = spa_vdev_config_enter(newspa); 5006 vdev_config_dirty(newspa->spa_root_vdev); 5007 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5008 5009 if (zio_injection_enabled) 5010 zio_handle_panic_injection(spa, FTAG, 2); 5011 5012 spa_async_resume(newspa); 5013 5014 /* finally, update the original pool's config */ 5015 txg = spa_vdev_config_enter(spa); 5016 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5017 error = dmu_tx_assign(tx, TXG_WAIT); 5018 if (error != 0) 5019 dmu_tx_abort(tx); 5020 for (c = 0; c < children; c++) { 5021 if (vml[c] != NULL) { 5022 vdev_split(vml[c]); 5023 if (error == 0) 5024 spa_history_log_internal(spa, "detach", tx, 5025 "vdev=%s", vml[c]->vdev_path); 5026 vdev_free(vml[c]); 5027 } 5028 } 5029 vdev_config_dirty(spa->spa_root_vdev); 5030 spa->spa_config_splitting = NULL; 5031 nvlist_free(nvl); 5032 if (error == 0) 5033 dmu_tx_commit(tx); 5034 (void) spa_vdev_exit(spa, NULL, txg, 0); 5035 5036 if (zio_injection_enabled) 5037 zio_handle_panic_injection(spa, FTAG, 3); 5038 5039 /* split is complete; log a history record */ 5040 spa_history_log_internal(newspa, "split", NULL, 5041 "from pool %s", spa_name(spa)); 5042 5043 kmem_free(vml, children * sizeof (vdev_t *)); 5044 5045 /* if we're not going to mount the filesystems in userland, export */ 5046 if (exp) 5047 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5048 B_FALSE, B_FALSE); 5049 5050 return (error); 5051 5052 out: 5053 spa_unload(newspa); 5054 spa_deactivate(newspa); 5055 spa_remove(newspa); 5056 5057 txg = spa_vdev_config_enter(spa); 5058 5059 /* re-online all offlined disks */ 5060 for (c = 0; c < children; c++) { 5061 if (vml[c] != NULL) 5062 vml[c]->vdev_offline = B_FALSE; 5063 } 5064 vdev_reopen(spa->spa_root_vdev); 5065 5066 nvlist_free(spa->spa_config_splitting); 5067 spa->spa_config_splitting = NULL; 5068 (void) spa_vdev_exit(spa, NULL, txg, error); 5069 5070 kmem_free(vml, children * sizeof (vdev_t *)); 5071 return (error); 5072 } 5073 5074 static nvlist_t * 5075 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5076 { 5077 for (int i = 0; i < count; i++) { 5078 uint64_t guid; 5079 5080 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5081 &guid) == 0); 5082 5083 if (guid == target_guid) 5084 return (nvpp[i]); 5085 } 5086 5087 return (NULL); 5088 } 5089 5090 static void 5091 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5092 nvlist_t *dev_to_remove) 5093 { 5094 nvlist_t **newdev = NULL; 5095 5096 if (count > 1) 5097 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5098 5099 for (int i = 0, j = 0; i < count; i++) { 5100 if (dev[i] == dev_to_remove) 5101 continue; 5102 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5103 } 5104 5105 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5106 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5107 5108 for (int i = 0; i < count - 1; i++) 5109 nvlist_free(newdev[i]); 5110 5111 if (count > 1) 5112 kmem_free(newdev, (count - 1) * sizeof (void *)); 5113 } 5114 5115 /* 5116 * Evacuate the device. 5117 */ 5118 static int 5119 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5120 { 5121 uint64_t txg; 5122 int error = 0; 5123 5124 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5125 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5126 ASSERT(vd == vd->vdev_top); 5127 5128 /* 5129 * Evacuate the device. We don't hold the config lock as writer 5130 * since we need to do I/O but we do keep the 5131 * spa_namespace_lock held. Once this completes the device 5132 * should no longer have any blocks allocated on it. 5133 */ 5134 if (vd->vdev_islog) { 5135 if (vd->vdev_stat.vs_alloc != 0) 5136 error = spa_offline_log(spa); 5137 } else { 5138 error = SET_ERROR(ENOTSUP); 5139 } 5140 5141 if (error) 5142 return (error); 5143 5144 /* 5145 * The evacuation succeeded. Remove any remaining MOS metadata 5146 * associated with this vdev, and wait for these changes to sync. 5147 */ 5148 ASSERT0(vd->vdev_stat.vs_alloc); 5149 txg = spa_vdev_config_enter(spa); 5150 vd->vdev_removing = B_TRUE; 5151 vdev_dirty_leaves(vd, VDD_DTL, txg); 5152 vdev_config_dirty(vd); 5153 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5154 5155 return (0); 5156 } 5157 5158 /* 5159 * Complete the removal by cleaning up the namespace. 5160 */ 5161 static void 5162 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5163 { 5164 vdev_t *rvd = spa->spa_root_vdev; 5165 uint64_t id = vd->vdev_id; 5166 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5167 5168 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5169 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5170 ASSERT(vd == vd->vdev_top); 5171 5172 /* 5173 * Only remove any devices which are empty. 5174 */ 5175 if (vd->vdev_stat.vs_alloc != 0) 5176 return; 5177 5178 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5179 5180 if (list_link_active(&vd->vdev_state_dirty_node)) 5181 vdev_state_clean(vd); 5182 if (list_link_active(&vd->vdev_config_dirty_node)) 5183 vdev_config_clean(vd); 5184 5185 vdev_free(vd); 5186 5187 if (last_vdev) { 5188 vdev_compact_children(rvd); 5189 } else { 5190 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5191 vdev_add_child(rvd, vd); 5192 } 5193 vdev_config_dirty(rvd); 5194 5195 /* 5196 * Reassess the health of our root vdev. 5197 */ 5198 vdev_reopen(rvd); 5199 } 5200 5201 /* 5202 * Remove a device from the pool - 5203 * 5204 * Removing a device from the vdev namespace requires several steps 5205 * and can take a significant amount of time. As a result we use 5206 * the spa_vdev_config_[enter/exit] functions which allow us to 5207 * grab and release the spa_config_lock while still holding the namespace 5208 * lock. During each step the configuration is synced out. 5209 * 5210 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5211 * devices. 5212 */ 5213 int 5214 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5215 { 5216 vdev_t *vd; 5217 metaslab_group_t *mg; 5218 nvlist_t **spares, **l2cache, *nv; 5219 uint64_t txg = 0; 5220 uint_t nspares, nl2cache; 5221 int error = 0; 5222 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5223 5224 ASSERT(spa_writeable(spa)); 5225 5226 if (!locked) 5227 txg = spa_vdev_enter(spa); 5228 5229 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5230 5231 if (spa->spa_spares.sav_vdevs != NULL && 5232 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5233 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5234 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5235 /* 5236 * Only remove the hot spare if it's not currently in use 5237 * in this pool. 5238 */ 5239 if (vd == NULL || unspare) { 5240 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5241 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5242 spa_load_spares(spa); 5243 spa->spa_spares.sav_sync = B_TRUE; 5244 } else { 5245 error = SET_ERROR(EBUSY); 5246 } 5247 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5248 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5249 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5250 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5251 /* 5252 * Cache devices can always be removed. 5253 */ 5254 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5255 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5256 spa_load_l2cache(spa); 5257 spa->spa_l2cache.sav_sync = B_TRUE; 5258 } else if (vd != NULL && vd->vdev_islog) { 5259 ASSERT(!locked); 5260 ASSERT(vd == vd->vdev_top); 5261 5262 mg = vd->vdev_mg; 5263 5264 /* 5265 * Stop allocating from this vdev. 5266 */ 5267 metaslab_group_passivate(mg); 5268 5269 /* 5270 * Wait for the youngest allocations and frees to sync, 5271 * and then wait for the deferral of those frees to finish. 5272 */ 5273 spa_vdev_config_exit(spa, NULL, 5274 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5275 5276 /* 5277 * Attempt to evacuate the vdev. 5278 */ 5279 error = spa_vdev_remove_evacuate(spa, vd); 5280 5281 txg = spa_vdev_config_enter(spa); 5282 5283 /* 5284 * If we couldn't evacuate the vdev, unwind. 5285 */ 5286 if (error) { 5287 metaslab_group_activate(mg); 5288 return (spa_vdev_exit(spa, NULL, txg, error)); 5289 } 5290 5291 /* 5292 * Clean up the vdev namespace. 5293 */ 5294 spa_vdev_remove_from_namespace(spa, vd); 5295 5296 } else if (vd != NULL) { 5297 /* 5298 * Normal vdevs cannot be removed (yet). 5299 */ 5300 error = SET_ERROR(ENOTSUP); 5301 } else { 5302 /* 5303 * There is no vdev of any kind with the specified guid. 5304 */ 5305 error = SET_ERROR(ENOENT); 5306 } 5307 5308 if (!locked) 5309 return (spa_vdev_exit(spa, NULL, txg, error)); 5310 5311 return (error); 5312 } 5313 5314 /* 5315 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5316 * currently spared, so we can detach it. 5317 */ 5318 static vdev_t * 5319 spa_vdev_resilver_done_hunt(vdev_t *vd) 5320 { 5321 vdev_t *newvd, *oldvd; 5322 5323 for (int c = 0; c < vd->vdev_children; c++) { 5324 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5325 if (oldvd != NULL) 5326 return (oldvd); 5327 } 5328 5329 /* 5330 * Check for a completed replacement. We always consider the first 5331 * vdev in the list to be the oldest vdev, and the last one to be 5332 * the newest (see spa_vdev_attach() for how that works). In 5333 * the case where the newest vdev is faulted, we will not automatically 5334 * remove it after a resilver completes. This is OK as it will require 5335 * user intervention to determine which disk the admin wishes to keep. 5336 */ 5337 if (vd->vdev_ops == &vdev_replacing_ops) { 5338 ASSERT(vd->vdev_children > 1); 5339 5340 newvd = vd->vdev_child[vd->vdev_children - 1]; 5341 oldvd = vd->vdev_child[0]; 5342 5343 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5344 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5345 !vdev_dtl_required(oldvd)) 5346 return (oldvd); 5347 } 5348 5349 /* 5350 * Check for a completed resilver with the 'unspare' flag set. 5351 */ 5352 if (vd->vdev_ops == &vdev_spare_ops) { 5353 vdev_t *first = vd->vdev_child[0]; 5354 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5355 5356 if (last->vdev_unspare) { 5357 oldvd = first; 5358 newvd = last; 5359 } else if (first->vdev_unspare) { 5360 oldvd = last; 5361 newvd = first; 5362 } else { 5363 oldvd = NULL; 5364 } 5365 5366 if (oldvd != NULL && 5367 vdev_dtl_empty(newvd, DTL_MISSING) && 5368 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5369 !vdev_dtl_required(oldvd)) 5370 return (oldvd); 5371 5372 /* 5373 * If there are more than two spares attached to a disk, 5374 * and those spares are not required, then we want to 5375 * attempt to free them up now so that they can be used 5376 * by other pools. Once we're back down to a single 5377 * disk+spare, we stop removing them. 5378 */ 5379 if (vd->vdev_children > 2) { 5380 newvd = vd->vdev_child[1]; 5381 5382 if (newvd->vdev_isspare && last->vdev_isspare && 5383 vdev_dtl_empty(last, DTL_MISSING) && 5384 vdev_dtl_empty(last, DTL_OUTAGE) && 5385 !vdev_dtl_required(newvd)) 5386 return (newvd); 5387 } 5388 } 5389 5390 return (NULL); 5391 } 5392 5393 static void 5394 spa_vdev_resilver_done(spa_t *spa) 5395 { 5396 vdev_t *vd, *pvd, *ppvd; 5397 uint64_t guid, sguid, pguid, ppguid; 5398 5399 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5400 5401 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5402 pvd = vd->vdev_parent; 5403 ppvd = pvd->vdev_parent; 5404 guid = vd->vdev_guid; 5405 pguid = pvd->vdev_guid; 5406 ppguid = ppvd->vdev_guid; 5407 sguid = 0; 5408 /* 5409 * If we have just finished replacing a hot spared device, then 5410 * we need to detach the parent's first child (the original hot 5411 * spare) as well. 5412 */ 5413 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5414 ppvd->vdev_children == 2) { 5415 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5416 sguid = ppvd->vdev_child[1]->vdev_guid; 5417 } 5418 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5419 5420 spa_config_exit(spa, SCL_ALL, FTAG); 5421 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5422 return; 5423 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5424 return; 5425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5426 } 5427 5428 spa_config_exit(spa, SCL_ALL, FTAG); 5429 } 5430 5431 /* 5432 * Update the stored path or FRU for this vdev. 5433 */ 5434 int 5435 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5436 boolean_t ispath) 5437 { 5438 vdev_t *vd; 5439 boolean_t sync = B_FALSE; 5440 5441 ASSERT(spa_writeable(spa)); 5442 5443 spa_vdev_state_enter(spa, SCL_ALL); 5444 5445 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5446 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5447 5448 if (!vd->vdev_ops->vdev_op_leaf) 5449 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5450 5451 if (ispath) { 5452 if (strcmp(value, vd->vdev_path) != 0) { 5453 spa_strfree(vd->vdev_path); 5454 vd->vdev_path = spa_strdup(value); 5455 sync = B_TRUE; 5456 } 5457 } else { 5458 if (vd->vdev_fru == NULL) { 5459 vd->vdev_fru = spa_strdup(value); 5460 sync = B_TRUE; 5461 } else if (strcmp(value, vd->vdev_fru) != 0) { 5462 spa_strfree(vd->vdev_fru); 5463 vd->vdev_fru = spa_strdup(value); 5464 sync = B_TRUE; 5465 } 5466 } 5467 5468 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5469 } 5470 5471 int 5472 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5473 { 5474 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5475 } 5476 5477 int 5478 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5479 { 5480 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5481 } 5482 5483 /* 5484 * ========================================================================== 5485 * SPA Scanning 5486 * ========================================================================== 5487 */ 5488 5489 int 5490 spa_scan_stop(spa_t *spa) 5491 { 5492 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5493 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5494 return (SET_ERROR(EBUSY)); 5495 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5496 } 5497 5498 int 5499 spa_scan(spa_t *spa, pool_scan_func_t func) 5500 { 5501 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5502 5503 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5504 return (SET_ERROR(ENOTSUP)); 5505 5506 /* 5507 * If a resilver was requested, but there is no DTL on a 5508 * writeable leaf device, we have nothing to do. 5509 */ 5510 if (func == POOL_SCAN_RESILVER && 5511 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5512 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5513 return (0); 5514 } 5515 5516 return (dsl_scan(spa->spa_dsl_pool, func)); 5517 } 5518 5519 /* 5520 * ========================================================================== 5521 * SPA async task processing 5522 * ========================================================================== 5523 */ 5524 5525 static void 5526 spa_async_remove(spa_t *spa, vdev_t *vd) 5527 { 5528 if (vd->vdev_remove_wanted) { 5529 vd->vdev_remove_wanted = B_FALSE; 5530 vd->vdev_delayed_close = B_FALSE; 5531 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5532 5533 /* 5534 * We want to clear the stats, but we don't want to do a full 5535 * vdev_clear() as that will cause us to throw away 5536 * degraded/faulted state as well as attempt to reopen the 5537 * device, all of which is a waste. 5538 */ 5539 vd->vdev_stat.vs_read_errors = 0; 5540 vd->vdev_stat.vs_write_errors = 0; 5541 vd->vdev_stat.vs_checksum_errors = 0; 5542 5543 vdev_state_dirty(vd->vdev_top); 5544 } 5545 5546 for (int c = 0; c < vd->vdev_children; c++) 5547 spa_async_remove(spa, vd->vdev_child[c]); 5548 } 5549 5550 static void 5551 spa_async_probe(spa_t *spa, vdev_t *vd) 5552 { 5553 if (vd->vdev_probe_wanted) { 5554 vd->vdev_probe_wanted = B_FALSE; 5555 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5556 } 5557 5558 for (int c = 0; c < vd->vdev_children; c++) 5559 spa_async_probe(spa, vd->vdev_child[c]); 5560 } 5561 5562 static void 5563 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5564 { 5565 sysevent_id_t eid; 5566 nvlist_t *attr; 5567 char *physpath; 5568 5569 if (!spa->spa_autoexpand) 5570 return; 5571 5572 for (int c = 0; c < vd->vdev_children; c++) { 5573 vdev_t *cvd = vd->vdev_child[c]; 5574 spa_async_autoexpand(spa, cvd); 5575 } 5576 5577 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5578 return; 5579 5580 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5581 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5582 5583 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5584 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5585 5586 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5587 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5588 5589 nvlist_free(attr); 5590 kmem_free(physpath, MAXPATHLEN); 5591 } 5592 5593 static void 5594 spa_async_thread(spa_t *spa) 5595 { 5596 int tasks; 5597 5598 ASSERT(spa->spa_sync_on); 5599 5600 mutex_enter(&spa->spa_async_lock); 5601 tasks = spa->spa_async_tasks; 5602 spa->spa_async_tasks = 0; 5603 mutex_exit(&spa->spa_async_lock); 5604 5605 /* 5606 * See if the config needs to be updated. 5607 */ 5608 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5609 uint64_t old_space, new_space; 5610 5611 mutex_enter(&spa_namespace_lock); 5612 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5613 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5614 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5615 mutex_exit(&spa_namespace_lock); 5616 5617 /* 5618 * If the pool grew as a result of the config update, 5619 * then log an internal history event. 5620 */ 5621 if (new_space != old_space) { 5622 spa_history_log_internal(spa, "vdev online", NULL, 5623 "pool '%s' size: %llu(+%llu)", 5624 spa_name(spa), new_space, new_space - old_space); 5625 } 5626 } 5627 5628 /* 5629 * See if any devices need to be marked REMOVED. 5630 */ 5631 if (tasks & SPA_ASYNC_REMOVE) { 5632 spa_vdev_state_enter(spa, SCL_NONE); 5633 spa_async_remove(spa, spa->spa_root_vdev); 5634 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5635 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5636 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5637 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5638 (void) spa_vdev_state_exit(spa, NULL, 0); 5639 } 5640 5641 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5642 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5643 spa_async_autoexpand(spa, spa->spa_root_vdev); 5644 spa_config_exit(spa, SCL_CONFIG, FTAG); 5645 } 5646 5647 /* 5648 * See if any devices need to be probed. 5649 */ 5650 if (tasks & SPA_ASYNC_PROBE) { 5651 spa_vdev_state_enter(spa, SCL_NONE); 5652 spa_async_probe(spa, spa->spa_root_vdev); 5653 (void) spa_vdev_state_exit(spa, NULL, 0); 5654 } 5655 5656 /* 5657 * If any devices are done replacing, detach them. 5658 */ 5659 if (tasks & SPA_ASYNC_RESILVER_DONE) 5660 spa_vdev_resilver_done(spa); 5661 5662 /* 5663 * Kick off a resilver. 5664 */ 5665 if (tasks & SPA_ASYNC_RESILVER) 5666 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5667 5668 /* 5669 * Let the world know that we're done. 5670 */ 5671 mutex_enter(&spa->spa_async_lock); 5672 spa->spa_async_thread = NULL; 5673 cv_broadcast(&spa->spa_async_cv); 5674 mutex_exit(&spa->spa_async_lock); 5675 thread_exit(); 5676 } 5677 5678 void 5679 spa_async_suspend(spa_t *spa) 5680 { 5681 mutex_enter(&spa->spa_async_lock); 5682 spa->spa_async_suspended++; 5683 while (spa->spa_async_thread != NULL) 5684 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5685 mutex_exit(&spa->spa_async_lock); 5686 } 5687 5688 void 5689 spa_async_resume(spa_t *spa) 5690 { 5691 mutex_enter(&spa->spa_async_lock); 5692 ASSERT(spa->spa_async_suspended != 0); 5693 spa->spa_async_suspended--; 5694 mutex_exit(&spa->spa_async_lock); 5695 } 5696 5697 static boolean_t 5698 spa_async_tasks_pending(spa_t *spa) 5699 { 5700 uint_t non_config_tasks; 5701 uint_t config_task; 5702 boolean_t config_task_suspended; 5703 5704 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5705 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5706 if (spa->spa_ccw_fail_time == 0) { 5707 config_task_suspended = B_FALSE; 5708 } else { 5709 config_task_suspended = 5710 (gethrtime() - spa->spa_ccw_fail_time) < 5711 (zfs_ccw_retry_interval * NANOSEC); 5712 } 5713 5714 return (non_config_tasks || (config_task && !config_task_suspended)); 5715 } 5716 5717 static void 5718 spa_async_dispatch(spa_t *spa) 5719 { 5720 mutex_enter(&spa->spa_async_lock); 5721 if (spa_async_tasks_pending(spa) && 5722 !spa->spa_async_suspended && 5723 spa->spa_async_thread == NULL && 5724 rootdir != NULL) 5725 spa->spa_async_thread = thread_create(NULL, 0, 5726 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5727 mutex_exit(&spa->spa_async_lock); 5728 } 5729 5730 void 5731 spa_async_request(spa_t *spa, int task) 5732 { 5733 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5734 mutex_enter(&spa->spa_async_lock); 5735 spa->spa_async_tasks |= task; 5736 mutex_exit(&spa->spa_async_lock); 5737 } 5738 5739 /* 5740 * ========================================================================== 5741 * SPA syncing routines 5742 * ========================================================================== 5743 */ 5744 5745 static int 5746 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5747 { 5748 bpobj_t *bpo = arg; 5749 bpobj_enqueue(bpo, bp, tx); 5750 return (0); 5751 } 5752 5753 static int 5754 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5755 { 5756 zio_t *zio = arg; 5757 5758 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5759 zio->io_flags)); 5760 return (0); 5761 } 5762 5763 /* 5764 * Note: this simple function is not inlined to make it easier to dtrace the 5765 * amount of time spent syncing frees. 5766 */ 5767 static void 5768 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5769 { 5770 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5771 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5772 VERIFY(zio_wait(zio) == 0); 5773 } 5774 5775 /* 5776 * Note: this simple function is not inlined to make it easier to dtrace the 5777 * amount of time spent syncing deferred frees. 5778 */ 5779 static void 5780 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5781 { 5782 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5783 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5784 spa_free_sync_cb, zio, tx), ==, 0); 5785 VERIFY0(zio_wait(zio)); 5786 } 5787 5788 5789 static void 5790 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5791 { 5792 char *packed = NULL; 5793 size_t bufsize; 5794 size_t nvsize = 0; 5795 dmu_buf_t *db; 5796 5797 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5798 5799 /* 5800 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5801 * information. This avoids the dmu_buf_will_dirty() path and 5802 * saves us a pre-read to get data we don't actually care about. 5803 */ 5804 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5805 packed = kmem_alloc(bufsize, KM_SLEEP); 5806 5807 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5808 KM_SLEEP) == 0); 5809 bzero(packed + nvsize, bufsize - nvsize); 5810 5811 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5812 5813 kmem_free(packed, bufsize); 5814 5815 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5816 dmu_buf_will_dirty(db, tx); 5817 *(uint64_t *)db->db_data = nvsize; 5818 dmu_buf_rele(db, FTAG); 5819 } 5820 5821 static void 5822 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5823 const char *config, const char *entry) 5824 { 5825 nvlist_t *nvroot; 5826 nvlist_t **list; 5827 int i; 5828 5829 if (!sav->sav_sync) 5830 return; 5831 5832 /* 5833 * Update the MOS nvlist describing the list of available devices. 5834 * spa_validate_aux() will have already made sure this nvlist is 5835 * valid and the vdevs are labeled appropriately. 5836 */ 5837 if (sav->sav_object == 0) { 5838 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5839 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5840 sizeof (uint64_t), tx); 5841 VERIFY(zap_update(spa->spa_meta_objset, 5842 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5843 &sav->sav_object, tx) == 0); 5844 } 5845 5846 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5847 if (sav->sav_count == 0) { 5848 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5849 } else { 5850 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5851 for (i = 0; i < sav->sav_count; i++) 5852 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5853 B_FALSE, VDEV_CONFIG_L2CACHE); 5854 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5855 sav->sav_count) == 0); 5856 for (i = 0; i < sav->sav_count; i++) 5857 nvlist_free(list[i]); 5858 kmem_free(list, sav->sav_count * sizeof (void *)); 5859 } 5860 5861 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5862 nvlist_free(nvroot); 5863 5864 sav->sav_sync = B_FALSE; 5865 } 5866 5867 static void 5868 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5869 { 5870 nvlist_t *config; 5871 5872 if (list_is_empty(&spa->spa_config_dirty_list)) 5873 return; 5874 5875 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5876 5877 config = spa_config_generate(spa, spa->spa_root_vdev, 5878 dmu_tx_get_txg(tx), B_FALSE); 5879 5880 /* 5881 * If we're upgrading the spa version then make sure that 5882 * the config object gets updated with the correct version. 5883 */ 5884 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5885 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5886 spa->spa_uberblock.ub_version); 5887 5888 spa_config_exit(spa, SCL_STATE, FTAG); 5889 5890 if (spa->spa_config_syncing) 5891 nvlist_free(spa->spa_config_syncing); 5892 spa->spa_config_syncing = config; 5893 5894 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5895 } 5896 5897 static void 5898 spa_sync_version(void *arg, dmu_tx_t *tx) 5899 { 5900 uint64_t *versionp = arg; 5901 uint64_t version = *versionp; 5902 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5903 5904 /* 5905 * Setting the version is special cased when first creating the pool. 5906 */ 5907 ASSERT(tx->tx_txg != TXG_INITIAL); 5908 5909 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5910 ASSERT(version >= spa_version(spa)); 5911 5912 spa->spa_uberblock.ub_version = version; 5913 vdev_config_dirty(spa->spa_root_vdev); 5914 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5915 } 5916 5917 /* 5918 * Set zpool properties. 5919 */ 5920 static void 5921 spa_sync_props(void *arg, dmu_tx_t *tx) 5922 { 5923 nvlist_t *nvp = arg; 5924 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5925 objset_t *mos = spa->spa_meta_objset; 5926 nvpair_t *elem = NULL; 5927 5928 mutex_enter(&spa->spa_props_lock); 5929 5930 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5931 uint64_t intval; 5932 char *strval, *fname; 5933 zpool_prop_t prop; 5934 const char *propname; 5935 zprop_type_t proptype; 5936 spa_feature_t fid; 5937 5938 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5939 case ZPROP_INVAL: 5940 /* 5941 * We checked this earlier in spa_prop_validate(). 5942 */ 5943 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5944 5945 fname = strchr(nvpair_name(elem), '@') + 1; 5946 VERIFY0(zfeature_lookup_name(fname, &fid)); 5947 5948 spa_feature_enable(spa, fid, tx); 5949 spa_history_log_internal(spa, "set", tx, 5950 "%s=enabled", nvpair_name(elem)); 5951 break; 5952 5953 case ZPOOL_PROP_VERSION: 5954 intval = fnvpair_value_uint64(elem); 5955 /* 5956 * The version is synced seperatly before other 5957 * properties and should be correct by now. 5958 */ 5959 ASSERT3U(spa_version(spa), >=, intval); 5960 break; 5961 5962 case ZPOOL_PROP_ALTROOT: 5963 /* 5964 * 'altroot' is a non-persistent property. It should 5965 * have been set temporarily at creation or import time. 5966 */ 5967 ASSERT(spa->spa_root != NULL); 5968 break; 5969 5970 case ZPOOL_PROP_READONLY: 5971 case ZPOOL_PROP_CACHEFILE: 5972 /* 5973 * 'readonly' and 'cachefile' are also non-persisitent 5974 * properties. 5975 */ 5976 break; 5977 case ZPOOL_PROP_COMMENT: 5978 strval = fnvpair_value_string(elem); 5979 if (spa->spa_comment != NULL) 5980 spa_strfree(spa->spa_comment); 5981 spa->spa_comment = spa_strdup(strval); 5982 /* 5983 * We need to dirty the configuration on all the vdevs 5984 * so that their labels get updated. It's unnecessary 5985 * to do this for pool creation since the vdev's 5986 * configuratoin has already been dirtied. 5987 */ 5988 if (tx->tx_txg != TXG_INITIAL) 5989 vdev_config_dirty(spa->spa_root_vdev); 5990 spa_history_log_internal(spa, "set", tx, 5991 "%s=%s", nvpair_name(elem), strval); 5992 break; 5993 default: 5994 /* 5995 * Set pool property values in the poolprops mos object. 5996 */ 5997 if (spa->spa_pool_props_object == 0) { 5998 spa->spa_pool_props_object = 5999 zap_create_link(mos, DMU_OT_POOL_PROPS, 6000 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6001 tx); 6002 } 6003 6004 /* normalize the property name */ 6005 propname = zpool_prop_to_name(prop); 6006 proptype = zpool_prop_get_type(prop); 6007 6008 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6009 ASSERT(proptype == PROP_TYPE_STRING); 6010 strval = fnvpair_value_string(elem); 6011 VERIFY0(zap_update(mos, 6012 spa->spa_pool_props_object, propname, 6013 1, strlen(strval) + 1, strval, tx)); 6014 spa_history_log_internal(spa, "set", tx, 6015 "%s=%s", nvpair_name(elem), strval); 6016 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6017 intval = fnvpair_value_uint64(elem); 6018 6019 if (proptype == PROP_TYPE_INDEX) { 6020 const char *unused; 6021 VERIFY0(zpool_prop_index_to_string( 6022 prop, intval, &unused)); 6023 } 6024 VERIFY0(zap_update(mos, 6025 spa->spa_pool_props_object, propname, 6026 8, 1, &intval, tx)); 6027 spa_history_log_internal(spa, "set", tx, 6028 "%s=%lld", nvpair_name(elem), intval); 6029 } else { 6030 ASSERT(0); /* not allowed */ 6031 } 6032 6033 switch (prop) { 6034 case ZPOOL_PROP_DELEGATION: 6035 spa->spa_delegation = intval; 6036 break; 6037 case ZPOOL_PROP_BOOTFS: 6038 spa->spa_bootfs = intval; 6039 break; 6040 case ZPOOL_PROP_FAILUREMODE: 6041 spa->spa_failmode = intval; 6042 break; 6043 case ZPOOL_PROP_AUTOEXPAND: 6044 spa->spa_autoexpand = intval; 6045 if (tx->tx_txg != TXG_INITIAL) 6046 spa_async_request(spa, 6047 SPA_ASYNC_AUTOEXPAND); 6048 break; 6049 case ZPOOL_PROP_DEDUPDITTO: 6050 spa->spa_dedup_ditto = intval; 6051 break; 6052 default: 6053 break; 6054 } 6055 } 6056 6057 } 6058 6059 mutex_exit(&spa->spa_props_lock); 6060 } 6061 6062 /* 6063 * Perform one-time upgrade on-disk changes. spa_version() does not 6064 * reflect the new version this txg, so there must be no changes this 6065 * txg to anything that the upgrade code depends on after it executes. 6066 * Therefore this must be called after dsl_pool_sync() does the sync 6067 * tasks. 6068 */ 6069 static void 6070 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6071 { 6072 dsl_pool_t *dp = spa->spa_dsl_pool; 6073 6074 ASSERT(spa->spa_sync_pass == 1); 6075 6076 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6077 6078 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6079 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6080 dsl_pool_create_origin(dp, tx); 6081 6082 /* Keeping the origin open increases spa_minref */ 6083 spa->spa_minref += 3; 6084 } 6085 6086 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6087 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6088 dsl_pool_upgrade_clones(dp, tx); 6089 } 6090 6091 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6092 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6093 dsl_pool_upgrade_dir_clones(dp, tx); 6094 6095 /* Keeping the freedir open increases spa_minref */ 6096 spa->spa_minref += 3; 6097 } 6098 6099 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6100 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6101 spa_feature_create_zap_objects(spa, tx); 6102 } 6103 rrw_exit(&dp->dp_config_rwlock, FTAG); 6104 } 6105 6106 /* 6107 * Sync the specified transaction group. New blocks may be dirtied as 6108 * part of the process, so we iterate until it converges. 6109 */ 6110 void 6111 spa_sync(spa_t *spa, uint64_t txg) 6112 { 6113 dsl_pool_t *dp = spa->spa_dsl_pool; 6114 objset_t *mos = spa->spa_meta_objset; 6115 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6116 vdev_t *rvd = spa->spa_root_vdev; 6117 vdev_t *vd; 6118 dmu_tx_t *tx; 6119 int error; 6120 6121 VERIFY(spa_writeable(spa)); 6122 6123 /* 6124 * Lock out configuration changes. 6125 */ 6126 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6127 6128 spa->spa_syncing_txg = txg; 6129 spa->spa_sync_pass = 0; 6130 6131 /* 6132 * If there are any pending vdev state changes, convert them 6133 * into config changes that go out with this transaction group. 6134 */ 6135 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6136 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6137 /* 6138 * We need the write lock here because, for aux vdevs, 6139 * calling vdev_config_dirty() modifies sav_config. 6140 * This is ugly and will become unnecessary when we 6141 * eliminate the aux vdev wart by integrating all vdevs 6142 * into the root vdev tree. 6143 */ 6144 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6145 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6146 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6147 vdev_state_clean(vd); 6148 vdev_config_dirty(vd); 6149 } 6150 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6151 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6152 } 6153 spa_config_exit(spa, SCL_STATE, FTAG); 6154 6155 tx = dmu_tx_create_assigned(dp, txg); 6156 6157 spa->spa_sync_starttime = gethrtime(); 6158 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6159 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6160 6161 /* 6162 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6163 * set spa_deflate if we have no raid-z vdevs. 6164 */ 6165 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6166 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6167 int i; 6168 6169 for (i = 0; i < rvd->vdev_children; i++) { 6170 vd = rvd->vdev_child[i]; 6171 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6172 break; 6173 } 6174 if (i == rvd->vdev_children) { 6175 spa->spa_deflate = TRUE; 6176 VERIFY(0 == zap_add(spa->spa_meta_objset, 6177 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6178 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6179 } 6180 } 6181 6182 /* 6183 * If anything has changed in this txg, or if someone is waiting 6184 * for this txg to sync (eg, spa_vdev_remove()), push the 6185 * deferred frees from the previous txg. If not, leave them 6186 * alone so that we don't generate work on an otherwise idle 6187 * system. 6188 */ 6189 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6190 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6191 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6192 ((dsl_scan_active(dp->dp_scan) || 6193 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6194 spa_sync_deferred_frees(spa, tx); 6195 } 6196 6197 /* 6198 * Iterate to convergence. 6199 */ 6200 do { 6201 int pass = ++spa->spa_sync_pass; 6202 6203 spa_sync_config_object(spa, tx); 6204 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6205 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6206 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6207 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6208 spa_errlog_sync(spa, txg); 6209 dsl_pool_sync(dp, txg); 6210 6211 if (pass < zfs_sync_pass_deferred_free) { 6212 spa_sync_frees(spa, free_bpl, tx); 6213 } else { 6214 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6215 &spa->spa_deferred_bpobj, tx); 6216 } 6217 6218 ddt_sync(spa, txg); 6219 dsl_scan_sync(dp, tx); 6220 6221 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6222 vdev_sync(vd, txg); 6223 6224 if (pass == 1) 6225 spa_sync_upgrades(spa, tx); 6226 6227 } while (dmu_objset_is_dirty(mos, txg)); 6228 6229 /* 6230 * Rewrite the vdev configuration (which includes the uberblock) 6231 * to commit the transaction group. 6232 * 6233 * If there are no dirty vdevs, we sync the uberblock to a few 6234 * random top-level vdevs that are known to be visible in the 6235 * config cache (see spa_vdev_add() for a complete description). 6236 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6237 */ 6238 for (;;) { 6239 /* 6240 * We hold SCL_STATE to prevent vdev open/close/etc. 6241 * while we're attempting to write the vdev labels. 6242 */ 6243 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6244 6245 if (list_is_empty(&spa->spa_config_dirty_list)) { 6246 vdev_t *svd[SPA_DVAS_PER_BP]; 6247 int svdcount = 0; 6248 int children = rvd->vdev_children; 6249 int c0 = spa_get_random(children); 6250 6251 for (int c = 0; c < children; c++) { 6252 vd = rvd->vdev_child[(c0 + c) % children]; 6253 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6254 continue; 6255 svd[svdcount++] = vd; 6256 if (svdcount == SPA_DVAS_PER_BP) 6257 break; 6258 } 6259 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6260 if (error != 0) 6261 error = vdev_config_sync(svd, svdcount, txg, 6262 B_TRUE); 6263 } else { 6264 error = vdev_config_sync(rvd->vdev_child, 6265 rvd->vdev_children, txg, B_FALSE); 6266 if (error != 0) 6267 error = vdev_config_sync(rvd->vdev_child, 6268 rvd->vdev_children, txg, B_TRUE); 6269 } 6270 6271 if (error == 0) 6272 spa->spa_last_synced_guid = rvd->vdev_guid; 6273 6274 spa_config_exit(spa, SCL_STATE, FTAG); 6275 6276 if (error == 0) 6277 break; 6278 zio_suspend(spa, NULL); 6279 zio_resume_wait(spa); 6280 } 6281 dmu_tx_commit(tx); 6282 6283 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6284 6285 /* 6286 * Clear the dirty config list. 6287 */ 6288 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6289 vdev_config_clean(vd); 6290 6291 /* 6292 * Now that the new config has synced transactionally, 6293 * let it become visible to the config cache. 6294 */ 6295 if (spa->spa_config_syncing != NULL) { 6296 spa_config_set(spa, spa->spa_config_syncing); 6297 spa->spa_config_txg = txg; 6298 spa->spa_config_syncing = NULL; 6299 } 6300 6301 spa->spa_ubsync = spa->spa_uberblock; 6302 6303 dsl_pool_sync_done(dp, txg); 6304 6305 /* 6306 * Update usable space statistics. 6307 */ 6308 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6309 vdev_sync_done(vd, txg); 6310 6311 spa_update_dspace(spa); 6312 6313 /* 6314 * It had better be the case that we didn't dirty anything 6315 * since vdev_config_sync(). 6316 */ 6317 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6318 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6319 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6320 6321 spa->spa_sync_pass = 0; 6322 6323 spa_config_exit(spa, SCL_CONFIG, FTAG); 6324 6325 spa_handle_ignored_writes(spa); 6326 6327 /* 6328 * If any async tasks have been requested, kick them off. 6329 */ 6330 spa_async_dispatch(spa); 6331 } 6332 6333 /* 6334 * Sync all pools. We don't want to hold the namespace lock across these 6335 * operations, so we take a reference on the spa_t and drop the lock during the 6336 * sync. 6337 */ 6338 void 6339 spa_sync_allpools(void) 6340 { 6341 spa_t *spa = NULL; 6342 mutex_enter(&spa_namespace_lock); 6343 while ((spa = spa_next(spa)) != NULL) { 6344 if (spa_state(spa) != POOL_STATE_ACTIVE || 6345 !spa_writeable(spa) || spa_suspended(spa)) 6346 continue; 6347 spa_open_ref(spa, FTAG); 6348 mutex_exit(&spa_namespace_lock); 6349 txg_wait_synced(spa_get_dsl(spa), 0); 6350 mutex_enter(&spa_namespace_lock); 6351 spa_close(spa, FTAG); 6352 } 6353 mutex_exit(&spa_namespace_lock); 6354 } 6355 6356 /* 6357 * ========================================================================== 6358 * Miscellaneous routines 6359 * ========================================================================== 6360 */ 6361 6362 /* 6363 * Remove all pools in the system. 6364 */ 6365 void 6366 spa_evict_all(void) 6367 { 6368 spa_t *spa; 6369 6370 /* 6371 * Remove all cached state. All pools should be closed now, 6372 * so every spa in the AVL tree should be unreferenced. 6373 */ 6374 mutex_enter(&spa_namespace_lock); 6375 while ((spa = spa_next(NULL)) != NULL) { 6376 /* 6377 * Stop async tasks. The async thread may need to detach 6378 * a device that's been replaced, which requires grabbing 6379 * spa_namespace_lock, so we must drop it here. 6380 */ 6381 spa_open_ref(spa, FTAG); 6382 mutex_exit(&spa_namespace_lock); 6383 spa_async_suspend(spa); 6384 mutex_enter(&spa_namespace_lock); 6385 spa_close(spa, FTAG); 6386 6387 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6388 spa_unload(spa); 6389 spa_deactivate(spa); 6390 } 6391 spa_remove(spa); 6392 } 6393 mutex_exit(&spa_namespace_lock); 6394 } 6395 6396 vdev_t * 6397 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6398 { 6399 vdev_t *vd; 6400 int i; 6401 6402 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6403 return (vd); 6404 6405 if (aux) { 6406 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6407 vd = spa->spa_l2cache.sav_vdevs[i]; 6408 if (vd->vdev_guid == guid) 6409 return (vd); 6410 } 6411 6412 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6413 vd = spa->spa_spares.sav_vdevs[i]; 6414 if (vd->vdev_guid == guid) 6415 return (vd); 6416 } 6417 } 6418 6419 return (NULL); 6420 } 6421 6422 void 6423 spa_upgrade(spa_t *spa, uint64_t version) 6424 { 6425 ASSERT(spa_writeable(spa)); 6426 6427 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6428 6429 /* 6430 * This should only be called for a non-faulted pool, and since a 6431 * future version would result in an unopenable pool, this shouldn't be 6432 * possible. 6433 */ 6434 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6435 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6436 6437 spa->spa_uberblock.ub_version = version; 6438 vdev_config_dirty(spa->spa_root_vdev); 6439 6440 spa_config_exit(spa, SCL_ALL, FTAG); 6441 6442 txg_wait_synced(spa_get_dsl(spa), 0); 6443 } 6444 6445 boolean_t 6446 spa_has_spare(spa_t *spa, uint64_t guid) 6447 { 6448 int i; 6449 uint64_t spareguid; 6450 spa_aux_vdev_t *sav = &spa->spa_spares; 6451 6452 for (i = 0; i < sav->sav_count; i++) 6453 if (sav->sav_vdevs[i]->vdev_guid == guid) 6454 return (B_TRUE); 6455 6456 for (i = 0; i < sav->sav_npending; i++) { 6457 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6458 &spareguid) == 0 && spareguid == guid) 6459 return (B_TRUE); 6460 } 6461 6462 return (B_FALSE); 6463 } 6464 6465 /* 6466 * Check if a pool has an active shared spare device. 6467 * Note: reference count of an active spare is 2, as a spare and as a replace 6468 */ 6469 static boolean_t 6470 spa_has_active_shared_spare(spa_t *spa) 6471 { 6472 int i, refcnt; 6473 uint64_t pool; 6474 spa_aux_vdev_t *sav = &spa->spa_spares; 6475 6476 for (i = 0; i < sav->sav_count; i++) { 6477 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6478 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6479 refcnt > 2) 6480 return (B_TRUE); 6481 } 6482 6483 return (B_FALSE); 6484 } 6485 6486 /* 6487 * Post a sysevent corresponding to the given event. The 'name' must be one of 6488 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6489 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6490 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6491 * or zdb as real changes. 6492 */ 6493 void 6494 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6495 { 6496 #ifdef _KERNEL 6497 sysevent_t *ev; 6498 sysevent_attr_list_t *attr = NULL; 6499 sysevent_value_t value; 6500 sysevent_id_t eid; 6501 6502 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6503 SE_SLEEP); 6504 6505 value.value_type = SE_DATA_TYPE_STRING; 6506 value.value.sv_string = spa_name(spa); 6507 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6508 goto done; 6509 6510 value.value_type = SE_DATA_TYPE_UINT64; 6511 value.value.sv_uint64 = spa_guid(spa); 6512 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6513 goto done; 6514 6515 if (vd) { 6516 value.value_type = SE_DATA_TYPE_UINT64; 6517 value.value.sv_uint64 = vd->vdev_guid; 6518 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6519 SE_SLEEP) != 0) 6520 goto done; 6521 6522 if (vd->vdev_path) { 6523 value.value_type = SE_DATA_TYPE_STRING; 6524 value.value.sv_string = vd->vdev_path; 6525 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6526 &value, SE_SLEEP) != 0) 6527 goto done; 6528 } 6529 } 6530 6531 if (sysevent_attach_attributes(ev, attr) != 0) 6532 goto done; 6533 attr = NULL; 6534 6535 (void) log_sysevent(ev, SE_SLEEP, &eid); 6536 6537 done: 6538 if (attr) 6539 sysevent_free_attr(attr); 6540 sysevent_free(ev); 6541 #endif 6542 } 6543