1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/dsl_scan.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static dsl_syncfunc_t spa_sync_props; 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 bpobj_close(&spa->spa_deferred_bpobj); 947 948 /* 949 * Close the dsl pool. 950 */ 951 if (spa->spa_dsl_pool) { 952 dsl_pool_close(spa->spa_dsl_pool); 953 spa->spa_dsl_pool = NULL; 954 spa->spa_meta_objset = NULL; 955 } 956 957 ddt_unload(spa); 958 959 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 960 961 /* 962 * Drop and purge level 2 cache 963 */ 964 spa_l2cache_drop(spa); 965 966 /* 967 * Close all vdevs. 968 */ 969 if (spa->spa_root_vdev) 970 vdev_free(spa->spa_root_vdev); 971 ASSERT(spa->spa_root_vdev == NULL); 972 973 for (i = 0; i < spa->spa_spares.sav_count; i++) 974 vdev_free(spa->spa_spares.sav_vdevs[i]); 975 if (spa->spa_spares.sav_vdevs) { 976 kmem_free(spa->spa_spares.sav_vdevs, 977 spa->spa_spares.sav_count * sizeof (void *)); 978 spa->spa_spares.sav_vdevs = NULL; 979 } 980 if (spa->spa_spares.sav_config) { 981 nvlist_free(spa->spa_spares.sav_config); 982 spa->spa_spares.sav_config = NULL; 983 } 984 spa->spa_spares.sav_count = 0; 985 986 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 987 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 988 if (spa->spa_l2cache.sav_vdevs) { 989 kmem_free(spa->spa_l2cache.sav_vdevs, 990 spa->spa_l2cache.sav_count * sizeof (void *)); 991 spa->spa_l2cache.sav_vdevs = NULL; 992 } 993 if (spa->spa_l2cache.sav_config) { 994 nvlist_free(spa->spa_l2cache.sav_config); 995 spa->spa_l2cache.sav_config = NULL; 996 } 997 spa->spa_l2cache.sav_count = 0; 998 999 spa->spa_async_suspended = 0; 1000 1001 spa_config_exit(spa, SCL_ALL, FTAG); 1002 } 1003 1004 /* 1005 * Load (or re-load) the current list of vdevs describing the active spares for 1006 * this pool. When this is called, we have some form of basic information in 1007 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1008 * then re-generate a more complete list including status information. 1009 */ 1010 static void 1011 spa_load_spares(spa_t *spa) 1012 { 1013 nvlist_t **spares; 1014 uint_t nspares; 1015 int i; 1016 vdev_t *vd, *tvd; 1017 1018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1019 1020 /* 1021 * First, close and free any existing spare vdevs. 1022 */ 1023 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1024 vd = spa->spa_spares.sav_vdevs[i]; 1025 1026 /* Undo the call to spa_activate() below */ 1027 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1028 B_FALSE)) != NULL && tvd->vdev_isspare) 1029 spa_spare_remove(tvd); 1030 vdev_close(vd); 1031 vdev_free(vd); 1032 } 1033 1034 if (spa->spa_spares.sav_vdevs) 1035 kmem_free(spa->spa_spares.sav_vdevs, 1036 spa->spa_spares.sav_count * sizeof (void *)); 1037 1038 if (spa->spa_spares.sav_config == NULL) 1039 nspares = 0; 1040 else 1041 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1042 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1043 1044 spa->spa_spares.sav_count = (int)nspares; 1045 spa->spa_spares.sav_vdevs = NULL; 1046 1047 if (nspares == 0) 1048 return; 1049 1050 /* 1051 * Construct the array of vdevs, opening them to get status in the 1052 * process. For each spare, there is potentially two different vdev_t 1053 * structures associated with it: one in the list of spares (used only 1054 * for basic validation purposes) and one in the active vdev 1055 * configuration (if it's spared in). During this phase we open and 1056 * validate each vdev on the spare list. If the vdev also exists in the 1057 * active configuration, then we also mark this vdev as an active spare. 1058 */ 1059 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1060 KM_SLEEP); 1061 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1062 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1063 VDEV_ALLOC_SPARE) == 0); 1064 ASSERT(vd != NULL); 1065 1066 spa->spa_spares.sav_vdevs[i] = vd; 1067 1068 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1069 B_FALSE)) != NULL) { 1070 if (!tvd->vdev_isspare) 1071 spa_spare_add(tvd); 1072 1073 /* 1074 * We only mark the spare active if we were successfully 1075 * able to load the vdev. Otherwise, importing a pool 1076 * with a bad active spare would result in strange 1077 * behavior, because multiple pool would think the spare 1078 * is actively in use. 1079 * 1080 * There is a vulnerability here to an equally bizarre 1081 * circumstance, where a dead active spare is later 1082 * brought back to life (onlined or otherwise). Given 1083 * the rarity of this scenario, and the extra complexity 1084 * it adds, we ignore the possibility. 1085 */ 1086 if (!vdev_is_dead(tvd)) 1087 spa_spare_activate(tvd); 1088 } 1089 1090 vd->vdev_top = vd; 1091 vd->vdev_aux = &spa->spa_spares; 1092 1093 if (vdev_open(vd) != 0) 1094 continue; 1095 1096 if (vdev_validate_aux(vd) == 0) 1097 spa_spare_add(vd); 1098 } 1099 1100 /* 1101 * Recompute the stashed list of spares, with status information 1102 * this time. 1103 */ 1104 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1105 DATA_TYPE_NVLIST_ARRAY) == 0); 1106 1107 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1108 KM_SLEEP); 1109 for (i = 0; i < spa->spa_spares.sav_count; i++) 1110 spares[i] = vdev_config_generate(spa, 1111 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1112 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1113 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1114 for (i = 0; i < spa->spa_spares.sav_count; i++) 1115 nvlist_free(spares[i]); 1116 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1117 } 1118 1119 /* 1120 * Load (or re-load) the current list of vdevs describing the active l2cache for 1121 * this pool. When this is called, we have some form of basic information in 1122 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1123 * then re-generate a more complete list including status information. 1124 * Devices which are already active have their details maintained, and are 1125 * not re-opened. 1126 */ 1127 static void 1128 spa_load_l2cache(spa_t *spa) 1129 { 1130 nvlist_t **l2cache; 1131 uint_t nl2cache; 1132 int i, j, oldnvdevs; 1133 uint64_t guid; 1134 vdev_t *vd, **oldvdevs, **newvdevs; 1135 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1136 1137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1138 1139 if (sav->sav_config != NULL) { 1140 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1141 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1142 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1143 } else { 1144 nl2cache = 0; 1145 } 1146 1147 oldvdevs = sav->sav_vdevs; 1148 oldnvdevs = sav->sav_count; 1149 sav->sav_vdevs = NULL; 1150 sav->sav_count = 0; 1151 1152 /* 1153 * Process new nvlist of vdevs. 1154 */ 1155 for (i = 0; i < nl2cache; i++) { 1156 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1157 &guid) == 0); 1158 1159 newvdevs[i] = NULL; 1160 for (j = 0; j < oldnvdevs; j++) { 1161 vd = oldvdevs[j]; 1162 if (vd != NULL && guid == vd->vdev_guid) { 1163 /* 1164 * Retain previous vdev for add/remove ops. 1165 */ 1166 newvdevs[i] = vd; 1167 oldvdevs[j] = NULL; 1168 break; 1169 } 1170 } 1171 1172 if (newvdevs[i] == NULL) { 1173 /* 1174 * Create new vdev 1175 */ 1176 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1177 VDEV_ALLOC_L2CACHE) == 0); 1178 ASSERT(vd != NULL); 1179 newvdevs[i] = vd; 1180 1181 /* 1182 * Commit this vdev as an l2cache device, 1183 * even if it fails to open. 1184 */ 1185 spa_l2cache_add(vd); 1186 1187 vd->vdev_top = vd; 1188 vd->vdev_aux = sav; 1189 1190 spa_l2cache_activate(vd); 1191 1192 if (vdev_open(vd) != 0) 1193 continue; 1194 1195 (void) vdev_validate_aux(vd); 1196 1197 if (!vdev_is_dead(vd)) 1198 l2arc_add_vdev(spa, vd); 1199 } 1200 } 1201 1202 /* 1203 * Purge vdevs that were dropped 1204 */ 1205 for (i = 0; i < oldnvdevs; i++) { 1206 uint64_t pool; 1207 1208 vd = oldvdevs[i]; 1209 if (vd != NULL) { 1210 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1211 pool != 0ULL && l2arc_vdev_present(vd)) 1212 l2arc_remove_vdev(vd); 1213 (void) vdev_close(vd); 1214 spa_l2cache_remove(vd); 1215 } 1216 } 1217 1218 if (oldvdevs) 1219 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1220 1221 if (sav->sav_config == NULL) 1222 goto out; 1223 1224 sav->sav_vdevs = newvdevs; 1225 sav->sav_count = (int)nl2cache; 1226 1227 /* 1228 * Recompute the stashed list of l2cache devices, with status 1229 * information this time. 1230 */ 1231 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1232 DATA_TYPE_NVLIST_ARRAY) == 0); 1233 1234 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1235 for (i = 0; i < sav->sav_count; i++) 1236 l2cache[i] = vdev_config_generate(spa, 1237 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1238 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1239 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1240 out: 1241 for (i = 0; i < sav->sav_count; i++) 1242 nvlist_free(l2cache[i]); 1243 if (sav->sav_count) 1244 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1245 } 1246 1247 static int 1248 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1249 { 1250 dmu_buf_t *db; 1251 char *packed = NULL; 1252 size_t nvsize = 0; 1253 int error; 1254 *value = NULL; 1255 1256 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1257 nvsize = *(uint64_t *)db->db_data; 1258 dmu_buf_rele(db, FTAG); 1259 1260 packed = kmem_alloc(nvsize, KM_SLEEP); 1261 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1262 DMU_READ_PREFETCH); 1263 if (error == 0) 1264 error = nvlist_unpack(packed, nvsize, value, 0); 1265 kmem_free(packed, nvsize); 1266 1267 return (error); 1268 } 1269 1270 /* 1271 * Checks to see if the given vdev could not be opened, in which case we post a 1272 * sysevent to notify the autoreplace code that the device has been removed. 1273 */ 1274 static void 1275 spa_check_removed(vdev_t *vd) 1276 { 1277 for (int c = 0; c < vd->vdev_children; c++) 1278 spa_check_removed(vd->vdev_child[c]); 1279 1280 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1281 zfs_post_autoreplace(vd->vdev_spa, vd); 1282 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1283 } 1284 } 1285 1286 /* 1287 * Validate the current config against the MOS config 1288 */ 1289 static boolean_t 1290 spa_config_valid(spa_t *spa, nvlist_t *config) 1291 { 1292 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1293 nvlist_t *nv; 1294 1295 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1296 1297 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1298 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1299 1300 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1301 1302 /* 1303 * If we're doing a normal import, then build up any additional 1304 * diagnostic information about missing devices in this config. 1305 * We'll pass this up to the user for further processing. 1306 */ 1307 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1308 nvlist_t **child, *nv; 1309 uint64_t idx = 0; 1310 1311 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1312 KM_SLEEP); 1313 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1314 1315 for (int c = 0; c < rvd->vdev_children; c++) { 1316 vdev_t *tvd = rvd->vdev_child[c]; 1317 vdev_t *mtvd = mrvd->vdev_child[c]; 1318 1319 if (tvd->vdev_ops == &vdev_missing_ops && 1320 mtvd->vdev_ops != &vdev_missing_ops && 1321 mtvd->vdev_islog) 1322 child[idx++] = vdev_config_generate(spa, mtvd, 1323 B_FALSE, 0); 1324 } 1325 1326 if (idx) { 1327 VERIFY(nvlist_add_nvlist_array(nv, 1328 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1329 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1330 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1331 1332 for (int i = 0; i < idx; i++) 1333 nvlist_free(child[i]); 1334 } 1335 nvlist_free(nv); 1336 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1337 } 1338 1339 /* 1340 * Compare the root vdev tree with the information we have 1341 * from the MOS config (mrvd). Check each top-level vdev 1342 * with the corresponding MOS config top-level (mtvd). 1343 */ 1344 for (int c = 0; c < rvd->vdev_children; c++) { 1345 vdev_t *tvd = rvd->vdev_child[c]; 1346 vdev_t *mtvd = mrvd->vdev_child[c]; 1347 1348 /* 1349 * Resolve any "missing" vdevs in the current configuration. 1350 * If we find that the MOS config has more accurate information 1351 * about the top-level vdev then use that vdev instead. 1352 */ 1353 if (tvd->vdev_ops == &vdev_missing_ops && 1354 mtvd->vdev_ops != &vdev_missing_ops) { 1355 1356 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1357 continue; 1358 1359 /* 1360 * Device specific actions. 1361 */ 1362 if (mtvd->vdev_islog) { 1363 spa_set_log_state(spa, SPA_LOG_CLEAR); 1364 } else { 1365 /* 1366 * XXX - once we have 'readonly' pool 1367 * support we should be able to handle 1368 * missing data devices by transitioning 1369 * the pool to readonly. 1370 */ 1371 continue; 1372 } 1373 1374 /* 1375 * Swap the missing vdev with the data we were 1376 * able to obtain from the MOS config. 1377 */ 1378 vdev_remove_child(rvd, tvd); 1379 vdev_remove_child(mrvd, mtvd); 1380 1381 vdev_add_child(rvd, mtvd); 1382 vdev_add_child(mrvd, tvd); 1383 1384 spa_config_exit(spa, SCL_ALL, FTAG); 1385 vdev_load(mtvd); 1386 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1387 1388 vdev_reopen(rvd); 1389 } else if (mtvd->vdev_islog) { 1390 /* 1391 * Load the slog device's state from the MOS config 1392 * since it's possible that the label does not 1393 * contain the most up-to-date information. 1394 */ 1395 vdev_load_log_state(tvd, mtvd); 1396 vdev_reopen(tvd); 1397 } 1398 } 1399 vdev_free(mrvd); 1400 spa_config_exit(spa, SCL_ALL, FTAG); 1401 1402 /* 1403 * Ensure we were able to validate the config. 1404 */ 1405 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1406 } 1407 1408 /* 1409 * Check for missing log devices 1410 */ 1411 static int 1412 spa_check_logs(spa_t *spa) 1413 { 1414 switch (spa->spa_log_state) { 1415 case SPA_LOG_MISSING: 1416 /* need to recheck in case slog has been restored */ 1417 case SPA_LOG_UNKNOWN: 1418 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1419 DS_FIND_CHILDREN)) { 1420 spa_set_log_state(spa, SPA_LOG_MISSING); 1421 return (1); 1422 } 1423 break; 1424 } 1425 return (0); 1426 } 1427 1428 static boolean_t 1429 spa_passivate_log(spa_t *spa) 1430 { 1431 vdev_t *rvd = spa->spa_root_vdev; 1432 boolean_t slog_found = B_FALSE; 1433 1434 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1435 1436 if (!spa_has_slogs(spa)) 1437 return (B_FALSE); 1438 1439 for (int c = 0; c < rvd->vdev_children; c++) { 1440 vdev_t *tvd = rvd->vdev_child[c]; 1441 metaslab_group_t *mg = tvd->vdev_mg; 1442 1443 if (tvd->vdev_islog) { 1444 metaslab_group_passivate(mg); 1445 slog_found = B_TRUE; 1446 } 1447 } 1448 1449 return (slog_found); 1450 } 1451 1452 static void 1453 spa_activate_log(spa_t *spa) 1454 { 1455 vdev_t *rvd = spa->spa_root_vdev; 1456 1457 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1458 1459 for (int c = 0; c < rvd->vdev_children; c++) { 1460 vdev_t *tvd = rvd->vdev_child[c]; 1461 metaslab_group_t *mg = tvd->vdev_mg; 1462 1463 if (tvd->vdev_islog) 1464 metaslab_group_activate(mg); 1465 } 1466 } 1467 1468 int 1469 spa_offline_log(spa_t *spa) 1470 { 1471 int error = 0; 1472 1473 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1474 NULL, DS_FIND_CHILDREN)) == 0) { 1475 1476 /* 1477 * We successfully offlined the log device, sync out the 1478 * current txg so that the "stubby" block can be removed 1479 * by zil_sync(). 1480 */ 1481 txg_wait_synced(spa->spa_dsl_pool, 0); 1482 } 1483 return (error); 1484 } 1485 1486 static void 1487 spa_aux_check_removed(spa_aux_vdev_t *sav) 1488 { 1489 for (int i = 0; i < sav->sav_count; i++) 1490 spa_check_removed(sav->sav_vdevs[i]); 1491 } 1492 1493 void 1494 spa_claim_notify(zio_t *zio) 1495 { 1496 spa_t *spa = zio->io_spa; 1497 1498 if (zio->io_error) 1499 return; 1500 1501 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1502 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1503 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1504 mutex_exit(&spa->spa_props_lock); 1505 } 1506 1507 typedef struct spa_load_error { 1508 uint64_t sle_meta_count; 1509 uint64_t sle_data_count; 1510 } spa_load_error_t; 1511 1512 static void 1513 spa_load_verify_done(zio_t *zio) 1514 { 1515 blkptr_t *bp = zio->io_bp; 1516 spa_load_error_t *sle = zio->io_private; 1517 dmu_object_type_t type = BP_GET_TYPE(bp); 1518 int error = zio->io_error; 1519 1520 if (error) { 1521 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1522 type != DMU_OT_INTENT_LOG) 1523 atomic_add_64(&sle->sle_meta_count, 1); 1524 else 1525 atomic_add_64(&sle->sle_data_count, 1); 1526 } 1527 zio_data_buf_free(zio->io_data, zio->io_size); 1528 } 1529 1530 /*ARGSUSED*/ 1531 static int 1532 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1533 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1534 { 1535 if (bp != NULL) { 1536 zio_t *rio = arg; 1537 size_t size = BP_GET_PSIZE(bp); 1538 void *data = zio_data_buf_alloc(size); 1539 1540 zio_nowait(zio_read(rio, spa, bp, data, size, 1541 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1542 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1543 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1544 } 1545 return (0); 1546 } 1547 1548 static int 1549 spa_load_verify(spa_t *spa) 1550 { 1551 zio_t *rio; 1552 spa_load_error_t sle = { 0 }; 1553 zpool_rewind_policy_t policy; 1554 boolean_t verify_ok = B_FALSE; 1555 int error; 1556 1557 zpool_get_rewind_policy(spa->spa_config, &policy); 1558 1559 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1560 return (0); 1561 1562 rio = zio_root(spa, NULL, &sle, 1563 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1564 1565 error = traverse_pool(spa, spa->spa_verify_min_txg, 1566 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1567 1568 (void) zio_wait(rio); 1569 1570 spa->spa_load_meta_errors = sle.sle_meta_count; 1571 spa->spa_load_data_errors = sle.sle_data_count; 1572 1573 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1574 sle.sle_data_count <= policy.zrp_maxdata) { 1575 int64_t loss = 0; 1576 1577 verify_ok = B_TRUE; 1578 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1579 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1580 1581 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1582 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1583 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1584 VERIFY(nvlist_add_int64(spa->spa_load_info, 1585 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1586 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1587 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1588 } else { 1589 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1590 } 1591 1592 if (error) { 1593 if (error != ENXIO && error != EIO) 1594 error = EIO; 1595 return (error); 1596 } 1597 1598 return (verify_ok ? 0 : EIO); 1599 } 1600 1601 /* 1602 * Find a value in the pool props object. 1603 */ 1604 static void 1605 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1606 { 1607 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1608 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1609 } 1610 1611 /* 1612 * Find a value in the pool directory object. 1613 */ 1614 static int 1615 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1616 { 1617 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1618 name, sizeof (uint64_t), 1, val)); 1619 } 1620 1621 static int 1622 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1623 { 1624 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1625 return (err); 1626 } 1627 1628 /* 1629 * Fix up config after a partly-completed split. This is done with the 1630 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1631 * pool have that entry in their config, but only the splitting one contains 1632 * a list of all the guids of the vdevs that are being split off. 1633 * 1634 * This function determines what to do with that list: either rejoin 1635 * all the disks to the pool, or complete the splitting process. To attempt 1636 * the rejoin, each disk that is offlined is marked online again, and 1637 * we do a reopen() call. If the vdev label for every disk that was 1638 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1639 * then we call vdev_split() on each disk, and complete the split. 1640 * 1641 * Otherwise we leave the config alone, with all the vdevs in place in 1642 * the original pool. 1643 */ 1644 static void 1645 spa_try_repair(spa_t *spa, nvlist_t *config) 1646 { 1647 uint_t extracted; 1648 uint64_t *glist; 1649 uint_t i, gcount; 1650 nvlist_t *nvl; 1651 vdev_t **vd; 1652 boolean_t attempt_reopen; 1653 1654 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1655 return; 1656 1657 /* check that the config is complete */ 1658 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1659 &glist, &gcount) != 0) 1660 return; 1661 1662 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1663 1664 /* attempt to online all the vdevs & validate */ 1665 attempt_reopen = B_TRUE; 1666 for (i = 0; i < gcount; i++) { 1667 if (glist[i] == 0) /* vdev is hole */ 1668 continue; 1669 1670 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1671 if (vd[i] == NULL) { 1672 /* 1673 * Don't bother attempting to reopen the disks; 1674 * just do the split. 1675 */ 1676 attempt_reopen = B_FALSE; 1677 } else { 1678 /* attempt to re-online it */ 1679 vd[i]->vdev_offline = B_FALSE; 1680 } 1681 } 1682 1683 if (attempt_reopen) { 1684 vdev_reopen(spa->spa_root_vdev); 1685 1686 /* check each device to see what state it's in */ 1687 for (extracted = 0, i = 0; i < gcount; i++) { 1688 if (vd[i] != NULL && 1689 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1690 break; 1691 ++extracted; 1692 } 1693 } 1694 1695 /* 1696 * If every disk has been moved to the new pool, or if we never 1697 * even attempted to look at them, then we split them off for 1698 * good. 1699 */ 1700 if (!attempt_reopen || gcount == extracted) { 1701 for (i = 0; i < gcount; i++) 1702 if (vd[i] != NULL) 1703 vdev_split(vd[i]); 1704 vdev_reopen(spa->spa_root_vdev); 1705 } 1706 1707 kmem_free(vd, gcount * sizeof (vdev_t *)); 1708 } 1709 1710 static int 1711 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1712 boolean_t mosconfig) 1713 { 1714 nvlist_t *config = spa->spa_config; 1715 char *ereport = FM_EREPORT_ZFS_POOL; 1716 int error; 1717 uint64_t pool_guid; 1718 nvlist_t *nvl; 1719 1720 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1721 return (EINVAL); 1722 1723 /* 1724 * Versioning wasn't explicitly added to the label until later, so if 1725 * it's not present treat it as the initial version. 1726 */ 1727 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1728 &spa->spa_ubsync.ub_version) != 0) 1729 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1730 1731 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1732 &spa->spa_config_txg); 1733 1734 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1735 spa_guid_exists(pool_guid, 0)) { 1736 error = EEXIST; 1737 } else { 1738 spa->spa_load_guid = pool_guid; 1739 1740 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1741 &nvl) == 0) { 1742 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1743 KM_SLEEP) == 0); 1744 } 1745 1746 gethrestime(&spa->spa_loaded_ts); 1747 error = spa_load_impl(spa, pool_guid, config, state, type, 1748 mosconfig, &ereport); 1749 } 1750 1751 spa->spa_minref = refcount_count(&spa->spa_refcount); 1752 if (error) { 1753 if (error != EEXIST) { 1754 spa->spa_loaded_ts.tv_sec = 0; 1755 spa->spa_loaded_ts.tv_nsec = 0; 1756 } 1757 if (error != EBADF) { 1758 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1759 } 1760 } 1761 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1762 spa->spa_ena = 0; 1763 1764 return (error); 1765 } 1766 1767 /* 1768 * Load an existing storage pool, using the pool's builtin spa_config as a 1769 * source of configuration information. 1770 */ 1771 static int 1772 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1773 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1774 char **ereport) 1775 { 1776 int error = 0; 1777 nvlist_t *nvroot = NULL; 1778 vdev_t *rvd; 1779 uberblock_t *ub = &spa->spa_uberblock; 1780 uint64_t children, config_cache_txg = spa->spa_config_txg; 1781 int orig_mode = spa->spa_mode; 1782 int parse; 1783 uint64_t obj; 1784 1785 /* 1786 * If this is an untrusted config, access the pool in read-only mode. 1787 * This prevents things like resilvering recently removed devices. 1788 */ 1789 if (!mosconfig) 1790 spa->spa_mode = FREAD; 1791 1792 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1793 1794 spa->spa_load_state = state; 1795 1796 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1797 return (EINVAL); 1798 1799 parse = (type == SPA_IMPORT_EXISTING ? 1800 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1801 1802 /* 1803 * Create "The Godfather" zio to hold all async IOs 1804 */ 1805 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1806 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1807 1808 /* 1809 * Parse the configuration into a vdev tree. We explicitly set the 1810 * value that will be returned by spa_version() since parsing the 1811 * configuration requires knowing the version number. 1812 */ 1813 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1814 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1815 spa_config_exit(spa, SCL_ALL, FTAG); 1816 1817 if (error != 0) 1818 return (error); 1819 1820 ASSERT(spa->spa_root_vdev == rvd); 1821 1822 if (type != SPA_IMPORT_ASSEMBLE) { 1823 ASSERT(spa_guid(spa) == pool_guid); 1824 } 1825 1826 /* 1827 * Try to open all vdevs, loading each label in the process. 1828 */ 1829 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1830 error = vdev_open(rvd); 1831 spa_config_exit(spa, SCL_ALL, FTAG); 1832 if (error != 0) 1833 return (error); 1834 1835 /* 1836 * We need to validate the vdev labels against the configuration that 1837 * we have in hand, which is dependent on the setting of mosconfig. If 1838 * mosconfig is true then we're validating the vdev labels based on 1839 * that config. Otherwise, we're validating against the cached config 1840 * (zpool.cache) that was read when we loaded the zfs module, and then 1841 * later we will recursively call spa_load() and validate against 1842 * the vdev config. 1843 * 1844 * If we're assembling a new pool that's been split off from an 1845 * existing pool, the labels haven't yet been updated so we skip 1846 * validation for now. 1847 */ 1848 if (type != SPA_IMPORT_ASSEMBLE) { 1849 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1850 error = vdev_validate(rvd); 1851 spa_config_exit(spa, SCL_ALL, FTAG); 1852 1853 if (error != 0) 1854 return (error); 1855 1856 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1857 return (ENXIO); 1858 } 1859 1860 /* 1861 * Find the best uberblock. 1862 */ 1863 vdev_uberblock_load(NULL, rvd, ub); 1864 1865 /* 1866 * If we weren't able to find a single valid uberblock, return failure. 1867 */ 1868 if (ub->ub_txg == 0) 1869 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1870 1871 /* 1872 * If the pool is newer than the code, we can't open it. 1873 */ 1874 if (ub->ub_version > SPA_VERSION) 1875 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1876 1877 /* 1878 * If the vdev guid sum doesn't match the uberblock, we have an 1879 * incomplete configuration. We first check to see if the pool 1880 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 1881 * If it is, defer the vdev_guid_sum check till later so we 1882 * can handle missing vdevs. 1883 */ 1884 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 1885 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 1886 rvd->vdev_guid_sum != ub->ub_guid_sum) 1887 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1888 1889 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1890 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1891 spa_try_repair(spa, config); 1892 spa_config_exit(spa, SCL_ALL, FTAG); 1893 nvlist_free(spa->spa_config_splitting); 1894 spa->spa_config_splitting = NULL; 1895 } 1896 1897 /* 1898 * Initialize internal SPA structures. 1899 */ 1900 spa->spa_state = POOL_STATE_ACTIVE; 1901 spa->spa_ubsync = spa->spa_uberblock; 1902 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1903 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1904 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1905 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1906 spa->spa_claim_max_txg = spa->spa_first_txg; 1907 spa->spa_prev_software_version = ub->ub_software_version; 1908 1909 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1910 if (error) 1911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1912 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1913 1914 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1915 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1916 1917 if (!mosconfig) { 1918 uint64_t hostid; 1919 nvlist_t *policy = NULL, *nvconfig; 1920 1921 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1922 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1923 1924 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1925 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1926 char *hostname; 1927 unsigned long myhostid = 0; 1928 1929 VERIFY(nvlist_lookup_string(nvconfig, 1930 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1931 1932 #ifdef _KERNEL 1933 myhostid = zone_get_hostid(NULL); 1934 #else /* _KERNEL */ 1935 /* 1936 * We're emulating the system's hostid in userland, so 1937 * we can't use zone_get_hostid(). 1938 */ 1939 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1940 #endif /* _KERNEL */ 1941 if (hostid != 0 && myhostid != 0 && 1942 hostid != myhostid) { 1943 nvlist_free(nvconfig); 1944 cmn_err(CE_WARN, "pool '%s' could not be " 1945 "loaded as it was last accessed by " 1946 "another system (host: %s hostid: 0x%lx). " 1947 "See: http://www.sun.com/msg/ZFS-8000-EY", 1948 spa_name(spa), hostname, 1949 (unsigned long)hostid); 1950 return (EBADF); 1951 } 1952 } 1953 if (nvlist_lookup_nvlist(spa->spa_config, 1954 ZPOOL_REWIND_POLICY, &policy) == 0) 1955 VERIFY(nvlist_add_nvlist(nvconfig, 1956 ZPOOL_REWIND_POLICY, policy) == 0); 1957 1958 spa_config_set(spa, nvconfig); 1959 spa_unload(spa); 1960 spa_deactivate(spa); 1961 spa_activate(spa, orig_mode); 1962 1963 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1964 } 1965 1966 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 1967 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1968 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 1969 if (error != 0) 1970 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1971 1972 /* 1973 * Load the bit that tells us to use the new accounting function 1974 * (raid-z deflation). If we have an older pool, this will not 1975 * be present. 1976 */ 1977 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1978 if (error != 0 && error != ENOENT) 1979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1980 1981 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 1982 &spa->spa_creation_version); 1983 if (error != 0 && error != ENOENT) 1984 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1985 1986 /* 1987 * Load the persistent error log. If we have an older pool, this will 1988 * not be present. 1989 */ 1990 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1991 if (error != 0 && error != ENOENT) 1992 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1993 1994 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1995 &spa->spa_errlog_scrub); 1996 if (error != 0 && error != ENOENT) 1997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1998 1999 /* 2000 * Load the history object. If we have an older pool, this 2001 * will not be present. 2002 */ 2003 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2004 if (error != 0 && error != ENOENT) 2005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2006 2007 /* 2008 * If we're assembling the pool from the split-off vdevs of 2009 * an existing pool, we don't want to attach the spares & cache 2010 * devices. 2011 */ 2012 2013 /* 2014 * Load any hot spares for this pool. 2015 */ 2016 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2017 if (error != 0 && error != ENOENT) 2018 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2019 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2020 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2021 if (load_nvlist(spa, spa->spa_spares.sav_object, 2022 &spa->spa_spares.sav_config) != 0) 2023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2024 2025 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2026 spa_load_spares(spa); 2027 spa_config_exit(spa, SCL_ALL, FTAG); 2028 } else if (error == 0) { 2029 spa->spa_spares.sav_sync = B_TRUE; 2030 } 2031 2032 /* 2033 * Load any level 2 ARC devices for this pool. 2034 */ 2035 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2036 &spa->spa_l2cache.sav_object); 2037 if (error != 0 && error != ENOENT) 2038 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2039 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2040 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2041 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2042 &spa->spa_l2cache.sav_config) != 0) 2043 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2044 2045 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2046 spa_load_l2cache(spa); 2047 spa_config_exit(spa, SCL_ALL, FTAG); 2048 } else if (error == 0) { 2049 spa->spa_l2cache.sav_sync = B_TRUE; 2050 } 2051 2052 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2053 2054 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2055 if (error && error != ENOENT) 2056 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2057 2058 if (error == 0) { 2059 uint64_t autoreplace; 2060 2061 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2062 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2063 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2064 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2065 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2066 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2067 &spa->spa_dedup_ditto); 2068 2069 spa->spa_autoreplace = (autoreplace != 0); 2070 } 2071 2072 /* 2073 * If the 'autoreplace' property is set, then post a resource notifying 2074 * the ZFS DE that it should not issue any faults for unopenable 2075 * devices. We also iterate over the vdevs, and post a sysevent for any 2076 * unopenable vdevs so that the normal autoreplace handler can take 2077 * over. 2078 */ 2079 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2080 spa_check_removed(spa->spa_root_vdev); 2081 /* 2082 * For the import case, this is done in spa_import(), because 2083 * at this point we're using the spare definitions from 2084 * the MOS config, not necessarily from the userland config. 2085 */ 2086 if (state != SPA_LOAD_IMPORT) { 2087 spa_aux_check_removed(&spa->spa_spares); 2088 spa_aux_check_removed(&spa->spa_l2cache); 2089 } 2090 } 2091 2092 /* 2093 * Load the vdev state for all toplevel vdevs. 2094 */ 2095 vdev_load(rvd); 2096 2097 /* 2098 * Propagate the leaf DTLs we just loaded all the way up the tree. 2099 */ 2100 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2101 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2102 spa_config_exit(spa, SCL_ALL, FTAG); 2103 2104 /* 2105 * Load the DDTs (dedup tables). 2106 */ 2107 error = ddt_load(spa); 2108 if (error != 0) 2109 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2110 2111 spa_update_dspace(spa); 2112 2113 /* 2114 * Validate the config, using the MOS config to fill in any 2115 * information which might be missing. If we fail to validate 2116 * the config then declare the pool unfit for use. If we're 2117 * assembling a pool from a split, the log is not transferred 2118 * over. 2119 */ 2120 if (type != SPA_IMPORT_ASSEMBLE) { 2121 nvlist_t *nvconfig; 2122 2123 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2124 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2125 2126 if (!spa_config_valid(spa, nvconfig)) { 2127 nvlist_free(nvconfig); 2128 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2129 ENXIO)); 2130 } 2131 nvlist_free(nvconfig); 2132 2133 /* 2134 * Now that we've validate the config, check the state of the 2135 * root vdev. If it can't be opened, it indicates one or 2136 * more toplevel vdevs are faulted. 2137 */ 2138 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2139 return (ENXIO); 2140 2141 if (spa_check_logs(spa)) { 2142 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2143 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2144 } 2145 } 2146 2147 /* 2148 * We've successfully opened the pool, verify that we're ready 2149 * to start pushing transactions. 2150 */ 2151 if (state != SPA_LOAD_TRYIMPORT) { 2152 if (error = spa_load_verify(spa)) 2153 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2154 error)); 2155 } 2156 2157 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2158 spa->spa_load_max_txg == UINT64_MAX)) { 2159 dmu_tx_t *tx; 2160 int need_update = B_FALSE; 2161 2162 ASSERT(state != SPA_LOAD_TRYIMPORT); 2163 2164 /* 2165 * Claim log blocks that haven't been committed yet. 2166 * This must all happen in a single txg. 2167 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2168 * invoked from zil_claim_log_block()'s i/o done callback. 2169 * Price of rollback is that we abandon the log. 2170 */ 2171 spa->spa_claiming = B_TRUE; 2172 2173 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2174 spa_first_txg(spa)); 2175 (void) dmu_objset_find(spa_name(spa), 2176 zil_claim, tx, DS_FIND_CHILDREN); 2177 dmu_tx_commit(tx); 2178 2179 spa->spa_claiming = B_FALSE; 2180 2181 spa_set_log_state(spa, SPA_LOG_GOOD); 2182 spa->spa_sync_on = B_TRUE; 2183 txg_sync_start(spa->spa_dsl_pool); 2184 2185 /* 2186 * Wait for all claims to sync. We sync up to the highest 2187 * claimed log block birth time so that claimed log blocks 2188 * don't appear to be from the future. spa_claim_max_txg 2189 * will have been set for us by either zil_check_log_chain() 2190 * (invoked from spa_check_logs()) or zil_claim() above. 2191 */ 2192 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2193 2194 /* 2195 * If the config cache is stale, or we have uninitialized 2196 * metaslabs (see spa_vdev_add()), then update the config. 2197 * 2198 * If this is a verbatim import, trust the current 2199 * in-core spa_config and update the disk labels. 2200 */ 2201 if (config_cache_txg != spa->spa_config_txg || 2202 state == SPA_LOAD_IMPORT || 2203 state == SPA_LOAD_RECOVER || 2204 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2205 need_update = B_TRUE; 2206 2207 for (int c = 0; c < rvd->vdev_children; c++) 2208 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2209 need_update = B_TRUE; 2210 2211 /* 2212 * Update the config cache asychronously in case we're the 2213 * root pool, in which case the config cache isn't writable yet. 2214 */ 2215 if (need_update) 2216 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2217 2218 /* 2219 * Check all DTLs to see if anything needs resilvering. 2220 */ 2221 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2222 vdev_resilver_needed(rvd, NULL, NULL)) 2223 spa_async_request(spa, SPA_ASYNC_RESILVER); 2224 2225 /* 2226 * Delete any inconsistent datasets. 2227 */ 2228 (void) dmu_objset_find(spa_name(spa), 2229 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2230 2231 /* 2232 * Clean up any stale temporary dataset userrefs. 2233 */ 2234 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2235 } 2236 2237 return (0); 2238 } 2239 2240 static int 2241 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2242 { 2243 spa_unload(spa); 2244 spa_deactivate(spa); 2245 2246 spa->spa_load_max_txg--; 2247 2248 spa_activate(spa, spa_mode_global); 2249 spa_async_suspend(spa); 2250 2251 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2252 } 2253 2254 static int 2255 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2256 uint64_t max_request, int rewind_flags) 2257 { 2258 nvlist_t *config = NULL; 2259 int load_error, rewind_error; 2260 uint64_t safe_rewind_txg; 2261 uint64_t min_txg; 2262 2263 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2264 spa->spa_load_max_txg = spa->spa_load_txg; 2265 spa_set_log_state(spa, SPA_LOG_CLEAR); 2266 } else { 2267 spa->spa_load_max_txg = max_request; 2268 } 2269 2270 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2271 mosconfig); 2272 if (load_error == 0) 2273 return (0); 2274 2275 if (spa->spa_root_vdev != NULL) 2276 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2277 2278 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2279 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2280 2281 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2282 nvlist_free(config); 2283 return (load_error); 2284 } 2285 2286 /* Price of rolling back is discarding txgs, including log */ 2287 if (state == SPA_LOAD_RECOVER) 2288 spa_set_log_state(spa, SPA_LOG_CLEAR); 2289 2290 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2291 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2292 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2293 TXG_INITIAL : safe_rewind_txg; 2294 2295 /* 2296 * Continue as long as we're finding errors, we're still within 2297 * the acceptable rewind range, and we're still finding uberblocks 2298 */ 2299 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2300 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2301 if (spa->spa_load_max_txg < safe_rewind_txg) 2302 spa->spa_extreme_rewind = B_TRUE; 2303 rewind_error = spa_load_retry(spa, state, mosconfig); 2304 } 2305 2306 spa->spa_extreme_rewind = B_FALSE; 2307 spa->spa_load_max_txg = UINT64_MAX; 2308 2309 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2310 spa_config_set(spa, config); 2311 2312 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2313 } 2314 2315 /* 2316 * Pool Open/Import 2317 * 2318 * The import case is identical to an open except that the configuration is sent 2319 * down from userland, instead of grabbed from the configuration cache. For the 2320 * case of an open, the pool configuration will exist in the 2321 * POOL_STATE_UNINITIALIZED state. 2322 * 2323 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2324 * the same time open the pool, without having to keep around the spa_t in some 2325 * ambiguous state. 2326 */ 2327 static int 2328 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2329 nvlist_t **config) 2330 { 2331 spa_t *spa; 2332 spa_load_state_t state = SPA_LOAD_OPEN; 2333 int error; 2334 int locked = B_FALSE; 2335 2336 *spapp = NULL; 2337 2338 /* 2339 * As disgusting as this is, we need to support recursive calls to this 2340 * function because dsl_dir_open() is called during spa_load(), and ends 2341 * up calling spa_open() again. The real fix is to figure out how to 2342 * avoid dsl_dir_open() calling this in the first place. 2343 */ 2344 if (mutex_owner(&spa_namespace_lock) != curthread) { 2345 mutex_enter(&spa_namespace_lock); 2346 locked = B_TRUE; 2347 } 2348 2349 if ((spa = spa_lookup(pool)) == NULL) { 2350 if (locked) 2351 mutex_exit(&spa_namespace_lock); 2352 return (ENOENT); 2353 } 2354 2355 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2356 zpool_rewind_policy_t policy; 2357 2358 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2359 &policy); 2360 if (policy.zrp_request & ZPOOL_DO_REWIND) 2361 state = SPA_LOAD_RECOVER; 2362 2363 spa_activate(spa, spa_mode_global); 2364 2365 if (state != SPA_LOAD_RECOVER) 2366 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2367 2368 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2369 policy.zrp_request); 2370 2371 if (error == EBADF) { 2372 /* 2373 * If vdev_validate() returns failure (indicated by 2374 * EBADF), it indicates that one of the vdevs indicates 2375 * that the pool has been exported or destroyed. If 2376 * this is the case, the config cache is out of sync and 2377 * we should remove the pool from the namespace. 2378 */ 2379 spa_unload(spa); 2380 spa_deactivate(spa); 2381 spa_config_sync(spa, B_TRUE, B_TRUE); 2382 spa_remove(spa); 2383 if (locked) 2384 mutex_exit(&spa_namespace_lock); 2385 return (ENOENT); 2386 } 2387 2388 if (error) { 2389 /* 2390 * We can't open the pool, but we still have useful 2391 * information: the state of each vdev after the 2392 * attempted vdev_open(). Return this to the user. 2393 */ 2394 if (config != NULL && spa->spa_config) { 2395 VERIFY(nvlist_dup(spa->spa_config, config, 2396 KM_SLEEP) == 0); 2397 VERIFY(nvlist_add_nvlist(*config, 2398 ZPOOL_CONFIG_LOAD_INFO, 2399 spa->spa_load_info) == 0); 2400 } 2401 spa_unload(spa); 2402 spa_deactivate(spa); 2403 spa->spa_last_open_failed = error; 2404 if (locked) 2405 mutex_exit(&spa_namespace_lock); 2406 *spapp = NULL; 2407 return (error); 2408 } 2409 } 2410 2411 spa_open_ref(spa, tag); 2412 2413 if (config != NULL) 2414 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2415 2416 /* 2417 * If we've recovered the pool, pass back any information we 2418 * gathered while doing the load. 2419 */ 2420 if (state == SPA_LOAD_RECOVER) { 2421 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2422 spa->spa_load_info) == 0); 2423 } 2424 2425 if (locked) { 2426 spa->spa_last_open_failed = 0; 2427 spa->spa_last_ubsync_txg = 0; 2428 spa->spa_load_txg = 0; 2429 mutex_exit(&spa_namespace_lock); 2430 } 2431 2432 *spapp = spa; 2433 2434 return (0); 2435 } 2436 2437 int 2438 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2439 nvlist_t **config) 2440 { 2441 return (spa_open_common(name, spapp, tag, policy, config)); 2442 } 2443 2444 int 2445 spa_open(const char *name, spa_t **spapp, void *tag) 2446 { 2447 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2448 } 2449 2450 /* 2451 * Lookup the given spa_t, incrementing the inject count in the process, 2452 * preventing it from being exported or destroyed. 2453 */ 2454 spa_t * 2455 spa_inject_addref(char *name) 2456 { 2457 spa_t *spa; 2458 2459 mutex_enter(&spa_namespace_lock); 2460 if ((spa = spa_lookup(name)) == NULL) { 2461 mutex_exit(&spa_namespace_lock); 2462 return (NULL); 2463 } 2464 spa->spa_inject_ref++; 2465 mutex_exit(&spa_namespace_lock); 2466 2467 return (spa); 2468 } 2469 2470 void 2471 spa_inject_delref(spa_t *spa) 2472 { 2473 mutex_enter(&spa_namespace_lock); 2474 spa->spa_inject_ref--; 2475 mutex_exit(&spa_namespace_lock); 2476 } 2477 2478 /* 2479 * Add spares device information to the nvlist. 2480 */ 2481 static void 2482 spa_add_spares(spa_t *spa, nvlist_t *config) 2483 { 2484 nvlist_t **spares; 2485 uint_t i, nspares; 2486 nvlist_t *nvroot; 2487 uint64_t guid; 2488 vdev_stat_t *vs; 2489 uint_t vsc; 2490 uint64_t pool; 2491 2492 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2493 2494 if (spa->spa_spares.sav_count == 0) 2495 return; 2496 2497 VERIFY(nvlist_lookup_nvlist(config, 2498 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2499 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2500 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2501 if (nspares != 0) { 2502 VERIFY(nvlist_add_nvlist_array(nvroot, 2503 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2504 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2505 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2506 2507 /* 2508 * Go through and find any spares which have since been 2509 * repurposed as an active spare. If this is the case, update 2510 * their status appropriately. 2511 */ 2512 for (i = 0; i < nspares; i++) { 2513 VERIFY(nvlist_lookup_uint64(spares[i], 2514 ZPOOL_CONFIG_GUID, &guid) == 0); 2515 if (spa_spare_exists(guid, &pool, NULL) && 2516 pool != 0ULL) { 2517 VERIFY(nvlist_lookup_uint64_array( 2518 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2519 (uint64_t **)&vs, &vsc) == 0); 2520 vs->vs_state = VDEV_STATE_CANT_OPEN; 2521 vs->vs_aux = VDEV_AUX_SPARED; 2522 } 2523 } 2524 } 2525 } 2526 2527 /* 2528 * Add l2cache device information to the nvlist, including vdev stats. 2529 */ 2530 static void 2531 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2532 { 2533 nvlist_t **l2cache; 2534 uint_t i, j, nl2cache; 2535 nvlist_t *nvroot; 2536 uint64_t guid; 2537 vdev_t *vd; 2538 vdev_stat_t *vs; 2539 uint_t vsc; 2540 2541 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2542 2543 if (spa->spa_l2cache.sav_count == 0) 2544 return; 2545 2546 VERIFY(nvlist_lookup_nvlist(config, 2547 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2548 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2549 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2550 if (nl2cache != 0) { 2551 VERIFY(nvlist_add_nvlist_array(nvroot, 2552 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2553 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2554 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2555 2556 /* 2557 * Update level 2 cache device stats. 2558 */ 2559 2560 for (i = 0; i < nl2cache; i++) { 2561 VERIFY(nvlist_lookup_uint64(l2cache[i], 2562 ZPOOL_CONFIG_GUID, &guid) == 0); 2563 2564 vd = NULL; 2565 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2566 if (guid == 2567 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2568 vd = spa->spa_l2cache.sav_vdevs[j]; 2569 break; 2570 } 2571 } 2572 ASSERT(vd != NULL); 2573 2574 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2575 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2576 == 0); 2577 vdev_get_stats(vd, vs); 2578 } 2579 } 2580 } 2581 2582 int 2583 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2584 { 2585 int error; 2586 spa_t *spa; 2587 2588 *config = NULL; 2589 error = spa_open_common(name, &spa, FTAG, NULL, config); 2590 2591 if (spa != NULL) { 2592 /* 2593 * This still leaves a window of inconsistency where the spares 2594 * or l2cache devices could change and the config would be 2595 * self-inconsistent. 2596 */ 2597 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2598 2599 if (*config != NULL) { 2600 uint64_t loadtimes[2]; 2601 2602 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 2603 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 2604 VERIFY(nvlist_add_uint64_array(*config, 2605 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 2606 2607 VERIFY(nvlist_add_uint64(*config, 2608 ZPOOL_CONFIG_ERRCOUNT, 2609 spa_get_errlog_size(spa)) == 0); 2610 2611 if (spa_suspended(spa)) 2612 VERIFY(nvlist_add_uint64(*config, 2613 ZPOOL_CONFIG_SUSPENDED, 2614 spa->spa_failmode) == 0); 2615 2616 spa_add_spares(spa, *config); 2617 spa_add_l2cache(spa, *config); 2618 } 2619 } 2620 2621 /* 2622 * We want to get the alternate root even for faulted pools, so we cheat 2623 * and call spa_lookup() directly. 2624 */ 2625 if (altroot) { 2626 if (spa == NULL) { 2627 mutex_enter(&spa_namespace_lock); 2628 spa = spa_lookup(name); 2629 if (spa) 2630 spa_altroot(spa, altroot, buflen); 2631 else 2632 altroot[0] = '\0'; 2633 spa = NULL; 2634 mutex_exit(&spa_namespace_lock); 2635 } else { 2636 spa_altroot(spa, altroot, buflen); 2637 } 2638 } 2639 2640 if (spa != NULL) { 2641 spa_config_exit(spa, SCL_CONFIG, FTAG); 2642 spa_close(spa, FTAG); 2643 } 2644 2645 return (error); 2646 } 2647 2648 /* 2649 * Validate that the auxiliary device array is well formed. We must have an 2650 * array of nvlists, each which describes a valid leaf vdev. If this is an 2651 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2652 * specified, as long as they are well-formed. 2653 */ 2654 static int 2655 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2656 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2657 vdev_labeltype_t label) 2658 { 2659 nvlist_t **dev; 2660 uint_t i, ndev; 2661 vdev_t *vd; 2662 int error; 2663 2664 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2665 2666 /* 2667 * It's acceptable to have no devs specified. 2668 */ 2669 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2670 return (0); 2671 2672 if (ndev == 0) 2673 return (EINVAL); 2674 2675 /* 2676 * Make sure the pool is formatted with a version that supports this 2677 * device type. 2678 */ 2679 if (spa_version(spa) < version) 2680 return (ENOTSUP); 2681 2682 /* 2683 * Set the pending device list so we correctly handle device in-use 2684 * checking. 2685 */ 2686 sav->sav_pending = dev; 2687 sav->sav_npending = ndev; 2688 2689 for (i = 0; i < ndev; i++) { 2690 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2691 mode)) != 0) 2692 goto out; 2693 2694 if (!vd->vdev_ops->vdev_op_leaf) { 2695 vdev_free(vd); 2696 error = EINVAL; 2697 goto out; 2698 } 2699 2700 /* 2701 * The L2ARC currently only supports disk devices in 2702 * kernel context. For user-level testing, we allow it. 2703 */ 2704 #ifdef _KERNEL 2705 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2706 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2707 error = ENOTBLK; 2708 goto out; 2709 } 2710 #endif 2711 vd->vdev_top = vd; 2712 2713 if ((error = vdev_open(vd)) == 0 && 2714 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2715 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2716 vd->vdev_guid) == 0); 2717 } 2718 2719 vdev_free(vd); 2720 2721 if (error && 2722 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2723 goto out; 2724 else 2725 error = 0; 2726 } 2727 2728 out: 2729 sav->sav_pending = NULL; 2730 sav->sav_npending = 0; 2731 return (error); 2732 } 2733 2734 static int 2735 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2736 { 2737 int error; 2738 2739 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2740 2741 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2742 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2743 VDEV_LABEL_SPARE)) != 0) { 2744 return (error); 2745 } 2746 2747 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2748 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2749 VDEV_LABEL_L2CACHE)); 2750 } 2751 2752 static void 2753 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2754 const char *config) 2755 { 2756 int i; 2757 2758 if (sav->sav_config != NULL) { 2759 nvlist_t **olddevs; 2760 uint_t oldndevs; 2761 nvlist_t **newdevs; 2762 2763 /* 2764 * Generate new dev list by concatentating with the 2765 * current dev list. 2766 */ 2767 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2768 &olddevs, &oldndevs) == 0); 2769 2770 newdevs = kmem_alloc(sizeof (void *) * 2771 (ndevs + oldndevs), KM_SLEEP); 2772 for (i = 0; i < oldndevs; i++) 2773 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2774 KM_SLEEP) == 0); 2775 for (i = 0; i < ndevs; i++) 2776 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2777 KM_SLEEP) == 0); 2778 2779 VERIFY(nvlist_remove(sav->sav_config, config, 2780 DATA_TYPE_NVLIST_ARRAY) == 0); 2781 2782 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2783 config, newdevs, ndevs + oldndevs) == 0); 2784 for (i = 0; i < oldndevs + ndevs; i++) 2785 nvlist_free(newdevs[i]); 2786 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2787 } else { 2788 /* 2789 * Generate a new dev list. 2790 */ 2791 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2792 KM_SLEEP) == 0); 2793 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2794 devs, ndevs) == 0); 2795 } 2796 } 2797 2798 /* 2799 * Stop and drop level 2 ARC devices 2800 */ 2801 void 2802 spa_l2cache_drop(spa_t *spa) 2803 { 2804 vdev_t *vd; 2805 int i; 2806 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2807 2808 for (i = 0; i < sav->sav_count; i++) { 2809 uint64_t pool; 2810 2811 vd = sav->sav_vdevs[i]; 2812 ASSERT(vd != NULL); 2813 2814 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2815 pool != 0ULL && l2arc_vdev_present(vd)) 2816 l2arc_remove_vdev(vd); 2817 if (vd->vdev_isl2cache) 2818 spa_l2cache_remove(vd); 2819 vdev_clear_stats(vd); 2820 (void) vdev_close(vd); 2821 } 2822 } 2823 2824 /* 2825 * Pool Creation 2826 */ 2827 int 2828 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2829 const char *history_str, nvlist_t *zplprops) 2830 { 2831 spa_t *spa; 2832 char *altroot = NULL; 2833 vdev_t *rvd; 2834 dsl_pool_t *dp; 2835 dmu_tx_t *tx; 2836 int error = 0; 2837 uint64_t txg = TXG_INITIAL; 2838 nvlist_t **spares, **l2cache; 2839 uint_t nspares, nl2cache; 2840 uint64_t version, obj; 2841 2842 /* 2843 * If this pool already exists, return failure. 2844 */ 2845 mutex_enter(&spa_namespace_lock); 2846 if (spa_lookup(pool) != NULL) { 2847 mutex_exit(&spa_namespace_lock); 2848 return (EEXIST); 2849 } 2850 2851 /* 2852 * Allocate a new spa_t structure. 2853 */ 2854 (void) nvlist_lookup_string(props, 2855 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2856 spa = spa_add(pool, NULL, altroot); 2857 spa_activate(spa, spa_mode_global); 2858 2859 if (props && (error = spa_prop_validate(spa, props))) { 2860 spa_deactivate(spa); 2861 spa_remove(spa); 2862 mutex_exit(&spa_namespace_lock); 2863 return (error); 2864 } 2865 2866 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2867 &version) != 0) 2868 version = SPA_VERSION; 2869 ASSERT(version <= SPA_VERSION); 2870 2871 spa->spa_first_txg = txg; 2872 spa->spa_uberblock.ub_txg = txg - 1; 2873 spa->spa_uberblock.ub_version = version; 2874 spa->spa_ubsync = spa->spa_uberblock; 2875 2876 /* 2877 * Create "The Godfather" zio to hold all async IOs 2878 */ 2879 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2880 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2881 2882 /* 2883 * Create the root vdev. 2884 */ 2885 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2886 2887 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2888 2889 ASSERT(error != 0 || rvd != NULL); 2890 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2891 2892 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2893 error = EINVAL; 2894 2895 if (error == 0 && 2896 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2897 (error = spa_validate_aux(spa, nvroot, txg, 2898 VDEV_ALLOC_ADD)) == 0) { 2899 for (int c = 0; c < rvd->vdev_children; c++) { 2900 vdev_metaslab_set_size(rvd->vdev_child[c]); 2901 vdev_expand(rvd->vdev_child[c], txg); 2902 } 2903 } 2904 2905 spa_config_exit(spa, SCL_ALL, FTAG); 2906 2907 if (error != 0) { 2908 spa_unload(spa); 2909 spa_deactivate(spa); 2910 spa_remove(spa); 2911 mutex_exit(&spa_namespace_lock); 2912 return (error); 2913 } 2914 2915 /* 2916 * Get the list of spares, if specified. 2917 */ 2918 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2919 &spares, &nspares) == 0) { 2920 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2921 KM_SLEEP) == 0); 2922 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2923 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2924 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2925 spa_load_spares(spa); 2926 spa_config_exit(spa, SCL_ALL, FTAG); 2927 spa->spa_spares.sav_sync = B_TRUE; 2928 } 2929 2930 /* 2931 * Get the list of level 2 cache devices, if specified. 2932 */ 2933 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2934 &l2cache, &nl2cache) == 0) { 2935 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2936 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2937 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2938 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2939 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2940 spa_load_l2cache(spa); 2941 spa_config_exit(spa, SCL_ALL, FTAG); 2942 spa->spa_l2cache.sav_sync = B_TRUE; 2943 } 2944 2945 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2946 spa->spa_meta_objset = dp->dp_meta_objset; 2947 2948 /* 2949 * Create DDTs (dedup tables). 2950 */ 2951 ddt_create(spa); 2952 2953 spa_update_dspace(spa); 2954 2955 tx = dmu_tx_create_assigned(dp, txg); 2956 2957 /* 2958 * Create the pool config object. 2959 */ 2960 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2961 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2962 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2963 2964 if (zap_add(spa->spa_meta_objset, 2965 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2966 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2967 cmn_err(CE_PANIC, "failed to add pool config"); 2968 } 2969 2970 if (zap_add(spa->spa_meta_objset, 2971 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 2972 sizeof (uint64_t), 1, &version, tx) != 0) { 2973 cmn_err(CE_PANIC, "failed to add pool version"); 2974 } 2975 2976 /* Newly created pools with the right version are always deflated. */ 2977 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2978 spa->spa_deflate = TRUE; 2979 if (zap_add(spa->spa_meta_objset, 2980 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2981 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2982 cmn_err(CE_PANIC, "failed to add deflate"); 2983 } 2984 } 2985 2986 /* 2987 * Create the deferred-free bpobj. Turn off compression 2988 * because sync-to-convergence takes longer if the blocksize 2989 * keeps changing. 2990 */ 2991 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 2992 dmu_object_set_compress(spa->spa_meta_objset, obj, 2993 ZIO_COMPRESS_OFF, tx); 2994 if (zap_add(spa->spa_meta_objset, 2995 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 2996 sizeof (uint64_t), 1, &obj, tx) != 0) { 2997 cmn_err(CE_PANIC, "failed to add bpobj"); 2998 } 2999 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3000 spa->spa_meta_objset, obj)); 3001 3002 /* 3003 * Create the pool's history object. 3004 */ 3005 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3006 spa_history_create_obj(spa, tx); 3007 3008 /* 3009 * Set pool properties. 3010 */ 3011 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3012 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3013 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3014 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3015 3016 if (props != NULL) { 3017 spa_configfile_set(spa, props, B_FALSE); 3018 spa_sync_props(spa, props, tx); 3019 } 3020 3021 dmu_tx_commit(tx); 3022 3023 spa->spa_sync_on = B_TRUE; 3024 txg_sync_start(spa->spa_dsl_pool); 3025 3026 /* 3027 * We explicitly wait for the first transaction to complete so that our 3028 * bean counters are appropriately updated. 3029 */ 3030 txg_wait_synced(spa->spa_dsl_pool, txg); 3031 3032 spa_config_sync(spa, B_FALSE, B_TRUE); 3033 3034 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 3035 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 3036 spa_history_log_version(spa, LOG_POOL_CREATE); 3037 3038 spa->spa_minref = refcount_count(&spa->spa_refcount); 3039 3040 mutex_exit(&spa_namespace_lock); 3041 3042 return (0); 3043 } 3044 3045 #ifdef _KERNEL 3046 /* 3047 * Get the root pool information from the root disk, then import the root pool 3048 * during the system boot up time. 3049 */ 3050 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3051 3052 static nvlist_t * 3053 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3054 { 3055 nvlist_t *config; 3056 nvlist_t *nvtop, *nvroot; 3057 uint64_t pgid; 3058 3059 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3060 return (NULL); 3061 3062 /* 3063 * Add this top-level vdev to the child array. 3064 */ 3065 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3066 &nvtop) == 0); 3067 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3068 &pgid) == 0); 3069 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3070 3071 /* 3072 * Put this pool's top-level vdevs into a root vdev. 3073 */ 3074 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3075 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3076 VDEV_TYPE_ROOT) == 0); 3077 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3078 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3079 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3080 &nvtop, 1) == 0); 3081 3082 /* 3083 * Replace the existing vdev_tree with the new root vdev in 3084 * this pool's configuration (remove the old, add the new). 3085 */ 3086 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3087 nvlist_free(nvroot); 3088 return (config); 3089 } 3090 3091 /* 3092 * Walk the vdev tree and see if we can find a device with "better" 3093 * configuration. A configuration is "better" if the label on that 3094 * device has a more recent txg. 3095 */ 3096 static void 3097 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3098 { 3099 for (int c = 0; c < vd->vdev_children; c++) 3100 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3101 3102 if (vd->vdev_ops->vdev_op_leaf) { 3103 nvlist_t *label; 3104 uint64_t label_txg; 3105 3106 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3107 &label) != 0) 3108 return; 3109 3110 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3111 &label_txg) == 0); 3112 3113 /* 3114 * Do we have a better boot device? 3115 */ 3116 if (label_txg > *txg) { 3117 *txg = label_txg; 3118 *avd = vd; 3119 } 3120 nvlist_free(label); 3121 } 3122 } 3123 3124 /* 3125 * Import a root pool. 3126 * 3127 * For x86. devpath_list will consist of devid and/or physpath name of 3128 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3129 * The GRUB "findroot" command will return the vdev we should boot. 3130 * 3131 * For Sparc, devpath_list consists the physpath name of the booting device 3132 * no matter the rootpool is a single device pool or a mirrored pool. 3133 * e.g. 3134 * "/pci@1f,0/ide@d/disk@0,0:a" 3135 */ 3136 int 3137 spa_import_rootpool(char *devpath, char *devid) 3138 { 3139 spa_t *spa; 3140 vdev_t *rvd, *bvd, *avd = NULL; 3141 nvlist_t *config, *nvtop; 3142 uint64_t guid, txg; 3143 char *pname; 3144 int error; 3145 3146 /* 3147 * Read the label from the boot device and generate a configuration. 3148 */ 3149 config = spa_generate_rootconf(devpath, devid, &guid); 3150 #if defined(_OBP) && defined(_KERNEL) 3151 if (config == NULL) { 3152 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3153 /* iscsi boot */ 3154 get_iscsi_bootpath_phy(devpath); 3155 config = spa_generate_rootconf(devpath, devid, &guid); 3156 } 3157 } 3158 #endif 3159 if (config == NULL) { 3160 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3161 devpath); 3162 return (EIO); 3163 } 3164 3165 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3166 &pname) == 0); 3167 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3168 3169 mutex_enter(&spa_namespace_lock); 3170 if ((spa = spa_lookup(pname)) != NULL) { 3171 /* 3172 * Remove the existing root pool from the namespace so that we 3173 * can replace it with the correct config we just read in. 3174 */ 3175 spa_remove(spa); 3176 } 3177 3178 spa = spa_add(pname, config, NULL); 3179 spa->spa_is_root = B_TRUE; 3180 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3181 3182 /* 3183 * Build up a vdev tree based on the boot device's label config. 3184 */ 3185 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3186 &nvtop) == 0); 3187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3188 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3189 VDEV_ALLOC_ROOTPOOL); 3190 spa_config_exit(spa, SCL_ALL, FTAG); 3191 if (error) { 3192 mutex_exit(&spa_namespace_lock); 3193 nvlist_free(config); 3194 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3195 pname); 3196 return (error); 3197 } 3198 3199 /* 3200 * Get the boot vdev. 3201 */ 3202 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3203 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3204 (u_longlong_t)guid); 3205 error = ENOENT; 3206 goto out; 3207 } 3208 3209 /* 3210 * Determine if there is a better boot device. 3211 */ 3212 avd = bvd; 3213 spa_alt_rootvdev(rvd, &avd, &txg); 3214 if (avd != bvd) { 3215 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3216 "try booting from '%s'", avd->vdev_path); 3217 error = EINVAL; 3218 goto out; 3219 } 3220 3221 /* 3222 * If the boot device is part of a spare vdev then ensure that 3223 * we're booting off the active spare. 3224 */ 3225 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3226 !bvd->vdev_isspare) { 3227 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3228 "try booting from '%s'", 3229 bvd->vdev_parent->vdev_child[1]->vdev_path); 3230 error = EINVAL; 3231 goto out; 3232 } 3233 3234 error = 0; 3235 spa_history_log_version(spa, LOG_POOL_IMPORT); 3236 out: 3237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3238 vdev_free(rvd); 3239 spa_config_exit(spa, SCL_ALL, FTAG); 3240 mutex_exit(&spa_namespace_lock); 3241 3242 nvlist_free(config); 3243 return (error); 3244 } 3245 3246 #endif 3247 3248 /* 3249 * Import a non-root pool into the system. 3250 */ 3251 int 3252 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3253 { 3254 spa_t *spa; 3255 char *altroot = NULL; 3256 spa_load_state_t state = SPA_LOAD_IMPORT; 3257 zpool_rewind_policy_t policy; 3258 int error; 3259 nvlist_t *nvroot; 3260 nvlist_t **spares, **l2cache; 3261 uint_t nspares, nl2cache; 3262 3263 /* 3264 * If a pool with this name exists, return failure. 3265 */ 3266 mutex_enter(&spa_namespace_lock); 3267 if (spa_lookup(pool) != NULL) { 3268 mutex_exit(&spa_namespace_lock); 3269 return (EEXIST); 3270 } 3271 3272 /* 3273 * Create and initialize the spa structure. 3274 */ 3275 (void) nvlist_lookup_string(props, 3276 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3277 spa = spa_add(pool, config, altroot); 3278 spa->spa_import_flags = flags; 3279 3280 /* 3281 * Verbatim import - Take a pool and insert it into the namespace 3282 * as if it had been loaded at boot. 3283 */ 3284 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3285 if (props != NULL) 3286 spa_configfile_set(spa, props, B_FALSE); 3287 3288 spa_config_sync(spa, B_FALSE, B_TRUE); 3289 3290 mutex_exit(&spa_namespace_lock); 3291 spa_history_log_version(spa, LOG_POOL_IMPORT); 3292 3293 return (0); 3294 } 3295 3296 spa_activate(spa, spa_mode_global); 3297 3298 /* 3299 * Don't start async tasks until we know everything is healthy. 3300 */ 3301 spa_async_suspend(spa); 3302 3303 zpool_get_rewind_policy(config, &policy); 3304 if (policy.zrp_request & ZPOOL_DO_REWIND) 3305 state = SPA_LOAD_RECOVER; 3306 3307 /* 3308 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3309 * because the user-supplied config is actually the one to trust when 3310 * doing an import. 3311 */ 3312 if (state != SPA_LOAD_RECOVER) 3313 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3314 3315 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3316 policy.zrp_request); 3317 3318 /* 3319 * Propagate anything learned while loading the pool and pass it 3320 * back to caller (i.e. rewind info, missing devices, etc). 3321 */ 3322 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3323 spa->spa_load_info) == 0); 3324 3325 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3326 /* 3327 * Toss any existing sparelist, as it doesn't have any validity 3328 * anymore, and conflicts with spa_has_spare(). 3329 */ 3330 if (spa->spa_spares.sav_config) { 3331 nvlist_free(spa->spa_spares.sav_config); 3332 spa->spa_spares.sav_config = NULL; 3333 spa_load_spares(spa); 3334 } 3335 if (spa->spa_l2cache.sav_config) { 3336 nvlist_free(spa->spa_l2cache.sav_config); 3337 spa->spa_l2cache.sav_config = NULL; 3338 spa_load_l2cache(spa); 3339 } 3340 3341 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3342 &nvroot) == 0); 3343 if (error == 0) 3344 error = spa_validate_aux(spa, nvroot, -1ULL, 3345 VDEV_ALLOC_SPARE); 3346 if (error == 0) 3347 error = spa_validate_aux(spa, nvroot, -1ULL, 3348 VDEV_ALLOC_L2CACHE); 3349 spa_config_exit(spa, SCL_ALL, FTAG); 3350 3351 if (props != NULL) 3352 spa_configfile_set(spa, props, B_FALSE); 3353 3354 if (error != 0 || (props && spa_writeable(spa) && 3355 (error = spa_prop_set(spa, props)))) { 3356 spa_unload(spa); 3357 spa_deactivate(spa); 3358 spa_remove(spa); 3359 mutex_exit(&spa_namespace_lock); 3360 return (error); 3361 } 3362 3363 spa_async_resume(spa); 3364 3365 /* 3366 * Override any spares and level 2 cache devices as specified by 3367 * the user, as these may have correct device names/devids, etc. 3368 */ 3369 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3370 &spares, &nspares) == 0) { 3371 if (spa->spa_spares.sav_config) 3372 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3373 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3374 else 3375 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3376 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3377 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3378 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3379 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3380 spa_load_spares(spa); 3381 spa_config_exit(spa, SCL_ALL, FTAG); 3382 spa->spa_spares.sav_sync = B_TRUE; 3383 } 3384 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3385 &l2cache, &nl2cache) == 0) { 3386 if (spa->spa_l2cache.sav_config) 3387 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3388 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3389 else 3390 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3391 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3392 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3393 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3394 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3395 spa_load_l2cache(spa); 3396 spa_config_exit(spa, SCL_ALL, FTAG); 3397 spa->spa_l2cache.sav_sync = B_TRUE; 3398 } 3399 3400 /* 3401 * Check for any removed devices. 3402 */ 3403 if (spa->spa_autoreplace) { 3404 spa_aux_check_removed(&spa->spa_spares); 3405 spa_aux_check_removed(&spa->spa_l2cache); 3406 } 3407 3408 if (spa_writeable(spa)) { 3409 /* 3410 * Update the config cache to include the newly-imported pool. 3411 */ 3412 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3413 } 3414 3415 /* 3416 * It's possible that the pool was expanded while it was exported. 3417 * We kick off an async task to handle this for us. 3418 */ 3419 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3420 3421 mutex_exit(&spa_namespace_lock); 3422 spa_history_log_version(spa, LOG_POOL_IMPORT); 3423 3424 return (0); 3425 } 3426 3427 nvlist_t * 3428 spa_tryimport(nvlist_t *tryconfig) 3429 { 3430 nvlist_t *config = NULL; 3431 char *poolname; 3432 spa_t *spa; 3433 uint64_t state; 3434 int error; 3435 3436 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3437 return (NULL); 3438 3439 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3440 return (NULL); 3441 3442 /* 3443 * Create and initialize the spa structure. 3444 */ 3445 mutex_enter(&spa_namespace_lock); 3446 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3447 spa_activate(spa, FREAD); 3448 3449 /* 3450 * Pass off the heavy lifting to spa_load(). 3451 * Pass TRUE for mosconfig because the user-supplied config 3452 * is actually the one to trust when doing an import. 3453 */ 3454 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3455 3456 /* 3457 * If 'tryconfig' was at least parsable, return the current config. 3458 */ 3459 if (spa->spa_root_vdev != NULL) { 3460 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3461 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3462 poolname) == 0); 3463 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3464 state) == 0); 3465 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3466 spa->spa_uberblock.ub_timestamp) == 0); 3467 3468 /* 3469 * If the bootfs property exists on this pool then we 3470 * copy it out so that external consumers can tell which 3471 * pools are bootable. 3472 */ 3473 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3474 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3475 3476 /* 3477 * We have to play games with the name since the 3478 * pool was opened as TRYIMPORT_NAME. 3479 */ 3480 if (dsl_dsobj_to_dsname(spa_name(spa), 3481 spa->spa_bootfs, tmpname) == 0) { 3482 char *cp; 3483 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3484 3485 cp = strchr(tmpname, '/'); 3486 if (cp == NULL) { 3487 (void) strlcpy(dsname, tmpname, 3488 MAXPATHLEN); 3489 } else { 3490 (void) snprintf(dsname, MAXPATHLEN, 3491 "%s/%s", poolname, ++cp); 3492 } 3493 VERIFY(nvlist_add_string(config, 3494 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3495 kmem_free(dsname, MAXPATHLEN); 3496 } 3497 kmem_free(tmpname, MAXPATHLEN); 3498 } 3499 3500 /* 3501 * Add the list of hot spares and level 2 cache devices. 3502 */ 3503 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3504 spa_add_spares(spa, config); 3505 spa_add_l2cache(spa, config); 3506 spa_config_exit(spa, SCL_CONFIG, FTAG); 3507 } 3508 3509 spa_unload(spa); 3510 spa_deactivate(spa); 3511 spa_remove(spa); 3512 mutex_exit(&spa_namespace_lock); 3513 3514 return (config); 3515 } 3516 3517 /* 3518 * Pool export/destroy 3519 * 3520 * The act of destroying or exporting a pool is very simple. We make sure there 3521 * is no more pending I/O and any references to the pool are gone. Then, we 3522 * update the pool state and sync all the labels to disk, removing the 3523 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3524 * we don't sync the labels or remove the configuration cache. 3525 */ 3526 static int 3527 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3528 boolean_t force, boolean_t hardforce) 3529 { 3530 spa_t *spa; 3531 3532 if (oldconfig) 3533 *oldconfig = NULL; 3534 3535 if (!(spa_mode_global & FWRITE)) 3536 return (EROFS); 3537 3538 mutex_enter(&spa_namespace_lock); 3539 if ((spa = spa_lookup(pool)) == NULL) { 3540 mutex_exit(&spa_namespace_lock); 3541 return (ENOENT); 3542 } 3543 3544 /* 3545 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3546 * reacquire the namespace lock, and see if we can export. 3547 */ 3548 spa_open_ref(spa, FTAG); 3549 mutex_exit(&spa_namespace_lock); 3550 spa_async_suspend(spa); 3551 mutex_enter(&spa_namespace_lock); 3552 spa_close(spa, FTAG); 3553 3554 /* 3555 * The pool will be in core if it's openable, 3556 * in which case we can modify its state. 3557 */ 3558 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3559 /* 3560 * Objsets may be open only because they're dirty, so we 3561 * have to force it to sync before checking spa_refcnt. 3562 */ 3563 txg_wait_synced(spa->spa_dsl_pool, 0); 3564 3565 /* 3566 * A pool cannot be exported or destroyed if there are active 3567 * references. If we are resetting a pool, allow references by 3568 * fault injection handlers. 3569 */ 3570 if (!spa_refcount_zero(spa) || 3571 (spa->spa_inject_ref != 0 && 3572 new_state != POOL_STATE_UNINITIALIZED)) { 3573 spa_async_resume(spa); 3574 mutex_exit(&spa_namespace_lock); 3575 return (EBUSY); 3576 } 3577 3578 /* 3579 * A pool cannot be exported if it has an active shared spare. 3580 * This is to prevent other pools stealing the active spare 3581 * from an exported pool. At user's own will, such pool can 3582 * be forcedly exported. 3583 */ 3584 if (!force && new_state == POOL_STATE_EXPORTED && 3585 spa_has_active_shared_spare(spa)) { 3586 spa_async_resume(spa); 3587 mutex_exit(&spa_namespace_lock); 3588 return (EXDEV); 3589 } 3590 3591 /* 3592 * We want this to be reflected on every label, 3593 * so mark them all dirty. spa_unload() will do the 3594 * final sync that pushes these changes out. 3595 */ 3596 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3597 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3598 spa->spa_state = new_state; 3599 spa->spa_final_txg = spa_last_synced_txg(spa) + 3600 TXG_DEFER_SIZE + 1; 3601 vdev_config_dirty(spa->spa_root_vdev); 3602 spa_config_exit(spa, SCL_ALL, FTAG); 3603 } 3604 } 3605 3606 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3607 3608 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3609 spa_unload(spa); 3610 spa_deactivate(spa); 3611 } 3612 3613 if (oldconfig && spa->spa_config) 3614 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3615 3616 if (new_state != POOL_STATE_UNINITIALIZED) { 3617 if (!hardforce) 3618 spa_config_sync(spa, B_TRUE, B_TRUE); 3619 spa_remove(spa); 3620 } 3621 mutex_exit(&spa_namespace_lock); 3622 3623 return (0); 3624 } 3625 3626 /* 3627 * Destroy a storage pool. 3628 */ 3629 int 3630 spa_destroy(char *pool) 3631 { 3632 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3633 B_FALSE, B_FALSE)); 3634 } 3635 3636 /* 3637 * Export a storage pool. 3638 */ 3639 int 3640 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3641 boolean_t hardforce) 3642 { 3643 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3644 force, hardforce)); 3645 } 3646 3647 /* 3648 * Similar to spa_export(), this unloads the spa_t without actually removing it 3649 * from the namespace in any way. 3650 */ 3651 int 3652 spa_reset(char *pool) 3653 { 3654 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3655 B_FALSE, B_FALSE)); 3656 } 3657 3658 /* 3659 * ========================================================================== 3660 * Device manipulation 3661 * ========================================================================== 3662 */ 3663 3664 /* 3665 * Add a device to a storage pool. 3666 */ 3667 int 3668 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3669 { 3670 uint64_t txg, id; 3671 int error; 3672 vdev_t *rvd = spa->spa_root_vdev; 3673 vdev_t *vd, *tvd; 3674 nvlist_t **spares, **l2cache; 3675 uint_t nspares, nl2cache; 3676 3677 txg = spa_vdev_enter(spa); 3678 3679 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3680 VDEV_ALLOC_ADD)) != 0) 3681 return (spa_vdev_exit(spa, NULL, txg, error)); 3682 3683 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3684 3685 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3686 &nspares) != 0) 3687 nspares = 0; 3688 3689 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3690 &nl2cache) != 0) 3691 nl2cache = 0; 3692 3693 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3694 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3695 3696 if (vd->vdev_children != 0 && 3697 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3698 return (spa_vdev_exit(spa, vd, txg, error)); 3699 3700 /* 3701 * We must validate the spares and l2cache devices after checking the 3702 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3703 */ 3704 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3705 return (spa_vdev_exit(spa, vd, txg, error)); 3706 3707 /* 3708 * Transfer each new top-level vdev from vd to rvd. 3709 */ 3710 for (int c = 0; c < vd->vdev_children; c++) { 3711 3712 /* 3713 * Set the vdev id to the first hole, if one exists. 3714 */ 3715 for (id = 0; id < rvd->vdev_children; id++) { 3716 if (rvd->vdev_child[id]->vdev_ishole) { 3717 vdev_free(rvd->vdev_child[id]); 3718 break; 3719 } 3720 } 3721 tvd = vd->vdev_child[c]; 3722 vdev_remove_child(vd, tvd); 3723 tvd->vdev_id = id; 3724 vdev_add_child(rvd, tvd); 3725 vdev_config_dirty(tvd); 3726 } 3727 3728 if (nspares != 0) { 3729 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3730 ZPOOL_CONFIG_SPARES); 3731 spa_load_spares(spa); 3732 spa->spa_spares.sav_sync = B_TRUE; 3733 } 3734 3735 if (nl2cache != 0) { 3736 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3737 ZPOOL_CONFIG_L2CACHE); 3738 spa_load_l2cache(spa); 3739 spa->spa_l2cache.sav_sync = B_TRUE; 3740 } 3741 3742 /* 3743 * We have to be careful when adding new vdevs to an existing pool. 3744 * If other threads start allocating from these vdevs before we 3745 * sync the config cache, and we lose power, then upon reboot we may 3746 * fail to open the pool because there are DVAs that the config cache 3747 * can't translate. Therefore, we first add the vdevs without 3748 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3749 * and then let spa_config_update() initialize the new metaslabs. 3750 * 3751 * spa_load() checks for added-but-not-initialized vdevs, so that 3752 * if we lose power at any point in this sequence, the remaining 3753 * steps will be completed the next time we load the pool. 3754 */ 3755 (void) spa_vdev_exit(spa, vd, txg, 0); 3756 3757 mutex_enter(&spa_namespace_lock); 3758 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3759 mutex_exit(&spa_namespace_lock); 3760 3761 return (0); 3762 } 3763 3764 /* 3765 * Attach a device to a mirror. The arguments are the path to any device 3766 * in the mirror, and the nvroot for the new device. If the path specifies 3767 * a device that is not mirrored, we automatically insert the mirror vdev. 3768 * 3769 * If 'replacing' is specified, the new device is intended to replace the 3770 * existing device; in this case the two devices are made into their own 3771 * mirror using the 'replacing' vdev, which is functionally identical to 3772 * the mirror vdev (it actually reuses all the same ops) but has a few 3773 * extra rules: you can't attach to it after it's been created, and upon 3774 * completion of resilvering, the first disk (the one being replaced) 3775 * is automatically detached. 3776 */ 3777 int 3778 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3779 { 3780 uint64_t txg, dtl_max_txg; 3781 vdev_t *rvd = spa->spa_root_vdev; 3782 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3783 vdev_ops_t *pvops; 3784 char *oldvdpath, *newvdpath; 3785 int newvd_isspare; 3786 int error; 3787 3788 txg = spa_vdev_enter(spa); 3789 3790 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3791 3792 if (oldvd == NULL) 3793 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3794 3795 if (!oldvd->vdev_ops->vdev_op_leaf) 3796 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3797 3798 pvd = oldvd->vdev_parent; 3799 3800 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3801 VDEV_ALLOC_ADD)) != 0) 3802 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3803 3804 if (newrootvd->vdev_children != 1) 3805 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3806 3807 newvd = newrootvd->vdev_child[0]; 3808 3809 if (!newvd->vdev_ops->vdev_op_leaf) 3810 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3811 3812 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3813 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3814 3815 /* 3816 * Spares can't replace logs 3817 */ 3818 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3819 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3820 3821 if (!replacing) { 3822 /* 3823 * For attach, the only allowable parent is a mirror or the root 3824 * vdev. 3825 */ 3826 if (pvd->vdev_ops != &vdev_mirror_ops && 3827 pvd->vdev_ops != &vdev_root_ops) 3828 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3829 3830 pvops = &vdev_mirror_ops; 3831 } else { 3832 /* 3833 * Active hot spares can only be replaced by inactive hot 3834 * spares. 3835 */ 3836 if (pvd->vdev_ops == &vdev_spare_ops && 3837 pvd->vdev_child[1] == oldvd && 3838 !spa_has_spare(spa, newvd->vdev_guid)) 3839 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3840 3841 /* 3842 * If the source is a hot spare, and the parent isn't already a 3843 * spare, then we want to create a new hot spare. Otherwise, we 3844 * want to create a replacing vdev. The user is not allowed to 3845 * attach to a spared vdev child unless the 'isspare' state is 3846 * the same (spare replaces spare, non-spare replaces 3847 * non-spare). 3848 */ 3849 if (pvd->vdev_ops == &vdev_replacing_ops) 3850 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3851 else if (pvd->vdev_ops == &vdev_spare_ops && 3852 newvd->vdev_isspare != oldvd->vdev_isspare) 3853 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3854 else if (pvd->vdev_ops != &vdev_spare_ops && 3855 newvd->vdev_isspare) 3856 pvops = &vdev_spare_ops; 3857 else 3858 pvops = &vdev_replacing_ops; 3859 } 3860 3861 /* 3862 * Make sure the new device is big enough. 3863 */ 3864 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3865 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3866 3867 /* 3868 * The new device cannot have a higher alignment requirement 3869 * than the top-level vdev. 3870 */ 3871 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3872 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3873 3874 /* 3875 * If this is an in-place replacement, update oldvd's path and devid 3876 * to make it distinguishable from newvd, and unopenable from now on. 3877 */ 3878 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3879 spa_strfree(oldvd->vdev_path); 3880 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3881 KM_SLEEP); 3882 (void) sprintf(oldvd->vdev_path, "%s/%s", 3883 newvd->vdev_path, "old"); 3884 if (oldvd->vdev_devid != NULL) { 3885 spa_strfree(oldvd->vdev_devid); 3886 oldvd->vdev_devid = NULL; 3887 } 3888 } 3889 3890 /* 3891 * If the parent is not a mirror, or if we're replacing, insert the new 3892 * mirror/replacing/spare vdev above oldvd. 3893 */ 3894 if (pvd->vdev_ops != pvops) 3895 pvd = vdev_add_parent(oldvd, pvops); 3896 3897 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3898 ASSERT(pvd->vdev_ops == pvops); 3899 ASSERT(oldvd->vdev_parent == pvd); 3900 3901 /* 3902 * Extract the new device from its root and add it to pvd. 3903 */ 3904 vdev_remove_child(newrootvd, newvd); 3905 newvd->vdev_id = pvd->vdev_children; 3906 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3907 vdev_add_child(pvd, newvd); 3908 3909 tvd = newvd->vdev_top; 3910 ASSERT(pvd->vdev_top == tvd); 3911 ASSERT(tvd->vdev_parent == rvd); 3912 3913 vdev_config_dirty(tvd); 3914 3915 /* 3916 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 3917 * for any dmu_sync-ed blocks. It will propagate upward when 3918 * spa_vdev_exit() calls vdev_dtl_reassess(). 3919 */ 3920 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 3921 3922 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 3923 dtl_max_txg - TXG_INITIAL); 3924 3925 if (newvd->vdev_isspare) { 3926 spa_spare_activate(newvd); 3927 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3928 } 3929 3930 oldvdpath = spa_strdup(oldvd->vdev_path); 3931 newvdpath = spa_strdup(newvd->vdev_path); 3932 newvd_isspare = newvd->vdev_isspare; 3933 3934 /* 3935 * Mark newvd's DTL dirty in this txg. 3936 */ 3937 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3938 3939 /* 3940 * Restart the resilver 3941 */ 3942 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 3943 3944 /* 3945 * Commit the config 3946 */ 3947 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 3948 3949 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 3950 "%s vdev=%s %s vdev=%s", 3951 replacing && newvd_isspare ? "spare in" : 3952 replacing ? "replace" : "attach", newvdpath, 3953 replacing ? "for" : "to", oldvdpath); 3954 3955 spa_strfree(oldvdpath); 3956 spa_strfree(newvdpath); 3957 3958 if (spa->spa_bootfs) 3959 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 3960 3961 return (0); 3962 } 3963 3964 /* 3965 * Detach a device from a mirror or replacing vdev. 3966 * If 'replace_done' is specified, only detach if the parent 3967 * is a replacing vdev. 3968 */ 3969 int 3970 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3971 { 3972 uint64_t txg; 3973 int error; 3974 vdev_t *rvd = spa->spa_root_vdev; 3975 vdev_t *vd, *pvd, *cvd, *tvd; 3976 boolean_t unspare = B_FALSE; 3977 uint64_t unspare_guid; 3978 size_t len; 3979 char *vdpath; 3980 3981 txg = spa_vdev_enter(spa); 3982 3983 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3984 3985 if (vd == NULL) 3986 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3987 3988 if (!vd->vdev_ops->vdev_op_leaf) 3989 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3990 3991 pvd = vd->vdev_parent; 3992 3993 /* 3994 * If the parent/child relationship is not as expected, don't do it. 3995 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3996 * vdev that's replacing B with C. The user's intent in replacing 3997 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3998 * the replace by detaching C, the expected behavior is to end up 3999 * M(A,B). But suppose that right after deciding to detach C, 4000 * the replacement of B completes. We would have M(A,C), and then 4001 * ask to detach C, which would leave us with just A -- not what 4002 * the user wanted. To prevent this, we make sure that the 4003 * parent/child relationship hasn't changed -- in this example, 4004 * that C's parent is still the replacing vdev R. 4005 */ 4006 if (pvd->vdev_guid != pguid && pguid != 0) 4007 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4008 4009 /* 4010 * If replace_done is specified, only remove this device if it's 4011 * the first child of a replacing vdev. For the 'spare' vdev, either 4012 * disk can be removed. 4013 */ 4014 if (replace_done) { 4015 if (pvd->vdev_ops == &vdev_replacing_ops) { 4016 if (vd->vdev_id != 0) 4017 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4018 } else if (pvd->vdev_ops != &vdev_spare_ops) { 4019 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4020 } 4021 } 4022 4023 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4024 spa_version(spa) >= SPA_VERSION_SPARES); 4025 4026 /* 4027 * Only mirror, replacing, and spare vdevs support detach. 4028 */ 4029 if (pvd->vdev_ops != &vdev_replacing_ops && 4030 pvd->vdev_ops != &vdev_mirror_ops && 4031 pvd->vdev_ops != &vdev_spare_ops) 4032 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4033 4034 /* 4035 * If this device has the only valid copy of some data, 4036 * we cannot safely detach it. 4037 */ 4038 if (vdev_dtl_required(vd)) 4039 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4040 4041 ASSERT(pvd->vdev_children >= 2); 4042 4043 /* 4044 * If we are detaching the second disk from a replacing vdev, then 4045 * check to see if we changed the original vdev's path to have "/old" 4046 * at the end in spa_vdev_attach(). If so, undo that change now. 4047 */ 4048 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 4049 pvd->vdev_child[0]->vdev_path != NULL && 4050 pvd->vdev_child[1]->vdev_path != NULL) { 4051 ASSERT(pvd->vdev_child[1] == vd); 4052 cvd = pvd->vdev_child[0]; 4053 len = strlen(vd->vdev_path); 4054 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4055 strcmp(cvd->vdev_path + len, "/old") == 0) { 4056 spa_strfree(cvd->vdev_path); 4057 cvd->vdev_path = spa_strdup(vd->vdev_path); 4058 } 4059 } 4060 4061 /* 4062 * If we are detaching the original disk from a spare, then it implies 4063 * that the spare should become a real disk, and be removed from the 4064 * active spare list for the pool. 4065 */ 4066 if (pvd->vdev_ops == &vdev_spare_ops && 4067 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 4068 unspare = B_TRUE; 4069 4070 /* 4071 * Erase the disk labels so the disk can be used for other things. 4072 * This must be done after all other error cases are handled, 4073 * but before we disembowel vd (so we can still do I/O to it). 4074 * But if we can't do it, don't treat the error as fatal -- 4075 * it may be that the unwritability of the disk is the reason 4076 * it's being detached! 4077 */ 4078 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4079 4080 /* 4081 * Remove vd from its parent and compact the parent's children. 4082 */ 4083 vdev_remove_child(pvd, vd); 4084 vdev_compact_children(pvd); 4085 4086 /* 4087 * Remember one of the remaining children so we can get tvd below. 4088 */ 4089 cvd = pvd->vdev_child[0]; 4090 4091 /* 4092 * If we need to remove the remaining child from the list of hot spares, 4093 * do it now, marking the vdev as no longer a spare in the process. 4094 * We must do this before vdev_remove_parent(), because that can 4095 * change the GUID if it creates a new toplevel GUID. For a similar 4096 * reason, we must remove the spare now, in the same txg as the detach; 4097 * otherwise someone could attach a new sibling, change the GUID, and 4098 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4099 */ 4100 if (unspare) { 4101 ASSERT(cvd->vdev_isspare); 4102 spa_spare_remove(cvd); 4103 unspare_guid = cvd->vdev_guid; 4104 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4105 } 4106 4107 /* 4108 * If the parent mirror/replacing vdev only has one child, 4109 * the parent is no longer needed. Remove it from the tree. 4110 */ 4111 if (pvd->vdev_children == 1) 4112 vdev_remove_parent(cvd); 4113 4114 /* 4115 * We don't set tvd until now because the parent we just removed 4116 * may have been the previous top-level vdev. 4117 */ 4118 tvd = cvd->vdev_top; 4119 ASSERT(tvd->vdev_parent == rvd); 4120 4121 /* 4122 * Reevaluate the parent vdev state. 4123 */ 4124 vdev_propagate_state(cvd); 4125 4126 /* 4127 * If the 'autoexpand' property is set on the pool then automatically 4128 * try to expand the size of the pool. For example if the device we 4129 * just detached was smaller than the others, it may be possible to 4130 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4131 * first so that we can obtain the updated sizes of the leaf vdevs. 4132 */ 4133 if (spa->spa_autoexpand) { 4134 vdev_reopen(tvd); 4135 vdev_expand(tvd, txg); 4136 } 4137 4138 vdev_config_dirty(tvd); 4139 4140 /* 4141 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4142 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4143 * But first make sure we're not on any *other* txg's DTL list, to 4144 * prevent vd from being accessed after it's freed. 4145 */ 4146 vdpath = spa_strdup(vd->vdev_path); 4147 for (int t = 0; t < TXG_SIZE; t++) 4148 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4149 vd->vdev_detached = B_TRUE; 4150 vdev_dirty(tvd, VDD_DTL, vd, txg); 4151 4152 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4153 4154 error = spa_vdev_exit(spa, vd, txg, 0); 4155 4156 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4157 "vdev=%s", vdpath); 4158 spa_strfree(vdpath); 4159 4160 /* 4161 * If this was the removal of the original device in a hot spare vdev, 4162 * then we want to go through and remove the device from the hot spare 4163 * list of every other pool. 4164 */ 4165 if (unspare) { 4166 spa_t *myspa = spa; 4167 spa = NULL; 4168 mutex_enter(&spa_namespace_lock); 4169 while ((spa = spa_next(spa)) != NULL) { 4170 if (spa->spa_state != POOL_STATE_ACTIVE) 4171 continue; 4172 if (spa == myspa) 4173 continue; 4174 spa_open_ref(spa, FTAG); 4175 mutex_exit(&spa_namespace_lock); 4176 (void) spa_vdev_remove(spa, unspare_guid, 4177 B_TRUE); 4178 mutex_enter(&spa_namespace_lock); 4179 spa_close(spa, FTAG); 4180 } 4181 mutex_exit(&spa_namespace_lock); 4182 } 4183 4184 return (error); 4185 } 4186 4187 /* 4188 * Split a set of devices from their mirrors, and create a new pool from them. 4189 */ 4190 int 4191 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4192 nvlist_t *props, boolean_t exp) 4193 { 4194 int error = 0; 4195 uint64_t txg, *glist; 4196 spa_t *newspa; 4197 uint_t c, children, lastlog; 4198 nvlist_t **child, *nvl, *tmp; 4199 dmu_tx_t *tx; 4200 char *altroot = NULL; 4201 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4202 boolean_t activate_slog; 4203 4204 if (!spa_writeable(spa)) 4205 return (EROFS); 4206 4207 txg = spa_vdev_enter(spa); 4208 4209 /* clear the log and flush everything up to now */ 4210 activate_slog = spa_passivate_log(spa); 4211 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4212 error = spa_offline_log(spa); 4213 txg = spa_vdev_config_enter(spa); 4214 4215 if (activate_slog) 4216 spa_activate_log(spa); 4217 4218 if (error != 0) 4219 return (spa_vdev_exit(spa, NULL, txg, error)); 4220 4221 /* check new spa name before going any further */ 4222 if (spa_lookup(newname) != NULL) 4223 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4224 4225 /* 4226 * scan through all the children to ensure they're all mirrors 4227 */ 4228 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4229 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4230 &children) != 0) 4231 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4232 4233 /* first, check to ensure we've got the right child count */ 4234 rvd = spa->spa_root_vdev; 4235 lastlog = 0; 4236 for (c = 0; c < rvd->vdev_children; c++) { 4237 vdev_t *vd = rvd->vdev_child[c]; 4238 4239 /* don't count the holes & logs as children */ 4240 if (vd->vdev_islog || vd->vdev_ishole) { 4241 if (lastlog == 0) 4242 lastlog = c; 4243 continue; 4244 } 4245 4246 lastlog = 0; 4247 } 4248 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4249 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4250 4251 /* next, ensure no spare or cache devices are part of the split */ 4252 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4253 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4254 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4255 4256 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4257 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4258 4259 /* then, loop over each vdev and validate it */ 4260 for (c = 0; c < children; c++) { 4261 uint64_t is_hole = 0; 4262 4263 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4264 &is_hole); 4265 4266 if (is_hole != 0) { 4267 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4268 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4269 continue; 4270 } else { 4271 error = EINVAL; 4272 break; 4273 } 4274 } 4275 4276 /* which disk is going to be split? */ 4277 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4278 &glist[c]) != 0) { 4279 error = EINVAL; 4280 break; 4281 } 4282 4283 /* look it up in the spa */ 4284 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4285 if (vml[c] == NULL) { 4286 error = ENODEV; 4287 break; 4288 } 4289 4290 /* make sure there's nothing stopping the split */ 4291 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4292 vml[c]->vdev_islog || 4293 vml[c]->vdev_ishole || 4294 vml[c]->vdev_isspare || 4295 vml[c]->vdev_isl2cache || 4296 !vdev_writeable(vml[c]) || 4297 vml[c]->vdev_children != 0 || 4298 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4299 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4300 error = EINVAL; 4301 break; 4302 } 4303 4304 if (vdev_dtl_required(vml[c])) { 4305 error = EBUSY; 4306 break; 4307 } 4308 4309 /* we need certain info from the top level */ 4310 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4311 vml[c]->vdev_top->vdev_ms_array) == 0); 4312 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4313 vml[c]->vdev_top->vdev_ms_shift) == 0); 4314 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4315 vml[c]->vdev_top->vdev_asize) == 0); 4316 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4317 vml[c]->vdev_top->vdev_ashift) == 0); 4318 } 4319 4320 if (error != 0) { 4321 kmem_free(vml, children * sizeof (vdev_t *)); 4322 kmem_free(glist, children * sizeof (uint64_t)); 4323 return (spa_vdev_exit(spa, NULL, txg, error)); 4324 } 4325 4326 /* stop writers from using the disks */ 4327 for (c = 0; c < children; c++) { 4328 if (vml[c] != NULL) 4329 vml[c]->vdev_offline = B_TRUE; 4330 } 4331 vdev_reopen(spa->spa_root_vdev); 4332 4333 /* 4334 * Temporarily record the splitting vdevs in the spa config. This 4335 * will disappear once the config is regenerated. 4336 */ 4337 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4338 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4339 glist, children) == 0); 4340 kmem_free(glist, children * sizeof (uint64_t)); 4341 4342 mutex_enter(&spa->spa_props_lock); 4343 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4344 nvl) == 0); 4345 mutex_exit(&spa->spa_props_lock); 4346 spa->spa_config_splitting = nvl; 4347 vdev_config_dirty(spa->spa_root_vdev); 4348 4349 /* configure and create the new pool */ 4350 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4351 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4352 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4353 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4354 spa_version(spa)) == 0); 4355 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4356 spa->spa_config_txg) == 0); 4357 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4358 spa_generate_guid(NULL)) == 0); 4359 (void) nvlist_lookup_string(props, 4360 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4361 4362 /* add the new pool to the namespace */ 4363 newspa = spa_add(newname, config, altroot); 4364 newspa->spa_config_txg = spa->spa_config_txg; 4365 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4366 4367 /* release the spa config lock, retaining the namespace lock */ 4368 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4369 4370 if (zio_injection_enabled) 4371 zio_handle_panic_injection(spa, FTAG, 1); 4372 4373 spa_activate(newspa, spa_mode_global); 4374 spa_async_suspend(newspa); 4375 4376 /* create the new pool from the disks of the original pool */ 4377 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4378 if (error) 4379 goto out; 4380 4381 /* if that worked, generate a real config for the new pool */ 4382 if (newspa->spa_root_vdev != NULL) { 4383 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4384 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4385 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4386 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4387 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4388 B_TRUE)); 4389 } 4390 4391 /* set the props */ 4392 if (props != NULL) { 4393 spa_configfile_set(newspa, props, B_FALSE); 4394 error = spa_prop_set(newspa, props); 4395 if (error) 4396 goto out; 4397 } 4398 4399 /* flush everything */ 4400 txg = spa_vdev_config_enter(newspa); 4401 vdev_config_dirty(newspa->spa_root_vdev); 4402 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4403 4404 if (zio_injection_enabled) 4405 zio_handle_panic_injection(spa, FTAG, 2); 4406 4407 spa_async_resume(newspa); 4408 4409 /* finally, update the original pool's config */ 4410 txg = spa_vdev_config_enter(spa); 4411 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4412 error = dmu_tx_assign(tx, TXG_WAIT); 4413 if (error != 0) 4414 dmu_tx_abort(tx); 4415 for (c = 0; c < children; c++) { 4416 if (vml[c] != NULL) { 4417 vdev_split(vml[c]); 4418 if (error == 0) 4419 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4420 spa, tx, "vdev=%s", 4421 vml[c]->vdev_path); 4422 vdev_free(vml[c]); 4423 } 4424 } 4425 vdev_config_dirty(spa->spa_root_vdev); 4426 spa->spa_config_splitting = NULL; 4427 nvlist_free(nvl); 4428 if (error == 0) 4429 dmu_tx_commit(tx); 4430 (void) spa_vdev_exit(spa, NULL, txg, 0); 4431 4432 if (zio_injection_enabled) 4433 zio_handle_panic_injection(spa, FTAG, 3); 4434 4435 /* split is complete; log a history record */ 4436 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4437 "split new pool %s from pool %s", newname, spa_name(spa)); 4438 4439 kmem_free(vml, children * sizeof (vdev_t *)); 4440 4441 /* if we're not going to mount the filesystems in userland, export */ 4442 if (exp) 4443 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4444 B_FALSE, B_FALSE); 4445 4446 return (error); 4447 4448 out: 4449 spa_unload(newspa); 4450 spa_deactivate(newspa); 4451 spa_remove(newspa); 4452 4453 txg = spa_vdev_config_enter(spa); 4454 4455 /* re-online all offlined disks */ 4456 for (c = 0; c < children; c++) { 4457 if (vml[c] != NULL) 4458 vml[c]->vdev_offline = B_FALSE; 4459 } 4460 vdev_reopen(spa->spa_root_vdev); 4461 4462 nvlist_free(spa->spa_config_splitting); 4463 spa->spa_config_splitting = NULL; 4464 (void) spa_vdev_exit(spa, NULL, txg, error); 4465 4466 kmem_free(vml, children * sizeof (vdev_t *)); 4467 return (error); 4468 } 4469 4470 static nvlist_t * 4471 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4472 { 4473 for (int i = 0; i < count; i++) { 4474 uint64_t guid; 4475 4476 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4477 &guid) == 0); 4478 4479 if (guid == target_guid) 4480 return (nvpp[i]); 4481 } 4482 4483 return (NULL); 4484 } 4485 4486 static void 4487 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4488 nvlist_t *dev_to_remove) 4489 { 4490 nvlist_t **newdev = NULL; 4491 4492 if (count > 1) 4493 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4494 4495 for (int i = 0, j = 0; i < count; i++) { 4496 if (dev[i] == dev_to_remove) 4497 continue; 4498 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4499 } 4500 4501 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4502 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4503 4504 for (int i = 0; i < count - 1; i++) 4505 nvlist_free(newdev[i]); 4506 4507 if (count > 1) 4508 kmem_free(newdev, (count - 1) * sizeof (void *)); 4509 } 4510 4511 /* 4512 * Evacuate the device. 4513 */ 4514 static int 4515 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4516 { 4517 uint64_t txg; 4518 int error = 0; 4519 4520 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4521 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4522 ASSERT(vd == vd->vdev_top); 4523 4524 /* 4525 * Evacuate the device. We don't hold the config lock as writer 4526 * since we need to do I/O but we do keep the 4527 * spa_namespace_lock held. Once this completes the device 4528 * should no longer have any blocks allocated on it. 4529 */ 4530 if (vd->vdev_islog) { 4531 if (vd->vdev_stat.vs_alloc != 0) 4532 error = spa_offline_log(spa); 4533 } else { 4534 error = ENOTSUP; 4535 } 4536 4537 if (error) 4538 return (error); 4539 4540 /* 4541 * The evacuation succeeded. Remove any remaining MOS metadata 4542 * associated with this vdev, and wait for these changes to sync. 4543 */ 4544 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4545 txg = spa_vdev_config_enter(spa); 4546 vd->vdev_removing = B_TRUE; 4547 vdev_dirty(vd, 0, NULL, txg); 4548 vdev_config_dirty(vd); 4549 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4550 4551 return (0); 4552 } 4553 4554 /* 4555 * Complete the removal by cleaning up the namespace. 4556 */ 4557 static void 4558 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4559 { 4560 vdev_t *rvd = spa->spa_root_vdev; 4561 uint64_t id = vd->vdev_id; 4562 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4563 4564 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4565 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4566 ASSERT(vd == vd->vdev_top); 4567 4568 /* 4569 * Only remove any devices which are empty. 4570 */ 4571 if (vd->vdev_stat.vs_alloc != 0) 4572 return; 4573 4574 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4575 4576 if (list_link_active(&vd->vdev_state_dirty_node)) 4577 vdev_state_clean(vd); 4578 if (list_link_active(&vd->vdev_config_dirty_node)) 4579 vdev_config_clean(vd); 4580 4581 vdev_free(vd); 4582 4583 if (last_vdev) { 4584 vdev_compact_children(rvd); 4585 } else { 4586 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4587 vdev_add_child(rvd, vd); 4588 } 4589 vdev_config_dirty(rvd); 4590 4591 /* 4592 * Reassess the health of our root vdev. 4593 */ 4594 vdev_reopen(rvd); 4595 } 4596 4597 /* 4598 * Remove a device from the pool - 4599 * 4600 * Removing a device from the vdev namespace requires several steps 4601 * and can take a significant amount of time. As a result we use 4602 * the spa_vdev_config_[enter/exit] functions which allow us to 4603 * grab and release the spa_config_lock while still holding the namespace 4604 * lock. During each step the configuration is synced out. 4605 */ 4606 4607 /* 4608 * Remove a device from the pool. Currently, this supports removing only hot 4609 * spares, slogs, and level 2 ARC devices. 4610 */ 4611 int 4612 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4613 { 4614 vdev_t *vd; 4615 metaslab_group_t *mg; 4616 nvlist_t **spares, **l2cache, *nv; 4617 uint64_t txg = 0; 4618 uint_t nspares, nl2cache; 4619 int error = 0; 4620 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4621 4622 if (!locked) 4623 txg = spa_vdev_enter(spa); 4624 4625 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4626 4627 if (spa->spa_spares.sav_vdevs != NULL && 4628 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4629 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4630 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4631 /* 4632 * Only remove the hot spare if it's not currently in use 4633 * in this pool. 4634 */ 4635 if (vd == NULL || unspare) { 4636 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4637 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4638 spa_load_spares(spa); 4639 spa->spa_spares.sav_sync = B_TRUE; 4640 } else { 4641 error = EBUSY; 4642 } 4643 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4644 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4645 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4646 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4647 /* 4648 * Cache devices can always be removed. 4649 */ 4650 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4651 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4652 spa_load_l2cache(spa); 4653 spa->spa_l2cache.sav_sync = B_TRUE; 4654 } else if (vd != NULL && vd->vdev_islog) { 4655 ASSERT(!locked); 4656 ASSERT(vd == vd->vdev_top); 4657 4658 /* 4659 * XXX - Once we have bp-rewrite this should 4660 * become the common case. 4661 */ 4662 4663 mg = vd->vdev_mg; 4664 4665 /* 4666 * Stop allocating from this vdev. 4667 */ 4668 metaslab_group_passivate(mg); 4669 4670 /* 4671 * Wait for the youngest allocations and frees to sync, 4672 * and then wait for the deferral of those frees to finish. 4673 */ 4674 spa_vdev_config_exit(spa, NULL, 4675 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4676 4677 /* 4678 * Attempt to evacuate the vdev. 4679 */ 4680 error = spa_vdev_remove_evacuate(spa, vd); 4681 4682 txg = spa_vdev_config_enter(spa); 4683 4684 /* 4685 * If we couldn't evacuate the vdev, unwind. 4686 */ 4687 if (error) { 4688 metaslab_group_activate(mg); 4689 return (spa_vdev_exit(spa, NULL, txg, error)); 4690 } 4691 4692 /* 4693 * Clean up the vdev namespace. 4694 */ 4695 spa_vdev_remove_from_namespace(spa, vd); 4696 4697 } else if (vd != NULL) { 4698 /* 4699 * Normal vdevs cannot be removed (yet). 4700 */ 4701 error = ENOTSUP; 4702 } else { 4703 /* 4704 * There is no vdev of any kind with the specified guid. 4705 */ 4706 error = ENOENT; 4707 } 4708 4709 if (!locked) 4710 return (spa_vdev_exit(spa, NULL, txg, error)); 4711 4712 return (error); 4713 } 4714 4715 /* 4716 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4717 * current spared, so we can detach it. 4718 */ 4719 static vdev_t * 4720 spa_vdev_resilver_done_hunt(vdev_t *vd) 4721 { 4722 vdev_t *newvd, *oldvd; 4723 4724 for (int c = 0; c < vd->vdev_children; c++) { 4725 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4726 if (oldvd != NULL) 4727 return (oldvd); 4728 } 4729 4730 /* 4731 * Check for a completed replacement. 4732 */ 4733 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4734 oldvd = vd->vdev_child[0]; 4735 newvd = vd->vdev_child[1]; 4736 4737 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4738 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4739 !vdev_dtl_required(oldvd)) 4740 return (oldvd); 4741 } 4742 4743 /* 4744 * Check for a completed resilver with the 'unspare' flag set. 4745 */ 4746 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4747 newvd = vd->vdev_child[0]; 4748 oldvd = vd->vdev_child[1]; 4749 4750 if (newvd->vdev_unspare && 4751 vdev_dtl_empty(newvd, DTL_MISSING) && 4752 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4753 !vdev_dtl_required(oldvd)) { 4754 newvd->vdev_unspare = 0; 4755 return (oldvd); 4756 } 4757 } 4758 4759 return (NULL); 4760 } 4761 4762 static void 4763 spa_vdev_resilver_done(spa_t *spa) 4764 { 4765 vdev_t *vd, *pvd, *ppvd; 4766 uint64_t guid, sguid, pguid, ppguid; 4767 4768 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4769 4770 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4771 pvd = vd->vdev_parent; 4772 ppvd = pvd->vdev_parent; 4773 guid = vd->vdev_guid; 4774 pguid = pvd->vdev_guid; 4775 ppguid = ppvd->vdev_guid; 4776 sguid = 0; 4777 /* 4778 * If we have just finished replacing a hot spared device, then 4779 * we need to detach the parent's first child (the original hot 4780 * spare) as well. 4781 */ 4782 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4783 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4784 ASSERT(ppvd->vdev_children == 2); 4785 sguid = ppvd->vdev_child[1]->vdev_guid; 4786 } 4787 spa_config_exit(spa, SCL_ALL, FTAG); 4788 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4789 return; 4790 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4791 return; 4792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4793 } 4794 4795 spa_config_exit(spa, SCL_ALL, FTAG); 4796 } 4797 4798 /* 4799 * Update the stored path or FRU for this vdev. 4800 */ 4801 int 4802 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4803 boolean_t ispath) 4804 { 4805 vdev_t *vd; 4806 boolean_t sync = B_FALSE; 4807 4808 spa_vdev_state_enter(spa, SCL_ALL); 4809 4810 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4811 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4812 4813 if (!vd->vdev_ops->vdev_op_leaf) 4814 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4815 4816 if (ispath) { 4817 if (strcmp(value, vd->vdev_path) != 0) { 4818 spa_strfree(vd->vdev_path); 4819 vd->vdev_path = spa_strdup(value); 4820 sync = B_TRUE; 4821 } 4822 } else { 4823 if (vd->vdev_fru == NULL) { 4824 vd->vdev_fru = spa_strdup(value); 4825 sync = B_TRUE; 4826 } else if (strcmp(value, vd->vdev_fru) != 0) { 4827 spa_strfree(vd->vdev_fru); 4828 vd->vdev_fru = spa_strdup(value); 4829 sync = B_TRUE; 4830 } 4831 } 4832 4833 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4834 } 4835 4836 int 4837 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4838 { 4839 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4840 } 4841 4842 int 4843 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4844 { 4845 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4846 } 4847 4848 /* 4849 * ========================================================================== 4850 * SPA Scanning 4851 * ========================================================================== 4852 */ 4853 4854 int 4855 spa_scan_stop(spa_t *spa) 4856 { 4857 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4858 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 4859 return (EBUSY); 4860 return (dsl_scan_cancel(spa->spa_dsl_pool)); 4861 } 4862 4863 int 4864 spa_scan(spa_t *spa, pool_scan_func_t func) 4865 { 4866 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4867 4868 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 4869 return (ENOTSUP); 4870 4871 /* 4872 * If a resilver was requested, but there is no DTL on a 4873 * writeable leaf device, we have nothing to do. 4874 */ 4875 if (func == POOL_SCAN_RESILVER && 4876 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4877 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4878 return (0); 4879 } 4880 4881 return (dsl_scan(spa->spa_dsl_pool, func)); 4882 } 4883 4884 /* 4885 * ========================================================================== 4886 * SPA async task processing 4887 * ========================================================================== 4888 */ 4889 4890 static void 4891 spa_async_remove(spa_t *spa, vdev_t *vd) 4892 { 4893 if (vd->vdev_remove_wanted) { 4894 vd->vdev_remove_wanted = B_FALSE; 4895 vd->vdev_delayed_close = B_FALSE; 4896 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4897 4898 /* 4899 * We want to clear the stats, but we don't want to do a full 4900 * vdev_clear() as that will cause us to throw away 4901 * degraded/faulted state as well as attempt to reopen the 4902 * device, all of which is a waste. 4903 */ 4904 vd->vdev_stat.vs_read_errors = 0; 4905 vd->vdev_stat.vs_write_errors = 0; 4906 vd->vdev_stat.vs_checksum_errors = 0; 4907 4908 vdev_state_dirty(vd->vdev_top); 4909 } 4910 4911 for (int c = 0; c < vd->vdev_children; c++) 4912 spa_async_remove(spa, vd->vdev_child[c]); 4913 } 4914 4915 static void 4916 spa_async_probe(spa_t *spa, vdev_t *vd) 4917 { 4918 if (vd->vdev_probe_wanted) { 4919 vd->vdev_probe_wanted = B_FALSE; 4920 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4921 } 4922 4923 for (int c = 0; c < vd->vdev_children; c++) 4924 spa_async_probe(spa, vd->vdev_child[c]); 4925 } 4926 4927 static void 4928 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4929 { 4930 sysevent_id_t eid; 4931 nvlist_t *attr; 4932 char *physpath; 4933 4934 if (!spa->spa_autoexpand) 4935 return; 4936 4937 for (int c = 0; c < vd->vdev_children; c++) { 4938 vdev_t *cvd = vd->vdev_child[c]; 4939 spa_async_autoexpand(spa, cvd); 4940 } 4941 4942 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4943 return; 4944 4945 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4946 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4947 4948 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4949 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4950 4951 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4952 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4953 4954 nvlist_free(attr); 4955 kmem_free(physpath, MAXPATHLEN); 4956 } 4957 4958 static void 4959 spa_async_thread(spa_t *spa) 4960 { 4961 int tasks; 4962 4963 ASSERT(spa->spa_sync_on); 4964 4965 mutex_enter(&spa->spa_async_lock); 4966 tasks = spa->spa_async_tasks; 4967 spa->spa_async_tasks = 0; 4968 mutex_exit(&spa->spa_async_lock); 4969 4970 /* 4971 * See if the config needs to be updated. 4972 */ 4973 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4974 uint64_t old_space, new_space; 4975 4976 mutex_enter(&spa_namespace_lock); 4977 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4978 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4979 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4980 mutex_exit(&spa_namespace_lock); 4981 4982 /* 4983 * If the pool grew as a result of the config update, 4984 * then log an internal history event. 4985 */ 4986 if (new_space != old_space) { 4987 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 4988 spa, NULL, 4989 "pool '%s' size: %llu(+%llu)", 4990 spa_name(spa), new_space, new_space - old_space); 4991 } 4992 } 4993 4994 /* 4995 * See if any devices need to be marked REMOVED. 4996 */ 4997 if (tasks & SPA_ASYNC_REMOVE) { 4998 spa_vdev_state_enter(spa, SCL_NONE); 4999 spa_async_remove(spa, spa->spa_root_vdev); 5000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5001 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5002 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5003 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5004 (void) spa_vdev_state_exit(spa, NULL, 0); 5005 } 5006 5007 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5008 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5009 spa_async_autoexpand(spa, spa->spa_root_vdev); 5010 spa_config_exit(spa, SCL_CONFIG, FTAG); 5011 } 5012 5013 /* 5014 * See if any devices need to be probed. 5015 */ 5016 if (tasks & SPA_ASYNC_PROBE) { 5017 spa_vdev_state_enter(spa, SCL_NONE); 5018 spa_async_probe(spa, spa->spa_root_vdev); 5019 (void) spa_vdev_state_exit(spa, NULL, 0); 5020 } 5021 5022 /* 5023 * If any devices are done replacing, detach them. 5024 */ 5025 if (tasks & SPA_ASYNC_RESILVER_DONE) 5026 spa_vdev_resilver_done(spa); 5027 5028 /* 5029 * Kick off a resilver. 5030 */ 5031 if (tasks & SPA_ASYNC_RESILVER) 5032 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5033 5034 /* 5035 * Let the world know that we're done. 5036 */ 5037 mutex_enter(&spa->spa_async_lock); 5038 spa->spa_async_thread = NULL; 5039 cv_broadcast(&spa->spa_async_cv); 5040 mutex_exit(&spa->spa_async_lock); 5041 thread_exit(); 5042 } 5043 5044 void 5045 spa_async_suspend(spa_t *spa) 5046 { 5047 mutex_enter(&spa->spa_async_lock); 5048 spa->spa_async_suspended++; 5049 while (spa->spa_async_thread != NULL) 5050 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5051 mutex_exit(&spa->spa_async_lock); 5052 } 5053 5054 void 5055 spa_async_resume(spa_t *spa) 5056 { 5057 mutex_enter(&spa->spa_async_lock); 5058 ASSERT(spa->spa_async_suspended != 0); 5059 spa->spa_async_suspended--; 5060 mutex_exit(&spa->spa_async_lock); 5061 } 5062 5063 static void 5064 spa_async_dispatch(spa_t *spa) 5065 { 5066 mutex_enter(&spa->spa_async_lock); 5067 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5068 spa->spa_async_thread == NULL && 5069 rootdir != NULL && !vn_is_readonly(rootdir)) 5070 spa->spa_async_thread = thread_create(NULL, 0, 5071 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5072 mutex_exit(&spa->spa_async_lock); 5073 } 5074 5075 void 5076 spa_async_request(spa_t *spa, int task) 5077 { 5078 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5079 mutex_enter(&spa->spa_async_lock); 5080 spa->spa_async_tasks |= task; 5081 mutex_exit(&spa->spa_async_lock); 5082 } 5083 5084 /* 5085 * ========================================================================== 5086 * SPA syncing routines 5087 * ========================================================================== 5088 */ 5089 5090 static int 5091 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5092 { 5093 bpobj_t *bpo = arg; 5094 bpobj_enqueue(bpo, bp, tx); 5095 return (0); 5096 } 5097 5098 static int 5099 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5100 { 5101 zio_t *zio = arg; 5102 5103 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5104 zio->io_flags)); 5105 return (0); 5106 } 5107 5108 static void 5109 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5110 { 5111 char *packed = NULL; 5112 size_t bufsize; 5113 size_t nvsize = 0; 5114 dmu_buf_t *db; 5115 5116 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5117 5118 /* 5119 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5120 * information. This avoids the dbuf_will_dirty() path and 5121 * saves us a pre-read to get data we don't actually care about. 5122 */ 5123 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 5124 packed = kmem_alloc(bufsize, KM_SLEEP); 5125 5126 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5127 KM_SLEEP) == 0); 5128 bzero(packed + nvsize, bufsize - nvsize); 5129 5130 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5131 5132 kmem_free(packed, bufsize); 5133 5134 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5135 dmu_buf_will_dirty(db, tx); 5136 *(uint64_t *)db->db_data = nvsize; 5137 dmu_buf_rele(db, FTAG); 5138 } 5139 5140 static void 5141 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5142 const char *config, const char *entry) 5143 { 5144 nvlist_t *nvroot; 5145 nvlist_t **list; 5146 int i; 5147 5148 if (!sav->sav_sync) 5149 return; 5150 5151 /* 5152 * Update the MOS nvlist describing the list of available devices. 5153 * spa_validate_aux() will have already made sure this nvlist is 5154 * valid and the vdevs are labeled appropriately. 5155 */ 5156 if (sav->sav_object == 0) { 5157 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5158 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5159 sizeof (uint64_t), tx); 5160 VERIFY(zap_update(spa->spa_meta_objset, 5161 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5162 &sav->sav_object, tx) == 0); 5163 } 5164 5165 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5166 if (sav->sav_count == 0) { 5167 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5168 } else { 5169 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5170 for (i = 0; i < sav->sav_count; i++) 5171 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5172 B_FALSE, VDEV_CONFIG_L2CACHE); 5173 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5174 sav->sav_count) == 0); 5175 for (i = 0; i < sav->sav_count; i++) 5176 nvlist_free(list[i]); 5177 kmem_free(list, sav->sav_count * sizeof (void *)); 5178 } 5179 5180 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5181 nvlist_free(nvroot); 5182 5183 sav->sav_sync = B_FALSE; 5184 } 5185 5186 static void 5187 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5188 { 5189 nvlist_t *config; 5190 5191 if (list_is_empty(&spa->spa_config_dirty_list)) 5192 return; 5193 5194 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5195 5196 config = spa_config_generate(spa, spa->spa_root_vdev, 5197 dmu_tx_get_txg(tx), B_FALSE); 5198 5199 spa_config_exit(spa, SCL_STATE, FTAG); 5200 5201 if (spa->spa_config_syncing) 5202 nvlist_free(spa->spa_config_syncing); 5203 spa->spa_config_syncing = config; 5204 5205 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5206 } 5207 5208 /* 5209 * Set zpool properties. 5210 */ 5211 static void 5212 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5213 { 5214 spa_t *spa = arg1; 5215 objset_t *mos = spa->spa_meta_objset; 5216 nvlist_t *nvp = arg2; 5217 nvpair_t *elem; 5218 uint64_t intval; 5219 char *strval; 5220 zpool_prop_t prop; 5221 const char *propname; 5222 zprop_type_t proptype; 5223 5224 mutex_enter(&spa->spa_props_lock); 5225 5226 elem = NULL; 5227 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5228 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5229 case ZPOOL_PROP_VERSION: 5230 /* 5231 * Only set version for non-zpool-creation cases 5232 * (set/import). spa_create() needs special care 5233 * for version setting. 5234 */ 5235 if (tx->tx_txg != TXG_INITIAL) { 5236 VERIFY(nvpair_value_uint64(elem, 5237 &intval) == 0); 5238 ASSERT(intval <= SPA_VERSION); 5239 ASSERT(intval >= spa_version(spa)); 5240 spa->spa_uberblock.ub_version = intval; 5241 vdev_config_dirty(spa->spa_root_vdev); 5242 } 5243 break; 5244 5245 case ZPOOL_PROP_ALTROOT: 5246 /* 5247 * 'altroot' is a non-persistent property. It should 5248 * have been set temporarily at creation or import time. 5249 */ 5250 ASSERT(spa->spa_root != NULL); 5251 break; 5252 5253 case ZPOOL_PROP_CACHEFILE: 5254 /* 5255 * 'cachefile' is also a non-persisitent property. 5256 */ 5257 break; 5258 default: 5259 /* 5260 * Set pool property values in the poolprops mos object. 5261 */ 5262 if (spa->spa_pool_props_object == 0) { 5263 VERIFY((spa->spa_pool_props_object = 5264 zap_create(mos, DMU_OT_POOL_PROPS, 5265 DMU_OT_NONE, 0, tx)) > 0); 5266 5267 VERIFY(zap_update(mos, 5268 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5269 8, 1, &spa->spa_pool_props_object, tx) 5270 == 0); 5271 } 5272 5273 /* normalize the property name */ 5274 propname = zpool_prop_to_name(prop); 5275 proptype = zpool_prop_get_type(prop); 5276 5277 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5278 ASSERT(proptype == PROP_TYPE_STRING); 5279 VERIFY(nvpair_value_string(elem, &strval) == 0); 5280 VERIFY(zap_update(mos, 5281 spa->spa_pool_props_object, propname, 5282 1, strlen(strval) + 1, strval, tx) == 0); 5283 5284 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5285 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5286 5287 if (proptype == PROP_TYPE_INDEX) { 5288 const char *unused; 5289 VERIFY(zpool_prop_index_to_string( 5290 prop, intval, &unused) == 0); 5291 } 5292 VERIFY(zap_update(mos, 5293 spa->spa_pool_props_object, propname, 5294 8, 1, &intval, tx) == 0); 5295 } else { 5296 ASSERT(0); /* not allowed */ 5297 } 5298 5299 switch (prop) { 5300 case ZPOOL_PROP_DELEGATION: 5301 spa->spa_delegation = intval; 5302 break; 5303 case ZPOOL_PROP_BOOTFS: 5304 spa->spa_bootfs = intval; 5305 break; 5306 case ZPOOL_PROP_FAILUREMODE: 5307 spa->spa_failmode = intval; 5308 break; 5309 case ZPOOL_PROP_AUTOEXPAND: 5310 spa->spa_autoexpand = intval; 5311 if (tx->tx_txg != TXG_INITIAL) 5312 spa_async_request(spa, 5313 SPA_ASYNC_AUTOEXPAND); 5314 break; 5315 case ZPOOL_PROP_DEDUPDITTO: 5316 spa->spa_dedup_ditto = intval; 5317 break; 5318 default: 5319 break; 5320 } 5321 } 5322 5323 /* log internal history if this is not a zpool create */ 5324 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5325 tx->tx_txg != TXG_INITIAL) { 5326 spa_history_log_internal(LOG_POOL_PROPSET, 5327 spa, tx, "%s %lld %s", 5328 nvpair_name(elem), intval, spa_name(spa)); 5329 } 5330 } 5331 5332 mutex_exit(&spa->spa_props_lock); 5333 } 5334 5335 /* 5336 * Perform one-time upgrade on-disk changes. spa_version() does not 5337 * reflect the new version this txg, so there must be no changes this 5338 * txg to anything that the upgrade code depends on after it executes. 5339 * Therefore this must be called after dsl_pool_sync() does the sync 5340 * tasks. 5341 */ 5342 static void 5343 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5344 { 5345 dsl_pool_t *dp = spa->spa_dsl_pool; 5346 5347 ASSERT(spa->spa_sync_pass == 1); 5348 5349 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5350 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5351 dsl_pool_create_origin(dp, tx); 5352 5353 /* Keeping the origin open increases spa_minref */ 5354 spa->spa_minref += 3; 5355 } 5356 5357 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5358 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5359 dsl_pool_upgrade_clones(dp, tx); 5360 } 5361 5362 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5363 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5364 dsl_pool_upgrade_dir_clones(dp, tx); 5365 5366 /* Keeping the freedir open increases spa_minref */ 5367 spa->spa_minref += 3; 5368 } 5369 } 5370 5371 /* 5372 * Sync the specified transaction group. New blocks may be dirtied as 5373 * part of the process, so we iterate until it converges. 5374 */ 5375 void 5376 spa_sync(spa_t *spa, uint64_t txg) 5377 { 5378 dsl_pool_t *dp = spa->spa_dsl_pool; 5379 objset_t *mos = spa->spa_meta_objset; 5380 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5381 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5382 vdev_t *rvd = spa->spa_root_vdev; 5383 vdev_t *vd; 5384 dmu_tx_t *tx; 5385 int error; 5386 5387 /* 5388 * Lock out configuration changes. 5389 */ 5390 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5391 5392 spa->spa_syncing_txg = txg; 5393 spa->spa_sync_pass = 0; 5394 5395 /* 5396 * If there are any pending vdev state changes, convert them 5397 * into config changes that go out with this transaction group. 5398 */ 5399 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5400 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5401 /* 5402 * We need the write lock here because, for aux vdevs, 5403 * calling vdev_config_dirty() modifies sav_config. 5404 * This is ugly and will become unnecessary when we 5405 * eliminate the aux vdev wart by integrating all vdevs 5406 * into the root vdev tree. 5407 */ 5408 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5409 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5410 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5411 vdev_state_clean(vd); 5412 vdev_config_dirty(vd); 5413 } 5414 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5415 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5416 } 5417 spa_config_exit(spa, SCL_STATE, FTAG); 5418 5419 tx = dmu_tx_create_assigned(dp, txg); 5420 5421 /* 5422 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5423 * set spa_deflate if we have no raid-z vdevs. 5424 */ 5425 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5426 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5427 int i; 5428 5429 for (i = 0; i < rvd->vdev_children; i++) { 5430 vd = rvd->vdev_child[i]; 5431 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5432 break; 5433 } 5434 if (i == rvd->vdev_children) { 5435 spa->spa_deflate = TRUE; 5436 VERIFY(0 == zap_add(spa->spa_meta_objset, 5437 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5438 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5439 } 5440 } 5441 5442 /* 5443 * If anything has changed in this txg, or if someone is waiting 5444 * for this txg to sync (eg, spa_vdev_remove()), push the 5445 * deferred frees from the previous txg. If not, leave them 5446 * alone so that we don't generate work on an otherwise idle 5447 * system. 5448 */ 5449 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5450 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5451 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5452 ((dsl_scan_active(dp->dp_scan) || 5453 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5454 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5455 VERIFY3U(bpobj_iterate(defer_bpo, 5456 spa_free_sync_cb, zio, tx), ==, 0); 5457 VERIFY3U(zio_wait(zio), ==, 0); 5458 } 5459 5460 /* 5461 * Iterate to convergence. 5462 */ 5463 do { 5464 int pass = ++spa->spa_sync_pass; 5465 5466 spa_sync_config_object(spa, tx); 5467 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5468 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5469 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5470 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5471 spa_errlog_sync(spa, txg); 5472 dsl_pool_sync(dp, txg); 5473 5474 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5475 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5476 bplist_iterate(free_bpl, spa_free_sync_cb, 5477 zio, tx); 5478 VERIFY(zio_wait(zio) == 0); 5479 } else { 5480 bplist_iterate(free_bpl, bpobj_enqueue_cb, 5481 defer_bpo, tx); 5482 } 5483 5484 ddt_sync(spa, txg); 5485 dsl_scan_sync(dp, tx); 5486 5487 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5488 vdev_sync(vd, txg); 5489 5490 if (pass == 1) 5491 spa_sync_upgrades(spa, tx); 5492 5493 } while (dmu_objset_is_dirty(mos, txg)); 5494 5495 /* 5496 * Rewrite the vdev configuration (which includes the uberblock) 5497 * to commit the transaction group. 5498 * 5499 * If there are no dirty vdevs, we sync the uberblock to a few 5500 * random top-level vdevs that are known to be visible in the 5501 * config cache (see spa_vdev_add() for a complete description). 5502 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5503 */ 5504 for (;;) { 5505 /* 5506 * We hold SCL_STATE to prevent vdev open/close/etc. 5507 * while we're attempting to write the vdev labels. 5508 */ 5509 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5510 5511 if (list_is_empty(&spa->spa_config_dirty_list)) { 5512 vdev_t *svd[SPA_DVAS_PER_BP]; 5513 int svdcount = 0; 5514 int children = rvd->vdev_children; 5515 int c0 = spa_get_random(children); 5516 5517 for (int c = 0; c < children; c++) { 5518 vd = rvd->vdev_child[(c0 + c) % children]; 5519 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5520 continue; 5521 svd[svdcount++] = vd; 5522 if (svdcount == SPA_DVAS_PER_BP) 5523 break; 5524 } 5525 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5526 if (error != 0) 5527 error = vdev_config_sync(svd, svdcount, txg, 5528 B_TRUE); 5529 } else { 5530 error = vdev_config_sync(rvd->vdev_child, 5531 rvd->vdev_children, txg, B_FALSE); 5532 if (error != 0) 5533 error = vdev_config_sync(rvd->vdev_child, 5534 rvd->vdev_children, txg, B_TRUE); 5535 } 5536 5537 spa_config_exit(spa, SCL_STATE, FTAG); 5538 5539 if (error == 0) 5540 break; 5541 zio_suspend(spa, NULL); 5542 zio_resume_wait(spa); 5543 } 5544 dmu_tx_commit(tx); 5545 5546 /* 5547 * Clear the dirty config list. 5548 */ 5549 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5550 vdev_config_clean(vd); 5551 5552 /* 5553 * Now that the new config has synced transactionally, 5554 * let it become visible to the config cache. 5555 */ 5556 if (spa->spa_config_syncing != NULL) { 5557 spa_config_set(spa, spa->spa_config_syncing); 5558 spa->spa_config_txg = txg; 5559 spa->spa_config_syncing = NULL; 5560 } 5561 5562 spa->spa_ubsync = spa->spa_uberblock; 5563 5564 dsl_pool_sync_done(dp, txg); 5565 5566 /* 5567 * Update usable space statistics. 5568 */ 5569 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5570 vdev_sync_done(vd, txg); 5571 5572 spa_update_dspace(spa); 5573 5574 /* 5575 * It had better be the case that we didn't dirty anything 5576 * since vdev_config_sync(). 5577 */ 5578 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5579 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5580 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5581 5582 spa->spa_sync_pass = 0; 5583 5584 spa_config_exit(spa, SCL_CONFIG, FTAG); 5585 5586 spa_handle_ignored_writes(spa); 5587 5588 /* 5589 * If any async tasks have been requested, kick them off. 5590 */ 5591 spa_async_dispatch(spa); 5592 } 5593 5594 /* 5595 * Sync all pools. We don't want to hold the namespace lock across these 5596 * operations, so we take a reference on the spa_t and drop the lock during the 5597 * sync. 5598 */ 5599 void 5600 spa_sync_allpools(void) 5601 { 5602 spa_t *spa = NULL; 5603 mutex_enter(&spa_namespace_lock); 5604 while ((spa = spa_next(spa)) != NULL) { 5605 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5606 continue; 5607 spa_open_ref(spa, FTAG); 5608 mutex_exit(&spa_namespace_lock); 5609 txg_wait_synced(spa_get_dsl(spa), 0); 5610 mutex_enter(&spa_namespace_lock); 5611 spa_close(spa, FTAG); 5612 } 5613 mutex_exit(&spa_namespace_lock); 5614 } 5615 5616 /* 5617 * ========================================================================== 5618 * Miscellaneous routines 5619 * ========================================================================== 5620 */ 5621 5622 /* 5623 * Remove all pools in the system. 5624 */ 5625 void 5626 spa_evict_all(void) 5627 { 5628 spa_t *spa; 5629 5630 /* 5631 * Remove all cached state. All pools should be closed now, 5632 * so every spa in the AVL tree should be unreferenced. 5633 */ 5634 mutex_enter(&spa_namespace_lock); 5635 while ((spa = spa_next(NULL)) != NULL) { 5636 /* 5637 * Stop async tasks. The async thread may need to detach 5638 * a device that's been replaced, which requires grabbing 5639 * spa_namespace_lock, so we must drop it here. 5640 */ 5641 spa_open_ref(spa, FTAG); 5642 mutex_exit(&spa_namespace_lock); 5643 spa_async_suspend(spa); 5644 mutex_enter(&spa_namespace_lock); 5645 spa_close(spa, FTAG); 5646 5647 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5648 spa_unload(spa); 5649 spa_deactivate(spa); 5650 } 5651 spa_remove(spa); 5652 } 5653 mutex_exit(&spa_namespace_lock); 5654 } 5655 5656 vdev_t * 5657 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5658 { 5659 vdev_t *vd; 5660 int i; 5661 5662 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5663 return (vd); 5664 5665 if (aux) { 5666 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5667 vd = spa->spa_l2cache.sav_vdevs[i]; 5668 if (vd->vdev_guid == guid) 5669 return (vd); 5670 } 5671 5672 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5673 vd = spa->spa_spares.sav_vdevs[i]; 5674 if (vd->vdev_guid == guid) 5675 return (vd); 5676 } 5677 } 5678 5679 return (NULL); 5680 } 5681 5682 void 5683 spa_upgrade(spa_t *spa, uint64_t version) 5684 { 5685 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5686 5687 /* 5688 * This should only be called for a non-faulted pool, and since a 5689 * future version would result in an unopenable pool, this shouldn't be 5690 * possible. 5691 */ 5692 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5693 ASSERT(version >= spa->spa_uberblock.ub_version); 5694 5695 spa->spa_uberblock.ub_version = version; 5696 vdev_config_dirty(spa->spa_root_vdev); 5697 5698 spa_config_exit(spa, SCL_ALL, FTAG); 5699 5700 txg_wait_synced(spa_get_dsl(spa), 0); 5701 } 5702 5703 boolean_t 5704 spa_has_spare(spa_t *spa, uint64_t guid) 5705 { 5706 int i; 5707 uint64_t spareguid; 5708 spa_aux_vdev_t *sav = &spa->spa_spares; 5709 5710 for (i = 0; i < sav->sav_count; i++) 5711 if (sav->sav_vdevs[i]->vdev_guid == guid) 5712 return (B_TRUE); 5713 5714 for (i = 0; i < sav->sav_npending; i++) { 5715 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5716 &spareguid) == 0 && spareguid == guid) 5717 return (B_TRUE); 5718 } 5719 5720 return (B_FALSE); 5721 } 5722 5723 /* 5724 * Check if a pool has an active shared spare device. 5725 * Note: reference count of an active spare is 2, as a spare and as a replace 5726 */ 5727 static boolean_t 5728 spa_has_active_shared_spare(spa_t *spa) 5729 { 5730 int i, refcnt; 5731 uint64_t pool; 5732 spa_aux_vdev_t *sav = &spa->spa_spares; 5733 5734 for (i = 0; i < sav->sav_count; i++) { 5735 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5736 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5737 refcnt > 2) 5738 return (B_TRUE); 5739 } 5740 5741 return (B_FALSE); 5742 } 5743 5744 /* 5745 * Post a sysevent corresponding to the given event. The 'name' must be one of 5746 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5747 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5748 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5749 * or zdb as real changes. 5750 */ 5751 void 5752 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5753 { 5754 #ifdef _KERNEL 5755 sysevent_t *ev; 5756 sysevent_attr_list_t *attr = NULL; 5757 sysevent_value_t value; 5758 sysevent_id_t eid; 5759 5760 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5761 SE_SLEEP); 5762 5763 value.value_type = SE_DATA_TYPE_STRING; 5764 value.value.sv_string = spa_name(spa); 5765 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5766 goto done; 5767 5768 value.value_type = SE_DATA_TYPE_UINT64; 5769 value.value.sv_uint64 = spa_guid(spa); 5770 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5771 goto done; 5772 5773 if (vd) { 5774 value.value_type = SE_DATA_TYPE_UINT64; 5775 value.value.sv_uint64 = vd->vdev_guid; 5776 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5777 SE_SLEEP) != 0) 5778 goto done; 5779 5780 if (vd->vdev_path) { 5781 value.value_type = SE_DATA_TYPE_STRING; 5782 value.value.sv_string = vd->vdev_path; 5783 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5784 &value, SE_SLEEP) != 0) 5785 goto done; 5786 } 5787 } 5788 5789 if (sysevent_attach_attributes(ev, attr) != 0) 5790 goto done; 5791 attr = NULL; 5792 5793 (void) log_sysevent(ev, SE_SLEEP, &eid); 5794 5795 done: 5796 if (attr) 5797 sysevent_free_attr(attr); 5798 sysevent_free(ev); 5799 #endif 5800 } 5801