xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 44cd46cadd9aab751dae6a4023c1cb5bf316d274)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 /*
58  * ==========================================================================
59  * SPA state manipulation (open/create/destroy/import/export)
60  * ==========================================================================
61  */
62 
63 static int
64 spa_error_entry_compare(const void *a, const void *b)
65 {
66 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
67 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
68 	int ret;
69 
70 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
71 	    sizeof (zbookmark_t));
72 
73 	if (ret < 0)
74 		return (-1);
75 	else if (ret > 0)
76 		return (1);
77 	else
78 		return (0);
79 }
80 
81 /*
82  * Utility function which retrieves copies of the current logs and
83  * re-initializes them in the process.
84  */
85 void
86 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
87 {
88 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
89 
90 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
91 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
92 
93 	avl_create(&spa->spa_errlist_scrub,
94 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
95 	    offsetof(spa_error_entry_t, se_avl));
96 	avl_create(&spa->spa_errlist_last,
97 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
98 	    offsetof(spa_error_entry_t, se_avl));
99 }
100 
101 /*
102  * Activate an uninitialized pool.
103  */
104 static void
105 spa_activate(spa_t *spa)
106 {
107 	int t;
108 
109 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
110 
111 	spa->spa_state = POOL_STATE_ACTIVE;
112 
113 	spa->spa_normal_class = metaslab_class_create();
114 
115 	for (t = 0; t < ZIO_TYPES; t++) {
116 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
117 		    8, maxclsyspri, 50, INT_MAX,
118 		    TASKQ_PREPOPULATE);
119 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
120 		    8, maxclsyspri, 50, INT_MAX,
121 		    TASKQ_PREPOPULATE);
122 	}
123 
124 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
125 
126 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
127 	    offsetof(vdev_t, vdev_dirty_node));
128 
129 	txg_list_create(&spa->spa_vdev_txg_list,
130 	    offsetof(struct vdev, vdev_txg_node));
131 
132 	avl_create(&spa->spa_errlist_scrub,
133 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
134 	    offsetof(spa_error_entry_t, se_avl));
135 	avl_create(&spa->spa_errlist_last,
136 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
137 	    offsetof(spa_error_entry_t, se_avl));
138 }
139 
140 /*
141  * Opposite of spa_activate().
142  */
143 static void
144 spa_deactivate(spa_t *spa)
145 {
146 	int t;
147 
148 	ASSERT(spa->spa_sync_on == B_FALSE);
149 	ASSERT(spa->spa_dsl_pool == NULL);
150 	ASSERT(spa->spa_root_vdev == NULL);
151 
152 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
153 
154 	txg_list_destroy(&spa->spa_vdev_txg_list);
155 
156 	list_destroy(&spa->spa_dirty_list);
157 
158 	rw_destroy(&spa->spa_traverse_lock);
159 
160 	for (t = 0; t < ZIO_TYPES; t++) {
161 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
162 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
163 		spa->spa_zio_issue_taskq[t] = NULL;
164 		spa->spa_zio_intr_taskq[t] = NULL;
165 	}
166 
167 	metaslab_class_destroy(spa->spa_normal_class);
168 	spa->spa_normal_class = NULL;
169 
170 	/*
171 	 * If this was part of an import or the open otherwise failed, we may
172 	 * still have errors left in the queues.  Empty them just in case.
173 	 */
174 	spa_errlog_drain(spa);
175 
176 	avl_destroy(&spa->spa_errlist_scrub);
177 	avl_destroy(&spa->spa_errlist_last);
178 
179 	spa->spa_state = POOL_STATE_UNINITIALIZED;
180 }
181 
182 /*
183  * Verify a pool configuration, and construct the vdev tree appropriately.  This
184  * will create all the necessary vdevs in the appropriate layout, with each vdev
185  * in the CLOSED state.  This will prep the pool before open/creation/import.
186  * All vdev validation is done by the vdev_alloc() routine.
187  */
188 static vdev_t *
189 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
190 {
191 	nvlist_t **child;
192 	uint_t c, children;
193 	vdev_t *vd;
194 
195 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
196 		return (NULL);
197 
198 	if (vd->vdev_ops->vdev_op_leaf)
199 		return (vd);
200 
201 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
202 	    &child, &children) != 0) {
203 		vdev_free(vd);
204 		return (NULL);
205 	}
206 
207 	for (c = 0; c < children; c++) {
208 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
209 			vdev_free(vd);
210 			return (NULL);
211 		}
212 	}
213 
214 	return (vd);
215 }
216 
217 /*
218  * Opposite of spa_load().
219  */
220 static void
221 spa_unload(spa_t *spa)
222 {
223 	/*
224 	 * Stop async tasks.
225 	 */
226 	spa_async_suspend(spa);
227 
228 	/*
229 	 * Stop syncing.
230 	 */
231 	if (spa->spa_sync_on) {
232 		txg_sync_stop(spa->spa_dsl_pool);
233 		spa->spa_sync_on = B_FALSE;
234 	}
235 
236 	/*
237 	 * Wait for any outstanding prefetch I/O to complete.
238 	 */
239 	spa_config_enter(spa, RW_WRITER, FTAG);
240 	spa_config_exit(spa, FTAG);
241 
242 	/*
243 	 * Close the dsl pool.
244 	 */
245 	if (spa->spa_dsl_pool) {
246 		dsl_pool_close(spa->spa_dsl_pool);
247 		spa->spa_dsl_pool = NULL;
248 	}
249 
250 	/*
251 	 * Close all vdevs.
252 	 */
253 	if (spa->spa_root_vdev)
254 		vdev_free(spa->spa_root_vdev);
255 	ASSERT(spa->spa_root_vdev == NULL);
256 
257 	spa->spa_async_suspended = 0;
258 }
259 
260 /*
261  * Load an existing storage pool, using the pool's builtin spa_config as a
262  * source of configuration information.
263  */
264 static int
265 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
266 {
267 	int error = 0;
268 	nvlist_t *nvroot = NULL;
269 	vdev_t *rvd;
270 	uberblock_t *ub = &spa->spa_uberblock;
271 	uint64_t config_cache_txg = spa->spa_config_txg;
272 	uint64_t pool_guid;
273 	zio_t *zio;
274 
275 	spa->spa_load_state = state;
276 
277 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
278 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
279 		error = EINVAL;
280 		goto out;
281 	}
282 
283 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
284 	    &spa->spa_config_txg);
285 
286 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
287 	    spa_guid_exists(pool_guid, 0)) {
288 		error = EEXIST;
289 		goto out;
290 	}
291 
292 	/*
293 	 * Parse the configuration into a vdev tree.
294 	 */
295 	spa_config_enter(spa, RW_WRITER, FTAG);
296 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
297 	spa_config_exit(spa, FTAG);
298 
299 	if (rvd == NULL) {
300 		error = EINVAL;
301 		goto out;
302 	}
303 
304 	ASSERT(spa->spa_root_vdev == rvd);
305 	ASSERT(spa_guid(spa) == pool_guid);
306 
307 	/*
308 	 * Try to open all vdevs, loading each label in the process.
309 	 */
310 	if (vdev_open(rvd) != 0) {
311 		error = ENXIO;
312 		goto out;
313 	}
314 
315 	/*
316 	 * Find the best uberblock.
317 	 */
318 	bzero(ub, sizeof (uberblock_t));
319 
320 	zio = zio_root(spa, NULL, NULL,
321 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
322 	vdev_uberblock_load(zio, rvd, ub);
323 	error = zio_wait(zio);
324 
325 	/*
326 	 * If we weren't able to find a single valid uberblock, return failure.
327 	 */
328 	if (ub->ub_txg == 0) {
329 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
330 		    VDEV_AUX_CORRUPT_DATA);
331 		error = ENXIO;
332 		goto out;
333 	}
334 
335 	/*
336 	 * If the pool is newer than the code, we can't open it.
337 	 */
338 	if (ub->ub_version > ZFS_VERSION) {
339 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
340 		    VDEV_AUX_VERSION_NEWER);
341 		error = ENOTSUP;
342 		goto out;
343 	}
344 
345 	/*
346 	 * If the vdev guid sum doesn't match the uberblock, we have an
347 	 * incomplete configuration.
348 	 */
349 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
350 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
351 		    VDEV_AUX_BAD_GUID_SUM);
352 		error = ENXIO;
353 		goto out;
354 	}
355 
356 	/*
357 	 * Initialize internal SPA structures.
358 	 */
359 	spa->spa_state = POOL_STATE_ACTIVE;
360 	spa->spa_ubsync = spa->spa_uberblock;
361 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
362 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
363 	if (error) {
364 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
365 		    VDEV_AUX_CORRUPT_DATA);
366 		goto out;
367 	}
368 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
369 
370 	if (zap_lookup(spa->spa_meta_objset,
371 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
372 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
373 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
374 		    VDEV_AUX_CORRUPT_DATA);
375 		error = EIO;
376 		goto out;
377 	}
378 
379 	if (!mosconfig) {
380 		dmu_buf_t *db;
381 		char *packed = NULL;
382 		size_t nvsize = 0;
383 		nvlist_t *newconfig = NULL;
384 
385 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
386 		    spa->spa_config_object, FTAG, &db));
387 		nvsize = *(uint64_t *)db->db_data;
388 		dmu_buf_rele(db, FTAG);
389 
390 		packed = kmem_alloc(nvsize, KM_SLEEP);
391 		error = dmu_read(spa->spa_meta_objset,
392 		    spa->spa_config_object, 0, nvsize, packed);
393 		if (error == 0)
394 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
395 		kmem_free(packed, nvsize);
396 
397 		if (error) {
398 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
399 			    VDEV_AUX_CORRUPT_DATA);
400 			error = EIO;
401 			goto out;
402 		}
403 
404 		spa_config_set(spa, newconfig);
405 
406 		spa_unload(spa);
407 		spa_deactivate(spa);
408 		spa_activate(spa);
409 
410 		return (spa_load(spa, newconfig, state, B_TRUE));
411 	}
412 
413 	if (zap_lookup(spa->spa_meta_objset,
414 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
415 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
416 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
417 		    VDEV_AUX_CORRUPT_DATA);
418 		error = EIO;
419 		goto out;
420 	}
421 
422 	/*
423 	 * Load the persistent error log.  If we have an older pool, this will
424 	 * not be present.
425 	 */
426 	error = zap_lookup(spa->spa_meta_objset,
427 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
428 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
429 	if (error != 0 &&error != ENOENT) {
430 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
431 		    VDEV_AUX_CORRUPT_DATA);
432 		error = EIO;
433 		goto out;
434 	}
435 
436 	error = zap_lookup(spa->spa_meta_objset,
437 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
438 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
439 	if (error != 0 && error != ENOENT) {
440 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
441 		    VDEV_AUX_CORRUPT_DATA);
442 		error = EIO;
443 		goto out;
444 	}
445 
446 	/*
447 	 * Load the vdev state for all top level vdevs.  We need to grab the
448 	 * config lock because all label I/O is done with the
449 	 * ZIO_FLAG_CONFIG_HELD flag.
450 	 */
451 	spa_config_enter(spa, RW_READER, FTAG);
452 	error = vdev_load(rvd);
453 	spa_config_exit(spa, FTAG);
454 
455 	if (error)
456 		goto out;
457 
458 	/*
459 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
460 	 */
461 	spa_config_enter(spa, RW_WRITER, FTAG);
462 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
463 	spa_config_exit(spa, FTAG);
464 
465 	/*
466 	 * Check the state of the root vdev.  If it can't be opened, it
467 	 * indicates one or more toplevel vdevs are faulted.
468 	 */
469 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
470 		error = ENXIO;
471 		goto out;
472 	}
473 
474 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
475 		dmu_tx_t *tx;
476 		int need_update = B_FALSE;
477 		int c;
478 
479 		/*
480 		 * Claim log blocks that haven't been committed yet.
481 		 * This must all happen in a single txg.
482 		 */
483 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
484 		    spa_first_txg(spa));
485 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
486 		dmu_tx_commit(tx);
487 
488 		spa->spa_sync_on = B_TRUE;
489 		txg_sync_start(spa->spa_dsl_pool);
490 
491 		/*
492 		 * Wait for all claims to sync.
493 		 */
494 		txg_wait_synced(spa->spa_dsl_pool, 0);
495 
496 		/*
497 		 * If the config cache is stale, or we have uninitialized
498 		 * metaslabs (see spa_vdev_add()), then update the config.
499 		 */
500 		if (config_cache_txg != spa->spa_config_txg ||
501 		    state == SPA_LOAD_IMPORT)
502 			need_update = B_TRUE;
503 
504 		for (c = 0; c < rvd->vdev_children; c++)
505 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
506 				need_update = B_TRUE;
507 
508 		/*
509 		 * Update the config cache asychronously in case we're the
510 		 * root pool, in which case the config cache isn't writable yet.
511 		 */
512 		if (need_update)
513 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
514 	}
515 
516 	error = 0;
517 out:
518 	if (error)
519 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
520 	spa->spa_load_state = SPA_LOAD_NONE;
521 	spa->spa_ena = 0;
522 
523 	return (error);
524 }
525 
526 /*
527  * Pool Open/Import
528  *
529  * The import case is identical to an open except that the configuration is sent
530  * down from userland, instead of grabbed from the configuration cache.  For the
531  * case of an open, the pool configuration will exist in the
532  * POOL_STATE_UNITIALIZED state.
533  *
534  * The stats information (gen/count/ustats) is used to gather vdev statistics at
535  * the same time open the pool, without having to keep around the spa_t in some
536  * ambiguous state.
537  */
538 static int
539 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
540 {
541 	spa_t *spa;
542 	int error;
543 	int loaded = B_FALSE;
544 	int locked = B_FALSE;
545 
546 	*spapp = NULL;
547 
548 	/*
549 	 * As disgusting as this is, we need to support recursive calls to this
550 	 * function because dsl_dir_open() is called during spa_load(), and ends
551 	 * up calling spa_open() again.  The real fix is to figure out how to
552 	 * avoid dsl_dir_open() calling this in the first place.
553 	 */
554 	if (mutex_owner(&spa_namespace_lock) != curthread) {
555 		mutex_enter(&spa_namespace_lock);
556 		locked = B_TRUE;
557 	}
558 
559 	if ((spa = spa_lookup(pool)) == NULL) {
560 		if (locked)
561 			mutex_exit(&spa_namespace_lock);
562 		return (ENOENT);
563 	}
564 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
565 
566 		spa_activate(spa);
567 
568 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
569 
570 		if (error == EBADF) {
571 			/*
572 			 * If vdev_load() returns EBADF, it indicates that one
573 			 * of the vdevs indicates that the pool has been
574 			 * exported or destroyed.  If this is the case, the
575 			 * config cache is out of sync and we should remove the
576 			 * pool from the namespace.
577 			 */
578 			spa_unload(spa);
579 			spa_deactivate(spa);
580 			spa_remove(spa);
581 			spa_config_sync();
582 			if (locked)
583 				mutex_exit(&spa_namespace_lock);
584 			return (ENOENT);
585 		}
586 
587 		if (error) {
588 			/*
589 			 * We can't open the pool, but we still have useful
590 			 * information: the state of each vdev after the
591 			 * attempted vdev_open().  Return this to the user.
592 			 */
593 			if (config != NULL && spa->spa_root_vdev != NULL) {
594 				spa_config_enter(spa, RW_READER, FTAG);
595 				*config = spa_config_generate(spa, NULL, -1ULL,
596 				    B_TRUE);
597 				spa_config_exit(spa, FTAG);
598 			}
599 			spa_unload(spa);
600 			spa_deactivate(spa);
601 			spa->spa_last_open_failed = B_TRUE;
602 			if (locked)
603 				mutex_exit(&spa_namespace_lock);
604 			*spapp = NULL;
605 			return (error);
606 		} else {
607 			zfs_post_ok(spa, NULL);
608 			spa->spa_last_open_failed = B_FALSE;
609 		}
610 
611 		loaded = B_TRUE;
612 	}
613 
614 	spa_open_ref(spa, tag);
615 	if (locked)
616 		mutex_exit(&spa_namespace_lock);
617 
618 	*spapp = spa;
619 
620 	if (config != NULL) {
621 		spa_config_enter(spa, RW_READER, FTAG);
622 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
623 		spa_config_exit(spa, FTAG);
624 	}
625 
626 	/*
627 	 * If we just loaded the pool, resilver anything that's out of date.
628 	 */
629 	if (loaded && (spa_mode & FWRITE))
630 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
631 
632 	return (0);
633 }
634 
635 int
636 spa_open(const char *name, spa_t **spapp, void *tag)
637 {
638 	return (spa_open_common(name, spapp, tag, NULL));
639 }
640 
641 /*
642  * Lookup the given spa_t, incrementing the inject count in the process,
643  * preventing it from being exported or destroyed.
644  */
645 spa_t *
646 spa_inject_addref(char *name)
647 {
648 	spa_t *spa;
649 
650 	mutex_enter(&spa_namespace_lock);
651 	if ((spa = spa_lookup(name)) == NULL) {
652 		mutex_exit(&spa_namespace_lock);
653 		return (NULL);
654 	}
655 	spa->spa_inject_ref++;
656 	mutex_exit(&spa_namespace_lock);
657 
658 	return (spa);
659 }
660 
661 void
662 spa_inject_delref(spa_t *spa)
663 {
664 	mutex_enter(&spa_namespace_lock);
665 	spa->spa_inject_ref--;
666 	mutex_exit(&spa_namespace_lock);
667 }
668 
669 int
670 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
671 {
672 	int error;
673 	spa_t *spa;
674 
675 	*config = NULL;
676 	error = spa_open_common(name, &spa, FTAG, config);
677 
678 	if (spa && *config != NULL)
679 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
680 		    spa_get_errlog_size(spa)) == 0);
681 
682 	/*
683 	 * We want to get the alternate root even for faulted pools, so we cheat
684 	 * and call spa_lookup() directly.
685 	 */
686 	if (altroot) {
687 		if (spa == NULL) {
688 			mutex_enter(&spa_namespace_lock);
689 			spa = spa_lookup(name);
690 			if (spa)
691 				spa_altroot(spa, altroot, buflen);
692 			else
693 				altroot[0] = '\0';
694 			spa = NULL;
695 			mutex_exit(&spa_namespace_lock);
696 		} else {
697 			spa_altroot(spa, altroot, buflen);
698 		}
699 	}
700 
701 	if (spa != NULL)
702 		spa_close(spa, FTAG);
703 
704 	return (error);
705 }
706 
707 /*
708  * Pool Creation
709  */
710 int
711 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
712 {
713 	spa_t *spa;
714 	vdev_t *rvd;
715 	dsl_pool_t *dp;
716 	dmu_tx_t *tx;
717 	int c, error;
718 	uint64_t txg = TXG_INITIAL;
719 
720 	/*
721 	 * If this pool already exists, return failure.
722 	 */
723 	mutex_enter(&spa_namespace_lock);
724 	if (spa_lookup(pool) != NULL) {
725 		mutex_exit(&spa_namespace_lock);
726 		return (EEXIST);
727 	}
728 
729 	/*
730 	 * Allocate a new spa_t structure.
731 	 */
732 	spa = spa_add(pool, altroot);
733 	spa_activate(spa);
734 
735 	spa->spa_uberblock.ub_txg = txg - 1;
736 	spa->spa_uberblock.ub_version = ZFS_VERSION;
737 	spa->spa_ubsync = spa->spa_uberblock;
738 
739 	/*
740 	 * Create the root vdev.
741 	 */
742 	spa_config_enter(spa, RW_WRITER, FTAG);
743 
744 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
745 
746 	ASSERT(spa->spa_root_vdev == rvd);
747 
748 	if (rvd == NULL) {
749 		error = EINVAL;
750 	} else {
751 		if ((error = vdev_create(rvd, txg)) == 0) {
752 			for (c = 0; c < rvd->vdev_children; c++)
753 				vdev_init(rvd->vdev_child[c], txg);
754 			vdev_config_dirty(rvd);
755 		}
756 	}
757 
758 	spa_config_exit(spa, FTAG);
759 
760 	if (error) {
761 		spa_unload(spa);
762 		spa_deactivate(spa);
763 		spa_remove(spa);
764 		mutex_exit(&spa_namespace_lock);
765 		return (error);
766 	}
767 
768 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
769 	spa->spa_meta_objset = dp->dp_meta_objset;
770 
771 	tx = dmu_tx_create_assigned(dp, txg);
772 
773 	/*
774 	 * Create the pool config object.
775 	 */
776 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
777 	    DMU_OT_PACKED_NVLIST, 1 << 14,
778 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
779 
780 	if (zap_add(spa->spa_meta_objset,
781 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
782 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
783 		cmn_err(CE_PANIC, "failed to add pool config");
784 	}
785 
786 	/*
787 	 * Create the deferred-free bplist object.  Turn off compression
788 	 * because sync-to-convergence takes longer if the blocksize
789 	 * keeps changing.
790 	 */
791 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
792 	    1 << 14, tx);
793 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
794 	    ZIO_COMPRESS_OFF, tx);
795 
796 	if (zap_add(spa->spa_meta_objset,
797 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
798 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
799 		cmn_err(CE_PANIC, "failed to add bplist");
800 	}
801 
802 	dmu_tx_commit(tx);
803 
804 	spa->spa_sync_on = B_TRUE;
805 	txg_sync_start(spa->spa_dsl_pool);
806 
807 	/*
808 	 * We explicitly wait for the first transaction to complete so that our
809 	 * bean counters are appropriately updated.
810 	 */
811 	txg_wait_synced(spa->spa_dsl_pool, txg);
812 
813 	spa_config_sync();
814 
815 	mutex_exit(&spa_namespace_lock);
816 
817 	return (0);
818 }
819 
820 /*
821  * Import the given pool into the system.  We set up the necessary spa_t and
822  * then call spa_load() to do the dirty work.
823  */
824 int
825 spa_import(const char *pool, nvlist_t *config, const char *altroot)
826 {
827 	spa_t *spa;
828 	int error;
829 
830 	if (!(spa_mode & FWRITE))
831 		return (EROFS);
832 
833 	/*
834 	 * If a pool with this name exists, return failure.
835 	 */
836 	mutex_enter(&spa_namespace_lock);
837 	if (spa_lookup(pool) != NULL) {
838 		mutex_exit(&spa_namespace_lock);
839 		return (EEXIST);
840 	}
841 
842 	/*
843 	 * Create and initialize the spa structure.
844 	 */
845 	spa = spa_add(pool, altroot);
846 	spa_activate(spa);
847 
848 	/*
849 	 * Pass off the heavy lifting to spa_load().
850 	 * Pass TRUE for mosconfig because the user-supplied config
851 	 * is actually the one to trust when doing an import.
852 	 */
853 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
854 
855 	if (error) {
856 		spa_unload(spa);
857 		spa_deactivate(spa);
858 		spa_remove(spa);
859 		mutex_exit(&spa_namespace_lock);
860 		return (error);
861 	}
862 
863 	/*
864 	 * Update the config cache to include the newly-imported pool.
865 	 */
866 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
867 
868 	mutex_exit(&spa_namespace_lock);
869 
870 	/*
871 	 * Resilver anything that's out of date.
872 	 */
873 	if (spa_mode & FWRITE)
874 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
875 
876 	return (0);
877 }
878 
879 /*
880  * This (illegal) pool name is used when temporarily importing a spa_t in order
881  * to get the vdev stats associated with the imported devices.
882  */
883 #define	TRYIMPORT_NAME	"$import"
884 
885 nvlist_t *
886 spa_tryimport(nvlist_t *tryconfig)
887 {
888 	nvlist_t *config = NULL;
889 	char *poolname;
890 	spa_t *spa;
891 	uint64_t state;
892 
893 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
894 		return (NULL);
895 
896 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
897 		return (NULL);
898 
899 	/*
900 	 * Create and initialize the spa structure.
901 	 */
902 	mutex_enter(&spa_namespace_lock);
903 	spa = spa_add(TRYIMPORT_NAME, NULL);
904 	spa_activate(spa);
905 
906 	/*
907 	 * Pass off the heavy lifting to spa_load().
908 	 * Pass TRUE for mosconfig because the user-supplied config
909 	 * is actually the one to trust when doing an import.
910 	 */
911 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
912 
913 	/*
914 	 * If 'tryconfig' was at least parsable, return the current config.
915 	 */
916 	if (spa->spa_root_vdev != NULL) {
917 		spa_config_enter(spa, RW_READER, FTAG);
918 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
919 		spa_config_exit(spa, FTAG);
920 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
921 		    poolname) == 0);
922 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
923 		    state) == 0);
924 	}
925 
926 	spa_unload(spa);
927 	spa_deactivate(spa);
928 	spa_remove(spa);
929 	mutex_exit(&spa_namespace_lock);
930 
931 	return (config);
932 }
933 
934 /*
935  * Pool export/destroy
936  *
937  * The act of destroying or exporting a pool is very simple.  We make sure there
938  * is no more pending I/O and any references to the pool are gone.  Then, we
939  * update the pool state and sync all the labels to disk, removing the
940  * configuration from the cache afterwards.
941  */
942 static int
943 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
944 {
945 	spa_t *spa;
946 
947 	if (oldconfig)
948 		*oldconfig = NULL;
949 
950 	if (!(spa_mode & FWRITE))
951 		return (EROFS);
952 
953 	mutex_enter(&spa_namespace_lock);
954 	if ((spa = spa_lookup(pool)) == NULL) {
955 		mutex_exit(&spa_namespace_lock);
956 		return (ENOENT);
957 	}
958 
959 	/*
960 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
961 	 * reacquire the namespace lock, and see if we can export.
962 	 */
963 	spa_open_ref(spa, FTAG);
964 	mutex_exit(&spa_namespace_lock);
965 	spa_async_suspend(spa);
966 	mutex_enter(&spa_namespace_lock);
967 	spa_close(spa, FTAG);
968 
969 	/*
970 	 * The pool will be in core if it's openable,
971 	 * in which case we can modify its state.
972 	 */
973 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
974 		/*
975 		 * Objsets may be open only because they're dirty, so we
976 		 * have to force it to sync before checking spa_refcnt.
977 		 */
978 		spa_scrub_suspend(spa);
979 		txg_wait_synced(spa->spa_dsl_pool, 0);
980 
981 		/*
982 		 * A pool cannot be exported or destroyed if there are active
983 		 * references.  If we are resetting a pool, allow references by
984 		 * fault injection handlers.
985 		 */
986 		if (!spa_refcount_zero(spa) ||
987 		    (spa->spa_inject_ref != 0 &&
988 		    new_state != POOL_STATE_UNINITIALIZED)) {
989 			spa_scrub_resume(spa);
990 			spa_async_resume(spa);
991 			mutex_exit(&spa_namespace_lock);
992 			return (EBUSY);
993 		}
994 
995 		spa_scrub_resume(spa);
996 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
997 
998 		/*
999 		 * We want this to be reflected on every label,
1000 		 * so mark them all dirty.  spa_unload() will do the
1001 		 * final sync that pushes these changes out.
1002 		 */
1003 		if (new_state != POOL_STATE_UNINITIALIZED) {
1004 			spa_config_enter(spa, RW_WRITER, FTAG);
1005 			spa->spa_state = new_state;
1006 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1007 			vdev_config_dirty(spa->spa_root_vdev);
1008 			spa_config_exit(spa, FTAG);
1009 		}
1010 	}
1011 
1012 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1013 		spa_unload(spa);
1014 		spa_deactivate(spa);
1015 	}
1016 
1017 	if (oldconfig && spa->spa_config)
1018 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1019 
1020 	if (new_state != POOL_STATE_UNINITIALIZED) {
1021 		spa_remove(spa);
1022 		spa_config_sync();
1023 	}
1024 	mutex_exit(&spa_namespace_lock);
1025 
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Destroy a storage pool.
1031  */
1032 int
1033 spa_destroy(char *pool)
1034 {
1035 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1036 }
1037 
1038 /*
1039  * Export a storage pool.
1040  */
1041 int
1042 spa_export(char *pool, nvlist_t **oldconfig)
1043 {
1044 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1045 }
1046 
1047 /*
1048  * Similar to spa_export(), this unloads the spa_t without actually removing it
1049  * from the namespace in any way.
1050  */
1051 int
1052 spa_reset(char *pool)
1053 {
1054 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1055 }
1056 
1057 
1058 /*
1059  * ==========================================================================
1060  * Device manipulation
1061  * ==========================================================================
1062  */
1063 
1064 /*
1065  * Add capacity to a storage pool.
1066  */
1067 int
1068 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1069 {
1070 	uint64_t txg;
1071 	int c, error;
1072 	vdev_t *rvd = spa->spa_root_vdev;
1073 	vdev_t *vd, *tvd;
1074 
1075 	txg = spa_vdev_enter(spa);
1076 
1077 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1078 
1079 	if (vd == NULL)
1080 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1081 
1082 	if ((error = vdev_create(vd, txg)) != 0)
1083 		return (spa_vdev_exit(spa, vd, txg, error));
1084 
1085 	/*
1086 	 * Transfer each new top-level vdev from vd to rvd.
1087 	 */
1088 	for (c = 0; c < vd->vdev_children; c++) {
1089 		tvd = vd->vdev_child[c];
1090 		vdev_remove_child(vd, tvd);
1091 		tvd->vdev_id = rvd->vdev_children;
1092 		vdev_add_child(rvd, tvd);
1093 		vdev_config_dirty(tvd);
1094 	}
1095 
1096 	/*
1097 	 * We have to be careful when adding new vdevs to an existing pool.
1098 	 * If other threads start allocating from these vdevs before we
1099 	 * sync the config cache, and we lose power, then upon reboot we may
1100 	 * fail to open the pool because there are DVAs that the config cache
1101 	 * can't translate.  Therefore, we first add the vdevs without
1102 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1103 	 * and then let spa_config_update() initialize the new metaslabs.
1104 	 *
1105 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1106 	 * if we lose power at any point in this sequence, the remaining
1107 	 * steps will be completed the next time we load the pool.
1108 	 */
1109 	(void) spa_vdev_exit(spa, vd, txg, 0);
1110 
1111 	mutex_enter(&spa_namespace_lock);
1112 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1113 	mutex_exit(&spa_namespace_lock);
1114 
1115 	return (0);
1116 }
1117 
1118 /*
1119  * Attach a device to a mirror.  The arguments are the path to any device
1120  * in the mirror, and the nvroot for the new device.  If the path specifies
1121  * a device that is not mirrored, we automatically insert the mirror vdev.
1122  *
1123  * If 'replacing' is specified, the new device is intended to replace the
1124  * existing device; in this case the two devices are made into their own
1125  * mirror using the 'replacing' vdev, which is functionally idendical to
1126  * the mirror vdev (it actually reuses all the same ops) but has a few
1127  * extra rules: you can't attach to it after it's been created, and upon
1128  * completion of resilvering, the first disk (the one being replaced)
1129  * is automatically detached.
1130  */
1131 int
1132 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1133 {
1134 	uint64_t txg, open_txg;
1135 	int error;
1136 	vdev_t *rvd = spa->spa_root_vdev;
1137 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1138 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1139 
1140 	txg = spa_vdev_enter(spa);
1141 
1142 	oldvd = vdev_lookup_by_guid(rvd, guid);
1143 
1144 	if (oldvd == NULL)
1145 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1146 
1147 	if (!oldvd->vdev_ops->vdev_op_leaf)
1148 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1149 
1150 	pvd = oldvd->vdev_parent;
1151 
1152 	/*
1153 	 * The parent must be a mirror or the root, unless we're replacing;
1154 	 * in that case, the parent can be anything but another replacing vdev.
1155 	 */
1156 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1157 	    pvd->vdev_ops != &vdev_root_ops &&
1158 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1159 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1160 
1161 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1162 
1163 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1164 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1165 
1166 	newvd = newrootvd->vdev_child[0];
1167 
1168 	if (!newvd->vdev_ops->vdev_op_leaf)
1169 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1170 
1171 	if ((error = vdev_create(newrootvd, txg)) != 0)
1172 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1173 
1174 	/*
1175 	 * Compare the new device size with the replaceable/attachable
1176 	 * device size.
1177 	 */
1178 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1179 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1180 
1181 	/*
1182 	 * The new device cannot have a higher alignment requirement
1183 	 * than the top-level vdev.
1184 	 */
1185 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1186 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1187 
1188 	/*
1189 	 * If this is an in-place replacement, update oldvd's path and devid
1190 	 * to make it distinguishable from newvd, and unopenable from now on.
1191 	 */
1192 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1193 		spa_strfree(oldvd->vdev_path);
1194 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1195 		    KM_SLEEP);
1196 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1197 		    newvd->vdev_path, "old");
1198 		if (oldvd->vdev_devid != NULL) {
1199 			spa_strfree(oldvd->vdev_devid);
1200 			oldvd->vdev_devid = NULL;
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * If the parent is not a mirror, or if we're replacing,
1206 	 * insert the new mirror/replacing vdev above oldvd.
1207 	 */
1208 	if (pvd->vdev_ops != pvops)
1209 		pvd = vdev_add_parent(oldvd, pvops);
1210 
1211 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1212 	ASSERT(pvd->vdev_ops == pvops);
1213 	ASSERT(oldvd->vdev_parent == pvd);
1214 
1215 	/*
1216 	 * Extract the new device from its root and add it to pvd.
1217 	 */
1218 	vdev_remove_child(newrootvd, newvd);
1219 	newvd->vdev_id = pvd->vdev_children;
1220 	vdev_add_child(pvd, newvd);
1221 
1222 	/*
1223 	 * If newvd is smaller than oldvd, but larger than its rsize,
1224 	 * the addition of newvd may have decreased our parent's asize.
1225 	 */
1226 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1227 
1228 	tvd = newvd->vdev_top;
1229 	ASSERT(pvd->vdev_top == tvd);
1230 	ASSERT(tvd->vdev_parent == rvd);
1231 
1232 	vdev_config_dirty(tvd);
1233 
1234 	/*
1235 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1236 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1237 	 */
1238 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1239 
1240 	mutex_enter(&newvd->vdev_dtl_lock);
1241 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1242 	    open_txg - TXG_INITIAL + 1);
1243 	mutex_exit(&newvd->vdev_dtl_lock);
1244 
1245 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1246 
1247 	/*
1248 	 * Mark newvd's DTL dirty in this txg.
1249 	 */
1250 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1251 
1252 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1253 
1254 	/*
1255 	 * Kick off a resilver to update newvd.
1256 	 */
1257 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1258 
1259 	return (0);
1260 }
1261 
1262 /*
1263  * Detach a device from a mirror or replacing vdev.
1264  * If 'replace_done' is specified, only detach if the parent
1265  * is a replacing vdev.
1266  */
1267 int
1268 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1269 {
1270 	uint64_t txg;
1271 	int c, t, error;
1272 	vdev_t *rvd = spa->spa_root_vdev;
1273 	vdev_t *vd, *pvd, *cvd, *tvd;
1274 
1275 	txg = spa_vdev_enter(spa);
1276 
1277 	vd = vdev_lookup_by_guid(rvd, guid);
1278 
1279 	if (vd == NULL)
1280 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1281 
1282 	if (!vd->vdev_ops->vdev_op_leaf)
1283 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1284 
1285 	pvd = vd->vdev_parent;
1286 
1287 	/*
1288 	 * If replace_done is specified, only remove this device if it's
1289 	 * the first child of a replacing vdev.
1290 	 */
1291 	if (replace_done &&
1292 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1293 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1294 
1295 	/*
1296 	 * Only mirror and replacing vdevs support detach.
1297 	 */
1298 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1299 	    pvd->vdev_ops != &vdev_mirror_ops)
1300 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1301 
1302 	/*
1303 	 * If there's only one replica, you can't detach it.
1304 	 */
1305 	if (pvd->vdev_children <= 1)
1306 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1307 
1308 	/*
1309 	 * If all siblings have non-empty DTLs, this device may have the only
1310 	 * valid copy of the data, which means we cannot safely detach it.
1311 	 *
1312 	 * XXX -- as in the vdev_offline() case, we really want a more
1313 	 * precise DTL check.
1314 	 */
1315 	for (c = 0; c < pvd->vdev_children; c++) {
1316 		uint64_t dirty;
1317 
1318 		cvd = pvd->vdev_child[c];
1319 		if (cvd == vd)
1320 			continue;
1321 		if (vdev_is_dead(cvd))
1322 			continue;
1323 		mutex_enter(&cvd->vdev_dtl_lock);
1324 		dirty = cvd->vdev_dtl_map.sm_space |
1325 		    cvd->vdev_dtl_scrub.sm_space;
1326 		mutex_exit(&cvd->vdev_dtl_lock);
1327 		if (!dirty)
1328 			break;
1329 	}
1330 	if (c == pvd->vdev_children)
1331 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1332 
1333 	/*
1334 	 * Erase the disk labels so the disk can be used for other things.
1335 	 * This must be done after all other error cases are handled,
1336 	 * but before we disembowel vd (so we can still do I/O to it).
1337 	 * But if we can't do it, don't treat the error as fatal --
1338 	 * it may be that the unwritability of the disk is the reason
1339 	 * it's being detached!
1340 	 */
1341 	error = vdev_label_init(vd, 0);
1342 	if (error)
1343 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1344 
1345 	/*
1346 	 * Remove vd from its parent and compact the parent's children.
1347 	 */
1348 	vdev_remove_child(pvd, vd);
1349 	vdev_compact_children(pvd);
1350 
1351 	/*
1352 	 * Remember one of the remaining children so we can get tvd below.
1353 	 */
1354 	cvd = pvd->vdev_child[0];
1355 
1356 	/*
1357 	 * If the parent mirror/replacing vdev only has one child,
1358 	 * the parent is no longer needed.  Remove it from the tree.
1359 	 */
1360 	if (pvd->vdev_children == 1)
1361 		vdev_remove_parent(cvd);
1362 
1363 	/*
1364 	 * We don't set tvd until now because the parent we just removed
1365 	 * may have been the previous top-level vdev.
1366 	 */
1367 	tvd = cvd->vdev_top;
1368 	ASSERT(tvd->vdev_parent == rvd);
1369 
1370 	/*
1371 	 * Reopen this top-level vdev to reassess health after detach.
1372 	 */
1373 	vdev_reopen(tvd);
1374 
1375 	/*
1376 	 * If the device we just detached was smaller than the others,
1377 	 * it may be possible to add metaslabs (i.e. grow the pool).
1378 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1379 	 * are already in core, so there's nothing to read from disk.
1380 	 */
1381 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1382 
1383 	vdev_config_dirty(tvd);
1384 
1385 	/*
1386 	 * Mark vd's DTL as dirty in this txg.
1387 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1388 	 * and free vd's DTL object in syncing context.
1389 	 * But first make sure we're not on any *other* txg's DTL list,
1390 	 * to prevent vd from being accessed after it's freed.
1391 	 */
1392 	for (t = 0; t < TXG_SIZE; t++)
1393 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1394 	vd->vdev_detached = B_TRUE;
1395 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1396 
1397 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1398 
1399 	return (spa_vdev_exit(spa, vd, txg, 0));
1400 }
1401 
1402 /*
1403  * Find any device that's done replacing, so we can detach it.
1404  */
1405 static vdev_t *
1406 spa_vdev_replace_done_hunt(vdev_t *vd)
1407 {
1408 	vdev_t *newvd, *oldvd;
1409 	int c;
1410 
1411 	for (c = 0; c < vd->vdev_children; c++) {
1412 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1413 		if (oldvd != NULL)
1414 			return (oldvd);
1415 	}
1416 
1417 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1418 		oldvd = vd->vdev_child[0];
1419 		newvd = vd->vdev_child[1];
1420 
1421 		mutex_enter(&newvd->vdev_dtl_lock);
1422 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1423 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1424 			mutex_exit(&newvd->vdev_dtl_lock);
1425 			return (oldvd);
1426 		}
1427 		mutex_exit(&newvd->vdev_dtl_lock);
1428 	}
1429 
1430 	return (NULL);
1431 }
1432 
1433 static void
1434 spa_vdev_replace_done(spa_t *spa)
1435 {
1436 	vdev_t *vd;
1437 	uint64_t guid;
1438 
1439 	spa_config_enter(spa, RW_READER, FTAG);
1440 
1441 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1442 		guid = vd->vdev_guid;
1443 		spa_config_exit(spa, FTAG);
1444 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1445 			return;
1446 		spa_config_enter(spa, RW_READER, FTAG);
1447 	}
1448 
1449 	spa_config_exit(spa, FTAG);
1450 }
1451 
1452 /*
1453  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1454  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1455  */
1456 int
1457 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1458 {
1459 	vdev_t *rvd, *vd;
1460 	uint64_t txg;
1461 
1462 	rvd = spa->spa_root_vdev;
1463 
1464 	txg = spa_vdev_enter(spa);
1465 
1466 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1467 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1468 
1469 	if (!vd->vdev_ops->vdev_op_leaf)
1470 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1471 
1472 	spa_strfree(vd->vdev_path);
1473 	vd->vdev_path = spa_strdup(newpath);
1474 
1475 	vdev_config_dirty(vd->vdev_top);
1476 
1477 	return (spa_vdev_exit(spa, NULL, txg, 0));
1478 }
1479 
1480 /*
1481  * ==========================================================================
1482  * SPA Scrubbing
1483  * ==========================================================================
1484  */
1485 
1486 void
1487 spa_scrub_throttle(spa_t *spa, int direction)
1488 {
1489 	mutex_enter(&spa->spa_scrub_lock);
1490 	spa->spa_scrub_throttled += direction;
1491 	ASSERT(spa->spa_scrub_throttled >= 0);
1492 	if (spa->spa_scrub_throttled == 0)
1493 		cv_broadcast(&spa->spa_scrub_io_cv);
1494 	mutex_exit(&spa->spa_scrub_lock);
1495 }
1496 
1497 static void
1498 spa_scrub_io_done(zio_t *zio)
1499 {
1500 	spa_t *spa = zio->io_spa;
1501 
1502 	zio_buf_free(zio->io_data, zio->io_size);
1503 
1504 	mutex_enter(&spa->spa_scrub_lock);
1505 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1506 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
1507 		spa->spa_scrub_errors++;
1508 		mutex_enter(&vd->vdev_stat_lock);
1509 		vd->vdev_stat.vs_scrub_errors++;
1510 		mutex_exit(&vd->vdev_stat_lock);
1511 	}
1512 	if (--spa->spa_scrub_inflight == 0) {
1513 		cv_broadcast(&spa->spa_scrub_io_cv);
1514 		ASSERT(spa->spa_scrub_throttled == 0);
1515 	}
1516 	mutex_exit(&spa->spa_scrub_lock);
1517 }
1518 
1519 static void
1520 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1521     zbookmark_t *zb)
1522 {
1523 	size_t size = BP_GET_LSIZE(bp);
1524 	void *data = zio_buf_alloc(size);
1525 
1526 	mutex_enter(&spa->spa_scrub_lock);
1527 	spa->spa_scrub_inflight++;
1528 	mutex_exit(&spa->spa_scrub_lock);
1529 
1530 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1531 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1532 
1533 	flags |= ZIO_FLAG_CANFAIL;
1534 
1535 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1536 	    spa_scrub_io_done, NULL, priority, flags, zb));
1537 }
1538 
1539 /* ARGSUSED */
1540 static int
1541 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1542 {
1543 	blkptr_t *bp = &bc->bc_blkptr;
1544 	vdev_t *vd = spa->spa_root_vdev;
1545 	dva_t *dva = bp->blk_dva;
1546 	int needs_resilver = B_FALSE;
1547 	int d;
1548 
1549 	if (bc->bc_errno) {
1550 		/*
1551 		 * We can't scrub this block, but we can continue to scrub
1552 		 * the rest of the pool.  Note the error and move along.
1553 		 */
1554 		mutex_enter(&spa->spa_scrub_lock);
1555 		spa->spa_scrub_errors++;
1556 		mutex_exit(&spa->spa_scrub_lock);
1557 
1558 		mutex_enter(&vd->vdev_stat_lock);
1559 		vd->vdev_stat.vs_scrub_errors++;
1560 		mutex_exit(&vd->vdev_stat_lock);
1561 
1562 		return (ERESTART);
1563 	}
1564 
1565 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1566 
1567 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1568 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
1569 
1570 		ASSERT(vd != NULL);
1571 
1572 		/*
1573 		 * Keep track of how much data we've examined so that
1574 		 * zpool(1M) status can make useful progress reports.
1575 		 */
1576 		mutex_enter(&vd->vdev_stat_lock);
1577 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
1578 		mutex_exit(&vd->vdev_stat_lock);
1579 
1580 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1581 			if (DVA_GET_GANG(&dva[d])) {
1582 				/*
1583 				 * Gang members may be spread across multiple
1584 				 * vdevs, so the best we can do is look at the
1585 				 * pool-wide DTL.
1586 				 * XXX -- it would be better to change our
1587 				 * allocation policy to ensure that this can't
1588 				 * happen.
1589 				 */
1590 				vd = spa->spa_root_vdev;
1591 			}
1592 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
1593 			    bp->blk_birth, 1))
1594 				needs_resilver = B_TRUE;
1595 		}
1596 	}
1597 
1598 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
1599 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1600 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1601 	else if (needs_resilver)
1602 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1603 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1604 
1605 	return (0);
1606 }
1607 
1608 static void
1609 spa_scrub_thread(spa_t *spa)
1610 {
1611 	callb_cpr_t cprinfo;
1612 	traverse_handle_t *th = spa->spa_scrub_th;
1613 	vdev_t *rvd = spa->spa_root_vdev;
1614 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1615 	int error = 0;
1616 	boolean_t complete;
1617 
1618 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1619 
1620 	/*
1621 	 * If we're restarting due to a snapshot create/delete,
1622 	 * wait for that to complete.
1623 	 */
1624 	txg_wait_synced(spa_get_dsl(spa), 0);
1625 
1626 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1627 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1628 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1629 
1630 	spa_config_enter(spa, RW_WRITER, FTAG);
1631 	vdev_reopen(rvd);		/* purge all vdev caches */
1632 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1633 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1634 	spa_config_exit(spa, FTAG);
1635 
1636 	mutex_enter(&spa->spa_scrub_lock);
1637 	spa->spa_scrub_errors = 0;
1638 	spa->spa_scrub_active = 1;
1639 	ASSERT(spa->spa_scrub_inflight == 0);
1640 	ASSERT(spa->spa_scrub_throttled == 0);
1641 
1642 	while (!spa->spa_scrub_stop) {
1643 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1644 		while (spa->spa_scrub_suspended) {
1645 			spa->spa_scrub_active = 0;
1646 			cv_broadcast(&spa->spa_scrub_cv);
1647 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1648 			spa->spa_scrub_active = 1;
1649 		}
1650 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1651 
1652 		if (spa->spa_scrub_restart_txg != 0)
1653 			break;
1654 
1655 		mutex_exit(&spa->spa_scrub_lock);
1656 		error = traverse_more(th);
1657 		mutex_enter(&spa->spa_scrub_lock);
1658 		if (error != EAGAIN)
1659 			break;
1660 
1661 		while (spa->spa_scrub_throttled > 0)
1662 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1663 	}
1664 
1665 	while (spa->spa_scrub_inflight)
1666 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1667 
1668 	spa->spa_scrub_active = 0;
1669 	cv_broadcast(&spa->spa_scrub_cv);
1670 
1671 	mutex_exit(&spa->spa_scrub_lock);
1672 
1673 	spa_config_enter(spa, RW_WRITER, FTAG);
1674 
1675 	mutex_enter(&spa->spa_scrub_lock);
1676 
1677 	/*
1678 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
1679 	 * AND the spa config lock to synchronize with any config changes
1680 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
1681 	 */
1682 	if (spa->spa_scrub_restart_txg != 0)
1683 		error = ERESTART;
1684 
1685 	if (spa->spa_scrub_stop)
1686 		error = EINTR;
1687 
1688 	/*
1689 	 * Even if there were uncorrectable errors, we consider the scrub
1690 	 * completed.  The downside is that if there is a transient error during
1691 	 * a resilver, we won't resilver the data properly to the target.  But
1692 	 * if the damage is permanent (more likely) we will resilver forever,
1693 	 * which isn't really acceptable.  Since there is enough information for
1694 	 * the user to know what has failed and why, this seems like a more
1695 	 * tractable approach.
1696 	 */
1697 	complete = (error == 0);
1698 
1699 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1700 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1701 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1702 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1703 
1704 	mutex_exit(&spa->spa_scrub_lock);
1705 
1706 	/*
1707 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1708 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1709 	 */
1710 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1711 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1712 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1713 	spa_errlog_rotate(spa);
1714 
1715 	spa_config_exit(spa, FTAG);
1716 
1717 	mutex_enter(&spa->spa_scrub_lock);
1718 
1719 	/*
1720 	 * We may have finished replacing a device.
1721 	 * Let the async thread assess this and handle the detach.
1722 	 */
1723 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1724 
1725 	/*
1726 	 * If we were told to restart, our final act is to start a new scrub.
1727 	 */
1728 	if (error == ERESTART)
1729 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1730 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1731 
1732 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1733 	spa->spa_scrub_active = 0;
1734 	spa->spa_scrub_thread = NULL;
1735 	cv_broadcast(&spa->spa_scrub_cv);
1736 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1737 	thread_exit();
1738 }
1739 
1740 void
1741 spa_scrub_suspend(spa_t *spa)
1742 {
1743 	mutex_enter(&spa->spa_scrub_lock);
1744 	spa->spa_scrub_suspended++;
1745 	while (spa->spa_scrub_active) {
1746 		cv_broadcast(&spa->spa_scrub_cv);
1747 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1748 	}
1749 	while (spa->spa_scrub_inflight)
1750 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1751 	mutex_exit(&spa->spa_scrub_lock);
1752 }
1753 
1754 void
1755 spa_scrub_resume(spa_t *spa)
1756 {
1757 	mutex_enter(&spa->spa_scrub_lock);
1758 	ASSERT(spa->spa_scrub_suspended != 0);
1759 	if (--spa->spa_scrub_suspended == 0)
1760 		cv_broadcast(&spa->spa_scrub_cv);
1761 	mutex_exit(&spa->spa_scrub_lock);
1762 }
1763 
1764 void
1765 spa_scrub_restart(spa_t *spa, uint64_t txg)
1766 {
1767 	/*
1768 	 * Something happened (e.g. snapshot create/delete) that means
1769 	 * we must restart any in-progress scrubs.  The itinerary will
1770 	 * fix this properly.
1771 	 */
1772 	mutex_enter(&spa->spa_scrub_lock);
1773 	spa->spa_scrub_restart_txg = txg;
1774 	mutex_exit(&spa->spa_scrub_lock);
1775 }
1776 
1777 int
1778 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1779 {
1780 	space_seg_t *ss;
1781 	uint64_t mintxg, maxtxg;
1782 	vdev_t *rvd = spa->spa_root_vdev;
1783 
1784 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1785 		return (ENOTSUP);
1786 
1787 	mutex_enter(&spa->spa_scrub_lock);
1788 
1789 	/*
1790 	 * If there's a scrub or resilver already in progress, stop it.
1791 	 */
1792 	while (spa->spa_scrub_thread != NULL) {
1793 		/*
1794 		 * Don't stop a resilver unless forced.
1795 		 */
1796 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1797 			mutex_exit(&spa->spa_scrub_lock);
1798 			return (EBUSY);
1799 		}
1800 		spa->spa_scrub_stop = 1;
1801 		cv_broadcast(&spa->spa_scrub_cv);
1802 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1803 	}
1804 
1805 	/*
1806 	 * Terminate the previous traverse.
1807 	 */
1808 	if (spa->spa_scrub_th != NULL) {
1809 		traverse_fini(spa->spa_scrub_th);
1810 		spa->spa_scrub_th = NULL;
1811 	}
1812 
1813 	if (rvd == NULL) {
1814 		ASSERT(spa->spa_scrub_stop == 0);
1815 		ASSERT(spa->spa_scrub_type == type);
1816 		ASSERT(spa->spa_scrub_restart_txg == 0);
1817 		mutex_exit(&spa->spa_scrub_lock);
1818 		return (0);
1819 	}
1820 
1821 	mintxg = TXG_INITIAL - 1;
1822 	maxtxg = spa_last_synced_txg(spa) + 1;
1823 
1824 	mutex_enter(&rvd->vdev_dtl_lock);
1825 
1826 	if (rvd->vdev_dtl_map.sm_space == 0) {
1827 		/*
1828 		 * The pool-wide DTL is empty.
1829 		 * If this is a resilver, there's nothing to do except
1830 		 * check whether any in-progress replacements have completed.
1831 		 */
1832 		if (type == POOL_SCRUB_RESILVER) {
1833 			type = POOL_SCRUB_NONE;
1834 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1835 		}
1836 	} else {
1837 		/*
1838 		 * The pool-wide DTL is non-empty.
1839 		 * If this is a normal scrub, upgrade to a resilver instead.
1840 		 */
1841 		if (type == POOL_SCRUB_EVERYTHING)
1842 			type = POOL_SCRUB_RESILVER;
1843 	}
1844 
1845 	if (type == POOL_SCRUB_RESILVER) {
1846 		/*
1847 		 * Determine the resilvering boundaries.
1848 		 *
1849 		 * Note: (mintxg, maxtxg) is an open interval,
1850 		 * i.e. mintxg and maxtxg themselves are not included.
1851 		 *
1852 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1853 		 * so we don't claim to resilver a txg that's still changing.
1854 		 */
1855 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1856 		mintxg = ss->ss_start - 1;
1857 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1858 		maxtxg = MIN(ss->ss_end, maxtxg);
1859 	}
1860 
1861 	mutex_exit(&rvd->vdev_dtl_lock);
1862 
1863 	spa->spa_scrub_stop = 0;
1864 	spa->spa_scrub_type = type;
1865 	spa->spa_scrub_restart_txg = 0;
1866 
1867 	if (type != POOL_SCRUB_NONE) {
1868 		spa->spa_scrub_mintxg = mintxg;
1869 		spa->spa_scrub_maxtxg = maxtxg;
1870 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1871 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
1872 		    ZIO_FLAG_CANFAIL);
1873 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1874 		spa->spa_scrub_thread = thread_create(NULL, 0,
1875 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1876 	}
1877 
1878 	mutex_exit(&spa->spa_scrub_lock);
1879 
1880 	return (0);
1881 }
1882 
1883 /*
1884  * ==========================================================================
1885  * SPA async task processing
1886  * ==========================================================================
1887  */
1888 
1889 static void
1890 spa_async_reopen(spa_t *spa)
1891 {
1892 	vdev_t *rvd = spa->spa_root_vdev;
1893 	vdev_t *tvd;
1894 	int c;
1895 
1896 	spa_config_enter(spa, RW_WRITER, FTAG);
1897 
1898 	for (c = 0; c < rvd->vdev_children; c++) {
1899 		tvd = rvd->vdev_child[c];
1900 		if (tvd->vdev_reopen_wanted) {
1901 			tvd->vdev_reopen_wanted = 0;
1902 			vdev_reopen(tvd);
1903 		}
1904 	}
1905 
1906 	spa_config_exit(spa, FTAG);
1907 }
1908 
1909 static void
1910 spa_async_thread(spa_t *spa)
1911 {
1912 	int tasks;
1913 
1914 	ASSERT(spa->spa_sync_on);
1915 
1916 	mutex_enter(&spa->spa_async_lock);
1917 	tasks = spa->spa_async_tasks;
1918 	spa->spa_async_tasks = 0;
1919 	mutex_exit(&spa->spa_async_lock);
1920 
1921 	/*
1922 	 * See if the config needs to be updated.
1923 	 */
1924 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
1925 		mutex_enter(&spa_namespace_lock);
1926 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1927 		mutex_exit(&spa_namespace_lock);
1928 	}
1929 
1930 	/*
1931 	 * See if any devices need to be reopened.
1932 	 */
1933 	if (tasks & SPA_ASYNC_REOPEN)
1934 		spa_async_reopen(spa);
1935 
1936 	/*
1937 	 * If any devices are done replacing, detach them.
1938 	 */
1939 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1940 		spa_vdev_replace_done(spa);
1941 
1942 	/*
1943 	 * Kick off a scrub.
1944 	 */
1945 	if (tasks & SPA_ASYNC_SCRUB)
1946 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1947 
1948 	/*
1949 	 * Kick off a resilver.
1950 	 */
1951 	if (tasks & SPA_ASYNC_RESILVER)
1952 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1953 
1954 	/*
1955 	 * Let the world know that we're done.
1956 	 */
1957 	mutex_enter(&spa->spa_async_lock);
1958 	spa->spa_async_thread = NULL;
1959 	cv_broadcast(&spa->spa_async_cv);
1960 	mutex_exit(&spa->spa_async_lock);
1961 	thread_exit();
1962 }
1963 
1964 void
1965 spa_async_suspend(spa_t *spa)
1966 {
1967 	mutex_enter(&spa->spa_async_lock);
1968 	spa->spa_async_suspended++;
1969 	while (spa->spa_async_thread != NULL)
1970 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1971 	mutex_exit(&spa->spa_async_lock);
1972 }
1973 
1974 void
1975 spa_async_resume(spa_t *spa)
1976 {
1977 	mutex_enter(&spa->spa_async_lock);
1978 	ASSERT(spa->spa_async_suspended != 0);
1979 	spa->spa_async_suspended--;
1980 	mutex_exit(&spa->spa_async_lock);
1981 }
1982 
1983 static void
1984 spa_async_dispatch(spa_t *spa)
1985 {
1986 	mutex_enter(&spa->spa_async_lock);
1987 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1988 	    spa->spa_async_thread == NULL &&
1989 	    rootdir != NULL && !vn_is_readonly(rootdir))
1990 		spa->spa_async_thread = thread_create(NULL, 0,
1991 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1992 	mutex_exit(&spa->spa_async_lock);
1993 }
1994 
1995 void
1996 spa_async_request(spa_t *spa, int task)
1997 {
1998 	mutex_enter(&spa->spa_async_lock);
1999 	spa->spa_async_tasks |= task;
2000 	mutex_exit(&spa->spa_async_lock);
2001 }
2002 
2003 /*
2004  * ==========================================================================
2005  * SPA syncing routines
2006  * ==========================================================================
2007  */
2008 
2009 static void
2010 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2011 {
2012 	bplist_t *bpl = &spa->spa_sync_bplist;
2013 	dmu_tx_t *tx;
2014 	blkptr_t blk;
2015 	uint64_t itor = 0;
2016 	zio_t *zio;
2017 	int error;
2018 	uint8_t c = 1;
2019 
2020 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2021 
2022 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2023 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2024 
2025 	error = zio_wait(zio);
2026 	ASSERT3U(error, ==, 0);
2027 
2028 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2029 	bplist_vacate(bpl, tx);
2030 
2031 	/*
2032 	 * Pre-dirty the first block so we sync to convergence faster.
2033 	 * (Usually only the first block is needed.)
2034 	 */
2035 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2036 	dmu_tx_commit(tx);
2037 }
2038 
2039 static void
2040 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2041 {
2042 	nvlist_t *config;
2043 	char *packed = NULL;
2044 	size_t nvsize = 0;
2045 	dmu_buf_t *db;
2046 
2047 	if (list_is_empty(&spa->spa_dirty_list))
2048 		return;
2049 
2050 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2051 
2052 	if (spa->spa_config_syncing)
2053 		nvlist_free(spa->spa_config_syncing);
2054 	spa->spa_config_syncing = config;
2055 
2056 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2057 
2058 	packed = kmem_alloc(nvsize, KM_SLEEP);
2059 
2060 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2061 	    KM_SLEEP) == 0);
2062 
2063 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2064 	    packed, tx);
2065 
2066 	kmem_free(packed, nvsize);
2067 
2068 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2069 	    spa->spa_config_object, FTAG, &db));
2070 	dmu_buf_will_dirty(db, tx);
2071 	*(uint64_t *)db->db_data = nvsize;
2072 	dmu_buf_rele(db, FTAG);
2073 }
2074 
2075 /*
2076  * Sync the specified transaction group.  New blocks may be dirtied as
2077  * part of the process, so we iterate until it converges.
2078  */
2079 void
2080 spa_sync(spa_t *spa, uint64_t txg)
2081 {
2082 	dsl_pool_t *dp = spa->spa_dsl_pool;
2083 	objset_t *mos = spa->spa_meta_objset;
2084 	bplist_t *bpl = &spa->spa_sync_bplist;
2085 	vdev_t *rvd = spa->spa_root_vdev;
2086 	vdev_t *vd;
2087 	dmu_tx_t *tx;
2088 	int dirty_vdevs;
2089 
2090 	/*
2091 	 * Lock out configuration changes.
2092 	 */
2093 	spa_config_enter(spa, RW_READER, FTAG);
2094 
2095 	spa->spa_syncing_txg = txg;
2096 	spa->spa_sync_pass = 0;
2097 
2098 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2099 
2100 	/*
2101 	 * If anything has changed in this txg, push the deferred frees
2102 	 * from the previous txg.  If not, leave them alone so that we
2103 	 * don't generate work on an otherwise idle system.
2104 	 */
2105 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2106 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2107 		spa_sync_deferred_frees(spa, txg);
2108 
2109 	/*
2110 	 * Iterate to convergence.
2111 	 */
2112 	do {
2113 		spa->spa_sync_pass++;
2114 
2115 		tx = dmu_tx_create_assigned(dp, txg);
2116 		spa_sync_config_object(spa, tx);
2117 		dmu_tx_commit(tx);
2118 
2119 		spa_errlog_sync(spa, txg);
2120 
2121 		dsl_pool_sync(dp, txg);
2122 
2123 		dirty_vdevs = 0;
2124 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2125 			vdev_sync(vd, txg);
2126 			dirty_vdevs++;
2127 		}
2128 
2129 		tx = dmu_tx_create_assigned(dp, txg);
2130 		bplist_sync(bpl, tx);
2131 		dmu_tx_commit(tx);
2132 
2133 	} while (dirty_vdevs);
2134 
2135 	bplist_close(bpl);
2136 
2137 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2138 
2139 	/*
2140 	 * Rewrite the vdev configuration (which includes the uberblock)
2141 	 * to commit the transaction group.
2142 	 *
2143 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2144 	 * Otherwise, pick a random top-level vdev that's known to be
2145 	 * visible in the config cache (see spa_vdev_add() for details).
2146 	 * If the write fails, try the next vdev until we're tried them all.
2147 	 */
2148 	if (!list_is_empty(&spa->spa_dirty_list)) {
2149 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2150 	} else {
2151 		int children = rvd->vdev_children;
2152 		int c0 = spa_get_random(children);
2153 		int c;
2154 
2155 		for (c = 0; c < children; c++) {
2156 			vd = rvd->vdev_child[(c0 + c) % children];
2157 			if (vd->vdev_ms_array == 0)
2158 				continue;
2159 			if (vdev_config_sync(vd, txg) == 0)
2160 				break;
2161 		}
2162 		if (c == children)
2163 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2164 	}
2165 
2166 	/*
2167 	 * Clear the dirty config list.
2168 	 */
2169 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2170 		vdev_config_clean(vd);
2171 
2172 	/*
2173 	 * Now that the new config has synced transactionally,
2174 	 * let it become visible to the config cache.
2175 	 */
2176 	if (spa->spa_config_syncing != NULL) {
2177 		spa_config_set(spa, spa->spa_config_syncing);
2178 		spa->spa_config_txg = txg;
2179 		spa->spa_config_syncing = NULL;
2180 	}
2181 
2182 	/*
2183 	 * Make a stable copy of the fully synced uberblock.
2184 	 * We use this as the root for pool traversals.
2185 	 */
2186 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2187 
2188 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2189 
2190 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2191 	spa->spa_traverse_wanted = 0;
2192 	spa->spa_ubsync = spa->spa_uberblock;
2193 	rw_exit(&spa->spa_traverse_lock);
2194 
2195 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2196 
2197 	/*
2198 	 * Clean up the ZIL records for the synced txg.
2199 	 */
2200 	dsl_pool_zil_clean(dp);
2201 
2202 	/*
2203 	 * Update usable space statistics.
2204 	 */
2205 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2206 		vdev_sync_done(vd, txg);
2207 
2208 	/*
2209 	 * It had better be the case that we didn't dirty anything
2210 	 * since spa_sync_labels().
2211 	 */
2212 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2213 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2214 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2215 	ASSERT(bpl->bpl_queue == NULL);
2216 
2217 	spa_config_exit(spa, FTAG);
2218 
2219 	/*
2220 	 * If any async tasks have been requested, kick them off.
2221 	 */
2222 	spa_async_dispatch(spa);
2223 }
2224 
2225 /*
2226  * Sync all pools.  We don't want to hold the namespace lock across these
2227  * operations, so we take a reference on the spa_t and drop the lock during the
2228  * sync.
2229  */
2230 void
2231 spa_sync_allpools(void)
2232 {
2233 	spa_t *spa = NULL;
2234 	mutex_enter(&spa_namespace_lock);
2235 	while ((spa = spa_next(spa)) != NULL) {
2236 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2237 			continue;
2238 		spa_open_ref(spa, FTAG);
2239 		mutex_exit(&spa_namespace_lock);
2240 		txg_wait_synced(spa_get_dsl(spa), 0);
2241 		mutex_enter(&spa_namespace_lock);
2242 		spa_close(spa, FTAG);
2243 	}
2244 	mutex_exit(&spa_namespace_lock);
2245 }
2246 
2247 /*
2248  * ==========================================================================
2249  * Miscellaneous routines
2250  * ==========================================================================
2251  */
2252 
2253 /*
2254  * Remove all pools in the system.
2255  */
2256 void
2257 spa_evict_all(void)
2258 {
2259 	spa_t *spa;
2260 
2261 	/*
2262 	 * Remove all cached state.  All pools should be closed now,
2263 	 * so every spa in the AVL tree should be unreferenced.
2264 	 */
2265 	mutex_enter(&spa_namespace_lock);
2266 	while ((spa = spa_next(NULL)) != NULL) {
2267 		/*
2268 		 * Stop async tasks.  The async thread may need to detach
2269 		 * a device that's been replaced, which requires grabbing
2270 		 * spa_namespace_lock, so we must drop it here.
2271 		 */
2272 		spa_open_ref(spa, FTAG);
2273 		mutex_exit(&spa_namespace_lock);
2274 		spa_async_suspend(spa);
2275 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2276 		mutex_enter(&spa_namespace_lock);
2277 		spa_close(spa, FTAG);
2278 
2279 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2280 			spa_unload(spa);
2281 			spa_deactivate(spa);
2282 		}
2283 		spa_remove(spa);
2284 	}
2285 	mutex_exit(&spa_namespace_lock);
2286 }
2287 
2288 vdev_t *
2289 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2290 {
2291 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2292 }
2293 
2294 void
2295 spa_upgrade(spa_t *spa)
2296 {
2297 	spa_config_enter(spa, RW_WRITER, FTAG);
2298 
2299 	/*
2300 	 * This should only be called for a non-faulted pool, and since a
2301 	 * future version would result in an unopenable pool, this shouldn't be
2302 	 * possible.
2303 	 */
2304 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2305 
2306 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2307 	vdev_config_dirty(spa->spa_root_vdev);
2308 
2309 	spa_config_exit(spa, FTAG);
2310 }
2311