xref: /titanic_50/usr/src/uts/common/fs/zfs/spa.c (revision 0917b783fd655a0c943e0b8fb848db2301774947)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 static uint32_t spa_active_count;
58 
59 /*
60  * ==========================================================================
61  * SPA state manipulation (open/create/destroy/import/export)
62  * ==========================================================================
63  */
64 
65 static int
66 spa_error_entry_compare(const void *a, const void *b)
67 {
68 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
69 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
70 	int ret;
71 
72 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
73 	    sizeof (zbookmark_t));
74 
75 	if (ret < 0)
76 		return (-1);
77 	else if (ret > 0)
78 		return (1);
79 	else
80 		return (0);
81 }
82 
83 /*
84  * Utility function which retrieves copies of the current logs and
85  * re-initializes them in the process.
86  */
87 void
88 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
89 {
90 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
91 
92 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
93 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
94 
95 	avl_create(&spa->spa_errlist_scrub,
96 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
97 	    offsetof(spa_error_entry_t, se_avl));
98 	avl_create(&spa->spa_errlist_last,
99 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
100 	    offsetof(spa_error_entry_t, se_avl));
101 }
102 
103 /*
104  * Activate an uninitialized pool.
105  */
106 static void
107 spa_activate(spa_t *spa)
108 {
109 	int t;
110 
111 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
112 
113 	spa->spa_state = POOL_STATE_ACTIVE;
114 
115 	spa->spa_normal_class = metaslab_class_create();
116 
117 	for (t = 0; t < ZIO_TYPES; t++) {
118 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
119 		    8, maxclsyspri, 50, INT_MAX,
120 		    TASKQ_PREPOPULATE);
121 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
122 		    8, maxclsyspri, 50, INT_MAX,
123 		    TASKQ_PREPOPULATE);
124 	}
125 
126 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
127 
128 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
129 	    offsetof(vdev_t, vdev_dirty_node));
130 
131 	txg_list_create(&spa->spa_vdev_txg_list,
132 	    offsetof(struct vdev, vdev_txg_node));
133 
134 	avl_create(&spa->spa_errlist_scrub,
135 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
136 	    offsetof(spa_error_entry_t, se_avl));
137 	avl_create(&spa->spa_errlist_last,
138 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
139 	    offsetof(spa_error_entry_t, se_avl));
140 }
141 
142 /*
143  * Opposite of spa_activate().
144  */
145 static void
146 spa_deactivate(spa_t *spa)
147 {
148 	int t;
149 
150 	ASSERT(spa->spa_sync_on == B_FALSE);
151 	ASSERT(spa->spa_dsl_pool == NULL);
152 	ASSERT(spa->spa_root_vdev == NULL);
153 
154 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
155 
156 	txg_list_destroy(&spa->spa_vdev_txg_list);
157 
158 	list_destroy(&spa->spa_dirty_list);
159 
160 	rw_destroy(&spa->spa_traverse_lock);
161 
162 	for (t = 0; t < ZIO_TYPES; t++) {
163 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
164 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
165 		spa->spa_zio_issue_taskq[t] = NULL;
166 		spa->spa_zio_intr_taskq[t] = NULL;
167 	}
168 
169 	metaslab_class_destroy(spa->spa_normal_class);
170 	spa->spa_normal_class = NULL;
171 
172 	/*
173 	 * If this was part of an import or the open otherwise failed, we may
174 	 * still have errors left in the queues.  Empty them just in case.
175 	 */
176 	spa_errlog_drain(spa);
177 
178 	avl_destroy(&spa->spa_errlist_scrub);
179 	avl_destroy(&spa->spa_errlist_last);
180 
181 	spa->spa_state = POOL_STATE_UNINITIALIZED;
182 }
183 
184 /*
185  * Verify a pool configuration, and construct the vdev tree appropriately.  This
186  * will create all the necessary vdevs in the appropriate layout, with each vdev
187  * in the CLOSED state.  This will prep the pool before open/creation/import.
188  * All vdev validation is done by the vdev_alloc() routine.
189  */
190 static vdev_t *
191 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	vdev_t *vd;
196 
197 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
198 		return (NULL);
199 
200 	if (vd->vdev_ops->vdev_op_leaf)
201 		return (vd);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(vd);
206 		return (NULL);
207 	}
208 
209 	for (c = 0; c < children; c++) {
210 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
211 			vdev_free(vd);
212 			return (NULL);
213 		}
214 	}
215 
216 	return (vd);
217 }
218 
219 /*
220  * Opposite of spa_load().
221  */
222 static void
223 spa_unload(spa_t *spa)
224 {
225 	/*
226 	 * Stop async tasks.
227 	 */
228 	spa_async_suspend(spa);
229 
230 	/*
231 	 * Stop syncing.
232 	 */
233 	if (spa->spa_sync_on) {
234 		txg_sync_stop(spa->spa_dsl_pool);
235 		spa->spa_sync_on = B_FALSE;
236 	}
237 
238 	/*
239 	 * Wait for any outstanding prefetch I/O to complete.
240 	 */
241 	spa_config_enter(spa, RW_WRITER, FTAG);
242 	spa_config_exit(spa, FTAG);
243 
244 	/*
245 	 * Close the dsl pool.
246 	 */
247 	if (spa->spa_dsl_pool) {
248 		dsl_pool_close(spa->spa_dsl_pool);
249 		spa->spa_dsl_pool = NULL;
250 	}
251 
252 	/*
253 	 * Close all vdevs.
254 	 */
255 	if (spa->spa_root_vdev)
256 		vdev_free(spa->spa_root_vdev);
257 	ASSERT(spa->spa_root_vdev == NULL);
258 
259 	spa->spa_async_suspended = 0;
260 }
261 
262 /*
263  * Load an existing storage pool, using the pool's builtin spa_config as a
264  * source of configuration information.
265  */
266 static int
267 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
268 {
269 	int error = 0;
270 	uint64_t config_cache_txg = spa->spa_config_txg;
271 	nvlist_t *nvroot = NULL;
272 	vdev_t *rvd;
273 	uberblock_t *ub = &spa->spa_uberblock;
274 	uint64_t pool_guid;
275 	zio_t *zio;
276 
277 	spa->spa_load_state = state;
278 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
279 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
280 		error = EINVAL;
281 		goto out;
282 	}
283 
284 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
285 	    &spa->spa_config_txg);
286 
287 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
288 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
289 	    spa_guid_exists(pool_guid, 0)) {
290 		error = EEXIST;
291 		goto out;
292 	}
293 
294 	/*
295 	 * Parse the configuration into a vdev tree.
296 	 */
297 	spa_config_enter(spa, RW_WRITER, FTAG);
298 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
299 	spa_config_exit(spa, FTAG);
300 
301 	if (rvd == NULL) {
302 		error = EINVAL;
303 		goto out;
304 	}
305 
306 	ASSERT(spa->spa_root_vdev == rvd);
307 	ASSERT(spa_guid(spa) == pool_guid);
308 
309 	/*
310 	 * Try to open all vdevs, loading each label in the process.
311 	 */
312 	if (vdev_open(rvd) != 0) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 
317 	/*
318 	 * Find the best uberblock.
319 	 */
320 	bzero(ub, sizeof (uberblock_t));
321 
322 	zio = zio_root(spa, NULL, NULL,
323 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
324 	vdev_uberblock_load(zio, rvd, ub);
325 	error = zio_wait(zio);
326 
327 	/*
328 	 * If we weren't able to find a single valid uberblock, return failure.
329 	 */
330 	if (ub->ub_txg == 0) {
331 		error = ENXIO;
332 		goto out;
333 	}
334 
335 	/*
336 	 * If the pool is newer than the code, we can't open it.
337 	 */
338 	if (ub->ub_version > UBERBLOCK_VERSION) {
339 		error = ENOTSUP;
340 		goto out;
341 	}
342 
343 	/*
344 	 * If the vdev guid sum doesn't match the uberblock, we have an
345 	 * incomplete configuration.
346 	 */
347 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
348 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
349 		    VDEV_AUX_BAD_GUID_SUM);
350 		error = ENXIO;
351 		goto out;
352 	}
353 
354 	/*
355 	 * Initialize internal SPA structures.
356 	 */
357 	spa->spa_state = POOL_STATE_ACTIVE;
358 	spa->spa_ubsync = spa->spa_uberblock;
359 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
360 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
361 	if (error) {
362 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
363 		    VDEV_AUX_CORRUPT_DATA);
364 		goto out;
365 	}
366 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
367 
368 	if (zap_lookup(spa->spa_meta_objset,
369 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
370 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
371 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
372 		    VDEV_AUX_CORRUPT_DATA);
373 		error = EIO;
374 		goto out;
375 	}
376 
377 	if (!mosconfig) {
378 		dmu_buf_t *db;
379 		char *packed = NULL;
380 		size_t nvsize = 0;
381 		nvlist_t *newconfig = NULL;
382 
383 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
384 		    spa->spa_config_object, FTAG, &db));
385 		nvsize = *(uint64_t *)db->db_data;
386 		dmu_buf_rele(db, FTAG);
387 
388 		packed = kmem_alloc(nvsize, KM_SLEEP);
389 		error = dmu_read(spa->spa_meta_objset,
390 		    spa->spa_config_object, 0, nvsize, packed);
391 		if (error == 0)
392 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
393 		kmem_free(packed, nvsize);
394 
395 		if (error) {
396 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
397 			    VDEV_AUX_CORRUPT_DATA);
398 			error = EIO;
399 			goto out;
400 		}
401 
402 		spa_config_set(spa, newconfig);
403 
404 		spa_unload(spa);
405 		spa_deactivate(spa);
406 		spa_activate(spa);
407 
408 		return (spa_load(spa, newconfig, state, B_TRUE));
409 	}
410 
411 	if (zap_lookup(spa->spa_meta_objset,
412 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
413 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
414 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
415 		    VDEV_AUX_CORRUPT_DATA);
416 		error = EIO;
417 		goto out;
418 	}
419 
420 	/*
421 	 * Load the persistent error log.  If we have an older pool, this will
422 	 * not be present.
423 	 */
424 	error = zap_lookup(spa->spa_meta_objset,
425 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
426 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
427 	if (error != 0 &&error != ENOENT) {
428 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
429 		    VDEV_AUX_CORRUPT_DATA);
430 		error = EIO;
431 		goto out;
432 	}
433 
434 	error = zap_lookup(spa->spa_meta_objset,
435 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
436 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
437 	if (error != 0 && error != ENOENT) {
438 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
439 		    VDEV_AUX_CORRUPT_DATA);
440 		error = EIO;
441 		goto out;
442 	}
443 
444 	/*
445 	 * Load the vdev state for all top level vdevs.  We need to grab the
446 	 * config lock because all label I/O is done with the
447 	 * ZIO_FLAG_CONFIG_HELD flag.
448 	 */
449 	spa_config_enter(spa, RW_READER, FTAG);
450 	if ((error = vdev_load(rvd)) != 0) {
451 		spa_config_exit(spa, FTAG);
452 		goto out;
453 	}
454 	spa_config_exit(spa, FTAG);
455 
456 	/*
457 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
458 	 */
459 	spa_config_enter(spa, RW_WRITER, FTAG);
460 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
461 	spa_config_exit(spa, FTAG);
462 
463 	/*
464 	 * Check the state of the root vdev.  If it can't be opened, it
465 	 * indicates one or more toplevel vdevs are faulted.
466 	 */
467 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
468 		error = ENXIO;
469 		goto out;
470 	}
471 
472 	/*
473 	 * Claim log blocks that haven't been committed yet, and update all
474 	 * top-level vdevs to sync any config changes found in vdev_load().
475 	 * This must all happen in a single txg.
476 	 */
477 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
478 		int c;
479 		dmu_tx_t *tx;
480 
481 		spa_config_enter(spa, RW_WRITER, FTAG);
482 		vdev_config_dirty(rvd);
483 		spa_config_exit(spa, FTAG);
484 
485 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
486 		    spa_first_txg(spa));
487 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
488 		dmu_tx_commit(tx);
489 
490 		spa->spa_sync_on = B_TRUE;
491 		txg_sync_start(spa->spa_dsl_pool);
492 
493 		/*
494 		 * Wait for all claims to sync.
495 		 */
496 		txg_wait_synced(spa->spa_dsl_pool, 0);
497 
498 		/*
499 		 * If the config cache is stale relative to the mosconfig,
500 		 * sync the config cache.
501 		 */
502 		if (config_cache_txg != spa->spa_config_txg) {
503 			uint64_t txg;
504 			spa_config_enter(spa, RW_WRITER, FTAG);
505 			txg = spa_last_synced_txg(spa) + 1;
506 			spa_config_set(spa,
507 			    spa_config_generate(spa, rvd, txg, 0));
508 			spa_config_exit(spa, FTAG);
509 			txg_wait_synced(spa->spa_dsl_pool, txg);
510 			spa_config_sync();
511 		}
512 
513 		/*
514 		 * If we have top-level vdevs that were added but have
515 		 * not yet been prepared for allocation, do that now.
516 		 * (It's safe now because the config cache is up to date,
517 		 * so it will be able to translate the new DVAs.)
518 		 * See comments in spa_vdev_add() for full details.
519 		 */
520 		for (c = 0; c < rvd->vdev_children; c++) {
521 			vdev_t *tvd = rvd->vdev_child[c];
522 			if (tvd->vdev_ms_array == 0) {
523 				uint64_t txg;
524 				ASSERT(tvd->vdev_ms_shift == 0);
525 				spa_config_enter(spa, RW_WRITER, FTAG);
526 				txg = spa_last_synced_txg(spa) + 1;
527 				vdev_init(tvd, txg);
528 				vdev_config_dirty(tvd);
529 				spa_config_set(spa,
530 				    spa_config_generate(spa, rvd, txg, 0));
531 				spa_config_exit(spa, FTAG);
532 				txg_wait_synced(spa->spa_dsl_pool, txg);
533 				ASSERT(tvd->vdev_ms_shift != 0);
534 				ASSERT(tvd->vdev_ms_array != 0);
535 				spa_config_sync();
536 			}
537 		}
538 	}
539 
540 	error = 0;
541 out:
542 	if (error)
543 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
544 	spa->spa_load_state = SPA_LOAD_NONE;
545 	spa->spa_ena = 0;
546 
547 	return (error);
548 }
549 
550 /*
551  * Pool Open/Import
552  *
553  * The import case is identical to an open except that the configuration is sent
554  * down from userland, instead of grabbed from the configuration cache.  For the
555  * case of an open, the pool configuration will exist in the
556  * POOL_STATE_UNITIALIZED state.
557  *
558  * The stats information (gen/count/ustats) is used to gather vdev statistics at
559  * the same time open the pool, without having to keep around the spa_t in some
560  * ambiguous state.
561  */
562 static int
563 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
564 {
565 	spa_t *spa;
566 	int error;
567 	int loaded = B_FALSE;
568 	int locked = B_FALSE;
569 
570 	*spapp = NULL;
571 
572 	/*
573 	 * As disgusting as this is, we need to support recursive calls to this
574 	 * function because dsl_dir_open() is called during spa_load(), and ends
575 	 * up calling spa_open() again.  The real fix is to figure out how to
576 	 * avoid dsl_dir_open() calling this in the first place.
577 	 */
578 	if (mutex_owner(&spa_namespace_lock) != curthread) {
579 		mutex_enter(&spa_namespace_lock);
580 		locked = B_TRUE;
581 	}
582 
583 	if ((spa = spa_lookup(pool)) == NULL) {
584 		if (locked)
585 			mutex_exit(&spa_namespace_lock);
586 		return (ENOENT);
587 	}
588 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
589 
590 		spa_activate(spa);
591 
592 		error = spa_load(spa, spa->spa_config,
593 		    SPA_LOAD_OPEN, B_FALSE);
594 
595 		if (error == EBADF) {
596 			/*
597 			 * If vdev_load() returns EBADF, it indicates that one
598 			 * of the vdevs indicates that the pool has been
599 			 * exported or destroyed.  If this is the case, the
600 			 * config cache is out of sync and we should remove the
601 			 * pool from the namespace.
602 			 */
603 			spa_unload(spa);
604 			spa_deactivate(spa);
605 			spa_remove(spa);
606 			spa_config_sync();
607 			if (locked)
608 				mutex_exit(&spa_namespace_lock);
609 			return (ENOENT);
610 		}
611 
612 		if (error) {
613 			/*
614 			 * We can't open the pool, but we still have useful
615 			 * information: the state of each vdev after the
616 			 * attempted vdev_open().  Return this to the user.
617 			 */
618 			if (config != NULL && spa->spa_root_vdev != NULL)
619 				*config = spa_config_generate(spa, NULL, -1ULL,
620 				    B_TRUE);
621 			spa_unload(spa);
622 			spa_deactivate(spa);
623 			spa->spa_last_open_failed = B_TRUE;
624 			if (locked)
625 				mutex_exit(&spa_namespace_lock);
626 			*spapp = NULL;
627 			return (error);
628 		} else {
629 			zfs_post_ok(spa, NULL);
630 			spa->spa_last_open_failed = B_FALSE;
631 		}
632 
633 		loaded = B_TRUE;
634 	}
635 
636 	spa_open_ref(spa, tag);
637 	if (locked)
638 		mutex_exit(&spa_namespace_lock);
639 
640 	*spapp = spa;
641 
642 	if (config != NULL) {
643 		spa_config_enter(spa, RW_READER, FTAG);
644 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
645 		spa_config_exit(spa, FTAG);
646 	}
647 
648 	/*
649 	 * If we just loaded the pool, resilver anything that's out of date.
650 	 */
651 	if (loaded && (spa_mode & FWRITE))
652 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
653 
654 	return (0);
655 }
656 
657 int
658 spa_open(const char *name, spa_t **spapp, void *tag)
659 {
660 	return (spa_open_common(name, spapp, tag, NULL));
661 }
662 
663 /*
664  * Lookup the given spa_t, incrementing the inject count in the process,
665  * preventing it from being exported or destroyed.
666  */
667 spa_t *
668 spa_inject_addref(char *name)
669 {
670 	spa_t *spa;
671 
672 	mutex_enter(&spa_namespace_lock);
673 	if ((spa = spa_lookup(name)) == NULL) {
674 		mutex_exit(&spa_namespace_lock);
675 		return (NULL);
676 	}
677 	spa->spa_inject_ref++;
678 	mutex_exit(&spa_namespace_lock);
679 
680 	return (spa);
681 }
682 
683 void
684 spa_inject_delref(spa_t *spa)
685 {
686 	mutex_enter(&spa_namespace_lock);
687 	spa->spa_inject_ref--;
688 	mutex_exit(&spa_namespace_lock);
689 }
690 
691 int
692 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
693 {
694 	int error;
695 	spa_t *spa;
696 
697 	*config = NULL;
698 	error = spa_open_common(name, &spa, FTAG, config);
699 
700 	if (spa && *config != NULL)
701 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
702 		    spa_get_errlog_size(spa)) == 0);
703 
704 	/*
705 	 * We want to get the alternate root even for faulted pools, so we cheat
706 	 * and call spa_lookup() directly.
707 	 */
708 	if (altroot) {
709 		if (spa == NULL) {
710 			mutex_enter(&spa_namespace_lock);
711 			spa = spa_lookup(name);
712 			if (spa)
713 				spa_altroot(spa, altroot, buflen);
714 			else
715 				altroot[0] = '\0';
716 			spa = NULL;
717 			mutex_exit(&spa_namespace_lock);
718 		} else {
719 			spa_altroot(spa, altroot, buflen);
720 		}
721 	}
722 
723 	if (spa != NULL)
724 		spa_close(spa, FTAG);
725 
726 	return (error);
727 }
728 
729 /*
730  * Pool Creation
731  */
732 int
733 spa_create(const char *pool, nvlist_t *nvroot, char *altroot)
734 {
735 	spa_t *spa;
736 	dsl_pool_t *dp;
737 	dmu_tx_t *tx;
738 	int error;
739 	uint64_t txg = TXG_INITIAL;
740 
741 	/*
742 	 * If this pool already exists, return failure.
743 	 */
744 	mutex_enter(&spa_namespace_lock);
745 	if (spa_lookup(pool) != NULL) {
746 		mutex_exit(&spa_namespace_lock);
747 		return (EEXIST);
748 	}
749 	spa = spa_add(pool);
750 
751 	/*
752 	 * Allocate a new spa_t structure.
753 	 */
754 	spa_activate(spa);
755 
756 	if (altroot != NULL) {
757 		spa->spa_root = spa_strdup(altroot);
758 		atomic_add_32(&spa_active_count, 1);
759 	}
760 
761 	spa->spa_uberblock.ub_txg = txg - 1;
762 	spa->spa_ubsync = spa->spa_uberblock;
763 
764 	error = spa_vdev_add(spa, nvroot);
765 
766 	if (error) {
767 		spa_unload(spa);
768 		spa_deactivate(spa);
769 		spa_remove(spa);
770 		mutex_exit(&spa_namespace_lock);
771 		return (error);
772 	}
773 
774 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
775 	spa->spa_meta_objset = dp->dp_meta_objset;
776 
777 	tx = dmu_tx_create_assigned(dp, txg);
778 
779 	/*
780 	 * Create the pool config object.
781 	 */
782 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
783 	    DMU_OT_PACKED_NVLIST, 1 << 14,
784 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
785 
786 	if (zap_add(spa->spa_meta_objset,
787 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
788 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
789 		cmn_err(CE_PANIC, "failed to add pool config");
790 	}
791 
792 	/*
793 	 * Create the deferred-free bplist object.  Turn off compression
794 	 * because sync-to-convergence takes longer if the blocksize
795 	 * keeps changing.
796 	 */
797 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
798 	    1 << 14, tx);
799 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
800 	    ZIO_COMPRESS_OFF, tx);
801 
802 	if (zap_add(spa->spa_meta_objset,
803 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
804 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
805 		cmn_err(CE_PANIC, "failed to add bplist");
806 	}
807 
808 	dmu_tx_commit(tx);
809 
810 	spa->spa_sync_on = B_TRUE;
811 	txg_sync_start(spa->spa_dsl_pool);
812 
813 	/*
814 	 * We explicitly wait for the first transaction to complete so that our
815 	 * bean counters are appropriately updated.
816 	 */
817 	txg_wait_synced(spa->spa_dsl_pool, txg);
818 
819 	spa_config_sync();
820 
821 	mutex_exit(&spa_namespace_lock);
822 
823 	return (0);
824 }
825 
826 /*
827  * Import the given pool into the system.  We set up the necessary spa_t and
828  * then call spa_load() to do the dirty work.
829  */
830 int
831 spa_import(const char *pool, nvlist_t *config, char *altroot)
832 {
833 	spa_t *spa;
834 	int error;
835 
836 	if (!(spa_mode & FWRITE))
837 		return (EROFS);
838 
839 	/*
840 	 * If a pool with this name exists, return failure.
841 	 */
842 	mutex_enter(&spa_namespace_lock);
843 	if (spa_lookup(pool) != NULL) {
844 		mutex_exit(&spa_namespace_lock);
845 		return (EEXIST);
846 	}
847 
848 	/*
849 	 * Create an initialize the spa structure
850 	 */
851 	spa = spa_add(pool);
852 	spa_activate(spa);
853 
854 	/*
855 	 * Set the alternate root, if there is one.
856 	 */
857 	if (altroot != NULL) {
858 		spa->spa_root = spa_strdup(altroot);
859 		atomic_add_32(&spa_active_count, 1);
860 	}
861 
862 	/*
863 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
864 	 * so that we don't try to open the pool if the config is damaged.
865 	 * Note: on success, spa_load() will update and sync the config cache.
866 	 */
867 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
868 
869 	if (error) {
870 		spa_unload(spa);
871 		spa_deactivate(spa);
872 		spa_remove(spa);
873 		mutex_exit(&spa_namespace_lock);
874 		return (error);
875 	}
876 
877 	mutex_exit(&spa_namespace_lock);
878 
879 	/*
880 	 * Resilver anything that's out of date.
881 	 */
882 	if (spa_mode & FWRITE)
883 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
884 
885 	return (0);
886 }
887 
888 /*
889  * This (illegal) pool name is used when temporarily importing a spa_t in order
890  * to get the vdev stats associated with the imported devices.
891  */
892 #define	TRYIMPORT_NAME	"$import"
893 
894 nvlist_t *
895 spa_tryimport(nvlist_t *tryconfig)
896 {
897 	nvlist_t *config = NULL;
898 	char *poolname;
899 	spa_t *spa;
900 	uint64_t state;
901 
902 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
903 		return (NULL);
904 
905 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
906 		return (NULL);
907 
908 	mutex_enter(&spa_namespace_lock);
909 	spa = spa_add(TRYIMPORT_NAME);
910 
911 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
912 
913 	/*
914 	 * Initialize the spa_t structure.
915 	 */
916 	spa_activate(spa);
917 
918 	/*
919 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
920 	 * so we don't try to open the pool if the config is damaged.
921 	 */
922 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
923 
924 	/*
925 	 * If 'tryconfig' was at least parsable, return the current config.
926 	 */
927 	if (spa->spa_root_vdev != NULL) {
928 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
929 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
930 		    poolname) == 0);
931 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
932 		    state) == 0);
933 	}
934 
935 	spa_unload(spa);
936 	spa_deactivate(spa);
937 	spa_remove(spa);
938 	mutex_exit(&spa_namespace_lock);
939 
940 	return (config);
941 }
942 
943 /*
944  * Pool export/destroy
945  *
946  * The act of destroying or exporting a pool is very simple.  We make sure there
947  * is no more pending I/O and any references to the pool are gone.  Then, we
948  * update the pool state and sync all the labels to disk, removing the
949  * configuration from the cache afterwards.
950  */
951 static int
952 spa_export_common(char *pool, int new_state)
953 {
954 	spa_t *spa;
955 
956 	if (!(spa_mode & FWRITE))
957 		return (EROFS);
958 
959 	mutex_enter(&spa_namespace_lock);
960 	if ((spa = spa_lookup(pool)) == NULL) {
961 		mutex_exit(&spa_namespace_lock);
962 		return (ENOENT);
963 	}
964 
965 	/*
966 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
967 	 * reacquire the namespace lock, and see if we can export.
968 	 */
969 	spa_open_ref(spa, FTAG);
970 	mutex_exit(&spa_namespace_lock);
971 	spa_async_suspend(spa);
972 	mutex_enter(&spa_namespace_lock);
973 	spa_close(spa, FTAG);
974 
975 	/*
976 	 * The pool will be in core if it's openable,
977 	 * in which case we can modify its state.
978 	 */
979 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
980 		/*
981 		 * Objsets may be open only because they're dirty, so we
982 		 * have to force it to sync before checking spa_refcnt.
983 		 */
984 		spa_scrub_suspend(spa);
985 		txg_wait_synced(spa->spa_dsl_pool, 0);
986 
987 		/*
988 		 * A pool cannot be exported or destroyed if there are active
989 		 * references.  If we are resetting a pool, allow references by
990 		 * fault injection handlers.
991 		 */
992 		if (!spa_refcount_zero(spa) ||
993 		    (spa->spa_inject_ref != 0 &&
994 		    new_state != POOL_STATE_UNINITIALIZED)) {
995 			spa_scrub_resume(spa);
996 			spa_async_resume(spa);
997 			mutex_exit(&spa_namespace_lock);
998 			return (EBUSY);
999 		}
1000 
1001 		spa_scrub_resume(spa);
1002 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1003 
1004 		if (spa->spa_root != NULL)
1005 			atomic_add_32(&spa_active_count, -1);
1006 
1007 		/*
1008 		 * We want this to be reflected on every label,
1009 		 * so mark them all dirty.  spa_unload() will do the
1010 		 * final sync that pushes these changes out.
1011 		 */
1012 		if (new_state != POOL_STATE_UNINITIALIZED) {
1013 			spa_config_enter(spa, RW_WRITER, FTAG);
1014 			spa->spa_state = new_state;
1015 			vdev_config_dirty(spa->spa_root_vdev);
1016 			spa_config_exit(spa, FTAG);
1017 		}
1018 	}
1019 
1020 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1021 		spa_unload(spa);
1022 		spa_deactivate(spa);
1023 	}
1024 
1025 	if (new_state != POOL_STATE_UNINITIALIZED) {
1026 		spa_remove(spa);
1027 		spa_config_sync();
1028 	}
1029 	mutex_exit(&spa_namespace_lock);
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Destroy a storage pool.
1036  */
1037 int
1038 spa_destroy(char *pool)
1039 {
1040 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
1041 }
1042 
1043 /*
1044  * Export a storage pool.
1045  */
1046 int
1047 spa_export(char *pool)
1048 {
1049 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
1050 }
1051 
1052 /*
1053  * Similar to spa_export(), this unloads the spa_t without actually removing it
1054  * from the namespace in any way.
1055  */
1056 int
1057 spa_reset(char *pool)
1058 {
1059 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED));
1060 }
1061 
1062 
1063 /*
1064  * ==========================================================================
1065  * Device manipulation
1066  * ==========================================================================
1067  */
1068 
1069 /*
1070  * Add capacity to a storage pool.
1071  */
1072 int
1073 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1074 {
1075 	uint64_t txg;
1076 	int c, c0, children, error;
1077 	vdev_t *rvd = spa->spa_root_vdev;
1078 	vdev_t *vd, *tvd;
1079 
1080 	txg = spa_vdev_enter(spa);
1081 
1082 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1083 
1084 	if (vd == NULL)
1085 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1086 
1087 	if (rvd == NULL) {			/* spa_create() */
1088 		rvd = vd;
1089 		c0 = 0;
1090 	} else {
1091 		c0 = rvd->vdev_children;
1092 	}
1093 
1094 	ASSERT(spa->spa_root_vdev == rvd);
1095 
1096 	if ((error = vdev_create(vd, txg)) != 0)
1097 		return (spa_vdev_exit(spa, vd, txg, error));
1098 
1099 	children = vd->vdev_children;
1100 
1101 	/*
1102 	 * Transfer each new top-level vdev from vd to rvd.
1103 	 */
1104 	for (c = 0; c < children; c++) {
1105 		tvd = vd->vdev_child[c];
1106 		if (vd != rvd) {
1107 			vdev_remove_child(vd, tvd);
1108 			tvd->vdev_id = c0 + c;
1109 			vdev_add_child(rvd, tvd);
1110 		}
1111 		vdev_config_dirty(tvd);
1112 	}
1113 
1114 	/*
1115 	 * We have to be careful when adding new vdevs to an existing pool.
1116 	 * If other threads start allocating from these vdevs before we
1117 	 * sync the config cache, and we lose power, then upon reboot we may
1118 	 * fail to open the pool because there are DVAs that the config cache
1119 	 * can't translate.  Therefore, we first add the vdevs without
1120 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1121 	 * initialize the metaslabs; and sync the config cache again.
1122 	 *
1123 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1124 	 * if we lose power at any point in this sequence, the remaining
1125 	 * steps will be completed the next time we load the pool.
1126 	 */
1127 	if (vd != rvd) {
1128 		(void) spa_vdev_exit(spa, vd, txg, 0);
1129 		txg = spa_vdev_enter(spa);
1130 		vd = NULL;
1131 	}
1132 
1133 	/*
1134 	 * Now that the config is safely on disk, we can use the new space.
1135 	 */
1136 	for (c = 0; c < children; c++) {
1137 		tvd = rvd->vdev_child[c0 + c];
1138 		ASSERT(tvd->vdev_ms_array == 0);
1139 		vdev_init(tvd, txg);
1140 		vdev_config_dirty(tvd);
1141 	}
1142 
1143 	return (spa_vdev_exit(spa, vd, txg, 0));
1144 }
1145 
1146 /*
1147  * Attach a device to a mirror.  The arguments are the path to any device
1148  * in the mirror, and the nvroot for the new device.  If the path specifies
1149  * a device that is not mirrored, we automatically insert the mirror vdev.
1150  *
1151  * If 'replacing' is specified, the new device is intended to replace the
1152  * existing device; in this case the two devices are made into their own
1153  * mirror using the 'replacing' vdev, which is functionally idendical to
1154  * the mirror vdev (it actually reuses all the same ops) but has a few
1155  * extra rules: you can't attach to it after it's been created, and upon
1156  * completion of resilvering, the first disk (the one being replaced)
1157  * is automatically detached.
1158  */
1159 int
1160 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1161 {
1162 	uint64_t txg, open_txg;
1163 	int error;
1164 	vdev_t *rvd = spa->spa_root_vdev;
1165 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1166 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1167 
1168 	txg = spa_vdev_enter(spa);
1169 
1170 	oldvd = vdev_lookup_by_guid(rvd, guid);
1171 
1172 	if (oldvd == NULL)
1173 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1174 
1175 	if (!oldvd->vdev_ops->vdev_op_leaf)
1176 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1177 
1178 	pvd = oldvd->vdev_parent;
1179 
1180 	/*
1181 	 * The parent must be a mirror or the root, unless we're replacing;
1182 	 * in that case, the parent can be anything but another replacing vdev.
1183 	 */
1184 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1185 	    pvd->vdev_ops != &vdev_root_ops &&
1186 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1187 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1188 
1189 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1190 
1191 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1192 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1193 
1194 	newvd = newrootvd->vdev_child[0];
1195 
1196 	if (!newvd->vdev_ops->vdev_op_leaf)
1197 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1198 
1199 	if ((error = vdev_create(newrootvd, txg)) != 0)
1200 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1201 
1202 	/*
1203 	 * Compare the new device size with the replaceable/attachable
1204 	 * device size.
1205 	 */
1206 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1207 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1208 
1209 	if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
1210 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1211 
1212 	/*
1213 	 * If this is an in-place replacement, update oldvd's path and devid
1214 	 * to make it distinguishable from newvd, and unopenable from now on.
1215 	 */
1216 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1217 		spa_strfree(oldvd->vdev_path);
1218 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1219 		    KM_SLEEP);
1220 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1221 		    newvd->vdev_path, "old");
1222 		if (oldvd->vdev_devid != NULL) {
1223 			spa_strfree(oldvd->vdev_devid);
1224 			oldvd->vdev_devid = NULL;
1225 		}
1226 	}
1227 
1228 	/*
1229 	 * If the parent is not a mirror, or if we're replacing,
1230 	 * insert the new mirror/replacing vdev above oldvd.
1231 	 */
1232 	if (pvd->vdev_ops != pvops)
1233 		pvd = vdev_add_parent(oldvd, pvops);
1234 
1235 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1236 	ASSERT(pvd->vdev_ops == pvops);
1237 	ASSERT(oldvd->vdev_parent == pvd);
1238 
1239 	/*
1240 	 * Extract the new device from its root and add it to pvd.
1241 	 */
1242 	vdev_remove_child(newrootvd, newvd);
1243 	newvd->vdev_id = pvd->vdev_children;
1244 	vdev_add_child(pvd, newvd);
1245 
1246 	/*
1247 	 * If newvd is smaller than oldvd, but larger than its rsize,
1248 	 * the addition of newvd may have decreased our parent's asize.
1249 	 */
1250 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1251 
1252 	tvd = newvd->vdev_top;
1253 	ASSERT(pvd->vdev_top == tvd);
1254 	ASSERT(tvd->vdev_parent == rvd);
1255 
1256 	vdev_config_dirty(tvd);
1257 
1258 	/*
1259 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1260 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1261 	 */
1262 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1263 
1264 	mutex_enter(&newvd->vdev_dtl_lock);
1265 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1266 	    open_txg - TXG_INITIAL + 1);
1267 	mutex_exit(&newvd->vdev_dtl_lock);
1268 
1269 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1270 
1271 	/*
1272 	 * Mark newvd's DTL dirty in this txg.
1273 	 */
1274 	vdev_dirty(tvd, VDD_DTL, txg);
1275 	(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
1276 
1277 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1278 
1279 	/*
1280 	 * Kick off a resilver to update newvd.
1281 	 */
1282 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1283 
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Detach a device from a mirror or replacing vdev.
1289  * If 'replace_done' is specified, only detach if the parent
1290  * is a replacing vdev.
1291  */
1292 int
1293 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1294 {
1295 	uint64_t txg;
1296 	int c, t, error;
1297 	vdev_t *rvd = spa->spa_root_vdev;
1298 	vdev_t *vd, *pvd, *cvd, *tvd;
1299 
1300 	txg = spa_vdev_enter(spa);
1301 
1302 	vd = vdev_lookup_by_guid(rvd, guid);
1303 
1304 	if (vd == NULL)
1305 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1306 
1307 	if (!vd->vdev_ops->vdev_op_leaf)
1308 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1309 
1310 	pvd = vd->vdev_parent;
1311 
1312 	/*
1313 	 * If replace_done is specified, only remove this device if it's
1314 	 * the first child of a replacing vdev.
1315 	 */
1316 	if (replace_done &&
1317 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1318 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1319 
1320 	/*
1321 	 * Only mirror and replacing vdevs support detach.
1322 	 */
1323 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1324 	    pvd->vdev_ops != &vdev_mirror_ops)
1325 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1326 
1327 	/*
1328 	 * If there's only one replica, you can't detach it.
1329 	 */
1330 	if (pvd->vdev_children <= 1)
1331 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1332 
1333 	/*
1334 	 * If all siblings have non-empty DTLs, this device may have the only
1335 	 * valid copy of the data, which means we cannot safely detach it.
1336 	 *
1337 	 * XXX -- as in the vdev_offline() case, we really want a more
1338 	 * precise DTL check.
1339 	 */
1340 	for (c = 0; c < pvd->vdev_children; c++) {
1341 		uint64_t dirty;
1342 
1343 		cvd = pvd->vdev_child[c];
1344 		if (cvd == vd)
1345 			continue;
1346 		if (vdev_is_dead(cvd))
1347 			continue;
1348 		mutex_enter(&cvd->vdev_dtl_lock);
1349 		dirty = cvd->vdev_dtl_map.sm_space |
1350 		    cvd->vdev_dtl_scrub.sm_space;
1351 		mutex_exit(&cvd->vdev_dtl_lock);
1352 		if (!dirty)
1353 			break;
1354 	}
1355 	if (c == pvd->vdev_children)
1356 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1357 
1358 	/*
1359 	 * Erase the disk labels so the disk can be used for other things.
1360 	 * This must be done after all other error cases are handled,
1361 	 * but before we disembowel vd (so we can still do I/O to it).
1362 	 * But if we can't do it, don't treat the error as fatal --
1363 	 * it may be that the unwritability of the disk is the reason
1364 	 * it's being detached!
1365 	 */
1366 	error = vdev_label_init(vd, 0);
1367 	if (error)
1368 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1369 
1370 	/*
1371 	 * Remove vd from its parent and compact the parent's children.
1372 	 */
1373 	vdev_remove_child(pvd, vd);
1374 	vdev_compact_children(pvd);
1375 
1376 	/*
1377 	 * Remember one of the remaining children so we can get tvd below.
1378 	 */
1379 	cvd = pvd->vdev_child[0];
1380 
1381 	/*
1382 	 * If the parent mirror/replacing vdev only has one child,
1383 	 * the parent is no longer needed.  Remove it from the tree.
1384 	 */
1385 	if (pvd->vdev_children == 1)
1386 		vdev_remove_parent(cvd);
1387 
1388 	/*
1389 	 * We don't set tvd until now because the parent we just removed
1390 	 * may have been the previous top-level vdev.
1391 	 */
1392 	tvd = cvd->vdev_top;
1393 	ASSERT(tvd->vdev_parent == rvd);
1394 
1395 	/*
1396 	 * Reopen this top-level vdev to reassess health after detach.
1397 	 */
1398 	vdev_reopen(tvd);
1399 
1400 	/*
1401 	 * If the device we just detached was smaller than the others,
1402 	 * it may be possible to add metaslabs (i.e. grow the pool).  We ignore
1403 	 * the error here because the detach still succeeded - we just weren't
1404 	 * able to reinitialize the metaslabs.  This pool is in for a world of
1405 	 * hurt, in any case.
1406 	 */
1407 	(void) vdev_metaslab_init(tvd, txg);
1408 
1409 	vdev_config_dirty(tvd);
1410 
1411 	/*
1412 	 * Mark vd's DTL as dirty in this txg.
1413 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1414 	 * and free vd's DTL object in syncing context.
1415 	 * But first make sure we're not on any *other* txg's DTL list,
1416 	 * to prevent vd from being accessed after it's freed.
1417 	 */
1418 	vdev_dirty(tvd, VDD_DTL, txg);
1419 	vd->vdev_detached = B_TRUE;
1420 	for (t = 0; t < TXG_SIZE; t++)
1421 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1422 	(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1423 
1424 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1425 
1426 	return (spa_vdev_exit(spa, vd, txg, 0));
1427 }
1428 
1429 /*
1430  * Find any device that's done replacing, so we can detach it.
1431  */
1432 static vdev_t *
1433 spa_vdev_replace_done_hunt(vdev_t *vd)
1434 {
1435 	vdev_t *newvd, *oldvd;
1436 	int c;
1437 
1438 	for (c = 0; c < vd->vdev_children; c++) {
1439 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1440 		if (oldvd != NULL)
1441 			return (oldvd);
1442 	}
1443 
1444 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1445 		oldvd = vd->vdev_child[0];
1446 		newvd = vd->vdev_child[1];
1447 
1448 		mutex_enter(&newvd->vdev_dtl_lock);
1449 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1450 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1451 			mutex_exit(&newvd->vdev_dtl_lock);
1452 			return (oldvd);
1453 		}
1454 		mutex_exit(&newvd->vdev_dtl_lock);
1455 	}
1456 
1457 	return (NULL);
1458 }
1459 
1460 static void
1461 spa_vdev_replace_done(spa_t *spa)
1462 {
1463 	vdev_t *vd;
1464 	uint64_t guid;
1465 
1466 	spa_config_enter(spa, RW_READER, FTAG);
1467 
1468 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1469 		guid = vd->vdev_guid;
1470 		spa_config_exit(spa, FTAG);
1471 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1472 			return;
1473 		spa_config_enter(spa, RW_READER, FTAG);
1474 	}
1475 
1476 	spa_config_exit(spa, FTAG);
1477 }
1478 
1479 /*
1480  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1481  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1482  */
1483 int
1484 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1485 {
1486 	vdev_t *rvd, *vd;
1487 	uint64_t txg;
1488 
1489 	rvd = spa->spa_root_vdev;
1490 
1491 	txg = spa_vdev_enter(spa);
1492 
1493 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1494 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1495 
1496 	if (!vd->vdev_ops->vdev_op_leaf)
1497 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1498 
1499 	spa_strfree(vd->vdev_path);
1500 	vd->vdev_path = spa_strdup(newpath);
1501 
1502 	vdev_config_dirty(vd->vdev_top);
1503 
1504 	return (spa_vdev_exit(spa, NULL, txg, 0));
1505 }
1506 
1507 /*
1508  * ==========================================================================
1509  * SPA Scrubbing
1510  * ==========================================================================
1511  */
1512 
1513 void
1514 spa_scrub_throttle(spa_t *spa, int direction)
1515 {
1516 	mutex_enter(&spa->spa_scrub_lock);
1517 	spa->spa_scrub_throttled += direction;
1518 	ASSERT(spa->spa_scrub_throttled >= 0);
1519 	if (spa->spa_scrub_throttled == 0)
1520 		cv_broadcast(&spa->spa_scrub_io_cv);
1521 	mutex_exit(&spa->spa_scrub_lock);
1522 }
1523 
1524 static void
1525 spa_scrub_io_done(zio_t *zio)
1526 {
1527 	spa_t *spa = zio->io_spa;
1528 
1529 	zio_buf_free(zio->io_data, zio->io_size);
1530 
1531 	mutex_enter(&spa->spa_scrub_lock);
1532 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1533 		vdev_t *vd = zio->io_vd;
1534 		spa->spa_scrub_errors++;
1535 		mutex_enter(&vd->vdev_stat_lock);
1536 		vd->vdev_stat.vs_scrub_errors++;
1537 		mutex_exit(&vd->vdev_stat_lock);
1538 	}
1539 	if (--spa->spa_scrub_inflight == 0) {
1540 		cv_broadcast(&spa->spa_scrub_io_cv);
1541 		ASSERT(spa->spa_scrub_throttled == 0);
1542 	}
1543 	mutex_exit(&spa->spa_scrub_lock);
1544 }
1545 
1546 static void
1547 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1548     zbookmark_t *zb)
1549 {
1550 	size_t size = BP_GET_LSIZE(bp);
1551 	void *data = zio_buf_alloc(size);
1552 
1553 	mutex_enter(&spa->spa_scrub_lock);
1554 	spa->spa_scrub_inflight++;
1555 	mutex_exit(&spa->spa_scrub_lock);
1556 
1557 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1558 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1559 
1560 	flags |= ZIO_FLAG_CANFAIL;
1561 
1562 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1563 	    spa_scrub_io_done, NULL, priority, flags, zb));
1564 }
1565 
1566 /* ARGSUSED */
1567 static int
1568 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1569 {
1570 	blkptr_t *bp = &bc->bc_blkptr;
1571 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1572 
1573 	if (bc->bc_errno || vd == NULL) {
1574 		/*
1575 		 * We can't scrub this block, but we can continue to scrub
1576 		 * the rest of the pool.  Note the error and move along.
1577 		 */
1578 		mutex_enter(&spa->spa_scrub_lock);
1579 		spa->spa_scrub_errors++;
1580 		mutex_exit(&spa->spa_scrub_lock);
1581 
1582 		if (vd != NULL) {
1583 			mutex_enter(&vd->vdev_stat_lock);
1584 			vd->vdev_stat.vs_scrub_errors++;
1585 			mutex_exit(&vd->vdev_stat_lock);
1586 		}
1587 
1588 		return (ERESTART);
1589 	}
1590 
1591 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1592 
1593 	/*
1594 	 * Keep track of how much data we've examined so that
1595 	 * zpool(1M) status can make useful progress reports.
1596 	 */
1597 	mutex_enter(&vd->vdev_stat_lock);
1598 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1599 	mutex_exit(&vd->vdev_stat_lock);
1600 
1601 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1602 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1603 			/*
1604 			 * Gang members may be spread across multiple vdevs,
1605 			 * so the best we can do is look at the pool-wide DTL.
1606 			 * XXX -- it would be better to change our allocation
1607 			 * policy to ensure that this can't happen.
1608 			 */
1609 			vd = spa->spa_root_vdev;
1610 		}
1611 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1612 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1613 			    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1614 		}
1615 	} else {
1616 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1617 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1618 	}
1619 
1620 	return (0);
1621 }
1622 
1623 static void
1624 spa_scrub_thread(spa_t *spa)
1625 {
1626 	callb_cpr_t cprinfo;
1627 	traverse_handle_t *th = spa->spa_scrub_th;
1628 	vdev_t *rvd = spa->spa_root_vdev;
1629 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1630 	int error = 0;
1631 	boolean_t complete;
1632 
1633 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1634 
1635 	/*
1636 	 * If we're restarting due to a snapshot create/delete,
1637 	 * wait for that to complete.
1638 	 */
1639 	txg_wait_synced(spa_get_dsl(spa), 0);
1640 
1641 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1642 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1643 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1644 
1645 	spa_config_enter(spa, RW_WRITER, FTAG);
1646 	vdev_reopen(rvd);		/* purge all vdev caches */
1647 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1648 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1649 	spa_config_exit(spa, FTAG);
1650 
1651 	mutex_enter(&spa->spa_scrub_lock);
1652 	spa->spa_scrub_errors = 0;
1653 	spa->spa_scrub_active = 1;
1654 	ASSERT(spa->spa_scrub_inflight == 0);
1655 	ASSERT(spa->spa_scrub_throttled == 0);
1656 
1657 	while (!spa->spa_scrub_stop) {
1658 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1659 		while (spa->spa_scrub_suspended) {
1660 			spa->spa_scrub_active = 0;
1661 			cv_broadcast(&spa->spa_scrub_cv);
1662 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1663 			spa->spa_scrub_active = 1;
1664 		}
1665 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1666 
1667 		if (spa->spa_scrub_restart_txg != 0)
1668 			break;
1669 
1670 		mutex_exit(&spa->spa_scrub_lock);
1671 		error = traverse_more(th);
1672 		mutex_enter(&spa->spa_scrub_lock);
1673 		if (error != EAGAIN)
1674 			break;
1675 
1676 		while (spa->spa_scrub_throttled > 0)
1677 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1678 	}
1679 
1680 	while (spa->spa_scrub_inflight)
1681 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1682 
1683 	spa->spa_scrub_active = 0;
1684 	cv_broadcast(&spa->spa_scrub_cv);
1685 
1686 	mutex_exit(&spa->spa_scrub_lock);
1687 
1688 	spa_config_enter(spa, RW_WRITER, FTAG);
1689 
1690 	mutex_enter(&spa->spa_scrub_lock);
1691 
1692 	/*
1693 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
1694 	 * AND the spa config lock to synchronize with any config changes
1695 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
1696 	 */
1697 	if (spa->spa_scrub_restart_txg != 0)
1698 		error = ERESTART;
1699 
1700 	if (spa->spa_scrub_stop)
1701 		error = EINTR;
1702 
1703 	/*
1704 	 * Even if there were uncorrectable errors, we consider the scrub
1705 	 * completed.  The downside is that if there is a transient error during
1706 	 * a resilver, we won't resilver the data properly to the target.  But
1707 	 * if the damage is permanent (more likely) we will resilver forever,
1708 	 * which isn't really acceptable.  Since there is enough information for
1709 	 * the user to know what has failed and why, this seems like a more
1710 	 * tractable approach.
1711 	 */
1712 	complete = (error == 0);
1713 
1714 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1715 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1716 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1717 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1718 
1719 	mutex_exit(&spa->spa_scrub_lock);
1720 
1721 	/*
1722 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1723 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1724 	 */
1725 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1726 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1727 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1728 	spa_errlog_rotate(spa);
1729 
1730 	spa_config_exit(spa, FTAG);
1731 
1732 	mutex_enter(&spa->spa_scrub_lock);
1733 
1734 	/*
1735 	 * We may have finished replacing a device.
1736 	 * Let the async thread assess this and handle the detach.
1737 	 */
1738 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1739 
1740 	/*
1741 	 * If we were told to restart, our final act is to start a new scrub.
1742 	 */
1743 	if (error == ERESTART)
1744 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1745 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1746 
1747 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1748 	spa->spa_scrub_active = 0;
1749 	spa->spa_scrub_thread = NULL;
1750 	cv_broadcast(&spa->spa_scrub_cv);
1751 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1752 	thread_exit();
1753 }
1754 
1755 void
1756 spa_scrub_suspend(spa_t *spa)
1757 {
1758 	mutex_enter(&spa->spa_scrub_lock);
1759 	spa->spa_scrub_suspended++;
1760 	while (spa->spa_scrub_active) {
1761 		cv_broadcast(&spa->spa_scrub_cv);
1762 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1763 	}
1764 	while (spa->spa_scrub_inflight)
1765 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1766 	mutex_exit(&spa->spa_scrub_lock);
1767 }
1768 
1769 void
1770 spa_scrub_resume(spa_t *spa)
1771 {
1772 	mutex_enter(&spa->spa_scrub_lock);
1773 	ASSERT(spa->spa_scrub_suspended != 0);
1774 	if (--spa->spa_scrub_suspended == 0)
1775 		cv_broadcast(&spa->spa_scrub_cv);
1776 	mutex_exit(&spa->spa_scrub_lock);
1777 }
1778 
1779 void
1780 spa_scrub_restart(spa_t *spa, uint64_t txg)
1781 {
1782 	/*
1783 	 * Something happened (e.g. snapshot create/delete) that means
1784 	 * we must restart any in-progress scrubs.  The itinerary will
1785 	 * fix this properly.
1786 	 */
1787 	mutex_enter(&spa->spa_scrub_lock);
1788 	spa->spa_scrub_restart_txg = txg;
1789 	mutex_exit(&spa->spa_scrub_lock);
1790 }
1791 
1792 int
1793 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1794 {
1795 	space_seg_t *ss;
1796 	uint64_t mintxg, maxtxg;
1797 	vdev_t *rvd = spa->spa_root_vdev;
1798 	int advance = ADVANCE_PRE | ADVANCE_ZIL;
1799 
1800 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1801 		return (ENOTSUP);
1802 
1803 	mutex_enter(&spa->spa_scrub_lock);
1804 
1805 	/*
1806 	 * If there's a scrub or resilver already in progress, stop it.
1807 	 */
1808 	while (spa->spa_scrub_thread != NULL) {
1809 		/*
1810 		 * Don't stop a resilver unless forced.
1811 		 */
1812 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1813 			mutex_exit(&spa->spa_scrub_lock);
1814 			return (EBUSY);
1815 		}
1816 		spa->spa_scrub_stop = 1;
1817 		cv_broadcast(&spa->spa_scrub_cv);
1818 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1819 	}
1820 
1821 	/*
1822 	 * Terminate the previous traverse.
1823 	 */
1824 	if (spa->spa_scrub_th != NULL) {
1825 		traverse_fini(spa->spa_scrub_th);
1826 		spa->spa_scrub_th = NULL;
1827 	}
1828 
1829 	if (rvd == NULL) {
1830 		ASSERT(spa->spa_scrub_stop == 0);
1831 		ASSERT(spa->spa_scrub_type == type);
1832 		ASSERT(spa->spa_scrub_restart_txg == 0);
1833 		mutex_exit(&spa->spa_scrub_lock);
1834 		return (0);
1835 	}
1836 
1837 	mintxg = TXG_INITIAL - 1;
1838 	maxtxg = spa_last_synced_txg(spa) + 1;
1839 
1840 	mutex_enter(&rvd->vdev_dtl_lock);
1841 
1842 	if (rvd->vdev_dtl_map.sm_space == 0) {
1843 		/*
1844 		 * The pool-wide DTL is empty.
1845 		 * If this is a resilver, there's nothing to do.
1846 		 */
1847 		if (type == POOL_SCRUB_RESILVER)
1848 			type = POOL_SCRUB_NONE;
1849 	} else {
1850 		/*
1851 		 * The pool-wide DTL is non-empty.
1852 		 * If this is a normal scrub, upgrade to a resilver instead.
1853 		 */
1854 		if (type == POOL_SCRUB_EVERYTHING)
1855 			type = POOL_SCRUB_RESILVER;
1856 	}
1857 
1858 	if (type == POOL_SCRUB_RESILVER) {
1859 		/*
1860 		 * Determine the resilvering boundaries.
1861 		 *
1862 		 * Note: (mintxg, maxtxg) is an open interval,
1863 		 * i.e. mintxg and maxtxg themselves are not included.
1864 		 *
1865 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1866 		 * so we don't claim to resilver a txg that's still changing.
1867 		 */
1868 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1869 		mintxg = ss->ss_start - 1;
1870 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1871 		maxtxg = MIN(ss->ss_end, maxtxg);
1872 
1873 		advance |= ADVANCE_PRUNE;
1874 	}
1875 
1876 	mutex_exit(&rvd->vdev_dtl_lock);
1877 
1878 	spa->spa_scrub_stop = 0;
1879 	spa->spa_scrub_type = type;
1880 	spa->spa_scrub_restart_txg = 0;
1881 
1882 	if (type != POOL_SCRUB_NONE) {
1883 		spa->spa_scrub_mintxg = mintxg;
1884 		spa->spa_scrub_maxtxg = maxtxg;
1885 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1886 		    advance, ZIO_FLAG_CANFAIL);
1887 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1888 		spa->spa_scrub_thread = thread_create(NULL, 0,
1889 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1890 	}
1891 
1892 	mutex_exit(&spa->spa_scrub_lock);
1893 
1894 	return (0);
1895 }
1896 
1897 /*
1898  * ==========================================================================
1899  * SPA async task processing
1900  * ==========================================================================
1901  */
1902 
1903 static void
1904 spa_async_reopen(spa_t *spa)
1905 {
1906 	vdev_t *rvd = spa->spa_root_vdev;
1907 	vdev_t *tvd;
1908 	int c;
1909 
1910 	spa_config_enter(spa, RW_WRITER, FTAG);
1911 
1912 	for (c = 0; c < rvd->vdev_children; c++) {
1913 		tvd = rvd->vdev_child[c];
1914 		if (tvd->vdev_reopen_wanted) {
1915 			tvd->vdev_reopen_wanted = 0;
1916 			vdev_reopen(tvd);
1917 		}
1918 	}
1919 
1920 	spa_config_exit(spa, FTAG);
1921 }
1922 
1923 static void
1924 spa_async_thread(spa_t *spa)
1925 {
1926 	int tasks;
1927 
1928 	ASSERT(spa->spa_sync_on);
1929 
1930 	mutex_enter(&spa->spa_async_lock);
1931 	tasks = spa->spa_async_tasks;
1932 	spa->spa_async_tasks = 0;
1933 	mutex_exit(&spa->spa_async_lock);
1934 
1935 	/*
1936 	 * See if any devices need to be reopened.
1937 	 */
1938 	if (tasks & SPA_ASYNC_REOPEN)
1939 		spa_async_reopen(spa);
1940 
1941 	/*
1942 	 * If any devices are done replacing, detach them.
1943 	 */
1944 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1945 		spa_vdev_replace_done(spa);
1946 
1947 	/*
1948 	 * Kick off a scrub.
1949 	 */
1950 	if (tasks & SPA_ASYNC_SCRUB)
1951 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1952 
1953 	/*
1954 	 * Kick off a resilver.
1955 	 */
1956 	if (tasks & SPA_ASYNC_RESILVER)
1957 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1958 
1959 	/*
1960 	 * Let the world know that we're done.
1961 	 */
1962 	mutex_enter(&spa->spa_async_lock);
1963 	spa->spa_async_thread = NULL;
1964 	cv_broadcast(&spa->spa_async_cv);
1965 	mutex_exit(&spa->spa_async_lock);
1966 	thread_exit();
1967 }
1968 
1969 void
1970 spa_async_suspend(spa_t *spa)
1971 {
1972 	mutex_enter(&spa->spa_async_lock);
1973 	spa->spa_async_suspended++;
1974 	while (spa->spa_async_thread != NULL)
1975 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1976 	mutex_exit(&spa->spa_async_lock);
1977 }
1978 
1979 void
1980 spa_async_resume(spa_t *spa)
1981 {
1982 	mutex_enter(&spa->spa_async_lock);
1983 	ASSERT(spa->spa_async_suspended != 0);
1984 	spa->spa_async_suspended--;
1985 	mutex_exit(&spa->spa_async_lock);
1986 }
1987 
1988 static void
1989 spa_async_dispatch(spa_t *spa)
1990 {
1991 	mutex_enter(&spa->spa_async_lock);
1992 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1993 	    spa->spa_async_thread == NULL)
1994 		spa->spa_async_thread = thread_create(NULL, 0,
1995 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1996 	mutex_exit(&spa->spa_async_lock);
1997 }
1998 
1999 void
2000 spa_async_request(spa_t *spa, int task)
2001 {
2002 	mutex_enter(&spa->spa_async_lock);
2003 	spa->spa_async_tasks |= task;
2004 	mutex_exit(&spa->spa_async_lock);
2005 }
2006 
2007 /*
2008  * ==========================================================================
2009  * SPA syncing routines
2010  * ==========================================================================
2011  */
2012 
2013 static void
2014 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2015 {
2016 	bplist_t *bpl = &spa->spa_sync_bplist;
2017 	dmu_tx_t *tx;
2018 	blkptr_t blk;
2019 	uint64_t itor = 0;
2020 	zio_t *zio;
2021 	int error;
2022 	uint8_t c = 1;
2023 
2024 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2025 
2026 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2027 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2028 
2029 	error = zio_wait(zio);
2030 	ASSERT3U(error, ==, 0);
2031 
2032 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2033 	bplist_vacate(bpl, tx);
2034 
2035 	/*
2036 	 * Pre-dirty the first block so we sync to convergence faster.
2037 	 * (Usually only the first block is needed.)
2038 	 */
2039 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2040 	dmu_tx_commit(tx);
2041 }
2042 
2043 static void
2044 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2045 {
2046 	nvlist_t *config;
2047 	char *packed = NULL;
2048 	size_t nvsize = 0;
2049 	dmu_buf_t *db;
2050 
2051 	if (list_is_empty(&spa->spa_dirty_list))
2052 		return;
2053 
2054 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2055 
2056 	spa_config_set(spa, config);
2057 
2058 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
2059 
2060 	packed = kmem_alloc(nvsize, KM_SLEEP);
2061 
2062 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
2063 	    KM_SLEEP) == 0);
2064 
2065 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
2066 	    packed, tx);
2067 
2068 	kmem_free(packed, nvsize);
2069 
2070 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
2071 	    spa->spa_config_object, FTAG, &db));
2072 	dmu_buf_will_dirty(db, tx);
2073 	*(uint64_t *)db->db_data = nvsize;
2074 	dmu_buf_rele(db, FTAG);
2075 }
2076 
2077 /*
2078  * Sync the specified transaction group.  New blocks may be dirtied as
2079  * part of the process, so we iterate until it converges.
2080  */
2081 void
2082 spa_sync(spa_t *spa, uint64_t txg)
2083 {
2084 	dsl_pool_t *dp = spa->spa_dsl_pool;
2085 	objset_t *mos = spa->spa_meta_objset;
2086 	bplist_t *bpl = &spa->spa_sync_bplist;
2087 	vdev_t *vd;
2088 	dmu_tx_t *tx;
2089 	int dirty_vdevs;
2090 
2091 	/*
2092 	 * Lock out configuration changes.
2093 	 */
2094 	spa_config_enter(spa, RW_READER, FTAG);
2095 
2096 	spa->spa_syncing_txg = txg;
2097 	spa->spa_sync_pass = 0;
2098 
2099 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2100 
2101 	/*
2102 	 * If anything has changed in this txg, push the deferred frees
2103 	 * from the previous txg.  If not, leave them alone so that we
2104 	 * don't generate work on an otherwise idle system.
2105 	 */
2106 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2107 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2108 		spa_sync_deferred_frees(spa, txg);
2109 
2110 	/*
2111 	 * Iterate to convergence.
2112 	 */
2113 	do {
2114 		spa->spa_sync_pass++;
2115 
2116 		tx = dmu_tx_create_assigned(dp, txg);
2117 		spa_sync_config_object(spa, tx);
2118 		dmu_tx_commit(tx);
2119 
2120 		spa_errlog_sync(spa, txg);
2121 
2122 		dsl_pool_sync(dp, txg);
2123 
2124 		dirty_vdevs = 0;
2125 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2126 			vdev_sync(vd, txg);
2127 			dirty_vdevs++;
2128 		}
2129 
2130 		tx = dmu_tx_create_assigned(dp, txg);
2131 		bplist_sync(bpl, tx);
2132 		dmu_tx_commit(tx);
2133 
2134 	} while (dirty_vdevs);
2135 
2136 	bplist_close(bpl);
2137 
2138 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2139 
2140 	/*
2141 	 * Rewrite the vdev configuration (which includes the uberblock)
2142 	 * to commit the transaction group.
2143 	 */
2144 	VERIFY(0 == spa_sync_labels(spa, txg));
2145 
2146 	/*
2147 	 * Make a stable copy of the fully synced uberblock.
2148 	 * We use this as the root for pool traversals.
2149 	 */
2150 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2151 
2152 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2153 
2154 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2155 	spa->spa_traverse_wanted = 0;
2156 	spa->spa_ubsync = spa->spa_uberblock;
2157 	rw_exit(&spa->spa_traverse_lock);
2158 
2159 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2160 
2161 	/*
2162 	 * Clean up the ZIL records for the synced txg.
2163 	 */
2164 	dsl_pool_zil_clean(dp);
2165 
2166 	/*
2167 	 * Update usable space statistics.
2168 	 */
2169 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2170 		vdev_sync_done(vd, txg);
2171 
2172 	/*
2173 	 * It had better be the case that we didn't dirty anything
2174 	 * since spa_sync_labels().
2175 	 */
2176 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2177 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2178 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2179 	ASSERT(bpl->bpl_queue == NULL);
2180 
2181 	spa_config_exit(spa, FTAG);
2182 
2183 	/*
2184 	 * If any async tasks have been requested, kick them off.
2185 	 */
2186 	spa_async_dispatch(spa);
2187 }
2188 
2189 /*
2190  * Sync all pools.  We don't want to hold the namespace lock across these
2191  * operations, so we take a reference on the spa_t and drop the lock during the
2192  * sync.
2193  */
2194 void
2195 spa_sync_allpools(void)
2196 {
2197 	spa_t *spa = NULL;
2198 	mutex_enter(&spa_namespace_lock);
2199 	while ((spa = spa_next(spa)) != NULL) {
2200 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2201 			continue;
2202 		spa_open_ref(spa, FTAG);
2203 		mutex_exit(&spa_namespace_lock);
2204 		txg_wait_synced(spa_get_dsl(spa), 0);
2205 		mutex_enter(&spa_namespace_lock);
2206 		spa_close(spa, FTAG);
2207 	}
2208 	mutex_exit(&spa_namespace_lock);
2209 }
2210 
2211 /*
2212  * ==========================================================================
2213  * Miscellaneous routines
2214  * ==========================================================================
2215  */
2216 
2217 int
2218 spa_busy(void)
2219 {
2220 	return (spa_active_count != 0);
2221 }
2222 
2223 /*
2224  * Remove all pools in the system.
2225  */
2226 void
2227 spa_evict_all(void)
2228 {
2229 	spa_t *spa;
2230 
2231 	/*
2232 	 * Remove all cached state.  All pools should be closed now,
2233 	 * so every spa in the AVL tree should be unreferenced.
2234 	 */
2235 	mutex_enter(&spa_namespace_lock);
2236 	while ((spa = spa_next(NULL)) != NULL) {
2237 		/*
2238 		 * Stop async tasks.  The async thread may need to detach
2239 		 * a device that's been replaced, which requires grabbing
2240 		 * spa_namespace_lock, so we must drop it here.
2241 		 */
2242 		spa_open_ref(spa, FTAG);
2243 		mutex_exit(&spa_namespace_lock);
2244 		spa_async_suspend(spa);
2245 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2246 		mutex_enter(&spa_namespace_lock);
2247 		spa_close(spa, FTAG);
2248 
2249 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2250 			spa_unload(spa);
2251 			spa_deactivate(spa);
2252 		}
2253 		spa_remove(spa);
2254 	}
2255 	mutex_exit(&spa_namespace_lock);
2256 }
2257 
2258 vdev_t *
2259 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2260 {
2261 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2262 }
2263