xref: /titanic_50/usr/src/uts/common/fs/zfs/rrwlock.c (revision ce926fbb3eac0337e32c8855d5843ab73a07c345)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/refcount.h>
30 #include <sys/rrwlock.h>
31 
32 /*
33  * This file contains the implementation of a re-entrant read
34  * reader/writer lock (aka "rrwlock").
35  *
36  * This is a normal reader/writer lock with the additional feature
37  * of allowing threads who have already obtained a read lock to
38  * re-enter another read lock (re-entrant read) - even if there are
39  * waiting writers.
40  *
41  * Callers who have not obtained a read lock give waiting writers priority.
42  *
43  * The rrwlock_t lock does not allow re-entrant writers, nor does it
44  * allow a re-entrant mix of reads and writes (that is, it does not
45  * allow a caller who has already obtained a read lock to be able to
46  * then grab a write lock without first dropping all read locks, and
47  * vice versa).
48  *
49  * The rrwlock_t uses tsd (thread specific data) to keep a list of
50  * nodes (rrw_node_t), where each node keeps track of which specific
51  * lock (rrw_node_t::rn_rrl) the thread has grabbed.  Since re-entering
52  * should be rare, a thread that grabs multiple reads on the same rrwlock_t
53  * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
54  * tsd list can represent a different rrwlock_t.  This allows a thread
55  * to enter multiple and unique rrwlock_ts for read locks at the same time.
56  *
57  * Since using tsd exposes some overhead, the rrwlock_t only needs to
58  * keep tsd data when writers are waiting.  If no writers are waiting, then
59  * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
60  * is needed.  Once a writer attempts to grab the lock, readers then
61  * keep tsd data and bump the linked readers count (rr_linked_rcount).
62  *
63  * If there are waiting writers and there are anonymous readers, then a
64  * reader doesn't know if it is a re-entrant lock. But since it may be one,
65  * we allow the read to proceed (otherwise it could deadlock).  Since once
66  * waiting writers are active, readers no longer bump the anonymous count,
67  * the anonymous readers will eventually flush themselves out.  At this point,
68  * readers will be able to tell if they are a re-entrant lock (have a
69  * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
70  * we must let the proceed.  If they are not, then the reader blocks for the
71  * waiting writers.  Hence, we do not starve writers.
72  */
73 
74 /* global key for TSD */
75 uint_t rrw_tsd_key;
76 
77 typedef struct rrw_node {
78 	struct rrw_node *rn_next;
79 	rrwlock_t *rn_rrl;
80 	void *rn_tag;
81 } rrw_node_t;
82 
83 static rrw_node_t *
84 rrn_find(rrwlock_t *rrl)
85 {
86 	rrw_node_t *rn;
87 
88 	if (refcount_count(&rrl->rr_linked_rcount) == 0)
89 		return (NULL);
90 
91 	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
92 		if (rn->rn_rrl == rrl)
93 			return (rn);
94 	}
95 	return (NULL);
96 }
97 
98 /*
99  * Add a node to the head of the singly linked list.
100  */
101 static void
102 rrn_add(rrwlock_t *rrl, void *tag)
103 {
104 	rrw_node_t *rn;
105 
106 	rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
107 	rn->rn_rrl = rrl;
108 	rn->rn_next = tsd_get(rrw_tsd_key);
109 	rn->rn_tag = tag;
110 	VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
111 }
112 
113 /*
114  * If a node is found for 'rrl', then remove the node from this
115  * thread's list and return TRUE; otherwise return FALSE.
116  */
117 static boolean_t
118 rrn_find_and_remove(rrwlock_t *rrl, void *tag)
119 {
120 	rrw_node_t *rn;
121 	rrw_node_t *prev = NULL;
122 
123 	if (refcount_count(&rrl->rr_linked_rcount) == 0)
124 		return (B_FALSE);
125 
126 	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
127 		if (rn->rn_rrl == rrl && rn->rn_tag == tag) {
128 			if (prev)
129 				prev->rn_next = rn->rn_next;
130 			else
131 				VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
132 			kmem_free(rn, sizeof (*rn));
133 			return (B_TRUE);
134 		}
135 		prev = rn;
136 	}
137 	return (B_FALSE);
138 }
139 
140 void
141 rrw_init(rrwlock_t *rrl, boolean_t track_all)
142 {
143 	mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
144 	cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
145 	rrl->rr_writer = NULL;
146 	refcount_create(&rrl->rr_anon_rcount);
147 	refcount_create(&rrl->rr_linked_rcount);
148 	rrl->rr_writer_wanted = B_FALSE;
149 	rrl->rr_track_all = track_all;
150 }
151 
152 void
153 rrw_destroy(rrwlock_t *rrl)
154 {
155 	mutex_destroy(&rrl->rr_lock);
156 	cv_destroy(&rrl->rr_cv);
157 	ASSERT(rrl->rr_writer == NULL);
158 	refcount_destroy(&rrl->rr_anon_rcount);
159 	refcount_destroy(&rrl->rr_linked_rcount);
160 }
161 
162 void
163 rrw_enter_read(rrwlock_t *rrl, void *tag)
164 {
165 	mutex_enter(&rrl->rr_lock);
166 #if !defined(DEBUG) && defined(_KERNEL)
167 	if (rrl->rr_writer == NULL && !rrl->rr_writer_wanted &&
168 	    !rrl->rr_track_all) {
169 		rrl->rr_anon_rcount.rc_count++;
170 		mutex_exit(&rrl->rr_lock);
171 		return;
172 	}
173 	DTRACE_PROBE(zfs__rrwfastpath__rdmiss);
174 #endif
175 	ASSERT(rrl->rr_writer != curthread);
176 	ASSERT(refcount_count(&rrl->rr_anon_rcount) >= 0);
177 
178 	while (rrl->rr_writer != NULL || (rrl->rr_writer_wanted &&
179 	    refcount_is_zero(&rrl->rr_anon_rcount) &&
180 	    rrn_find(rrl) == NULL))
181 		cv_wait(&rrl->rr_cv, &rrl->rr_lock);
182 
183 	if (rrl->rr_writer_wanted || rrl->rr_track_all) {
184 		/* may or may not be a re-entrant enter */
185 		rrn_add(rrl, tag);
186 		(void) refcount_add(&rrl->rr_linked_rcount, tag);
187 	} else {
188 		(void) refcount_add(&rrl->rr_anon_rcount, tag);
189 	}
190 	ASSERT(rrl->rr_writer == NULL);
191 	mutex_exit(&rrl->rr_lock);
192 }
193 
194 void
195 rrw_enter_write(rrwlock_t *rrl)
196 {
197 	mutex_enter(&rrl->rr_lock);
198 	ASSERT(rrl->rr_writer != curthread);
199 
200 	while (refcount_count(&rrl->rr_anon_rcount) > 0 ||
201 	    refcount_count(&rrl->rr_linked_rcount) > 0 ||
202 	    rrl->rr_writer != NULL) {
203 		rrl->rr_writer_wanted = B_TRUE;
204 		cv_wait(&rrl->rr_cv, &rrl->rr_lock);
205 	}
206 	rrl->rr_writer_wanted = B_FALSE;
207 	rrl->rr_writer = curthread;
208 	mutex_exit(&rrl->rr_lock);
209 }
210 
211 void
212 rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag)
213 {
214 	if (rw == RW_READER)
215 		rrw_enter_read(rrl, tag);
216 	else
217 		rrw_enter_write(rrl);
218 }
219 
220 void
221 rrw_exit(rrwlock_t *rrl, void *tag)
222 {
223 	mutex_enter(&rrl->rr_lock);
224 #if !defined(DEBUG) && defined(_KERNEL)
225 	if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) {
226 		rrl->rr_anon_rcount.rc_count--;
227 		if (rrl->rr_anon_rcount.rc_count == 0)
228 			cv_broadcast(&rrl->rr_cv);
229 		mutex_exit(&rrl->rr_lock);
230 		return;
231 	}
232 	DTRACE_PROBE(zfs__rrwfastpath__exitmiss);
233 #endif
234 	ASSERT(!refcount_is_zero(&rrl->rr_anon_rcount) ||
235 	    !refcount_is_zero(&rrl->rr_linked_rcount) ||
236 	    rrl->rr_writer != NULL);
237 
238 	if (rrl->rr_writer == NULL) {
239 		int64_t count;
240 		if (rrn_find_and_remove(rrl, tag)) {
241 			count = refcount_remove(&rrl->rr_linked_rcount, tag);
242 		} else {
243 			ASSERT(!rrl->rr_track_all);
244 			count = refcount_remove(&rrl->rr_anon_rcount, tag);
245 		}
246 		if (count == 0)
247 			cv_broadcast(&rrl->rr_cv);
248 	} else {
249 		ASSERT(rrl->rr_writer == curthread);
250 		ASSERT(refcount_is_zero(&rrl->rr_anon_rcount) &&
251 		    refcount_is_zero(&rrl->rr_linked_rcount));
252 		rrl->rr_writer = NULL;
253 		cv_broadcast(&rrl->rr_cv);
254 	}
255 	mutex_exit(&rrl->rr_lock);
256 }
257 
258 /*
259  * If the lock was created with track_all, rrw_held(RW_READER) will return
260  * B_TRUE iff the current thread has the lock for reader.  Otherwise it may
261  * return B_TRUE if any thread has the lock for reader.
262  */
263 boolean_t
264 rrw_held(rrwlock_t *rrl, krw_t rw)
265 {
266 	boolean_t held;
267 
268 	mutex_enter(&rrl->rr_lock);
269 	if (rw == RW_WRITER) {
270 		held = (rrl->rr_writer == curthread);
271 	} else {
272 		held = (!refcount_is_zero(&rrl->rr_anon_rcount) ||
273 		    rrn_find(rrl) != NULL);
274 	}
275 	mutex_exit(&rrl->rr_lock);
276 
277 	return (held);
278 }
279 
280 void
281 rrw_tsd_destroy(void *arg)
282 {
283 	rrw_node_t *rn = arg;
284 	if (rn != NULL) {
285 		panic("thread %p terminating with rrw lock %p held",
286 		    (void *)curthread, (void *)rn->rn_rrl);
287 	}
288 }
289 
290 /*
291  * A reader-mostly lock implementation, tuning above reader-writer locks
292  * for hightly parallel read acquisitions, while pessimizing writes.
293  *
294  * The idea is to split single busy lock into array of locks, so that
295  * each reader can lock only one of them for read, depending on result
296  * of simple hash function.  That proportionally reduces lock congestion.
297  * Writer same time has to sequentially aquire write on all the locks.
298  * That makes write aquisition proportionally slower, but in places where
299  * it is used (filesystem unmount) performance is not critical.
300  *
301  * All the functions below are direct wrappers around functions above.
302  */
303 void
304 rrm_init(rrmlock_t *rrl, boolean_t track_all)
305 {
306 	int i;
307 
308 	for (i = 0; i < RRM_NUM_LOCKS; i++)
309 		rrw_init(&rrl->locks[i], track_all);
310 }
311 
312 void
313 rrm_destroy(rrmlock_t *rrl)
314 {
315 	int i;
316 
317 	for (i = 0; i < RRM_NUM_LOCKS; i++)
318 		rrw_destroy(&rrl->locks[i]);
319 }
320 
321 void
322 rrm_enter(rrmlock_t *rrl, krw_t rw, void *tag)
323 {
324 	if (rw == RW_READER)
325 		rrm_enter_read(rrl, tag);
326 	else
327 		rrm_enter_write(rrl);
328 }
329 
330 /*
331  * This maps the current thread to a specific lock.  Note that the lock
332  * must be released by the same thread that acquired it.  We do this
333  * mapping by taking the thread pointer mod a prime number.  We examine
334  * only the low 32 bits of the thread pointer, because 32-bit division
335  * is faster than 64-bit division, and the high 32 bits have little
336  * entropy anyway.
337  */
338 #define	RRM_TD_LOCK()	(((uint32_t)(uintptr_t)(curthread)) % RRM_NUM_LOCKS)
339 
340 void
341 rrm_enter_read(rrmlock_t *rrl, void *tag)
342 {
343 	rrw_enter_read(&rrl->locks[RRM_TD_LOCK()], tag);
344 }
345 
346 void
347 rrm_enter_write(rrmlock_t *rrl)
348 {
349 	int i;
350 
351 	for (i = 0; i < RRM_NUM_LOCKS; i++)
352 		rrw_enter_write(&rrl->locks[i]);
353 }
354 
355 void
356 rrm_exit(rrmlock_t *rrl, void *tag)
357 {
358 	int i;
359 
360 	if (rrl->locks[0].rr_writer == curthread) {
361 		for (i = 0; i < RRM_NUM_LOCKS; i++)
362 			rrw_exit(&rrl->locks[i], tag);
363 	} else {
364 		rrw_exit(&rrl->locks[RRM_TD_LOCK()], tag);
365 	}
366 }
367 
368 boolean_t
369 rrm_held(rrmlock_t *rrl, krw_t rw)
370 {
371 	if (rw == RW_WRITER) {
372 		return (rrw_held(&rrl->locks[0], rw));
373 	} else {
374 		return (rrw_held(&rrl->locks[RRM_TD_LOCK()], rw));
375 	}
376 }
377