xref: /titanic_50/usr/src/uts/common/fs/zfs/metaslab.c (revision 381a2a9a387f449fab7d0c7e97c4184c26963abf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio.h>
36 
37 uint64_t metaslab_aliquot = 512ULL << 10;
38 
39 /*
40  * ==========================================================================
41  * Metaslab classes
42  * ==========================================================================
43  */
44 metaslab_class_t *
45 metaslab_class_create(void)
46 {
47 	metaslab_class_t *mc;
48 
49 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
50 
51 	mc->mc_rotor = NULL;
52 
53 	return (mc);
54 }
55 
56 void
57 metaslab_class_destroy(metaslab_class_t *mc)
58 {
59 	metaslab_group_t *mg;
60 
61 	while ((mg = mc->mc_rotor) != NULL) {
62 		metaslab_class_remove(mc, mg);
63 		metaslab_group_destroy(mg);
64 	}
65 
66 	kmem_free(mc, sizeof (metaslab_class_t));
67 }
68 
69 void
70 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
71 {
72 	metaslab_group_t *mgprev, *mgnext;
73 
74 	ASSERT(mg->mg_class == NULL);
75 
76 	if ((mgprev = mc->mc_rotor) == NULL) {
77 		mg->mg_prev = mg;
78 		mg->mg_next = mg;
79 	} else {
80 		mgnext = mgprev->mg_next;
81 		mg->mg_prev = mgprev;
82 		mg->mg_next = mgnext;
83 		mgprev->mg_next = mg;
84 		mgnext->mg_prev = mg;
85 	}
86 	mc->mc_rotor = mg;
87 	mg->mg_class = mc;
88 }
89 
90 void
91 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
92 {
93 	metaslab_group_t *mgprev, *mgnext;
94 
95 	ASSERT(mg->mg_class == mc);
96 
97 	mgprev = mg->mg_prev;
98 	mgnext = mg->mg_next;
99 
100 	if (mg == mgnext) {
101 		mc->mc_rotor = NULL;
102 	} else {
103 		mc->mc_rotor = mgnext;
104 		mgprev->mg_next = mgnext;
105 		mgnext->mg_prev = mgprev;
106 	}
107 
108 	mg->mg_prev = NULL;
109 	mg->mg_next = NULL;
110 	mg->mg_class = NULL;
111 }
112 
113 /*
114  * ==========================================================================
115  * Metaslab groups
116  * ==========================================================================
117  */
118 static int
119 metaslab_compare(const void *x1, const void *x2)
120 {
121 	const metaslab_t *m1 = x1;
122 	const metaslab_t *m2 = x2;
123 
124 	if (m1->ms_weight < m2->ms_weight)
125 		return (1);
126 	if (m1->ms_weight > m2->ms_weight)
127 		return (-1);
128 
129 	/*
130 	 * If the weights are identical, use the offset to force uniqueness.
131 	 */
132 	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
133 		return (-1);
134 	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
135 		return (1);
136 
137 	ASSERT3P(m1, ==, m2);
138 
139 	return (0);
140 }
141 
142 metaslab_group_t *
143 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
144 {
145 	metaslab_group_t *mg;
146 
147 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
148 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
149 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
150 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
151 	mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
152 	mg->mg_vd = vd;
153 	metaslab_class_add(mc, mg);
154 
155 	return (mg);
156 }
157 
158 void
159 metaslab_group_destroy(metaslab_group_t *mg)
160 {
161 	avl_destroy(&mg->mg_metaslab_tree);
162 	mutex_destroy(&mg->mg_lock);
163 	kmem_free(mg, sizeof (metaslab_group_t));
164 }
165 
166 static void
167 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
168 {
169 	mutex_enter(&mg->mg_lock);
170 	ASSERT(msp->ms_group == NULL);
171 	msp->ms_group = mg;
172 	msp->ms_weight = 0;
173 	avl_add(&mg->mg_metaslab_tree, msp);
174 	mutex_exit(&mg->mg_lock);
175 }
176 
177 static void
178 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
179 {
180 	mutex_enter(&mg->mg_lock);
181 	ASSERT(msp->ms_group == mg);
182 	avl_remove(&mg->mg_metaslab_tree, msp);
183 	msp->ms_group = NULL;
184 	mutex_exit(&mg->mg_lock);
185 }
186 
187 static void
188 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
189 {
190 	/*
191 	 * Although in principle the weight can be any value, in
192 	 * practice we do not use values in the range [1, 510].
193 	 */
194 	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
195 	ASSERT(MUTEX_HELD(&msp->ms_lock));
196 
197 	mutex_enter(&mg->mg_lock);
198 	ASSERT(msp->ms_group == mg);
199 	avl_remove(&mg->mg_metaslab_tree, msp);
200 	msp->ms_weight = weight;
201 	avl_add(&mg->mg_metaslab_tree, msp);
202 	mutex_exit(&mg->mg_lock);
203 }
204 
205 /*
206  * ==========================================================================
207  * The first-fit block allocator
208  * ==========================================================================
209  */
210 static void
211 metaslab_ff_load(space_map_t *sm)
212 {
213 	ASSERT(sm->sm_ppd == NULL);
214 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
215 }
216 
217 static void
218 metaslab_ff_unload(space_map_t *sm)
219 {
220 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
221 	sm->sm_ppd = NULL;
222 }
223 
224 static uint64_t
225 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
226 {
227 	avl_tree_t *t = &sm->sm_root;
228 	uint64_t align = size & -size;
229 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
230 	space_seg_t *ss, ssearch;
231 	avl_index_t where;
232 
233 	ssearch.ss_start = *cursor;
234 	ssearch.ss_end = *cursor + size;
235 
236 	ss = avl_find(t, &ssearch, &where);
237 	if (ss == NULL)
238 		ss = avl_nearest(t, where, AVL_AFTER);
239 
240 	while (ss != NULL) {
241 		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
242 
243 		if (offset + size <= ss->ss_end) {
244 			*cursor = offset + size;
245 			return (offset);
246 		}
247 		ss = AVL_NEXT(t, ss);
248 	}
249 
250 	/*
251 	 * If we know we've searched the whole map (*cursor == 0), give up.
252 	 * Otherwise, reset the cursor to the beginning and try again.
253 	 */
254 	if (*cursor == 0)
255 		return (-1ULL);
256 
257 	*cursor = 0;
258 	return (metaslab_ff_alloc(sm, size));
259 }
260 
261 /* ARGSUSED */
262 static void
263 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
264 {
265 	/* No need to update cursor */
266 }
267 
268 /* ARGSUSED */
269 static void
270 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
271 {
272 	/* No need to update cursor */
273 }
274 
275 static space_map_ops_t metaslab_ff_ops = {
276 	metaslab_ff_load,
277 	metaslab_ff_unload,
278 	metaslab_ff_alloc,
279 	metaslab_ff_claim,
280 	metaslab_ff_free
281 };
282 
283 /*
284  * ==========================================================================
285  * Metaslabs
286  * ==========================================================================
287  */
288 metaslab_t *
289 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
290 	uint64_t start, uint64_t size, uint64_t txg)
291 {
292 	vdev_t *vd = mg->mg_vd;
293 	metaslab_t *msp;
294 
295 	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
296 	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
297 
298 	msp->ms_smo_syncing = *smo;
299 
300 	/*
301 	 * We create the main space map here, but we don't create the
302 	 * allocmaps and freemaps until metaslab_sync_done().  This serves
303 	 * two purposes: it allows metaslab_sync_done() to detect the
304 	 * addition of new space; and for debugging, it ensures that we'd
305 	 * data fault on any attempt to use this metaslab before it's ready.
306 	 */
307 	space_map_create(&msp->ms_map, start, size,
308 	    vd->vdev_ashift, &msp->ms_lock);
309 
310 	metaslab_group_add(mg, msp);
311 
312 	/*
313 	 * If we're opening an existing pool (txg == 0) or creating
314 	 * a new one (txg == TXG_INITIAL), all space is available now.
315 	 * If we're adding space to an existing pool, the new space
316 	 * does not become available until after this txg has synced.
317 	 */
318 	if (txg <= TXG_INITIAL)
319 		metaslab_sync_done(msp, 0);
320 
321 	if (txg != 0) {
322 		/*
323 		 * The vdev is dirty, but the metaslab isn't -- it just needs
324 		 * to have metaslab_sync_done() invoked from vdev_sync_done().
325 		 * [We could just dirty the metaslab, but that would cause us
326 		 * to allocate a space map object for it, which is wasteful
327 		 * and would mess up the locality logic in metaslab_weight().]
328 		 */
329 		ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
330 		vdev_dirty(vd, 0, NULL, txg);
331 		vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
332 	}
333 
334 	return (msp);
335 }
336 
337 void
338 metaslab_fini(metaslab_t *msp)
339 {
340 	metaslab_group_t *mg = msp->ms_group;
341 	int t;
342 
343 	vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
344 	    -msp->ms_smo.smo_alloc);
345 
346 	metaslab_group_remove(mg, msp);
347 
348 	mutex_enter(&msp->ms_lock);
349 
350 	space_map_unload(&msp->ms_map);
351 	space_map_destroy(&msp->ms_map);
352 
353 	for (t = 0; t < TXG_SIZE; t++) {
354 		space_map_destroy(&msp->ms_allocmap[t]);
355 		space_map_destroy(&msp->ms_freemap[t]);
356 	}
357 
358 	mutex_exit(&msp->ms_lock);
359 	mutex_destroy(&msp->ms_lock);
360 
361 	kmem_free(msp, sizeof (metaslab_t));
362 }
363 
364 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
365 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
366 #define	METASLAB_ACTIVE_MASK		\
367 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
368 #define	METASLAB_SMO_BONUS_MULTIPLIER	2
369 
370 static uint64_t
371 metaslab_weight(metaslab_t *msp)
372 {
373 	metaslab_group_t *mg = msp->ms_group;
374 	space_map_t *sm = &msp->ms_map;
375 	space_map_obj_t *smo = &msp->ms_smo;
376 	vdev_t *vd = mg->mg_vd;
377 	uint64_t weight, space;
378 
379 	ASSERT(MUTEX_HELD(&msp->ms_lock));
380 
381 	/*
382 	 * The baseline weight is the metaslab's free space.
383 	 */
384 	space = sm->sm_size - smo->smo_alloc;
385 	weight = space;
386 
387 	/*
388 	 * Modern disks have uniform bit density and constant angular velocity.
389 	 * Therefore, the outer recording zones are faster (higher bandwidth)
390 	 * than the inner zones by the ratio of outer to inner track diameter,
391 	 * which is typically around 2:1.  We account for this by assigning
392 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
393 	 * In effect, this means that we'll select the metaslab with the most
394 	 * free bandwidth rather than simply the one with the most free space.
395 	 */
396 	weight = 2 * weight -
397 	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
398 	ASSERT(weight >= space && weight <= 2 * space);
399 
400 	/*
401 	 * For locality, assign higher weight to metaslabs we've used before.
402 	 */
403 	if (smo->smo_object != 0)
404 		weight *= METASLAB_SMO_BONUS_MULTIPLIER;
405 	ASSERT(weight >= space &&
406 	    weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
407 
408 	/*
409 	 * If this metaslab is one we're actively using, adjust its weight to
410 	 * make it preferable to any inactive metaslab so we'll polish it off.
411 	 */
412 	weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
413 
414 	return (weight);
415 }
416 
417 static int
418 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
419 {
420 	space_map_t *sm = &msp->ms_map;
421 
422 	ASSERT(MUTEX_HELD(&msp->ms_lock));
423 
424 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
425 		int error = space_map_load(sm, &metaslab_ff_ops,
426 		    SM_FREE, &msp->ms_smo,
427 		    msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
428 		if (error) {
429 			metaslab_group_sort(msp->ms_group, msp, 0);
430 			return (error);
431 		}
432 		metaslab_group_sort(msp->ms_group, msp,
433 		    msp->ms_weight | activation_weight);
434 	}
435 	ASSERT(sm->sm_loaded);
436 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
437 
438 	return (0);
439 }
440 
441 static void
442 metaslab_passivate(metaslab_t *msp, uint64_t size)
443 {
444 	/*
445 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
446 	 * this metaslab again.  In that case, it had better be empty,
447 	 * or we would be leaving space on the table.
448 	 */
449 	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
450 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
451 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
452 }
453 
454 /*
455  * Write a metaslab to disk in the context of the specified transaction group.
456  */
457 void
458 metaslab_sync(metaslab_t *msp, uint64_t txg)
459 {
460 	vdev_t *vd = msp->ms_group->mg_vd;
461 	spa_t *spa = vd->vdev_spa;
462 	objset_t *mos = spa->spa_meta_objset;
463 	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
464 	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
465 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
466 	space_map_t *sm = &msp->ms_map;
467 	space_map_obj_t *smo = &msp->ms_smo_syncing;
468 	dmu_buf_t *db;
469 	dmu_tx_t *tx;
470 	int t;
471 
472 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
473 
474 	/*
475 	 * The only state that can actually be changing concurrently with
476 	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
477 	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
478 	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
479 	 * We drop it whenever we call into the DMU, because the DMU
480 	 * can call down to us (e.g. via zio_free()) at any time.
481 	 */
482 	mutex_enter(&msp->ms_lock);
483 
484 	if (smo->smo_object == 0) {
485 		ASSERT(smo->smo_objsize == 0);
486 		ASSERT(smo->smo_alloc == 0);
487 		mutex_exit(&msp->ms_lock);
488 		smo->smo_object = dmu_object_alloc(mos,
489 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
490 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
491 		ASSERT(smo->smo_object != 0);
492 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
493 		    (sm->sm_start >> vd->vdev_ms_shift),
494 		    sizeof (uint64_t), &smo->smo_object, tx);
495 		mutex_enter(&msp->ms_lock);
496 	}
497 
498 	space_map_walk(freemap, space_map_add, freed_map);
499 
500 	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
501 	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
502 		/*
503 		 * The in-core space map representation is twice as compact
504 		 * as the on-disk one, so it's time to condense the latter
505 		 * by generating a pure allocmap from first principles.
506 		 *
507 		 * This metaslab is 100% allocated,
508 		 * minus the content of the in-core map (sm),
509 		 * minus what's been freed this txg (freed_map),
510 		 * minus allocations from txgs in the future
511 		 * (because they haven't been committed yet).
512 		 */
513 		space_map_vacate(allocmap, NULL, NULL);
514 		space_map_vacate(freemap, NULL, NULL);
515 
516 		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
517 
518 		space_map_walk(sm, space_map_remove, allocmap);
519 		space_map_walk(freed_map, space_map_remove, allocmap);
520 
521 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
522 			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
523 			    space_map_remove, allocmap);
524 
525 		mutex_exit(&msp->ms_lock);
526 		space_map_truncate(smo, mos, tx);
527 		mutex_enter(&msp->ms_lock);
528 	}
529 
530 	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
531 	space_map_sync(freemap, SM_FREE, smo, mos, tx);
532 
533 	mutex_exit(&msp->ms_lock);
534 
535 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
536 	dmu_buf_will_dirty(db, tx);
537 	ASSERT3U(db->db_size, ==, sizeof (*smo));
538 	bcopy(smo, db->db_data, db->db_size);
539 	dmu_buf_rele(db, FTAG);
540 
541 	dmu_tx_commit(tx);
542 }
543 
544 /*
545  * Called after a transaction group has completely synced to mark
546  * all of the metaslab's free space as usable.
547  */
548 void
549 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
550 {
551 	space_map_obj_t *smo = &msp->ms_smo;
552 	space_map_obj_t *smosync = &msp->ms_smo_syncing;
553 	space_map_t *sm = &msp->ms_map;
554 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
555 	metaslab_group_t *mg = msp->ms_group;
556 	vdev_t *vd = mg->mg_vd;
557 	int t;
558 
559 	mutex_enter(&msp->ms_lock);
560 
561 	/*
562 	 * If this metaslab is just becoming available, initialize its
563 	 * allocmaps and freemaps and add its capacity to the vdev.
564 	 */
565 	if (freed_map->sm_size == 0) {
566 		for (t = 0; t < TXG_SIZE; t++) {
567 			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
568 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
569 			space_map_create(&msp->ms_freemap[t], sm->sm_start,
570 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
571 		}
572 		vdev_space_update(vd, sm->sm_size, 0);
573 	}
574 
575 	vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc);
576 
577 	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
578 	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
579 
580 	/*
581 	 * If there's a space_map_load() in progress, wait for it to complete
582 	 * so that we have a consistent view of the in-core space map.
583 	 * Then, add everything we freed in this txg to the map.
584 	 */
585 	space_map_load_wait(sm);
586 	space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);
587 
588 	*smo = *smosync;
589 
590 	/*
591 	 * If the map is loaded but no longer active, evict it as soon as all
592 	 * future allocations have synced.  (If we unloaded it now and then
593 	 * loaded a moment later, the map wouldn't reflect those allocations.)
594 	 */
595 	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
596 		int evictable = 1;
597 
598 		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
599 			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
600 				evictable = 0;
601 
602 		if (evictable)
603 			space_map_unload(sm);
604 	}
605 
606 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
607 
608 	mutex_exit(&msp->ms_lock);
609 }
610 
611 static uint64_t
612 metaslab_distance(metaslab_t *msp, dva_t *dva)
613 {
614 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
615 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
616 	uint64_t start = msp->ms_map.sm_start >> ms_shift;
617 
618 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
619 		return (1ULL << 63);
620 
621 	if (offset < start)
622 		return ((start - offset) << ms_shift);
623 	if (offset > start)
624 		return ((offset - start) << ms_shift);
625 	return (0);
626 }
627 
628 static uint64_t
629 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
630     uint64_t min_distance, dva_t *dva, int d)
631 {
632 	metaslab_t *msp = NULL;
633 	uint64_t offset = -1ULL;
634 	avl_tree_t *t = &mg->mg_metaslab_tree;
635 	uint64_t activation_weight;
636 	uint64_t target_distance;
637 	int i;
638 
639 	activation_weight = METASLAB_WEIGHT_PRIMARY;
640 	for (i = 0; i < d; i++)
641 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id)
642 			activation_weight = METASLAB_WEIGHT_SECONDARY;
643 
644 	for (;;) {
645 		mutex_enter(&mg->mg_lock);
646 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
647 			if (msp->ms_weight < size) {
648 				mutex_exit(&mg->mg_lock);
649 				return (-1ULL);
650 			}
651 
652 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
653 				break;
654 
655 			target_distance = min_distance +
656 			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
657 
658 			for (i = 0; i < d; i++)
659 				if (metaslab_distance(msp, &dva[i]) <
660 				    target_distance)
661 					break;
662 			if (i == d)
663 				break;
664 		}
665 		mutex_exit(&mg->mg_lock);
666 		if (msp == NULL)
667 			return (-1ULL);
668 
669 		mutex_enter(&msp->ms_lock);
670 
671 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
672 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
673 			metaslab_passivate(msp,
674 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
675 			mutex_exit(&msp->ms_lock);
676 			continue;
677 		}
678 
679 		if (metaslab_activate(msp, activation_weight) != 0) {
680 			mutex_exit(&msp->ms_lock);
681 			continue;
682 		}
683 
684 		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
685 			break;
686 
687 		metaslab_passivate(msp, size - 1);
688 
689 		mutex_exit(&msp->ms_lock);
690 	}
691 
692 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
693 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
694 
695 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
696 
697 	mutex_exit(&msp->ms_lock);
698 
699 	return (offset);
700 }
701 
702 /*
703  * Allocate a block for the specified i/o.
704  */
705 static int
706 metaslab_alloc_dva(spa_t *spa, uint64_t psize, dva_t *dva, int d,
707     dva_t *hintdva, uint64_t txg)
708 {
709 	metaslab_group_t *mg, *rotor;
710 	metaslab_class_t *mc;
711 	vdev_t *vd;
712 	int dshift = 3;
713 	int all_zero;
714 	uint64_t offset = -1ULL;
715 	uint64_t asize;
716 	uint64_t distance;
717 
718 	ASSERT(!DVA_IS_VALID(&dva[d]));
719 
720 	mc = spa_metaslab_class_select(spa);
721 
722 	/*
723 	 * Start at the rotor and loop through all mgs until we find something.
724 	 * Note that there's no locking on mc_rotor or mc_allocated because
725 	 * nothing actually breaks if we miss a few updates -- we just won't
726 	 * allocate quite as evenly.  It all balances out over time.
727 	 *
728 	 * If we are doing ditto blocks, try to spread them across consecutive
729 	 * vdevs.  If we're forced to reuse a vdev before we've allocated
730 	 * all of our ditto blocks, then try and spread them out on that
731 	 * vdev as much as possible.  If it turns out to not be possible,
732 	 * gradually lower our standards until anything becomes acceptable.
733 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
734 	 * gives us hope of containing our fault domains to something we're
735 	 * able to reason about.  Otherwise, any two top-level vdev failures
736 	 * will guarantee the loss of data.  With consecutive allocation,
737 	 * only two adjacent top-level vdev failures will result in data loss.
738 	 *
739 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
740 	 * ourselves on the same vdev as our gang block header.  That
741 	 * way, we can hope for locality in vdev_cache, plus it makes our
742 	 * fault domains something tractable.
743 	 */
744 	if (hintdva) {
745 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
746 		mg = vd->vdev_mg;
747 	} else if (d != 0) {
748 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
749 		mg = vd->vdev_mg->mg_next;
750 	} else {
751 		mg = mc->mc_rotor;
752 	}
753 	rotor = mg;
754 
755 top:
756 	all_zero = B_TRUE;
757 	do {
758 		vd = mg->mg_vd;
759 
760 		distance = vd->vdev_asize >> dshift;
761 		if (distance <= (1ULL << vd->vdev_ms_shift))
762 			distance = 0;
763 		else
764 			all_zero = B_FALSE;
765 
766 		asize = vdev_psize_to_asize(vd, psize);
767 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
768 
769 		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
770 		if (offset != -1ULL) {
771 			/*
772 			 * If we've just selected this metaslab group,
773 			 * figure out whether the corresponding vdev is
774 			 * over- or under-used relative to the pool,
775 			 * and set an allocation bias to even it out.
776 			 */
777 			if (mc->mc_allocated == 0) {
778 				vdev_stat_t *vs = &vd->vdev_stat;
779 				uint64_t alloc, space;
780 				int64_t vu, su;
781 
782 				alloc = spa_get_alloc(spa);
783 				space = spa_get_space(spa);
784 
785 				/*
786 				 * Determine percent used in units of 0..1024.
787 				 * (This is just to avoid floating point.)
788 				 */
789 				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
790 				su = (alloc << 10) / (space + 1);
791 
792 				/*
793 				 * Bias by at most +/- 25% of the aliquot.
794 				 */
795 				mg->mg_bias = ((su - vu) *
796 				    (int64_t)mg->mg_aliquot) / (1024 * 4);
797 			}
798 
799 			if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
800 			    mg->mg_aliquot + mg->mg_bias) {
801 				mc->mc_rotor = mg->mg_next;
802 				mc->mc_allocated = 0;
803 			}
804 
805 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
806 			DVA_SET_OFFSET(&dva[d], offset);
807 			DVA_SET_GANG(&dva[d], 0);
808 			DVA_SET_ASIZE(&dva[d], asize);
809 
810 			return (0);
811 		}
812 		mc->mc_rotor = mg->mg_next;
813 		mc->mc_allocated = 0;
814 	} while ((mg = mg->mg_next) != rotor);
815 
816 	if (!all_zero) {
817 		dshift++;
818 		ASSERT(dshift < 64);
819 		goto top;
820 	}
821 
822 	bzero(&dva[d], sizeof (dva_t));
823 
824 	return (ENOSPC);
825 }
826 
827 /*
828  * Free the block represented by DVA in the context of the specified
829  * transaction group.
830  */
831 static void
832 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
833 {
834 	uint64_t vdev = DVA_GET_VDEV(dva);
835 	uint64_t offset = DVA_GET_OFFSET(dva);
836 	uint64_t size = DVA_GET_ASIZE(dva);
837 	vdev_t *vd;
838 	metaslab_t *msp;
839 
840 	ASSERT(DVA_IS_VALID(dva));
841 
842 	if (txg > spa_freeze_txg(spa))
843 		return;
844 
845 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
846 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
847 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
848 		    (u_longlong_t)vdev, (u_longlong_t)offset);
849 		ASSERT(0);
850 		return;
851 	}
852 
853 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
854 
855 	if (DVA_GET_GANG(dva))
856 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
857 
858 	mutex_enter(&msp->ms_lock);
859 
860 	if (now) {
861 		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
862 		    offset, size);
863 		space_map_free(&msp->ms_map, offset, size);
864 	} else {
865 		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
866 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
867 		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
868 	}
869 
870 	mutex_exit(&msp->ms_lock);
871 }
872 
873 /*
874  * Intent log support: upon opening the pool after a crash, notify the SPA
875  * of blocks that the intent log has allocated for immediate write, but
876  * which are still considered free by the SPA because the last transaction
877  * group didn't commit yet.
878  */
879 static int
880 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
881 {
882 	uint64_t vdev = DVA_GET_VDEV(dva);
883 	uint64_t offset = DVA_GET_OFFSET(dva);
884 	uint64_t size = DVA_GET_ASIZE(dva);
885 	vdev_t *vd;
886 	metaslab_t *msp;
887 	int error;
888 
889 	ASSERT(DVA_IS_VALID(dva));
890 
891 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
892 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
893 		return (ENXIO);
894 
895 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
896 
897 	if (DVA_GET_GANG(dva))
898 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
899 
900 	mutex_enter(&msp->ms_lock);
901 
902 	error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
903 	if (error) {
904 		mutex_exit(&msp->ms_lock);
905 		return (error);
906 	}
907 
908 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
909 		vdev_dirty(vd, VDD_METASLAB, msp, txg);
910 
911 	space_map_claim(&msp->ms_map, offset, size);
912 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
913 
914 	mutex_exit(&msp->ms_lock);
915 
916 	return (0);
917 }
918 
919 int
920 metaslab_alloc(spa_t *spa, uint64_t psize, blkptr_t *bp, int ndvas,
921     uint64_t txg, blkptr_t *hintbp)
922 {
923 	dva_t *dva = bp->blk_dva;
924 	dva_t *hintdva = hintbp->blk_dva;
925 	int d;
926 	int error = 0;
927 
928 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
929 	ASSERT(BP_GET_NDVAS(bp) == 0);
930 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
931 
932 	for (d = 0; d < ndvas; d++) {
933 		error = metaslab_alloc_dva(spa, psize, dva, d, hintdva, txg);
934 		if (error) {
935 			for (d--; d >= 0; d--) {
936 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
937 				bzero(&dva[d], sizeof (dva_t));
938 			}
939 			return (error);
940 		}
941 	}
942 	ASSERT(error == 0);
943 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
944 
945 	return (0);
946 }
947 
948 void
949 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
950 {
951 	const dva_t *dva = bp->blk_dva;
952 	int ndvas = BP_GET_NDVAS(bp);
953 	int d;
954 
955 	ASSERT(!BP_IS_HOLE(bp));
956 
957 	for (d = 0; d < ndvas; d++)
958 		metaslab_free_dva(spa, &dva[d], txg, now);
959 }
960 
961 int
962 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
963 {
964 	const dva_t *dva = bp->blk_dva;
965 	int ndvas = BP_GET_NDVAS(bp);
966 	int d, error;
967 	int last_error = 0;
968 
969 	ASSERT(!BP_IS_HOLE(bp));
970 
971 	for (d = 0; d < ndvas; d++)
972 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
973 			last_error = error;
974 
975 	return (last_error);
976 }
977