1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa_impl.h> 28 #include <sys/dmu.h> 29 #include <sys/dmu_tx.h> 30 #include <sys/space_map.h> 31 #include <sys/metaslab_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio.h> 34 35 uint64_t metaslab_aliquot = 512ULL << 10; 36 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 37 38 /* 39 * ========================================================================== 40 * Metaslab classes 41 * ========================================================================== 42 */ 43 metaslab_class_t * 44 metaslab_class_create(void) 45 { 46 metaslab_class_t *mc; 47 48 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 49 50 mc->mc_rotor = NULL; 51 52 return (mc); 53 } 54 55 void 56 metaslab_class_destroy(metaslab_class_t *mc) 57 { 58 metaslab_group_t *mg; 59 60 while ((mg = mc->mc_rotor) != NULL) { 61 metaslab_class_remove(mc, mg); 62 metaslab_group_destroy(mg); 63 } 64 65 kmem_free(mc, sizeof (metaslab_class_t)); 66 } 67 68 void 69 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg) 70 { 71 metaslab_group_t *mgprev, *mgnext; 72 73 ASSERT(mg->mg_class == NULL); 74 75 if ((mgprev = mc->mc_rotor) == NULL) { 76 mg->mg_prev = mg; 77 mg->mg_next = mg; 78 } else { 79 mgnext = mgprev->mg_next; 80 mg->mg_prev = mgprev; 81 mg->mg_next = mgnext; 82 mgprev->mg_next = mg; 83 mgnext->mg_prev = mg; 84 } 85 mc->mc_rotor = mg; 86 mg->mg_class = mc; 87 } 88 89 void 90 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg) 91 { 92 metaslab_group_t *mgprev, *mgnext; 93 94 ASSERT(mg->mg_class == mc); 95 96 mgprev = mg->mg_prev; 97 mgnext = mg->mg_next; 98 99 if (mg == mgnext) { 100 mc->mc_rotor = NULL; 101 } else { 102 mc->mc_rotor = mgnext; 103 mgprev->mg_next = mgnext; 104 mgnext->mg_prev = mgprev; 105 } 106 107 mg->mg_prev = NULL; 108 mg->mg_next = NULL; 109 mg->mg_class = NULL; 110 } 111 112 /* 113 * ========================================================================== 114 * Metaslab groups 115 * ========================================================================== 116 */ 117 static int 118 metaslab_compare(const void *x1, const void *x2) 119 { 120 const metaslab_t *m1 = x1; 121 const metaslab_t *m2 = x2; 122 123 if (m1->ms_weight < m2->ms_weight) 124 return (1); 125 if (m1->ms_weight > m2->ms_weight) 126 return (-1); 127 128 /* 129 * If the weights are identical, use the offset to force uniqueness. 130 */ 131 if (m1->ms_map.sm_start < m2->ms_map.sm_start) 132 return (-1); 133 if (m1->ms_map.sm_start > m2->ms_map.sm_start) 134 return (1); 135 136 ASSERT3P(m1, ==, m2); 137 138 return (0); 139 } 140 141 metaslab_group_t * 142 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 143 { 144 metaslab_group_t *mg; 145 146 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 147 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 148 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 149 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 150 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children); 151 mg->mg_vd = vd; 152 metaslab_class_add(mc, mg); 153 154 return (mg); 155 } 156 157 void 158 metaslab_group_destroy(metaslab_group_t *mg) 159 { 160 avl_destroy(&mg->mg_metaslab_tree); 161 mutex_destroy(&mg->mg_lock); 162 kmem_free(mg, sizeof (metaslab_group_t)); 163 } 164 165 static void 166 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 167 { 168 mutex_enter(&mg->mg_lock); 169 ASSERT(msp->ms_group == NULL); 170 msp->ms_group = mg; 171 msp->ms_weight = 0; 172 avl_add(&mg->mg_metaslab_tree, msp); 173 mutex_exit(&mg->mg_lock); 174 } 175 176 static void 177 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 178 { 179 mutex_enter(&mg->mg_lock); 180 ASSERT(msp->ms_group == mg); 181 avl_remove(&mg->mg_metaslab_tree, msp); 182 msp->ms_group = NULL; 183 mutex_exit(&mg->mg_lock); 184 } 185 186 static void 187 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 188 { 189 /* 190 * Although in principle the weight can be any value, in 191 * practice we do not use values in the range [1, 510]. 192 */ 193 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0); 194 ASSERT(MUTEX_HELD(&msp->ms_lock)); 195 196 mutex_enter(&mg->mg_lock); 197 ASSERT(msp->ms_group == mg); 198 avl_remove(&mg->mg_metaslab_tree, msp); 199 msp->ms_weight = weight; 200 avl_add(&mg->mg_metaslab_tree, msp); 201 mutex_exit(&mg->mg_lock); 202 } 203 204 /* 205 * ========================================================================== 206 * The first-fit block allocator 207 * ========================================================================== 208 */ 209 static void 210 metaslab_ff_load(space_map_t *sm) 211 { 212 ASSERT(sm->sm_ppd == NULL); 213 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 214 } 215 216 static void 217 metaslab_ff_unload(space_map_t *sm) 218 { 219 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 220 sm->sm_ppd = NULL; 221 } 222 223 static uint64_t 224 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 225 { 226 avl_tree_t *t = &sm->sm_root; 227 uint64_t align = size & -size; 228 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 229 space_seg_t *ss, ssearch; 230 avl_index_t where; 231 232 ssearch.ss_start = *cursor; 233 ssearch.ss_end = *cursor + size; 234 235 ss = avl_find(t, &ssearch, &where); 236 if (ss == NULL) 237 ss = avl_nearest(t, where, AVL_AFTER); 238 239 while (ss != NULL) { 240 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 241 242 if (offset + size <= ss->ss_end) { 243 *cursor = offset + size; 244 return (offset); 245 } 246 ss = AVL_NEXT(t, ss); 247 } 248 249 /* 250 * If we know we've searched the whole map (*cursor == 0), give up. 251 * Otherwise, reset the cursor to the beginning and try again. 252 */ 253 if (*cursor == 0) 254 return (-1ULL); 255 256 *cursor = 0; 257 return (metaslab_ff_alloc(sm, size)); 258 } 259 260 /* ARGSUSED */ 261 static void 262 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size) 263 { 264 /* No need to update cursor */ 265 } 266 267 /* ARGSUSED */ 268 static void 269 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size) 270 { 271 /* No need to update cursor */ 272 } 273 274 static space_map_ops_t metaslab_ff_ops = { 275 metaslab_ff_load, 276 metaslab_ff_unload, 277 metaslab_ff_alloc, 278 metaslab_ff_claim, 279 metaslab_ff_free 280 }; 281 282 /* 283 * ========================================================================== 284 * Metaslabs 285 * ========================================================================== 286 */ 287 metaslab_t * 288 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 289 uint64_t start, uint64_t size, uint64_t txg) 290 { 291 vdev_t *vd = mg->mg_vd; 292 metaslab_t *msp; 293 294 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 295 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); 296 297 msp->ms_smo_syncing = *smo; 298 299 /* 300 * We create the main space map here, but we don't create the 301 * allocmaps and freemaps until metaslab_sync_done(). This serves 302 * two purposes: it allows metaslab_sync_done() to detect the 303 * addition of new space; and for debugging, it ensures that we'd 304 * data fault on any attempt to use this metaslab before it's ready. 305 */ 306 space_map_create(&msp->ms_map, start, size, 307 vd->vdev_ashift, &msp->ms_lock); 308 309 metaslab_group_add(mg, msp); 310 311 /* 312 * If we're opening an existing pool (txg == 0) or creating 313 * a new one (txg == TXG_INITIAL), all space is available now. 314 * If we're adding space to an existing pool, the new space 315 * does not become available until after this txg has synced. 316 */ 317 if (txg <= TXG_INITIAL) 318 metaslab_sync_done(msp, 0); 319 320 if (txg != 0) { 321 /* 322 * The vdev is dirty, but the metaslab isn't -- it just needs 323 * to have metaslab_sync_done() invoked from vdev_sync_done(). 324 * [We could just dirty the metaslab, but that would cause us 325 * to allocate a space map object for it, which is wasteful 326 * and would mess up the locality logic in metaslab_weight().] 327 */ 328 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa)); 329 vdev_dirty(vd, 0, NULL, txg); 330 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg)); 331 } 332 333 return (msp); 334 } 335 336 void 337 metaslab_fini(metaslab_t *msp) 338 { 339 metaslab_group_t *mg = msp->ms_group; 340 int t; 341 342 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size, 343 -msp->ms_smo.smo_alloc, B_TRUE); 344 345 metaslab_group_remove(mg, msp); 346 347 mutex_enter(&msp->ms_lock); 348 349 space_map_unload(&msp->ms_map); 350 space_map_destroy(&msp->ms_map); 351 352 for (t = 0; t < TXG_SIZE; t++) { 353 space_map_destroy(&msp->ms_allocmap[t]); 354 space_map_destroy(&msp->ms_freemap[t]); 355 } 356 357 mutex_exit(&msp->ms_lock); 358 mutex_destroy(&msp->ms_lock); 359 360 kmem_free(msp, sizeof (metaslab_t)); 361 } 362 363 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 364 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 365 #define METASLAB_ACTIVE_MASK \ 366 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 367 #define METASLAB_SMO_BONUS_MULTIPLIER 2 368 369 static uint64_t 370 metaslab_weight(metaslab_t *msp) 371 { 372 metaslab_group_t *mg = msp->ms_group; 373 space_map_t *sm = &msp->ms_map; 374 space_map_obj_t *smo = &msp->ms_smo; 375 vdev_t *vd = mg->mg_vd; 376 uint64_t weight, space; 377 378 ASSERT(MUTEX_HELD(&msp->ms_lock)); 379 380 /* 381 * The baseline weight is the metaslab's free space. 382 */ 383 space = sm->sm_size - smo->smo_alloc; 384 weight = space; 385 386 /* 387 * Modern disks have uniform bit density and constant angular velocity. 388 * Therefore, the outer recording zones are faster (higher bandwidth) 389 * than the inner zones by the ratio of outer to inner track diameter, 390 * which is typically around 2:1. We account for this by assigning 391 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 392 * In effect, this means that we'll select the metaslab with the most 393 * free bandwidth rather than simply the one with the most free space. 394 */ 395 weight = 2 * weight - 396 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 397 ASSERT(weight >= space && weight <= 2 * space); 398 399 /* 400 * For locality, assign higher weight to metaslabs we've used before. 401 */ 402 if (smo->smo_object != 0) 403 weight *= METASLAB_SMO_BONUS_MULTIPLIER; 404 ASSERT(weight >= space && 405 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space); 406 407 /* 408 * If this metaslab is one we're actively using, adjust its weight to 409 * make it preferable to any inactive metaslab so we'll polish it off. 410 */ 411 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 412 413 return (weight); 414 } 415 416 static int 417 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 418 { 419 space_map_t *sm = &msp->ms_map; 420 421 ASSERT(MUTEX_HELD(&msp->ms_lock)); 422 423 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 424 int error = space_map_load(sm, &metaslab_ff_ops, 425 SM_FREE, &msp->ms_smo, 426 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset); 427 if (error) { 428 metaslab_group_sort(msp->ms_group, msp, 0); 429 return (error); 430 } 431 metaslab_group_sort(msp->ms_group, msp, 432 msp->ms_weight | activation_weight); 433 } 434 ASSERT(sm->sm_loaded); 435 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 436 437 return (0); 438 } 439 440 static void 441 metaslab_passivate(metaslab_t *msp, uint64_t size) 442 { 443 /* 444 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 445 * this metaslab again. In that case, it had better be empty, 446 * or we would be leaving space on the table. 447 */ 448 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0); 449 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 450 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 451 } 452 453 /* 454 * Write a metaslab to disk in the context of the specified transaction group. 455 */ 456 void 457 metaslab_sync(metaslab_t *msp, uint64_t txg) 458 { 459 vdev_t *vd = msp->ms_group->mg_vd; 460 spa_t *spa = vd->vdev_spa; 461 objset_t *mos = spa->spa_meta_objset; 462 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; 463 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; 464 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 465 space_map_t *sm = &msp->ms_map; 466 space_map_obj_t *smo = &msp->ms_smo_syncing; 467 dmu_buf_t *db; 468 dmu_tx_t *tx; 469 int t; 470 471 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 472 473 /* 474 * The only state that can actually be changing concurrently with 475 * metaslab_sync() is the metaslab's ms_map. No other thread can 476 * be modifying this txg's allocmap, freemap, freed_map, or smo. 477 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 478 * We drop it whenever we call into the DMU, because the DMU 479 * can call down to us (e.g. via zio_free()) at any time. 480 */ 481 mutex_enter(&msp->ms_lock); 482 483 if (smo->smo_object == 0) { 484 ASSERT(smo->smo_objsize == 0); 485 ASSERT(smo->smo_alloc == 0); 486 mutex_exit(&msp->ms_lock); 487 smo->smo_object = dmu_object_alloc(mos, 488 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 489 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 490 ASSERT(smo->smo_object != 0); 491 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 492 (sm->sm_start >> vd->vdev_ms_shift), 493 sizeof (uint64_t), &smo->smo_object, tx); 494 mutex_enter(&msp->ms_lock); 495 } 496 497 space_map_walk(freemap, space_map_add, freed_map); 498 499 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= 500 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { 501 /* 502 * The in-core space map representation is twice as compact 503 * as the on-disk one, so it's time to condense the latter 504 * by generating a pure allocmap from first principles. 505 * 506 * This metaslab is 100% allocated, 507 * minus the content of the in-core map (sm), 508 * minus what's been freed this txg (freed_map), 509 * minus allocations from txgs in the future 510 * (because they haven't been committed yet). 511 */ 512 space_map_vacate(allocmap, NULL, NULL); 513 space_map_vacate(freemap, NULL, NULL); 514 515 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); 516 517 space_map_walk(sm, space_map_remove, allocmap); 518 space_map_walk(freed_map, space_map_remove, allocmap); 519 520 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 521 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], 522 space_map_remove, allocmap); 523 524 mutex_exit(&msp->ms_lock); 525 space_map_truncate(smo, mos, tx); 526 mutex_enter(&msp->ms_lock); 527 } 528 529 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 530 space_map_sync(freemap, SM_FREE, smo, mos, tx); 531 532 mutex_exit(&msp->ms_lock); 533 534 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 535 dmu_buf_will_dirty(db, tx); 536 ASSERT3U(db->db_size, >=, sizeof (*smo)); 537 bcopy(smo, db->db_data, sizeof (*smo)); 538 dmu_buf_rele(db, FTAG); 539 540 dmu_tx_commit(tx); 541 } 542 543 /* 544 * Called after a transaction group has completely synced to mark 545 * all of the metaslab's free space as usable. 546 */ 547 void 548 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 549 { 550 space_map_obj_t *smo = &msp->ms_smo; 551 space_map_obj_t *smosync = &msp->ms_smo_syncing; 552 space_map_t *sm = &msp->ms_map; 553 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 554 metaslab_group_t *mg = msp->ms_group; 555 vdev_t *vd = mg->mg_vd; 556 int t; 557 558 mutex_enter(&msp->ms_lock); 559 560 /* 561 * If this metaslab is just becoming available, initialize its 562 * allocmaps and freemaps and add its capacity to the vdev. 563 */ 564 if (freed_map->sm_size == 0) { 565 for (t = 0; t < TXG_SIZE; t++) { 566 space_map_create(&msp->ms_allocmap[t], sm->sm_start, 567 sm->sm_size, sm->sm_shift, sm->sm_lock); 568 space_map_create(&msp->ms_freemap[t], sm->sm_start, 569 sm->sm_size, sm->sm_shift, sm->sm_lock); 570 } 571 vdev_space_update(vd, sm->sm_size, 0, B_TRUE); 572 } 573 574 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE); 575 576 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); 577 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); 578 579 /* 580 * If there's a space_map_load() in progress, wait for it to complete 581 * so that we have a consistent view of the in-core space map. 582 * Then, add everything we freed in this txg to the map. 583 */ 584 space_map_load_wait(sm); 585 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm); 586 587 *smo = *smosync; 588 589 /* 590 * If the map is loaded but no longer active, evict it as soon as all 591 * future allocations have synced. (If we unloaded it now and then 592 * loaded a moment later, the map wouldn't reflect those allocations.) 593 */ 594 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 595 int evictable = 1; 596 597 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 598 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) 599 evictable = 0; 600 601 if (evictable) 602 space_map_unload(sm); 603 } 604 605 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 606 607 mutex_exit(&msp->ms_lock); 608 } 609 610 static uint64_t 611 metaslab_distance(metaslab_t *msp, dva_t *dva) 612 { 613 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 614 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 615 uint64_t start = msp->ms_map.sm_start >> ms_shift; 616 617 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 618 return (1ULL << 63); 619 620 if (offset < start) 621 return ((start - offset) << ms_shift); 622 if (offset > start) 623 return ((offset - start) << ms_shift); 624 return (0); 625 } 626 627 static uint64_t 628 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg, 629 uint64_t min_distance, dva_t *dva, int d) 630 { 631 metaslab_t *msp = NULL; 632 uint64_t offset = -1ULL; 633 avl_tree_t *t = &mg->mg_metaslab_tree; 634 uint64_t activation_weight; 635 uint64_t target_distance; 636 int i; 637 638 activation_weight = METASLAB_WEIGHT_PRIMARY; 639 for (i = 0; i < d; i++) 640 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) 641 activation_weight = METASLAB_WEIGHT_SECONDARY; 642 643 for (;;) { 644 mutex_enter(&mg->mg_lock); 645 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 646 if (msp->ms_weight < size) { 647 mutex_exit(&mg->mg_lock); 648 return (-1ULL); 649 } 650 651 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 652 break; 653 654 target_distance = min_distance + 655 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 656 657 for (i = 0; i < d; i++) 658 if (metaslab_distance(msp, &dva[i]) < 659 target_distance) 660 break; 661 if (i == d) 662 break; 663 } 664 mutex_exit(&mg->mg_lock); 665 if (msp == NULL) 666 return (-1ULL); 667 668 mutex_enter(&msp->ms_lock); 669 670 /* 671 * Ensure that the metaslab we have selected is still 672 * capable of handling our request. It's possible that 673 * another thread may have changed the weight while we 674 * were blocked on the metaslab lock. 675 */ 676 if (msp->ms_weight < size) { 677 mutex_exit(&msp->ms_lock); 678 continue; 679 } 680 681 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 682 activation_weight == METASLAB_WEIGHT_PRIMARY) { 683 metaslab_passivate(msp, 684 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 685 mutex_exit(&msp->ms_lock); 686 continue; 687 } 688 689 if (metaslab_activate(msp, activation_weight) != 0) { 690 mutex_exit(&msp->ms_lock); 691 continue; 692 } 693 694 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL) 695 break; 696 697 metaslab_passivate(msp, size - 1); 698 699 mutex_exit(&msp->ms_lock); 700 } 701 702 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 703 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 704 705 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 706 707 mutex_exit(&msp->ms_lock); 708 709 return (offset); 710 } 711 712 /* 713 * Allocate a block for the specified i/o. 714 */ 715 static int 716 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 717 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags) 718 { 719 metaslab_group_t *mg, *rotor; 720 vdev_t *vd; 721 int dshift = 3; 722 int all_zero; 723 uint64_t offset = -1ULL; 724 uint64_t asize; 725 uint64_t distance; 726 727 ASSERT(!DVA_IS_VALID(&dva[d])); 728 729 /* 730 * For testing, make some blocks above a certain size be gang blocks. 731 */ 732 if (psize >= metaslab_gang_bang && (lbolt & 3) == 0) 733 return (ENOSPC); 734 735 /* 736 * Start at the rotor and loop through all mgs until we find something. 737 * Note that there's no locking on mc_rotor or mc_allocated because 738 * nothing actually breaks if we miss a few updates -- we just won't 739 * allocate quite as evenly. It all balances out over time. 740 * 741 * If we are doing ditto or log blocks, try to spread them across 742 * consecutive vdevs. If we're forced to reuse a vdev before we've 743 * allocated all of our ditto blocks, then try and spread them out on 744 * that vdev as much as possible. If it turns out to not be possible, 745 * gradually lower our standards until anything becomes acceptable. 746 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 747 * gives us hope of containing our fault domains to something we're 748 * able to reason about. Otherwise, any two top-level vdev failures 749 * will guarantee the loss of data. With consecutive allocation, 750 * only two adjacent top-level vdev failures will result in data loss. 751 * 752 * If we are doing gang blocks (hintdva is non-NULL), try to keep 753 * ourselves on the same vdev as our gang block header. That 754 * way, we can hope for locality in vdev_cache, plus it makes our 755 * fault domains something tractable. 756 */ 757 if (hintdva) { 758 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 759 if (flags & METASLAB_HINTBP_AVOID) 760 mg = vd->vdev_mg->mg_next; 761 else 762 mg = vd->vdev_mg; 763 } else if (d != 0) { 764 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 765 mg = vd->vdev_mg->mg_next; 766 } else { 767 mg = mc->mc_rotor; 768 } 769 770 /* 771 * If the hint put us into the wrong class, just follow the rotor. 772 */ 773 if (mg->mg_class != mc) 774 mg = mc->mc_rotor; 775 776 rotor = mg; 777 top: 778 all_zero = B_TRUE; 779 do { 780 vd = mg->mg_vd; 781 /* 782 * Don't allocate from faulted devices. 783 */ 784 if (!vdev_allocatable(vd)) 785 goto next; 786 /* 787 * Avoid writing single-copy data to a failing vdev 788 */ 789 if ((vd->vdev_stat.vs_write_errors > 0 || 790 vd->vdev_state < VDEV_STATE_HEALTHY) && 791 d == 0 && dshift == 3) { 792 all_zero = B_FALSE; 793 goto next; 794 } 795 796 ASSERT(mg->mg_class == mc); 797 798 distance = vd->vdev_asize >> dshift; 799 if (distance <= (1ULL << vd->vdev_ms_shift)) 800 distance = 0; 801 else 802 all_zero = B_FALSE; 803 804 asize = vdev_psize_to_asize(vd, psize); 805 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 806 807 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d); 808 if (offset != -1ULL) { 809 /* 810 * If we've just selected this metaslab group, 811 * figure out whether the corresponding vdev is 812 * over- or under-used relative to the pool, 813 * and set an allocation bias to even it out. 814 */ 815 if (mc->mc_allocated == 0) { 816 vdev_stat_t *vs = &vd->vdev_stat; 817 uint64_t alloc, space; 818 int64_t vu, su; 819 820 alloc = spa_get_alloc(spa); 821 space = spa_get_space(spa); 822 823 /* 824 * Determine percent used in units of 0..1024. 825 * (This is just to avoid floating point.) 826 */ 827 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1); 828 su = (alloc << 10) / (space + 1); 829 830 /* 831 * Bias by at most +/- 25% of the aliquot. 832 */ 833 mg->mg_bias = ((su - vu) * 834 (int64_t)mg->mg_aliquot) / (1024 * 4); 835 } 836 837 if (atomic_add_64_nv(&mc->mc_allocated, asize) >= 838 mg->mg_aliquot + mg->mg_bias) { 839 mc->mc_rotor = mg->mg_next; 840 mc->mc_allocated = 0; 841 } 842 843 DVA_SET_VDEV(&dva[d], vd->vdev_id); 844 DVA_SET_OFFSET(&dva[d], offset); 845 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 846 DVA_SET_ASIZE(&dva[d], asize); 847 848 return (0); 849 } 850 next: 851 mc->mc_rotor = mg->mg_next; 852 mc->mc_allocated = 0; 853 } while ((mg = mg->mg_next) != rotor); 854 855 if (!all_zero) { 856 dshift++; 857 ASSERT(dshift < 64); 858 goto top; 859 } 860 861 bzero(&dva[d], sizeof (dva_t)); 862 863 return (ENOSPC); 864 } 865 866 /* 867 * Free the block represented by DVA in the context of the specified 868 * transaction group. 869 */ 870 static void 871 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 872 { 873 uint64_t vdev = DVA_GET_VDEV(dva); 874 uint64_t offset = DVA_GET_OFFSET(dva); 875 uint64_t size = DVA_GET_ASIZE(dva); 876 vdev_t *vd; 877 metaslab_t *msp; 878 879 ASSERT(DVA_IS_VALID(dva)); 880 881 if (txg > spa_freeze_txg(spa)) 882 return; 883 884 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 885 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 886 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 887 (u_longlong_t)vdev, (u_longlong_t)offset); 888 ASSERT(0); 889 return; 890 } 891 892 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 893 894 if (DVA_GET_GANG(dva)) 895 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 896 897 mutex_enter(&msp->ms_lock); 898 899 if (now) { 900 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], 901 offset, size); 902 space_map_free(&msp->ms_map, offset, size); 903 } else { 904 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) 905 vdev_dirty(vd, VDD_METASLAB, msp, txg); 906 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); 907 } 908 909 mutex_exit(&msp->ms_lock); 910 } 911 912 /* 913 * Intent log support: upon opening the pool after a crash, notify the SPA 914 * of blocks that the intent log has allocated for immediate write, but 915 * which are still considered free by the SPA because the last transaction 916 * group didn't commit yet. 917 */ 918 static int 919 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 920 { 921 uint64_t vdev = DVA_GET_VDEV(dva); 922 uint64_t offset = DVA_GET_OFFSET(dva); 923 uint64_t size = DVA_GET_ASIZE(dva); 924 vdev_t *vd; 925 metaslab_t *msp; 926 int error; 927 928 ASSERT(DVA_IS_VALID(dva)); 929 930 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 931 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 932 return (ENXIO); 933 934 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 935 936 if (DVA_GET_GANG(dva)) 937 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 938 939 mutex_enter(&msp->ms_lock); 940 941 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 942 if (error || txg == 0) { /* txg == 0 indicates dry run */ 943 mutex_exit(&msp->ms_lock); 944 return (error); 945 } 946 947 space_map_claim(&msp->ms_map, offset, size); 948 949 if (spa_mode & FWRITE) { /* don't dirty if we're zdb(1M) */ 950 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 951 vdev_dirty(vd, VDD_METASLAB, msp, txg); 952 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 953 } 954 955 mutex_exit(&msp->ms_lock); 956 957 return (0); 958 } 959 960 int 961 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 962 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags) 963 { 964 dva_t *dva = bp->blk_dva; 965 dva_t *hintdva = hintbp->blk_dva; 966 int error = 0; 967 968 ASSERT(bp->blk_birth == 0); 969 970 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 971 972 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 973 spa_config_exit(spa, SCL_ALLOC, FTAG); 974 return (ENOSPC); 975 } 976 977 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 978 ASSERT(BP_GET_NDVAS(bp) == 0); 979 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 980 981 for (int d = 0; d < ndvas; d++) { 982 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 983 txg, flags); 984 if (error) { 985 for (d--; d >= 0; d--) { 986 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 987 bzero(&dva[d], sizeof (dva_t)); 988 } 989 spa_config_exit(spa, SCL_ALLOC, FTAG); 990 return (error); 991 } 992 } 993 ASSERT(error == 0); 994 ASSERT(BP_GET_NDVAS(bp) == ndvas); 995 996 spa_config_exit(spa, SCL_ALLOC, FTAG); 997 998 bp->blk_birth = txg; 999 1000 return (0); 1001 } 1002 1003 void 1004 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 1005 { 1006 const dva_t *dva = bp->blk_dva; 1007 int ndvas = BP_GET_NDVAS(bp); 1008 1009 ASSERT(!BP_IS_HOLE(bp)); 1010 ASSERT(!now || bp->blk_birth >= spa->spa_syncing_txg); 1011 1012 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 1013 1014 for (int d = 0; d < ndvas; d++) 1015 metaslab_free_dva(spa, &dva[d], txg, now); 1016 1017 spa_config_exit(spa, SCL_FREE, FTAG); 1018 } 1019 1020 int 1021 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 1022 { 1023 const dva_t *dva = bp->blk_dva; 1024 int ndvas = BP_GET_NDVAS(bp); 1025 int error = 0; 1026 1027 ASSERT(!BP_IS_HOLE(bp)); 1028 1029 if (txg != 0) { 1030 /* 1031 * First do a dry run to make sure all DVAs are claimable, 1032 * so we don't have to unwind from partial failures below. 1033 */ 1034 if ((error = metaslab_claim(spa, bp, 0)) != 0) 1035 return (error); 1036 } 1037 1038 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 1039 1040 for (int d = 0; d < ndvas; d++) 1041 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 1042 break; 1043 1044 spa_config_exit(spa, SCL_ALLOC, FTAG); 1045 1046 ASSERT(error == 0 || txg == 0); 1047 1048 return (error); 1049 } 1050