xref: /titanic_50/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 3b2aab18808792cbd248a12f1edf139b89833c13)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dsl_pool.h>
27 #include <sys/dsl_dataset.h>
28 #include <sys/dsl_prop.h>
29 #include <sys/dsl_dir.h>
30 #include <sys/dsl_synctask.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/arc.h>
36 #include <sys/zap.h>
37 #include <sys/zio.h>
38 #include <sys/zfs_context.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/zfs_znode.h>
41 #include <sys/spa_impl.h>
42 #include <sys/dsl_deadlist.h>
43 #include <sys/bptree.h>
44 #include <sys/zfeature.h>
45 #include <sys/zil_impl.h>
46 #include <sys/dsl_userhold.h>
47 
48 int zfs_no_write_throttle = 0;
49 int zfs_write_limit_shift = 3;			/* 1/8th of physical memory */
50 int zfs_txg_synctime_ms = 1000;		/* target millisecs to sync a txg */
51 
52 uint64_t zfs_write_limit_min = 32 << 20;	/* min write limit is 32MB */
53 uint64_t zfs_write_limit_max = 0;		/* max data payload per txg */
54 uint64_t zfs_write_limit_inflated = 0;
55 uint64_t zfs_write_limit_override = 0;
56 
57 kmutex_t zfs_write_limit_lock;
58 
59 static pgcnt_t old_physmem = 0;
60 
61 int
62 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
63 {
64 	uint64_t obj;
65 	int err;
66 
67 	err = zap_lookup(dp->dp_meta_objset,
68 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
69 	    name, sizeof (obj), 1, &obj);
70 	if (err)
71 		return (err);
72 
73 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
74 }
75 
76 static dsl_pool_t *
77 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
78 {
79 	dsl_pool_t *dp;
80 	blkptr_t *bp = spa_get_rootblkptr(spa);
81 
82 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
83 	dp->dp_spa = spa;
84 	dp->dp_meta_rootbp = *bp;
85 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
86 	dp->dp_write_limit = zfs_write_limit_min;
87 	txg_init(dp, txg);
88 
89 	txg_list_create(&dp->dp_dirty_datasets,
90 	    offsetof(dsl_dataset_t, ds_dirty_link));
91 	txg_list_create(&dp->dp_dirty_zilogs,
92 	    offsetof(zilog_t, zl_dirty_link));
93 	txg_list_create(&dp->dp_dirty_dirs,
94 	    offsetof(dsl_dir_t, dd_dirty_link));
95 	txg_list_create(&dp->dp_sync_tasks,
96 	    offsetof(dsl_sync_task_t, dst_node));
97 
98 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
99 
100 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
101 	    1, 4, 0);
102 
103 	return (dp);
104 }
105 
106 int
107 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
108 {
109 	int err;
110 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
111 
112 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
113 	    &dp->dp_meta_objset);
114 	if (err != 0)
115 		dsl_pool_close(dp);
116 	else
117 		*dpp = dp;
118 
119 	return (err);
120 }
121 
122 int
123 dsl_pool_open(dsl_pool_t *dp)
124 {
125 	int err;
126 	dsl_dir_t *dd;
127 	dsl_dataset_t *ds;
128 	uint64_t obj;
129 
130 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
131 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
132 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
133 	    &dp->dp_root_dir_obj);
134 	if (err)
135 		goto out;
136 
137 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
138 	    NULL, dp, &dp->dp_root_dir);
139 	if (err)
140 		goto out;
141 
142 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
143 	if (err)
144 		goto out;
145 
146 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
147 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
148 		if (err)
149 			goto out;
150 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
151 		    FTAG, &ds);
152 		if (err == 0) {
153 			err = dsl_dataset_hold_obj(dp,
154 			    ds->ds_phys->ds_prev_snap_obj, dp,
155 			    &dp->dp_origin_snap);
156 			dsl_dataset_rele(ds, FTAG);
157 		}
158 		dsl_dir_rele(dd, dp);
159 		if (err)
160 			goto out;
161 	}
162 
163 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
164 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
165 		    &dp->dp_free_dir);
166 		if (err)
167 			goto out;
168 
169 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
170 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
171 		if (err)
172 			goto out;
173 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
174 		    dp->dp_meta_objset, obj));
175 	}
176 
177 	if (spa_feature_is_active(dp->dp_spa,
178 	    &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
179 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
180 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
181 		    &dp->dp_bptree_obj);
182 		if (err != 0)
183 			goto out;
184 	}
185 
186 	if (spa_feature_is_active(dp->dp_spa,
187 	    &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
188 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
189 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
190 		    &dp->dp_empty_bpobj);
191 		if (err != 0)
192 			goto out;
193 	}
194 
195 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
196 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
197 	    &dp->dp_tmp_userrefs_obj);
198 	if (err == ENOENT)
199 		err = 0;
200 	if (err)
201 		goto out;
202 
203 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
204 
205 out:
206 	rrw_exit(&dp->dp_config_rwlock, FTAG);
207 	return (err);
208 }
209 
210 void
211 dsl_pool_close(dsl_pool_t *dp)
212 {
213 	/* drop our references from dsl_pool_open() */
214 
215 	/*
216 	 * Since we held the origin_snap from "syncing" context (which
217 	 * includes pool-opening context), it actually only got a "ref"
218 	 * and not a hold, so just drop that here.
219 	 */
220 	if (dp->dp_origin_snap)
221 		dsl_dataset_rele(dp->dp_origin_snap, dp);
222 	if (dp->dp_mos_dir)
223 		dsl_dir_rele(dp->dp_mos_dir, dp);
224 	if (dp->dp_free_dir)
225 		dsl_dir_rele(dp->dp_free_dir, dp);
226 	if (dp->dp_root_dir)
227 		dsl_dir_rele(dp->dp_root_dir, dp);
228 
229 	bpobj_close(&dp->dp_free_bpobj);
230 
231 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
232 	if (dp->dp_meta_objset)
233 		dmu_objset_evict(dp->dp_meta_objset);
234 
235 	txg_list_destroy(&dp->dp_dirty_datasets);
236 	txg_list_destroy(&dp->dp_dirty_zilogs);
237 	txg_list_destroy(&dp->dp_sync_tasks);
238 	txg_list_destroy(&dp->dp_dirty_dirs);
239 
240 	arc_flush(dp->dp_spa);
241 	txg_fini(dp);
242 	dsl_scan_fini(dp);
243 	rrw_destroy(&dp->dp_config_rwlock);
244 	mutex_destroy(&dp->dp_lock);
245 	taskq_destroy(dp->dp_vnrele_taskq);
246 	if (dp->dp_blkstats)
247 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
248 	kmem_free(dp, sizeof (dsl_pool_t));
249 }
250 
251 dsl_pool_t *
252 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
253 {
254 	int err;
255 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
256 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
257 	objset_t *os;
258 	dsl_dataset_t *ds;
259 	uint64_t obj;
260 
261 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
262 
263 	/* create and open the MOS (meta-objset) */
264 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
265 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
266 
267 	/* create the pool directory */
268 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
269 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
270 	ASSERT0(err);
271 
272 	/* Initialize scan structures */
273 	VERIFY0(dsl_scan_init(dp, txg));
274 
275 	/* create and open the root dir */
276 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
277 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278 	    NULL, dp, &dp->dp_root_dir));
279 
280 	/* create and open the meta-objset dir */
281 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
282 	VERIFY0(dsl_pool_open_special_dir(dp,
283 	    MOS_DIR_NAME, &dp->dp_mos_dir));
284 
285 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
286 		/* create and open the free dir */
287 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
288 		    FREE_DIR_NAME, tx);
289 		VERIFY0(dsl_pool_open_special_dir(dp,
290 		    FREE_DIR_NAME, &dp->dp_free_dir));
291 
292 		/* create and open the free_bplist */
293 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
294 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
295 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
296 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
297 		    dp->dp_meta_objset, obj));
298 	}
299 
300 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
301 		dsl_pool_create_origin(dp, tx);
302 
303 	/* create the root dataset */
304 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
305 
306 	/* create the root objset */
307 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
308 	os = dmu_objset_create_impl(dp->dp_spa, ds,
309 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
310 #ifdef _KERNEL
311 	zfs_create_fs(os, kcred, zplprops, tx);
312 #endif
313 	dsl_dataset_rele(ds, FTAG);
314 
315 	dmu_tx_commit(tx);
316 
317 	rrw_exit(&dp->dp_config_rwlock, FTAG);
318 
319 	return (dp);
320 }
321 
322 /*
323  * Account for the meta-objset space in its placeholder dsl_dir.
324  */
325 void
326 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
327     int64_t used, int64_t comp, int64_t uncomp)
328 {
329 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
330 	mutex_enter(&dp->dp_lock);
331 	dp->dp_mos_used_delta += used;
332 	dp->dp_mos_compressed_delta += comp;
333 	dp->dp_mos_uncompressed_delta += uncomp;
334 	mutex_exit(&dp->dp_lock);
335 }
336 
337 static int
338 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
339 {
340 	dsl_deadlist_t *dl = arg;
341 	dsl_deadlist_insert(dl, bp, tx);
342 	return (0);
343 }
344 
345 void
346 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
347 {
348 	zio_t *zio;
349 	dmu_tx_t *tx;
350 	dsl_dir_t *dd;
351 	dsl_dataset_t *ds;
352 	objset_t *mos = dp->dp_meta_objset;
353 	hrtime_t start, write_time;
354 	uint64_t data_written;
355 	int err;
356 	list_t synced_datasets;
357 
358 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
359 	    offsetof(dsl_dataset_t, ds_synced_link));
360 
361 	/*
362 	 * We need to copy dp_space_towrite() before doing
363 	 * dsl_sync_task_sync(), because
364 	 * dsl_dataset_snapshot_reserve_space() will increase
365 	 * dp_space_towrite but not actually write anything.
366 	 */
367 	data_written = dp->dp_space_towrite[txg & TXG_MASK];
368 
369 	tx = dmu_tx_create_assigned(dp, txg);
370 
371 	dp->dp_read_overhead = 0;
372 	start = gethrtime();
373 
374 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
375 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
376 		/*
377 		 * We must not sync any non-MOS datasets twice, because
378 		 * we may have taken a snapshot of them.  However, we
379 		 * may sync newly-created datasets on pass 2.
380 		 */
381 		ASSERT(!list_link_active(&ds->ds_synced_link));
382 		list_insert_tail(&synced_datasets, ds);
383 		dsl_dataset_sync(ds, zio, tx);
384 	}
385 	DTRACE_PROBE(pool_sync__1setup);
386 	err = zio_wait(zio);
387 
388 	write_time = gethrtime() - start;
389 	ASSERT(err == 0);
390 	DTRACE_PROBE(pool_sync__2rootzio);
391 
392 	/*
393 	 * After the data blocks have been written (ensured by the zio_wait()
394 	 * above), update the user/group space accounting.
395 	 */
396 	for (ds = list_head(&synced_datasets); ds;
397 	    ds = list_next(&synced_datasets, ds))
398 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
399 
400 	/*
401 	 * Sync the datasets again to push out the changes due to
402 	 * userspace updates.  This must be done before we process the
403 	 * sync tasks, so that any snapshots will have the correct
404 	 * user accounting information (and we won't get confused
405 	 * about which blocks are part of the snapshot).
406 	 */
407 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
408 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
409 		ASSERT(list_link_active(&ds->ds_synced_link));
410 		dmu_buf_rele(ds->ds_dbuf, ds);
411 		dsl_dataset_sync(ds, zio, tx);
412 	}
413 	err = zio_wait(zio);
414 
415 	/*
416 	 * Now that the datasets have been completely synced, we can
417 	 * clean up our in-memory structures accumulated while syncing:
418 	 *
419 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
420 	 *  - release hold from dsl_dataset_dirty()
421 	 */
422 	while (ds = list_remove_head(&synced_datasets)) {
423 		objset_t *os = ds->ds_objset;
424 		bplist_iterate(&ds->ds_pending_deadlist,
425 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
426 		ASSERT(!dmu_objset_is_dirty(os, txg));
427 		dmu_buf_rele(ds->ds_dbuf, ds);
428 	}
429 
430 	start = gethrtime();
431 	while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
432 		dsl_dir_sync(dd, tx);
433 	write_time += gethrtime() - start;
434 
435 	/*
436 	 * The MOS's space is accounted for in the pool/$MOS
437 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
438 	 * it, so we remember the deltas and apply them here.
439 	 */
440 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
441 	    dp->dp_mos_uncompressed_delta != 0) {
442 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
443 		    dp->dp_mos_used_delta,
444 		    dp->dp_mos_compressed_delta,
445 		    dp->dp_mos_uncompressed_delta, tx);
446 		dp->dp_mos_used_delta = 0;
447 		dp->dp_mos_compressed_delta = 0;
448 		dp->dp_mos_uncompressed_delta = 0;
449 	}
450 
451 	start = gethrtime();
452 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
453 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
454 		zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
455 		dmu_objset_sync(mos, zio, tx);
456 		err = zio_wait(zio);
457 		ASSERT(err == 0);
458 		dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
459 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
460 	}
461 	write_time += gethrtime() - start;
462 	DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
463 	    hrtime_t, dp->dp_read_overhead);
464 	write_time -= dp->dp_read_overhead;
465 
466 	/*
467 	 * If we modify a dataset in the same txg that we want to destroy it,
468 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
469 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
470 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
471 	 * and clearing the hold on it) before we process the sync_tasks.
472 	 * The MOS data dirtied by the sync_tasks will be synced on the next
473 	 * pass.
474 	 */
475 	DTRACE_PROBE(pool_sync__3task);
476 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
477 		dsl_sync_task_t *dst;
478 		/*
479 		 * No more sync tasks should have been added while we
480 		 * were syncing.
481 		 */
482 		ASSERT(spa_sync_pass(dp->dp_spa) == 1);
483 		while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
484 			dsl_sync_task_sync(dst, tx);
485 	}
486 
487 	dmu_tx_commit(tx);
488 
489 	dp->dp_space_towrite[txg & TXG_MASK] = 0;
490 	ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
491 
492 	/*
493 	 * If the write limit max has not been explicitly set, set it
494 	 * to a fraction of available physical memory (default 1/8th).
495 	 * Note that we must inflate the limit because the spa
496 	 * inflates write sizes to account for data replication.
497 	 * Check this each sync phase to catch changing memory size.
498 	 */
499 	if (physmem != old_physmem && zfs_write_limit_shift) {
500 		mutex_enter(&zfs_write_limit_lock);
501 		old_physmem = physmem;
502 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
503 		zfs_write_limit_inflated = MAX(zfs_write_limit_min,
504 		    spa_get_asize(dp->dp_spa, zfs_write_limit_max));
505 		mutex_exit(&zfs_write_limit_lock);
506 	}
507 
508 	/*
509 	 * Attempt to keep the sync time consistent by adjusting the
510 	 * amount of write traffic allowed into each transaction group.
511 	 * Weight the throughput calculation towards the current value:
512 	 * 	thru = 3/4 old_thru + 1/4 new_thru
513 	 *
514 	 * Note: write_time is in nanosecs, so write_time/MICROSEC
515 	 * yields millisecs
516 	 */
517 	ASSERT(zfs_write_limit_min > 0);
518 	if (data_written > zfs_write_limit_min / 8 && write_time > MICROSEC) {
519 		uint64_t throughput = data_written / (write_time / MICROSEC);
520 
521 		if (dp->dp_throughput)
522 			dp->dp_throughput = throughput / 4 +
523 			    3 * dp->dp_throughput / 4;
524 		else
525 			dp->dp_throughput = throughput;
526 		dp->dp_write_limit = MIN(zfs_write_limit_inflated,
527 		    MAX(zfs_write_limit_min,
528 		    dp->dp_throughput * zfs_txg_synctime_ms));
529 	}
530 }
531 
532 void
533 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
534 {
535 	zilog_t *zilog;
536 	dsl_dataset_t *ds;
537 
538 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
539 		ds = dmu_objset_ds(zilog->zl_os);
540 		zil_clean(zilog, txg);
541 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
542 		dmu_buf_rele(ds->ds_dbuf, zilog);
543 	}
544 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
545 }
546 
547 /*
548  * TRUE if the current thread is the tx_sync_thread or if we
549  * are being called from SPA context during pool initialization.
550  */
551 int
552 dsl_pool_sync_context(dsl_pool_t *dp)
553 {
554 	return (curthread == dp->dp_tx.tx_sync_thread ||
555 	    spa_is_initializing(dp->dp_spa));
556 }
557 
558 uint64_t
559 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
560 {
561 	uint64_t space, resv;
562 
563 	/*
564 	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
565 	 * efficiency.
566 	 * XXX The intent log is not accounted for, so it must fit
567 	 * within this slop.
568 	 *
569 	 * If we're trying to assess whether it's OK to do a free,
570 	 * cut the reservation in half to allow forward progress
571 	 * (e.g. make it possible to rm(1) files from a full pool).
572 	 */
573 	space = spa_get_dspace(dp->dp_spa);
574 	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
575 	if (netfree)
576 		resv >>= 1;
577 
578 	return (space - resv);
579 }
580 
581 int
582 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
583 {
584 	uint64_t reserved = 0;
585 	uint64_t write_limit = (zfs_write_limit_override ?
586 	    zfs_write_limit_override : dp->dp_write_limit);
587 
588 	if (zfs_no_write_throttle) {
589 		atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
590 		    space);
591 		return (0);
592 	}
593 
594 	/*
595 	 * Check to see if we have exceeded the maximum allowed IO for
596 	 * this transaction group.  We can do this without locks since
597 	 * a little slop here is ok.  Note that we do the reserved check
598 	 * with only half the requested reserve: this is because the
599 	 * reserve requests are worst-case, and we really don't want to
600 	 * throttle based off of worst-case estimates.
601 	 */
602 	if (write_limit > 0) {
603 		reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
604 		    + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
605 
606 		if (reserved && reserved > write_limit)
607 			return (ERESTART);
608 	}
609 
610 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
611 
612 	/*
613 	 * If this transaction group is over 7/8ths capacity, delay
614 	 * the caller 1 clock tick.  This will slow down the "fill"
615 	 * rate until the sync process can catch up with us.
616 	 */
617 	if (reserved && reserved > (write_limit - (write_limit >> 3)))
618 		txg_delay(dp, tx->tx_txg, 1);
619 
620 	return (0);
621 }
622 
623 void
624 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
625 {
626 	ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
627 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
628 }
629 
630 void
631 dsl_pool_memory_pressure(dsl_pool_t *dp)
632 {
633 	uint64_t space_inuse = 0;
634 	int i;
635 
636 	if (dp->dp_write_limit == zfs_write_limit_min)
637 		return;
638 
639 	for (i = 0; i < TXG_SIZE; i++) {
640 		space_inuse += dp->dp_space_towrite[i];
641 		space_inuse += dp->dp_tempreserved[i];
642 	}
643 	dp->dp_write_limit = MAX(zfs_write_limit_min,
644 	    MIN(dp->dp_write_limit, space_inuse / 4));
645 }
646 
647 void
648 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
649 {
650 	if (space > 0) {
651 		mutex_enter(&dp->dp_lock);
652 		dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
653 		mutex_exit(&dp->dp_lock);
654 	}
655 }
656 
657 /* ARGSUSED */
658 static int
659 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
660 {
661 	dmu_tx_t *tx = arg;
662 	dsl_dataset_t *ds, *prev = NULL;
663 	int err;
664 
665 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
666 	if (err)
667 		return (err);
668 
669 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
670 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
671 		    FTAG, &prev);
672 		if (err) {
673 			dsl_dataset_rele(ds, FTAG);
674 			return (err);
675 		}
676 
677 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
678 			break;
679 		dsl_dataset_rele(ds, FTAG);
680 		ds = prev;
681 		prev = NULL;
682 	}
683 
684 	if (prev == NULL) {
685 		prev = dp->dp_origin_snap;
686 
687 		/*
688 		 * The $ORIGIN can't have any data, or the accounting
689 		 * will be wrong.
690 		 */
691 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
692 
693 		/* The origin doesn't get attached to itself */
694 		if (ds->ds_object == prev->ds_object) {
695 			dsl_dataset_rele(ds, FTAG);
696 			return (0);
697 		}
698 
699 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
700 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
701 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
702 
703 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
704 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
705 
706 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
707 		prev->ds_phys->ds_num_children++;
708 
709 		if (ds->ds_phys->ds_next_snap_obj == 0) {
710 			ASSERT(ds->ds_prev == NULL);
711 			VERIFY0(dsl_dataset_hold_obj(dp,
712 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
713 		}
714 	}
715 
716 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
717 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
718 
719 	if (prev->ds_phys->ds_next_clones_obj == 0) {
720 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
721 		prev->ds_phys->ds_next_clones_obj =
722 		    zap_create(dp->dp_meta_objset,
723 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
724 	}
725 	VERIFY0(zap_add_int(dp->dp_meta_objset,
726 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
727 
728 	dsl_dataset_rele(ds, FTAG);
729 	if (prev != dp->dp_origin_snap)
730 		dsl_dataset_rele(prev, FTAG);
731 	return (0);
732 }
733 
734 void
735 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
736 {
737 	ASSERT(dmu_tx_is_syncing(tx));
738 	ASSERT(dp->dp_origin_snap != NULL);
739 
740 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
741 	    tx, DS_FIND_CHILDREN));
742 }
743 
744 /* ARGSUSED */
745 static int
746 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
747 {
748 	dmu_tx_t *tx = arg;
749 	objset_t *mos = dp->dp_meta_objset;
750 
751 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
752 		dsl_dataset_t *origin;
753 
754 		VERIFY0(dsl_dataset_hold_obj(dp,
755 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
756 
757 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
758 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
759 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
760 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
761 		}
762 
763 		VERIFY0(zap_add_int(dp->dp_meta_objset,
764 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
765 
766 		dsl_dataset_rele(origin, FTAG);
767 	}
768 	return (0);
769 }
770 
771 void
772 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
773 {
774 	ASSERT(dmu_tx_is_syncing(tx));
775 	uint64_t obj;
776 
777 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
778 	VERIFY0(dsl_pool_open_special_dir(dp,
779 	    FREE_DIR_NAME, &dp->dp_free_dir));
780 
781 	/*
782 	 * We can't use bpobj_alloc(), because spa_version() still
783 	 * returns the old version, and we need a new-version bpobj with
784 	 * subobj support.  So call dmu_object_alloc() directly.
785 	 */
786 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
787 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
788 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
789 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
790 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
791 
792 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
793 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
794 }
795 
796 void
797 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
798 {
799 	uint64_t dsobj;
800 	dsl_dataset_t *ds;
801 
802 	ASSERT(dmu_tx_is_syncing(tx));
803 	ASSERT(dp->dp_origin_snap == NULL);
804 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
805 
806 	/* create the origin dir, ds, & snap-ds */
807 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
808 	    NULL, 0, kcred, tx);
809 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
810 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
811 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
812 	    dp, &dp->dp_origin_snap));
813 	dsl_dataset_rele(ds, FTAG);
814 }
815 
816 taskq_t *
817 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
818 {
819 	return (dp->dp_vnrele_taskq);
820 }
821 
822 /*
823  * Walk through the pool-wide zap object of temporary snapshot user holds
824  * and release them.
825  */
826 void
827 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
828 {
829 	zap_attribute_t za;
830 	zap_cursor_t zc;
831 	objset_t *mos = dp->dp_meta_objset;
832 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
833 
834 	if (zapobj == 0)
835 		return;
836 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
837 
838 	for (zap_cursor_init(&zc, mos, zapobj);
839 	    zap_cursor_retrieve(&zc, &za) == 0;
840 	    zap_cursor_advance(&zc)) {
841 		char *htag;
842 		uint64_t dsobj;
843 
844 		htag = strchr(za.za_name, '-');
845 		*htag = '\0';
846 		++htag;
847 		dsobj = strtonum(za.za_name, NULL);
848 		dsl_dataset_user_release_tmp(dp, dsobj, htag);
849 	}
850 	zap_cursor_fini(&zc);
851 }
852 
853 /*
854  * Create the pool-wide zap object for storing temporary snapshot holds.
855  */
856 void
857 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
858 {
859 	objset_t *mos = dp->dp_meta_objset;
860 
861 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
862 	ASSERT(dmu_tx_is_syncing(tx));
863 
864 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
865 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
866 }
867 
868 static int
869 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
870     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
871 {
872 	objset_t *mos = dp->dp_meta_objset;
873 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
874 	char *name;
875 	int error;
876 
877 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
878 	ASSERT(dmu_tx_is_syncing(tx));
879 
880 	/*
881 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
882 	 * zap object for temporary holds might not exist yet.
883 	 */
884 	if (zapobj == 0) {
885 		if (holding) {
886 			dsl_pool_user_hold_create_obj(dp, tx);
887 			zapobj = dp->dp_tmp_userrefs_obj;
888 		} else {
889 			return (ENOENT);
890 		}
891 	}
892 
893 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
894 	if (holding)
895 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
896 	else
897 		error = zap_remove(mos, zapobj, name, tx);
898 	strfree(name);
899 
900 	return (error);
901 }
902 
903 /*
904  * Add a temporary hold for the given dataset object and tag.
905  */
906 int
907 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
908     uint64_t now, dmu_tx_t *tx)
909 {
910 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
911 }
912 
913 /*
914  * Release a temporary hold for the given dataset object and tag.
915  */
916 int
917 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
918     dmu_tx_t *tx)
919 {
920 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
921 	    tx, B_FALSE));
922 }
923 
924 /*
925  * DSL Pool Configuration Lock
926  *
927  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
928  * creation / destruction / rename / property setting).  It must be held for
929  * read to hold a dataset or dsl_dir.  I.e. you must call
930  * dsl_pool_config_enter() or dsl_pool_hold() before calling
931  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
932  * must be held continuously until all datasets and dsl_dirs are released.
933  *
934  * The only exception to this rule is that if a "long hold" is placed on
935  * a dataset, then the dp_config_rwlock may be dropped while the dataset
936  * is still held.  The long hold will prevent the dataset from being
937  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
938  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
939  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
940  *
941  * Legitimate long-holders (including owners) should be long-running, cancelable
942  * tasks that should cause "zfs destroy" to fail.  This includes DMU
943  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
944  * "zfs send", and "zfs diff".  There are several other long-holders whose
945  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
946  *
947  * The usual formula for long-holding would be:
948  * dsl_pool_hold()
949  * dsl_dataset_hold()
950  * ... perform checks ...
951  * dsl_dataset_long_hold()
952  * dsl_pool_rele()
953  * ... perform long-running task ...
954  * dsl_dataset_long_rele()
955  * dsl_dataset_rele()
956  *
957  * Note that when the long hold is released, the dataset is still held but
958  * the pool is not held.  The dataset may change arbitrarily during this time
959  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
960  * dataset except release it.
961  *
962  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
963  * or modifying operations.
964  *
965  * Modifying operations should generally use dsl_sync_task().  The synctask
966  * infrastructure enforces proper locking strategy with respect to the
967  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
968  *
969  * Read-only operations will manually hold the pool, then the dataset, obtain
970  * information from the dataset, then release the pool and dataset.
971  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
972  * hold/rele.
973  */
974 
975 int
976 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
977 {
978 	spa_t *spa;
979 	int error;
980 
981 	error = spa_open(name, &spa, tag);
982 	if (error == 0) {
983 		*dp = spa_get_dsl(spa);
984 		dsl_pool_config_enter(*dp, tag);
985 	}
986 	return (error);
987 }
988 
989 void
990 dsl_pool_rele(dsl_pool_t *dp, void *tag)
991 {
992 	dsl_pool_config_exit(dp, tag);
993 	spa_close(dp->dp_spa, tag);
994 }
995 
996 void
997 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
998 {
999 	/*
1000 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1001 	 *
1002 	 * The rrwlock can (with the track_all flag) track all reading threads,
1003 	 * which is very useful for debugging which code path failed to release
1004 	 * the lock, and for verifying that the *current* thread does hold
1005 	 * the lock.
1006 	 *
1007 	 * (Unlike a rwlock, which knows that N threads hold it for
1008 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1009 	 * if any thread holds it for read, even if this thread doesn't).
1010 	 */
1011 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1012 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1013 }
1014 
1015 void
1016 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1017 {
1018 	rrw_exit(&dp->dp_config_rwlock, tag);
1019 }
1020 
1021 boolean_t
1022 dsl_pool_config_held(dsl_pool_t *dp)
1023 {
1024 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1025 }
1026