1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/dsl_pool.h> 27 #include <sys/dsl_dataset.h> 28 #include <sys/dsl_prop.h> 29 #include <sys/dsl_dir.h> 30 #include <sys/dsl_synctask.h> 31 #include <sys/dsl_scan.h> 32 #include <sys/dnode.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/arc.h> 36 #include <sys/zap.h> 37 #include <sys/zio.h> 38 #include <sys/zfs_context.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/zfs_znode.h> 41 #include <sys/spa_impl.h> 42 #include <sys/dsl_deadlist.h> 43 #include <sys/bptree.h> 44 #include <sys/zfeature.h> 45 #include <sys/zil_impl.h> 46 #include <sys/dsl_userhold.h> 47 48 int zfs_no_write_throttle = 0; 49 int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ 50 int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */ 51 52 uint64_t zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ 53 uint64_t zfs_write_limit_max = 0; /* max data payload per txg */ 54 uint64_t zfs_write_limit_inflated = 0; 55 uint64_t zfs_write_limit_override = 0; 56 57 kmutex_t zfs_write_limit_lock; 58 59 static pgcnt_t old_physmem = 0; 60 61 int 62 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 63 { 64 uint64_t obj; 65 int err; 66 67 err = zap_lookup(dp->dp_meta_objset, 68 dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, 69 name, sizeof (obj), 1, &obj); 70 if (err) 71 return (err); 72 73 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 74 } 75 76 static dsl_pool_t * 77 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 78 { 79 dsl_pool_t *dp; 80 blkptr_t *bp = spa_get_rootblkptr(spa); 81 82 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 83 dp->dp_spa = spa; 84 dp->dp_meta_rootbp = *bp; 85 rrw_init(&dp->dp_config_rwlock, B_TRUE); 86 dp->dp_write_limit = zfs_write_limit_min; 87 txg_init(dp, txg); 88 89 txg_list_create(&dp->dp_dirty_datasets, 90 offsetof(dsl_dataset_t, ds_dirty_link)); 91 txg_list_create(&dp->dp_dirty_zilogs, 92 offsetof(zilog_t, zl_dirty_link)); 93 txg_list_create(&dp->dp_dirty_dirs, 94 offsetof(dsl_dir_t, dd_dirty_link)); 95 txg_list_create(&dp->dp_sync_tasks, 96 offsetof(dsl_sync_task_t, dst_node)); 97 98 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 99 100 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 101 1, 4, 0); 102 103 return (dp); 104 } 105 106 int 107 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 108 { 109 int err; 110 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 111 112 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 113 &dp->dp_meta_objset); 114 if (err != 0) 115 dsl_pool_close(dp); 116 else 117 *dpp = dp; 118 119 return (err); 120 } 121 122 int 123 dsl_pool_open(dsl_pool_t *dp) 124 { 125 int err; 126 dsl_dir_t *dd; 127 dsl_dataset_t *ds; 128 uint64_t obj; 129 130 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 131 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 132 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 133 &dp->dp_root_dir_obj); 134 if (err) 135 goto out; 136 137 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 138 NULL, dp, &dp->dp_root_dir); 139 if (err) 140 goto out; 141 142 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 143 if (err) 144 goto out; 145 146 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 147 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 148 if (err) 149 goto out; 150 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, 151 FTAG, &ds); 152 if (err == 0) { 153 err = dsl_dataset_hold_obj(dp, 154 ds->ds_phys->ds_prev_snap_obj, dp, 155 &dp->dp_origin_snap); 156 dsl_dataset_rele(ds, FTAG); 157 } 158 dsl_dir_rele(dd, dp); 159 if (err) 160 goto out; 161 } 162 163 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 164 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 165 &dp->dp_free_dir); 166 if (err) 167 goto out; 168 169 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 170 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 171 if (err) 172 goto out; 173 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 174 dp->dp_meta_objset, obj)); 175 } 176 177 if (spa_feature_is_active(dp->dp_spa, 178 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) { 179 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 180 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 181 &dp->dp_bptree_obj); 182 if (err != 0) 183 goto out; 184 } 185 186 if (spa_feature_is_active(dp->dp_spa, 187 &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) { 188 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 189 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 190 &dp->dp_empty_bpobj); 191 if (err != 0) 192 goto out; 193 } 194 195 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 196 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 197 &dp->dp_tmp_userrefs_obj); 198 if (err == ENOENT) 199 err = 0; 200 if (err) 201 goto out; 202 203 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 204 205 out: 206 rrw_exit(&dp->dp_config_rwlock, FTAG); 207 return (err); 208 } 209 210 void 211 dsl_pool_close(dsl_pool_t *dp) 212 { 213 /* drop our references from dsl_pool_open() */ 214 215 /* 216 * Since we held the origin_snap from "syncing" context (which 217 * includes pool-opening context), it actually only got a "ref" 218 * and not a hold, so just drop that here. 219 */ 220 if (dp->dp_origin_snap) 221 dsl_dataset_rele(dp->dp_origin_snap, dp); 222 if (dp->dp_mos_dir) 223 dsl_dir_rele(dp->dp_mos_dir, dp); 224 if (dp->dp_free_dir) 225 dsl_dir_rele(dp->dp_free_dir, dp); 226 if (dp->dp_root_dir) 227 dsl_dir_rele(dp->dp_root_dir, dp); 228 229 bpobj_close(&dp->dp_free_bpobj); 230 231 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 232 if (dp->dp_meta_objset) 233 dmu_objset_evict(dp->dp_meta_objset); 234 235 txg_list_destroy(&dp->dp_dirty_datasets); 236 txg_list_destroy(&dp->dp_dirty_zilogs); 237 txg_list_destroy(&dp->dp_sync_tasks); 238 txg_list_destroy(&dp->dp_dirty_dirs); 239 240 arc_flush(dp->dp_spa); 241 txg_fini(dp); 242 dsl_scan_fini(dp); 243 rrw_destroy(&dp->dp_config_rwlock); 244 mutex_destroy(&dp->dp_lock); 245 taskq_destroy(dp->dp_vnrele_taskq); 246 if (dp->dp_blkstats) 247 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 248 kmem_free(dp, sizeof (dsl_pool_t)); 249 } 250 251 dsl_pool_t * 252 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 253 { 254 int err; 255 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 256 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 257 objset_t *os; 258 dsl_dataset_t *ds; 259 uint64_t obj; 260 261 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 262 263 /* create and open the MOS (meta-objset) */ 264 dp->dp_meta_objset = dmu_objset_create_impl(spa, 265 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 266 267 /* create the pool directory */ 268 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 269 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 270 ASSERT0(err); 271 272 /* Initialize scan structures */ 273 VERIFY0(dsl_scan_init(dp, txg)); 274 275 /* create and open the root dir */ 276 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 277 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 278 NULL, dp, &dp->dp_root_dir)); 279 280 /* create and open the meta-objset dir */ 281 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 282 VERIFY0(dsl_pool_open_special_dir(dp, 283 MOS_DIR_NAME, &dp->dp_mos_dir)); 284 285 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 286 /* create and open the free dir */ 287 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 288 FREE_DIR_NAME, tx); 289 VERIFY0(dsl_pool_open_special_dir(dp, 290 FREE_DIR_NAME, &dp->dp_free_dir)); 291 292 /* create and open the free_bplist */ 293 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); 294 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 295 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 296 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 297 dp->dp_meta_objset, obj)); 298 } 299 300 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 301 dsl_pool_create_origin(dp, tx); 302 303 /* create the root dataset */ 304 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 305 306 /* create the root objset */ 307 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 308 os = dmu_objset_create_impl(dp->dp_spa, ds, 309 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 310 #ifdef _KERNEL 311 zfs_create_fs(os, kcred, zplprops, tx); 312 #endif 313 dsl_dataset_rele(ds, FTAG); 314 315 dmu_tx_commit(tx); 316 317 rrw_exit(&dp->dp_config_rwlock, FTAG); 318 319 return (dp); 320 } 321 322 /* 323 * Account for the meta-objset space in its placeholder dsl_dir. 324 */ 325 void 326 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 327 int64_t used, int64_t comp, int64_t uncomp) 328 { 329 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 330 mutex_enter(&dp->dp_lock); 331 dp->dp_mos_used_delta += used; 332 dp->dp_mos_compressed_delta += comp; 333 dp->dp_mos_uncompressed_delta += uncomp; 334 mutex_exit(&dp->dp_lock); 335 } 336 337 static int 338 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 339 { 340 dsl_deadlist_t *dl = arg; 341 dsl_deadlist_insert(dl, bp, tx); 342 return (0); 343 } 344 345 void 346 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 347 { 348 zio_t *zio; 349 dmu_tx_t *tx; 350 dsl_dir_t *dd; 351 dsl_dataset_t *ds; 352 objset_t *mos = dp->dp_meta_objset; 353 hrtime_t start, write_time; 354 uint64_t data_written; 355 int err; 356 list_t synced_datasets; 357 358 list_create(&synced_datasets, sizeof (dsl_dataset_t), 359 offsetof(dsl_dataset_t, ds_synced_link)); 360 361 /* 362 * We need to copy dp_space_towrite() before doing 363 * dsl_sync_task_sync(), because 364 * dsl_dataset_snapshot_reserve_space() will increase 365 * dp_space_towrite but not actually write anything. 366 */ 367 data_written = dp->dp_space_towrite[txg & TXG_MASK]; 368 369 tx = dmu_tx_create_assigned(dp, txg); 370 371 dp->dp_read_overhead = 0; 372 start = gethrtime(); 373 374 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 375 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { 376 /* 377 * We must not sync any non-MOS datasets twice, because 378 * we may have taken a snapshot of them. However, we 379 * may sync newly-created datasets on pass 2. 380 */ 381 ASSERT(!list_link_active(&ds->ds_synced_link)); 382 list_insert_tail(&synced_datasets, ds); 383 dsl_dataset_sync(ds, zio, tx); 384 } 385 DTRACE_PROBE(pool_sync__1setup); 386 err = zio_wait(zio); 387 388 write_time = gethrtime() - start; 389 ASSERT(err == 0); 390 DTRACE_PROBE(pool_sync__2rootzio); 391 392 /* 393 * After the data blocks have been written (ensured by the zio_wait() 394 * above), update the user/group space accounting. 395 */ 396 for (ds = list_head(&synced_datasets); ds; 397 ds = list_next(&synced_datasets, ds)) 398 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 399 400 /* 401 * Sync the datasets again to push out the changes due to 402 * userspace updates. This must be done before we process the 403 * sync tasks, so that any snapshots will have the correct 404 * user accounting information (and we won't get confused 405 * about which blocks are part of the snapshot). 406 */ 407 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 408 while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) { 409 ASSERT(list_link_active(&ds->ds_synced_link)); 410 dmu_buf_rele(ds->ds_dbuf, ds); 411 dsl_dataset_sync(ds, zio, tx); 412 } 413 err = zio_wait(zio); 414 415 /* 416 * Now that the datasets have been completely synced, we can 417 * clean up our in-memory structures accumulated while syncing: 418 * 419 * - move dead blocks from the pending deadlist to the on-disk deadlist 420 * - release hold from dsl_dataset_dirty() 421 */ 422 while (ds = list_remove_head(&synced_datasets)) { 423 objset_t *os = ds->ds_objset; 424 bplist_iterate(&ds->ds_pending_deadlist, 425 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 426 ASSERT(!dmu_objset_is_dirty(os, txg)); 427 dmu_buf_rele(ds->ds_dbuf, ds); 428 } 429 430 start = gethrtime(); 431 while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) 432 dsl_dir_sync(dd, tx); 433 write_time += gethrtime() - start; 434 435 /* 436 * The MOS's space is accounted for in the pool/$MOS 437 * (dp_mos_dir). We can't modify the mos while we're syncing 438 * it, so we remember the deltas and apply them here. 439 */ 440 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 441 dp->dp_mos_uncompressed_delta != 0) { 442 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 443 dp->dp_mos_used_delta, 444 dp->dp_mos_compressed_delta, 445 dp->dp_mos_uncompressed_delta, tx); 446 dp->dp_mos_used_delta = 0; 447 dp->dp_mos_compressed_delta = 0; 448 dp->dp_mos_uncompressed_delta = 0; 449 } 450 451 start = gethrtime(); 452 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 453 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 454 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 455 dmu_objset_sync(mos, zio, tx); 456 err = zio_wait(zio); 457 ASSERT(err == 0); 458 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 459 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 460 } 461 write_time += gethrtime() - start; 462 DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, 463 hrtime_t, dp->dp_read_overhead); 464 write_time -= dp->dp_read_overhead; 465 466 /* 467 * If we modify a dataset in the same txg that we want to destroy it, 468 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 469 * dsl_dir_destroy_check() will fail if there are unexpected holds. 470 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 471 * and clearing the hold on it) before we process the sync_tasks. 472 * The MOS data dirtied by the sync_tasks will be synced on the next 473 * pass. 474 */ 475 DTRACE_PROBE(pool_sync__3task); 476 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 477 dsl_sync_task_t *dst; 478 /* 479 * No more sync tasks should have been added while we 480 * were syncing. 481 */ 482 ASSERT(spa_sync_pass(dp->dp_spa) == 1); 483 while (dst = txg_list_remove(&dp->dp_sync_tasks, txg)) 484 dsl_sync_task_sync(dst, tx); 485 } 486 487 dmu_tx_commit(tx); 488 489 dp->dp_space_towrite[txg & TXG_MASK] = 0; 490 ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); 491 492 /* 493 * If the write limit max has not been explicitly set, set it 494 * to a fraction of available physical memory (default 1/8th). 495 * Note that we must inflate the limit because the spa 496 * inflates write sizes to account for data replication. 497 * Check this each sync phase to catch changing memory size. 498 */ 499 if (physmem != old_physmem && zfs_write_limit_shift) { 500 mutex_enter(&zfs_write_limit_lock); 501 old_physmem = physmem; 502 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 503 zfs_write_limit_inflated = MAX(zfs_write_limit_min, 504 spa_get_asize(dp->dp_spa, zfs_write_limit_max)); 505 mutex_exit(&zfs_write_limit_lock); 506 } 507 508 /* 509 * Attempt to keep the sync time consistent by adjusting the 510 * amount of write traffic allowed into each transaction group. 511 * Weight the throughput calculation towards the current value: 512 * thru = 3/4 old_thru + 1/4 new_thru 513 * 514 * Note: write_time is in nanosecs, so write_time/MICROSEC 515 * yields millisecs 516 */ 517 ASSERT(zfs_write_limit_min > 0); 518 if (data_written > zfs_write_limit_min / 8 && write_time > MICROSEC) { 519 uint64_t throughput = data_written / (write_time / MICROSEC); 520 521 if (dp->dp_throughput) 522 dp->dp_throughput = throughput / 4 + 523 3 * dp->dp_throughput / 4; 524 else 525 dp->dp_throughput = throughput; 526 dp->dp_write_limit = MIN(zfs_write_limit_inflated, 527 MAX(zfs_write_limit_min, 528 dp->dp_throughput * zfs_txg_synctime_ms)); 529 } 530 } 531 532 void 533 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 534 { 535 zilog_t *zilog; 536 dsl_dataset_t *ds; 537 538 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 539 ds = dmu_objset_ds(zilog->zl_os); 540 zil_clean(zilog, txg); 541 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 542 dmu_buf_rele(ds->ds_dbuf, zilog); 543 } 544 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 545 } 546 547 /* 548 * TRUE if the current thread is the tx_sync_thread or if we 549 * are being called from SPA context during pool initialization. 550 */ 551 int 552 dsl_pool_sync_context(dsl_pool_t *dp) 553 { 554 return (curthread == dp->dp_tx.tx_sync_thread || 555 spa_is_initializing(dp->dp_spa)); 556 } 557 558 uint64_t 559 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 560 { 561 uint64_t space, resv; 562 563 /* 564 * Reserve about 1.6% (1/64), or at least 32MB, for allocation 565 * efficiency. 566 * XXX The intent log is not accounted for, so it must fit 567 * within this slop. 568 * 569 * If we're trying to assess whether it's OK to do a free, 570 * cut the reservation in half to allow forward progress 571 * (e.g. make it possible to rm(1) files from a full pool). 572 */ 573 space = spa_get_dspace(dp->dp_spa); 574 resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1); 575 if (netfree) 576 resv >>= 1; 577 578 return (space - resv); 579 } 580 581 int 582 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) 583 { 584 uint64_t reserved = 0; 585 uint64_t write_limit = (zfs_write_limit_override ? 586 zfs_write_limit_override : dp->dp_write_limit); 587 588 if (zfs_no_write_throttle) { 589 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], 590 space); 591 return (0); 592 } 593 594 /* 595 * Check to see if we have exceeded the maximum allowed IO for 596 * this transaction group. We can do this without locks since 597 * a little slop here is ok. Note that we do the reserved check 598 * with only half the requested reserve: this is because the 599 * reserve requests are worst-case, and we really don't want to 600 * throttle based off of worst-case estimates. 601 */ 602 if (write_limit > 0) { 603 reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] 604 + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; 605 606 if (reserved && reserved > write_limit) 607 return (ERESTART); 608 } 609 610 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); 611 612 /* 613 * If this transaction group is over 7/8ths capacity, delay 614 * the caller 1 clock tick. This will slow down the "fill" 615 * rate until the sync process can catch up with us. 616 */ 617 if (reserved && reserved > (write_limit - (write_limit >> 3))) 618 txg_delay(dp, tx->tx_txg, 1); 619 620 return (0); 621 } 622 623 void 624 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 625 { 626 ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); 627 atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); 628 } 629 630 void 631 dsl_pool_memory_pressure(dsl_pool_t *dp) 632 { 633 uint64_t space_inuse = 0; 634 int i; 635 636 if (dp->dp_write_limit == zfs_write_limit_min) 637 return; 638 639 for (i = 0; i < TXG_SIZE; i++) { 640 space_inuse += dp->dp_space_towrite[i]; 641 space_inuse += dp->dp_tempreserved[i]; 642 } 643 dp->dp_write_limit = MAX(zfs_write_limit_min, 644 MIN(dp->dp_write_limit, space_inuse / 4)); 645 } 646 647 void 648 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 649 { 650 if (space > 0) { 651 mutex_enter(&dp->dp_lock); 652 dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; 653 mutex_exit(&dp->dp_lock); 654 } 655 } 656 657 /* ARGSUSED */ 658 static int 659 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 660 { 661 dmu_tx_t *tx = arg; 662 dsl_dataset_t *ds, *prev = NULL; 663 int err; 664 665 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 666 if (err) 667 return (err); 668 669 while (ds->ds_phys->ds_prev_snap_obj != 0) { 670 err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 671 FTAG, &prev); 672 if (err) { 673 dsl_dataset_rele(ds, FTAG); 674 return (err); 675 } 676 677 if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) 678 break; 679 dsl_dataset_rele(ds, FTAG); 680 ds = prev; 681 prev = NULL; 682 } 683 684 if (prev == NULL) { 685 prev = dp->dp_origin_snap; 686 687 /* 688 * The $ORIGIN can't have any data, or the accounting 689 * will be wrong. 690 */ 691 ASSERT0(prev->ds_phys->ds_bp.blk_birth); 692 693 /* The origin doesn't get attached to itself */ 694 if (ds->ds_object == prev->ds_object) { 695 dsl_dataset_rele(ds, FTAG); 696 return (0); 697 } 698 699 dmu_buf_will_dirty(ds->ds_dbuf, tx); 700 ds->ds_phys->ds_prev_snap_obj = prev->ds_object; 701 ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; 702 703 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 704 ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; 705 706 dmu_buf_will_dirty(prev->ds_dbuf, tx); 707 prev->ds_phys->ds_num_children++; 708 709 if (ds->ds_phys->ds_next_snap_obj == 0) { 710 ASSERT(ds->ds_prev == NULL); 711 VERIFY0(dsl_dataset_hold_obj(dp, 712 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); 713 } 714 } 715 716 ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); 717 ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); 718 719 if (prev->ds_phys->ds_next_clones_obj == 0) { 720 dmu_buf_will_dirty(prev->ds_dbuf, tx); 721 prev->ds_phys->ds_next_clones_obj = 722 zap_create(dp->dp_meta_objset, 723 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 724 } 725 VERIFY0(zap_add_int(dp->dp_meta_objset, 726 prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); 727 728 dsl_dataset_rele(ds, FTAG); 729 if (prev != dp->dp_origin_snap) 730 dsl_dataset_rele(prev, FTAG); 731 return (0); 732 } 733 734 void 735 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 736 { 737 ASSERT(dmu_tx_is_syncing(tx)); 738 ASSERT(dp->dp_origin_snap != NULL); 739 740 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 741 tx, DS_FIND_CHILDREN)); 742 } 743 744 /* ARGSUSED */ 745 static int 746 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 747 { 748 dmu_tx_t *tx = arg; 749 objset_t *mos = dp->dp_meta_objset; 750 751 if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { 752 dsl_dataset_t *origin; 753 754 VERIFY0(dsl_dataset_hold_obj(dp, 755 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); 756 757 if (origin->ds_dir->dd_phys->dd_clones == 0) { 758 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 759 origin->ds_dir->dd_phys->dd_clones = zap_create(mos, 760 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); 761 } 762 763 VERIFY0(zap_add_int(dp->dp_meta_objset, 764 origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); 765 766 dsl_dataset_rele(origin, FTAG); 767 } 768 return (0); 769 } 770 771 void 772 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 773 { 774 ASSERT(dmu_tx_is_syncing(tx)); 775 uint64_t obj; 776 777 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 778 VERIFY0(dsl_pool_open_special_dir(dp, 779 FREE_DIR_NAME, &dp->dp_free_dir)); 780 781 /* 782 * We can't use bpobj_alloc(), because spa_version() still 783 * returns the old version, and we need a new-version bpobj with 784 * subobj support. So call dmu_object_alloc() directly. 785 */ 786 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 787 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 788 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 789 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 790 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 791 792 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 793 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 794 } 795 796 void 797 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 798 { 799 uint64_t dsobj; 800 dsl_dataset_t *ds; 801 802 ASSERT(dmu_tx_is_syncing(tx)); 803 ASSERT(dp->dp_origin_snap == NULL); 804 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 805 806 /* create the origin dir, ds, & snap-ds */ 807 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 808 NULL, 0, kcred, tx); 809 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 810 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 811 VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, 812 dp, &dp->dp_origin_snap)); 813 dsl_dataset_rele(ds, FTAG); 814 } 815 816 taskq_t * 817 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 818 { 819 return (dp->dp_vnrele_taskq); 820 } 821 822 /* 823 * Walk through the pool-wide zap object of temporary snapshot user holds 824 * and release them. 825 */ 826 void 827 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 828 { 829 zap_attribute_t za; 830 zap_cursor_t zc; 831 objset_t *mos = dp->dp_meta_objset; 832 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 833 834 if (zapobj == 0) 835 return; 836 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 837 838 for (zap_cursor_init(&zc, mos, zapobj); 839 zap_cursor_retrieve(&zc, &za) == 0; 840 zap_cursor_advance(&zc)) { 841 char *htag; 842 uint64_t dsobj; 843 844 htag = strchr(za.za_name, '-'); 845 *htag = '\0'; 846 ++htag; 847 dsobj = strtonum(za.za_name, NULL); 848 dsl_dataset_user_release_tmp(dp, dsobj, htag); 849 } 850 zap_cursor_fini(&zc); 851 } 852 853 /* 854 * Create the pool-wide zap object for storing temporary snapshot holds. 855 */ 856 void 857 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 858 { 859 objset_t *mos = dp->dp_meta_objset; 860 861 ASSERT(dp->dp_tmp_userrefs_obj == 0); 862 ASSERT(dmu_tx_is_syncing(tx)); 863 864 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 865 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 866 } 867 868 static int 869 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 870 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 871 { 872 objset_t *mos = dp->dp_meta_objset; 873 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 874 char *name; 875 int error; 876 877 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 878 ASSERT(dmu_tx_is_syncing(tx)); 879 880 /* 881 * If the pool was created prior to SPA_VERSION_USERREFS, the 882 * zap object for temporary holds might not exist yet. 883 */ 884 if (zapobj == 0) { 885 if (holding) { 886 dsl_pool_user_hold_create_obj(dp, tx); 887 zapobj = dp->dp_tmp_userrefs_obj; 888 } else { 889 return (ENOENT); 890 } 891 } 892 893 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 894 if (holding) 895 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 896 else 897 error = zap_remove(mos, zapobj, name, tx); 898 strfree(name); 899 900 return (error); 901 } 902 903 /* 904 * Add a temporary hold for the given dataset object and tag. 905 */ 906 int 907 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 908 uint64_t now, dmu_tx_t *tx) 909 { 910 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 911 } 912 913 /* 914 * Release a temporary hold for the given dataset object and tag. 915 */ 916 int 917 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 918 dmu_tx_t *tx) 919 { 920 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 921 tx, B_FALSE)); 922 } 923 924 /* 925 * DSL Pool Configuration Lock 926 * 927 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 928 * creation / destruction / rename / property setting). It must be held for 929 * read to hold a dataset or dsl_dir. I.e. you must call 930 * dsl_pool_config_enter() or dsl_pool_hold() before calling 931 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 932 * must be held continuously until all datasets and dsl_dirs are released. 933 * 934 * The only exception to this rule is that if a "long hold" is placed on 935 * a dataset, then the dp_config_rwlock may be dropped while the dataset 936 * is still held. The long hold will prevent the dataset from being 937 * destroyed -- the destroy will fail with EBUSY. A long hold can be 938 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 939 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 940 * 941 * Legitimate long-holders (including owners) should be long-running, cancelable 942 * tasks that should cause "zfs destroy" to fail. This includes DMU 943 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 944 * "zfs send", and "zfs diff". There are several other long-holders whose 945 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 946 * 947 * The usual formula for long-holding would be: 948 * dsl_pool_hold() 949 * dsl_dataset_hold() 950 * ... perform checks ... 951 * dsl_dataset_long_hold() 952 * dsl_pool_rele() 953 * ... perform long-running task ... 954 * dsl_dataset_long_rele() 955 * dsl_dataset_rele() 956 * 957 * Note that when the long hold is released, the dataset is still held but 958 * the pool is not held. The dataset may change arbitrarily during this time 959 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 960 * dataset except release it. 961 * 962 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 963 * or modifying operations. 964 * 965 * Modifying operations should generally use dsl_sync_task(). The synctask 966 * infrastructure enforces proper locking strategy with respect to the 967 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 968 * 969 * Read-only operations will manually hold the pool, then the dataset, obtain 970 * information from the dataset, then release the pool and dataset. 971 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 972 * hold/rele. 973 */ 974 975 int 976 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 977 { 978 spa_t *spa; 979 int error; 980 981 error = spa_open(name, &spa, tag); 982 if (error == 0) { 983 *dp = spa_get_dsl(spa); 984 dsl_pool_config_enter(*dp, tag); 985 } 986 return (error); 987 } 988 989 void 990 dsl_pool_rele(dsl_pool_t *dp, void *tag) 991 { 992 dsl_pool_config_exit(dp, tag); 993 spa_close(dp->dp_spa, tag); 994 } 995 996 void 997 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 998 { 999 /* 1000 * We use a "reentrant" reader-writer lock, but not reentrantly. 1001 * 1002 * The rrwlock can (with the track_all flag) track all reading threads, 1003 * which is very useful for debugging which code path failed to release 1004 * the lock, and for verifying that the *current* thread does hold 1005 * the lock. 1006 * 1007 * (Unlike a rwlock, which knows that N threads hold it for 1008 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1009 * if any thread holds it for read, even if this thread doesn't). 1010 */ 1011 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1012 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1013 } 1014 1015 void 1016 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1017 { 1018 rrw_exit(&dp->dp_config_rwlock, tag); 1019 } 1020 1021 boolean_t 1022 dsl_pool_config_held(dsl_pool_t *dp) 1023 { 1024 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1025 } 1026