1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 #define BP_SPAN(datablkszsec, indblkshift, level) \ 70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 71 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 72 73 static void byteswap_record(dmu_replay_record_t *drr); 74 75 struct send_thread_arg { 76 bqueue_t q; 77 dsl_dataset_t *ds; /* Dataset to traverse */ 78 uint64_t fromtxg; /* Traverse from this txg */ 79 int flags; /* flags to pass to traverse_dataset */ 80 int error_code; 81 boolean_t cancel; 82 zbookmark_phys_t resume; 83 }; 84 85 struct send_block_record { 86 boolean_t eos_marker; /* Marks the end of the stream */ 87 blkptr_t bp; 88 zbookmark_phys_t zb; 89 uint8_t indblkshift; 90 uint16_t datablkszsec; 91 bqueue_node_t ln; 92 }; 93 94 static int 95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 96 { 97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 98 ssize_t resid; /* have to get resid to get detailed errno */ 99 ASSERT0(len % 8); 100 101 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 102 (caddr_t)buf, len, 103 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 104 105 mutex_enter(&ds->ds_sendstream_lock); 106 *dsp->dsa_off += len; 107 mutex_exit(&ds->ds_sendstream_lock); 108 109 return (dsp->dsa_err); 110 } 111 112 /* 113 * For all record types except BEGIN, fill in the checksum (overlaid in 114 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 115 * up to the start of the checksum itself. 116 */ 117 static int 118 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 119 { 120 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 121 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 122 fletcher_4_incremental_native(dsp->dsa_drr, 123 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 124 &dsp->dsa_zc); 125 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 126 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 127 drr_checksum.drr_checksum)); 128 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 129 } 130 fletcher_4_incremental_native(&dsp->dsa_drr-> 131 drr_u.drr_checksum.drr_checksum, 132 sizeof (zio_cksum_t), &dsp->dsa_zc); 133 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 134 return (SET_ERROR(EINTR)); 135 if (payload_len != 0) { 136 fletcher_4_incremental_native(payload, payload_len, 137 &dsp->dsa_zc); 138 if (dump_bytes(dsp, payload, payload_len) != 0) 139 return (SET_ERROR(EINTR)); 140 } 141 return (0); 142 } 143 144 /* 145 * Fill in the drr_free struct, or perform aggregation if the previous record is 146 * also a free record, and the two are adjacent. 147 * 148 * Note that we send free records even for a full send, because we want to be 149 * able to receive a full send as a clone, which requires a list of all the free 150 * and freeobject records that were generated on the source. 151 */ 152 static int 153 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 154 uint64_t length) 155 { 156 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 157 158 /* 159 * When we receive a free record, dbuf_free_range() assumes 160 * that the receiving system doesn't have any dbufs in the range 161 * being freed. This is always true because there is a one-record 162 * constraint: we only send one WRITE record for any given 163 * object,offset. We know that the one-record constraint is 164 * true because we always send data in increasing order by 165 * object,offset. 166 * 167 * If the increasing-order constraint ever changes, we should find 168 * another way to assert that the one-record constraint is still 169 * satisfied. 170 */ 171 ASSERT(object > dsp->dsa_last_data_object || 172 (object == dsp->dsa_last_data_object && 173 offset > dsp->dsa_last_data_offset)); 174 175 if (length != -1ULL && offset + length < offset) 176 length = -1ULL; 177 178 /* 179 * If there is a pending op, but it's not PENDING_FREE, push it out, 180 * since free block aggregation can only be done for blocks of the 181 * same type (i.e., DRR_FREE records can only be aggregated with 182 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 183 * aggregated with other DRR_FREEOBJECTS records. 184 */ 185 if (dsp->dsa_pending_op != PENDING_NONE && 186 dsp->dsa_pending_op != PENDING_FREE) { 187 if (dump_record(dsp, NULL, 0) != 0) 188 return (SET_ERROR(EINTR)); 189 dsp->dsa_pending_op = PENDING_NONE; 190 } 191 192 if (dsp->dsa_pending_op == PENDING_FREE) { 193 /* 194 * There should never be a PENDING_FREE if length is -1 195 * (because dump_dnode is the only place where this 196 * function is called with a -1, and only after flushing 197 * any pending record). 198 */ 199 ASSERT(length != -1ULL); 200 /* 201 * Check to see whether this free block can be aggregated 202 * with pending one. 203 */ 204 if (drrf->drr_object == object && drrf->drr_offset + 205 drrf->drr_length == offset) { 206 drrf->drr_length += length; 207 return (0); 208 } else { 209 /* not a continuation. Push out pending record */ 210 if (dump_record(dsp, NULL, 0) != 0) 211 return (SET_ERROR(EINTR)); 212 dsp->dsa_pending_op = PENDING_NONE; 213 } 214 } 215 /* create a FREE record and make it pending */ 216 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 217 dsp->dsa_drr->drr_type = DRR_FREE; 218 drrf->drr_object = object; 219 drrf->drr_offset = offset; 220 drrf->drr_length = length; 221 drrf->drr_toguid = dsp->dsa_toguid; 222 if (length == -1ULL) { 223 if (dump_record(dsp, NULL, 0) != 0) 224 return (SET_ERROR(EINTR)); 225 } else { 226 dsp->dsa_pending_op = PENDING_FREE; 227 } 228 229 return (0); 230 } 231 232 static int 233 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 234 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 235 { 236 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 237 238 /* 239 * We send data in increasing object, offset order. 240 * See comment in dump_free() for details. 241 */ 242 ASSERT(object > dsp->dsa_last_data_object || 243 (object == dsp->dsa_last_data_object && 244 offset > dsp->dsa_last_data_offset)); 245 dsp->dsa_last_data_object = object; 246 dsp->dsa_last_data_offset = offset + blksz - 1; 247 248 /* 249 * If there is any kind of pending aggregation (currently either 250 * a grouping of free objects or free blocks), push it out to 251 * the stream, since aggregation can't be done across operations 252 * of different types. 253 */ 254 if (dsp->dsa_pending_op != PENDING_NONE) { 255 if (dump_record(dsp, NULL, 0) != 0) 256 return (SET_ERROR(EINTR)); 257 dsp->dsa_pending_op = PENDING_NONE; 258 } 259 /* write a WRITE record */ 260 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 261 dsp->dsa_drr->drr_type = DRR_WRITE; 262 drrw->drr_object = object; 263 drrw->drr_type = type; 264 drrw->drr_offset = offset; 265 drrw->drr_length = blksz; 266 drrw->drr_toguid = dsp->dsa_toguid; 267 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 268 /* 269 * There's no pre-computed checksum for partial-block 270 * writes or embedded BP's, so (like 271 * fletcher4-checkummed blocks) userland will have to 272 * compute a dedup-capable checksum itself. 273 */ 274 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 275 } else { 276 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 277 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 278 ZCHECKSUM_FLAG_DEDUP) 279 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 280 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 281 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 282 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 283 drrw->drr_key.ddk_cksum = bp->blk_cksum; 284 } 285 286 if (dump_record(dsp, data, blksz) != 0) 287 return (SET_ERROR(EINTR)); 288 return (0); 289 } 290 291 static int 292 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 293 int blksz, const blkptr_t *bp) 294 { 295 char buf[BPE_PAYLOAD_SIZE]; 296 struct drr_write_embedded *drrw = 297 &(dsp->dsa_drr->drr_u.drr_write_embedded); 298 299 if (dsp->dsa_pending_op != PENDING_NONE) { 300 if (dump_record(dsp, NULL, 0) != 0) 301 return (EINTR); 302 dsp->dsa_pending_op = PENDING_NONE; 303 } 304 305 ASSERT(BP_IS_EMBEDDED(bp)); 306 307 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 308 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 309 drrw->drr_object = object; 310 drrw->drr_offset = offset; 311 drrw->drr_length = blksz; 312 drrw->drr_toguid = dsp->dsa_toguid; 313 drrw->drr_compression = BP_GET_COMPRESS(bp); 314 drrw->drr_etype = BPE_GET_ETYPE(bp); 315 drrw->drr_lsize = BPE_GET_LSIZE(bp); 316 drrw->drr_psize = BPE_GET_PSIZE(bp); 317 318 decode_embedded_bp_compressed(bp, buf); 319 320 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 321 return (EINTR); 322 return (0); 323 } 324 325 static int 326 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 327 { 328 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 329 330 if (dsp->dsa_pending_op != PENDING_NONE) { 331 if (dump_record(dsp, NULL, 0) != 0) 332 return (SET_ERROR(EINTR)); 333 dsp->dsa_pending_op = PENDING_NONE; 334 } 335 336 /* write a SPILL record */ 337 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 338 dsp->dsa_drr->drr_type = DRR_SPILL; 339 drrs->drr_object = object; 340 drrs->drr_length = blksz; 341 drrs->drr_toguid = dsp->dsa_toguid; 342 343 if (dump_record(dsp, data, blksz) != 0) 344 return (SET_ERROR(EINTR)); 345 return (0); 346 } 347 348 static int 349 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 350 { 351 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 352 353 /* 354 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 355 * push it out, since free block aggregation can only be done for 356 * blocks of the same type (i.e., DRR_FREE records can only be 357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 358 * can only be aggregated with other DRR_FREEOBJECTS records. 359 */ 360 if (dsp->dsa_pending_op != PENDING_NONE && 361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 362 if (dump_record(dsp, NULL, 0) != 0) 363 return (SET_ERROR(EINTR)); 364 dsp->dsa_pending_op = PENDING_NONE; 365 } 366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 367 /* 368 * See whether this free object array can be aggregated 369 * with pending one 370 */ 371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 372 drrfo->drr_numobjs += numobjs; 373 return (0); 374 } else { 375 /* can't be aggregated. Push out pending record */ 376 if (dump_record(dsp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dsp->dsa_pending_op = PENDING_NONE; 379 } 380 } 381 382 /* write a FREEOBJECTS record */ 383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 385 drrfo->drr_firstobj = firstobj; 386 drrfo->drr_numobjs = numobjs; 387 drrfo->drr_toguid = dsp->dsa_toguid; 388 389 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 390 391 return (0); 392 } 393 394 static int 395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 396 { 397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 398 399 if (object < dsp->dsa_resume_object) { 400 /* 401 * Note: when resuming, we will visit all the dnodes in 402 * the block of dnodes that we are resuming from. In 403 * this case it's unnecessary to send the dnodes prior to 404 * the one we are resuming from. We should be at most one 405 * block's worth of dnodes behind the resume point. 406 */ 407 ASSERT3U(dsp->dsa_resume_object - object, <, 408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 409 return (0); 410 } 411 412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 413 return (dump_freeobjects(dsp, object, 1)); 414 415 if (dsp->dsa_pending_op != PENDING_NONE) { 416 if (dump_record(dsp, NULL, 0) != 0) 417 return (SET_ERROR(EINTR)); 418 dsp->dsa_pending_op = PENDING_NONE; 419 } 420 421 /* write an OBJECT record */ 422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 423 dsp->dsa_drr->drr_type = DRR_OBJECT; 424 drro->drr_object = object; 425 drro->drr_type = dnp->dn_type; 426 drro->drr_bonustype = dnp->dn_bonustype; 427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 428 drro->drr_bonuslen = dnp->dn_bonuslen; 429 drro->drr_checksumtype = dnp->dn_checksum; 430 drro->drr_compress = dnp->dn_compress; 431 drro->drr_toguid = dsp->dsa_toguid; 432 433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 436 437 if (dump_record(dsp, DN_BONUS(dnp), 438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 439 return (SET_ERROR(EINTR)); 440 } 441 442 /* Free anything past the end of the file. */ 443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 445 return (SET_ERROR(EINTR)); 446 if (dsp->dsa_err != 0) 447 return (SET_ERROR(EINTR)); 448 return (0); 449 } 450 451 static boolean_t 452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 453 { 454 if (!BP_IS_EMBEDDED(bp)) 455 return (B_FALSE); 456 457 /* 458 * Compression function must be legacy, or explicitly enabled. 459 */ 460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 462 return (B_FALSE); 463 464 /* 465 * Embed type must be explicitly enabled. 466 */ 467 switch (BPE_GET_ETYPE(bp)) { 468 case BP_EMBEDDED_TYPE_DATA: 469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 470 return (B_TRUE); 471 break; 472 default: 473 return (B_FALSE); 474 } 475 return (B_FALSE); 476 } 477 478 /* 479 * This is the callback function to traverse_dataset that acts as the worker 480 * thread for dmu_send_impl. 481 */ 482 /*ARGSUSED*/ 483 static int 484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 486 { 487 struct send_thread_arg *sta = arg; 488 struct send_block_record *record; 489 uint64_t record_size; 490 int err = 0; 491 492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 493 zb->zb_object >= sta->resume.zb_object); 494 495 if (sta->cancel) 496 return (SET_ERROR(EINTR)); 497 498 if (bp == NULL) { 499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 500 return (0); 501 } else if (zb->zb_level < 0) { 502 return (0); 503 } 504 505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 506 record->eos_marker = B_FALSE; 507 record->bp = *bp; 508 record->zb = *zb; 509 record->indblkshift = dnp->dn_indblkshift; 510 record->datablkszsec = dnp->dn_datablkszsec; 511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 512 bqueue_enqueue(&sta->q, record, record_size); 513 514 return (err); 515 } 516 517 /* 518 * This function kicks off the traverse_dataset. It also handles setting the 519 * error code of the thread in case something goes wrong, and pushes the End of 520 * Stream record when the traverse_dataset call has finished. If there is no 521 * dataset to traverse, the thread immediately pushes End of Stream marker. 522 */ 523 static void 524 send_traverse_thread(void *arg) 525 { 526 struct send_thread_arg *st_arg = arg; 527 int err; 528 struct send_block_record *data; 529 530 if (st_arg->ds != NULL) { 531 err = traverse_dataset_resume(st_arg->ds, 532 st_arg->fromtxg, &st_arg->resume, 533 st_arg->flags, send_cb, st_arg); 534 535 if (err != EINTR) 536 st_arg->error_code = err; 537 } 538 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 539 data->eos_marker = B_TRUE; 540 bqueue_enqueue(&st_arg->q, data, 1); 541 } 542 543 /* 544 * This function actually handles figuring out what kind of record needs to be 545 * dumped, reading the data (which has hopefully been prefetched), and calling 546 * the appropriate helper function. 547 */ 548 static int 549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 550 { 551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 552 const blkptr_t *bp = &data->bp; 553 const zbookmark_phys_t *zb = &data->zb; 554 uint8_t indblkshift = data->indblkshift; 555 uint16_t dblkszsec = data->datablkszsec; 556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 558 int err = 0; 559 560 ASSERT3U(zb->zb_level, >=, 0); 561 562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 563 zb->zb_object >= dsa->dsa_resume_object); 564 565 if (zb->zb_object != DMU_META_DNODE_OBJECT && 566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 567 return (0); 568 } else if (BP_IS_HOLE(bp) && 569 zb->zb_object == DMU_META_DNODE_OBJECT) { 570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 573 } else if (BP_IS_HOLE(bp)) { 574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 575 uint64_t offset = zb->zb_blkid * span; 576 err = dump_free(dsa, zb->zb_object, offset, span); 577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 578 return (0); 579 } else if (type == DMU_OT_DNODE) { 580 int blksz = BP_GET_LSIZE(bp); 581 arc_flags_t aflags = ARC_FLAG_WAIT; 582 arc_buf_t *abuf; 583 584 ASSERT0(zb->zb_level); 585 586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 588 &aflags, zb) != 0) 589 return (SET_ERROR(EIO)); 590 591 dnode_phys_t *blk = abuf->b_data; 592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 594 err = dump_dnode(dsa, dnobj + i, blk + i); 595 if (err != 0) 596 break; 597 } 598 (void) arc_buf_remove_ref(abuf, &abuf); 599 } else if (type == DMU_OT_SA) { 600 arc_flags_t aflags = ARC_FLAG_WAIT; 601 arc_buf_t *abuf; 602 int blksz = BP_GET_LSIZE(bp); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 610 (void) arc_buf_remove_ref(abuf, &abuf); 611 } else if (backup_do_embed(dsa, bp)) { 612 /* it's an embedded level-0 block of a regular object */ 613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 614 ASSERT0(zb->zb_level); 615 err = dump_write_embedded(dsa, zb->zb_object, 616 zb->zb_blkid * blksz, blksz, bp); 617 } else { 618 /* it's a level-0 block of a regular object */ 619 arc_flags_t aflags = ARC_FLAG_WAIT; 620 arc_buf_t *abuf; 621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 622 uint64_t offset; 623 624 ASSERT0(zb->zb_level); 625 ASSERT(zb->zb_object > dsa->dsa_resume_object || 626 (zb->zb_object == dsa->dsa_resume_object && 627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 628 629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 631 &aflags, zb) != 0) { 632 if (zfs_send_corrupt_data) { 633 /* Send a block filled with 0x"zfs badd bloc" */ 634 abuf = arc_buf_alloc(spa, blksz, &abuf, 635 ARC_BUFC_DATA); 636 uint64_t *ptr; 637 for (ptr = abuf->b_data; 638 (char *)ptr < (char *)abuf->b_data + blksz; 639 ptr++) 640 *ptr = 0x2f5baddb10cULL; 641 } else { 642 return (SET_ERROR(EIO)); 643 } 644 } 645 646 offset = zb->zb_blkid * blksz; 647 648 if (!(dsa->dsa_featureflags & 649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 650 blksz > SPA_OLD_MAXBLOCKSIZE) { 651 char *buf = abuf->b_data; 652 while (blksz > 0 && err == 0) { 653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 654 err = dump_write(dsa, type, zb->zb_object, 655 offset, n, NULL, buf); 656 offset += n; 657 buf += n; 658 blksz -= n; 659 } 660 } else { 661 err = dump_write(dsa, type, zb->zb_object, 662 offset, blksz, bp, abuf->b_data); 663 } 664 (void) arc_buf_remove_ref(abuf, &abuf); 665 } 666 667 ASSERT(err == 0 || err == EINTR); 668 return (err); 669 } 670 671 /* 672 * Pop the new data off the queue, and free the old data. 673 */ 674 static struct send_block_record * 675 get_next_record(bqueue_t *bq, struct send_block_record *data) 676 { 677 struct send_block_record *tmp = bqueue_dequeue(bq); 678 kmem_free(data, sizeof (*data)); 679 return (tmp); 680 } 681 682 /* 683 * Actually do the bulk of the work in a zfs send. 684 * 685 * Note: Releases dp using the specified tag. 686 */ 687 static int 688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 689 zfs_bookmark_phys_t *ancestor_zb, 690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 691 uint64_t resumeobj, uint64_t resumeoff, 692 vnode_t *vp, offset_t *off) 693 { 694 objset_t *os; 695 dmu_replay_record_t *drr; 696 dmu_sendarg_t *dsp; 697 int err; 698 uint64_t fromtxg = 0; 699 uint64_t featureflags = 0; 700 struct send_thread_arg to_arg = { 0 }; 701 702 err = dmu_objset_from_ds(to_ds, &os); 703 if (err != 0) { 704 dsl_pool_rele(dp, tag); 705 return (err); 706 } 707 708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 709 drr->drr_type = DRR_BEGIN; 710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 712 DMU_SUBSTREAM); 713 714 #ifdef _KERNEL 715 if (dmu_objset_type(os) == DMU_OST_ZFS) { 716 uint64_t version; 717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 718 kmem_free(drr, sizeof (dmu_replay_record_t)); 719 dsl_pool_rele(dp, tag); 720 return (SET_ERROR(EINVAL)); 721 } 722 if (version >= ZPL_VERSION_SA) { 723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 724 } 725 } 726 #endif 727 728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 730 if (embedok && 731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 735 } 736 737 if (resumeobj != 0 || resumeoff != 0) { 738 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 739 } 740 741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 742 featureflags); 743 744 drr->drr_u.drr_begin.drr_creation_time = 745 dsl_dataset_phys(to_ds)->ds_creation_time; 746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 747 if (is_clone) 748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 752 if (zfs_send_set_freerecords_bit) 753 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 754 755 if (ancestor_zb != NULL) { 756 drr->drr_u.drr_begin.drr_fromguid = 757 ancestor_zb->zbm_guid; 758 fromtxg = ancestor_zb->zbm_creation_txg; 759 } 760 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 761 if (!to_ds->ds_is_snapshot) { 762 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 763 sizeof (drr->drr_u.drr_begin.drr_toname)); 764 } 765 766 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 767 768 dsp->dsa_drr = drr; 769 dsp->dsa_vp = vp; 770 dsp->dsa_outfd = outfd; 771 dsp->dsa_proc = curproc; 772 dsp->dsa_os = os; 773 dsp->dsa_off = off; 774 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 775 dsp->dsa_pending_op = PENDING_NONE; 776 dsp->dsa_featureflags = featureflags; 777 dsp->dsa_resume_object = resumeobj; 778 dsp->dsa_resume_offset = resumeoff; 779 780 mutex_enter(&to_ds->ds_sendstream_lock); 781 list_insert_head(&to_ds->ds_sendstreams, dsp); 782 mutex_exit(&to_ds->ds_sendstream_lock); 783 784 dsl_dataset_long_hold(to_ds, FTAG); 785 dsl_pool_rele(dp, tag); 786 787 void *payload = NULL; 788 size_t payload_len = 0; 789 if (resumeobj != 0 || resumeoff != 0) { 790 dmu_object_info_t to_doi; 791 err = dmu_object_info(os, resumeobj, &to_doi); 792 if (err != 0) 793 goto out; 794 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 795 resumeoff / to_doi.doi_data_block_size); 796 797 nvlist_t *nvl = fnvlist_alloc(); 798 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 799 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 800 payload = fnvlist_pack(nvl, &payload_len); 801 drr->drr_payloadlen = payload_len; 802 fnvlist_free(nvl); 803 } 804 805 err = dump_record(dsp, payload, payload_len); 806 fnvlist_pack_free(payload, payload_len); 807 if (err != 0) { 808 err = dsp->dsa_err; 809 goto out; 810 } 811 812 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 813 offsetof(struct send_block_record, ln)); 814 to_arg.error_code = 0; 815 to_arg.cancel = B_FALSE; 816 to_arg.ds = to_ds; 817 to_arg.fromtxg = fromtxg; 818 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 819 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 820 TS_RUN, minclsyspri); 821 822 struct send_block_record *to_data; 823 to_data = bqueue_dequeue(&to_arg.q); 824 825 while (!to_data->eos_marker && err == 0) { 826 err = do_dump(dsp, to_data); 827 to_data = get_next_record(&to_arg.q, to_data); 828 if (issig(JUSTLOOKING) && issig(FORREAL)) 829 err = EINTR; 830 } 831 832 if (err != 0) { 833 to_arg.cancel = B_TRUE; 834 while (!to_data->eos_marker) { 835 to_data = get_next_record(&to_arg.q, to_data); 836 } 837 } 838 kmem_free(to_data, sizeof (*to_data)); 839 840 bqueue_destroy(&to_arg.q); 841 842 if (err == 0 && to_arg.error_code != 0) 843 err = to_arg.error_code; 844 845 if (err != 0) 846 goto out; 847 848 if (dsp->dsa_pending_op != PENDING_NONE) 849 if (dump_record(dsp, NULL, 0) != 0) 850 err = SET_ERROR(EINTR); 851 852 if (err != 0) { 853 if (err == EINTR && dsp->dsa_err != 0) 854 err = dsp->dsa_err; 855 goto out; 856 } 857 858 bzero(drr, sizeof (dmu_replay_record_t)); 859 drr->drr_type = DRR_END; 860 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 861 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 862 863 if (dump_record(dsp, NULL, 0) != 0) 864 err = dsp->dsa_err; 865 866 out: 867 mutex_enter(&to_ds->ds_sendstream_lock); 868 list_remove(&to_ds->ds_sendstreams, dsp); 869 mutex_exit(&to_ds->ds_sendstream_lock); 870 871 kmem_free(drr, sizeof (dmu_replay_record_t)); 872 kmem_free(dsp, sizeof (dmu_sendarg_t)); 873 874 dsl_dataset_long_rele(to_ds, FTAG); 875 876 return (err); 877 } 878 879 int 880 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 881 boolean_t embedok, boolean_t large_block_ok, 882 int outfd, vnode_t *vp, offset_t *off) 883 { 884 dsl_pool_t *dp; 885 dsl_dataset_t *ds; 886 dsl_dataset_t *fromds = NULL; 887 int err; 888 889 err = dsl_pool_hold(pool, FTAG, &dp); 890 if (err != 0) 891 return (err); 892 893 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 894 if (err != 0) { 895 dsl_pool_rele(dp, FTAG); 896 return (err); 897 } 898 899 if (fromsnap != 0) { 900 zfs_bookmark_phys_t zb; 901 boolean_t is_clone; 902 903 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 904 if (err != 0) { 905 dsl_dataset_rele(ds, FTAG); 906 dsl_pool_rele(dp, FTAG); 907 return (err); 908 } 909 if (!dsl_dataset_is_before(ds, fromds, 0)) 910 err = SET_ERROR(EXDEV); 911 zb.zbm_creation_time = 912 dsl_dataset_phys(fromds)->ds_creation_time; 913 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 914 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 915 is_clone = (fromds->ds_dir != ds->ds_dir); 916 dsl_dataset_rele(fromds, FTAG); 917 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 918 embedok, large_block_ok, outfd, 0, 0, vp, off); 919 } else { 920 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 921 embedok, large_block_ok, outfd, 0, 0, vp, off); 922 } 923 dsl_dataset_rele(ds, FTAG); 924 return (err); 925 } 926 927 int 928 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 929 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 930 vnode_t *vp, offset_t *off) 931 { 932 dsl_pool_t *dp; 933 dsl_dataset_t *ds; 934 int err; 935 boolean_t owned = B_FALSE; 936 937 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 938 return (SET_ERROR(EINVAL)); 939 940 err = dsl_pool_hold(tosnap, FTAG, &dp); 941 if (err != 0) 942 return (err); 943 944 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 945 /* 946 * We are sending a filesystem or volume. Ensure 947 * that it doesn't change by owning the dataset. 948 */ 949 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 950 owned = B_TRUE; 951 } else { 952 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 953 } 954 if (err != 0) { 955 dsl_pool_rele(dp, FTAG); 956 return (err); 957 } 958 959 if (fromsnap != NULL) { 960 zfs_bookmark_phys_t zb; 961 boolean_t is_clone = B_FALSE; 962 int fsnamelen = strchr(tosnap, '@') - tosnap; 963 964 /* 965 * If the fromsnap is in a different filesystem, then 966 * mark the send stream as a clone. 967 */ 968 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 969 (fromsnap[fsnamelen] != '@' && 970 fromsnap[fsnamelen] != '#')) { 971 is_clone = B_TRUE; 972 } 973 974 if (strchr(fromsnap, '@')) { 975 dsl_dataset_t *fromds; 976 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 977 if (err == 0) { 978 if (!dsl_dataset_is_before(ds, fromds, 0)) 979 err = SET_ERROR(EXDEV); 980 zb.zbm_creation_time = 981 dsl_dataset_phys(fromds)->ds_creation_time; 982 zb.zbm_creation_txg = 983 dsl_dataset_phys(fromds)->ds_creation_txg; 984 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 985 is_clone = (ds->ds_dir != fromds->ds_dir); 986 dsl_dataset_rele(fromds, FTAG); 987 } 988 } else { 989 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 990 } 991 if (err != 0) { 992 dsl_dataset_rele(ds, FTAG); 993 dsl_pool_rele(dp, FTAG); 994 return (err); 995 } 996 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 997 embedok, large_block_ok, 998 outfd, resumeobj, resumeoff, vp, off); 999 } else { 1000 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1001 embedok, large_block_ok, 1002 outfd, resumeobj, resumeoff, vp, off); 1003 } 1004 if (owned) 1005 dsl_dataset_disown(ds, FTAG); 1006 else 1007 dsl_dataset_rele(ds, FTAG); 1008 return (err); 1009 } 1010 1011 static int 1012 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1013 uint64_t *sizep) 1014 { 1015 int err; 1016 /* 1017 * Assume that space (both on-disk and in-stream) is dominated by 1018 * data. We will adjust for indirect blocks and the copies property, 1019 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1020 */ 1021 1022 /* 1023 * Subtract out approximate space used by indirect blocks. 1024 * Assume most space is used by data blocks (non-indirect, non-dnode). 1025 * Assume all blocks are recordsize. Assume ditto blocks and 1026 * internal fragmentation counter out compression. 1027 * 1028 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1029 * block, which we observe in practice. 1030 */ 1031 uint64_t recordsize; 1032 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1033 if (err != 0) 1034 return (err); 1035 size -= size / recordsize * sizeof (blkptr_t); 1036 1037 /* Add in the space for the record associated with each block. */ 1038 size += size / recordsize * sizeof (dmu_replay_record_t); 1039 1040 *sizep = size; 1041 1042 return (0); 1043 } 1044 1045 int 1046 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1047 { 1048 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1049 int err; 1050 uint64_t size; 1051 1052 ASSERT(dsl_pool_config_held(dp)); 1053 1054 /* tosnap must be a snapshot */ 1055 if (!ds->ds_is_snapshot) 1056 return (SET_ERROR(EINVAL)); 1057 1058 /* fromsnap, if provided, must be a snapshot */ 1059 if (fromds != NULL && !fromds->ds_is_snapshot) 1060 return (SET_ERROR(EINVAL)); 1061 1062 /* 1063 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1064 * or the origin's fs. 1065 */ 1066 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1067 return (SET_ERROR(EXDEV)); 1068 1069 /* Get uncompressed size estimate of changed data. */ 1070 if (fromds == NULL) { 1071 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1072 } else { 1073 uint64_t used, comp; 1074 err = dsl_dataset_space_written(fromds, ds, 1075 &used, &comp, &size); 1076 if (err != 0) 1077 return (err); 1078 } 1079 1080 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1081 return (err); 1082 } 1083 1084 /* 1085 * Simple callback used to traverse the blocks of a snapshot and sum their 1086 * uncompressed size 1087 */ 1088 /* ARGSUSED */ 1089 static int 1090 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1091 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1092 { 1093 uint64_t *spaceptr = arg; 1094 if (bp != NULL && !BP_IS_HOLE(bp)) { 1095 *spaceptr += BP_GET_UCSIZE(bp); 1096 } 1097 return (0); 1098 } 1099 1100 /* 1101 * Given a desination snapshot and a TXG, calculate the approximate size of a 1102 * send stream sent from that TXG. from_txg may be zero, indicating that the 1103 * whole snapshot will be sent. 1104 */ 1105 int 1106 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1107 uint64_t *sizep) 1108 { 1109 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1110 int err; 1111 uint64_t size = 0; 1112 1113 ASSERT(dsl_pool_config_held(dp)); 1114 1115 /* tosnap must be a snapshot */ 1116 if (!dsl_dataset_is_snapshot(ds)) 1117 return (SET_ERROR(EINVAL)); 1118 1119 /* verify that from_txg is before the provided snapshot was taken */ 1120 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1121 return (SET_ERROR(EXDEV)); 1122 } 1123 1124 /* 1125 * traverse the blocks of the snapshot with birth times after 1126 * from_txg, summing their uncompressed size 1127 */ 1128 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1129 dmu_calculate_send_traversal, &size); 1130 if (err) 1131 return (err); 1132 1133 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1134 return (err); 1135 } 1136 1137 typedef struct dmu_recv_begin_arg { 1138 const char *drba_origin; 1139 dmu_recv_cookie_t *drba_cookie; 1140 cred_t *drba_cred; 1141 uint64_t drba_snapobj; 1142 } dmu_recv_begin_arg_t; 1143 1144 static int 1145 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1146 uint64_t fromguid) 1147 { 1148 uint64_t val; 1149 int error; 1150 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1151 1152 /* temporary clone name must not exist */ 1153 error = zap_lookup(dp->dp_meta_objset, 1154 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1155 8, 1, &val); 1156 if (error != ENOENT) 1157 return (error == 0 ? EBUSY : error); 1158 1159 /* new snapshot name must not exist */ 1160 error = zap_lookup(dp->dp_meta_objset, 1161 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1162 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1163 if (error != ENOENT) 1164 return (error == 0 ? EEXIST : error); 1165 1166 /* 1167 * Check snapshot limit before receiving. We'll recheck again at the 1168 * end, but might as well abort before receiving if we're already over 1169 * the limit. 1170 * 1171 * Note that we do not check the file system limit with 1172 * dsl_dir_fscount_check because the temporary %clones don't count 1173 * against that limit. 1174 */ 1175 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1176 NULL, drba->drba_cred); 1177 if (error != 0) 1178 return (error); 1179 1180 if (fromguid != 0) { 1181 dsl_dataset_t *snap; 1182 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1183 1184 /* Find snapshot in this dir that matches fromguid. */ 1185 while (obj != 0) { 1186 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1187 &snap); 1188 if (error != 0) 1189 return (SET_ERROR(ENODEV)); 1190 if (snap->ds_dir != ds->ds_dir) { 1191 dsl_dataset_rele(snap, FTAG); 1192 return (SET_ERROR(ENODEV)); 1193 } 1194 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1195 break; 1196 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1197 dsl_dataset_rele(snap, FTAG); 1198 } 1199 if (obj == 0) 1200 return (SET_ERROR(ENODEV)); 1201 1202 if (drba->drba_cookie->drc_force) { 1203 drba->drba_snapobj = obj; 1204 } else { 1205 /* 1206 * If we are not forcing, there must be no 1207 * changes since fromsnap. 1208 */ 1209 if (dsl_dataset_modified_since_snap(ds, snap)) { 1210 dsl_dataset_rele(snap, FTAG); 1211 return (SET_ERROR(ETXTBSY)); 1212 } 1213 drba->drba_snapobj = ds->ds_prev->ds_object; 1214 } 1215 1216 dsl_dataset_rele(snap, FTAG); 1217 } else { 1218 /* if full, then must be forced */ 1219 if (!drba->drba_cookie->drc_force) 1220 return (SET_ERROR(EEXIST)); 1221 /* start from $ORIGIN@$ORIGIN, if supported */ 1222 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1223 dp->dp_origin_snap->ds_object : 0; 1224 } 1225 1226 return (0); 1227 1228 } 1229 1230 static int 1231 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1232 { 1233 dmu_recv_begin_arg_t *drba = arg; 1234 dsl_pool_t *dp = dmu_tx_pool(tx); 1235 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1236 uint64_t fromguid = drrb->drr_fromguid; 1237 int flags = drrb->drr_flags; 1238 int error; 1239 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1240 dsl_dataset_t *ds; 1241 const char *tofs = drba->drba_cookie->drc_tofs; 1242 1243 /* already checked */ 1244 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1245 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1246 1247 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1248 DMU_COMPOUNDSTREAM || 1249 drrb->drr_type >= DMU_OST_NUMTYPES || 1250 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1251 return (SET_ERROR(EINVAL)); 1252 1253 /* Verify pool version supports SA if SA_SPILL feature set */ 1254 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1255 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1256 return (SET_ERROR(ENOTSUP)); 1257 1258 if (drba->drba_cookie->drc_resumable && 1259 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1260 return (SET_ERROR(ENOTSUP)); 1261 1262 /* 1263 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1264 * record to a plan WRITE record, so the pool must have the 1265 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1266 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1267 */ 1268 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1269 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1270 return (SET_ERROR(ENOTSUP)); 1271 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1272 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1273 return (SET_ERROR(ENOTSUP)); 1274 1275 /* 1276 * The receiving code doesn't know how to translate large blocks 1277 * to smaller ones, so the pool must have the LARGE_BLOCKS 1278 * feature enabled if the stream has LARGE_BLOCKS. 1279 */ 1280 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1281 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1282 return (SET_ERROR(ENOTSUP)); 1283 1284 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1285 if (error == 0) { 1286 /* target fs already exists; recv into temp clone */ 1287 1288 /* Can't recv a clone into an existing fs */ 1289 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1290 dsl_dataset_rele(ds, FTAG); 1291 return (SET_ERROR(EINVAL)); 1292 } 1293 1294 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1295 dsl_dataset_rele(ds, FTAG); 1296 } else if (error == ENOENT) { 1297 /* target fs does not exist; must be a full backup or clone */ 1298 char buf[MAXNAMELEN]; 1299 1300 /* 1301 * If it's a non-clone incremental, we are missing the 1302 * target fs, so fail the recv. 1303 */ 1304 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1305 drba->drba_origin)) 1306 return (SET_ERROR(ENOENT)); 1307 1308 /* 1309 * If we're receiving a full send as a clone, and it doesn't 1310 * contain all the necessary free records and freeobject 1311 * records, reject it. 1312 */ 1313 if (fromguid == 0 && drba->drba_origin && 1314 !(flags & DRR_FLAG_FREERECORDS)) 1315 return (SET_ERROR(EINVAL)); 1316 1317 /* Open the parent of tofs */ 1318 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1319 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1320 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1321 if (error != 0) 1322 return (error); 1323 1324 /* 1325 * Check filesystem and snapshot limits before receiving. We'll 1326 * recheck snapshot limits again at the end (we create the 1327 * filesystems and increment those counts during begin_sync). 1328 */ 1329 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1330 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1331 if (error != 0) { 1332 dsl_dataset_rele(ds, FTAG); 1333 return (error); 1334 } 1335 1336 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1337 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1338 if (error != 0) { 1339 dsl_dataset_rele(ds, FTAG); 1340 return (error); 1341 } 1342 1343 if (drba->drba_origin != NULL) { 1344 dsl_dataset_t *origin; 1345 error = dsl_dataset_hold(dp, drba->drba_origin, 1346 FTAG, &origin); 1347 if (error != 0) { 1348 dsl_dataset_rele(ds, FTAG); 1349 return (error); 1350 } 1351 if (!origin->ds_is_snapshot) { 1352 dsl_dataset_rele(origin, FTAG); 1353 dsl_dataset_rele(ds, FTAG); 1354 return (SET_ERROR(EINVAL)); 1355 } 1356 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1357 fromguid != 0) { 1358 dsl_dataset_rele(origin, FTAG); 1359 dsl_dataset_rele(ds, FTAG); 1360 return (SET_ERROR(ENODEV)); 1361 } 1362 dsl_dataset_rele(origin, FTAG); 1363 } 1364 dsl_dataset_rele(ds, FTAG); 1365 error = 0; 1366 } 1367 return (error); 1368 } 1369 1370 static void 1371 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1372 { 1373 dmu_recv_begin_arg_t *drba = arg; 1374 dsl_pool_t *dp = dmu_tx_pool(tx); 1375 objset_t *mos = dp->dp_meta_objset; 1376 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1377 const char *tofs = drba->drba_cookie->drc_tofs; 1378 dsl_dataset_t *ds, *newds; 1379 uint64_t dsobj; 1380 int error; 1381 uint64_t crflags = 0; 1382 1383 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1384 crflags |= DS_FLAG_CI_DATASET; 1385 1386 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1387 if (error == 0) { 1388 /* create temporary clone */ 1389 dsl_dataset_t *snap = NULL; 1390 if (drba->drba_snapobj != 0) { 1391 VERIFY0(dsl_dataset_hold_obj(dp, 1392 drba->drba_snapobj, FTAG, &snap)); 1393 } 1394 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1395 snap, crflags, drba->drba_cred, tx); 1396 if (drba->drba_snapobj != 0) 1397 dsl_dataset_rele(snap, FTAG); 1398 dsl_dataset_rele(ds, FTAG); 1399 } else { 1400 dsl_dir_t *dd; 1401 const char *tail; 1402 dsl_dataset_t *origin = NULL; 1403 1404 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1405 1406 if (drba->drba_origin != NULL) { 1407 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1408 FTAG, &origin)); 1409 } 1410 1411 /* Create new dataset. */ 1412 dsobj = dsl_dataset_create_sync(dd, 1413 strrchr(tofs, '/') + 1, 1414 origin, crflags, drba->drba_cred, tx); 1415 if (origin != NULL) 1416 dsl_dataset_rele(origin, FTAG); 1417 dsl_dir_rele(dd, FTAG); 1418 drba->drba_cookie->drc_newfs = B_TRUE; 1419 } 1420 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1421 1422 if (drba->drba_cookie->drc_resumable) { 1423 dsl_dataset_zapify(newds, tx); 1424 if (drrb->drr_fromguid != 0) { 1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1426 8, 1, &drrb->drr_fromguid, tx)); 1427 } 1428 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1429 8, 1, &drrb->drr_toguid, tx)); 1430 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1431 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1432 uint64_t one = 1; 1433 uint64_t zero = 0; 1434 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1435 8, 1, &one, tx)); 1436 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1437 8, 1, &zero, tx)); 1438 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1439 8, 1, &zero, tx)); 1440 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1441 DMU_BACKUP_FEATURE_EMBED_DATA) { 1442 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1443 8, 1, &one, tx)); 1444 } 1445 } 1446 1447 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1448 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1449 1450 /* 1451 * If we actually created a non-clone, we need to create the 1452 * objset in our new dataset. 1453 */ 1454 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1455 (void) dmu_objset_create_impl(dp->dp_spa, 1456 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1457 } 1458 1459 drba->drba_cookie->drc_ds = newds; 1460 1461 spa_history_log_internal_ds(newds, "receive", tx, ""); 1462 } 1463 1464 static int 1465 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1466 { 1467 dmu_recv_begin_arg_t *drba = arg; 1468 dsl_pool_t *dp = dmu_tx_pool(tx); 1469 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1470 int error; 1471 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1472 dsl_dataset_t *ds; 1473 const char *tofs = drba->drba_cookie->drc_tofs; 1474 1475 /* already checked */ 1476 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1477 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1478 1479 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1480 DMU_COMPOUNDSTREAM || 1481 drrb->drr_type >= DMU_OST_NUMTYPES) 1482 return (SET_ERROR(EINVAL)); 1483 1484 /* Verify pool version supports SA if SA_SPILL feature set */ 1485 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1486 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1487 return (SET_ERROR(ENOTSUP)); 1488 1489 /* 1490 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1491 * record to a plain WRITE record, so the pool must have the 1492 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1493 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1494 */ 1495 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1496 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1497 return (SET_ERROR(ENOTSUP)); 1498 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1499 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1500 return (SET_ERROR(ENOTSUP)); 1501 1502 char recvname[ZFS_MAXNAMELEN]; 1503 1504 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1505 tofs, recv_clone_name); 1506 1507 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1508 /* %recv does not exist; continue in tofs */ 1509 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1510 if (error != 0) 1511 return (error); 1512 } 1513 1514 /* check that ds is marked inconsistent */ 1515 if (!DS_IS_INCONSISTENT(ds)) { 1516 dsl_dataset_rele(ds, FTAG); 1517 return (SET_ERROR(EINVAL)); 1518 } 1519 1520 /* check that there is resuming data, and that the toguid matches */ 1521 if (!dsl_dataset_is_zapified(ds)) { 1522 dsl_dataset_rele(ds, FTAG); 1523 return (SET_ERROR(EINVAL)); 1524 } 1525 uint64_t val; 1526 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1527 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1528 if (error != 0 || drrb->drr_toguid != val) { 1529 dsl_dataset_rele(ds, FTAG); 1530 return (SET_ERROR(EINVAL)); 1531 } 1532 1533 /* 1534 * Check if the receive is still running. If so, it will be owned. 1535 * Note that nothing else can own the dataset (e.g. after the receive 1536 * fails) because it will be marked inconsistent. 1537 */ 1538 if (dsl_dataset_has_owner(ds)) { 1539 dsl_dataset_rele(ds, FTAG); 1540 return (SET_ERROR(EBUSY)); 1541 } 1542 1543 /* There should not be any snapshots of this fs yet. */ 1544 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1545 dsl_dataset_rele(ds, FTAG); 1546 return (SET_ERROR(EINVAL)); 1547 } 1548 1549 /* 1550 * Note: resume point will be checked when we process the first WRITE 1551 * record. 1552 */ 1553 1554 /* check that the origin matches */ 1555 val = 0; 1556 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1557 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1558 if (drrb->drr_fromguid != val) { 1559 dsl_dataset_rele(ds, FTAG); 1560 return (SET_ERROR(EINVAL)); 1561 } 1562 1563 dsl_dataset_rele(ds, FTAG); 1564 return (0); 1565 } 1566 1567 static void 1568 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1569 { 1570 dmu_recv_begin_arg_t *drba = arg; 1571 dsl_pool_t *dp = dmu_tx_pool(tx); 1572 const char *tofs = drba->drba_cookie->drc_tofs; 1573 dsl_dataset_t *ds; 1574 uint64_t dsobj; 1575 char recvname[ZFS_MAXNAMELEN]; 1576 1577 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1578 tofs, recv_clone_name); 1579 1580 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1581 /* %recv does not exist; continue in tofs */ 1582 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1583 drba->drba_cookie->drc_newfs = B_TRUE; 1584 } 1585 1586 /* clear the inconsistent flag so that we can own it */ 1587 ASSERT(DS_IS_INCONSISTENT(ds)); 1588 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1589 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1590 dsobj = ds->ds_object; 1591 dsl_dataset_rele(ds, FTAG); 1592 1593 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1594 1595 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1596 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1597 1598 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1599 1600 drba->drba_cookie->drc_ds = ds; 1601 1602 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1603 } 1604 1605 /* 1606 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1607 * succeeds; otherwise we will leak the holds on the datasets. 1608 */ 1609 int 1610 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1611 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1612 { 1613 dmu_recv_begin_arg_t drba = { 0 }; 1614 1615 bzero(drc, sizeof (dmu_recv_cookie_t)); 1616 drc->drc_drr_begin = drr_begin; 1617 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1618 drc->drc_tosnap = tosnap; 1619 drc->drc_tofs = tofs; 1620 drc->drc_force = force; 1621 drc->drc_resumable = resumable; 1622 drc->drc_cred = CRED(); 1623 1624 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1625 drc->drc_byteswap = B_TRUE; 1626 fletcher_4_incremental_byteswap(drr_begin, 1627 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1628 byteswap_record(drr_begin); 1629 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1630 fletcher_4_incremental_native(drr_begin, 1631 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1632 } else { 1633 return (SET_ERROR(EINVAL)); 1634 } 1635 1636 drba.drba_origin = origin; 1637 drba.drba_cookie = drc; 1638 drba.drba_cred = CRED(); 1639 1640 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1641 DMU_BACKUP_FEATURE_RESUMING) { 1642 return (dsl_sync_task(tofs, 1643 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1644 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1645 } else { 1646 return (dsl_sync_task(tofs, 1647 dmu_recv_begin_check, dmu_recv_begin_sync, 1648 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1649 } 1650 } 1651 1652 struct receive_record_arg { 1653 dmu_replay_record_t header; 1654 void *payload; /* Pointer to a buffer containing the payload */ 1655 /* 1656 * If the record is a write, pointer to the arc_buf_t containing the 1657 * payload. 1658 */ 1659 arc_buf_t *write_buf; 1660 int payload_size; 1661 uint64_t bytes_read; /* bytes read from stream when record created */ 1662 boolean_t eos_marker; /* Marks the end of the stream */ 1663 bqueue_node_t node; 1664 }; 1665 1666 struct receive_writer_arg { 1667 objset_t *os; 1668 boolean_t byteswap; 1669 bqueue_t q; 1670 1671 /* 1672 * These three args are used to signal to the main thread that we're 1673 * done. 1674 */ 1675 kmutex_t mutex; 1676 kcondvar_t cv; 1677 boolean_t done; 1678 1679 int err; 1680 /* A map from guid to dataset to help handle dedup'd streams. */ 1681 avl_tree_t *guid_to_ds_map; 1682 boolean_t resumable; 1683 uint64_t last_object, last_offset; 1684 uint64_t bytes_read; /* bytes read when current record created */ 1685 }; 1686 1687 struct objlist { 1688 list_t list; /* List of struct receive_objnode. */ 1689 /* 1690 * Last object looked up. Used to assert that objects are being looked 1691 * up in ascending order. 1692 */ 1693 uint64_t last_lookup; 1694 }; 1695 1696 struct receive_objnode { 1697 list_node_t node; 1698 uint64_t object; 1699 }; 1700 1701 struct receive_arg { 1702 objset_t *os; 1703 vnode_t *vp; /* The vnode to read the stream from */ 1704 uint64_t voff; /* The current offset in the stream */ 1705 uint64_t bytes_read; 1706 /* 1707 * A record that has had its payload read in, but hasn't yet been handed 1708 * off to the worker thread. 1709 */ 1710 struct receive_record_arg *rrd; 1711 /* A record that has had its header read in, but not its payload. */ 1712 struct receive_record_arg *next_rrd; 1713 zio_cksum_t cksum; 1714 zio_cksum_t prev_cksum; 1715 int err; 1716 boolean_t byteswap; 1717 /* Sorted list of objects not to issue prefetches for. */ 1718 struct objlist ignore_objlist; 1719 }; 1720 1721 typedef struct guid_map_entry { 1722 uint64_t guid; 1723 dsl_dataset_t *gme_ds; 1724 avl_node_t avlnode; 1725 } guid_map_entry_t; 1726 1727 static int 1728 guid_compare(const void *arg1, const void *arg2) 1729 { 1730 const guid_map_entry_t *gmep1 = arg1; 1731 const guid_map_entry_t *gmep2 = arg2; 1732 1733 if (gmep1->guid < gmep2->guid) 1734 return (-1); 1735 else if (gmep1->guid > gmep2->guid) 1736 return (1); 1737 return (0); 1738 } 1739 1740 static void 1741 free_guid_map_onexit(void *arg) 1742 { 1743 avl_tree_t *ca = arg; 1744 void *cookie = NULL; 1745 guid_map_entry_t *gmep; 1746 1747 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1748 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1749 dsl_dataset_rele(gmep->gme_ds, gmep); 1750 kmem_free(gmep, sizeof (guid_map_entry_t)); 1751 } 1752 avl_destroy(ca); 1753 kmem_free(ca, sizeof (avl_tree_t)); 1754 } 1755 1756 static int 1757 receive_read(struct receive_arg *ra, int len, void *buf) 1758 { 1759 int done = 0; 1760 1761 /* some things will require 8-byte alignment, so everything must */ 1762 ASSERT0(len % 8); 1763 1764 while (done < len) { 1765 ssize_t resid; 1766 1767 ra->err = vn_rdwr(UIO_READ, ra->vp, 1768 (char *)buf + done, len - done, 1769 ra->voff, UIO_SYSSPACE, FAPPEND, 1770 RLIM64_INFINITY, CRED(), &resid); 1771 1772 if (resid == len - done) { 1773 /* 1774 * Note: ECKSUM indicates that the receive 1775 * was interrupted and can potentially be resumed. 1776 */ 1777 ra->err = SET_ERROR(ECKSUM); 1778 } 1779 ra->voff += len - done - resid; 1780 done = len - resid; 1781 if (ra->err != 0) 1782 return (ra->err); 1783 } 1784 1785 ra->bytes_read += len; 1786 1787 ASSERT3U(done, ==, len); 1788 return (0); 1789 } 1790 1791 static void 1792 byteswap_record(dmu_replay_record_t *drr) 1793 { 1794 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1795 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1796 drr->drr_type = BSWAP_32(drr->drr_type); 1797 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1798 1799 switch (drr->drr_type) { 1800 case DRR_BEGIN: 1801 DO64(drr_begin.drr_magic); 1802 DO64(drr_begin.drr_versioninfo); 1803 DO64(drr_begin.drr_creation_time); 1804 DO32(drr_begin.drr_type); 1805 DO32(drr_begin.drr_flags); 1806 DO64(drr_begin.drr_toguid); 1807 DO64(drr_begin.drr_fromguid); 1808 break; 1809 case DRR_OBJECT: 1810 DO64(drr_object.drr_object); 1811 DO32(drr_object.drr_type); 1812 DO32(drr_object.drr_bonustype); 1813 DO32(drr_object.drr_blksz); 1814 DO32(drr_object.drr_bonuslen); 1815 DO64(drr_object.drr_toguid); 1816 break; 1817 case DRR_FREEOBJECTS: 1818 DO64(drr_freeobjects.drr_firstobj); 1819 DO64(drr_freeobjects.drr_numobjs); 1820 DO64(drr_freeobjects.drr_toguid); 1821 break; 1822 case DRR_WRITE: 1823 DO64(drr_write.drr_object); 1824 DO32(drr_write.drr_type); 1825 DO64(drr_write.drr_offset); 1826 DO64(drr_write.drr_length); 1827 DO64(drr_write.drr_toguid); 1828 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1829 DO64(drr_write.drr_key.ddk_prop); 1830 break; 1831 case DRR_WRITE_BYREF: 1832 DO64(drr_write_byref.drr_object); 1833 DO64(drr_write_byref.drr_offset); 1834 DO64(drr_write_byref.drr_length); 1835 DO64(drr_write_byref.drr_toguid); 1836 DO64(drr_write_byref.drr_refguid); 1837 DO64(drr_write_byref.drr_refobject); 1838 DO64(drr_write_byref.drr_refoffset); 1839 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1840 drr_key.ddk_cksum); 1841 DO64(drr_write_byref.drr_key.ddk_prop); 1842 break; 1843 case DRR_WRITE_EMBEDDED: 1844 DO64(drr_write_embedded.drr_object); 1845 DO64(drr_write_embedded.drr_offset); 1846 DO64(drr_write_embedded.drr_length); 1847 DO64(drr_write_embedded.drr_toguid); 1848 DO32(drr_write_embedded.drr_lsize); 1849 DO32(drr_write_embedded.drr_psize); 1850 break; 1851 case DRR_FREE: 1852 DO64(drr_free.drr_object); 1853 DO64(drr_free.drr_offset); 1854 DO64(drr_free.drr_length); 1855 DO64(drr_free.drr_toguid); 1856 break; 1857 case DRR_SPILL: 1858 DO64(drr_spill.drr_object); 1859 DO64(drr_spill.drr_length); 1860 DO64(drr_spill.drr_toguid); 1861 break; 1862 case DRR_END: 1863 DO64(drr_end.drr_toguid); 1864 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1865 break; 1866 } 1867 1868 if (drr->drr_type != DRR_BEGIN) { 1869 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1870 } 1871 1872 #undef DO64 1873 #undef DO32 1874 } 1875 1876 static inline uint8_t 1877 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1878 { 1879 if (bonus_type == DMU_OT_SA) { 1880 return (1); 1881 } else { 1882 return (1 + 1883 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1884 } 1885 } 1886 1887 static void 1888 save_resume_state(struct receive_writer_arg *rwa, 1889 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1890 { 1891 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1892 1893 if (!rwa->resumable) 1894 return; 1895 1896 /* 1897 * We use ds_resume_bytes[] != 0 to indicate that we need to 1898 * update this on disk, so it must not be 0. 1899 */ 1900 ASSERT(rwa->bytes_read != 0); 1901 1902 /* 1903 * We only resume from write records, which have a valid 1904 * (non-meta-dnode) object number. 1905 */ 1906 ASSERT(object != 0); 1907 1908 /* 1909 * For resuming to work correctly, we must receive records in order, 1910 * sorted by object,offset. This is checked by the callers, but 1911 * assert it here for good measure. 1912 */ 1913 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1914 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1915 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1916 ASSERT3U(rwa->bytes_read, >=, 1917 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1918 1919 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1920 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1921 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1922 } 1923 1924 static int 1925 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1926 void *data) 1927 { 1928 dmu_object_info_t doi; 1929 dmu_tx_t *tx; 1930 uint64_t object; 1931 int err; 1932 1933 if (drro->drr_type == DMU_OT_NONE || 1934 !DMU_OT_IS_VALID(drro->drr_type) || 1935 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1936 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1937 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1938 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1939 drro->drr_blksz < SPA_MINBLOCKSIZE || 1940 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1941 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1942 return (SET_ERROR(EINVAL)); 1943 } 1944 1945 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1946 1947 if (err != 0 && err != ENOENT) 1948 return (SET_ERROR(EINVAL)); 1949 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1950 1951 /* 1952 * If we are losing blkptrs or changing the block size this must 1953 * be a new file instance. We must clear out the previous file 1954 * contents before we can change this type of metadata in the dnode. 1955 */ 1956 if (err == 0) { 1957 int nblkptr; 1958 1959 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1960 drro->drr_bonuslen); 1961 1962 if (drro->drr_blksz != doi.doi_data_block_size || 1963 nblkptr < doi.doi_nblkptr) { 1964 err = dmu_free_long_range(rwa->os, drro->drr_object, 1965 0, DMU_OBJECT_END); 1966 if (err != 0) 1967 return (SET_ERROR(EINVAL)); 1968 } 1969 } 1970 1971 tx = dmu_tx_create(rwa->os); 1972 dmu_tx_hold_bonus(tx, object); 1973 err = dmu_tx_assign(tx, TXG_WAIT); 1974 if (err != 0) { 1975 dmu_tx_abort(tx); 1976 return (err); 1977 } 1978 1979 if (object == DMU_NEW_OBJECT) { 1980 /* currently free, want to be allocated */ 1981 err = dmu_object_claim(rwa->os, drro->drr_object, 1982 drro->drr_type, drro->drr_blksz, 1983 drro->drr_bonustype, drro->drr_bonuslen, tx); 1984 } else if (drro->drr_type != doi.doi_type || 1985 drro->drr_blksz != doi.doi_data_block_size || 1986 drro->drr_bonustype != doi.doi_bonus_type || 1987 drro->drr_bonuslen != doi.doi_bonus_size) { 1988 /* currently allocated, but with different properties */ 1989 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1990 drro->drr_type, drro->drr_blksz, 1991 drro->drr_bonustype, drro->drr_bonuslen, tx); 1992 } 1993 if (err != 0) { 1994 dmu_tx_commit(tx); 1995 return (SET_ERROR(EINVAL)); 1996 } 1997 1998 dmu_object_set_checksum(rwa->os, drro->drr_object, 1999 drro->drr_checksumtype, tx); 2000 dmu_object_set_compress(rwa->os, drro->drr_object, 2001 drro->drr_compress, tx); 2002 2003 if (data != NULL) { 2004 dmu_buf_t *db; 2005 2006 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2007 dmu_buf_will_dirty(db, tx); 2008 2009 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2010 bcopy(data, db->db_data, drro->drr_bonuslen); 2011 if (rwa->byteswap) { 2012 dmu_object_byteswap_t byteswap = 2013 DMU_OT_BYTESWAP(drro->drr_bonustype); 2014 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2015 drro->drr_bonuslen); 2016 } 2017 dmu_buf_rele(db, FTAG); 2018 } 2019 dmu_tx_commit(tx); 2020 2021 return (0); 2022 } 2023 2024 /* ARGSUSED */ 2025 static int 2026 receive_freeobjects(struct receive_writer_arg *rwa, 2027 struct drr_freeobjects *drrfo) 2028 { 2029 uint64_t obj; 2030 int next_err = 0; 2031 2032 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2033 return (SET_ERROR(EINVAL)); 2034 2035 for (obj = drrfo->drr_firstobj; 2036 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2037 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2038 int err; 2039 2040 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2041 continue; 2042 2043 err = dmu_free_long_object(rwa->os, obj); 2044 if (err != 0) 2045 return (err); 2046 } 2047 if (next_err != ESRCH) 2048 return (next_err); 2049 return (0); 2050 } 2051 2052 static int 2053 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2054 arc_buf_t *abuf) 2055 { 2056 dmu_tx_t *tx; 2057 int err; 2058 2059 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2060 !DMU_OT_IS_VALID(drrw->drr_type)) 2061 return (SET_ERROR(EINVAL)); 2062 2063 /* 2064 * For resuming to work, records must be in increasing order 2065 * by (object, offset). 2066 */ 2067 if (drrw->drr_object < rwa->last_object || 2068 (drrw->drr_object == rwa->last_object && 2069 drrw->drr_offset < rwa->last_offset)) { 2070 return (SET_ERROR(EINVAL)); 2071 } 2072 rwa->last_object = drrw->drr_object; 2073 rwa->last_offset = drrw->drr_offset; 2074 2075 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2076 return (SET_ERROR(EINVAL)); 2077 2078 tx = dmu_tx_create(rwa->os); 2079 2080 dmu_tx_hold_write(tx, drrw->drr_object, 2081 drrw->drr_offset, drrw->drr_length); 2082 err = dmu_tx_assign(tx, TXG_WAIT); 2083 if (err != 0) { 2084 dmu_tx_abort(tx); 2085 return (err); 2086 } 2087 if (rwa->byteswap) { 2088 dmu_object_byteswap_t byteswap = 2089 DMU_OT_BYTESWAP(drrw->drr_type); 2090 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2091 drrw->drr_length); 2092 } 2093 2094 dmu_buf_t *bonus; 2095 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2096 return (SET_ERROR(EINVAL)); 2097 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2098 2099 /* 2100 * Note: If the receive fails, we want the resume stream to start 2101 * with the same record that we last successfully received (as opposed 2102 * to the next record), so that we can verify that we are 2103 * resuming from the correct location. 2104 */ 2105 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2106 dmu_tx_commit(tx); 2107 dmu_buf_rele(bonus, FTAG); 2108 2109 return (0); 2110 } 2111 2112 /* 2113 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2114 * streams to refer to a copy of the data that is already on the 2115 * system because it came in earlier in the stream. This function 2116 * finds the earlier copy of the data, and uses that copy instead of 2117 * data from the stream to fulfill this write. 2118 */ 2119 static int 2120 receive_write_byref(struct receive_writer_arg *rwa, 2121 struct drr_write_byref *drrwbr) 2122 { 2123 dmu_tx_t *tx; 2124 int err; 2125 guid_map_entry_t gmesrch; 2126 guid_map_entry_t *gmep; 2127 avl_index_t where; 2128 objset_t *ref_os = NULL; 2129 dmu_buf_t *dbp; 2130 2131 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2132 return (SET_ERROR(EINVAL)); 2133 2134 /* 2135 * If the GUID of the referenced dataset is different from the 2136 * GUID of the target dataset, find the referenced dataset. 2137 */ 2138 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2139 gmesrch.guid = drrwbr->drr_refguid; 2140 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2141 &where)) == NULL) { 2142 return (SET_ERROR(EINVAL)); 2143 } 2144 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2145 return (SET_ERROR(EINVAL)); 2146 } else { 2147 ref_os = rwa->os; 2148 } 2149 2150 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2151 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2152 if (err != 0) 2153 return (err); 2154 2155 tx = dmu_tx_create(rwa->os); 2156 2157 dmu_tx_hold_write(tx, drrwbr->drr_object, 2158 drrwbr->drr_offset, drrwbr->drr_length); 2159 err = dmu_tx_assign(tx, TXG_WAIT); 2160 if (err != 0) { 2161 dmu_tx_abort(tx); 2162 return (err); 2163 } 2164 dmu_write(rwa->os, drrwbr->drr_object, 2165 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2166 dmu_buf_rele(dbp, FTAG); 2167 2168 /* See comment in restore_write. */ 2169 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2170 dmu_tx_commit(tx); 2171 return (0); 2172 } 2173 2174 static int 2175 receive_write_embedded(struct receive_writer_arg *rwa, 2176 struct drr_write_embedded *drrwe, void *data) 2177 { 2178 dmu_tx_t *tx; 2179 int err; 2180 2181 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2182 return (EINVAL); 2183 2184 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2185 return (EINVAL); 2186 2187 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2188 return (EINVAL); 2189 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2190 return (EINVAL); 2191 2192 tx = dmu_tx_create(rwa->os); 2193 2194 dmu_tx_hold_write(tx, drrwe->drr_object, 2195 drrwe->drr_offset, drrwe->drr_length); 2196 err = dmu_tx_assign(tx, TXG_WAIT); 2197 if (err != 0) { 2198 dmu_tx_abort(tx); 2199 return (err); 2200 } 2201 2202 dmu_write_embedded(rwa->os, drrwe->drr_object, 2203 drrwe->drr_offset, data, drrwe->drr_etype, 2204 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2205 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2206 2207 /* See comment in restore_write. */ 2208 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2209 dmu_tx_commit(tx); 2210 return (0); 2211 } 2212 2213 static int 2214 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2215 void *data) 2216 { 2217 dmu_tx_t *tx; 2218 dmu_buf_t *db, *db_spill; 2219 int err; 2220 2221 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2222 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2223 return (SET_ERROR(EINVAL)); 2224 2225 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2226 return (SET_ERROR(EINVAL)); 2227 2228 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2229 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2230 dmu_buf_rele(db, FTAG); 2231 return (err); 2232 } 2233 2234 tx = dmu_tx_create(rwa->os); 2235 2236 dmu_tx_hold_spill(tx, db->db_object); 2237 2238 err = dmu_tx_assign(tx, TXG_WAIT); 2239 if (err != 0) { 2240 dmu_buf_rele(db, FTAG); 2241 dmu_buf_rele(db_spill, FTAG); 2242 dmu_tx_abort(tx); 2243 return (err); 2244 } 2245 dmu_buf_will_dirty(db_spill, tx); 2246 2247 if (db_spill->db_size < drrs->drr_length) 2248 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2249 drrs->drr_length, tx)); 2250 bcopy(data, db_spill->db_data, drrs->drr_length); 2251 2252 dmu_buf_rele(db, FTAG); 2253 dmu_buf_rele(db_spill, FTAG); 2254 2255 dmu_tx_commit(tx); 2256 return (0); 2257 } 2258 2259 /* ARGSUSED */ 2260 static int 2261 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2262 { 2263 int err; 2264 2265 if (drrf->drr_length != -1ULL && 2266 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2267 return (SET_ERROR(EINVAL)); 2268 2269 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2270 return (SET_ERROR(EINVAL)); 2271 2272 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2273 drrf->drr_offset, drrf->drr_length); 2274 2275 return (err); 2276 } 2277 2278 /* used to destroy the drc_ds on error */ 2279 static void 2280 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2281 { 2282 if (drc->drc_resumable) { 2283 /* wait for our resume state to be written to disk */ 2284 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2285 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2286 } else { 2287 char name[MAXNAMELEN]; 2288 dsl_dataset_name(drc->drc_ds, name); 2289 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2290 (void) dsl_destroy_head(name); 2291 } 2292 } 2293 2294 static void 2295 receive_cksum(struct receive_arg *ra, int len, void *buf) 2296 { 2297 if (ra->byteswap) { 2298 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2299 } else { 2300 fletcher_4_incremental_native(buf, len, &ra->cksum); 2301 } 2302 } 2303 2304 /* 2305 * Read the payload into a buffer of size len, and update the current record's 2306 * payload field. 2307 * Allocate ra->next_rrd and read the next record's header into 2308 * ra->next_rrd->header. 2309 * Verify checksum of payload and next record. 2310 */ 2311 static int 2312 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2313 { 2314 int err; 2315 2316 if (len != 0) { 2317 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2318 err = receive_read(ra, len, buf); 2319 if (err != 0) 2320 return (err); 2321 receive_cksum(ra, len, buf); 2322 2323 /* note: rrd is NULL when reading the begin record's payload */ 2324 if (ra->rrd != NULL) { 2325 ra->rrd->payload = buf; 2326 ra->rrd->payload_size = len; 2327 ra->rrd->bytes_read = ra->bytes_read; 2328 } 2329 } 2330 2331 ra->prev_cksum = ra->cksum; 2332 2333 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2334 err = receive_read(ra, sizeof (ra->next_rrd->header), 2335 &ra->next_rrd->header); 2336 ra->next_rrd->bytes_read = ra->bytes_read; 2337 if (err != 0) { 2338 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2339 ra->next_rrd = NULL; 2340 return (err); 2341 } 2342 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2343 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2344 ra->next_rrd = NULL; 2345 return (SET_ERROR(EINVAL)); 2346 } 2347 2348 /* 2349 * Note: checksum is of everything up to but not including the 2350 * checksum itself. 2351 */ 2352 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2353 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2354 receive_cksum(ra, 2355 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2356 &ra->next_rrd->header); 2357 2358 zio_cksum_t cksum_orig = 2359 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2360 zio_cksum_t *cksump = 2361 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2362 2363 if (ra->byteswap) 2364 byteswap_record(&ra->next_rrd->header); 2365 2366 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2367 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2368 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2369 ra->next_rrd = NULL; 2370 return (SET_ERROR(ECKSUM)); 2371 } 2372 2373 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2374 2375 return (0); 2376 } 2377 2378 static void 2379 objlist_create(struct objlist *list) 2380 { 2381 list_create(&list->list, sizeof (struct receive_objnode), 2382 offsetof(struct receive_objnode, node)); 2383 list->last_lookup = 0; 2384 } 2385 2386 static void 2387 objlist_destroy(struct objlist *list) 2388 { 2389 for (struct receive_objnode *n = list_remove_head(&list->list); 2390 n != NULL; n = list_remove_head(&list->list)) { 2391 kmem_free(n, sizeof (*n)); 2392 } 2393 list_destroy(&list->list); 2394 } 2395 2396 /* 2397 * This function looks through the objlist to see if the specified object number 2398 * is contained in the objlist. In the process, it will remove all object 2399 * numbers in the list that are smaller than the specified object number. Thus, 2400 * any lookup of an object number smaller than a previously looked up object 2401 * number will always return false; therefore, all lookups should be done in 2402 * ascending order. 2403 */ 2404 static boolean_t 2405 objlist_exists(struct objlist *list, uint64_t object) 2406 { 2407 struct receive_objnode *node = list_head(&list->list); 2408 ASSERT3U(object, >=, list->last_lookup); 2409 list->last_lookup = object; 2410 while (node != NULL && node->object < object) { 2411 VERIFY3P(node, ==, list_remove_head(&list->list)); 2412 kmem_free(node, sizeof (*node)); 2413 node = list_head(&list->list); 2414 } 2415 return (node != NULL && node->object == object); 2416 } 2417 2418 /* 2419 * The objlist is a list of object numbers stored in ascending order. However, 2420 * the insertion of new object numbers does not seek out the correct location to 2421 * store a new object number; instead, it appends it to the list for simplicity. 2422 * Thus, any users must take care to only insert new object numbers in ascending 2423 * order. 2424 */ 2425 static void 2426 objlist_insert(struct objlist *list, uint64_t object) 2427 { 2428 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2429 node->object = object; 2430 #ifdef ZFS_DEBUG 2431 struct receive_objnode *last_object = list_tail(&list->list); 2432 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2433 ASSERT3U(node->object, >, last_objnum); 2434 #endif 2435 list_insert_tail(&list->list, node); 2436 } 2437 2438 /* 2439 * Issue the prefetch reads for any necessary indirect blocks. 2440 * 2441 * We use the object ignore list to tell us whether or not to issue prefetches 2442 * for a given object. We do this for both correctness (in case the blocksize 2443 * of an object has changed) and performance (if the object doesn't exist, don't 2444 * needlessly try to issue prefetches). We also trim the list as we go through 2445 * the stream to prevent it from growing to an unbounded size. 2446 * 2447 * The object numbers within will always be in sorted order, and any write 2448 * records we see will also be in sorted order, but they're not sorted with 2449 * respect to each other (i.e. we can get several object records before 2450 * receiving each object's write records). As a result, once we've reached a 2451 * given object number, we can safely remove any reference to lower object 2452 * numbers in the ignore list. In practice, we receive up to 32 object records 2453 * before receiving write records, so the list can have up to 32 nodes in it. 2454 */ 2455 /* ARGSUSED */ 2456 static void 2457 receive_read_prefetch(struct receive_arg *ra, 2458 uint64_t object, uint64_t offset, uint64_t length) 2459 { 2460 if (!objlist_exists(&ra->ignore_objlist, object)) { 2461 dmu_prefetch(ra->os, object, 1, offset, length, 2462 ZIO_PRIORITY_SYNC_READ); 2463 } 2464 } 2465 2466 /* 2467 * Read records off the stream, issuing any necessary prefetches. 2468 */ 2469 static int 2470 receive_read_record(struct receive_arg *ra) 2471 { 2472 int err; 2473 2474 switch (ra->rrd->header.drr_type) { 2475 case DRR_OBJECT: 2476 { 2477 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2478 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2479 void *buf = kmem_zalloc(size, KM_SLEEP); 2480 dmu_object_info_t doi; 2481 err = receive_read_payload_and_next_header(ra, size, buf); 2482 if (err != 0) { 2483 kmem_free(buf, size); 2484 return (err); 2485 } 2486 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2487 /* 2488 * See receive_read_prefetch for an explanation why we're 2489 * storing this object in the ignore_obj_list. 2490 */ 2491 if (err == ENOENT || 2492 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2493 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2494 err = 0; 2495 } 2496 return (err); 2497 } 2498 case DRR_FREEOBJECTS: 2499 { 2500 err = receive_read_payload_and_next_header(ra, 0, NULL); 2501 return (err); 2502 } 2503 case DRR_WRITE: 2504 { 2505 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2506 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2507 drrw->drr_length); 2508 2509 err = receive_read_payload_and_next_header(ra, 2510 drrw->drr_length, abuf->b_data); 2511 if (err != 0) { 2512 dmu_return_arcbuf(abuf); 2513 return (err); 2514 } 2515 ra->rrd->write_buf = abuf; 2516 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2517 drrw->drr_length); 2518 return (err); 2519 } 2520 case DRR_WRITE_BYREF: 2521 { 2522 struct drr_write_byref *drrwb = 2523 &ra->rrd->header.drr_u.drr_write_byref; 2524 err = receive_read_payload_and_next_header(ra, 0, NULL); 2525 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2526 drrwb->drr_length); 2527 return (err); 2528 } 2529 case DRR_WRITE_EMBEDDED: 2530 { 2531 struct drr_write_embedded *drrwe = 2532 &ra->rrd->header.drr_u.drr_write_embedded; 2533 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2534 void *buf = kmem_zalloc(size, KM_SLEEP); 2535 2536 err = receive_read_payload_and_next_header(ra, size, buf); 2537 if (err != 0) { 2538 kmem_free(buf, size); 2539 return (err); 2540 } 2541 2542 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2543 drrwe->drr_length); 2544 return (err); 2545 } 2546 case DRR_FREE: 2547 { 2548 /* 2549 * It might be beneficial to prefetch indirect blocks here, but 2550 * we don't really have the data to decide for sure. 2551 */ 2552 err = receive_read_payload_and_next_header(ra, 0, NULL); 2553 return (err); 2554 } 2555 case DRR_END: 2556 { 2557 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2558 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2559 return (SET_ERROR(ECKSUM)); 2560 return (0); 2561 } 2562 case DRR_SPILL: 2563 { 2564 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2565 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2566 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2567 buf); 2568 if (err != 0) 2569 kmem_free(buf, drrs->drr_length); 2570 return (err); 2571 } 2572 default: 2573 return (SET_ERROR(EINVAL)); 2574 } 2575 } 2576 2577 /* 2578 * Commit the records to the pool. 2579 */ 2580 static int 2581 receive_process_record(struct receive_writer_arg *rwa, 2582 struct receive_record_arg *rrd) 2583 { 2584 int err; 2585 2586 /* Processing in order, therefore bytes_read should be increasing. */ 2587 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2588 rwa->bytes_read = rrd->bytes_read; 2589 2590 switch (rrd->header.drr_type) { 2591 case DRR_OBJECT: 2592 { 2593 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2594 err = receive_object(rwa, drro, rrd->payload); 2595 kmem_free(rrd->payload, rrd->payload_size); 2596 rrd->payload = NULL; 2597 return (err); 2598 } 2599 case DRR_FREEOBJECTS: 2600 { 2601 struct drr_freeobjects *drrfo = 2602 &rrd->header.drr_u.drr_freeobjects; 2603 return (receive_freeobjects(rwa, drrfo)); 2604 } 2605 case DRR_WRITE: 2606 { 2607 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2608 err = receive_write(rwa, drrw, rrd->write_buf); 2609 /* if receive_write() is successful, it consumes the arc_buf */ 2610 if (err != 0) 2611 dmu_return_arcbuf(rrd->write_buf); 2612 rrd->write_buf = NULL; 2613 rrd->payload = NULL; 2614 return (err); 2615 } 2616 case DRR_WRITE_BYREF: 2617 { 2618 struct drr_write_byref *drrwbr = 2619 &rrd->header.drr_u.drr_write_byref; 2620 return (receive_write_byref(rwa, drrwbr)); 2621 } 2622 case DRR_WRITE_EMBEDDED: 2623 { 2624 struct drr_write_embedded *drrwe = 2625 &rrd->header.drr_u.drr_write_embedded; 2626 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2627 kmem_free(rrd->payload, rrd->payload_size); 2628 rrd->payload = NULL; 2629 return (err); 2630 } 2631 case DRR_FREE: 2632 { 2633 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2634 return (receive_free(rwa, drrf)); 2635 } 2636 case DRR_SPILL: 2637 { 2638 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2639 err = receive_spill(rwa, drrs, rrd->payload); 2640 kmem_free(rrd->payload, rrd->payload_size); 2641 rrd->payload = NULL; 2642 return (err); 2643 } 2644 default: 2645 return (SET_ERROR(EINVAL)); 2646 } 2647 } 2648 2649 /* 2650 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2651 * receive_process_record When we're done, signal the main thread and exit. 2652 */ 2653 static void 2654 receive_writer_thread(void *arg) 2655 { 2656 struct receive_writer_arg *rwa = arg; 2657 struct receive_record_arg *rrd; 2658 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2659 rrd = bqueue_dequeue(&rwa->q)) { 2660 /* 2661 * If there's an error, the main thread will stop putting things 2662 * on the queue, but we need to clear everything in it before we 2663 * can exit. 2664 */ 2665 if (rwa->err == 0) { 2666 rwa->err = receive_process_record(rwa, rrd); 2667 } else if (rrd->write_buf != NULL) { 2668 dmu_return_arcbuf(rrd->write_buf); 2669 rrd->write_buf = NULL; 2670 rrd->payload = NULL; 2671 } else if (rrd->payload != NULL) { 2672 kmem_free(rrd->payload, rrd->payload_size); 2673 rrd->payload = NULL; 2674 } 2675 kmem_free(rrd, sizeof (*rrd)); 2676 } 2677 kmem_free(rrd, sizeof (*rrd)); 2678 mutex_enter(&rwa->mutex); 2679 rwa->done = B_TRUE; 2680 cv_signal(&rwa->cv); 2681 mutex_exit(&rwa->mutex); 2682 } 2683 2684 static int 2685 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2686 { 2687 uint64_t val; 2688 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2689 uint64_t dsobj = dmu_objset_id(ra->os); 2690 uint64_t resume_obj, resume_off; 2691 2692 if (nvlist_lookup_uint64(begin_nvl, 2693 "resume_object", &resume_obj) != 0 || 2694 nvlist_lookup_uint64(begin_nvl, 2695 "resume_offset", &resume_off) != 0) { 2696 return (SET_ERROR(EINVAL)); 2697 } 2698 VERIFY0(zap_lookup(mos, dsobj, 2699 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2700 if (resume_obj != val) 2701 return (SET_ERROR(EINVAL)); 2702 VERIFY0(zap_lookup(mos, dsobj, 2703 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2704 if (resume_off != val) 2705 return (SET_ERROR(EINVAL)); 2706 2707 return (0); 2708 } 2709 2710 /* 2711 * Read in the stream's records, one by one, and apply them to the pool. There 2712 * are two threads involved; the thread that calls this function will spin up a 2713 * worker thread, read the records off the stream one by one, and issue 2714 * prefetches for any necessary indirect blocks. It will then push the records 2715 * onto an internal blocking queue. The worker thread will pull the records off 2716 * the queue, and actually write the data into the DMU. This way, the worker 2717 * thread doesn't have to wait for reads to complete, since everything it needs 2718 * (the indirect blocks) will be prefetched. 2719 * 2720 * NB: callers *must* call dmu_recv_end() if this succeeds. 2721 */ 2722 int 2723 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2724 int cleanup_fd, uint64_t *action_handlep) 2725 { 2726 int err = 0; 2727 struct receive_arg ra = { 0 }; 2728 struct receive_writer_arg rwa = { 0 }; 2729 int featureflags; 2730 nvlist_t *begin_nvl = NULL; 2731 2732 ra.byteswap = drc->drc_byteswap; 2733 ra.cksum = drc->drc_cksum; 2734 ra.vp = vp; 2735 ra.voff = *voffp; 2736 2737 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2738 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2739 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2740 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2741 } 2742 2743 objlist_create(&ra.ignore_objlist); 2744 2745 /* these were verified in dmu_recv_begin */ 2746 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2747 DMU_SUBSTREAM); 2748 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2749 2750 /* 2751 * Open the objset we are modifying. 2752 */ 2753 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2754 2755 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2756 2757 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2758 2759 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2760 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2761 minor_t minor; 2762 2763 if (cleanup_fd == -1) { 2764 ra.err = SET_ERROR(EBADF); 2765 goto out; 2766 } 2767 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2768 if (ra.err != 0) { 2769 cleanup_fd = -1; 2770 goto out; 2771 } 2772 2773 if (*action_handlep == 0) { 2774 rwa.guid_to_ds_map = 2775 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2776 avl_create(rwa.guid_to_ds_map, guid_compare, 2777 sizeof (guid_map_entry_t), 2778 offsetof(guid_map_entry_t, avlnode)); 2779 err = zfs_onexit_add_cb(minor, 2780 free_guid_map_onexit, rwa.guid_to_ds_map, 2781 action_handlep); 2782 if (ra.err != 0) 2783 goto out; 2784 } else { 2785 err = zfs_onexit_cb_data(minor, *action_handlep, 2786 (void **)&rwa.guid_to_ds_map); 2787 if (ra.err != 0) 2788 goto out; 2789 } 2790 2791 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2792 } 2793 2794 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2795 void *payload = NULL; 2796 if (payloadlen != 0) 2797 payload = kmem_alloc(payloadlen, KM_SLEEP); 2798 2799 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2800 if (err != 0) { 2801 if (payloadlen != 0) 2802 kmem_free(payload, payloadlen); 2803 goto out; 2804 } 2805 if (payloadlen != 0) { 2806 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2807 kmem_free(payload, payloadlen); 2808 if (err != 0) 2809 goto out; 2810 } 2811 2812 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2813 err = resume_check(&ra, begin_nvl); 2814 if (err != 0) 2815 goto out; 2816 } 2817 2818 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2819 offsetof(struct receive_record_arg, node)); 2820 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2821 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2822 rwa.os = ra.os; 2823 rwa.byteswap = drc->drc_byteswap; 2824 rwa.resumable = drc->drc_resumable; 2825 2826 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2827 TS_RUN, minclsyspri); 2828 /* 2829 * We're reading rwa.err without locks, which is safe since we are the 2830 * only reader, and the worker thread is the only writer. It's ok if we 2831 * miss a write for an iteration or two of the loop, since the writer 2832 * thread will keep freeing records we send it until we send it an eos 2833 * marker. 2834 * 2835 * We can leave this loop in 3 ways: First, if rwa.err is 2836 * non-zero. In that case, the writer thread will free the rrd we just 2837 * pushed. Second, if we're interrupted; in that case, either it's the 2838 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2839 * has been handed off to the writer thread who will free it. Finally, 2840 * if receive_read_record fails or we're at the end of the stream, then 2841 * we free ra.rrd and exit. 2842 */ 2843 while (rwa.err == 0) { 2844 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2845 err = SET_ERROR(EINTR); 2846 break; 2847 } 2848 2849 ASSERT3P(ra.rrd, ==, NULL); 2850 ra.rrd = ra.next_rrd; 2851 ra.next_rrd = NULL; 2852 /* Allocates and loads header into ra.next_rrd */ 2853 err = receive_read_record(&ra); 2854 2855 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2856 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2857 ra.rrd = NULL; 2858 break; 2859 } 2860 2861 bqueue_enqueue(&rwa.q, ra.rrd, 2862 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2863 ra.rrd = NULL; 2864 } 2865 if (ra.next_rrd == NULL) 2866 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2867 ra.next_rrd->eos_marker = B_TRUE; 2868 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2869 2870 mutex_enter(&rwa.mutex); 2871 while (!rwa.done) { 2872 cv_wait(&rwa.cv, &rwa.mutex); 2873 } 2874 mutex_exit(&rwa.mutex); 2875 2876 cv_destroy(&rwa.cv); 2877 mutex_destroy(&rwa.mutex); 2878 bqueue_destroy(&rwa.q); 2879 if (err == 0) 2880 err = rwa.err; 2881 2882 out: 2883 nvlist_free(begin_nvl); 2884 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2885 zfs_onexit_fd_rele(cleanup_fd); 2886 2887 if (err != 0) { 2888 /* 2889 * Clean up references. If receive is not resumable, 2890 * destroy what we created, so we don't leave it in 2891 * the inconsistent state. 2892 */ 2893 dmu_recv_cleanup_ds(drc); 2894 } 2895 2896 *voffp = ra.voff; 2897 objlist_destroy(&ra.ignore_objlist); 2898 return (err); 2899 } 2900 2901 static int 2902 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2903 { 2904 dmu_recv_cookie_t *drc = arg; 2905 dsl_pool_t *dp = dmu_tx_pool(tx); 2906 int error; 2907 2908 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2909 2910 if (!drc->drc_newfs) { 2911 dsl_dataset_t *origin_head; 2912 2913 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2914 if (error != 0) 2915 return (error); 2916 if (drc->drc_force) { 2917 /* 2918 * We will destroy any snapshots in tofs (i.e. before 2919 * origin_head) that are after the origin (which is 2920 * the snap before drc_ds, because drc_ds can not 2921 * have any snaps of its own). 2922 */ 2923 uint64_t obj; 2924 2925 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2926 while (obj != 2927 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2928 dsl_dataset_t *snap; 2929 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2930 &snap); 2931 if (error != 0) 2932 break; 2933 if (snap->ds_dir != origin_head->ds_dir) 2934 error = SET_ERROR(EINVAL); 2935 if (error == 0) { 2936 error = dsl_destroy_snapshot_check_impl( 2937 snap, B_FALSE); 2938 } 2939 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2940 dsl_dataset_rele(snap, FTAG); 2941 if (error != 0) 2942 break; 2943 } 2944 if (error != 0) { 2945 dsl_dataset_rele(origin_head, FTAG); 2946 return (error); 2947 } 2948 } 2949 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2950 origin_head, drc->drc_force, drc->drc_owner, tx); 2951 if (error != 0) { 2952 dsl_dataset_rele(origin_head, FTAG); 2953 return (error); 2954 } 2955 error = dsl_dataset_snapshot_check_impl(origin_head, 2956 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2957 dsl_dataset_rele(origin_head, FTAG); 2958 if (error != 0) 2959 return (error); 2960 2961 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2962 } else { 2963 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2964 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2965 } 2966 return (error); 2967 } 2968 2969 static void 2970 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2971 { 2972 dmu_recv_cookie_t *drc = arg; 2973 dsl_pool_t *dp = dmu_tx_pool(tx); 2974 2975 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2976 tx, "snap=%s", drc->drc_tosnap); 2977 2978 if (!drc->drc_newfs) { 2979 dsl_dataset_t *origin_head; 2980 2981 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2982 &origin_head)); 2983 2984 if (drc->drc_force) { 2985 /* 2986 * Destroy any snapshots of drc_tofs (origin_head) 2987 * after the origin (the snap before drc_ds). 2988 */ 2989 uint64_t obj; 2990 2991 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2992 while (obj != 2993 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2994 dsl_dataset_t *snap; 2995 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2996 &snap)); 2997 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2998 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2999 dsl_destroy_snapshot_sync_impl(snap, 3000 B_FALSE, tx); 3001 dsl_dataset_rele(snap, FTAG); 3002 } 3003 } 3004 VERIFY3P(drc->drc_ds->ds_prev, ==, 3005 origin_head->ds_prev); 3006 3007 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3008 origin_head, tx); 3009 dsl_dataset_snapshot_sync_impl(origin_head, 3010 drc->drc_tosnap, tx); 3011 3012 /* set snapshot's creation time and guid */ 3013 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3014 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3015 drc->drc_drrb->drr_creation_time; 3016 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3017 drc->drc_drrb->drr_toguid; 3018 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3019 ~DS_FLAG_INCONSISTENT; 3020 3021 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3022 dsl_dataset_phys(origin_head)->ds_flags &= 3023 ~DS_FLAG_INCONSISTENT; 3024 3025 dsl_dataset_rele(origin_head, FTAG); 3026 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3027 3028 if (drc->drc_owner != NULL) 3029 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3030 } else { 3031 dsl_dataset_t *ds = drc->drc_ds; 3032 3033 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3034 3035 /* set snapshot's creation time and guid */ 3036 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3037 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3038 drc->drc_drrb->drr_creation_time; 3039 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3040 drc->drc_drrb->drr_toguid; 3041 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3042 ~DS_FLAG_INCONSISTENT; 3043 3044 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3045 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3046 if (dsl_dataset_has_resume_receive_state(ds)) { 3047 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3048 DS_FIELD_RESUME_FROMGUID, tx); 3049 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3050 DS_FIELD_RESUME_OBJECT, tx); 3051 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3052 DS_FIELD_RESUME_OFFSET, tx); 3053 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3054 DS_FIELD_RESUME_BYTES, tx); 3055 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3056 DS_FIELD_RESUME_TOGUID, tx); 3057 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3058 DS_FIELD_RESUME_TONAME, tx); 3059 } 3060 } 3061 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3062 /* 3063 * Release the hold from dmu_recv_begin. This must be done before 3064 * we return to open context, so that when we free the dataset's dnode, 3065 * we can evict its bonus buffer. 3066 */ 3067 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3068 drc->drc_ds = NULL; 3069 } 3070 3071 static int 3072 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3073 { 3074 dsl_pool_t *dp; 3075 dsl_dataset_t *snapds; 3076 guid_map_entry_t *gmep; 3077 int err; 3078 3079 ASSERT(guid_map != NULL); 3080 3081 err = dsl_pool_hold(name, FTAG, &dp); 3082 if (err != 0) 3083 return (err); 3084 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3085 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3086 if (err == 0) { 3087 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3088 gmep->gme_ds = snapds; 3089 avl_add(guid_map, gmep); 3090 dsl_dataset_long_hold(snapds, gmep); 3091 } else { 3092 kmem_free(gmep, sizeof (*gmep)); 3093 } 3094 3095 dsl_pool_rele(dp, FTAG); 3096 return (err); 3097 } 3098 3099 static int dmu_recv_end_modified_blocks = 3; 3100 3101 static int 3102 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3103 { 3104 int error; 3105 char name[MAXNAMELEN]; 3106 3107 #ifdef _KERNEL 3108 /* 3109 * We will be destroying the ds; make sure its origin is unmounted if 3110 * necessary. 3111 */ 3112 dsl_dataset_name(drc->drc_ds, name); 3113 zfs_destroy_unmount_origin(name); 3114 #endif 3115 3116 error = dsl_sync_task(drc->drc_tofs, 3117 dmu_recv_end_check, dmu_recv_end_sync, drc, 3118 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3119 3120 if (error != 0) 3121 dmu_recv_cleanup_ds(drc); 3122 return (error); 3123 } 3124 3125 static int 3126 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3127 { 3128 int error; 3129 3130 error = dsl_sync_task(drc->drc_tofs, 3131 dmu_recv_end_check, dmu_recv_end_sync, drc, 3132 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3133 3134 if (error != 0) { 3135 dmu_recv_cleanup_ds(drc); 3136 } else if (drc->drc_guid_to_ds_map != NULL) { 3137 (void) add_ds_to_guidmap(drc->drc_tofs, 3138 drc->drc_guid_to_ds_map, 3139 drc->drc_newsnapobj); 3140 } 3141 return (error); 3142 } 3143 3144 int 3145 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3146 { 3147 drc->drc_owner = owner; 3148 3149 if (drc->drc_newfs) 3150 return (dmu_recv_new_end(drc)); 3151 else 3152 return (dmu_recv_existing_end(drc)); 3153 } 3154 3155 /* 3156 * Return TRUE if this objset is currently being received into. 3157 */ 3158 boolean_t 3159 dmu_objset_is_receiving(objset_t *os) 3160 { 3161 return (os->os_dsl_dataset != NULL && 3162 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3163 } 3164