1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 static const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 struct send_thread_arg { 70 bqueue_t q; 71 dsl_dataset_t *ds; /* Dataset to traverse */ 72 uint64_t fromtxg; /* Traverse from this txg */ 73 int flags; /* flags to pass to traverse_dataset */ 74 int error_code; 75 boolean_t cancel; 76 }; 77 78 struct send_block_record { 79 boolean_t eos_marker; /* Marks the end of the stream */ 80 blkptr_t bp; 81 zbookmark_phys_t zb; 82 uint8_t indblkshift; 83 uint16_t datablkszsec; 84 bqueue_node_t ln; 85 }; 86 87 static int 88 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 89 { 90 dsl_dataset_t *ds = dsp->dsa_os->os_dsl_dataset; 91 ssize_t resid; /* have to get resid to get detailed errno */ 92 ASSERT0(len % 8); 93 94 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 95 (caddr_t)buf, len, 96 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 97 98 mutex_enter(&ds->ds_sendstream_lock); 99 *dsp->dsa_off += len; 100 mutex_exit(&ds->ds_sendstream_lock); 101 102 return (dsp->dsa_err); 103 } 104 105 /* 106 * For all record types except BEGIN, fill in the checksum (overlaid in 107 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 108 * up to the start of the checksum itself. 109 */ 110 static int 111 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 112 { 113 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 114 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 115 fletcher_4_incremental_native(dsp->dsa_drr, 116 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 &dsp->dsa_zc); 118 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 119 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 120 drr_checksum.drr_checksum)); 121 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 122 } 123 fletcher_4_incremental_native(&dsp->dsa_drr-> 124 drr_u.drr_checksum.drr_checksum, 125 sizeof (zio_cksum_t), &dsp->dsa_zc); 126 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 127 return (SET_ERROR(EINTR)); 128 if (payload_len != 0) { 129 fletcher_4_incremental_native(payload, payload_len, 130 &dsp->dsa_zc); 131 if (dump_bytes(dsp, payload, payload_len) != 0) 132 return (SET_ERROR(EINTR)); 133 } 134 return (0); 135 } 136 137 static int 138 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 139 uint64_t length) 140 { 141 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 142 143 /* 144 * When we receive a free record, dbuf_free_range() assumes 145 * that the receiving system doesn't have any dbufs in the range 146 * being freed. This is always true because there is a one-record 147 * constraint: we only send one WRITE record for any given 148 * object+offset. We know that the one-record constraint is 149 * true because we always send data in increasing order by 150 * object,offset. 151 * 152 * If the increasing-order constraint ever changes, we should find 153 * another way to assert that the one-record constraint is still 154 * satisfied. 155 */ 156 ASSERT(object > dsp->dsa_last_data_object || 157 (object == dsp->dsa_last_data_object && 158 offset > dsp->dsa_last_data_offset)); 159 160 /* 161 * If we are doing a non-incremental send, then there can't 162 * be any data in the dataset we're receiving into. Therefore 163 * a free record would simply be a no-op. Save space by not 164 * sending it to begin with. 165 */ 166 if (!dsp->dsa_incremental) 167 return (0); 168 169 if (length != -1ULL && offset + length < offset) 170 length = -1ULL; 171 172 /* 173 * If there is a pending op, but it's not PENDING_FREE, push it out, 174 * since free block aggregation can only be done for blocks of the 175 * same type (i.e., DRR_FREE records can only be aggregated with 176 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 177 * aggregated with other DRR_FREEOBJECTS records. 178 */ 179 if (dsp->dsa_pending_op != PENDING_NONE && 180 dsp->dsa_pending_op != PENDING_FREE) { 181 if (dump_record(dsp, NULL, 0) != 0) 182 return (SET_ERROR(EINTR)); 183 dsp->dsa_pending_op = PENDING_NONE; 184 } 185 186 if (dsp->dsa_pending_op == PENDING_FREE) { 187 /* 188 * There should never be a PENDING_FREE if length is -1 189 * (because dump_dnode is the only place where this 190 * function is called with a -1, and only after flushing 191 * any pending record). 192 */ 193 ASSERT(length != -1ULL); 194 /* 195 * Check to see whether this free block can be aggregated 196 * with pending one. 197 */ 198 if (drrf->drr_object == object && drrf->drr_offset + 199 drrf->drr_length == offset) { 200 drrf->drr_length += length; 201 return (0); 202 } else { 203 /* not a continuation. Push out pending record */ 204 if (dump_record(dsp, NULL, 0) != 0) 205 return (SET_ERROR(EINTR)); 206 dsp->dsa_pending_op = PENDING_NONE; 207 } 208 } 209 /* create a FREE record and make it pending */ 210 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 211 dsp->dsa_drr->drr_type = DRR_FREE; 212 drrf->drr_object = object; 213 drrf->drr_offset = offset; 214 drrf->drr_length = length; 215 drrf->drr_toguid = dsp->dsa_toguid; 216 if (length == -1ULL) { 217 if (dump_record(dsp, NULL, 0) != 0) 218 return (SET_ERROR(EINTR)); 219 } else { 220 dsp->dsa_pending_op = PENDING_FREE; 221 } 222 223 return (0); 224 } 225 226 static int 227 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 228 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 229 { 230 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 231 232 /* 233 * We send data in increasing object, offset order. 234 * See comment in dump_free() for details. 235 */ 236 ASSERT(object > dsp->dsa_last_data_object || 237 (object == dsp->dsa_last_data_object && 238 offset > dsp->dsa_last_data_offset)); 239 dsp->dsa_last_data_object = object; 240 dsp->dsa_last_data_offset = offset + blksz - 1; 241 242 /* 243 * If there is any kind of pending aggregation (currently either 244 * a grouping of free objects or free blocks), push it out to 245 * the stream, since aggregation can't be done across operations 246 * of different types. 247 */ 248 if (dsp->dsa_pending_op != PENDING_NONE) { 249 if (dump_record(dsp, NULL, 0) != 0) 250 return (SET_ERROR(EINTR)); 251 dsp->dsa_pending_op = PENDING_NONE; 252 } 253 /* write a WRITE record */ 254 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 255 dsp->dsa_drr->drr_type = DRR_WRITE; 256 drrw->drr_object = object; 257 drrw->drr_type = type; 258 drrw->drr_offset = offset; 259 drrw->drr_length = blksz; 260 drrw->drr_toguid = dsp->dsa_toguid; 261 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 262 /* 263 * There's no pre-computed checksum for partial-block 264 * writes or embedded BP's, so (like 265 * fletcher4-checkummed blocks) userland will have to 266 * compute a dedup-capable checksum itself. 267 */ 268 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 269 } else { 270 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 271 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 272 ZCHECKSUM_FLAG_DEDUP) 273 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 274 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 275 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 276 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 277 drrw->drr_key.ddk_cksum = bp->blk_cksum; 278 } 279 280 if (dump_record(dsp, data, blksz) != 0) 281 return (SET_ERROR(EINTR)); 282 return (0); 283 } 284 285 static int 286 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 287 int blksz, const blkptr_t *bp) 288 { 289 char buf[BPE_PAYLOAD_SIZE]; 290 struct drr_write_embedded *drrw = 291 &(dsp->dsa_drr->drr_u.drr_write_embedded); 292 293 if (dsp->dsa_pending_op != PENDING_NONE) { 294 if (dump_record(dsp, NULL, 0) != 0) 295 return (EINTR); 296 dsp->dsa_pending_op = PENDING_NONE; 297 } 298 299 ASSERT(BP_IS_EMBEDDED(bp)); 300 301 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 302 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 303 drrw->drr_object = object; 304 drrw->drr_offset = offset; 305 drrw->drr_length = blksz; 306 drrw->drr_toguid = dsp->dsa_toguid; 307 drrw->drr_compression = BP_GET_COMPRESS(bp); 308 drrw->drr_etype = BPE_GET_ETYPE(bp); 309 drrw->drr_lsize = BPE_GET_LSIZE(bp); 310 drrw->drr_psize = BPE_GET_PSIZE(bp); 311 312 decode_embedded_bp_compressed(bp, buf); 313 314 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 315 return (EINTR); 316 return (0); 317 } 318 319 static int 320 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 321 { 322 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 323 324 if (dsp->dsa_pending_op != PENDING_NONE) { 325 if (dump_record(dsp, NULL, 0) != 0) 326 return (SET_ERROR(EINTR)); 327 dsp->dsa_pending_op = PENDING_NONE; 328 } 329 330 /* write a SPILL record */ 331 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 332 dsp->dsa_drr->drr_type = DRR_SPILL; 333 drrs->drr_object = object; 334 drrs->drr_length = blksz; 335 drrs->drr_toguid = dsp->dsa_toguid; 336 337 if (dump_record(dsp, data, blksz) != 0) 338 return (SET_ERROR(EINTR)); 339 return (0); 340 } 341 342 static int 343 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 344 { 345 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 346 347 /* See comment in dump_free(). */ 348 if (!dsp->dsa_incremental) 349 return (0); 350 351 /* 352 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 353 * push it out, since free block aggregation can only be done for 354 * blocks of the same type (i.e., DRR_FREE records can only be 355 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 356 * can only be aggregated with other DRR_FREEOBJECTS records. 357 */ 358 if (dsp->dsa_pending_op != PENDING_NONE && 359 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 360 if (dump_record(dsp, NULL, 0) != 0) 361 return (SET_ERROR(EINTR)); 362 dsp->dsa_pending_op = PENDING_NONE; 363 } 364 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 365 /* 366 * See whether this free object array can be aggregated 367 * with pending one 368 */ 369 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 370 drrfo->drr_numobjs += numobjs; 371 return (0); 372 } else { 373 /* can't be aggregated. Push out pending record */ 374 if (dump_record(dsp, NULL, 0) != 0) 375 return (SET_ERROR(EINTR)); 376 dsp->dsa_pending_op = PENDING_NONE; 377 } 378 } 379 380 /* write a FREEOBJECTS record */ 381 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 382 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 383 drrfo->drr_firstobj = firstobj; 384 drrfo->drr_numobjs = numobjs; 385 drrfo->drr_toguid = dsp->dsa_toguid; 386 387 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 388 389 return (0); 390 } 391 392 static int 393 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 394 { 395 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 396 397 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 398 return (dump_freeobjects(dsp, object, 1)); 399 400 if (dsp->dsa_pending_op != PENDING_NONE) { 401 if (dump_record(dsp, NULL, 0) != 0) 402 return (SET_ERROR(EINTR)); 403 dsp->dsa_pending_op = PENDING_NONE; 404 } 405 406 /* write an OBJECT record */ 407 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 408 dsp->dsa_drr->drr_type = DRR_OBJECT; 409 drro->drr_object = object; 410 drro->drr_type = dnp->dn_type; 411 drro->drr_bonustype = dnp->dn_bonustype; 412 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 413 drro->drr_bonuslen = dnp->dn_bonuslen; 414 drro->drr_checksumtype = dnp->dn_checksum; 415 drro->drr_compress = dnp->dn_compress; 416 drro->drr_toguid = dsp->dsa_toguid; 417 418 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 419 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 420 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 421 422 if (dump_record(dsp, DN_BONUS(dnp), 423 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 424 return (SET_ERROR(EINTR)); 425 } 426 427 /* Free anything past the end of the file. */ 428 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 429 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 430 return (SET_ERROR(EINTR)); 431 if (dsp->dsa_err != 0) 432 return (SET_ERROR(EINTR)); 433 return (0); 434 } 435 436 static boolean_t 437 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 438 { 439 if (!BP_IS_EMBEDDED(bp)) 440 return (B_FALSE); 441 442 /* 443 * Compression function must be legacy, or explicitly enabled. 444 */ 445 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 446 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 447 return (B_FALSE); 448 449 /* 450 * Embed type must be explicitly enabled. 451 */ 452 switch (BPE_GET_ETYPE(bp)) { 453 case BP_EMBEDDED_TYPE_DATA: 454 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 455 return (B_TRUE); 456 break; 457 default: 458 return (B_FALSE); 459 } 460 return (B_FALSE); 461 } 462 463 /* 464 * This is the callback function to traverse_dataset that acts as the worker 465 * thread for dmu_send_impl. 466 */ 467 /*ARGSUSED*/ 468 static int 469 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 470 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 471 { 472 struct send_thread_arg *sta = arg; 473 struct send_block_record *record; 474 uint64_t record_size; 475 int err = 0; 476 477 if (sta->cancel) 478 return (SET_ERROR(EINTR)); 479 480 if (bp == NULL) { 481 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 482 return (0); 483 } else if (zb->zb_level < 0) { 484 return (0); 485 } 486 487 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 488 record->eos_marker = B_FALSE; 489 record->bp = *bp; 490 record->zb = *zb; 491 record->indblkshift = dnp->dn_indblkshift; 492 record->datablkszsec = dnp->dn_datablkszsec; 493 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 494 bqueue_enqueue(&sta->q, record, record_size); 495 496 return (err); 497 } 498 499 /* 500 * This function kicks off the traverse_dataset. It also handles setting the 501 * error code of the thread in case something goes wrong, and pushes the End of 502 * Stream record when the traverse_dataset call has finished. If there is no 503 * dataset to traverse, the thread immediately pushes End of Stream marker. 504 */ 505 static void 506 send_traverse_thread(void *arg) 507 { 508 struct send_thread_arg *st_arg = arg; 509 int err; 510 struct send_block_record *data; 511 512 if (st_arg->ds != NULL) { 513 err = traverse_dataset(st_arg->ds, st_arg->fromtxg, 514 st_arg->flags, send_cb, arg); 515 if (err != EINTR) 516 st_arg->error_code = err; 517 } 518 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 519 data->eos_marker = B_TRUE; 520 bqueue_enqueue(&st_arg->q, data, 1); 521 } 522 523 /* 524 * This function actually handles figuring out what kind of record needs to be 525 * dumped, reading the data (which has hopefully been prefetched), and calling 526 * the appropriate helper function. 527 */ 528 static int 529 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 530 { 531 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 532 const blkptr_t *bp = &data->bp; 533 const zbookmark_phys_t *zb = &data->zb; 534 uint8_t indblkshift = data->indblkshift; 535 uint16_t dblkszsec = data->datablkszsec; 536 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 537 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 538 int err = 0; 539 540 ASSERT3U(zb->zb_level, >=, 0); 541 542 if (zb->zb_object != DMU_META_DNODE_OBJECT && 543 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 544 return (0); 545 } else if (BP_IS_HOLE(bp) && 546 zb->zb_object == DMU_META_DNODE_OBJECT) { 547 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 548 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 549 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 550 } else if (BP_IS_HOLE(bp)) { 551 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 552 uint64_t offset = zb->zb_blkid * span; 553 err = dump_free(dsa, zb->zb_object, offset, span); 554 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 555 return (0); 556 } else if (type == DMU_OT_DNODE) { 557 int blksz = BP_GET_LSIZE(bp); 558 arc_flags_t aflags = ARC_FLAG_WAIT; 559 arc_buf_t *abuf; 560 561 ASSERT0(zb->zb_level); 562 563 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 564 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 565 &aflags, zb) != 0) 566 return (SET_ERROR(EIO)); 567 568 dnode_phys_t *blk = abuf->b_data; 569 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 570 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 571 err = dump_dnode(dsa, dnobj + i, blk + i); 572 if (err != 0) 573 break; 574 } 575 (void) arc_buf_remove_ref(abuf, &abuf); 576 } else if (type == DMU_OT_SA) { 577 arc_flags_t aflags = ARC_FLAG_WAIT; 578 arc_buf_t *abuf; 579 int blksz = BP_GET_LSIZE(bp); 580 581 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 582 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 583 &aflags, zb) != 0) 584 return (SET_ERROR(EIO)); 585 586 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 587 (void) arc_buf_remove_ref(abuf, &abuf); 588 } else if (backup_do_embed(dsa, bp)) { 589 /* it's an embedded level-0 block of a regular object */ 590 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 591 ASSERT0(zb->zb_level); 592 err = dump_write_embedded(dsa, zb->zb_object, 593 zb->zb_blkid * blksz, blksz, bp); 594 } else { 595 /* it's a level-0 block of a regular object */ 596 arc_flags_t aflags = ARC_FLAG_WAIT; 597 arc_buf_t *abuf; 598 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 599 uint64_t offset; 600 601 ASSERT0(zb->zb_level); 602 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 603 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 604 &aflags, zb) != 0) { 605 if (zfs_send_corrupt_data) { 606 /* Send a block filled with 0x"zfs badd bloc" */ 607 abuf = arc_buf_alloc(spa, blksz, &abuf, 608 ARC_BUFC_DATA); 609 uint64_t *ptr; 610 for (ptr = abuf->b_data; 611 (char *)ptr < (char *)abuf->b_data + blksz; 612 ptr++) 613 *ptr = 0x2f5baddb10cULL; 614 } else { 615 return (SET_ERROR(EIO)); 616 } 617 } 618 619 offset = zb->zb_blkid * blksz; 620 621 if (!(dsa->dsa_featureflags & 622 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 623 blksz > SPA_OLD_MAXBLOCKSIZE) { 624 char *buf = abuf->b_data; 625 while (blksz > 0 && err == 0) { 626 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 627 err = dump_write(dsa, type, zb->zb_object, 628 offset, n, NULL, buf); 629 offset += n; 630 buf += n; 631 blksz -= n; 632 } 633 } else { 634 err = dump_write(dsa, type, zb->zb_object, 635 offset, blksz, bp, abuf->b_data); 636 } 637 (void) arc_buf_remove_ref(abuf, &abuf); 638 } 639 640 ASSERT(err == 0 || err == EINTR); 641 return (err); 642 } 643 644 /* 645 * Pop the new data off the queue, and free the old data. 646 */ 647 static struct send_block_record * 648 get_next_record(bqueue_t *bq, struct send_block_record *data) 649 { 650 struct send_block_record *tmp = bqueue_dequeue(bq); 651 kmem_free(data, sizeof (*data)); 652 return (tmp); 653 } 654 655 /* 656 * Actually do the bulk of the work in a zfs send. 657 * 658 * Note: Releases dp using the specified tag. 659 */ 660 static int 661 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 662 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, boolean_t embedok, 663 boolean_t large_block_ok, int outfd, vnode_t *vp, offset_t *off) 664 { 665 objset_t *os; 666 dmu_replay_record_t *drr; 667 dmu_sendarg_t *dsp; 668 int err; 669 uint64_t fromtxg = 0; 670 uint64_t featureflags = 0; 671 struct send_thread_arg to_arg; 672 673 err = dmu_objset_from_ds(to_ds, &os); 674 if (err != 0) { 675 dsl_pool_rele(dp, tag); 676 return (err); 677 } 678 679 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 680 drr->drr_type = DRR_BEGIN; 681 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 682 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 683 DMU_SUBSTREAM); 684 685 #ifdef _KERNEL 686 if (dmu_objset_type(os) == DMU_OST_ZFS) { 687 uint64_t version; 688 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 689 kmem_free(drr, sizeof (dmu_replay_record_t)); 690 dsl_pool_rele(dp, tag); 691 return (SET_ERROR(EINVAL)); 692 } 693 if (version >= ZPL_VERSION_SA) { 694 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 695 } 696 } 697 #endif 698 699 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 700 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 701 if (embedok && 702 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 703 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 704 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 705 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 706 } 707 708 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 709 featureflags); 710 711 drr->drr_u.drr_begin.drr_creation_time = 712 dsl_dataset_phys(to_ds)->ds_creation_time; 713 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 714 if (is_clone) 715 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 716 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 717 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 718 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 719 720 if (ancestor_zb != NULL) { 721 drr->drr_u.drr_begin.drr_fromguid = 722 ancestor_zb->zbm_guid; 723 fromtxg = ancestor_zb->zbm_creation_txg; 724 } 725 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 726 if (!to_ds->ds_is_snapshot) { 727 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 728 sizeof (drr->drr_u.drr_begin.drr_toname)); 729 } 730 731 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 732 733 dsp->dsa_drr = drr; 734 dsp->dsa_vp = vp; 735 dsp->dsa_outfd = outfd; 736 dsp->dsa_proc = curproc; 737 dsp->dsa_os = os; 738 dsp->dsa_off = off; 739 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 740 dsp->dsa_pending_op = PENDING_NONE; 741 dsp->dsa_incremental = (ancestor_zb != NULL); 742 dsp->dsa_featureflags = featureflags; 743 744 mutex_enter(&to_ds->ds_sendstream_lock); 745 list_insert_head(&to_ds->ds_sendstreams, dsp); 746 mutex_exit(&to_ds->ds_sendstream_lock); 747 748 dsl_dataset_long_hold(to_ds, FTAG); 749 dsl_pool_rele(dp, tag); 750 751 if (dump_record(dsp, NULL, 0) != 0) { 752 err = dsp->dsa_err; 753 goto out; 754 } 755 756 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 757 offsetof(struct send_block_record, ln)); 758 to_arg.error_code = 0; 759 to_arg.cancel = B_FALSE; 760 to_arg.ds = to_ds; 761 to_arg.fromtxg = fromtxg; 762 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 763 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 764 TS_RUN, minclsyspri); 765 766 struct send_block_record *to_data; 767 to_data = bqueue_dequeue(&to_arg.q); 768 769 while (!to_data->eos_marker && err == 0) { 770 err = do_dump(dsp, to_data); 771 to_data = get_next_record(&to_arg.q, to_data); 772 if (issig(JUSTLOOKING) && issig(FORREAL)) 773 err = EINTR; 774 } 775 776 if (err != 0) { 777 to_arg.cancel = B_TRUE; 778 while (!to_data->eos_marker) { 779 to_data = get_next_record(&to_arg.q, to_data); 780 } 781 } 782 kmem_free(to_data, sizeof (*to_data)); 783 784 bqueue_destroy(&to_arg.q); 785 786 if (err == 0 && to_arg.error_code != 0) 787 err = to_arg.error_code; 788 789 if (err != 0) 790 goto out; 791 792 if (dsp->dsa_pending_op != PENDING_NONE) 793 if (dump_record(dsp, NULL, 0) != 0) 794 err = SET_ERROR(EINTR); 795 796 if (err != 0) { 797 if (err == EINTR && dsp->dsa_err != 0) 798 err = dsp->dsa_err; 799 goto out; 800 } 801 802 bzero(drr, sizeof (dmu_replay_record_t)); 803 drr->drr_type = DRR_END; 804 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 805 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 806 807 if (dump_record(dsp, NULL, 0) != 0) 808 err = dsp->dsa_err; 809 810 out: 811 mutex_enter(&to_ds->ds_sendstream_lock); 812 list_remove(&to_ds->ds_sendstreams, dsp); 813 mutex_exit(&to_ds->ds_sendstream_lock); 814 815 kmem_free(drr, sizeof (dmu_replay_record_t)); 816 kmem_free(dsp, sizeof (dmu_sendarg_t)); 817 818 dsl_dataset_long_rele(to_ds, FTAG); 819 820 return (err); 821 } 822 823 int 824 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 825 boolean_t embedok, boolean_t large_block_ok, 826 int outfd, vnode_t *vp, offset_t *off) 827 { 828 dsl_pool_t *dp; 829 dsl_dataset_t *ds; 830 dsl_dataset_t *fromds = NULL; 831 int err; 832 833 err = dsl_pool_hold(pool, FTAG, &dp); 834 if (err != 0) 835 return (err); 836 837 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 838 if (err != 0) { 839 dsl_pool_rele(dp, FTAG); 840 return (err); 841 } 842 843 if (fromsnap != 0) { 844 zfs_bookmark_phys_t zb; 845 boolean_t is_clone; 846 847 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 848 if (err != 0) { 849 dsl_dataset_rele(ds, FTAG); 850 dsl_pool_rele(dp, FTAG); 851 return (err); 852 } 853 if (!dsl_dataset_is_before(ds, fromds, 0)) 854 err = SET_ERROR(EXDEV); 855 zb.zbm_creation_time = 856 dsl_dataset_phys(fromds)->ds_creation_time; 857 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 858 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 859 is_clone = (fromds->ds_dir != ds->ds_dir); 860 dsl_dataset_rele(fromds, FTAG); 861 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 862 embedok, large_block_ok, outfd, vp, off); 863 } else { 864 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 865 embedok, large_block_ok, outfd, vp, off); 866 } 867 dsl_dataset_rele(ds, FTAG); 868 return (err); 869 } 870 871 int 872 dmu_send(const char *tosnap, const char *fromsnap, 873 boolean_t embedok, boolean_t large_block_ok, 874 int outfd, vnode_t *vp, offset_t *off) 875 { 876 dsl_pool_t *dp; 877 dsl_dataset_t *ds; 878 int err; 879 boolean_t owned = B_FALSE; 880 881 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 882 return (SET_ERROR(EINVAL)); 883 884 err = dsl_pool_hold(tosnap, FTAG, &dp); 885 if (err != 0) 886 return (err); 887 888 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 889 /* 890 * We are sending a filesystem or volume. Ensure 891 * that it doesn't change by owning the dataset. 892 */ 893 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 894 owned = B_TRUE; 895 } else { 896 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 897 } 898 if (err != 0) { 899 dsl_pool_rele(dp, FTAG); 900 return (err); 901 } 902 903 if (fromsnap != NULL) { 904 zfs_bookmark_phys_t zb; 905 boolean_t is_clone = B_FALSE; 906 int fsnamelen = strchr(tosnap, '@') - tosnap; 907 908 /* 909 * If the fromsnap is in a different filesystem, then 910 * mark the send stream as a clone. 911 */ 912 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 913 (fromsnap[fsnamelen] != '@' && 914 fromsnap[fsnamelen] != '#')) { 915 is_clone = B_TRUE; 916 } 917 918 if (strchr(fromsnap, '@')) { 919 dsl_dataset_t *fromds; 920 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 921 if (err == 0) { 922 if (!dsl_dataset_is_before(ds, fromds, 0)) 923 err = SET_ERROR(EXDEV); 924 zb.zbm_creation_time = 925 dsl_dataset_phys(fromds)->ds_creation_time; 926 zb.zbm_creation_txg = 927 dsl_dataset_phys(fromds)->ds_creation_txg; 928 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 929 is_clone = (ds->ds_dir != fromds->ds_dir); 930 dsl_dataset_rele(fromds, FTAG); 931 } 932 } else { 933 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 934 } 935 if (err != 0) { 936 dsl_dataset_rele(ds, FTAG); 937 dsl_pool_rele(dp, FTAG); 938 return (err); 939 } 940 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 941 embedok, large_block_ok, outfd, vp, off); 942 } else { 943 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 944 embedok, large_block_ok, outfd, vp, off); 945 } 946 if (owned) 947 dsl_dataset_disown(ds, FTAG); 948 else 949 dsl_dataset_rele(ds, FTAG); 950 return (err); 951 } 952 953 static int 954 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 955 uint64_t *sizep) 956 { 957 int err; 958 /* 959 * Assume that space (both on-disk and in-stream) is dominated by 960 * data. We will adjust for indirect blocks and the copies property, 961 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 962 */ 963 964 /* 965 * Subtract out approximate space used by indirect blocks. 966 * Assume most space is used by data blocks (non-indirect, non-dnode). 967 * Assume all blocks are recordsize. Assume ditto blocks and 968 * internal fragmentation counter out compression. 969 * 970 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 971 * block, which we observe in practice. 972 */ 973 uint64_t recordsize; 974 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 975 if (err != 0) 976 return (err); 977 size -= size / recordsize * sizeof (blkptr_t); 978 979 /* Add in the space for the record associated with each block. */ 980 size += size / recordsize * sizeof (dmu_replay_record_t); 981 982 *sizep = size; 983 984 return (0); 985 } 986 987 int 988 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 989 { 990 dsl_pool_t *dp = ds->ds_dir->dd_pool; 991 int err; 992 uint64_t size; 993 994 ASSERT(dsl_pool_config_held(dp)); 995 996 /* tosnap must be a snapshot */ 997 if (!ds->ds_is_snapshot) 998 return (SET_ERROR(EINVAL)); 999 1000 /* fromsnap, if provided, must be a snapshot */ 1001 if (fromds != NULL && !fromds->ds_is_snapshot) 1002 return (SET_ERROR(EINVAL)); 1003 1004 /* 1005 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1006 * or the origin's fs. 1007 */ 1008 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1009 return (SET_ERROR(EXDEV)); 1010 1011 /* Get uncompressed size estimate of changed data. */ 1012 if (fromds == NULL) { 1013 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1014 } else { 1015 uint64_t used, comp; 1016 err = dsl_dataset_space_written(fromds, ds, 1017 &used, &comp, &size); 1018 if (err != 0) 1019 return (err); 1020 } 1021 1022 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1023 return (err); 1024 } 1025 1026 /* 1027 * Simple callback used to traverse the blocks of a snapshot and sum their 1028 * uncompressed size 1029 */ 1030 /* ARGSUSED */ 1031 static int 1032 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1033 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1034 { 1035 uint64_t *spaceptr = arg; 1036 if (bp != NULL && !BP_IS_HOLE(bp)) { 1037 *spaceptr += BP_GET_UCSIZE(bp); 1038 } 1039 return (0); 1040 } 1041 1042 /* 1043 * Given a desination snapshot and a TXG, calculate the approximate size of a 1044 * send stream sent from that TXG. from_txg may be zero, indicating that the 1045 * whole snapshot will be sent. 1046 */ 1047 int 1048 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1049 uint64_t *sizep) 1050 { 1051 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1052 int err; 1053 uint64_t size = 0; 1054 1055 ASSERT(dsl_pool_config_held(dp)); 1056 1057 /* tosnap must be a snapshot */ 1058 if (!dsl_dataset_is_snapshot(ds)) 1059 return (SET_ERROR(EINVAL)); 1060 1061 /* verify that from_txg is before the provided snapshot was taken */ 1062 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1063 return (SET_ERROR(EXDEV)); 1064 } 1065 1066 /* 1067 * traverse the blocks of the snapshot with birth times after 1068 * from_txg, summing their uncompressed size 1069 */ 1070 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1071 dmu_calculate_send_traversal, &size); 1072 if (err) 1073 return (err); 1074 1075 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1076 return (err); 1077 } 1078 1079 typedef struct dmu_recv_begin_arg { 1080 const char *drba_origin; 1081 dmu_recv_cookie_t *drba_cookie; 1082 cred_t *drba_cred; 1083 uint64_t drba_snapobj; 1084 } dmu_recv_begin_arg_t; 1085 1086 static int 1087 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1088 uint64_t fromguid) 1089 { 1090 uint64_t val; 1091 int error; 1092 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1093 1094 /* temporary clone name must not exist */ 1095 error = zap_lookup(dp->dp_meta_objset, 1096 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1097 8, 1, &val); 1098 if (error != ENOENT) 1099 return (error == 0 ? EBUSY : error); 1100 1101 /* new snapshot name must not exist */ 1102 error = zap_lookup(dp->dp_meta_objset, 1103 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1104 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1105 if (error != ENOENT) 1106 return (error == 0 ? EEXIST : error); 1107 1108 /* 1109 * Check snapshot limit before receiving. We'll recheck again at the 1110 * end, but might as well abort before receiving if we're already over 1111 * the limit. 1112 * 1113 * Note that we do not check the file system limit with 1114 * dsl_dir_fscount_check because the temporary %clones don't count 1115 * against that limit. 1116 */ 1117 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1118 NULL, drba->drba_cred); 1119 if (error != 0) 1120 return (error); 1121 1122 if (fromguid != 0) { 1123 dsl_dataset_t *snap; 1124 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1125 1126 /* Find snapshot in this dir that matches fromguid. */ 1127 while (obj != 0) { 1128 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1129 &snap); 1130 if (error != 0) 1131 return (SET_ERROR(ENODEV)); 1132 if (snap->ds_dir != ds->ds_dir) { 1133 dsl_dataset_rele(snap, FTAG); 1134 return (SET_ERROR(ENODEV)); 1135 } 1136 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1137 break; 1138 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1139 dsl_dataset_rele(snap, FTAG); 1140 } 1141 if (obj == 0) 1142 return (SET_ERROR(ENODEV)); 1143 1144 if (drba->drba_cookie->drc_force) { 1145 drba->drba_snapobj = obj; 1146 } else { 1147 /* 1148 * If we are not forcing, there must be no 1149 * changes since fromsnap. 1150 */ 1151 if (dsl_dataset_modified_since_snap(ds, snap)) { 1152 dsl_dataset_rele(snap, FTAG); 1153 return (SET_ERROR(ETXTBSY)); 1154 } 1155 drba->drba_snapobj = ds->ds_prev->ds_object; 1156 } 1157 1158 dsl_dataset_rele(snap, FTAG); 1159 } else { 1160 /* if full, then must be forced */ 1161 if (!drba->drba_cookie->drc_force) 1162 return (SET_ERROR(EEXIST)); 1163 /* start from $ORIGIN@$ORIGIN, if supported */ 1164 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1165 dp->dp_origin_snap->ds_object : 0; 1166 } 1167 1168 return (0); 1169 1170 } 1171 1172 static int 1173 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1174 { 1175 dmu_recv_begin_arg_t *drba = arg; 1176 dsl_pool_t *dp = dmu_tx_pool(tx); 1177 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1178 uint64_t fromguid = drrb->drr_fromguid; 1179 int flags = drrb->drr_flags; 1180 int error; 1181 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1182 dsl_dataset_t *ds; 1183 const char *tofs = drba->drba_cookie->drc_tofs; 1184 1185 /* already checked */ 1186 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1187 1188 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1189 DMU_COMPOUNDSTREAM || 1190 drrb->drr_type >= DMU_OST_NUMTYPES || 1191 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1192 return (SET_ERROR(EINVAL)); 1193 1194 /* Verify pool version supports SA if SA_SPILL feature set */ 1195 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1196 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1197 return (SET_ERROR(ENOTSUP)); 1198 1199 /* 1200 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1201 * record to a plan WRITE record, so the pool must have the 1202 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1203 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1204 */ 1205 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1206 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1207 return (SET_ERROR(ENOTSUP)); 1208 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1209 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1210 return (SET_ERROR(ENOTSUP)); 1211 1212 /* 1213 * The receiving code doesn't know how to translate large blocks 1214 * to smaller ones, so the pool must have the LARGE_BLOCKS 1215 * feature enabled if the stream has LARGE_BLOCKS. 1216 */ 1217 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1218 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1219 return (SET_ERROR(ENOTSUP)); 1220 1221 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1222 if (error == 0) { 1223 /* target fs already exists; recv into temp clone */ 1224 1225 /* Can't recv a clone into an existing fs */ 1226 if (flags & DRR_FLAG_CLONE) { 1227 dsl_dataset_rele(ds, FTAG); 1228 return (SET_ERROR(EINVAL)); 1229 } 1230 1231 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1232 dsl_dataset_rele(ds, FTAG); 1233 } else if (error == ENOENT) { 1234 /* target fs does not exist; must be a full backup or clone */ 1235 char buf[MAXNAMELEN]; 1236 1237 /* 1238 * If it's a non-clone incremental, we are missing the 1239 * target fs, so fail the recv. 1240 */ 1241 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1242 drba->drba_origin)) 1243 return (SET_ERROR(ENOENT)); 1244 1245 /* Open the parent of tofs */ 1246 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1247 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1248 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1249 if (error != 0) 1250 return (error); 1251 1252 /* 1253 * Check filesystem and snapshot limits before receiving. We'll 1254 * recheck snapshot limits again at the end (we create the 1255 * filesystems and increment those counts during begin_sync). 1256 */ 1257 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1258 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1259 if (error != 0) { 1260 dsl_dataset_rele(ds, FTAG); 1261 return (error); 1262 } 1263 1264 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1265 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1266 if (error != 0) { 1267 dsl_dataset_rele(ds, FTAG); 1268 return (error); 1269 } 1270 1271 if (drba->drba_origin != NULL) { 1272 dsl_dataset_t *origin; 1273 error = dsl_dataset_hold(dp, drba->drba_origin, 1274 FTAG, &origin); 1275 if (error != 0) { 1276 dsl_dataset_rele(ds, FTAG); 1277 return (error); 1278 } 1279 if (!origin->ds_is_snapshot) { 1280 dsl_dataset_rele(origin, FTAG); 1281 dsl_dataset_rele(ds, FTAG); 1282 return (SET_ERROR(EINVAL)); 1283 } 1284 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1285 dsl_dataset_rele(origin, FTAG); 1286 dsl_dataset_rele(ds, FTAG); 1287 return (SET_ERROR(ENODEV)); 1288 } 1289 dsl_dataset_rele(origin, FTAG); 1290 } 1291 dsl_dataset_rele(ds, FTAG); 1292 error = 0; 1293 } 1294 return (error); 1295 } 1296 1297 static void 1298 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1299 { 1300 dmu_recv_begin_arg_t *drba = arg; 1301 dsl_pool_t *dp = dmu_tx_pool(tx); 1302 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1303 const char *tofs = drba->drba_cookie->drc_tofs; 1304 dsl_dataset_t *ds, *newds; 1305 uint64_t dsobj; 1306 int error; 1307 uint64_t crflags; 1308 1309 crflags = (drrb->drr_flags & DRR_FLAG_CI_DATA) ? 1310 DS_FLAG_CI_DATASET : 0; 1311 1312 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1313 if (error == 0) { 1314 /* create temporary clone */ 1315 dsl_dataset_t *snap = NULL; 1316 if (drba->drba_snapobj != 0) { 1317 VERIFY0(dsl_dataset_hold_obj(dp, 1318 drba->drba_snapobj, FTAG, &snap)); 1319 } 1320 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1321 snap, crflags, drba->drba_cred, tx); 1322 if (drba->drba_snapobj != 0) 1323 dsl_dataset_rele(snap, FTAG); 1324 dsl_dataset_rele(ds, FTAG); 1325 } else { 1326 dsl_dir_t *dd; 1327 const char *tail; 1328 dsl_dataset_t *origin = NULL; 1329 1330 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1331 1332 if (drba->drba_origin != NULL) { 1333 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1334 FTAG, &origin)); 1335 } 1336 1337 /* Create new dataset. */ 1338 dsobj = dsl_dataset_create_sync(dd, 1339 strrchr(tofs, '/') + 1, 1340 origin, crflags, drba->drba_cred, tx); 1341 if (origin != NULL) 1342 dsl_dataset_rele(origin, FTAG); 1343 dsl_dir_rele(dd, FTAG); 1344 drba->drba_cookie->drc_newfs = B_TRUE; 1345 } 1346 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1347 1348 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1349 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1350 1351 /* 1352 * If we actually created a non-clone, we need to create the 1353 * objset in our new dataset. 1354 */ 1355 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1356 (void) dmu_objset_create_impl(dp->dp_spa, 1357 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1358 } 1359 1360 drba->drba_cookie->drc_ds = newds; 1361 1362 spa_history_log_internal_ds(newds, "receive", tx, ""); 1363 } 1364 1365 /* 1366 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1367 * succeeds; otherwise we will leak the holds on the datasets. 1368 */ 1369 int 1370 dmu_recv_begin(char *tofs, char *tosnap, struct drr_begin *drrb, 1371 boolean_t force, char *origin, dmu_recv_cookie_t *drc) 1372 { 1373 dmu_recv_begin_arg_t drba = { 0 }; 1374 dmu_replay_record_t *drr; 1375 1376 bzero(drc, sizeof (dmu_recv_cookie_t)); 1377 drc->drc_drrb = drrb; 1378 drc->drc_tosnap = tosnap; 1379 drc->drc_tofs = tofs; 1380 drc->drc_force = force; 1381 drc->drc_cred = CRED(); 1382 1383 if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) 1384 drc->drc_byteswap = B_TRUE; 1385 else if (drrb->drr_magic != DMU_BACKUP_MAGIC) 1386 return (SET_ERROR(EINVAL)); 1387 1388 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 1389 drr->drr_type = DRR_BEGIN; 1390 drr->drr_u.drr_begin = *drc->drc_drrb; 1391 if (drc->drc_byteswap) { 1392 fletcher_4_incremental_byteswap(drr, 1393 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1394 } else { 1395 fletcher_4_incremental_native(drr, 1396 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1397 } 1398 kmem_free(drr, sizeof (dmu_replay_record_t)); 1399 1400 if (drc->drc_byteswap) { 1401 drrb->drr_magic = BSWAP_64(drrb->drr_magic); 1402 drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); 1403 drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); 1404 drrb->drr_type = BSWAP_32(drrb->drr_type); 1405 drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); 1406 drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); 1407 } 1408 1409 drba.drba_origin = origin; 1410 drba.drba_cookie = drc; 1411 drba.drba_cred = CRED(); 1412 1413 return (dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, 1414 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1415 } 1416 1417 struct receive_record_arg { 1418 dmu_replay_record_t header; 1419 void *payload; /* Pointer to a buffer containing the payload */ 1420 /* 1421 * If the record is a write, pointer to the arc_buf_t containing the 1422 * payload. 1423 */ 1424 arc_buf_t *write_buf; 1425 int payload_size; 1426 boolean_t eos_marker; /* Marks the end of the stream */ 1427 bqueue_node_t node; 1428 }; 1429 1430 struct receive_writer_arg { 1431 objset_t *os; 1432 boolean_t byteswap; 1433 bqueue_t q; 1434 /* 1435 * These three args are used to signal to the main thread that we're 1436 * done. 1437 */ 1438 kmutex_t mutex; 1439 kcondvar_t cv; 1440 boolean_t done; 1441 int err; 1442 /* A map from guid to dataset to help handle dedup'd streams. */ 1443 avl_tree_t *guid_to_ds_map; 1444 }; 1445 1446 struct receive_arg { 1447 objset_t *os; 1448 vnode_t *vp; /* The vnode to read the stream from */ 1449 uint64_t voff; /* The current offset in the stream */ 1450 /* 1451 * A record that has had its payload read in, but hasn't yet been handed 1452 * off to the worker thread. 1453 */ 1454 struct receive_record_arg *rrd; 1455 /* A record that has had its header read in, but not its payload. */ 1456 struct receive_record_arg *next_rrd; 1457 zio_cksum_t cksum; 1458 zio_cksum_t prev_cksum; 1459 int err; 1460 boolean_t byteswap; 1461 /* Sorted list of objects not to issue prefetches for. */ 1462 list_t ignore_obj_list; 1463 }; 1464 1465 struct receive_ign_obj_node { 1466 list_node_t node; 1467 uint64_t object; 1468 }; 1469 1470 typedef struct guid_map_entry { 1471 uint64_t guid; 1472 dsl_dataset_t *gme_ds; 1473 avl_node_t avlnode; 1474 } guid_map_entry_t; 1475 1476 static int 1477 guid_compare(const void *arg1, const void *arg2) 1478 { 1479 const guid_map_entry_t *gmep1 = arg1; 1480 const guid_map_entry_t *gmep2 = arg2; 1481 1482 if (gmep1->guid < gmep2->guid) 1483 return (-1); 1484 else if (gmep1->guid > gmep2->guid) 1485 return (1); 1486 return (0); 1487 } 1488 1489 static void 1490 free_guid_map_onexit(void *arg) 1491 { 1492 avl_tree_t *ca = arg; 1493 void *cookie = NULL; 1494 guid_map_entry_t *gmep; 1495 1496 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1497 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1498 dsl_dataset_rele(gmep->gme_ds, gmep); 1499 kmem_free(gmep, sizeof (guid_map_entry_t)); 1500 } 1501 avl_destroy(ca); 1502 kmem_free(ca, sizeof (avl_tree_t)); 1503 } 1504 1505 static int 1506 receive_read(struct receive_arg *ra, int len, void *buf) 1507 { 1508 int done = 0; 1509 1510 /* some things will require 8-byte alignment, so everything must */ 1511 ASSERT0(len % 8); 1512 1513 while (done < len) { 1514 ssize_t resid; 1515 1516 ra->err = vn_rdwr(UIO_READ, ra->vp, 1517 (char *)buf + done, len - done, 1518 ra->voff, UIO_SYSSPACE, FAPPEND, 1519 RLIM64_INFINITY, CRED(), &resid); 1520 1521 if (resid == len - done) 1522 ra->err = SET_ERROR(EINVAL); 1523 ra->voff += len - done - resid; 1524 done = len - resid; 1525 if (ra->err != 0) 1526 return (ra->err); 1527 } 1528 1529 ASSERT3U(done, ==, len); 1530 return (0); 1531 } 1532 1533 static void 1534 byteswap_record(dmu_replay_record_t *drr) 1535 { 1536 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1537 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1538 drr->drr_type = BSWAP_32(drr->drr_type); 1539 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1540 1541 switch (drr->drr_type) { 1542 case DRR_BEGIN: 1543 DO64(drr_begin.drr_magic); 1544 DO64(drr_begin.drr_versioninfo); 1545 DO64(drr_begin.drr_creation_time); 1546 DO32(drr_begin.drr_type); 1547 DO32(drr_begin.drr_flags); 1548 DO64(drr_begin.drr_toguid); 1549 DO64(drr_begin.drr_fromguid); 1550 break; 1551 case DRR_OBJECT: 1552 DO64(drr_object.drr_object); 1553 DO32(drr_object.drr_type); 1554 DO32(drr_object.drr_bonustype); 1555 DO32(drr_object.drr_blksz); 1556 DO32(drr_object.drr_bonuslen); 1557 DO64(drr_object.drr_toguid); 1558 break; 1559 case DRR_FREEOBJECTS: 1560 DO64(drr_freeobjects.drr_firstobj); 1561 DO64(drr_freeobjects.drr_numobjs); 1562 DO64(drr_freeobjects.drr_toguid); 1563 break; 1564 case DRR_WRITE: 1565 DO64(drr_write.drr_object); 1566 DO32(drr_write.drr_type); 1567 DO64(drr_write.drr_offset); 1568 DO64(drr_write.drr_length); 1569 DO64(drr_write.drr_toguid); 1570 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1571 DO64(drr_write.drr_key.ddk_prop); 1572 break; 1573 case DRR_WRITE_BYREF: 1574 DO64(drr_write_byref.drr_object); 1575 DO64(drr_write_byref.drr_offset); 1576 DO64(drr_write_byref.drr_length); 1577 DO64(drr_write_byref.drr_toguid); 1578 DO64(drr_write_byref.drr_refguid); 1579 DO64(drr_write_byref.drr_refobject); 1580 DO64(drr_write_byref.drr_refoffset); 1581 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1582 drr_key.ddk_cksum); 1583 DO64(drr_write_byref.drr_key.ddk_prop); 1584 break; 1585 case DRR_WRITE_EMBEDDED: 1586 DO64(drr_write_embedded.drr_object); 1587 DO64(drr_write_embedded.drr_offset); 1588 DO64(drr_write_embedded.drr_length); 1589 DO64(drr_write_embedded.drr_toguid); 1590 DO32(drr_write_embedded.drr_lsize); 1591 DO32(drr_write_embedded.drr_psize); 1592 break; 1593 case DRR_FREE: 1594 DO64(drr_free.drr_object); 1595 DO64(drr_free.drr_offset); 1596 DO64(drr_free.drr_length); 1597 DO64(drr_free.drr_toguid); 1598 break; 1599 case DRR_SPILL: 1600 DO64(drr_spill.drr_object); 1601 DO64(drr_spill.drr_length); 1602 DO64(drr_spill.drr_toguid); 1603 break; 1604 case DRR_END: 1605 DO64(drr_end.drr_toguid); 1606 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1607 break; 1608 } 1609 1610 if (drr->drr_type != DRR_BEGIN) { 1611 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1612 } 1613 1614 #undef DO64 1615 #undef DO32 1616 } 1617 1618 static inline uint8_t 1619 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1620 { 1621 if (bonus_type == DMU_OT_SA) { 1622 return (1); 1623 } else { 1624 return (1 + 1625 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1626 } 1627 } 1628 1629 static int 1630 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1631 void *data) 1632 { 1633 dmu_object_info_t doi; 1634 dmu_tx_t *tx; 1635 uint64_t object; 1636 int err; 1637 1638 if (drro->drr_type == DMU_OT_NONE || 1639 !DMU_OT_IS_VALID(drro->drr_type) || 1640 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1641 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1642 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1643 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1644 drro->drr_blksz < SPA_MINBLOCKSIZE || 1645 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1646 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1647 return (SET_ERROR(EINVAL)); 1648 } 1649 1650 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1651 1652 if (err != 0 && err != ENOENT) 1653 return (SET_ERROR(EINVAL)); 1654 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1655 1656 /* 1657 * If we are losing blkptrs or changing the block size this must 1658 * be a new file instance. We must clear out the previous file 1659 * contents before we can change this type of metadata in the dnode. 1660 */ 1661 if (err == 0) { 1662 int nblkptr; 1663 1664 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1665 drro->drr_bonuslen); 1666 1667 if (drro->drr_blksz != doi.doi_data_block_size || 1668 nblkptr < doi.doi_nblkptr) { 1669 err = dmu_free_long_range(rwa->os, drro->drr_object, 1670 0, DMU_OBJECT_END); 1671 if (err != 0) 1672 return (SET_ERROR(EINVAL)); 1673 } 1674 } 1675 1676 tx = dmu_tx_create(rwa->os); 1677 dmu_tx_hold_bonus(tx, object); 1678 err = dmu_tx_assign(tx, TXG_WAIT); 1679 if (err != 0) { 1680 dmu_tx_abort(tx); 1681 return (err); 1682 } 1683 1684 if (object == DMU_NEW_OBJECT) { 1685 /* currently free, want to be allocated */ 1686 err = dmu_object_claim(rwa->os, drro->drr_object, 1687 drro->drr_type, drro->drr_blksz, 1688 drro->drr_bonustype, drro->drr_bonuslen, tx); 1689 } else if (drro->drr_type != doi.doi_type || 1690 drro->drr_blksz != doi.doi_data_block_size || 1691 drro->drr_bonustype != doi.doi_bonus_type || 1692 drro->drr_bonuslen != doi.doi_bonus_size) { 1693 /* currently allocated, but with different properties */ 1694 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1695 drro->drr_type, drro->drr_blksz, 1696 drro->drr_bonustype, drro->drr_bonuslen, tx); 1697 } 1698 if (err != 0) { 1699 dmu_tx_commit(tx); 1700 return (SET_ERROR(EINVAL)); 1701 } 1702 1703 dmu_object_set_checksum(rwa->os, drro->drr_object, 1704 drro->drr_checksumtype, tx); 1705 dmu_object_set_compress(rwa->os, drro->drr_object, 1706 drro->drr_compress, tx); 1707 1708 if (data != NULL) { 1709 dmu_buf_t *db; 1710 1711 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1712 dmu_buf_will_dirty(db, tx); 1713 1714 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1715 bcopy(data, db->db_data, drro->drr_bonuslen); 1716 if (rwa->byteswap) { 1717 dmu_object_byteswap_t byteswap = 1718 DMU_OT_BYTESWAP(drro->drr_bonustype); 1719 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1720 drro->drr_bonuslen); 1721 } 1722 dmu_buf_rele(db, FTAG); 1723 } 1724 dmu_tx_commit(tx); 1725 return (0); 1726 } 1727 1728 /* ARGSUSED */ 1729 static int 1730 receive_freeobjects(struct receive_writer_arg *rwa, 1731 struct drr_freeobjects *drrfo) 1732 { 1733 uint64_t obj; 1734 1735 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1736 return (SET_ERROR(EINVAL)); 1737 1738 for (obj = drrfo->drr_firstobj; 1739 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 1740 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1741 int err; 1742 1743 if (dmu_object_info(rwa->os, obj, NULL) != 0) 1744 continue; 1745 1746 err = dmu_free_long_object(rwa->os, obj); 1747 if (err != 0) 1748 return (err); 1749 } 1750 return (0); 1751 } 1752 1753 static int 1754 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1755 arc_buf_t *abuf) 1756 { 1757 dmu_tx_t *tx; 1758 int err; 1759 1760 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 1761 !DMU_OT_IS_VALID(drrw->drr_type)) 1762 return (SET_ERROR(EINVAL)); 1763 1764 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1765 return (SET_ERROR(EINVAL)); 1766 1767 tx = dmu_tx_create(rwa->os); 1768 1769 dmu_tx_hold_write(tx, drrw->drr_object, 1770 drrw->drr_offset, drrw->drr_length); 1771 err = dmu_tx_assign(tx, TXG_WAIT); 1772 if (err != 0) { 1773 dmu_tx_abort(tx); 1774 return (err); 1775 } 1776 if (rwa->byteswap) { 1777 dmu_object_byteswap_t byteswap = 1778 DMU_OT_BYTESWAP(drrw->drr_type); 1779 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1780 drrw->drr_length); 1781 } 1782 1783 dmu_buf_t *bonus; 1784 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 1785 return (SET_ERROR(EINVAL)); 1786 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 1787 dmu_tx_commit(tx); 1788 dmu_buf_rele(bonus, FTAG); 1789 return (0); 1790 } 1791 1792 /* 1793 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1794 * streams to refer to a copy of the data that is already on the 1795 * system because it came in earlier in the stream. This function 1796 * finds the earlier copy of the data, and uses that copy instead of 1797 * data from the stream to fulfill this write. 1798 */ 1799 static int 1800 receive_write_byref(struct receive_writer_arg *rwa, 1801 struct drr_write_byref *drrwbr) 1802 { 1803 dmu_tx_t *tx; 1804 int err; 1805 guid_map_entry_t gmesrch; 1806 guid_map_entry_t *gmep; 1807 avl_index_t where; 1808 objset_t *ref_os = NULL; 1809 dmu_buf_t *dbp; 1810 1811 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1812 return (SET_ERROR(EINVAL)); 1813 1814 /* 1815 * If the GUID of the referenced dataset is different from the 1816 * GUID of the target dataset, find the referenced dataset. 1817 */ 1818 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1819 gmesrch.guid = drrwbr->drr_refguid; 1820 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1821 &where)) == NULL) { 1822 return (SET_ERROR(EINVAL)); 1823 } 1824 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1825 return (SET_ERROR(EINVAL)); 1826 } else { 1827 ref_os = rwa->os; 1828 } 1829 1830 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1831 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 1832 if (err != 0) 1833 return (err); 1834 1835 tx = dmu_tx_create(rwa->os); 1836 1837 dmu_tx_hold_write(tx, drrwbr->drr_object, 1838 drrwbr->drr_offset, drrwbr->drr_length); 1839 err = dmu_tx_assign(tx, TXG_WAIT); 1840 if (err != 0) { 1841 dmu_tx_abort(tx); 1842 return (err); 1843 } 1844 dmu_write(rwa->os, drrwbr->drr_object, 1845 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1846 dmu_buf_rele(dbp, FTAG); 1847 dmu_tx_commit(tx); 1848 return (0); 1849 } 1850 1851 static int 1852 receive_write_embedded(struct receive_writer_arg *rwa, 1853 struct drr_write_embedded *drrwnp, void *data) 1854 { 1855 dmu_tx_t *tx; 1856 int err; 1857 1858 if (drrwnp->drr_offset + drrwnp->drr_length < drrwnp->drr_offset) 1859 return (EINVAL); 1860 1861 if (drrwnp->drr_psize > BPE_PAYLOAD_SIZE) 1862 return (EINVAL); 1863 1864 if (drrwnp->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1865 return (EINVAL); 1866 if (drrwnp->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1867 return (EINVAL); 1868 1869 tx = dmu_tx_create(rwa->os); 1870 1871 dmu_tx_hold_write(tx, drrwnp->drr_object, 1872 drrwnp->drr_offset, drrwnp->drr_length); 1873 err = dmu_tx_assign(tx, TXG_WAIT); 1874 if (err != 0) { 1875 dmu_tx_abort(tx); 1876 return (err); 1877 } 1878 1879 dmu_write_embedded(rwa->os, drrwnp->drr_object, 1880 drrwnp->drr_offset, data, drrwnp->drr_etype, 1881 drrwnp->drr_compression, drrwnp->drr_lsize, drrwnp->drr_psize, 1882 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1883 1884 dmu_tx_commit(tx); 1885 return (0); 1886 } 1887 1888 static int 1889 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1890 void *data) 1891 { 1892 dmu_tx_t *tx; 1893 dmu_buf_t *db, *db_spill; 1894 int err; 1895 1896 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1897 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1898 return (SET_ERROR(EINVAL)); 1899 1900 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1901 return (SET_ERROR(EINVAL)); 1902 1903 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1904 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 1905 dmu_buf_rele(db, FTAG); 1906 return (err); 1907 } 1908 1909 tx = dmu_tx_create(rwa->os); 1910 1911 dmu_tx_hold_spill(tx, db->db_object); 1912 1913 err = dmu_tx_assign(tx, TXG_WAIT); 1914 if (err != 0) { 1915 dmu_buf_rele(db, FTAG); 1916 dmu_buf_rele(db_spill, FTAG); 1917 dmu_tx_abort(tx); 1918 return (err); 1919 } 1920 dmu_buf_will_dirty(db_spill, tx); 1921 1922 if (db_spill->db_size < drrs->drr_length) 1923 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1924 drrs->drr_length, tx)); 1925 bcopy(data, db_spill->db_data, drrs->drr_length); 1926 1927 dmu_buf_rele(db, FTAG); 1928 dmu_buf_rele(db_spill, FTAG); 1929 1930 dmu_tx_commit(tx); 1931 return (0); 1932 } 1933 1934 /* ARGSUSED */ 1935 static int 1936 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1937 { 1938 int err; 1939 1940 if (drrf->drr_length != -1ULL && 1941 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1942 return (SET_ERROR(EINVAL)); 1943 1944 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1945 return (SET_ERROR(EINVAL)); 1946 1947 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1948 drrf->drr_offset, drrf->drr_length); 1949 1950 return (err); 1951 } 1952 1953 /* used to destroy the drc_ds on error */ 1954 static void 1955 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1956 { 1957 char name[MAXNAMELEN]; 1958 dsl_dataset_name(drc->drc_ds, name); 1959 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 1960 (void) dsl_destroy_head(name); 1961 } 1962 1963 static void 1964 receive_cksum(struct receive_arg *ra, int len, void *buf) 1965 { 1966 if (ra->byteswap) { 1967 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1968 } else { 1969 fletcher_4_incremental_native(buf, len, &ra->cksum); 1970 } 1971 } 1972 1973 /* 1974 * Read the payload into a buffer of size len, and update the current record's 1975 * payload field. 1976 * Allocate ra->next_rrd and read the next record's header into 1977 * ra->next_rrd->header. 1978 * Verify checksum of payload and next record. 1979 */ 1980 static int 1981 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1982 { 1983 int err; 1984 1985 if (len != 0) { 1986 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1987 ra->rrd->payload = buf; 1988 ra->rrd->payload_size = len; 1989 err = receive_read(ra, len, ra->rrd->payload); 1990 if (err != 0) 1991 return (err); 1992 receive_cksum(ra, len, ra->rrd->payload); 1993 } 1994 1995 ra->prev_cksum = ra->cksum; 1996 1997 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1998 err = receive_read(ra, sizeof (ra->next_rrd->header), 1999 &ra->next_rrd->header); 2000 if (err != 0) { 2001 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2002 ra->next_rrd = NULL; 2003 return (err); 2004 } 2005 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2006 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2007 ra->next_rrd = NULL; 2008 return (SET_ERROR(EINVAL)); 2009 } 2010 2011 /* 2012 * Note: checksum is of everything up to but not including the 2013 * checksum itself. 2014 */ 2015 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2016 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2017 receive_cksum(ra, 2018 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2019 &ra->next_rrd->header); 2020 2021 zio_cksum_t cksum_orig = 2022 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2023 zio_cksum_t *cksump = 2024 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2025 2026 if (ra->byteswap) 2027 byteswap_record(&ra->next_rrd->header); 2028 2029 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2030 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2031 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2032 ra->next_rrd = NULL; 2033 return (SET_ERROR(ECKSUM)); 2034 } 2035 2036 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2037 2038 return (0); 2039 } 2040 2041 /* 2042 * Issue the prefetch reads for any necessary indirect blocks. 2043 * 2044 * We use the object ignore list to tell us whether or not to issue prefetches 2045 * for a given object. We do this for both correctness (in case the blocksize 2046 * of an object has changed) and performance (if the object doesn't exist, don't 2047 * needlessly try to issue prefetches). We also trim the list as we go through 2048 * the stream to prevent it from growing to an unbounded size. 2049 * 2050 * The object numbers within will always be in sorted order, and any write 2051 * records we see will also be in sorted order, but they're not sorted with 2052 * respect to each other (i.e. we can get several object records before 2053 * receiving each object's write records). As a result, once we've reached a 2054 * given object number, we can safely remove any reference to lower object 2055 * numbers in the ignore list. In practice, we receive up to 32 object records 2056 * before receiving write records, so the list can have up to 32 nodes in it. 2057 */ 2058 /* ARGSUSED */ 2059 static void 2060 receive_read_prefetch(struct receive_arg *ra, 2061 uint64_t object, uint64_t offset, uint64_t length) 2062 { 2063 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2064 while (node != NULL && node->object < object) { 2065 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2066 kmem_free(node, sizeof (*node)); 2067 node = list_head(&ra->ignore_obj_list); 2068 } 2069 if (node == NULL || node->object > object) { 2070 dmu_prefetch(ra->os, object, 1, offset, length, 2071 ZIO_PRIORITY_SYNC_READ); 2072 } 2073 } 2074 2075 /* 2076 * Read records off the stream, issuing any necessary prefetches. 2077 */ 2078 static int 2079 receive_read_record(struct receive_arg *ra) 2080 { 2081 int err; 2082 2083 switch (ra->rrd->header.drr_type) { 2084 case DRR_OBJECT: 2085 { 2086 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2087 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2088 void *buf = kmem_zalloc(size, KM_SLEEP); 2089 dmu_object_info_t doi; 2090 err = receive_read_payload_and_next_header(ra, size, buf); 2091 if (err != 0) { 2092 kmem_free(buf, size); 2093 return (err); 2094 } 2095 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2096 /* 2097 * See receive_read_prefetch for an explanation why we're 2098 * storing this object in the ignore_obj_list. 2099 */ 2100 if (err == ENOENT || 2101 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2102 struct receive_ign_obj_node *node = 2103 kmem_zalloc(sizeof (*node), 2104 KM_SLEEP); 2105 node->object = drro->drr_object; 2106 #ifdef ZFS_DEBUG 2107 struct receive_ign_obj_node *last_object = 2108 list_tail(&ra->ignore_obj_list); 2109 uint64_t last_objnum = (last_object != NULL ? 2110 last_object->object : 0); 2111 ASSERT3U(node->object, >, last_objnum); 2112 #endif 2113 list_insert_tail(&ra->ignore_obj_list, node); 2114 err = 0; 2115 } 2116 return (err); 2117 } 2118 case DRR_FREEOBJECTS: 2119 { 2120 err = receive_read_payload_and_next_header(ra, 0, NULL); 2121 return (err); 2122 } 2123 case DRR_WRITE: 2124 { 2125 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2126 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2127 drrw->drr_length); 2128 2129 err = receive_read_payload_and_next_header(ra, 2130 drrw->drr_length, abuf->b_data); 2131 if (err != 0) { 2132 dmu_return_arcbuf(abuf); 2133 return (err); 2134 } 2135 ra->rrd->write_buf = abuf; 2136 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2137 drrw->drr_length); 2138 return (err); 2139 } 2140 case DRR_WRITE_BYREF: 2141 { 2142 struct drr_write_byref *drrwb = 2143 &ra->rrd->header.drr_u.drr_write_byref; 2144 err = receive_read_payload_and_next_header(ra, 0, NULL); 2145 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2146 drrwb->drr_length); 2147 return (err); 2148 } 2149 case DRR_WRITE_EMBEDDED: 2150 { 2151 struct drr_write_embedded *drrwe = 2152 &ra->rrd->header.drr_u.drr_write_embedded; 2153 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2154 void *buf = kmem_zalloc(size, KM_SLEEP); 2155 2156 err = receive_read_payload_and_next_header(ra, size, buf); 2157 if (err != 0) { 2158 kmem_free(buf, size); 2159 return (err); 2160 } 2161 2162 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2163 drrwe->drr_length); 2164 return (err); 2165 } 2166 case DRR_FREE: 2167 { 2168 /* 2169 * It might be beneficial to prefetch indirect blocks here, but 2170 * we don't really have the data to decide for sure. 2171 */ 2172 err = receive_read_payload_and_next_header(ra, 0, NULL); 2173 return (err); 2174 } 2175 case DRR_END: 2176 { 2177 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2178 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2179 return (SET_ERROR(EINVAL)); 2180 return (0); 2181 } 2182 case DRR_SPILL: 2183 { 2184 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2185 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2186 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2187 buf); 2188 if (err != 0) 2189 kmem_free(buf, drrs->drr_length); 2190 return (err); 2191 } 2192 default: 2193 return (SET_ERROR(EINVAL)); 2194 } 2195 } 2196 2197 /* 2198 * Commit the records to the pool. 2199 */ 2200 static int 2201 receive_process_record(struct receive_writer_arg *rwa, 2202 struct receive_record_arg *rrd) 2203 { 2204 int err; 2205 2206 switch (rrd->header.drr_type) { 2207 case DRR_OBJECT: 2208 { 2209 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2210 err = receive_object(rwa, drro, rrd->payload); 2211 kmem_free(rrd->payload, rrd->payload_size); 2212 rrd->payload = NULL; 2213 return (err); 2214 } 2215 case DRR_FREEOBJECTS: 2216 { 2217 struct drr_freeobjects *drrfo = 2218 &rrd->header.drr_u.drr_freeobjects; 2219 return (receive_freeobjects(rwa, drrfo)); 2220 } 2221 case DRR_WRITE: 2222 { 2223 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2224 err = receive_write(rwa, drrw, rrd->write_buf); 2225 /* if receive_write() is successful, it consumes the arc_buf */ 2226 if (err != 0) 2227 dmu_return_arcbuf(rrd->write_buf); 2228 rrd->write_buf = NULL; 2229 rrd->payload = NULL; 2230 return (err); 2231 } 2232 case DRR_WRITE_BYREF: 2233 { 2234 struct drr_write_byref *drrwbr = 2235 &rrd->header.drr_u.drr_write_byref; 2236 return (receive_write_byref(rwa, drrwbr)); 2237 } 2238 case DRR_WRITE_EMBEDDED: 2239 { 2240 struct drr_write_embedded *drrwe = 2241 &rrd->header.drr_u.drr_write_embedded; 2242 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2243 kmem_free(rrd->payload, rrd->payload_size); 2244 rrd->payload = NULL; 2245 return (err); 2246 } 2247 case DRR_FREE: 2248 { 2249 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2250 return (receive_free(rwa, drrf)); 2251 } 2252 case DRR_SPILL: 2253 { 2254 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2255 err = receive_spill(rwa, drrs, rrd->payload); 2256 kmem_free(rrd->payload, rrd->payload_size); 2257 rrd->payload = NULL; 2258 return (err); 2259 } 2260 default: 2261 return (SET_ERROR(EINVAL)); 2262 } 2263 } 2264 2265 /* 2266 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2267 * receive_process_record When we're done, signal the main thread and exit. 2268 */ 2269 static void 2270 receive_writer_thread(void *arg) 2271 { 2272 struct receive_writer_arg *rwa = arg; 2273 struct receive_record_arg *rrd; 2274 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2275 rrd = bqueue_dequeue(&rwa->q)) { 2276 /* 2277 * If there's an error, the main thread will stop putting things 2278 * on the queue, but we need to clear everything in it before we 2279 * can exit. 2280 */ 2281 if (rwa->err == 0) { 2282 rwa->err = receive_process_record(rwa, rrd); 2283 } else if (rrd->write_buf != NULL) { 2284 dmu_return_arcbuf(rrd->write_buf); 2285 rrd->write_buf = NULL; 2286 rrd->payload = NULL; 2287 } else if (rrd->payload != NULL) { 2288 kmem_free(rrd->payload, rrd->payload_size); 2289 rrd->payload = NULL; 2290 } 2291 kmem_free(rrd, sizeof (*rrd)); 2292 } 2293 kmem_free(rrd, sizeof (*rrd)); 2294 mutex_enter(&rwa->mutex); 2295 rwa->done = B_TRUE; 2296 cv_signal(&rwa->cv); 2297 mutex_exit(&rwa->mutex); 2298 } 2299 2300 /* 2301 * Read in the stream's records, one by one, and apply them to the pool. There 2302 * are two threads involved; the thread that calls this function will spin up a 2303 * worker thread, read the records off the stream one by one, and issue 2304 * prefetches for any necessary indirect blocks. It will then push the records 2305 * onto an internal blocking queue. The worker thread will pull the records off 2306 * the queue, and actually write the data into the DMU. This way, the worker 2307 * thread doesn't have to wait for reads to complete, since everything it needs 2308 * (the indirect blocks) will be prefetched. 2309 * 2310 * NB: callers *must* call dmu_recv_end() if this succeeds. 2311 */ 2312 int 2313 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2314 int cleanup_fd, uint64_t *action_handlep) 2315 { 2316 int err = 0; 2317 struct receive_arg ra = { 0 }; 2318 struct receive_writer_arg rwa = { 0 }; 2319 int featureflags; 2320 2321 ra.byteswap = drc->drc_byteswap; 2322 ra.cksum = drc->drc_cksum; 2323 ra.vp = vp; 2324 ra.voff = *voffp; 2325 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2326 offsetof(struct receive_ign_obj_node, node)); 2327 2328 /* these were verified in dmu_recv_begin */ 2329 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2330 DMU_SUBSTREAM); 2331 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2332 2333 /* 2334 * Open the objset we are modifying. 2335 */ 2336 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2337 2338 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2339 2340 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2341 2342 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2343 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2344 minor_t minor; 2345 2346 if (cleanup_fd == -1) { 2347 ra.err = SET_ERROR(EBADF); 2348 goto out; 2349 } 2350 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2351 if (ra.err != 0) { 2352 cleanup_fd = -1; 2353 goto out; 2354 } 2355 2356 if (*action_handlep == 0) { 2357 rwa.guid_to_ds_map = 2358 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2359 avl_create(rwa.guid_to_ds_map, guid_compare, 2360 sizeof (guid_map_entry_t), 2361 offsetof(guid_map_entry_t, avlnode)); 2362 err = zfs_onexit_add_cb(minor, 2363 free_guid_map_onexit, rwa.guid_to_ds_map, 2364 action_handlep); 2365 if (ra.err != 0) 2366 goto out; 2367 } else { 2368 err = zfs_onexit_cb_data(minor, *action_handlep, 2369 (void **)&rwa.guid_to_ds_map); 2370 if (ra.err != 0) 2371 goto out; 2372 } 2373 2374 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2375 } 2376 2377 err = receive_read_payload_and_next_header(&ra, 0, NULL); 2378 if (err) 2379 goto out; 2380 2381 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2382 offsetof(struct receive_record_arg, node)); 2383 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2384 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2385 rwa.os = ra.os; 2386 rwa.byteswap = drc->drc_byteswap; 2387 2388 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2389 TS_RUN, minclsyspri); 2390 /* 2391 * We're reading rwa.err without locks, which is safe since we are the 2392 * only reader, and the worker thread is the only writer. It's ok if we 2393 * miss a write for an iteration or two of the loop, since the writer 2394 * thread will keep freeing records we send it until we send it an eos 2395 * marker. 2396 * 2397 * We can leave this loop in 3 ways: First, if rwa.err is 2398 * non-zero. In that case, the writer thread will free the rrd we just 2399 * pushed. Second, if we're interrupted; in that case, either it's the 2400 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2401 * has been handed off to the writer thread who will free it. Finally, 2402 * if receive_read_record fails or we're at the end of the stream, then 2403 * we free ra.rrd and exit. 2404 */ 2405 while (rwa.err == 0) { 2406 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2407 err = SET_ERROR(EINTR); 2408 break; 2409 } 2410 2411 ASSERT3P(ra.rrd, ==, NULL); 2412 ra.rrd = ra.next_rrd; 2413 ra.next_rrd = NULL; 2414 /* Allocates and loads header into ra.next_rrd */ 2415 err = receive_read_record(&ra); 2416 2417 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2418 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2419 ra.rrd = NULL; 2420 break; 2421 } 2422 2423 bqueue_enqueue(&rwa.q, ra.rrd, 2424 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2425 ra.rrd = NULL; 2426 } 2427 if (ra.next_rrd == NULL) 2428 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2429 ra.next_rrd->eos_marker = B_TRUE; 2430 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2431 2432 mutex_enter(&rwa.mutex); 2433 while (!rwa.done) { 2434 cv_wait(&rwa.cv, &rwa.mutex); 2435 } 2436 mutex_exit(&rwa.mutex); 2437 2438 cv_destroy(&rwa.cv); 2439 mutex_destroy(&rwa.mutex); 2440 bqueue_destroy(&rwa.q); 2441 if (err == 0) 2442 err = rwa.err; 2443 2444 out: 2445 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2446 zfs_onexit_fd_rele(cleanup_fd); 2447 2448 if (err != 0) { 2449 /* 2450 * destroy what we created, so we don't leave it in the 2451 * inconsistent restoring state. 2452 */ 2453 dmu_recv_cleanup_ds(drc); 2454 } 2455 2456 *voffp = ra.voff; 2457 for (struct receive_ign_obj_node *n = 2458 list_remove_head(&ra.ignore_obj_list); n != NULL; 2459 n = list_remove_head(&ra.ignore_obj_list)) { 2460 kmem_free(n, sizeof (*n)); 2461 } 2462 list_destroy(&ra.ignore_obj_list); 2463 return (err); 2464 } 2465 2466 static int 2467 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2468 { 2469 dmu_recv_cookie_t *drc = arg; 2470 dsl_pool_t *dp = dmu_tx_pool(tx); 2471 int error; 2472 2473 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2474 2475 if (!drc->drc_newfs) { 2476 dsl_dataset_t *origin_head; 2477 2478 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2479 if (error != 0) 2480 return (error); 2481 if (drc->drc_force) { 2482 /* 2483 * We will destroy any snapshots in tofs (i.e. before 2484 * origin_head) that are after the origin (which is 2485 * the snap before drc_ds, because drc_ds can not 2486 * have any snaps of its own). 2487 */ 2488 uint64_t obj; 2489 2490 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2491 while (obj != 2492 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2493 dsl_dataset_t *snap; 2494 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2495 &snap); 2496 if (error != 0) 2497 break; 2498 if (snap->ds_dir != origin_head->ds_dir) 2499 error = SET_ERROR(EINVAL); 2500 if (error == 0) { 2501 error = dsl_destroy_snapshot_check_impl( 2502 snap, B_FALSE); 2503 } 2504 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2505 dsl_dataset_rele(snap, FTAG); 2506 if (error != 0) 2507 break; 2508 } 2509 if (error != 0) { 2510 dsl_dataset_rele(origin_head, FTAG); 2511 return (error); 2512 } 2513 } 2514 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2515 origin_head, drc->drc_force, drc->drc_owner, tx); 2516 if (error != 0) { 2517 dsl_dataset_rele(origin_head, FTAG); 2518 return (error); 2519 } 2520 error = dsl_dataset_snapshot_check_impl(origin_head, 2521 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2522 dsl_dataset_rele(origin_head, FTAG); 2523 if (error != 0) 2524 return (error); 2525 2526 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2527 } else { 2528 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2529 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2530 } 2531 return (error); 2532 } 2533 2534 static void 2535 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2536 { 2537 dmu_recv_cookie_t *drc = arg; 2538 dsl_pool_t *dp = dmu_tx_pool(tx); 2539 2540 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2541 tx, "snap=%s", drc->drc_tosnap); 2542 2543 if (!drc->drc_newfs) { 2544 dsl_dataset_t *origin_head; 2545 2546 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2547 &origin_head)); 2548 2549 if (drc->drc_force) { 2550 /* 2551 * Destroy any snapshots of drc_tofs (origin_head) 2552 * after the origin (the snap before drc_ds). 2553 */ 2554 uint64_t obj; 2555 2556 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2557 while (obj != 2558 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2559 dsl_dataset_t *snap; 2560 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2561 &snap)); 2562 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2563 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2564 dsl_destroy_snapshot_sync_impl(snap, 2565 B_FALSE, tx); 2566 dsl_dataset_rele(snap, FTAG); 2567 } 2568 } 2569 VERIFY3P(drc->drc_ds->ds_prev, ==, 2570 origin_head->ds_prev); 2571 2572 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2573 origin_head, tx); 2574 dsl_dataset_snapshot_sync_impl(origin_head, 2575 drc->drc_tosnap, tx); 2576 2577 /* set snapshot's creation time and guid */ 2578 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2579 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2580 drc->drc_drrb->drr_creation_time; 2581 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2582 drc->drc_drrb->drr_toguid; 2583 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2584 ~DS_FLAG_INCONSISTENT; 2585 2586 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2587 dsl_dataset_phys(origin_head)->ds_flags &= 2588 ~DS_FLAG_INCONSISTENT; 2589 2590 dsl_dataset_rele(origin_head, FTAG); 2591 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2592 2593 if (drc->drc_owner != NULL) 2594 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2595 } else { 2596 dsl_dataset_t *ds = drc->drc_ds; 2597 2598 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2599 2600 /* set snapshot's creation time and guid */ 2601 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2602 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2603 drc->drc_drrb->drr_creation_time; 2604 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2605 drc->drc_drrb->drr_toguid; 2606 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2607 ~DS_FLAG_INCONSISTENT; 2608 2609 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2610 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2611 } 2612 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2613 /* 2614 * Release the hold from dmu_recv_begin. This must be done before 2615 * we return to open context, so that when we free the dataset's dnode, 2616 * we can evict its bonus buffer. 2617 */ 2618 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2619 drc->drc_ds = NULL; 2620 } 2621 2622 static int 2623 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 2624 { 2625 dsl_pool_t *dp; 2626 dsl_dataset_t *snapds; 2627 guid_map_entry_t *gmep; 2628 int err; 2629 2630 ASSERT(guid_map != NULL); 2631 2632 err = dsl_pool_hold(name, FTAG, &dp); 2633 if (err != 0) 2634 return (err); 2635 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2636 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 2637 if (err == 0) { 2638 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2639 gmep->gme_ds = snapds; 2640 avl_add(guid_map, gmep); 2641 dsl_dataset_long_hold(snapds, gmep); 2642 } else { 2643 kmem_free(gmep, sizeof (*gmep)); 2644 } 2645 2646 dsl_pool_rele(dp, FTAG); 2647 return (err); 2648 } 2649 2650 static int dmu_recv_end_modified_blocks = 3; 2651 2652 static int 2653 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2654 { 2655 int error; 2656 char name[MAXNAMELEN]; 2657 2658 #ifdef _KERNEL 2659 /* 2660 * We will be destroying the ds; make sure its origin is unmounted if 2661 * necessary. 2662 */ 2663 dsl_dataset_name(drc->drc_ds, name); 2664 zfs_destroy_unmount_origin(name); 2665 #endif 2666 2667 error = dsl_sync_task(drc->drc_tofs, 2668 dmu_recv_end_check, dmu_recv_end_sync, drc, 2669 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2670 2671 if (error != 0) 2672 dmu_recv_cleanup_ds(drc); 2673 return (error); 2674 } 2675 2676 static int 2677 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2678 { 2679 int error; 2680 2681 error = dsl_sync_task(drc->drc_tofs, 2682 dmu_recv_end_check, dmu_recv_end_sync, drc, 2683 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2684 2685 if (error != 0) { 2686 dmu_recv_cleanup_ds(drc); 2687 } else if (drc->drc_guid_to_ds_map != NULL) { 2688 (void) add_ds_to_guidmap(drc->drc_tofs, 2689 drc->drc_guid_to_ds_map, 2690 drc->drc_newsnapobj); 2691 } 2692 return (error); 2693 } 2694 2695 int 2696 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2697 { 2698 drc->drc_owner = owner; 2699 2700 if (drc->drc_newfs) 2701 return (dmu_recv_new_end(drc)); 2702 else 2703 return (dmu_recv_existing_end(drc)); 2704 } 2705 2706 /* 2707 * Return TRUE if this objset is currently being received into. 2708 */ 2709 boolean_t 2710 dmu_objset_is_receiving(objset_t *os) 2711 { 2712 return (os->os_dsl_dataset != NULL && 2713 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2714 } 2715