1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 static const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 struct send_thread_arg { 70 bqueue_t q; 71 dsl_dataset_t *ds; /* Dataset to traverse */ 72 uint64_t fromtxg; /* Traverse from this txg */ 73 int flags; /* flags to pass to traverse_dataset */ 74 int error_code; 75 boolean_t cancel; 76 }; 77 78 struct send_block_record { 79 boolean_t eos_marker; /* Marks the end of the stream */ 80 blkptr_t bp; 81 zbookmark_phys_t zb; 82 uint8_t indblkshift; 83 uint16_t datablkszsec; 84 bqueue_node_t ln; 85 }; 86 87 static int 88 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 89 { 90 dsl_dataset_t *ds = dsp->dsa_os->os_dsl_dataset; 91 ssize_t resid; /* have to get resid to get detailed errno */ 92 ASSERT0(len % 8); 93 94 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 95 (caddr_t)buf, len, 96 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 97 98 mutex_enter(&ds->ds_sendstream_lock); 99 *dsp->dsa_off += len; 100 mutex_exit(&ds->ds_sendstream_lock); 101 102 return (dsp->dsa_err); 103 } 104 105 /* 106 * For all record types except BEGIN, fill in the checksum (overlaid in 107 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 108 * up to the start of the checksum itself. 109 */ 110 static int 111 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 112 { 113 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 114 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 115 fletcher_4_incremental_native(dsp->dsa_drr, 116 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 &dsp->dsa_zc); 118 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 119 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 120 drr_checksum.drr_checksum)); 121 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 122 } 123 fletcher_4_incremental_native(&dsp->dsa_drr-> 124 drr_u.drr_checksum.drr_checksum, 125 sizeof (zio_cksum_t), &dsp->dsa_zc); 126 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 127 return (SET_ERROR(EINTR)); 128 if (payload_len != 0) { 129 fletcher_4_incremental_native(payload, payload_len, 130 &dsp->dsa_zc); 131 if (dump_bytes(dsp, payload, payload_len) != 0) 132 return (SET_ERROR(EINTR)); 133 } 134 return (0); 135 } 136 137 static int 138 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 139 uint64_t length) 140 { 141 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 142 143 /* 144 * When we receive a free record, dbuf_free_range() assumes 145 * that the receiving system doesn't have any dbufs in the range 146 * being freed. This is always true because there is a one-record 147 * constraint: we only send one WRITE record for any given 148 * object+offset. We know that the one-record constraint is 149 * true because we always send data in increasing order by 150 * object,offset. 151 * 152 * If the increasing-order constraint ever changes, we should find 153 * another way to assert that the one-record constraint is still 154 * satisfied. 155 */ 156 ASSERT(object > dsp->dsa_last_data_object || 157 (object == dsp->dsa_last_data_object && 158 offset > dsp->dsa_last_data_offset)); 159 160 /* 161 * If we are doing a non-incremental send, then there can't 162 * be any data in the dataset we're receiving into. Therefore 163 * a free record would simply be a no-op. Save space by not 164 * sending it to begin with. 165 */ 166 if (!dsp->dsa_incremental) 167 return (0); 168 169 if (length != -1ULL && offset + length < offset) 170 length = -1ULL; 171 172 /* 173 * If there is a pending op, but it's not PENDING_FREE, push it out, 174 * since free block aggregation can only be done for blocks of the 175 * same type (i.e., DRR_FREE records can only be aggregated with 176 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 177 * aggregated with other DRR_FREEOBJECTS records. 178 */ 179 if (dsp->dsa_pending_op != PENDING_NONE && 180 dsp->dsa_pending_op != PENDING_FREE) { 181 if (dump_record(dsp, NULL, 0) != 0) 182 return (SET_ERROR(EINTR)); 183 dsp->dsa_pending_op = PENDING_NONE; 184 } 185 186 if (dsp->dsa_pending_op == PENDING_FREE) { 187 /* 188 * There should never be a PENDING_FREE if length is -1 189 * (because dump_dnode is the only place where this 190 * function is called with a -1, and only after flushing 191 * any pending record). 192 */ 193 ASSERT(length != -1ULL); 194 /* 195 * Check to see whether this free block can be aggregated 196 * with pending one. 197 */ 198 if (drrf->drr_object == object && drrf->drr_offset + 199 drrf->drr_length == offset) { 200 drrf->drr_length += length; 201 return (0); 202 } else { 203 /* not a continuation. Push out pending record */ 204 if (dump_record(dsp, NULL, 0) != 0) 205 return (SET_ERROR(EINTR)); 206 dsp->dsa_pending_op = PENDING_NONE; 207 } 208 } 209 /* create a FREE record and make it pending */ 210 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 211 dsp->dsa_drr->drr_type = DRR_FREE; 212 drrf->drr_object = object; 213 drrf->drr_offset = offset; 214 drrf->drr_length = length; 215 drrf->drr_toguid = dsp->dsa_toguid; 216 if (length == -1ULL) { 217 if (dump_record(dsp, NULL, 0) != 0) 218 return (SET_ERROR(EINTR)); 219 } else { 220 dsp->dsa_pending_op = PENDING_FREE; 221 } 222 223 return (0); 224 } 225 226 static int 227 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 228 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 229 { 230 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 231 232 /* 233 * We send data in increasing object, offset order. 234 * See comment in dump_free() for details. 235 */ 236 ASSERT(object > dsp->dsa_last_data_object || 237 (object == dsp->dsa_last_data_object && 238 offset > dsp->dsa_last_data_offset)); 239 dsp->dsa_last_data_object = object; 240 dsp->dsa_last_data_offset = offset + blksz - 1; 241 242 /* 243 * If there is any kind of pending aggregation (currently either 244 * a grouping of free objects or free blocks), push it out to 245 * the stream, since aggregation can't be done across operations 246 * of different types. 247 */ 248 if (dsp->dsa_pending_op != PENDING_NONE) { 249 if (dump_record(dsp, NULL, 0) != 0) 250 return (SET_ERROR(EINTR)); 251 dsp->dsa_pending_op = PENDING_NONE; 252 } 253 /* write a WRITE record */ 254 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 255 dsp->dsa_drr->drr_type = DRR_WRITE; 256 drrw->drr_object = object; 257 drrw->drr_type = type; 258 drrw->drr_offset = offset; 259 drrw->drr_length = blksz; 260 drrw->drr_toguid = dsp->dsa_toguid; 261 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 262 /* 263 * There's no pre-computed checksum for partial-block 264 * writes or embedded BP's, so (like 265 * fletcher4-checkummed blocks) userland will have to 266 * compute a dedup-capable checksum itself. 267 */ 268 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 269 } else { 270 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 271 if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup) 272 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 273 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 274 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 275 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 276 drrw->drr_key.ddk_cksum = bp->blk_cksum; 277 } 278 279 if (dump_record(dsp, data, blksz) != 0) 280 return (SET_ERROR(EINTR)); 281 return (0); 282 } 283 284 static int 285 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 286 int blksz, const blkptr_t *bp) 287 { 288 char buf[BPE_PAYLOAD_SIZE]; 289 struct drr_write_embedded *drrw = 290 &(dsp->dsa_drr->drr_u.drr_write_embedded); 291 292 if (dsp->dsa_pending_op != PENDING_NONE) { 293 if (dump_record(dsp, NULL, 0) != 0) 294 return (EINTR); 295 dsp->dsa_pending_op = PENDING_NONE; 296 } 297 298 ASSERT(BP_IS_EMBEDDED(bp)); 299 300 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 301 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 302 drrw->drr_object = object; 303 drrw->drr_offset = offset; 304 drrw->drr_length = blksz; 305 drrw->drr_toguid = dsp->dsa_toguid; 306 drrw->drr_compression = BP_GET_COMPRESS(bp); 307 drrw->drr_etype = BPE_GET_ETYPE(bp); 308 drrw->drr_lsize = BPE_GET_LSIZE(bp); 309 drrw->drr_psize = BPE_GET_PSIZE(bp); 310 311 decode_embedded_bp_compressed(bp, buf); 312 313 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 314 return (EINTR); 315 return (0); 316 } 317 318 static int 319 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 320 { 321 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 322 323 if (dsp->dsa_pending_op != PENDING_NONE) { 324 if (dump_record(dsp, NULL, 0) != 0) 325 return (SET_ERROR(EINTR)); 326 dsp->dsa_pending_op = PENDING_NONE; 327 } 328 329 /* write a SPILL record */ 330 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 331 dsp->dsa_drr->drr_type = DRR_SPILL; 332 drrs->drr_object = object; 333 drrs->drr_length = blksz; 334 drrs->drr_toguid = dsp->dsa_toguid; 335 336 if (dump_record(dsp, data, blksz) != 0) 337 return (SET_ERROR(EINTR)); 338 return (0); 339 } 340 341 static int 342 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 343 { 344 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 345 346 /* See comment in dump_free(). */ 347 if (!dsp->dsa_incremental) 348 return (0); 349 350 /* 351 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 352 * push it out, since free block aggregation can only be done for 353 * blocks of the same type (i.e., DRR_FREE records can only be 354 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 355 * can only be aggregated with other DRR_FREEOBJECTS records. 356 */ 357 if (dsp->dsa_pending_op != PENDING_NONE && 358 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 359 if (dump_record(dsp, NULL, 0) != 0) 360 return (SET_ERROR(EINTR)); 361 dsp->dsa_pending_op = PENDING_NONE; 362 } 363 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 364 /* 365 * See whether this free object array can be aggregated 366 * with pending one 367 */ 368 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 369 drrfo->drr_numobjs += numobjs; 370 return (0); 371 } else { 372 /* can't be aggregated. Push out pending record */ 373 if (dump_record(dsp, NULL, 0) != 0) 374 return (SET_ERROR(EINTR)); 375 dsp->dsa_pending_op = PENDING_NONE; 376 } 377 } 378 379 /* write a FREEOBJECTS record */ 380 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 381 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 382 drrfo->drr_firstobj = firstobj; 383 drrfo->drr_numobjs = numobjs; 384 drrfo->drr_toguid = dsp->dsa_toguid; 385 386 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 387 388 return (0); 389 } 390 391 static int 392 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 393 { 394 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 395 396 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 397 return (dump_freeobjects(dsp, object, 1)); 398 399 if (dsp->dsa_pending_op != PENDING_NONE) { 400 if (dump_record(dsp, NULL, 0) != 0) 401 return (SET_ERROR(EINTR)); 402 dsp->dsa_pending_op = PENDING_NONE; 403 } 404 405 /* write an OBJECT record */ 406 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 407 dsp->dsa_drr->drr_type = DRR_OBJECT; 408 drro->drr_object = object; 409 drro->drr_type = dnp->dn_type; 410 drro->drr_bonustype = dnp->dn_bonustype; 411 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 412 drro->drr_bonuslen = dnp->dn_bonuslen; 413 drro->drr_checksumtype = dnp->dn_checksum; 414 drro->drr_compress = dnp->dn_compress; 415 drro->drr_toguid = dsp->dsa_toguid; 416 417 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 418 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 419 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 420 421 if (dump_record(dsp, DN_BONUS(dnp), 422 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 423 return (SET_ERROR(EINTR)); 424 } 425 426 /* Free anything past the end of the file. */ 427 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 428 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 429 return (SET_ERROR(EINTR)); 430 if (dsp->dsa_err != 0) 431 return (SET_ERROR(EINTR)); 432 return (0); 433 } 434 435 static boolean_t 436 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 437 { 438 if (!BP_IS_EMBEDDED(bp)) 439 return (B_FALSE); 440 441 /* 442 * Compression function must be legacy, or explicitly enabled. 443 */ 444 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 445 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 446 return (B_FALSE); 447 448 /* 449 * Embed type must be explicitly enabled. 450 */ 451 switch (BPE_GET_ETYPE(bp)) { 452 case BP_EMBEDDED_TYPE_DATA: 453 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 454 return (B_TRUE); 455 break; 456 default: 457 return (B_FALSE); 458 } 459 return (B_FALSE); 460 } 461 462 /* 463 * This is the callback function to traverse_dataset that acts as the worker 464 * thread for dmu_send_impl. 465 */ 466 /*ARGSUSED*/ 467 static int 468 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 469 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 470 { 471 struct send_thread_arg *sta = arg; 472 struct send_block_record *record; 473 uint64_t record_size; 474 int err = 0; 475 476 if (sta->cancel) 477 return (SET_ERROR(EINTR)); 478 479 if (bp == NULL) { 480 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 481 return (0); 482 } else if (zb->zb_level < 0) { 483 return (0); 484 } 485 486 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 487 record->eos_marker = B_FALSE; 488 record->bp = *bp; 489 record->zb = *zb; 490 record->indblkshift = dnp->dn_indblkshift; 491 record->datablkszsec = dnp->dn_datablkszsec; 492 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 493 bqueue_enqueue(&sta->q, record, record_size); 494 495 return (err); 496 } 497 498 /* 499 * This function kicks off the traverse_dataset. It also handles setting the 500 * error code of the thread in case something goes wrong, and pushes the End of 501 * Stream record when the traverse_dataset call has finished. If there is no 502 * dataset to traverse, the thread immediately pushes End of Stream marker. 503 */ 504 static void 505 send_traverse_thread(void *arg) 506 { 507 struct send_thread_arg *st_arg = arg; 508 int err; 509 struct send_block_record *data; 510 511 if (st_arg->ds != NULL) { 512 err = traverse_dataset(st_arg->ds, st_arg->fromtxg, 513 st_arg->flags, send_cb, arg); 514 if (err != EINTR) 515 st_arg->error_code = err; 516 } 517 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 518 data->eos_marker = B_TRUE; 519 bqueue_enqueue(&st_arg->q, data, 1); 520 } 521 522 /* 523 * This function actually handles figuring out what kind of record needs to be 524 * dumped, reading the data (which has hopefully been prefetched), and calling 525 * the appropriate helper function. 526 */ 527 static int 528 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 529 { 530 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 531 const blkptr_t *bp = &data->bp; 532 const zbookmark_phys_t *zb = &data->zb; 533 uint8_t indblkshift = data->indblkshift; 534 uint16_t dblkszsec = data->datablkszsec; 535 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 536 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 537 int err = 0; 538 539 ASSERT3U(zb->zb_level, >=, 0); 540 541 if (zb->zb_object != DMU_META_DNODE_OBJECT && 542 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 543 return (0); 544 } else if (BP_IS_HOLE(bp) && 545 zb->zb_object == DMU_META_DNODE_OBJECT) { 546 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 547 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 548 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 549 } else if (BP_IS_HOLE(bp)) { 550 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 551 uint64_t offset = zb->zb_blkid * span; 552 err = dump_free(dsa, zb->zb_object, offset, span); 553 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 554 return (0); 555 } else if (type == DMU_OT_DNODE) { 556 int blksz = BP_GET_LSIZE(bp); 557 arc_flags_t aflags = ARC_FLAG_WAIT; 558 arc_buf_t *abuf; 559 560 ASSERT0(zb->zb_level); 561 562 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 563 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 564 &aflags, zb) != 0) 565 return (SET_ERROR(EIO)); 566 567 dnode_phys_t *blk = abuf->b_data; 568 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 569 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 570 err = dump_dnode(dsa, dnobj + i, blk + i); 571 if (err != 0) 572 break; 573 } 574 (void) arc_buf_remove_ref(abuf, &abuf); 575 } else if (type == DMU_OT_SA) { 576 arc_flags_t aflags = ARC_FLAG_WAIT; 577 arc_buf_t *abuf; 578 int blksz = BP_GET_LSIZE(bp); 579 580 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 581 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 582 &aflags, zb) != 0) 583 return (SET_ERROR(EIO)); 584 585 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 586 (void) arc_buf_remove_ref(abuf, &abuf); 587 } else if (backup_do_embed(dsa, bp)) { 588 /* it's an embedded level-0 block of a regular object */ 589 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 590 ASSERT0(zb->zb_level); 591 err = dump_write_embedded(dsa, zb->zb_object, 592 zb->zb_blkid * blksz, blksz, bp); 593 } else { 594 /* it's a level-0 block of a regular object */ 595 arc_flags_t aflags = ARC_FLAG_WAIT; 596 arc_buf_t *abuf; 597 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 598 uint64_t offset; 599 600 ASSERT0(zb->zb_level); 601 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 602 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 603 &aflags, zb) != 0) { 604 if (zfs_send_corrupt_data) { 605 /* Send a block filled with 0x"zfs badd bloc" */ 606 abuf = arc_buf_alloc(spa, blksz, &abuf, 607 ARC_BUFC_DATA); 608 uint64_t *ptr; 609 for (ptr = abuf->b_data; 610 (char *)ptr < (char *)abuf->b_data + blksz; 611 ptr++) 612 *ptr = 0x2f5baddb10cULL; 613 } else { 614 return (SET_ERROR(EIO)); 615 } 616 } 617 618 offset = zb->zb_blkid * blksz; 619 620 if (!(dsa->dsa_featureflags & 621 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 622 blksz > SPA_OLD_MAXBLOCKSIZE) { 623 char *buf = abuf->b_data; 624 while (blksz > 0 && err == 0) { 625 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 626 err = dump_write(dsa, type, zb->zb_object, 627 offset, n, NULL, buf); 628 offset += n; 629 buf += n; 630 blksz -= n; 631 } 632 } else { 633 err = dump_write(dsa, type, zb->zb_object, 634 offset, blksz, bp, abuf->b_data); 635 } 636 (void) arc_buf_remove_ref(abuf, &abuf); 637 } 638 639 ASSERT(err == 0 || err == EINTR); 640 return (err); 641 } 642 643 /* 644 * Pop the new data off the queue, and free the old data. 645 */ 646 static struct send_block_record * 647 get_next_record(bqueue_t *bq, struct send_block_record *data) 648 { 649 struct send_block_record *tmp = bqueue_dequeue(bq); 650 kmem_free(data, sizeof (*data)); 651 return (tmp); 652 } 653 654 /* 655 * Actually do the bulk of the work in a zfs send. 656 * 657 * Note: Releases dp using the specified tag. 658 */ 659 static int 660 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 661 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, boolean_t embedok, 662 boolean_t large_block_ok, int outfd, vnode_t *vp, offset_t *off) 663 { 664 objset_t *os; 665 dmu_replay_record_t *drr; 666 dmu_sendarg_t *dsp; 667 int err; 668 uint64_t fromtxg = 0; 669 uint64_t featureflags = 0; 670 struct send_thread_arg to_arg; 671 672 err = dmu_objset_from_ds(to_ds, &os); 673 if (err != 0) { 674 dsl_pool_rele(dp, tag); 675 return (err); 676 } 677 678 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 679 drr->drr_type = DRR_BEGIN; 680 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 681 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 682 DMU_SUBSTREAM); 683 684 #ifdef _KERNEL 685 if (dmu_objset_type(os) == DMU_OST_ZFS) { 686 uint64_t version; 687 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 688 kmem_free(drr, sizeof (dmu_replay_record_t)); 689 dsl_pool_rele(dp, tag); 690 return (SET_ERROR(EINVAL)); 691 } 692 if (version >= ZPL_VERSION_SA) { 693 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 694 } 695 } 696 #endif 697 698 if (large_block_ok && to_ds->ds_large_blocks) 699 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 700 if (embedok && 701 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 702 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 703 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 704 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 705 } 706 707 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 708 featureflags); 709 710 drr->drr_u.drr_begin.drr_creation_time = 711 dsl_dataset_phys(to_ds)->ds_creation_time; 712 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 713 if (is_clone) 714 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 715 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 716 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 717 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 718 719 if (ancestor_zb != NULL) { 720 drr->drr_u.drr_begin.drr_fromguid = 721 ancestor_zb->zbm_guid; 722 fromtxg = ancestor_zb->zbm_creation_txg; 723 } 724 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 725 if (!to_ds->ds_is_snapshot) { 726 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 727 sizeof (drr->drr_u.drr_begin.drr_toname)); 728 } 729 730 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 731 732 dsp->dsa_drr = drr; 733 dsp->dsa_vp = vp; 734 dsp->dsa_outfd = outfd; 735 dsp->dsa_proc = curproc; 736 dsp->dsa_os = os; 737 dsp->dsa_off = off; 738 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 739 dsp->dsa_pending_op = PENDING_NONE; 740 dsp->dsa_incremental = (ancestor_zb != NULL); 741 dsp->dsa_featureflags = featureflags; 742 743 mutex_enter(&to_ds->ds_sendstream_lock); 744 list_insert_head(&to_ds->ds_sendstreams, dsp); 745 mutex_exit(&to_ds->ds_sendstream_lock); 746 747 dsl_dataset_long_hold(to_ds, FTAG); 748 dsl_pool_rele(dp, tag); 749 750 if (dump_record(dsp, NULL, 0) != 0) { 751 err = dsp->dsa_err; 752 goto out; 753 } 754 755 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 756 offsetof(struct send_block_record, ln)); 757 to_arg.error_code = 0; 758 to_arg.cancel = B_FALSE; 759 to_arg.ds = to_ds; 760 to_arg.fromtxg = fromtxg; 761 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 762 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 763 TS_RUN, minclsyspri); 764 765 struct send_block_record *to_data; 766 to_data = bqueue_dequeue(&to_arg.q); 767 768 while (!to_data->eos_marker && err == 0) { 769 err = do_dump(dsp, to_data); 770 to_data = get_next_record(&to_arg.q, to_data); 771 if (issig(JUSTLOOKING) && issig(FORREAL)) 772 err = EINTR; 773 } 774 775 if (err != 0) { 776 to_arg.cancel = B_TRUE; 777 while (!to_data->eos_marker) { 778 to_data = get_next_record(&to_arg.q, to_data); 779 } 780 } 781 kmem_free(to_data, sizeof (*to_data)); 782 783 bqueue_destroy(&to_arg.q); 784 785 if (err == 0 && to_arg.error_code != 0) 786 err = to_arg.error_code; 787 788 if (err != 0) 789 goto out; 790 791 if (dsp->dsa_pending_op != PENDING_NONE) 792 if (dump_record(dsp, NULL, 0) != 0) 793 err = SET_ERROR(EINTR); 794 795 if (err != 0) { 796 if (err == EINTR && dsp->dsa_err != 0) 797 err = dsp->dsa_err; 798 goto out; 799 } 800 801 bzero(drr, sizeof (dmu_replay_record_t)); 802 drr->drr_type = DRR_END; 803 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 804 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 805 806 if (dump_record(dsp, NULL, 0) != 0) 807 err = dsp->dsa_err; 808 809 out: 810 mutex_enter(&to_ds->ds_sendstream_lock); 811 list_remove(&to_ds->ds_sendstreams, dsp); 812 mutex_exit(&to_ds->ds_sendstream_lock); 813 814 kmem_free(drr, sizeof (dmu_replay_record_t)); 815 kmem_free(dsp, sizeof (dmu_sendarg_t)); 816 817 dsl_dataset_long_rele(to_ds, FTAG); 818 819 return (err); 820 } 821 822 int 823 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 824 boolean_t embedok, boolean_t large_block_ok, 825 int outfd, vnode_t *vp, offset_t *off) 826 { 827 dsl_pool_t *dp; 828 dsl_dataset_t *ds; 829 dsl_dataset_t *fromds = NULL; 830 int err; 831 832 err = dsl_pool_hold(pool, FTAG, &dp); 833 if (err != 0) 834 return (err); 835 836 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 837 if (err != 0) { 838 dsl_pool_rele(dp, FTAG); 839 return (err); 840 } 841 842 if (fromsnap != 0) { 843 zfs_bookmark_phys_t zb; 844 boolean_t is_clone; 845 846 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 847 if (err != 0) { 848 dsl_dataset_rele(ds, FTAG); 849 dsl_pool_rele(dp, FTAG); 850 return (err); 851 } 852 if (!dsl_dataset_is_before(ds, fromds, 0)) 853 err = SET_ERROR(EXDEV); 854 zb.zbm_creation_time = 855 dsl_dataset_phys(fromds)->ds_creation_time; 856 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 857 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 858 is_clone = (fromds->ds_dir != ds->ds_dir); 859 dsl_dataset_rele(fromds, FTAG); 860 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 861 embedok, large_block_ok, outfd, vp, off); 862 } else { 863 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 864 embedok, large_block_ok, outfd, vp, off); 865 } 866 dsl_dataset_rele(ds, FTAG); 867 return (err); 868 } 869 870 int 871 dmu_send(const char *tosnap, const char *fromsnap, 872 boolean_t embedok, boolean_t large_block_ok, 873 int outfd, vnode_t *vp, offset_t *off) 874 { 875 dsl_pool_t *dp; 876 dsl_dataset_t *ds; 877 int err; 878 boolean_t owned = B_FALSE; 879 880 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 881 return (SET_ERROR(EINVAL)); 882 883 err = dsl_pool_hold(tosnap, FTAG, &dp); 884 if (err != 0) 885 return (err); 886 887 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 888 /* 889 * We are sending a filesystem or volume. Ensure 890 * that it doesn't change by owning the dataset. 891 */ 892 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 893 owned = B_TRUE; 894 } else { 895 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 896 } 897 if (err != 0) { 898 dsl_pool_rele(dp, FTAG); 899 return (err); 900 } 901 902 if (fromsnap != NULL) { 903 zfs_bookmark_phys_t zb; 904 boolean_t is_clone = B_FALSE; 905 int fsnamelen = strchr(tosnap, '@') - tosnap; 906 907 /* 908 * If the fromsnap is in a different filesystem, then 909 * mark the send stream as a clone. 910 */ 911 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 912 (fromsnap[fsnamelen] != '@' && 913 fromsnap[fsnamelen] != '#')) { 914 is_clone = B_TRUE; 915 } 916 917 if (strchr(fromsnap, '@')) { 918 dsl_dataset_t *fromds; 919 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 920 if (err == 0) { 921 if (!dsl_dataset_is_before(ds, fromds, 0)) 922 err = SET_ERROR(EXDEV); 923 zb.zbm_creation_time = 924 dsl_dataset_phys(fromds)->ds_creation_time; 925 zb.zbm_creation_txg = 926 dsl_dataset_phys(fromds)->ds_creation_txg; 927 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 928 is_clone = (ds->ds_dir != fromds->ds_dir); 929 dsl_dataset_rele(fromds, FTAG); 930 } 931 } else { 932 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 933 } 934 if (err != 0) { 935 dsl_dataset_rele(ds, FTAG); 936 dsl_pool_rele(dp, FTAG); 937 return (err); 938 } 939 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 940 embedok, large_block_ok, outfd, vp, off); 941 } else { 942 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 943 embedok, large_block_ok, outfd, vp, off); 944 } 945 if (owned) 946 dsl_dataset_disown(ds, FTAG); 947 else 948 dsl_dataset_rele(ds, FTAG); 949 return (err); 950 } 951 952 static int 953 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 954 uint64_t *sizep) 955 { 956 int err; 957 /* 958 * Assume that space (both on-disk and in-stream) is dominated by 959 * data. We will adjust for indirect blocks and the copies property, 960 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 961 */ 962 963 /* 964 * Subtract out approximate space used by indirect blocks. 965 * Assume most space is used by data blocks (non-indirect, non-dnode). 966 * Assume all blocks are recordsize. Assume ditto blocks and 967 * internal fragmentation counter out compression. 968 * 969 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 970 * block, which we observe in practice. 971 */ 972 uint64_t recordsize; 973 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 974 if (err != 0) 975 return (err); 976 size -= size / recordsize * sizeof (blkptr_t); 977 978 /* Add in the space for the record associated with each block. */ 979 size += size / recordsize * sizeof (dmu_replay_record_t); 980 981 *sizep = size; 982 983 return (0); 984 } 985 986 int 987 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 988 { 989 dsl_pool_t *dp = ds->ds_dir->dd_pool; 990 int err; 991 uint64_t size; 992 993 ASSERT(dsl_pool_config_held(dp)); 994 995 /* tosnap must be a snapshot */ 996 if (!ds->ds_is_snapshot) 997 return (SET_ERROR(EINVAL)); 998 999 /* fromsnap, if provided, must be a snapshot */ 1000 if (fromds != NULL && !fromds->ds_is_snapshot) 1001 return (SET_ERROR(EINVAL)); 1002 1003 /* 1004 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1005 * or the origin's fs. 1006 */ 1007 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1008 return (SET_ERROR(EXDEV)); 1009 1010 /* Get uncompressed size estimate of changed data. */ 1011 if (fromds == NULL) { 1012 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1013 } else { 1014 uint64_t used, comp; 1015 err = dsl_dataset_space_written(fromds, ds, 1016 &used, &comp, &size); 1017 if (err != 0) 1018 return (err); 1019 } 1020 1021 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1022 return (err); 1023 } 1024 1025 /* 1026 * Simple callback used to traverse the blocks of a snapshot and sum their 1027 * uncompressed size 1028 */ 1029 /* ARGSUSED */ 1030 static int 1031 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1032 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1033 { 1034 uint64_t *spaceptr = arg; 1035 if (bp != NULL && !BP_IS_HOLE(bp)) { 1036 *spaceptr += BP_GET_UCSIZE(bp); 1037 } 1038 return (0); 1039 } 1040 1041 /* 1042 * Given a desination snapshot and a TXG, calculate the approximate size of a 1043 * send stream sent from that TXG. from_txg may be zero, indicating that the 1044 * whole snapshot will be sent. 1045 */ 1046 int 1047 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1048 uint64_t *sizep) 1049 { 1050 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1051 int err; 1052 uint64_t size = 0; 1053 1054 ASSERT(dsl_pool_config_held(dp)); 1055 1056 /* tosnap must be a snapshot */ 1057 if (!dsl_dataset_is_snapshot(ds)) 1058 return (SET_ERROR(EINVAL)); 1059 1060 /* verify that from_txg is before the provided snapshot was taken */ 1061 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1062 return (SET_ERROR(EXDEV)); 1063 } 1064 1065 /* 1066 * traverse the blocks of the snapshot with birth times after 1067 * from_txg, summing their uncompressed size 1068 */ 1069 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1070 dmu_calculate_send_traversal, &size); 1071 if (err) 1072 return (err); 1073 1074 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1075 return (err); 1076 } 1077 1078 typedef struct dmu_recv_begin_arg { 1079 const char *drba_origin; 1080 dmu_recv_cookie_t *drba_cookie; 1081 cred_t *drba_cred; 1082 uint64_t drba_snapobj; 1083 } dmu_recv_begin_arg_t; 1084 1085 static int 1086 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1087 uint64_t fromguid) 1088 { 1089 uint64_t val; 1090 int error; 1091 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1092 1093 /* temporary clone name must not exist */ 1094 error = zap_lookup(dp->dp_meta_objset, 1095 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1096 8, 1, &val); 1097 if (error != ENOENT) 1098 return (error == 0 ? EBUSY : error); 1099 1100 /* new snapshot name must not exist */ 1101 error = zap_lookup(dp->dp_meta_objset, 1102 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1103 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1104 if (error != ENOENT) 1105 return (error == 0 ? EEXIST : error); 1106 1107 /* 1108 * Check snapshot limit before receiving. We'll recheck again at the 1109 * end, but might as well abort before receiving if we're already over 1110 * the limit. 1111 * 1112 * Note that we do not check the file system limit with 1113 * dsl_dir_fscount_check because the temporary %clones don't count 1114 * against that limit. 1115 */ 1116 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1117 NULL, drba->drba_cred); 1118 if (error != 0) 1119 return (error); 1120 1121 if (fromguid != 0) { 1122 dsl_dataset_t *snap; 1123 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1124 1125 /* Find snapshot in this dir that matches fromguid. */ 1126 while (obj != 0) { 1127 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1128 &snap); 1129 if (error != 0) 1130 return (SET_ERROR(ENODEV)); 1131 if (snap->ds_dir != ds->ds_dir) { 1132 dsl_dataset_rele(snap, FTAG); 1133 return (SET_ERROR(ENODEV)); 1134 } 1135 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1136 break; 1137 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1138 dsl_dataset_rele(snap, FTAG); 1139 } 1140 if (obj == 0) 1141 return (SET_ERROR(ENODEV)); 1142 1143 if (drba->drba_cookie->drc_force) { 1144 drba->drba_snapobj = obj; 1145 } else { 1146 /* 1147 * If we are not forcing, there must be no 1148 * changes since fromsnap. 1149 */ 1150 if (dsl_dataset_modified_since_snap(ds, snap)) { 1151 dsl_dataset_rele(snap, FTAG); 1152 return (SET_ERROR(ETXTBSY)); 1153 } 1154 drba->drba_snapobj = ds->ds_prev->ds_object; 1155 } 1156 1157 dsl_dataset_rele(snap, FTAG); 1158 } else { 1159 /* if full, then must be forced */ 1160 if (!drba->drba_cookie->drc_force) 1161 return (SET_ERROR(EEXIST)); 1162 /* start from $ORIGIN@$ORIGIN, if supported */ 1163 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1164 dp->dp_origin_snap->ds_object : 0; 1165 } 1166 1167 return (0); 1168 1169 } 1170 1171 static int 1172 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1173 { 1174 dmu_recv_begin_arg_t *drba = arg; 1175 dsl_pool_t *dp = dmu_tx_pool(tx); 1176 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1177 uint64_t fromguid = drrb->drr_fromguid; 1178 int flags = drrb->drr_flags; 1179 int error; 1180 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1181 dsl_dataset_t *ds; 1182 const char *tofs = drba->drba_cookie->drc_tofs; 1183 1184 /* already checked */ 1185 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1186 1187 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1188 DMU_COMPOUNDSTREAM || 1189 drrb->drr_type >= DMU_OST_NUMTYPES || 1190 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1191 return (SET_ERROR(EINVAL)); 1192 1193 /* Verify pool version supports SA if SA_SPILL feature set */ 1194 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1195 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1196 return (SET_ERROR(ENOTSUP)); 1197 1198 /* 1199 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1200 * record to a plan WRITE record, so the pool must have the 1201 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1202 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1203 */ 1204 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1205 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1206 return (SET_ERROR(ENOTSUP)); 1207 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1208 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1209 return (SET_ERROR(ENOTSUP)); 1210 1211 /* 1212 * The receiving code doesn't know how to translate large blocks 1213 * to smaller ones, so the pool must have the LARGE_BLOCKS 1214 * feature enabled if the stream has LARGE_BLOCKS. 1215 */ 1216 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1217 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1218 return (SET_ERROR(ENOTSUP)); 1219 1220 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1221 if (error == 0) { 1222 /* target fs already exists; recv into temp clone */ 1223 1224 /* Can't recv a clone into an existing fs */ 1225 if (flags & DRR_FLAG_CLONE) { 1226 dsl_dataset_rele(ds, FTAG); 1227 return (SET_ERROR(EINVAL)); 1228 } 1229 1230 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1231 dsl_dataset_rele(ds, FTAG); 1232 } else if (error == ENOENT) { 1233 /* target fs does not exist; must be a full backup or clone */ 1234 char buf[MAXNAMELEN]; 1235 1236 /* 1237 * If it's a non-clone incremental, we are missing the 1238 * target fs, so fail the recv. 1239 */ 1240 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1241 drba->drba_origin)) 1242 return (SET_ERROR(ENOENT)); 1243 1244 /* Open the parent of tofs */ 1245 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1246 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1247 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1248 if (error != 0) 1249 return (error); 1250 1251 /* 1252 * Check filesystem and snapshot limits before receiving. We'll 1253 * recheck snapshot limits again at the end (we create the 1254 * filesystems and increment those counts during begin_sync). 1255 */ 1256 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1257 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1258 if (error != 0) { 1259 dsl_dataset_rele(ds, FTAG); 1260 return (error); 1261 } 1262 1263 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1264 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1265 if (error != 0) { 1266 dsl_dataset_rele(ds, FTAG); 1267 return (error); 1268 } 1269 1270 if (drba->drba_origin != NULL) { 1271 dsl_dataset_t *origin; 1272 error = dsl_dataset_hold(dp, drba->drba_origin, 1273 FTAG, &origin); 1274 if (error != 0) { 1275 dsl_dataset_rele(ds, FTAG); 1276 return (error); 1277 } 1278 if (!origin->ds_is_snapshot) { 1279 dsl_dataset_rele(origin, FTAG); 1280 dsl_dataset_rele(ds, FTAG); 1281 return (SET_ERROR(EINVAL)); 1282 } 1283 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1284 dsl_dataset_rele(origin, FTAG); 1285 dsl_dataset_rele(ds, FTAG); 1286 return (SET_ERROR(ENODEV)); 1287 } 1288 dsl_dataset_rele(origin, FTAG); 1289 } 1290 dsl_dataset_rele(ds, FTAG); 1291 error = 0; 1292 } 1293 return (error); 1294 } 1295 1296 static void 1297 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1298 { 1299 dmu_recv_begin_arg_t *drba = arg; 1300 dsl_pool_t *dp = dmu_tx_pool(tx); 1301 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1302 const char *tofs = drba->drba_cookie->drc_tofs; 1303 dsl_dataset_t *ds, *newds; 1304 uint64_t dsobj; 1305 int error; 1306 uint64_t crflags; 1307 1308 crflags = (drrb->drr_flags & DRR_FLAG_CI_DATA) ? 1309 DS_FLAG_CI_DATASET : 0; 1310 1311 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1312 if (error == 0) { 1313 /* create temporary clone */ 1314 dsl_dataset_t *snap = NULL; 1315 if (drba->drba_snapobj != 0) { 1316 VERIFY0(dsl_dataset_hold_obj(dp, 1317 drba->drba_snapobj, FTAG, &snap)); 1318 } 1319 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1320 snap, crflags, drba->drba_cred, tx); 1321 if (drba->drba_snapobj != 0) 1322 dsl_dataset_rele(snap, FTAG); 1323 dsl_dataset_rele(ds, FTAG); 1324 } else { 1325 dsl_dir_t *dd; 1326 const char *tail; 1327 dsl_dataset_t *origin = NULL; 1328 1329 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1330 1331 if (drba->drba_origin != NULL) { 1332 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1333 FTAG, &origin)); 1334 } 1335 1336 /* Create new dataset. */ 1337 dsobj = dsl_dataset_create_sync(dd, 1338 strrchr(tofs, '/') + 1, 1339 origin, crflags, drba->drba_cred, tx); 1340 if (origin != NULL) 1341 dsl_dataset_rele(origin, FTAG); 1342 dsl_dir_rele(dd, FTAG); 1343 drba->drba_cookie->drc_newfs = B_TRUE; 1344 } 1345 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1346 1347 if ((DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1348 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1349 !newds->ds_large_blocks) { 1350 dsl_dataset_activate_large_blocks_sync_impl(dsobj, tx); 1351 newds->ds_large_blocks = B_TRUE; 1352 } 1353 1354 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1355 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1356 1357 /* 1358 * If we actually created a non-clone, we need to create the 1359 * objset in our new dataset. 1360 */ 1361 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1362 (void) dmu_objset_create_impl(dp->dp_spa, 1363 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1364 } 1365 1366 drba->drba_cookie->drc_ds = newds; 1367 1368 spa_history_log_internal_ds(newds, "receive", tx, ""); 1369 } 1370 1371 /* 1372 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1373 * succeeds; otherwise we will leak the holds on the datasets. 1374 */ 1375 int 1376 dmu_recv_begin(char *tofs, char *tosnap, struct drr_begin *drrb, 1377 boolean_t force, char *origin, dmu_recv_cookie_t *drc) 1378 { 1379 dmu_recv_begin_arg_t drba = { 0 }; 1380 dmu_replay_record_t *drr; 1381 1382 bzero(drc, sizeof (dmu_recv_cookie_t)); 1383 drc->drc_drrb = drrb; 1384 drc->drc_tosnap = tosnap; 1385 drc->drc_tofs = tofs; 1386 drc->drc_force = force; 1387 drc->drc_cred = CRED(); 1388 1389 if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) 1390 drc->drc_byteswap = B_TRUE; 1391 else if (drrb->drr_magic != DMU_BACKUP_MAGIC) 1392 return (SET_ERROR(EINVAL)); 1393 1394 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 1395 drr->drr_type = DRR_BEGIN; 1396 drr->drr_u.drr_begin = *drc->drc_drrb; 1397 if (drc->drc_byteswap) { 1398 fletcher_4_incremental_byteswap(drr, 1399 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1400 } else { 1401 fletcher_4_incremental_native(drr, 1402 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1403 } 1404 kmem_free(drr, sizeof (dmu_replay_record_t)); 1405 1406 if (drc->drc_byteswap) { 1407 drrb->drr_magic = BSWAP_64(drrb->drr_magic); 1408 drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); 1409 drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); 1410 drrb->drr_type = BSWAP_32(drrb->drr_type); 1411 drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); 1412 drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); 1413 } 1414 1415 drba.drba_origin = origin; 1416 drba.drba_cookie = drc; 1417 drba.drba_cred = CRED(); 1418 1419 return (dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, 1420 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1421 } 1422 1423 struct receive_record_arg { 1424 dmu_replay_record_t header; 1425 void *payload; /* Pointer to a buffer containing the payload */ 1426 /* 1427 * If the record is a write, pointer to the arc_buf_t containing the 1428 * payload. 1429 */ 1430 arc_buf_t *write_buf; 1431 int payload_size; 1432 boolean_t eos_marker; /* Marks the end of the stream */ 1433 bqueue_node_t node; 1434 }; 1435 1436 struct receive_writer_arg { 1437 objset_t *os; 1438 boolean_t byteswap; 1439 bqueue_t q; 1440 /* 1441 * These three args are used to signal to the main thread that we're 1442 * done. 1443 */ 1444 kmutex_t mutex; 1445 kcondvar_t cv; 1446 boolean_t done; 1447 int err; 1448 /* A map from guid to dataset to help handle dedup'd streams. */ 1449 avl_tree_t *guid_to_ds_map; 1450 }; 1451 1452 struct receive_arg { 1453 objset_t *os; 1454 vnode_t *vp; /* The vnode to read the stream from */ 1455 uint64_t voff; /* The current offset in the stream */ 1456 /* 1457 * A record that has had its payload read in, but hasn't yet been handed 1458 * off to the worker thread. 1459 */ 1460 struct receive_record_arg *rrd; 1461 /* A record that has had its header read in, but not its payload. */ 1462 struct receive_record_arg *next_rrd; 1463 zio_cksum_t cksum; 1464 zio_cksum_t prev_cksum; 1465 int err; 1466 boolean_t byteswap; 1467 /* Sorted list of objects not to issue prefetches for. */ 1468 list_t ignore_obj_list; 1469 }; 1470 1471 struct receive_ign_obj_node { 1472 list_node_t node; 1473 uint64_t object; 1474 }; 1475 1476 typedef struct guid_map_entry { 1477 uint64_t guid; 1478 dsl_dataset_t *gme_ds; 1479 avl_node_t avlnode; 1480 } guid_map_entry_t; 1481 1482 static int 1483 guid_compare(const void *arg1, const void *arg2) 1484 { 1485 const guid_map_entry_t *gmep1 = arg1; 1486 const guid_map_entry_t *gmep2 = arg2; 1487 1488 if (gmep1->guid < gmep2->guid) 1489 return (-1); 1490 else if (gmep1->guid > gmep2->guid) 1491 return (1); 1492 return (0); 1493 } 1494 1495 static void 1496 free_guid_map_onexit(void *arg) 1497 { 1498 avl_tree_t *ca = arg; 1499 void *cookie = NULL; 1500 guid_map_entry_t *gmep; 1501 1502 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1503 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1504 dsl_dataset_rele(gmep->gme_ds, gmep); 1505 kmem_free(gmep, sizeof (guid_map_entry_t)); 1506 } 1507 avl_destroy(ca); 1508 kmem_free(ca, sizeof (avl_tree_t)); 1509 } 1510 1511 static int 1512 receive_read(struct receive_arg *ra, int len, void *buf) 1513 { 1514 int done = 0; 1515 1516 /* some things will require 8-byte alignment, so everything must */ 1517 ASSERT0(len % 8); 1518 1519 while (done < len) { 1520 ssize_t resid; 1521 1522 ra->err = vn_rdwr(UIO_READ, ra->vp, 1523 (char *)buf + done, len - done, 1524 ra->voff, UIO_SYSSPACE, FAPPEND, 1525 RLIM64_INFINITY, CRED(), &resid); 1526 1527 if (resid == len - done) 1528 ra->err = SET_ERROR(EINVAL); 1529 ra->voff += len - done - resid; 1530 done = len - resid; 1531 if (ra->err != 0) 1532 return (ra->err); 1533 } 1534 1535 ASSERT3U(done, ==, len); 1536 return (0); 1537 } 1538 1539 static void 1540 byteswap_record(dmu_replay_record_t *drr) 1541 { 1542 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1543 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1544 drr->drr_type = BSWAP_32(drr->drr_type); 1545 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1546 1547 switch (drr->drr_type) { 1548 case DRR_BEGIN: 1549 DO64(drr_begin.drr_magic); 1550 DO64(drr_begin.drr_versioninfo); 1551 DO64(drr_begin.drr_creation_time); 1552 DO32(drr_begin.drr_type); 1553 DO32(drr_begin.drr_flags); 1554 DO64(drr_begin.drr_toguid); 1555 DO64(drr_begin.drr_fromguid); 1556 break; 1557 case DRR_OBJECT: 1558 DO64(drr_object.drr_object); 1559 DO32(drr_object.drr_type); 1560 DO32(drr_object.drr_bonustype); 1561 DO32(drr_object.drr_blksz); 1562 DO32(drr_object.drr_bonuslen); 1563 DO64(drr_object.drr_toguid); 1564 break; 1565 case DRR_FREEOBJECTS: 1566 DO64(drr_freeobjects.drr_firstobj); 1567 DO64(drr_freeobjects.drr_numobjs); 1568 DO64(drr_freeobjects.drr_toguid); 1569 break; 1570 case DRR_WRITE: 1571 DO64(drr_write.drr_object); 1572 DO32(drr_write.drr_type); 1573 DO64(drr_write.drr_offset); 1574 DO64(drr_write.drr_length); 1575 DO64(drr_write.drr_toguid); 1576 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1577 DO64(drr_write.drr_key.ddk_prop); 1578 break; 1579 case DRR_WRITE_BYREF: 1580 DO64(drr_write_byref.drr_object); 1581 DO64(drr_write_byref.drr_offset); 1582 DO64(drr_write_byref.drr_length); 1583 DO64(drr_write_byref.drr_toguid); 1584 DO64(drr_write_byref.drr_refguid); 1585 DO64(drr_write_byref.drr_refobject); 1586 DO64(drr_write_byref.drr_refoffset); 1587 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1588 drr_key.ddk_cksum); 1589 DO64(drr_write_byref.drr_key.ddk_prop); 1590 break; 1591 case DRR_WRITE_EMBEDDED: 1592 DO64(drr_write_embedded.drr_object); 1593 DO64(drr_write_embedded.drr_offset); 1594 DO64(drr_write_embedded.drr_length); 1595 DO64(drr_write_embedded.drr_toguid); 1596 DO32(drr_write_embedded.drr_lsize); 1597 DO32(drr_write_embedded.drr_psize); 1598 break; 1599 case DRR_FREE: 1600 DO64(drr_free.drr_object); 1601 DO64(drr_free.drr_offset); 1602 DO64(drr_free.drr_length); 1603 DO64(drr_free.drr_toguid); 1604 break; 1605 case DRR_SPILL: 1606 DO64(drr_spill.drr_object); 1607 DO64(drr_spill.drr_length); 1608 DO64(drr_spill.drr_toguid); 1609 break; 1610 case DRR_END: 1611 DO64(drr_end.drr_toguid); 1612 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1613 break; 1614 } 1615 1616 if (drr->drr_type != DRR_BEGIN) { 1617 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1618 } 1619 1620 #undef DO64 1621 #undef DO32 1622 } 1623 1624 static inline uint8_t 1625 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1626 { 1627 if (bonus_type == DMU_OT_SA) { 1628 return (1); 1629 } else { 1630 return (1 + 1631 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1632 } 1633 } 1634 1635 static int 1636 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1637 void *data) 1638 { 1639 dmu_object_info_t doi; 1640 dmu_tx_t *tx; 1641 uint64_t object; 1642 int err; 1643 1644 if (drro->drr_type == DMU_OT_NONE || 1645 !DMU_OT_IS_VALID(drro->drr_type) || 1646 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1647 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1648 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1649 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1650 drro->drr_blksz < SPA_MINBLOCKSIZE || 1651 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1652 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1653 return (SET_ERROR(EINVAL)); 1654 } 1655 1656 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1657 1658 if (err != 0 && err != ENOENT) 1659 return (SET_ERROR(EINVAL)); 1660 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1661 1662 /* 1663 * If we are losing blkptrs or changing the block size this must 1664 * be a new file instance. We must clear out the previous file 1665 * contents before we can change this type of metadata in the dnode. 1666 */ 1667 if (err == 0) { 1668 int nblkptr; 1669 1670 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1671 drro->drr_bonuslen); 1672 1673 if (drro->drr_blksz != doi.doi_data_block_size || 1674 nblkptr < doi.doi_nblkptr) { 1675 err = dmu_free_long_range(rwa->os, drro->drr_object, 1676 0, DMU_OBJECT_END); 1677 if (err != 0) 1678 return (SET_ERROR(EINVAL)); 1679 } 1680 } 1681 1682 tx = dmu_tx_create(rwa->os); 1683 dmu_tx_hold_bonus(tx, object); 1684 err = dmu_tx_assign(tx, TXG_WAIT); 1685 if (err != 0) { 1686 dmu_tx_abort(tx); 1687 return (err); 1688 } 1689 1690 if (object == DMU_NEW_OBJECT) { 1691 /* currently free, want to be allocated */ 1692 err = dmu_object_claim(rwa->os, drro->drr_object, 1693 drro->drr_type, drro->drr_blksz, 1694 drro->drr_bonustype, drro->drr_bonuslen, tx); 1695 } else if (drro->drr_type != doi.doi_type || 1696 drro->drr_blksz != doi.doi_data_block_size || 1697 drro->drr_bonustype != doi.doi_bonus_type || 1698 drro->drr_bonuslen != doi.doi_bonus_size) { 1699 /* currently allocated, but with different properties */ 1700 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1701 drro->drr_type, drro->drr_blksz, 1702 drro->drr_bonustype, drro->drr_bonuslen, tx); 1703 } 1704 if (err != 0) { 1705 dmu_tx_commit(tx); 1706 return (SET_ERROR(EINVAL)); 1707 } 1708 1709 dmu_object_set_checksum(rwa->os, drro->drr_object, 1710 drro->drr_checksumtype, tx); 1711 dmu_object_set_compress(rwa->os, drro->drr_object, 1712 drro->drr_compress, tx); 1713 1714 if (data != NULL) { 1715 dmu_buf_t *db; 1716 1717 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1718 dmu_buf_will_dirty(db, tx); 1719 1720 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1721 bcopy(data, db->db_data, drro->drr_bonuslen); 1722 if (rwa->byteswap) { 1723 dmu_object_byteswap_t byteswap = 1724 DMU_OT_BYTESWAP(drro->drr_bonustype); 1725 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1726 drro->drr_bonuslen); 1727 } 1728 dmu_buf_rele(db, FTAG); 1729 } 1730 dmu_tx_commit(tx); 1731 return (0); 1732 } 1733 1734 /* ARGSUSED */ 1735 static int 1736 receive_freeobjects(struct receive_writer_arg *rwa, 1737 struct drr_freeobjects *drrfo) 1738 { 1739 uint64_t obj; 1740 1741 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1742 return (SET_ERROR(EINVAL)); 1743 1744 for (obj = drrfo->drr_firstobj; 1745 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 1746 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1747 int err; 1748 1749 if (dmu_object_info(rwa->os, obj, NULL) != 0) 1750 continue; 1751 1752 err = dmu_free_long_object(rwa->os, obj); 1753 if (err != 0) 1754 return (err); 1755 } 1756 return (0); 1757 } 1758 1759 static int 1760 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1761 arc_buf_t *abuf) 1762 { 1763 dmu_tx_t *tx; 1764 int err; 1765 1766 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 1767 !DMU_OT_IS_VALID(drrw->drr_type)) 1768 return (SET_ERROR(EINVAL)); 1769 1770 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1771 return (SET_ERROR(EINVAL)); 1772 1773 tx = dmu_tx_create(rwa->os); 1774 1775 dmu_tx_hold_write(tx, drrw->drr_object, 1776 drrw->drr_offset, drrw->drr_length); 1777 err = dmu_tx_assign(tx, TXG_WAIT); 1778 if (err != 0) { 1779 dmu_tx_abort(tx); 1780 return (err); 1781 } 1782 if (rwa->byteswap) { 1783 dmu_object_byteswap_t byteswap = 1784 DMU_OT_BYTESWAP(drrw->drr_type); 1785 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1786 drrw->drr_length); 1787 } 1788 1789 dmu_buf_t *bonus; 1790 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 1791 return (SET_ERROR(EINVAL)); 1792 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 1793 dmu_tx_commit(tx); 1794 dmu_buf_rele(bonus, FTAG); 1795 return (0); 1796 } 1797 1798 /* 1799 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1800 * streams to refer to a copy of the data that is already on the 1801 * system because it came in earlier in the stream. This function 1802 * finds the earlier copy of the data, and uses that copy instead of 1803 * data from the stream to fulfill this write. 1804 */ 1805 static int 1806 receive_write_byref(struct receive_writer_arg *rwa, 1807 struct drr_write_byref *drrwbr) 1808 { 1809 dmu_tx_t *tx; 1810 int err; 1811 guid_map_entry_t gmesrch; 1812 guid_map_entry_t *gmep; 1813 avl_index_t where; 1814 objset_t *ref_os = NULL; 1815 dmu_buf_t *dbp; 1816 1817 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1818 return (SET_ERROR(EINVAL)); 1819 1820 /* 1821 * If the GUID of the referenced dataset is different from the 1822 * GUID of the target dataset, find the referenced dataset. 1823 */ 1824 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1825 gmesrch.guid = drrwbr->drr_refguid; 1826 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1827 &where)) == NULL) { 1828 return (SET_ERROR(EINVAL)); 1829 } 1830 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1831 return (SET_ERROR(EINVAL)); 1832 } else { 1833 ref_os = rwa->os; 1834 } 1835 1836 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1837 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 1838 if (err != 0) 1839 return (err); 1840 1841 tx = dmu_tx_create(rwa->os); 1842 1843 dmu_tx_hold_write(tx, drrwbr->drr_object, 1844 drrwbr->drr_offset, drrwbr->drr_length); 1845 err = dmu_tx_assign(tx, TXG_WAIT); 1846 if (err != 0) { 1847 dmu_tx_abort(tx); 1848 return (err); 1849 } 1850 dmu_write(rwa->os, drrwbr->drr_object, 1851 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1852 dmu_buf_rele(dbp, FTAG); 1853 dmu_tx_commit(tx); 1854 return (0); 1855 } 1856 1857 static int 1858 receive_write_embedded(struct receive_writer_arg *rwa, 1859 struct drr_write_embedded *drrwnp, void *data) 1860 { 1861 dmu_tx_t *tx; 1862 int err; 1863 1864 if (drrwnp->drr_offset + drrwnp->drr_length < drrwnp->drr_offset) 1865 return (EINVAL); 1866 1867 if (drrwnp->drr_psize > BPE_PAYLOAD_SIZE) 1868 return (EINVAL); 1869 1870 if (drrwnp->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1871 return (EINVAL); 1872 if (drrwnp->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1873 return (EINVAL); 1874 1875 tx = dmu_tx_create(rwa->os); 1876 1877 dmu_tx_hold_write(tx, drrwnp->drr_object, 1878 drrwnp->drr_offset, drrwnp->drr_length); 1879 err = dmu_tx_assign(tx, TXG_WAIT); 1880 if (err != 0) { 1881 dmu_tx_abort(tx); 1882 return (err); 1883 } 1884 1885 dmu_write_embedded(rwa->os, drrwnp->drr_object, 1886 drrwnp->drr_offset, data, drrwnp->drr_etype, 1887 drrwnp->drr_compression, drrwnp->drr_lsize, drrwnp->drr_psize, 1888 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1889 1890 dmu_tx_commit(tx); 1891 return (0); 1892 } 1893 1894 static int 1895 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1896 void *data) 1897 { 1898 dmu_tx_t *tx; 1899 dmu_buf_t *db, *db_spill; 1900 int err; 1901 1902 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1903 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1904 return (SET_ERROR(EINVAL)); 1905 1906 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1907 return (SET_ERROR(EINVAL)); 1908 1909 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1910 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 1911 dmu_buf_rele(db, FTAG); 1912 return (err); 1913 } 1914 1915 tx = dmu_tx_create(rwa->os); 1916 1917 dmu_tx_hold_spill(tx, db->db_object); 1918 1919 err = dmu_tx_assign(tx, TXG_WAIT); 1920 if (err != 0) { 1921 dmu_buf_rele(db, FTAG); 1922 dmu_buf_rele(db_spill, FTAG); 1923 dmu_tx_abort(tx); 1924 return (err); 1925 } 1926 dmu_buf_will_dirty(db_spill, tx); 1927 1928 if (db_spill->db_size < drrs->drr_length) 1929 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1930 drrs->drr_length, tx)); 1931 bcopy(data, db_spill->db_data, drrs->drr_length); 1932 1933 dmu_buf_rele(db, FTAG); 1934 dmu_buf_rele(db_spill, FTAG); 1935 1936 dmu_tx_commit(tx); 1937 return (0); 1938 } 1939 1940 /* ARGSUSED */ 1941 static int 1942 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1943 { 1944 int err; 1945 1946 if (drrf->drr_length != -1ULL && 1947 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1948 return (SET_ERROR(EINVAL)); 1949 1950 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1951 return (SET_ERROR(EINVAL)); 1952 1953 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1954 drrf->drr_offset, drrf->drr_length); 1955 1956 return (err); 1957 } 1958 1959 /* used to destroy the drc_ds on error */ 1960 static void 1961 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1962 { 1963 char name[MAXNAMELEN]; 1964 dsl_dataset_name(drc->drc_ds, name); 1965 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 1966 (void) dsl_destroy_head(name); 1967 } 1968 1969 static void 1970 receive_cksum(struct receive_arg *ra, int len, void *buf) 1971 { 1972 if (ra->byteswap) { 1973 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1974 } else { 1975 fletcher_4_incremental_native(buf, len, &ra->cksum); 1976 } 1977 } 1978 1979 /* 1980 * Read the payload into a buffer of size len, and update the current record's 1981 * payload field. 1982 * Allocate ra->next_rrd and read the next record's header into 1983 * ra->next_rrd->header. 1984 * Verify checksum of payload and next record. 1985 */ 1986 static int 1987 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1988 { 1989 int err; 1990 1991 if (len != 0) { 1992 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1993 ra->rrd->payload = buf; 1994 ra->rrd->payload_size = len; 1995 err = receive_read(ra, len, ra->rrd->payload); 1996 if (err != 0) 1997 return (err); 1998 receive_cksum(ra, len, ra->rrd->payload); 1999 } 2000 2001 ra->prev_cksum = ra->cksum; 2002 2003 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2004 err = receive_read(ra, sizeof (ra->next_rrd->header), 2005 &ra->next_rrd->header); 2006 if (err != 0) { 2007 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2008 ra->next_rrd = NULL; 2009 return (err); 2010 } 2011 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2012 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2013 ra->next_rrd = NULL; 2014 return (SET_ERROR(EINVAL)); 2015 } 2016 2017 /* 2018 * Note: checksum is of everything up to but not including the 2019 * checksum itself. 2020 */ 2021 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2022 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2023 receive_cksum(ra, 2024 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2025 &ra->next_rrd->header); 2026 2027 zio_cksum_t cksum_orig = 2028 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2029 zio_cksum_t *cksump = 2030 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2031 2032 if (ra->byteswap) 2033 byteswap_record(&ra->next_rrd->header); 2034 2035 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2036 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2037 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2038 ra->next_rrd = NULL; 2039 return (SET_ERROR(ECKSUM)); 2040 } 2041 2042 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2043 2044 return (0); 2045 } 2046 2047 /* 2048 * Issue the prefetch reads for any necessary indirect blocks. 2049 * 2050 * We use the object ignore list to tell us whether or not to issue prefetches 2051 * for a given object. We do this for both correctness (in case the blocksize 2052 * of an object has changed) and performance (if the object doesn't exist, don't 2053 * needlessly try to issue prefetches). We also trim the list as we go through 2054 * the stream to prevent it from growing to an unbounded size. 2055 * 2056 * The object numbers within will always be in sorted order, and any write 2057 * records we see will also be in sorted order, but they're not sorted with 2058 * respect to each other (i.e. we can get several object records before 2059 * receiving each object's write records). As a result, once we've reached a 2060 * given object number, we can safely remove any reference to lower object 2061 * numbers in the ignore list. In practice, we receive up to 32 object records 2062 * before receiving write records, so the list can have up to 32 nodes in it. 2063 */ 2064 /* ARGSUSED */ 2065 static void 2066 receive_read_prefetch(struct receive_arg *ra, 2067 uint64_t object, uint64_t offset, uint64_t length) 2068 { 2069 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2070 while (node != NULL && node->object < object) { 2071 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2072 kmem_free(node, sizeof (*node)); 2073 node = list_head(&ra->ignore_obj_list); 2074 } 2075 if (node == NULL || node->object > object) { 2076 dmu_prefetch(ra->os, object, 1, offset, length, 2077 ZIO_PRIORITY_SYNC_READ); 2078 } 2079 } 2080 2081 /* 2082 * Read records off the stream, issuing any necessary prefetches. 2083 */ 2084 static int 2085 receive_read_record(struct receive_arg *ra) 2086 { 2087 int err; 2088 2089 switch (ra->rrd->header.drr_type) { 2090 case DRR_OBJECT: 2091 { 2092 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2093 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2094 void *buf = kmem_zalloc(size, KM_SLEEP); 2095 dmu_object_info_t doi; 2096 err = receive_read_payload_and_next_header(ra, size, buf); 2097 if (err != 0) { 2098 kmem_free(buf, size); 2099 return (err); 2100 } 2101 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2102 /* 2103 * See receive_read_prefetch for an explanation why we're 2104 * storing this object in the ignore_obj_list. 2105 */ 2106 if (err == ENOENT || 2107 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2108 struct receive_ign_obj_node *node = 2109 kmem_zalloc(sizeof (*node), 2110 KM_SLEEP); 2111 node->object = drro->drr_object; 2112 #ifdef ZFS_DEBUG 2113 struct receive_ign_obj_node *last_object = 2114 list_tail(&ra->ignore_obj_list); 2115 uint64_t last_objnum = (last_object != NULL ? 2116 last_object->object : 0); 2117 ASSERT3U(node->object, >, last_objnum); 2118 #endif 2119 list_insert_tail(&ra->ignore_obj_list, node); 2120 err = 0; 2121 } 2122 return (err); 2123 } 2124 case DRR_FREEOBJECTS: 2125 { 2126 err = receive_read_payload_and_next_header(ra, 0, NULL); 2127 return (err); 2128 } 2129 case DRR_WRITE: 2130 { 2131 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2132 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2133 drrw->drr_length); 2134 2135 err = receive_read_payload_and_next_header(ra, 2136 drrw->drr_length, abuf->b_data); 2137 if (err != 0) { 2138 dmu_return_arcbuf(abuf); 2139 return (err); 2140 } 2141 ra->rrd->write_buf = abuf; 2142 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2143 drrw->drr_length); 2144 return (err); 2145 } 2146 case DRR_WRITE_BYREF: 2147 { 2148 struct drr_write_byref *drrwb = 2149 &ra->rrd->header.drr_u.drr_write_byref; 2150 err = receive_read_payload_and_next_header(ra, 0, NULL); 2151 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2152 drrwb->drr_length); 2153 return (err); 2154 } 2155 case DRR_WRITE_EMBEDDED: 2156 { 2157 struct drr_write_embedded *drrwe = 2158 &ra->rrd->header.drr_u.drr_write_embedded; 2159 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2160 void *buf = kmem_zalloc(size, KM_SLEEP); 2161 2162 err = receive_read_payload_and_next_header(ra, size, buf); 2163 if (err != 0) { 2164 kmem_free(buf, size); 2165 return (err); 2166 } 2167 2168 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2169 drrwe->drr_length); 2170 return (err); 2171 } 2172 case DRR_FREE: 2173 { 2174 /* 2175 * It might be beneficial to prefetch indirect blocks here, but 2176 * we don't really have the data to decide for sure. 2177 */ 2178 err = receive_read_payload_and_next_header(ra, 0, NULL); 2179 return (err); 2180 } 2181 case DRR_END: 2182 { 2183 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2184 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2185 return (SET_ERROR(EINVAL)); 2186 return (0); 2187 } 2188 case DRR_SPILL: 2189 { 2190 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2191 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2192 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2193 buf); 2194 if (err != 0) 2195 kmem_free(buf, drrs->drr_length); 2196 return (err); 2197 } 2198 default: 2199 return (SET_ERROR(EINVAL)); 2200 } 2201 } 2202 2203 /* 2204 * Commit the records to the pool. 2205 */ 2206 static int 2207 receive_process_record(struct receive_writer_arg *rwa, 2208 struct receive_record_arg *rrd) 2209 { 2210 int err; 2211 2212 switch (rrd->header.drr_type) { 2213 case DRR_OBJECT: 2214 { 2215 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2216 err = receive_object(rwa, drro, rrd->payload); 2217 kmem_free(rrd->payload, rrd->payload_size); 2218 rrd->payload = NULL; 2219 return (err); 2220 } 2221 case DRR_FREEOBJECTS: 2222 { 2223 struct drr_freeobjects *drrfo = 2224 &rrd->header.drr_u.drr_freeobjects; 2225 return (receive_freeobjects(rwa, drrfo)); 2226 } 2227 case DRR_WRITE: 2228 { 2229 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2230 err = receive_write(rwa, drrw, rrd->write_buf); 2231 /* if receive_write() is successful, it consumes the arc_buf */ 2232 if (err != 0) 2233 dmu_return_arcbuf(rrd->write_buf); 2234 rrd->write_buf = NULL; 2235 rrd->payload = NULL; 2236 return (err); 2237 } 2238 case DRR_WRITE_BYREF: 2239 { 2240 struct drr_write_byref *drrwbr = 2241 &rrd->header.drr_u.drr_write_byref; 2242 return (receive_write_byref(rwa, drrwbr)); 2243 } 2244 case DRR_WRITE_EMBEDDED: 2245 { 2246 struct drr_write_embedded *drrwe = 2247 &rrd->header.drr_u.drr_write_embedded; 2248 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2249 kmem_free(rrd->payload, rrd->payload_size); 2250 rrd->payload = NULL; 2251 return (err); 2252 } 2253 case DRR_FREE: 2254 { 2255 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2256 return (receive_free(rwa, drrf)); 2257 } 2258 case DRR_SPILL: 2259 { 2260 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2261 err = receive_spill(rwa, drrs, rrd->payload); 2262 kmem_free(rrd->payload, rrd->payload_size); 2263 rrd->payload = NULL; 2264 return (err); 2265 } 2266 default: 2267 return (SET_ERROR(EINVAL)); 2268 } 2269 } 2270 2271 /* 2272 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2273 * receive_process_record When we're done, signal the main thread and exit. 2274 */ 2275 static void 2276 receive_writer_thread(void *arg) 2277 { 2278 struct receive_writer_arg *rwa = arg; 2279 struct receive_record_arg *rrd; 2280 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2281 rrd = bqueue_dequeue(&rwa->q)) { 2282 /* 2283 * If there's an error, the main thread will stop putting things 2284 * on the queue, but we need to clear everything in it before we 2285 * can exit. 2286 */ 2287 if (rwa->err == 0) { 2288 rwa->err = receive_process_record(rwa, rrd); 2289 } else if (rrd->write_buf != NULL) { 2290 dmu_return_arcbuf(rrd->write_buf); 2291 rrd->write_buf = NULL; 2292 rrd->payload = NULL; 2293 } else if (rrd->payload != NULL) { 2294 kmem_free(rrd->payload, rrd->payload_size); 2295 rrd->payload = NULL; 2296 } 2297 kmem_free(rrd, sizeof (*rrd)); 2298 } 2299 kmem_free(rrd, sizeof (*rrd)); 2300 mutex_enter(&rwa->mutex); 2301 rwa->done = B_TRUE; 2302 cv_signal(&rwa->cv); 2303 mutex_exit(&rwa->mutex); 2304 } 2305 2306 /* 2307 * Read in the stream's records, one by one, and apply them to the pool. There 2308 * are two threads involved; the thread that calls this function will spin up a 2309 * worker thread, read the records off the stream one by one, and issue 2310 * prefetches for any necessary indirect blocks. It will then push the records 2311 * onto an internal blocking queue. The worker thread will pull the records off 2312 * the queue, and actually write the data into the DMU. This way, the worker 2313 * thread doesn't have to wait for reads to complete, since everything it needs 2314 * (the indirect blocks) will be prefetched. 2315 * 2316 * NB: callers *must* call dmu_recv_end() if this succeeds. 2317 */ 2318 int 2319 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2320 int cleanup_fd, uint64_t *action_handlep) 2321 { 2322 int err = 0; 2323 struct receive_arg ra = { 0 }; 2324 struct receive_writer_arg rwa = { 0 }; 2325 int featureflags; 2326 2327 ra.byteswap = drc->drc_byteswap; 2328 ra.cksum = drc->drc_cksum; 2329 ra.vp = vp; 2330 ra.voff = *voffp; 2331 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2332 offsetof(struct receive_ign_obj_node, node)); 2333 2334 /* these were verified in dmu_recv_begin */ 2335 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2336 DMU_SUBSTREAM); 2337 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2338 2339 /* 2340 * Open the objset we are modifying. 2341 */ 2342 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2343 2344 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2345 2346 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2347 2348 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2349 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2350 minor_t minor; 2351 2352 if (cleanup_fd == -1) { 2353 ra.err = SET_ERROR(EBADF); 2354 goto out; 2355 } 2356 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2357 if (ra.err != 0) { 2358 cleanup_fd = -1; 2359 goto out; 2360 } 2361 2362 if (*action_handlep == 0) { 2363 rwa.guid_to_ds_map = 2364 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2365 avl_create(rwa.guid_to_ds_map, guid_compare, 2366 sizeof (guid_map_entry_t), 2367 offsetof(guid_map_entry_t, avlnode)); 2368 err = zfs_onexit_add_cb(minor, 2369 free_guid_map_onexit, rwa.guid_to_ds_map, 2370 action_handlep); 2371 if (ra.err != 0) 2372 goto out; 2373 } else { 2374 err = zfs_onexit_cb_data(minor, *action_handlep, 2375 (void **)&rwa.guid_to_ds_map); 2376 if (ra.err != 0) 2377 goto out; 2378 } 2379 2380 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2381 } 2382 2383 err = receive_read_payload_and_next_header(&ra, 0, NULL); 2384 if (err) 2385 goto out; 2386 2387 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2388 offsetof(struct receive_record_arg, node)); 2389 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2390 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2391 rwa.os = ra.os; 2392 rwa.byteswap = drc->drc_byteswap; 2393 2394 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2395 TS_RUN, minclsyspri); 2396 /* 2397 * We're reading rwa.err without locks, which is safe since we are the 2398 * only reader, and the worker thread is the only writer. It's ok if we 2399 * miss a write for an iteration or two of the loop, since the writer 2400 * thread will keep freeing records we send it until we send it an eos 2401 * marker. 2402 * 2403 * We can leave this loop in 3 ways: First, if rwa.err is 2404 * non-zero. In that case, the writer thread will free the rrd we just 2405 * pushed. Second, if we're interrupted; in that case, either it's the 2406 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2407 * has been handed off to the writer thread who will free it. Finally, 2408 * if receive_read_record fails or we're at the end of the stream, then 2409 * we free ra.rrd and exit. 2410 */ 2411 while (rwa.err == 0) { 2412 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2413 err = SET_ERROR(EINTR); 2414 break; 2415 } 2416 2417 ASSERT3P(ra.rrd, ==, NULL); 2418 ra.rrd = ra.next_rrd; 2419 ra.next_rrd = NULL; 2420 /* Allocates and loads header into ra.next_rrd */ 2421 err = receive_read_record(&ra); 2422 2423 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2424 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2425 ra.rrd = NULL; 2426 break; 2427 } 2428 2429 bqueue_enqueue(&rwa.q, ra.rrd, 2430 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2431 ra.rrd = NULL; 2432 } 2433 if (ra.next_rrd == NULL) 2434 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2435 ra.next_rrd->eos_marker = B_TRUE; 2436 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2437 2438 mutex_enter(&rwa.mutex); 2439 while (!rwa.done) { 2440 cv_wait(&rwa.cv, &rwa.mutex); 2441 } 2442 mutex_exit(&rwa.mutex); 2443 2444 cv_destroy(&rwa.cv); 2445 mutex_destroy(&rwa.mutex); 2446 bqueue_destroy(&rwa.q); 2447 if (err == 0) 2448 err = rwa.err; 2449 2450 out: 2451 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2452 zfs_onexit_fd_rele(cleanup_fd); 2453 2454 if (err != 0) { 2455 /* 2456 * destroy what we created, so we don't leave it in the 2457 * inconsistent restoring state. 2458 */ 2459 dmu_recv_cleanup_ds(drc); 2460 } 2461 2462 *voffp = ra.voff; 2463 for (struct receive_ign_obj_node *n = 2464 list_remove_head(&ra.ignore_obj_list); n != NULL; 2465 n = list_remove_head(&ra.ignore_obj_list)) { 2466 kmem_free(n, sizeof (*n)); 2467 } 2468 list_destroy(&ra.ignore_obj_list); 2469 return (err); 2470 } 2471 2472 static int 2473 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2474 { 2475 dmu_recv_cookie_t *drc = arg; 2476 dsl_pool_t *dp = dmu_tx_pool(tx); 2477 int error; 2478 2479 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2480 2481 if (!drc->drc_newfs) { 2482 dsl_dataset_t *origin_head; 2483 2484 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2485 if (error != 0) 2486 return (error); 2487 if (drc->drc_force) { 2488 /* 2489 * We will destroy any snapshots in tofs (i.e. before 2490 * origin_head) that are after the origin (which is 2491 * the snap before drc_ds, because drc_ds can not 2492 * have any snaps of its own). 2493 */ 2494 uint64_t obj; 2495 2496 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2497 while (obj != 2498 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2499 dsl_dataset_t *snap; 2500 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2501 &snap); 2502 if (error != 0) 2503 break; 2504 if (snap->ds_dir != origin_head->ds_dir) 2505 error = SET_ERROR(EINVAL); 2506 if (error == 0) { 2507 error = dsl_destroy_snapshot_check_impl( 2508 snap, B_FALSE); 2509 } 2510 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2511 dsl_dataset_rele(snap, FTAG); 2512 if (error != 0) 2513 break; 2514 } 2515 if (error != 0) { 2516 dsl_dataset_rele(origin_head, FTAG); 2517 return (error); 2518 } 2519 } 2520 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2521 origin_head, drc->drc_force, drc->drc_owner, tx); 2522 if (error != 0) { 2523 dsl_dataset_rele(origin_head, FTAG); 2524 return (error); 2525 } 2526 error = dsl_dataset_snapshot_check_impl(origin_head, 2527 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2528 dsl_dataset_rele(origin_head, FTAG); 2529 if (error != 0) 2530 return (error); 2531 2532 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2533 } else { 2534 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2535 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2536 } 2537 return (error); 2538 } 2539 2540 static void 2541 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2542 { 2543 dmu_recv_cookie_t *drc = arg; 2544 dsl_pool_t *dp = dmu_tx_pool(tx); 2545 2546 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2547 tx, "snap=%s", drc->drc_tosnap); 2548 2549 if (!drc->drc_newfs) { 2550 dsl_dataset_t *origin_head; 2551 2552 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2553 &origin_head)); 2554 2555 if (drc->drc_force) { 2556 /* 2557 * Destroy any snapshots of drc_tofs (origin_head) 2558 * after the origin (the snap before drc_ds). 2559 */ 2560 uint64_t obj; 2561 2562 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2563 while (obj != 2564 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2565 dsl_dataset_t *snap; 2566 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2567 &snap)); 2568 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2569 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2570 dsl_destroy_snapshot_sync_impl(snap, 2571 B_FALSE, tx); 2572 dsl_dataset_rele(snap, FTAG); 2573 } 2574 } 2575 VERIFY3P(drc->drc_ds->ds_prev, ==, 2576 origin_head->ds_prev); 2577 2578 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2579 origin_head, tx); 2580 dsl_dataset_snapshot_sync_impl(origin_head, 2581 drc->drc_tosnap, tx); 2582 2583 /* set snapshot's creation time and guid */ 2584 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2585 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2586 drc->drc_drrb->drr_creation_time; 2587 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2588 drc->drc_drrb->drr_toguid; 2589 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2590 ~DS_FLAG_INCONSISTENT; 2591 2592 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2593 dsl_dataset_phys(origin_head)->ds_flags &= 2594 ~DS_FLAG_INCONSISTENT; 2595 2596 dsl_dataset_rele(origin_head, FTAG); 2597 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2598 2599 if (drc->drc_owner != NULL) 2600 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2601 } else { 2602 dsl_dataset_t *ds = drc->drc_ds; 2603 2604 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2605 2606 /* set snapshot's creation time and guid */ 2607 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2608 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2609 drc->drc_drrb->drr_creation_time; 2610 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2611 drc->drc_drrb->drr_toguid; 2612 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2613 ~DS_FLAG_INCONSISTENT; 2614 2615 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2616 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2617 } 2618 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2619 /* 2620 * Release the hold from dmu_recv_begin. This must be done before 2621 * we return to open context, so that when we free the dataset's dnode, 2622 * we can evict its bonus buffer. 2623 */ 2624 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2625 drc->drc_ds = NULL; 2626 } 2627 2628 static int 2629 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 2630 { 2631 dsl_pool_t *dp; 2632 dsl_dataset_t *snapds; 2633 guid_map_entry_t *gmep; 2634 int err; 2635 2636 ASSERT(guid_map != NULL); 2637 2638 err = dsl_pool_hold(name, FTAG, &dp); 2639 if (err != 0) 2640 return (err); 2641 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2642 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 2643 if (err == 0) { 2644 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2645 gmep->gme_ds = snapds; 2646 avl_add(guid_map, gmep); 2647 dsl_dataset_long_hold(snapds, gmep); 2648 } else { 2649 kmem_free(gmep, sizeof (*gmep)); 2650 } 2651 2652 dsl_pool_rele(dp, FTAG); 2653 return (err); 2654 } 2655 2656 static int dmu_recv_end_modified_blocks = 3; 2657 2658 static int 2659 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2660 { 2661 int error; 2662 char name[MAXNAMELEN]; 2663 2664 #ifdef _KERNEL 2665 /* 2666 * We will be destroying the ds; make sure its origin is unmounted if 2667 * necessary. 2668 */ 2669 dsl_dataset_name(drc->drc_ds, name); 2670 zfs_destroy_unmount_origin(name); 2671 #endif 2672 2673 error = dsl_sync_task(drc->drc_tofs, 2674 dmu_recv_end_check, dmu_recv_end_sync, drc, 2675 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2676 2677 if (error != 0) 2678 dmu_recv_cleanup_ds(drc); 2679 return (error); 2680 } 2681 2682 static int 2683 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2684 { 2685 int error; 2686 2687 error = dsl_sync_task(drc->drc_tofs, 2688 dmu_recv_end_check, dmu_recv_end_sync, drc, 2689 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 2690 2691 if (error != 0) { 2692 dmu_recv_cleanup_ds(drc); 2693 } else if (drc->drc_guid_to_ds_map != NULL) { 2694 (void) add_ds_to_guidmap(drc->drc_tofs, 2695 drc->drc_guid_to_ds_map, 2696 drc->drc_newsnapobj); 2697 } 2698 return (error); 2699 } 2700 2701 int 2702 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2703 { 2704 drc->drc_owner = owner; 2705 2706 if (drc->drc_newfs) 2707 return (dmu_recv_new_end(drc)); 2708 else 2709 return (dmu_recv_existing_end(drc)); 2710 } 2711 2712 /* 2713 * Return TRUE if this objset is currently being received into. 2714 */ 2715 boolean_t 2716 dmu_objset_is_receiving(objset_t *os) 2717 { 2718 return (os->os_dsl_dataset != NULL && 2719 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2720 } 2721