1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 #define BP_SPAN(datablkszsec, indblkshift, level) \ 70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 71 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 72 73 static void byteswap_record(dmu_replay_record_t *drr); 74 75 struct send_thread_arg { 76 bqueue_t q; 77 dsl_dataset_t *ds; /* Dataset to traverse */ 78 uint64_t fromtxg; /* Traverse from this txg */ 79 int flags; /* flags to pass to traverse_dataset */ 80 int error_code; 81 boolean_t cancel; 82 zbookmark_phys_t resume; 83 }; 84 85 struct send_block_record { 86 boolean_t eos_marker; /* Marks the end of the stream */ 87 blkptr_t bp; 88 zbookmark_phys_t zb; 89 uint8_t indblkshift; 90 uint16_t datablkszsec; 91 bqueue_node_t ln; 92 }; 93 94 static int 95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 96 { 97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 98 ssize_t resid; /* have to get resid to get detailed errno */ 99 ASSERT0(len % 8); 100 101 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 102 (caddr_t)buf, len, 103 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 104 105 mutex_enter(&ds->ds_sendstream_lock); 106 *dsp->dsa_off += len; 107 mutex_exit(&ds->ds_sendstream_lock); 108 109 return (dsp->dsa_err); 110 } 111 112 /* 113 * For all record types except BEGIN, fill in the checksum (overlaid in 114 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 115 * up to the start of the checksum itself. 116 */ 117 static int 118 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 119 { 120 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 121 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 122 fletcher_4_incremental_native(dsp->dsa_drr, 123 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 124 &dsp->dsa_zc); 125 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 126 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 127 drr_checksum.drr_checksum)); 128 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 129 } 130 fletcher_4_incremental_native(&dsp->dsa_drr-> 131 drr_u.drr_checksum.drr_checksum, 132 sizeof (zio_cksum_t), &dsp->dsa_zc); 133 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 134 return (SET_ERROR(EINTR)); 135 if (payload_len != 0) { 136 fletcher_4_incremental_native(payload, payload_len, 137 &dsp->dsa_zc); 138 if (dump_bytes(dsp, payload, payload_len) != 0) 139 return (SET_ERROR(EINTR)); 140 } 141 return (0); 142 } 143 144 /* 145 * Fill in the drr_free struct, or perform aggregation if the previous record is 146 * also a free record, and the two are adjacent. 147 * 148 * Note that we send free records even for a full send, because we want to be 149 * able to receive a full send as a clone, which requires a list of all the free 150 * and freeobject records that were generated on the source. 151 */ 152 static int 153 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 154 uint64_t length) 155 { 156 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 157 158 /* 159 * When we receive a free record, dbuf_free_range() assumes 160 * that the receiving system doesn't have any dbufs in the range 161 * being freed. This is always true because there is a one-record 162 * constraint: we only send one WRITE record for any given 163 * object,offset. We know that the one-record constraint is 164 * true because we always send data in increasing order by 165 * object,offset. 166 * 167 * If the increasing-order constraint ever changes, we should find 168 * another way to assert that the one-record constraint is still 169 * satisfied. 170 */ 171 ASSERT(object > dsp->dsa_last_data_object || 172 (object == dsp->dsa_last_data_object && 173 offset > dsp->dsa_last_data_offset)); 174 175 if (length != -1ULL && offset + length < offset) 176 length = -1ULL; 177 178 /* 179 * If there is a pending op, but it's not PENDING_FREE, push it out, 180 * since free block aggregation can only be done for blocks of the 181 * same type (i.e., DRR_FREE records can only be aggregated with 182 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 183 * aggregated with other DRR_FREEOBJECTS records. 184 */ 185 if (dsp->dsa_pending_op != PENDING_NONE && 186 dsp->dsa_pending_op != PENDING_FREE) { 187 if (dump_record(dsp, NULL, 0) != 0) 188 return (SET_ERROR(EINTR)); 189 dsp->dsa_pending_op = PENDING_NONE; 190 } 191 192 if (dsp->dsa_pending_op == PENDING_FREE) { 193 /* 194 * There should never be a PENDING_FREE if length is -1 195 * (because dump_dnode is the only place where this 196 * function is called with a -1, and only after flushing 197 * any pending record). 198 */ 199 ASSERT(length != -1ULL); 200 /* 201 * Check to see whether this free block can be aggregated 202 * with pending one. 203 */ 204 if (drrf->drr_object == object && drrf->drr_offset + 205 drrf->drr_length == offset) { 206 drrf->drr_length += length; 207 return (0); 208 } else { 209 /* not a continuation. Push out pending record */ 210 if (dump_record(dsp, NULL, 0) != 0) 211 return (SET_ERROR(EINTR)); 212 dsp->dsa_pending_op = PENDING_NONE; 213 } 214 } 215 /* create a FREE record and make it pending */ 216 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 217 dsp->dsa_drr->drr_type = DRR_FREE; 218 drrf->drr_object = object; 219 drrf->drr_offset = offset; 220 drrf->drr_length = length; 221 drrf->drr_toguid = dsp->dsa_toguid; 222 if (length == -1ULL) { 223 if (dump_record(dsp, NULL, 0) != 0) 224 return (SET_ERROR(EINTR)); 225 } else { 226 dsp->dsa_pending_op = PENDING_FREE; 227 } 228 229 return (0); 230 } 231 232 static int 233 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 234 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 235 { 236 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 237 238 /* 239 * We send data in increasing object, offset order. 240 * See comment in dump_free() for details. 241 */ 242 ASSERT(object > dsp->dsa_last_data_object || 243 (object == dsp->dsa_last_data_object && 244 offset > dsp->dsa_last_data_offset)); 245 dsp->dsa_last_data_object = object; 246 dsp->dsa_last_data_offset = offset + blksz - 1; 247 248 /* 249 * If there is any kind of pending aggregation (currently either 250 * a grouping of free objects or free blocks), push it out to 251 * the stream, since aggregation can't be done across operations 252 * of different types. 253 */ 254 if (dsp->dsa_pending_op != PENDING_NONE) { 255 if (dump_record(dsp, NULL, 0) != 0) 256 return (SET_ERROR(EINTR)); 257 dsp->dsa_pending_op = PENDING_NONE; 258 } 259 /* write a WRITE record */ 260 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 261 dsp->dsa_drr->drr_type = DRR_WRITE; 262 drrw->drr_object = object; 263 drrw->drr_type = type; 264 drrw->drr_offset = offset; 265 drrw->drr_length = blksz; 266 drrw->drr_toguid = dsp->dsa_toguid; 267 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 268 /* 269 * There's no pre-computed checksum for partial-block 270 * writes or embedded BP's, so (like 271 * fletcher4-checkummed blocks) userland will have to 272 * compute a dedup-capable checksum itself. 273 */ 274 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 275 } else { 276 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 277 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 278 ZCHECKSUM_FLAG_DEDUP) 279 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 280 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 281 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 282 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 283 drrw->drr_key.ddk_cksum = bp->blk_cksum; 284 } 285 286 if (dump_record(dsp, data, blksz) != 0) 287 return (SET_ERROR(EINTR)); 288 return (0); 289 } 290 291 static int 292 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 293 int blksz, const blkptr_t *bp) 294 { 295 char buf[BPE_PAYLOAD_SIZE]; 296 struct drr_write_embedded *drrw = 297 &(dsp->dsa_drr->drr_u.drr_write_embedded); 298 299 if (dsp->dsa_pending_op != PENDING_NONE) { 300 if (dump_record(dsp, NULL, 0) != 0) 301 return (EINTR); 302 dsp->dsa_pending_op = PENDING_NONE; 303 } 304 305 ASSERT(BP_IS_EMBEDDED(bp)); 306 307 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 308 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 309 drrw->drr_object = object; 310 drrw->drr_offset = offset; 311 drrw->drr_length = blksz; 312 drrw->drr_toguid = dsp->dsa_toguid; 313 drrw->drr_compression = BP_GET_COMPRESS(bp); 314 drrw->drr_etype = BPE_GET_ETYPE(bp); 315 drrw->drr_lsize = BPE_GET_LSIZE(bp); 316 drrw->drr_psize = BPE_GET_PSIZE(bp); 317 318 decode_embedded_bp_compressed(bp, buf); 319 320 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 321 return (EINTR); 322 return (0); 323 } 324 325 static int 326 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 327 { 328 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 329 330 if (dsp->dsa_pending_op != PENDING_NONE) { 331 if (dump_record(dsp, NULL, 0) != 0) 332 return (SET_ERROR(EINTR)); 333 dsp->dsa_pending_op = PENDING_NONE; 334 } 335 336 /* write a SPILL record */ 337 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 338 dsp->dsa_drr->drr_type = DRR_SPILL; 339 drrs->drr_object = object; 340 drrs->drr_length = blksz; 341 drrs->drr_toguid = dsp->dsa_toguid; 342 343 if (dump_record(dsp, data, blksz) != 0) 344 return (SET_ERROR(EINTR)); 345 return (0); 346 } 347 348 static int 349 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 350 { 351 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 352 353 /* 354 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 355 * push it out, since free block aggregation can only be done for 356 * blocks of the same type (i.e., DRR_FREE records can only be 357 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 358 * can only be aggregated with other DRR_FREEOBJECTS records. 359 */ 360 if (dsp->dsa_pending_op != PENDING_NONE && 361 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 362 if (dump_record(dsp, NULL, 0) != 0) 363 return (SET_ERROR(EINTR)); 364 dsp->dsa_pending_op = PENDING_NONE; 365 } 366 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 367 /* 368 * See whether this free object array can be aggregated 369 * with pending one 370 */ 371 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 372 drrfo->drr_numobjs += numobjs; 373 return (0); 374 } else { 375 /* can't be aggregated. Push out pending record */ 376 if (dump_record(dsp, NULL, 0) != 0) 377 return (SET_ERROR(EINTR)); 378 dsp->dsa_pending_op = PENDING_NONE; 379 } 380 } 381 382 /* write a FREEOBJECTS record */ 383 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 384 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 385 drrfo->drr_firstobj = firstobj; 386 drrfo->drr_numobjs = numobjs; 387 drrfo->drr_toguid = dsp->dsa_toguid; 388 389 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 390 391 return (0); 392 } 393 394 static int 395 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 396 { 397 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 398 399 if (object < dsp->dsa_resume_object) { 400 /* 401 * Note: when resuming, we will visit all the dnodes in 402 * the block of dnodes that we are resuming from. In 403 * this case it's unnecessary to send the dnodes prior to 404 * the one we are resuming from. We should be at most one 405 * block's worth of dnodes behind the resume point. 406 */ 407 ASSERT3U(dsp->dsa_resume_object - object, <, 408 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 409 return (0); 410 } 411 412 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 413 return (dump_freeobjects(dsp, object, 1)); 414 415 if (dsp->dsa_pending_op != PENDING_NONE) { 416 if (dump_record(dsp, NULL, 0) != 0) 417 return (SET_ERROR(EINTR)); 418 dsp->dsa_pending_op = PENDING_NONE; 419 } 420 421 /* write an OBJECT record */ 422 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 423 dsp->dsa_drr->drr_type = DRR_OBJECT; 424 drro->drr_object = object; 425 drro->drr_type = dnp->dn_type; 426 drro->drr_bonustype = dnp->dn_bonustype; 427 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 428 drro->drr_bonuslen = dnp->dn_bonuslen; 429 drro->drr_checksumtype = dnp->dn_checksum; 430 drro->drr_compress = dnp->dn_compress; 431 drro->drr_toguid = dsp->dsa_toguid; 432 433 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 434 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 435 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 436 437 if (dump_record(dsp, DN_BONUS(dnp), 438 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 439 return (SET_ERROR(EINTR)); 440 } 441 442 /* Free anything past the end of the file. */ 443 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 444 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 445 return (SET_ERROR(EINTR)); 446 if (dsp->dsa_err != 0) 447 return (SET_ERROR(EINTR)); 448 return (0); 449 } 450 451 static boolean_t 452 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 453 { 454 if (!BP_IS_EMBEDDED(bp)) 455 return (B_FALSE); 456 457 /* 458 * Compression function must be legacy, or explicitly enabled. 459 */ 460 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 461 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 462 return (B_FALSE); 463 464 /* 465 * Embed type must be explicitly enabled. 466 */ 467 switch (BPE_GET_ETYPE(bp)) { 468 case BP_EMBEDDED_TYPE_DATA: 469 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 470 return (B_TRUE); 471 break; 472 default: 473 return (B_FALSE); 474 } 475 return (B_FALSE); 476 } 477 478 /* 479 * This is the callback function to traverse_dataset that acts as the worker 480 * thread for dmu_send_impl. 481 */ 482 /*ARGSUSED*/ 483 static int 484 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 485 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 486 { 487 struct send_thread_arg *sta = arg; 488 struct send_block_record *record; 489 uint64_t record_size; 490 int err = 0; 491 492 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 493 zb->zb_object >= sta->resume.zb_object); 494 495 if (sta->cancel) 496 return (SET_ERROR(EINTR)); 497 498 if (bp == NULL) { 499 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 500 return (0); 501 } else if (zb->zb_level < 0) { 502 return (0); 503 } 504 505 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 506 record->eos_marker = B_FALSE; 507 record->bp = *bp; 508 record->zb = *zb; 509 record->indblkshift = dnp->dn_indblkshift; 510 record->datablkszsec = dnp->dn_datablkszsec; 511 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 512 bqueue_enqueue(&sta->q, record, record_size); 513 514 return (err); 515 } 516 517 /* 518 * This function kicks off the traverse_dataset. It also handles setting the 519 * error code of the thread in case something goes wrong, and pushes the End of 520 * Stream record when the traverse_dataset call has finished. If there is no 521 * dataset to traverse, the thread immediately pushes End of Stream marker. 522 */ 523 static void 524 send_traverse_thread(void *arg) 525 { 526 struct send_thread_arg *st_arg = arg; 527 int err; 528 struct send_block_record *data; 529 530 if (st_arg->ds != NULL) { 531 err = traverse_dataset_resume(st_arg->ds, 532 st_arg->fromtxg, &st_arg->resume, 533 st_arg->flags, send_cb, st_arg); 534 535 if (err != EINTR) 536 st_arg->error_code = err; 537 } 538 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 539 data->eos_marker = B_TRUE; 540 bqueue_enqueue(&st_arg->q, data, 1); 541 } 542 543 /* 544 * This function actually handles figuring out what kind of record needs to be 545 * dumped, reading the data (which has hopefully been prefetched), and calling 546 * the appropriate helper function. 547 */ 548 static int 549 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 550 { 551 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 552 const blkptr_t *bp = &data->bp; 553 const zbookmark_phys_t *zb = &data->zb; 554 uint8_t indblkshift = data->indblkshift; 555 uint16_t dblkszsec = data->datablkszsec; 556 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 557 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 558 int err = 0; 559 560 ASSERT3U(zb->zb_level, >=, 0); 561 562 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 563 zb->zb_object >= dsa->dsa_resume_object); 564 565 if (zb->zb_object != DMU_META_DNODE_OBJECT && 566 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 567 return (0); 568 } else if (BP_IS_HOLE(bp) && 569 zb->zb_object == DMU_META_DNODE_OBJECT) { 570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 571 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 572 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 573 } else if (BP_IS_HOLE(bp)) { 574 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 575 uint64_t offset = zb->zb_blkid * span; 576 err = dump_free(dsa, zb->zb_object, offset, span); 577 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 578 return (0); 579 } else if (type == DMU_OT_DNODE) { 580 int blksz = BP_GET_LSIZE(bp); 581 arc_flags_t aflags = ARC_FLAG_WAIT; 582 arc_buf_t *abuf; 583 584 ASSERT0(zb->zb_level); 585 586 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 587 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 588 &aflags, zb) != 0) 589 return (SET_ERROR(EIO)); 590 591 dnode_phys_t *blk = abuf->b_data; 592 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 593 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 594 err = dump_dnode(dsa, dnobj + i, blk + i); 595 if (err != 0) 596 break; 597 } 598 (void) arc_buf_remove_ref(abuf, &abuf); 599 } else if (type == DMU_OT_SA) { 600 arc_flags_t aflags = ARC_FLAG_WAIT; 601 arc_buf_t *abuf; 602 int blksz = BP_GET_LSIZE(bp); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 610 (void) arc_buf_remove_ref(abuf, &abuf); 611 } else if (backup_do_embed(dsa, bp)) { 612 /* it's an embedded level-0 block of a regular object */ 613 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 614 ASSERT0(zb->zb_level); 615 err = dump_write_embedded(dsa, zb->zb_object, 616 zb->zb_blkid * blksz, blksz, bp); 617 } else { 618 /* it's a level-0 block of a regular object */ 619 arc_flags_t aflags = ARC_FLAG_WAIT; 620 arc_buf_t *abuf; 621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 622 uint64_t offset; 623 624 ASSERT0(zb->zb_level); 625 ASSERT(zb->zb_object > dsa->dsa_resume_object || 626 (zb->zb_object == dsa->dsa_resume_object && 627 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 628 629 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 631 &aflags, zb) != 0) { 632 if (zfs_send_corrupt_data) { 633 /* Send a block filled with 0x"zfs badd bloc" */ 634 abuf = arc_buf_alloc(spa, blksz, &abuf, 635 ARC_BUFC_DATA); 636 uint64_t *ptr; 637 for (ptr = abuf->b_data; 638 (char *)ptr < (char *)abuf->b_data + blksz; 639 ptr++) 640 *ptr = 0x2f5baddb10cULL; 641 } else { 642 return (SET_ERROR(EIO)); 643 } 644 } 645 646 offset = zb->zb_blkid * blksz; 647 648 if (!(dsa->dsa_featureflags & 649 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 650 blksz > SPA_OLD_MAXBLOCKSIZE) { 651 char *buf = abuf->b_data; 652 while (blksz > 0 && err == 0) { 653 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 654 err = dump_write(dsa, type, zb->zb_object, 655 offset, n, NULL, buf); 656 offset += n; 657 buf += n; 658 blksz -= n; 659 } 660 } else { 661 err = dump_write(dsa, type, zb->zb_object, 662 offset, blksz, bp, abuf->b_data); 663 } 664 (void) arc_buf_remove_ref(abuf, &abuf); 665 } 666 667 ASSERT(err == 0 || err == EINTR); 668 return (err); 669 } 670 671 /* 672 * Pop the new data off the queue, and free the old data. 673 */ 674 static struct send_block_record * 675 get_next_record(bqueue_t *bq, struct send_block_record *data) 676 { 677 struct send_block_record *tmp = bqueue_dequeue(bq); 678 kmem_free(data, sizeof (*data)); 679 return (tmp); 680 } 681 682 /* 683 * Actually do the bulk of the work in a zfs send. 684 * 685 * Note: Releases dp using the specified tag. 686 */ 687 static int 688 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 689 zfs_bookmark_phys_t *ancestor_zb, 690 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 691 uint64_t resumeobj, uint64_t resumeoff, 692 vnode_t *vp, offset_t *off) 693 { 694 objset_t *os; 695 dmu_replay_record_t *drr; 696 dmu_sendarg_t *dsp; 697 int err; 698 uint64_t fromtxg = 0; 699 uint64_t featureflags = 0; 700 struct send_thread_arg to_arg = { 0 }; 701 702 err = dmu_objset_from_ds(to_ds, &os); 703 if (err != 0) { 704 dsl_pool_rele(dp, tag); 705 return (err); 706 } 707 708 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 709 drr->drr_type = DRR_BEGIN; 710 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 711 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 712 DMU_SUBSTREAM); 713 714 #ifdef _KERNEL 715 if (dmu_objset_type(os) == DMU_OST_ZFS) { 716 uint64_t version; 717 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 718 kmem_free(drr, sizeof (dmu_replay_record_t)); 719 dsl_pool_rele(dp, tag); 720 return (SET_ERROR(EINVAL)); 721 } 722 if (version >= ZPL_VERSION_SA) { 723 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 724 } 725 } 726 #endif 727 728 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 729 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 730 if (embedok && 731 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 732 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 733 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 734 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 735 } 736 737 if (resumeobj != 0 || resumeoff != 0) { 738 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 739 } 740 741 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 742 featureflags); 743 744 drr->drr_u.drr_begin.drr_creation_time = 745 dsl_dataset_phys(to_ds)->ds_creation_time; 746 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 747 if (is_clone) 748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 749 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 750 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 751 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 752 if (zfs_send_set_freerecords_bit) 753 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 754 755 if (ancestor_zb != NULL) { 756 drr->drr_u.drr_begin.drr_fromguid = 757 ancestor_zb->zbm_guid; 758 fromtxg = ancestor_zb->zbm_creation_txg; 759 } 760 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 761 if (!to_ds->ds_is_snapshot) { 762 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 763 sizeof (drr->drr_u.drr_begin.drr_toname)); 764 } 765 766 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 767 768 dsp->dsa_drr = drr; 769 dsp->dsa_vp = vp; 770 dsp->dsa_outfd = outfd; 771 dsp->dsa_proc = curproc; 772 dsp->dsa_os = os; 773 dsp->dsa_off = off; 774 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 775 dsp->dsa_pending_op = PENDING_NONE; 776 dsp->dsa_featureflags = featureflags; 777 dsp->dsa_resume_object = resumeobj; 778 dsp->dsa_resume_offset = resumeoff; 779 780 mutex_enter(&to_ds->ds_sendstream_lock); 781 list_insert_head(&to_ds->ds_sendstreams, dsp); 782 mutex_exit(&to_ds->ds_sendstream_lock); 783 784 dsl_dataset_long_hold(to_ds, FTAG); 785 dsl_pool_rele(dp, tag); 786 787 void *payload = NULL; 788 size_t payload_len = 0; 789 if (resumeobj != 0 || resumeoff != 0) { 790 dmu_object_info_t to_doi; 791 err = dmu_object_info(os, resumeobj, &to_doi); 792 if (err != 0) 793 goto out; 794 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 795 resumeoff / to_doi.doi_data_block_size); 796 797 nvlist_t *nvl = fnvlist_alloc(); 798 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 799 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 800 payload = fnvlist_pack(nvl, &payload_len); 801 drr->drr_payloadlen = payload_len; 802 fnvlist_free(nvl); 803 } 804 805 err = dump_record(dsp, payload, payload_len); 806 fnvlist_pack_free(payload, payload_len); 807 if (err != 0) { 808 err = dsp->dsa_err; 809 goto out; 810 } 811 812 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 813 offsetof(struct send_block_record, ln)); 814 to_arg.error_code = 0; 815 to_arg.cancel = B_FALSE; 816 to_arg.ds = to_ds; 817 to_arg.fromtxg = fromtxg; 818 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 819 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 820 TS_RUN, minclsyspri); 821 822 struct send_block_record *to_data; 823 to_data = bqueue_dequeue(&to_arg.q); 824 825 while (!to_data->eos_marker && err == 0) { 826 err = do_dump(dsp, to_data); 827 to_data = get_next_record(&to_arg.q, to_data); 828 if (issig(JUSTLOOKING) && issig(FORREAL)) 829 err = EINTR; 830 } 831 832 if (err != 0) { 833 to_arg.cancel = B_TRUE; 834 while (!to_data->eos_marker) { 835 to_data = get_next_record(&to_arg.q, to_data); 836 } 837 } 838 kmem_free(to_data, sizeof (*to_data)); 839 840 bqueue_destroy(&to_arg.q); 841 842 if (err == 0 && to_arg.error_code != 0) 843 err = to_arg.error_code; 844 845 if (err != 0) 846 goto out; 847 848 if (dsp->dsa_pending_op != PENDING_NONE) 849 if (dump_record(dsp, NULL, 0) != 0) 850 err = SET_ERROR(EINTR); 851 852 if (err != 0) { 853 if (err == EINTR && dsp->dsa_err != 0) 854 err = dsp->dsa_err; 855 goto out; 856 } 857 858 bzero(drr, sizeof (dmu_replay_record_t)); 859 drr->drr_type = DRR_END; 860 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 861 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 862 863 if (dump_record(dsp, NULL, 0) != 0) 864 err = dsp->dsa_err; 865 866 out: 867 mutex_enter(&to_ds->ds_sendstream_lock); 868 list_remove(&to_ds->ds_sendstreams, dsp); 869 mutex_exit(&to_ds->ds_sendstream_lock); 870 871 kmem_free(drr, sizeof (dmu_replay_record_t)); 872 kmem_free(dsp, sizeof (dmu_sendarg_t)); 873 874 dsl_dataset_long_rele(to_ds, FTAG); 875 876 return (err); 877 } 878 879 int 880 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 881 boolean_t embedok, boolean_t large_block_ok, 882 int outfd, vnode_t *vp, offset_t *off) 883 { 884 dsl_pool_t *dp; 885 dsl_dataset_t *ds; 886 dsl_dataset_t *fromds = NULL; 887 int err; 888 889 err = dsl_pool_hold(pool, FTAG, &dp); 890 if (err != 0) 891 return (err); 892 893 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 894 if (err != 0) { 895 dsl_pool_rele(dp, FTAG); 896 return (err); 897 } 898 899 if (fromsnap != 0) { 900 zfs_bookmark_phys_t zb; 901 boolean_t is_clone; 902 903 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 904 if (err != 0) { 905 dsl_dataset_rele(ds, FTAG); 906 dsl_pool_rele(dp, FTAG); 907 return (err); 908 } 909 if (!dsl_dataset_is_before(ds, fromds, 0)) 910 err = SET_ERROR(EXDEV); 911 zb.zbm_creation_time = 912 dsl_dataset_phys(fromds)->ds_creation_time; 913 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 914 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 915 is_clone = (fromds->ds_dir != ds->ds_dir); 916 dsl_dataset_rele(fromds, FTAG); 917 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 918 embedok, large_block_ok, outfd, 0, 0, vp, off); 919 } else { 920 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 921 embedok, large_block_ok, outfd, 0, 0, vp, off); 922 } 923 dsl_dataset_rele(ds, FTAG); 924 return (err); 925 } 926 927 int 928 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 929 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 930 vnode_t *vp, offset_t *off) 931 { 932 dsl_pool_t *dp; 933 dsl_dataset_t *ds; 934 int err; 935 boolean_t owned = B_FALSE; 936 937 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 938 return (SET_ERROR(EINVAL)); 939 940 err = dsl_pool_hold(tosnap, FTAG, &dp); 941 if (err != 0) 942 return (err); 943 944 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 945 /* 946 * We are sending a filesystem or volume. Ensure 947 * that it doesn't change by owning the dataset. 948 */ 949 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 950 owned = B_TRUE; 951 } else { 952 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 953 } 954 if (err != 0) { 955 dsl_pool_rele(dp, FTAG); 956 return (err); 957 } 958 959 if (fromsnap != NULL) { 960 zfs_bookmark_phys_t zb; 961 boolean_t is_clone = B_FALSE; 962 int fsnamelen = strchr(tosnap, '@') - tosnap; 963 964 /* 965 * If the fromsnap is in a different filesystem, then 966 * mark the send stream as a clone. 967 */ 968 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 969 (fromsnap[fsnamelen] != '@' && 970 fromsnap[fsnamelen] != '#')) { 971 is_clone = B_TRUE; 972 } 973 974 if (strchr(fromsnap, '@')) { 975 dsl_dataset_t *fromds; 976 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 977 if (err == 0) { 978 if (!dsl_dataset_is_before(ds, fromds, 0)) 979 err = SET_ERROR(EXDEV); 980 zb.zbm_creation_time = 981 dsl_dataset_phys(fromds)->ds_creation_time; 982 zb.zbm_creation_txg = 983 dsl_dataset_phys(fromds)->ds_creation_txg; 984 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 985 is_clone = (ds->ds_dir != fromds->ds_dir); 986 dsl_dataset_rele(fromds, FTAG); 987 } 988 } else { 989 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 990 } 991 if (err != 0) { 992 dsl_dataset_rele(ds, FTAG); 993 dsl_pool_rele(dp, FTAG); 994 return (err); 995 } 996 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 997 embedok, large_block_ok, 998 outfd, resumeobj, resumeoff, vp, off); 999 } else { 1000 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1001 embedok, large_block_ok, 1002 outfd, resumeobj, resumeoff, vp, off); 1003 } 1004 if (owned) 1005 dsl_dataset_disown(ds, FTAG); 1006 else 1007 dsl_dataset_rele(ds, FTAG); 1008 return (err); 1009 } 1010 1011 static int 1012 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1013 uint64_t *sizep) 1014 { 1015 int err; 1016 /* 1017 * Assume that space (both on-disk and in-stream) is dominated by 1018 * data. We will adjust for indirect blocks and the copies property, 1019 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1020 */ 1021 1022 /* 1023 * Subtract out approximate space used by indirect blocks. 1024 * Assume most space is used by data blocks (non-indirect, non-dnode). 1025 * Assume all blocks are recordsize. Assume ditto blocks and 1026 * internal fragmentation counter out compression. 1027 * 1028 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1029 * block, which we observe in practice. 1030 */ 1031 uint64_t recordsize; 1032 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1033 if (err != 0) 1034 return (err); 1035 size -= size / recordsize * sizeof (blkptr_t); 1036 1037 /* Add in the space for the record associated with each block. */ 1038 size += size / recordsize * sizeof (dmu_replay_record_t); 1039 1040 *sizep = size; 1041 1042 return (0); 1043 } 1044 1045 int 1046 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1047 { 1048 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1049 int err; 1050 uint64_t size; 1051 1052 ASSERT(dsl_pool_config_held(dp)); 1053 1054 /* tosnap must be a snapshot */ 1055 if (!ds->ds_is_snapshot) 1056 return (SET_ERROR(EINVAL)); 1057 1058 /* fromsnap, if provided, must be a snapshot */ 1059 if (fromds != NULL && !fromds->ds_is_snapshot) 1060 return (SET_ERROR(EINVAL)); 1061 1062 /* 1063 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1064 * or the origin's fs. 1065 */ 1066 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1067 return (SET_ERROR(EXDEV)); 1068 1069 /* Get uncompressed size estimate of changed data. */ 1070 if (fromds == NULL) { 1071 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1072 } else { 1073 uint64_t used, comp; 1074 err = dsl_dataset_space_written(fromds, ds, 1075 &used, &comp, &size); 1076 if (err != 0) 1077 return (err); 1078 } 1079 1080 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1081 return (err); 1082 } 1083 1084 /* 1085 * Simple callback used to traverse the blocks of a snapshot and sum their 1086 * uncompressed size 1087 */ 1088 /* ARGSUSED */ 1089 static int 1090 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1091 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1092 { 1093 uint64_t *spaceptr = arg; 1094 if (bp != NULL && !BP_IS_HOLE(bp)) { 1095 *spaceptr += BP_GET_UCSIZE(bp); 1096 } 1097 return (0); 1098 } 1099 1100 /* 1101 * Given a desination snapshot and a TXG, calculate the approximate size of a 1102 * send stream sent from that TXG. from_txg may be zero, indicating that the 1103 * whole snapshot will be sent. 1104 */ 1105 int 1106 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1107 uint64_t *sizep) 1108 { 1109 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1110 int err; 1111 uint64_t size = 0; 1112 1113 ASSERT(dsl_pool_config_held(dp)); 1114 1115 /* tosnap must be a snapshot */ 1116 if (!dsl_dataset_is_snapshot(ds)) 1117 return (SET_ERROR(EINVAL)); 1118 1119 /* verify that from_txg is before the provided snapshot was taken */ 1120 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1121 return (SET_ERROR(EXDEV)); 1122 } 1123 1124 /* 1125 * traverse the blocks of the snapshot with birth times after 1126 * from_txg, summing their uncompressed size 1127 */ 1128 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1129 dmu_calculate_send_traversal, &size); 1130 if (err) 1131 return (err); 1132 1133 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1134 return (err); 1135 } 1136 1137 typedef struct dmu_recv_begin_arg { 1138 const char *drba_origin; 1139 dmu_recv_cookie_t *drba_cookie; 1140 cred_t *drba_cred; 1141 uint64_t drba_snapobj; 1142 } dmu_recv_begin_arg_t; 1143 1144 static int 1145 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1146 uint64_t fromguid) 1147 { 1148 uint64_t val; 1149 int error; 1150 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1151 1152 /* temporary clone name must not exist */ 1153 error = zap_lookup(dp->dp_meta_objset, 1154 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1155 8, 1, &val); 1156 if (error != ENOENT) 1157 return (error == 0 ? EBUSY : error); 1158 1159 /* new snapshot name must not exist */ 1160 error = zap_lookup(dp->dp_meta_objset, 1161 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1162 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1163 if (error != ENOENT) 1164 return (error == 0 ? EEXIST : error); 1165 1166 /* 1167 * Check snapshot limit before receiving. We'll recheck again at the 1168 * end, but might as well abort before receiving if we're already over 1169 * the limit. 1170 * 1171 * Note that we do not check the file system limit with 1172 * dsl_dir_fscount_check because the temporary %clones don't count 1173 * against that limit. 1174 */ 1175 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1176 NULL, drba->drba_cred); 1177 if (error != 0) 1178 return (error); 1179 1180 if (fromguid != 0) { 1181 dsl_dataset_t *snap; 1182 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1183 1184 /* Find snapshot in this dir that matches fromguid. */ 1185 while (obj != 0) { 1186 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1187 &snap); 1188 if (error != 0) 1189 return (SET_ERROR(ENODEV)); 1190 if (snap->ds_dir != ds->ds_dir) { 1191 dsl_dataset_rele(snap, FTAG); 1192 return (SET_ERROR(ENODEV)); 1193 } 1194 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1195 break; 1196 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1197 dsl_dataset_rele(snap, FTAG); 1198 } 1199 if (obj == 0) 1200 return (SET_ERROR(ENODEV)); 1201 1202 if (drba->drba_cookie->drc_force) { 1203 drba->drba_snapobj = obj; 1204 } else { 1205 /* 1206 * If we are not forcing, there must be no 1207 * changes since fromsnap. 1208 */ 1209 if (dsl_dataset_modified_since_snap(ds, snap)) { 1210 dsl_dataset_rele(snap, FTAG); 1211 return (SET_ERROR(ETXTBSY)); 1212 } 1213 drba->drba_snapobj = ds->ds_prev->ds_object; 1214 } 1215 1216 dsl_dataset_rele(snap, FTAG); 1217 } else { 1218 /* if full, then must be forced */ 1219 if (!drba->drba_cookie->drc_force) 1220 return (SET_ERROR(EEXIST)); 1221 /* start from $ORIGIN@$ORIGIN, if supported */ 1222 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1223 dp->dp_origin_snap->ds_object : 0; 1224 } 1225 1226 return (0); 1227 1228 } 1229 1230 static int 1231 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1232 { 1233 dmu_recv_begin_arg_t *drba = arg; 1234 dsl_pool_t *dp = dmu_tx_pool(tx); 1235 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1236 uint64_t fromguid = drrb->drr_fromguid; 1237 int flags = drrb->drr_flags; 1238 int error; 1239 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1240 dsl_dataset_t *ds; 1241 const char *tofs = drba->drba_cookie->drc_tofs; 1242 1243 /* already checked */ 1244 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1245 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1246 1247 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1248 DMU_COMPOUNDSTREAM || 1249 drrb->drr_type >= DMU_OST_NUMTYPES || 1250 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1251 return (SET_ERROR(EINVAL)); 1252 1253 /* Verify pool version supports SA if SA_SPILL feature set */ 1254 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1255 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1256 return (SET_ERROR(ENOTSUP)); 1257 1258 if (drba->drba_cookie->drc_resumable && 1259 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1260 return (SET_ERROR(ENOTSUP)); 1261 1262 /* 1263 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1264 * record to a plan WRITE record, so the pool must have the 1265 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1266 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1267 */ 1268 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1269 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1270 return (SET_ERROR(ENOTSUP)); 1271 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1272 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1273 return (SET_ERROR(ENOTSUP)); 1274 1275 /* 1276 * The receiving code doesn't know how to translate large blocks 1277 * to smaller ones, so the pool must have the LARGE_BLOCKS 1278 * feature enabled if the stream has LARGE_BLOCKS. 1279 */ 1280 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1281 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1282 return (SET_ERROR(ENOTSUP)); 1283 1284 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1285 if (error == 0) { 1286 /* target fs already exists; recv into temp clone */ 1287 1288 /* Can't recv a clone into an existing fs */ 1289 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1290 dsl_dataset_rele(ds, FTAG); 1291 return (SET_ERROR(EINVAL)); 1292 } 1293 1294 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1295 dsl_dataset_rele(ds, FTAG); 1296 } else if (error == ENOENT) { 1297 /* target fs does not exist; must be a full backup or clone */ 1298 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1299 1300 /* 1301 * If it's a non-clone incremental, we are missing the 1302 * target fs, so fail the recv. 1303 */ 1304 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1305 drba->drba_origin)) 1306 return (SET_ERROR(ENOENT)); 1307 1308 /* 1309 * If we're receiving a full send as a clone, and it doesn't 1310 * contain all the necessary free records and freeobject 1311 * records, reject it. 1312 */ 1313 if (fromguid == 0 && drba->drba_origin && 1314 !(flags & DRR_FLAG_FREERECORDS)) 1315 return (SET_ERROR(EINVAL)); 1316 1317 /* Open the parent of tofs */ 1318 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1319 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1320 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1321 if (error != 0) 1322 return (error); 1323 1324 /* 1325 * Check filesystem and snapshot limits before receiving. We'll 1326 * recheck snapshot limits again at the end (we create the 1327 * filesystems and increment those counts during begin_sync). 1328 */ 1329 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1330 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1331 if (error != 0) { 1332 dsl_dataset_rele(ds, FTAG); 1333 return (error); 1334 } 1335 1336 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1337 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1338 if (error != 0) { 1339 dsl_dataset_rele(ds, FTAG); 1340 return (error); 1341 } 1342 1343 if (drba->drba_origin != NULL) { 1344 dsl_dataset_t *origin; 1345 error = dsl_dataset_hold(dp, drba->drba_origin, 1346 FTAG, &origin); 1347 if (error != 0) { 1348 dsl_dataset_rele(ds, FTAG); 1349 return (error); 1350 } 1351 if (!origin->ds_is_snapshot) { 1352 dsl_dataset_rele(origin, FTAG); 1353 dsl_dataset_rele(ds, FTAG); 1354 return (SET_ERROR(EINVAL)); 1355 } 1356 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1357 fromguid != 0) { 1358 dsl_dataset_rele(origin, FTAG); 1359 dsl_dataset_rele(ds, FTAG); 1360 return (SET_ERROR(ENODEV)); 1361 } 1362 dsl_dataset_rele(origin, FTAG); 1363 } 1364 dsl_dataset_rele(ds, FTAG); 1365 error = 0; 1366 } 1367 return (error); 1368 } 1369 1370 static void 1371 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1372 { 1373 dmu_recv_begin_arg_t *drba = arg; 1374 dsl_pool_t *dp = dmu_tx_pool(tx); 1375 objset_t *mos = dp->dp_meta_objset; 1376 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1377 const char *tofs = drba->drba_cookie->drc_tofs; 1378 dsl_dataset_t *ds, *newds; 1379 uint64_t dsobj; 1380 int error; 1381 uint64_t crflags = 0; 1382 1383 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1384 crflags |= DS_FLAG_CI_DATASET; 1385 1386 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1387 if (error == 0) { 1388 /* create temporary clone */ 1389 dsl_dataset_t *snap = NULL; 1390 if (drba->drba_snapobj != 0) { 1391 VERIFY0(dsl_dataset_hold_obj(dp, 1392 drba->drba_snapobj, FTAG, &snap)); 1393 } 1394 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1395 snap, crflags, drba->drba_cred, tx); 1396 if (drba->drba_snapobj != 0) 1397 dsl_dataset_rele(snap, FTAG); 1398 dsl_dataset_rele(ds, FTAG); 1399 } else { 1400 dsl_dir_t *dd; 1401 const char *tail; 1402 dsl_dataset_t *origin = NULL; 1403 1404 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1405 1406 if (drba->drba_origin != NULL) { 1407 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1408 FTAG, &origin)); 1409 } 1410 1411 /* Create new dataset. */ 1412 dsobj = dsl_dataset_create_sync(dd, 1413 strrchr(tofs, '/') + 1, 1414 origin, crflags, drba->drba_cred, tx); 1415 if (origin != NULL) 1416 dsl_dataset_rele(origin, FTAG); 1417 dsl_dir_rele(dd, FTAG); 1418 drba->drba_cookie->drc_newfs = B_TRUE; 1419 } 1420 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1421 1422 if (drba->drba_cookie->drc_resumable) { 1423 dsl_dataset_zapify(newds, tx); 1424 if (drrb->drr_fromguid != 0) { 1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1426 8, 1, &drrb->drr_fromguid, tx)); 1427 } 1428 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1429 8, 1, &drrb->drr_toguid, tx)); 1430 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1431 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1432 uint64_t one = 1; 1433 uint64_t zero = 0; 1434 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1435 8, 1, &one, tx)); 1436 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1437 8, 1, &zero, tx)); 1438 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1439 8, 1, &zero, tx)); 1440 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1441 DMU_BACKUP_FEATURE_EMBED_DATA) { 1442 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1443 8, 1, &one, tx)); 1444 } 1445 } 1446 1447 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1448 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1449 1450 /* 1451 * If we actually created a non-clone, we need to create the 1452 * objset in our new dataset. 1453 */ 1454 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1455 (void) dmu_objset_create_impl(dp->dp_spa, 1456 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1457 } 1458 1459 drba->drba_cookie->drc_ds = newds; 1460 1461 spa_history_log_internal_ds(newds, "receive", tx, ""); 1462 } 1463 1464 static int 1465 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1466 { 1467 dmu_recv_begin_arg_t *drba = arg; 1468 dsl_pool_t *dp = dmu_tx_pool(tx); 1469 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1470 int error; 1471 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1472 dsl_dataset_t *ds; 1473 const char *tofs = drba->drba_cookie->drc_tofs; 1474 1475 /* already checked */ 1476 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1477 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1478 1479 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1480 DMU_COMPOUNDSTREAM || 1481 drrb->drr_type >= DMU_OST_NUMTYPES) 1482 return (SET_ERROR(EINVAL)); 1483 1484 /* Verify pool version supports SA if SA_SPILL feature set */ 1485 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1486 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1487 return (SET_ERROR(ENOTSUP)); 1488 1489 /* 1490 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1491 * record to a plain WRITE record, so the pool must have the 1492 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1493 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1494 */ 1495 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1496 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1497 return (SET_ERROR(ENOTSUP)); 1498 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1499 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1500 return (SET_ERROR(ENOTSUP)); 1501 1502 /* 6 extra bytes for /%recv */ 1503 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1504 1505 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1506 tofs, recv_clone_name); 1507 1508 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1509 /* %recv does not exist; continue in tofs */ 1510 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1511 if (error != 0) 1512 return (error); 1513 } 1514 1515 /* check that ds is marked inconsistent */ 1516 if (!DS_IS_INCONSISTENT(ds)) { 1517 dsl_dataset_rele(ds, FTAG); 1518 return (SET_ERROR(EINVAL)); 1519 } 1520 1521 /* check that there is resuming data, and that the toguid matches */ 1522 if (!dsl_dataset_is_zapified(ds)) { 1523 dsl_dataset_rele(ds, FTAG); 1524 return (SET_ERROR(EINVAL)); 1525 } 1526 uint64_t val; 1527 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1528 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1529 if (error != 0 || drrb->drr_toguid != val) { 1530 dsl_dataset_rele(ds, FTAG); 1531 return (SET_ERROR(EINVAL)); 1532 } 1533 1534 /* 1535 * Check if the receive is still running. If so, it will be owned. 1536 * Note that nothing else can own the dataset (e.g. after the receive 1537 * fails) because it will be marked inconsistent. 1538 */ 1539 if (dsl_dataset_has_owner(ds)) { 1540 dsl_dataset_rele(ds, FTAG); 1541 return (SET_ERROR(EBUSY)); 1542 } 1543 1544 /* There should not be any snapshots of this fs yet. */ 1545 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1546 dsl_dataset_rele(ds, FTAG); 1547 return (SET_ERROR(EINVAL)); 1548 } 1549 1550 /* 1551 * Note: resume point will be checked when we process the first WRITE 1552 * record. 1553 */ 1554 1555 /* check that the origin matches */ 1556 val = 0; 1557 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1558 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1559 if (drrb->drr_fromguid != val) { 1560 dsl_dataset_rele(ds, FTAG); 1561 return (SET_ERROR(EINVAL)); 1562 } 1563 1564 dsl_dataset_rele(ds, FTAG); 1565 return (0); 1566 } 1567 1568 static void 1569 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1570 { 1571 dmu_recv_begin_arg_t *drba = arg; 1572 dsl_pool_t *dp = dmu_tx_pool(tx); 1573 const char *tofs = drba->drba_cookie->drc_tofs; 1574 dsl_dataset_t *ds; 1575 uint64_t dsobj; 1576 /* 6 extra bytes for /%recv */ 1577 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1578 1579 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1580 tofs, recv_clone_name); 1581 1582 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1583 /* %recv does not exist; continue in tofs */ 1584 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1585 drba->drba_cookie->drc_newfs = B_TRUE; 1586 } 1587 1588 /* clear the inconsistent flag so that we can own it */ 1589 ASSERT(DS_IS_INCONSISTENT(ds)); 1590 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1591 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1592 dsobj = ds->ds_object; 1593 dsl_dataset_rele(ds, FTAG); 1594 1595 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1596 1597 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1598 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1599 1600 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1601 1602 drba->drba_cookie->drc_ds = ds; 1603 1604 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1605 } 1606 1607 /* 1608 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1609 * succeeds; otherwise we will leak the holds on the datasets. 1610 */ 1611 int 1612 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1613 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1614 { 1615 dmu_recv_begin_arg_t drba = { 0 }; 1616 1617 bzero(drc, sizeof (dmu_recv_cookie_t)); 1618 drc->drc_drr_begin = drr_begin; 1619 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1620 drc->drc_tosnap = tosnap; 1621 drc->drc_tofs = tofs; 1622 drc->drc_force = force; 1623 drc->drc_resumable = resumable; 1624 drc->drc_cred = CRED(); 1625 1626 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1627 drc->drc_byteswap = B_TRUE; 1628 fletcher_4_incremental_byteswap(drr_begin, 1629 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1630 byteswap_record(drr_begin); 1631 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1632 fletcher_4_incremental_native(drr_begin, 1633 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1634 } else { 1635 return (SET_ERROR(EINVAL)); 1636 } 1637 1638 drba.drba_origin = origin; 1639 drba.drba_cookie = drc; 1640 drba.drba_cred = CRED(); 1641 1642 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1643 DMU_BACKUP_FEATURE_RESUMING) { 1644 return (dsl_sync_task(tofs, 1645 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1646 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1647 } else { 1648 return (dsl_sync_task(tofs, 1649 dmu_recv_begin_check, dmu_recv_begin_sync, 1650 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1651 } 1652 } 1653 1654 struct receive_record_arg { 1655 dmu_replay_record_t header; 1656 void *payload; /* Pointer to a buffer containing the payload */ 1657 /* 1658 * If the record is a write, pointer to the arc_buf_t containing the 1659 * payload. 1660 */ 1661 arc_buf_t *write_buf; 1662 int payload_size; 1663 uint64_t bytes_read; /* bytes read from stream when record created */ 1664 boolean_t eos_marker; /* Marks the end of the stream */ 1665 bqueue_node_t node; 1666 }; 1667 1668 struct receive_writer_arg { 1669 objset_t *os; 1670 boolean_t byteswap; 1671 bqueue_t q; 1672 1673 /* 1674 * These three args are used to signal to the main thread that we're 1675 * done. 1676 */ 1677 kmutex_t mutex; 1678 kcondvar_t cv; 1679 boolean_t done; 1680 1681 int err; 1682 /* A map from guid to dataset to help handle dedup'd streams. */ 1683 avl_tree_t *guid_to_ds_map; 1684 boolean_t resumable; 1685 uint64_t last_object, last_offset; 1686 uint64_t bytes_read; /* bytes read when current record created */ 1687 }; 1688 1689 struct objlist { 1690 list_t list; /* List of struct receive_objnode. */ 1691 /* 1692 * Last object looked up. Used to assert that objects are being looked 1693 * up in ascending order. 1694 */ 1695 uint64_t last_lookup; 1696 }; 1697 1698 struct receive_objnode { 1699 list_node_t node; 1700 uint64_t object; 1701 }; 1702 1703 struct receive_arg { 1704 objset_t *os; 1705 vnode_t *vp; /* The vnode to read the stream from */ 1706 uint64_t voff; /* The current offset in the stream */ 1707 uint64_t bytes_read; 1708 /* 1709 * A record that has had its payload read in, but hasn't yet been handed 1710 * off to the worker thread. 1711 */ 1712 struct receive_record_arg *rrd; 1713 /* A record that has had its header read in, but not its payload. */ 1714 struct receive_record_arg *next_rrd; 1715 zio_cksum_t cksum; 1716 zio_cksum_t prev_cksum; 1717 int err; 1718 boolean_t byteswap; 1719 /* Sorted list of objects not to issue prefetches for. */ 1720 struct objlist ignore_objlist; 1721 }; 1722 1723 typedef struct guid_map_entry { 1724 uint64_t guid; 1725 dsl_dataset_t *gme_ds; 1726 avl_node_t avlnode; 1727 } guid_map_entry_t; 1728 1729 static int 1730 guid_compare(const void *arg1, const void *arg2) 1731 { 1732 const guid_map_entry_t *gmep1 = arg1; 1733 const guid_map_entry_t *gmep2 = arg2; 1734 1735 if (gmep1->guid < gmep2->guid) 1736 return (-1); 1737 else if (gmep1->guid > gmep2->guid) 1738 return (1); 1739 return (0); 1740 } 1741 1742 static void 1743 free_guid_map_onexit(void *arg) 1744 { 1745 avl_tree_t *ca = arg; 1746 void *cookie = NULL; 1747 guid_map_entry_t *gmep; 1748 1749 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1750 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1751 dsl_dataset_rele(gmep->gme_ds, gmep); 1752 kmem_free(gmep, sizeof (guid_map_entry_t)); 1753 } 1754 avl_destroy(ca); 1755 kmem_free(ca, sizeof (avl_tree_t)); 1756 } 1757 1758 static int 1759 receive_read(struct receive_arg *ra, int len, void *buf) 1760 { 1761 int done = 0; 1762 1763 /* some things will require 8-byte alignment, so everything must */ 1764 ASSERT0(len % 8); 1765 1766 while (done < len) { 1767 ssize_t resid; 1768 1769 ra->err = vn_rdwr(UIO_READ, ra->vp, 1770 (char *)buf + done, len - done, 1771 ra->voff, UIO_SYSSPACE, FAPPEND, 1772 RLIM64_INFINITY, CRED(), &resid); 1773 1774 if (resid == len - done) { 1775 /* 1776 * Note: ECKSUM indicates that the receive 1777 * was interrupted and can potentially be resumed. 1778 */ 1779 ra->err = SET_ERROR(ECKSUM); 1780 } 1781 ra->voff += len - done - resid; 1782 done = len - resid; 1783 if (ra->err != 0) 1784 return (ra->err); 1785 } 1786 1787 ra->bytes_read += len; 1788 1789 ASSERT3U(done, ==, len); 1790 return (0); 1791 } 1792 1793 static void 1794 byteswap_record(dmu_replay_record_t *drr) 1795 { 1796 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1797 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1798 drr->drr_type = BSWAP_32(drr->drr_type); 1799 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1800 1801 switch (drr->drr_type) { 1802 case DRR_BEGIN: 1803 DO64(drr_begin.drr_magic); 1804 DO64(drr_begin.drr_versioninfo); 1805 DO64(drr_begin.drr_creation_time); 1806 DO32(drr_begin.drr_type); 1807 DO32(drr_begin.drr_flags); 1808 DO64(drr_begin.drr_toguid); 1809 DO64(drr_begin.drr_fromguid); 1810 break; 1811 case DRR_OBJECT: 1812 DO64(drr_object.drr_object); 1813 DO32(drr_object.drr_type); 1814 DO32(drr_object.drr_bonustype); 1815 DO32(drr_object.drr_blksz); 1816 DO32(drr_object.drr_bonuslen); 1817 DO64(drr_object.drr_toguid); 1818 break; 1819 case DRR_FREEOBJECTS: 1820 DO64(drr_freeobjects.drr_firstobj); 1821 DO64(drr_freeobjects.drr_numobjs); 1822 DO64(drr_freeobjects.drr_toguid); 1823 break; 1824 case DRR_WRITE: 1825 DO64(drr_write.drr_object); 1826 DO32(drr_write.drr_type); 1827 DO64(drr_write.drr_offset); 1828 DO64(drr_write.drr_length); 1829 DO64(drr_write.drr_toguid); 1830 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1831 DO64(drr_write.drr_key.ddk_prop); 1832 break; 1833 case DRR_WRITE_BYREF: 1834 DO64(drr_write_byref.drr_object); 1835 DO64(drr_write_byref.drr_offset); 1836 DO64(drr_write_byref.drr_length); 1837 DO64(drr_write_byref.drr_toguid); 1838 DO64(drr_write_byref.drr_refguid); 1839 DO64(drr_write_byref.drr_refobject); 1840 DO64(drr_write_byref.drr_refoffset); 1841 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1842 drr_key.ddk_cksum); 1843 DO64(drr_write_byref.drr_key.ddk_prop); 1844 break; 1845 case DRR_WRITE_EMBEDDED: 1846 DO64(drr_write_embedded.drr_object); 1847 DO64(drr_write_embedded.drr_offset); 1848 DO64(drr_write_embedded.drr_length); 1849 DO64(drr_write_embedded.drr_toguid); 1850 DO32(drr_write_embedded.drr_lsize); 1851 DO32(drr_write_embedded.drr_psize); 1852 break; 1853 case DRR_FREE: 1854 DO64(drr_free.drr_object); 1855 DO64(drr_free.drr_offset); 1856 DO64(drr_free.drr_length); 1857 DO64(drr_free.drr_toguid); 1858 break; 1859 case DRR_SPILL: 1860 DO64(drr_spill.drr_object); 1861 DO64(drr_spill.drr_length); 1862 DO64(drr_spill.drr_toguid); 1863 break; 1864 case DRR_END: 1865 DO64(drr_end.drr_toguid); 1866 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1867 break; 1868 } 1869 1870 if (drr->drr_type != DRR_BEGIN) { 1871 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1872 } 1873 1874 #undef DO64 1875 #undef DO32 1876 } 1877 1878 static inline uint8_t 1879 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1880 { 1881 if (bonus_type == DMU_OT_SA) { 1882 return (1); 1883 } else { 1884 return (1 + 1885 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1886 } 1887 } 1888 1889 static void 1890 save_resume_state(struct receive_writer_arg *rwa, 1891 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1892 { 1893 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1894 1895 if (!rwa->resumable) 1896 return; 1897 1898 /* 1899 * We use ds_resume_bytes[] != 0 to indicate that we need to 1900 * update this on disk, so it must not be 0. 1901 */ 1902 ASSERT(rwa->bytes_read != 0); 1903 1904 /* 1905 * We only resume from write records, which have a valid 1906 * (non-meta-dnode) object number. 1907 */ 1908 ASSERT(object != 0); 1909 1910 /* 1911 * For resuming to work correctly, we must receive records in order, 1912 * sorted by object,offset. This is checked by the callers, but 1913 * assert it here for good measure. 1914 */ 1915 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1916 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1917 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1918 ASSERT3U(rwa->bytes_read, >=, 1919 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1920 1921 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1922 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1923 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1924 } 1925 1926 static int 1927 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1928 void *data) 1929 { 1930 dmu_object_info_t doi; 1931 dmu_tx_t *tx; 1932 uint64_t object; 1933 int err; 1934 1935 if (drro->drr_type == DMU_OT_NONE || 1936 !DMU_OT_IS_VALID(drro->drr_type) || 1937 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1938 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1939 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1940 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1941 drro->drr_blksz < SPA_MINBLOCKSIZE || 1942 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1943 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1944 return (SET_ERROR(EINVAL)); 1945 } 1946 1947 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1948 1949 if (err != 0 && err != ENOENT) 1950 return (SET_ERROR(EINVAL)); 1951 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1952 1953 /* 1954 * If we are losing blkptrs or changing the block size this must 1955 * be a new file instance. We must clear out the previous file 1956 * contents before we can change this type of metadata in the dnode. 1957 */ 1958 if (err == 0) { 1959 int nblkptr; 1960 1961 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1962 drro->drr_bonuslen); 1963 1964 if (drro->drr_blksz != doi.doi_data_block_size || 1965 nblkptr < doi.doi_nblkptr) { 1966 err = dmu_free_long_range(rwa->os, drro->drr_object, 1967 0, DMU_OBJECT_END); 1968 if (err != 0) 1969 return (SET_ERROR(EINVAL)); 1970 } 1971 } 1972 1973 tx = dmu_tx_create(rwa->os); 1974 dmu_tx_hold_bonus(tx, object); 1975 err = dmu_tx_assign(tx, TXG_WAIT); 1976 if (err != 0) { 1977 dmu_tx_abort(tx); 1978 return (err); 1979 } 1980 1981 if (object == DMU_NEW_OBJECT) { 1982 /* currently free, want to be allocated */ 1983 err = dmu_object_claim(rwa->os, drro->drr_object, 1984 drro->drr_type, drro->drr_blksz, 1985 drro->drr_bonustype, drro->drr_bonuslen, tx); 1986 } else if (drro->drr_type != doi.doi_type || 1987 drro->drr_blksz != doi.doi_data_block_size || 1988 drro->drr_bonustype != doi.doi_bonus_type || 1989 drro->drr_bonuslen != doi.doi_bonus_size) { 1990 /* currently allocated, but with different properties */ 1991 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1992 drro->drr_type, drro->drr_blksz, 1993 drro->drr_bonustype, drro->drr_bonuslen, tx); 1994 } 1995 if (err != 0) { 1996 dmu_tx_commit(tx); 1997 return (SET_ERROR(EINVAL)); 1998 } 1999 2000 dmu_object_set_checksum(rwa->os, drro->drr_object, 2001 drro->drr_checksumtype, tx); 2002 dmu_object_set_compress(rwa->os, drro->drr_object, 2003 drro->drr_compress, tx); 2004 2005 if (data != NULL) { 2006 dmu_buf_t *db; 2007 2008 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2009 dmu_buf_will_dirty(db, tx); 2010 2011 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2012 bcopy(data, db->db_data, drro->drr_bonuslen); 2013 if (rwa->byteswap) { 2014 dmu_object_byteswap_t byteswap = 2015 DMU_OT_BYTESWAP(drro->drr_bonustype); 2016 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2017 drro->drr_bonuslen); 2018 } 2019 dmu_buf_rele(db, FTAG); 2020 } 2021 dmu_tx_commit(tx); 2022 2023 return (0); 2024 } 2025 2026 /* ARGSUSED */ 2027 static int 2028 receive_freeobjects(struct receive_writer_arg *rwa, 2029 struct drr_freeobjects *drrfo) 2030 { 2031 uint64_t obj; 2032 int next_err = 0; 2033 2034 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2035 return (SET_ERROR(EINVAL)); 2036 2037 for (obj = drrfo->drr_firstobj; 2038 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2039 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2040 int err; 2041 2042 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2043 continue; 2044 2045 err = dmu_free_long_object(rwa->os, obj); 2046 if (err != 0) 2047 return (err); 2048 } 2049 if (next_err != ESRCH) 2050 return (next_err); 2051 return (0); 2052 } 2053 2054 static int 2055 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2056 arc_buf_t *abuf) 2057 { 2058 dmu_tx_t *tx; 2059 int err; 2060 2061 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2062 !DMU_OT_IS_VALID(drrw->drr_type)) 2063 return (SET_ERROR(EINVAL)); 2064 2065 /* 2066 * For resuming to work, records must be in increasing order 2067 * by (object, offset). 2068 */ 2069 if (drrw->drr_object < rwa->last_object || 2070 (drrw->drr_object == rwa->last_object && 2071 drrw->drr_offset < rwa->last_offset)) { 2072 return (SET_ERROR(EINVAL)); 2073 } 2074 rwa->last_object = drrw->drr_object; 2075 rwa->last_offset = drrw->drr_offset; 2076 2077 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2078 return (SET_ERROR(EINVAL)); 2079 2080 tx = dmu_tx_create(rwa->os); 2081 2082 dmu_tx_hold_write(tx, drrw->drr_object, 2083 drrw->drr_offset, drrw->drr_length); 2084 err = dmu_tx_assign(tx, TXG_WAIT); 2085 if (err != 0) { 2086 dmu_tx_abort(tx); 2087 return (err); 2088 } 2089 if (rwa->byteswap) { 2090 dmu_object_byteswap_t byteswap = 2091 DMU_OT_BYTESWAP(drrw->drr_type); 2092 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2093 drrw->drr_length); 2094 } 2095 2096 dmu_buf_t *bonus; 2097 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2098 return (SET_ERROR(EINVAL)); 2099 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2100 2101 /* 2102 * Note: If the receive fails, we want the resume stream to start 2103 * with the same record that we last successfully received (as opposed 2104 * to the next record), so that we can verify that we are 2105 * resuming from the correct location. 2106 */ 2107 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2108 dmu_tx_commit(tx); 2109 dmu_buf_rele(bonus, FTAG); 2110 2111 return (0); 2112 } 2113 2114 /* 2115 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2116 * streams to refer to a copy of the data that is already on the 2117 * system because it came in earlier in the stream. This function 2118 * finds the earlier copy of the data, and uses that copy instead of 2119 * data from the stream to fulfill this write. 2120 */ 2121 static int 2122 receive_write_byref(struct receive_writer_arg *rwa, 2123 struct drr_write_byref *drrwbr) 2124 { 2125 dmu_tx_t *tx; 2126 int err; 2127 guid_map_entry_t gmesrch; 2128 guid_map_entry_t *gmep; 2129 avl_index_t where; 2130 objset_t *ref_os = NULL; 2131 dmu_buf_t *dbp; 2132 2133 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2134 return (SET_ERROR(EINVAL)); 2135 2136 /* 2137 * If the GUID of the referenced dataset is different from the 2138 * GUID of the target dataset, find the referenced dataset. 2139 */ 2140 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2141 gmesrch.guid = drrwbr->drr_refguid; 2142 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2143 &where)) == NULL) { 2144 return (SET_ERROR(EINVAL)); 2145 } 2146 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2147 return (SET_ERROR(EINVAL)); 2148 } else { 2149 ref_os = rwa->os; 2150 } 2151 2152 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2153 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2154 if (err != 0) 2155 return (err); 2156 2157 tx = dmu_tx_create(rwa->os); 2158 2159 dmu_tx_hold_write(tx, drrwbr->drr_object, 2160 drrwbr->drr_offset, drrwbr->drr_length); 2161 err = dmu_tx_assign(tx, TXG_WAIT); 2162 if (err != 0) { 2163 dmu_tx_abort(tx); 2164 return (err); 2165 } 2166 dmu_write(rwa->os, drrwbr->drr_object, 2167 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2168 dmu_buf_rele(dbp, FTAG); 2169 2170 /* See comment in restore_write. */ 2171 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2172 dmu_tx_commit(tx); 2173 return (0); 2174 } 2175 2176 static int 2177 receive_write_embedded(struct receive_writer_arg *rwa, 2178 struct drr_write_embedded *drrwe, void *data) 2179 { 2180 dmu_tx_t *tx; 2181 int err; 2182 2183 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2184 return (EINVAL); 2185 2186 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2187 return (EINVAL); 2188 2189 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2190 return (EINVAL); 2191 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2192 return (EINVAL); 2193 2194 tx = dmu_tx_create(rwa->os); 2195 2196 dmu_tx_hold_write(tx, drrwe->drr_object, 2197 drrwe->drr_offset, drrwe->drr_length); 2198 err = dmu_tx_assign(tx, TXG_WAIT); 2199 if (err != 0) { 2200 dmu_tx_abort(tx); 2201 return (err); 2202 } 2203 2204 dmu_write_embedded(rwa->os, drrwe->drr_object, 2205 drrwe->drr_offset, data, drrwe->drr_etype, 2206 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2207 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2208 2209 /* See comment in restore_write. */ 2210 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2211 dmu_tx_commit(tx); 2212 return (0); 2213 } 2214 2215 static int 2216 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2217 void *data) 2218 { 2219 dmu_tx_t *tx; 2220 dmu_buf_t *db, *db_spill; 2221 int err; 2222 2223 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2224 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2225 return (SET_ERROR(EINVAL)); 2226 2227 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2228 return (SET_ERROR(EINVAL)); 2229 2230 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2231 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2232 dmu_buf_rele(db, FTAG); 2233 return (err); 2234 } 2235 2236 tx = dmu_tx_create(rwa->os); 2237 2238 dmu_tx_hold_spill(tx, db->db_object); 2239 2240 err = dmu_tx_assign(tx, TXG_WAIT); 2241 if (err != 0) { 2242 dmu_buf_rele(db, FTAG); 2243 dmu_buf_rele(db_spill, FTAG); 2244 dmu_tx_abort(tx); 2245 return (err); 2246 } 2247 dmu_buf_will_dirty(db_spill, tx); 2248 2249 if (db_spill->db_size < drrs->drr_length) 2250 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2251 drrs->drr_length, tx)); 2252 bcopy(data, db_spill->db_data, drrs->drr_length); 2253 2254 dmu_buf_rele(db, FTAG); 2255 dmu_buf_rele(db_spill, FTAG); 2256 2257 dmu_tx_commit(tx); 2258 return (0); 2259 } 2260 2261 /* ARGSUSED */ 2262 static int 2263 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2264 { 2265 int err; 2266 2267 if (drrf->drr_length != -1ULL && 2268 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2269 return (SET_ERROR(EINVAL)); 2270 2271 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2272 return (SET_ERROR(EINVAL)); 2273 2274 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2275 drrf->drr_offset, drrf->drr_length); 2276 2277 return (err); 2278 } 2279 2280 /* used to destroy the drc_ds on error */ 2281 static void 2282 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2283 { 2284 if (drc->drc_resumable) { 2285 /* wait for our resume state to be written to disk */ 2286 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2287 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2288 } else { 2289 char name[ZFS_MAX_DATASET_NAME_LEN]; 2290 dsl_dataset_name(drc->drc_ds, name); 2291 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2292 (void) dsl_destroy_head(name); 2293 } 2294 } 2295 2296 static void 2297 receive_cksum(struct receive_arg *ra, int len, void *buf) 2298 { 2299 if (ra->byteswap) { 2300 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2301 } else { 2302 fletcher_4_incremental_native(buf, len, &ra->cksum); 2303 } 2304 } 2305 2306 /* 2307 * Read the payload into a buffer of size len, and update the current record's 2308 * payload field. 2309 * Allocate ra->next_rrd and read the next record's header into 2310 * ra->next_rrd->header. 2311 * Verify checksum of payload and next record. 2312 */ 2313 static int 2314 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2315 { 2316 int err; 2317 2318 if (len != 0) { 2319 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2320 err = receive_read(ra, len, buf); 2321 if (err != 0) 2322 return (err); 2323 receive_cksum(ra, len, buf); 2324 2325 /* note: rrd is NULL when reading the begin record's payload */ 2326 if (ra->rrd != NULL) { 2327 ra->rrd->payload = buf; 2328 ra->rrd->payload_size = len; 2329 ra->rrd->bytes_read = ra->bytes_read; 2330 } 2331 } 2332 2333 ra->prev_cksum = ra->cksum; 2334 2335 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2336 err = receive_read(ra, sizeof (ra->next_rrd->header), 2337 &ra->next_rrd->header); 2338 ra->next_rrd->bytes_read = ra->bytes_read; 2339 if (err != 0) { 2340 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2341 ra->next_rrd = NULL; 2342 return (err); 2343 } 2344 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2345 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2346 ra->next_rrd = NULL; 2347 return (SET_ERROR(EINVAL)); 2348 } 2349 2350 /* 2351 * Note: checksum is of everything up to but not including the 2352 * checksum itself. 2353 */ 2354 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2355 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2356 receive_cksum(ra, 2357 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2358 &ra->next_rrd->header); 2359 2360 zio_cksum_t cksum_orig = 2361 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2362 zio_cksum_t *cksump = 2363 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2364 2365 if (ra->byteswap) 2366 byteswap_record(&ra->next_rrd->header); 2367 2368 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2369 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2370 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2371 ra->next_rrd = NULL; 2372 return (SET_ERROR(ECKSUM)); 2373 } 2374 2375 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2376 2377 return (0); 2378 } 2379 2380 static void 2381 objlist_create(struct objlist *list) 2382 { 2383 list_create(&list->list, sizeof (struct receive_objnode), 2384 offsetof(struct receive_objnode, node)); 2385 list->last_lookup = 0; 2386 } 2387 2388 static void 2389 objlist_destroy(struct objlist *list) 2390 { 2391 for (struct receive_objnode *n = list_remove_head(&list->list); 2392 n != NULL; n = list_remove_head(&list->list)) { 2393 kmem_free(n, sizeof (*n)); 2394 } 2395 list_destroy(&list->list); 2396 } 2397 2398 /* 2399 * This function looks through the objlist to see if the specified object number 2400 * is contained in the objlist. In the process, it will remove all object 2401 * numbers in the list that are smaller than the specified object number. Thus, 2402 * any lookup of an object number smaller than a previously looked up object 2403 * number will always return false; therefore, all lookups should be done in 2404 * ascending order. 2405 */ 2406 static boolean_t 2407 objlist_exists(struct objlist *list, uint64_t object) 2408 { 2409 struct receive_objnode *node = list_head(&list->list); 2410 ASSERT3U(object, >=, list->last_lookup); 2411 list->last_lookup = object; 2412 while (node != NULL && node->object < object) { 2413 VERIFY3P(node, ==, list_remove_head(&list->list)); 2414 kmem_free(node, sizeof (*node)); 2415 node = list_head(&list->list); 2416 } 2417 return (node != NULL && node->object == object); 2418 } 2419 2420 /* 2421 * The objlist is a list of object numbers stored in ascending order. However, 2422 * the insertion of new object numbers does not seek out the correct location to 2423 * store a new object number; instead, it appends it to the list for simplicity. 2424 * Thus, any users must take care to only insert new object numbers in ascending 2425 * order. 2426 */ 2427 static void 2428 objlist_insert(struct objlist *list, uint64_t object) 2429 { 2430 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2431 node->object = object; 2432 #ifdef ZFS_DEBUG 2433 struct receive_objnode *last_object = list_tail(&list->list); 2434 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2435 ASSERT3U(node->object, >, last_objnum); 2436 #endif 2437 list_insert_tail(&list->list, node); 2438 } 2439 2440 /* 2441 * Issue the prefetch reads for any necessary indirect blocks. 2442 * 2443 * We use the object ignore list to tell us whether or not to issue prefetches 2444 * for a given object. We do this for both correctness (in case the blocksize 2445 * of an object has changed) and performance (if the object doesn't exist, don't 2446 * needlessly try to issue prefetches). We also trim the list as we go through 2447 * the stream to prevent it from growing to an unbounded size. 2448 * 2449 * The object numbers within will always be in sorted order, and any write 2450 * records we see will also be in sorted order, but they're not sorted with 2451 * respect to each other (i.e. we can get several object records before 2452 * receiving each object's write records). As a result, once we've reached a 2453 * given object number, we can safely remove any reference to lower object 2454 * numbers in the ignore list. In practice, we receive up to 32 object records 2455 * before receiving write records, so the list can have up to 32 nodes in it. 2456 */ 2457 /* ARGSUSED */ 2458 static void 2459 receive_read_prefetch(struct receive_arg *ra, 2460 uint64_t object, uint64_t offset, uint64_t length) 2461 { 2462 if (!objlist_exists(&ra->ignore_objlist, object)) { 2463 dmu_prefetch(ra->os, object, 1, offset, length, 2464 ZIO_PRIORITY_SYNC_READ); 2465 } 2466 } 2467 2468 /* 2469 * Read records off the stream, issuing any necessary prefetches. 2470 */ 2471 static int 2472 receive_read_record(struct receive_arg *ra) 2473 { 2474 int err; 2475 2476 switch (ra->rrd->header.drr_type) { 2477 case DRR_OBJECT: 2478 { 2479 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2480 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2481 void *buf = kmem_zalloc(size, KM_SLEEP); 2482 dmu_object_info_t doi; 2483 err = receive_read_payload_and_next_header(ra, size, buf); 2484 if (err != 0) { 2485 kmem_free(buf, size); 2486 return (err); 2487 } 2488 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2489 /* 2490 * See receive_read_prefetch for an explanation why we're 2491 * storing this object in the ignore_obj_list. 2492 */ 2493 if (err == ENOENT || 2494 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2495 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2496 err = 0; 2497 } 2498 return (err); 2499 } 2500 case DRR_FREEOBJECTS: 2501 { 2502 err = receive_read_payload_and_next_header(ra, 0, NULL); 2503 return (err); 2504 } 2505 case DRR_WRITE: 2506 { 2507 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2508 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2509 drrw->drr_length); 2510 2511 err = receive_read_payload_and_next_header(ra, 2512 drrw->drr_length, abuf->b_data); 2513 if (err != 0) { 2514 dmu_return_arcbuf(abuf); 2515 return (err); 2516 } 2517 ra->rrd->write_buf = abuf; 2518 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2519 drrw->drr_length); 2520 return (err); 2521 } 2522 case DRR_WRITE_BYREF: 2523 { 2524 struct drr_write_byref *drrwb = 2525 &ra->rrd->header.drr_u.drr_write_byref; 2526 err = receive_read_payload_and_next_header(ra, 0, NULL); 2527 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2528 drrwb->drr_length); 2529 return (err); 2530 } 2531 case DRR_WRITE_EMBEDDED: 2532 { 2533 struct drr_write_embedded *drrwe = 2534 &ra->rrd->header.drr_u.drr_write_embedded; 2535 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2536 void *buf = kmem_zalloc(size, KM_SLEEP); 2537 2538 err = receive_read_payload_and_next_header(ra, size, buf); 2539 if (err != 0) { 2540 kmem_free(buf, size); 2541 return (err); 2542 } 2543 2544 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2545 drrwe->drr_length); 2546 return (err); 2547 } 2548 case DRR_FREE: 2549 { 2550 /* 2551 * It might be beneficial to prefetch indirect blocks here, but 2552 * we don't really have the data to decide for sure. 2553 */ 2554 err = receive_read_payload_and_next_header(ra, 0, NULL); 2555 return (err); 2556 } 2557 case DRR_END: 2558 { 2559 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2560 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2561 return (SET_ERROR(ECKSUM)); 2562 return (0); 2563 } 2564 case DRR_SPILL: 2565 { 2566 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2567 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2568 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2569 buf); 2570 if (err != 0) 2571 kmem_free(buf, drrs->drr_length); 2572 return (err); 2573 } 2574 default: 2575 return (SET_ERROR(EINVAL)); 2576 } 2577 } 2578 2579 /* 2580 * Commit the records to the pool. 2581 */ 2582 static int 2583 receive_process_record(struct receive_writer_arg *rwa, 2584 struct receive_record_arg *rrd) 2585 { 2586 int err; 2587 2588 /* Processing in order, therefore bytes_read should be increasing. */ 2589 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2590 rwa->bytes_read = rrd->bytes_read; 2591 2592 switch (rrd->header.drr_type) { 2593 case DRR_OBJECT: 2594 { 2595 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2596 err = receive_object(rwa, drro, rrd->payload); 2597 kmem_free(rrd->payload, rrd->payload_size); 2598 rrd->payload = NULL; 2599 return (err); 2600 } 2601 case DRR_FREEOBJECTS: 2602 { 2603 struct drr_freeobjects *drrfo = 2604 &rrd->header.drr_u.drr_freeobjects; 2605 return (receive_freeobjects(rwa, drrfo)); 2606 } 2607 case DRR_WRITE: 2608 { 2609 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2610 err = receive_write(rwa, drrw, rrd->write_buf); 2611 /* if receive_write() is successful, it consumes the arc_buf */ 2612 if (err != 0) 2613 dmu_return_arcbuf(rrd->write_buf); 2614 rrd->write_buf = NULL; 2615 rrd->payload = NULL; 2616 return (err); 2617 } 2618 case DRR_WRITE_BYREF: 2619 { 2620 struct drr_write_byref *drrwbr = 2621 &rrd->header.drr_u.drr_write_byref; 2622 return (receive_write_byref(rwa, drrwbr)); 2623 } 2624 case DRR_WRITE_EMBEDDED: 2625 { 2626 struct drr_write_embedded *drrwe = 2627 &rrd->header.drr_u.drr_write_embedded; 2628 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2629 kmem_free(rrd->payload, rrd->payload_size); 2630 rrd->payload = NULL; 2631 return (err); 2632 } 2633 case DRR_FREE: 2634 { 2635 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2636 return (receive_free(rwa, drrf)); 2637 } 2638 case DRR_SPILL: 2639 { 2640 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2641 err = receive_spill(rwa, drrs, rrd->payload); 2642 kmem_free(rrd->payload, rrd->payload_size); 2643 rrd->payload = NULL; 2644 return (err); 2645 } 2646 default: 2647 return (SET_ERROR(EINVAL)); 2648 } 2649 } 2650 2651 /* 2652 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2653 * receive_process_record When we're done, signal the main thread and exit. 2654 */ 2655 static void 2656 receive_writer_thread(void *arg) 2657 { 2658 struct receive_writer_arg *rwa = arg; 2659 struct receive_record_arg *rrd; 2660 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2661 rrd = bqueue_dequeue(&rwa->q)) { 2662 /* 2663 * If there's an error, the main thread will stop putting things 2664 * on the queue, but we need to clear everything in it before we 2665 * can exit. 2666 */ 2667 if (rwa->err == 0) { 2668 rwa->err = receive_process_record(rwa, rrd); 2669 } else if (rrd->write_buf != NULL) { 2670 dmu_return_arcbuf(rrd->write_buf); 2671 rrd->write_buf = NULL; 2672 rrd->payload = NULL; 2673 } else if (rrd->payload != NULL) { 2674 kmem_free(rrd->payload, rrd->payload_size); 2675 rrd->payload = NULL; 2676 } 2677 kmem_free(rrd, sizeof (*rrd)); 2678 } 2679 kmem_free(rrd, sizeof (*rrd)); 2680 mutex_enter(&rwa->mutex); 2681 rwa->done = B_TRUE; 2682 cv_signal(&rwa->cv); 2683 mutex_exit(&rwa->mutex); 2684 } 2685 2686 static int 2687 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2688 { 2689 uint64_t val; 2690 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2691 uint64_t dsobj = dmu_objset_id(ra->os); 2692 uint64_t resume_obj, resume_off; 2693 2694 if (nvlist_lookup_uint64(begin_nvl, 2695 "resume_object", &resume_obj) != 0 || 2696 nvlist_lookup_uint64(begin_nvl, 2697 "resume_offset", &resume_off) != 0) { 2698 return (SET_ERROR(EINVAL)); 2699 } 2700 VERIFY0(zap_lookup(mos, dsobj, 2701 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2702 if (resume_obj != val) 2703 return (SET_ERROR(EINVAL)); 2704 VERIFY0(zap_lookup(mos, dsobj, 2705 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2706 if (resume_off != val) 2707 return (SET_ERROR(EINVAL)); 2708 2709 return (0); 2710 } 2711 2712 /* 2713 * Read in the stream's records, one by one, and apply them to the pool. There 2714 * are two threads involved; the thread that calls this function will spin up a 2715 * worker thread, read the records off the stream one by one, and issue 2716 * prefetches for any necessary indirect blocks. It will then push the records 2717 * onto an internal blocking queue. The worker thread will pull the records off 2718 * the queue, and actually write the data into the DMU. This way, the worker 2719 * thread doesn't have to wait for reads to complete, since everything it needs 2720 * (the indirect blocks) will be prefetched. 2721 * 2722 * NB: callers *must* call dmu_recv_end() if this succeeds. 2723 */ 2724 int 2725 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2726 int cleanup_fd, uint64_t *action_handlep) 2727 { 2728 int err = 0; 2729 struct receive_arg ra = { 0 }; 2730 struct receive_writer_arg rwa = { 0 }; 2731 int featureflags; 2732 nvlist_t *begin_nvl = NULL; 2733 2734 ra.byteswap = drc->drc_byteswap; 2735 ra.cksum = drc->drc_cksum; 2736 ra.vp = vp; 2737 ra.voff = *voffp; 2738 2739 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2740 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2741 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2742 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2743 } 2744 2745 objlist_create(&ra.ignore_objlist); 2746 2747 /* these were verified in dmu_recv_begin */ 2748 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2749 DMU_SUBSTREAM); 2750 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2751 2752 /* 2753 * Open the objset we are modifying. 2754 */ 2755 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2756 2757 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2758 2759 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2760 2761 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2762 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2763 minor_t minor; 2764 2765 if (cleanup_fd == -1) { 2766 ra.err = SET_ERROR(EBADF); 2767 goto out; 2768 } 2769 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2770 if (ra.err != 0) { 2771 cleanup_fd = -1; 2772 goto out; 2773 } 2774 2775 if (*action_handlep == 0) { 2776 rwa.guid_to_ds_map = 2777 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2778 avl_create(rwa.guid_to_ds_map, guid_compare, 2779 sizeof (guid_map_entry_t), 2780 offsetof(guid_map_entry_t, avlnode)); 2781 err = zfs_onexit_add_cb(minor, 2782 free_guid_map_onexit, rwa.guid_to_ds_map, 2783 action_handlep); 2784 if (ra.err != 0) 2785 goto out; 2786 } else { 2787 err = zfs_onexit_cb_data(minor, *action_handlep, 2788 (void **)&rwa.guid_to_ds_map); 2789 if (ra.err != 0) 2790 goto out; 2791 } 2792 2793 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2794 } 2795 2796 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2797 void *payload = NULL; 2798 if (payloadlen != 0) 2799 payload = kmem_alloc(payloadlen, KM_SLEEP); 2800 2801 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2802 if (err != 0) { 2803 if (payloadlen != 0) 2804 kmem_free(payload, payloadlen); 2805 goto out; 2806 } 2807 if (payloadlen != 0) { 2808 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2809 kmem_free(payload, payloadlen); 2810 if (err != 0) 2811 goto out; 2812 } 2813 2814 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2815 err = resume_check(&ra, begin_nvl); 2816 if (err != 0) 2817 goto out; 2818 } 2819 2820 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2821 offsetof(struct receive_record_arg, node)); 2822 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2823 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2824 rwa.os = ra.os; 2825 rwa.byteswap = drc->drc_byteswap; 2826 rwa.resumable = drc->drc_resumable; 2827 2828 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2829 TS_RUN, minclsyspri); 2830 /* 2831 * We're reading rwa.err without locks, which is safe since we are the 2832 * only reader, and the worker thread is the only writer. It's ok if we 2833 * miss a write for an iteration or two of the loop, since the writer 2834 * thread will keep freeing records we send it until we send it an eos 2835 * marker. 2836 * 2837 * We can leave this loop in 3 ways: First, if rwa.err is 2838 * non-zero. In that case, the writer thread will free the rrd we just 2839 * pushed. Second, if we're interrupted; in that case, either it's the 2840 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2841 * has been handed off to the writer thread who will free it. Finally, 2842 * if receive_read_record fails or we're at the end of the stream, then 2843 * we free ra.rrd and exit. 2844 */ 2845 while (rwa.err == 0) { 2846 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2847 err = SET_ERROR(EINTR); 2848 break; 2849 } 2850 2851 ASSERT3P(ra.rrd, ==, NULL); 2852 ra.rrd = ra.next_rrd; 2853 ra.next_rrd = NULL; 2854 /* Allocates and loads header into ra.next_rrd */ 2855 err = receive_read_record(&ra); 2856 2857 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2858 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2859 ra.rrd = NULL; 2860 break; 2861 } 2862 2863 bqueue_enqueue(&rwa.q, ra.rrd, 2864 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2865 ra.rrd = NULL; 2866 } 2867 if (ra.next_rrd == NULL) 2868 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2869 ra.next_rrd->eos_marker = B_TRUE; 2870 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2871 2872 mutex_enter(&rwa.mutex); 2873 while (!rwa.done) { 2874 cv_wait(&rwa.cv, &rwa.mutex); 2875 } 2876 mutex_exit(&rwa.mutex); 2877 2878 cv_destroy(&rwa.cv); 2879 mutex_destroy(&rwa.mutex); 2880 bqueue_destroy(&rwa.q); 2881 if (err == 0) 2882 err = rwa.err; 2883 2884 out: 2885 nvlist_free(begin_nvl); 2886 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2887 zfs_onexit_fd_rele(cleanup_fd); 2888 2889 if (err != 0) { 2890 /* 2891 * Clean up references. If receive is not resumable, 2892 * destroy what we created, so we don't leave it in 2893 * the inconsistent state. 2894 */ 2895 dmu_recv_cleanup_ds(drc); 2896 } 2897 2898 *voffp = ra.voff; 2899 objlist_destroy(&ra.ignore_objlist); 2900 return (err); 2901 } 2902 2903 static int 2904 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2905 { 2906 dmu_recv_cookie_t *drc = arg; 2907 dsl_pool_t *dp = dmu_tx_pool(tx); 2908 int error; 2909 2910 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2911 2912 if (!drc->drc_newfs) { 2913 dsl_dataset_t *origin_head; 2914 2915 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2916 if (error != 0) 2917 return (error); 2918 if (drc->drc_force) { 2919 /* 2920 * We will destroy any snapshots in tofs (i.e. before 2921 * origin_head) that are after the origin (which is 2922 * the snap before drc_ds, because drc_ds can not 2923 * have any snaps of its own). 2924 */ 2925 uint64_t obj; 2926 2927 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2928 while (obj != 2929 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2930 dsl_dataset_t *snap; 2931 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2932 &snap); 2933 if (error != 0) 2934 break; 2935 if (snap->ds_dir != origin_head->ds_dir) 2936 error = SET_ERROR(EINVAL); 2937 if (error == 0) { 2938 error = dsl_destroy_snapshot_check_impl( 2939 snap, B_FALSE); 2940 } 2941 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2942 dsl_dataset_rele(snap, FTAG); 2943 if (error != 0) 2944 break; 2945 } 2946 if (error != 0) { 2947 dsl_dataset_rele(origin_head, FTAG); 2948 return (error); 2949 } 2950 } 2951 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2952 origin_head, drc->drc_force, drc->drc_owner, tx); 2953 if (error != 0) { 2954 dsl_dataset_rele(origin_head, FTAG); 2955 return (error); 2956 } 2957 error = dsl_dataset_snapshot_check_impl(origin_head, 2958 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2959 dsl_dataset_rele(origin_head, FTAG); 2960 if (error != 0) 2961 return (error); 2962 2963 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2964 } else { 2965 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2966 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2967 } 2968 return (error); 2969 } 2970 2971 static void 2972 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2973 { 2974 dmu_recv_cookie_t *drc = arg; 2975 dsl_pool_t *dp = dmu_tx_pool(tx); 2976 2977 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2978 tx, "snap=%s", drc->drc_tosnap); 2979 2980 if (!drc->drc_newfs) { 2981 dsl_dataset_t *origin_head; 2982 2983 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2984 &origin_head)); 2985 2986 if (drc->drc_force) { 2987 /* 2988 * Destroy any snapshots of drc_tofs (origin_head) 2989 * after the origin (the snap before drc_ds). 2990 */ 2991 uint64_t obj; 2992 2993 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2994 while (obj != 2995 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2996 dsl_dataset_t *snap; 2997 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2998 &snap)); 2999 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3000 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3001 dsl_destroy_snapshot_sync_impl(snap, 3002 B_FALSE, tx); 3003 dsl_dataset_rele(snap, FTAG); 3004 } 3005 } 3006 VERIFY3P(drc->drc_ds->ds_prev, ==, 3007 origin_head->ds_prev); 3008 3009 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3010 origin_head, tx); 3011 dsl_dataset_snapshot_sync_impl(origin_head, 3012 drc->drc_tosnap, tx); 3013 3014 /* set snapshot's creation time and guid */ 3015 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3016 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3017 drc->drc_drrb->drr_creation_time; 3018 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3019 drc->drc_drrb->drr_toguid; 3020 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3021 ~DS_FLAG_INCONSISTENT; 3022 3023 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3024 dsl_dataset_phys(origin_head)->ds_flags &= 3025 ~DS_FLAG_INCONSISTENT; 3026 3027 dsl_dataset_rele(origin_head, FTAG); 3028 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3029 3030 if (drc->drc_owner != NULL) 3031 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3032 } else { 3033 dsl_dataset_t *ds = drc->drc_ds; 3034 3035 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3036 3037 /* set snapshot's creation time and guid */ 3038 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3039 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3040 drc->drc_drrb->drr_creation_time; 3041 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3042 drc->drc_drrb->drr_toguid; 3043 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3044 ~DS_FLAG_INCONSISTENT; 3045 3046 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3047 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3048 if (dsl_dataset_has_resume_receive_state(ds)) { 3049 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3050 DS_FIELD_RESUME_FROMGUID, tx); 3051 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3052 DS_FIELD_RESUME_OBJECT, tx); 3053 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3054 DS_FIELD_RESUME_OFFSET, tx); 3055 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3056 DS_FIELD_RESUME_BYTES, tx); 3057 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3058 DS_FIELD_RESUME_TOGUID, tx); 3059 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3060 DS_FIELD_RESUME_TONAME, tx); 3061 } 3062 } 3063 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3064 /* 3065 * Release the hold from dmu_recv_begin. This must be done before 3066 * we return to open context, so that when we free the dataset's dnode, 3067 * we can evict its bonus buffer. 3068 */ 3069 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3070 drc->drc_ds = NULL; 3071 } 3072 3073 static int 3074 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3075 { 3076 dsl_pool_t *dp; 3077 dsl_dataset_t *snapds; 3078 guid_map_entry_t *gmep; 3079 int err; 3080 3081 ASSERT(guid_map != NULL); 3082 3083 err = dsl_pool_hold(name, FTAG, &dp); 3084 if (err != 0) 3085 return (err); 3086 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3087 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3088 if (err == 0) { 3089 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3090 gmep->gme_ds = snapds; 3091 avl_add(guid_map, gmep); 3092 dsl_dataset_long_hold(snapds, gmep); 3093 } else { 3094 kmem_free(gmep, sizeof (*gmep)); 3095 } 3096 3097 dsl_pool_rele(dp, FTAG); 3098 return (err); 3099 } 3100 3101 static int dmu_recv_end_modified_blocks = 3; 3102 3103 static int 3104 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3105 { 3106 int error; 3107 3108 #ifdef _KERNEL 3109 /* 3110 * We will be destroying the ds; make sure its origin is unmounted if 3111 * necessary. 3112 */ 3113 char name[ZFS_MAX_DATASET_NAME_LEN]; 3114 dsl_dataset_name(drc->drc_ds, name); 3115 zfs_destroy_unmount_origin(name); 3116 #endif 3117 3118 error = dsl_sync_task(drc->drc_tofs, 3119 dmu_recv_end_check, dmu_recv_end_sync, drc, 3120 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3121 3122 if (error != 0) 3123 dmu_recv_cleanup_ds(drc); 3124 return (error); 3125 } 3126 3127 static int 3128 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3129 { 3130 int error; 3131 3132 error = dsl_sync_task(drc->drc_tofs, 3133 dmu_recv_end_check, dmu_recv_end_sync, drc, 3134 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3135 3136 if (error != 0) { 3137 dmu_recv_cleanup_ds(drc); 3138 } else if (drc->drc_guid_to_ds_map != NULL) { 3139 (void) add_ds_to_guidmap(drc->drc_tofs, 3140 drc->drc_guid_to_ds_map, 3141 drc->drc_newsnapobj); 3142 } 3143 return (error); 3144 } 3145 3146 int 3147 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3148 { 3149 drc->drc_owner = owner; 3150 3151 if (drc->drc_newfs) 3152 return (dmu_recv_new_end(drc)); 3153 else 3154 return (dmu_recv_existing_end(drc)); 3155 } 3156 3157 /* 3158 * Return TRUE if this objset is currently being received into. 3159 */ 3160 boolean_t 3161 dmu_objset_is_receiving(objset_t *os) 3162 { 3163 return (os->os_dsl_dataset != NULL && 3164 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3165 } 3166