1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 static void byteswap_record(dmu_replay_record_t *drr); 70 71 struct send_thread_arg { 72 bqueue_t q; 73 dsl_dataset_t *ds; /* Dataset to traverse */ 74 uint64_t fromtxg; /* Traverse from this txg */ 75 int flags; /* flags to pass to traverse_dataset */ 76 int error_code; 77 boolean_t cancel; 78 zbookmark_phys_t resume; 79 }; 80 81 struct send_block_record { 82 boolean_t eos_marker; /* Marks the end of the stream */ 83 blkptr_t bp; 84 zbookmark_phys_t zb; 85 uint8_t indblkshift; 86 uint16_t datablkszsec; 87 bqueue_node_t ln; 88 }; 89 90 static int 91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 92 { 93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 94 ssize_t resid; /* have to get resid to get detailed errno */ 95 ASSERT0(len % 8); 96 97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 98 (caddr_t)buf, len, 99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 100 101 mutex_enter(&ds->ds_sendstream_lock); 102 *dsp->dsa_off += len; 103 mutex_exit(&ds->ds_sendstream_lock); 104 105 return (dsp->dsa_err); 106 } 107 108 /* 109 * For all record types except BEGIN, fill in the checksum (overlaid in 110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 111 * up to the start of the checksum itself. 112 */ 113 static int 114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 115 { 116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 118 fletcher_4_incremental_native(dsp->dsa_drr, 119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 120 &dsp->dsa_zc); 121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 123 drr_checksum.drr_checksum)); 124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 125 } 126 fletcher_4_incremental_native(&dsp->dsa_drr-> 127 drr_u.drr_checksum.drr_checksum, 128 sizeof (zio_cksum_t), &dsp->dsa_zc); 129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 130 return (SET_ERROR(EINTR)); 131 if (payload_len != 0) { 132 fletcher_4_incremental_native(payload, payload_len, 133 &dsp->dsa_zc); 134 if (dump_bytes(dsp, payload, payload_len) != 0) 135 return (SET_ERROR(EINTR)); 136 } 137 return (0); 138 } 139 140 static int 141 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 142 uint64_t length) 143 { 144 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 145 146 /* 147 * When we receive a free record, dbuf_free_range() assumes 148 * that the receiving system doesn't have any dbufs in the range 149 * being freed. This is always true because there is a one-record 150 * constraint: we only send one WRITE record for any given 151 * object,offset. We know that the one-record constraint is 152 * true because we always send data in increasing order by 153 * object,offset. 154 * 155 * If the increasing-order constraint ever changes, we should find 156 * another way to assert that the one-record constraint is still 157 * satisfied. 158 */ 159 ASSERT(object > dsp->dsa_last_data_object || 160 (object == dsp->dsa_last_data_object && 161 offset > dsp->dsa_last_data_offset)); 162 163 /* 164 * If we are doing a non-incremental send, then there can't 165 * be any data in the dataset we're receiving into. Therefore 166 * a free record would simply be a no-op. Save space by not 167 * sending it to begin with. 168 */ 169 if (!dsp->dsa_incremental) 170 return (0); 171 172 if (length != -1ULL && offset + length < offset) 173 length = -1ULL; 174 175 /* 176 * If there is a pending op, but it's not PENDING_FREE, push it out, 177 * since free block aggregation can only be done for blocks of the 178 * same type (i.e., DRR_FREE records can only be aggregated with 179 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 180 * aggregated with other DRR_FREEOBJECTS records. 181 */ 182 if (dsp->dsa_pending_op != PENDING_NONE && 183 dsp->dsa_pending_op != PENDING_FREE) { 184 if (dump_record(dsp, NULL, 0) != 0) 185 return (SET_ERROR(EINTR)); 186 dsp->dsa_pending_op = PENDING_NONE; 187 } 188 189 if (dsp->dsa_pending_op == PENDING_FREE) { 190 /* 191 * There should never be a PENDING_FREE if length is -1 192 * (because dump_dnode is the only place where this 193 * function is called with a -1, and only after flushing 194 * any pending record). 195 */ 196 ASSERT(length != -1ULL); 197 /* 198 * Check to see whether this free block can be aggregated 199 * with pending one. 200 */ 201 if (drrf->drr_object == object && drrf->drr_offset + 202 drrf->drr_length == offset) { 203 drrf->drr_length += length; 204 return (0); 205 } else { 206 /* not a continuation. Push out pending record */ 207 if (dump_record(dsp, NULL, 0) != 0) 208 return (SET_ERROR(EINTR)); 209 dsp->dsa_pending_op = PENDING_NONE; 210 } 211 } 212 /* create a FREE record and make it pending */ 213 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 214 dsp->dsa_drr->drr_type = DRR_FREE; 215 drrf->drr_object = object; 216 drrf->drr_offset = offset; 217 drrf->drr_length = length; 218 drrf->drr_toguid = dsp->dsa_toguid; 219 if (length == -1ULL) { 220 if (dump_record(dsp, NULL, 0) != 0) 221 return (SET_ERROR(EINTR)); 222 } else { 223 dsp->dsa_pending_op = PENDING_FREE; 224 } 225 226 return (0); 227 } 228 229 static int 230 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 231 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 232 { 233 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 234 235 /* 236 * We send data in increasing object, offset order. 237 * See comment in dump_free() for details. 238 */ 239 ASSERT(object > dsp->dsa_last_data_object || 240 (object == dsp->dsa_last_data_object && 241 offset > dsp->dsa_last_data_offset)); 242 dsp->dsa_last_data_object = object; 243 dsp->dsa_last_data_offset = offset + blksz - 1; 244 245 /* 246 * If there is any kind of pending aggregation (currently either 247 * a grouping of free objects or free blocks), push it out to 248 * the stream, since aggregation can't be done across operations 249 * of different types. 250 */ 251 if (dsp->dsa_pending_op != PENDING_NONE) { 252 if (dump_record(dsp, NULL, 0) != 0) 253 return (SET_ERROR(EINTR)); 254 dsp->dsa_pending_op = PENDING_NONE; 255 } 256 /* write a WRITE record */ 257 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 258 dsp->dsa_drr->drr_type = DRR_WRITE; 259 drrw->drr_object = object; 260 drrw->drr_type = type; 261 drrw->drr_offset = offset; 262 drrw->drr_length = blksz; 263 drrw->drr_toguid = dsp->dsa_toguid; 264 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 265 /* 266 * There's no pre-computed checksum for partial-block 267 * writes or embedded BP's, so (like 268 * fletcher4-checkummed blocks) userland will have to 269 * compute a dedup-capable checksum itself. 270 */ 271 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 272 } else { 273 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 274 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 275 ZCHECKSUM_FLAG_DEDUP) 276 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 277 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 278 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 279 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 280 drrw->drr_key.ddk_cksum = bp->blk_cksum; 281 } 282 283 if (dump_record(dsp, data, blksz) != 0) 284 return (SET_ERROR(EINTR)); 285 return (0); 286 } 287 288 static int 289 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 290 int blksz, const blkptr_t *bp) 291 { 292 char buf[BPE_PAYLOAD_SIZE]; 293 struct drr_write_embedded *drrw = 294 &(dsp->dsa_drr->drr_u.drr_write_embedded); 295 296 if (dsp->dsa_pending_op != PENDING_NONE) { 297 if (dump_record(dsp, NULL, 0) != 0) 298 return (EINTR); 299 dsp->dsa_pending_op = PENDING_NONE; 300 } 301 302 ASSERT(BP_IS_EMBEDDED(bp)); 303 304 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 305 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 306 drrw->drr_object = object; 307 drrw->drr_offset = offset; 308 drrw->drr_length = blksz; 309 drrw->drr_toguid = dsp->dsa_toguid; 310 drrw->drr_compression = BP_GET_COMPRESS(bp); 311 drrw->drr_etype = BPE_GET_ETYPE(bp); 312 drrw->drr_lsize = BPE_GET_LSIZE(bp); 313 drrw->drr_psize = BPE_GET_PSIZE(bp); 314 315 decode_embedded_bp_compressed(bp, buf); 316 317 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 318 return (EINTR); 319 return (0); 320 } 321 322 static int 323 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 324 { 325 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 326 327 if (dsp->dsa_pending_op != PENDING_NONE) { 328 if (dump_record(dsp, NULL, 0) != 0) 329 return (SET_ERROR(EINTR)); 330 dsp->dsa_pending_op = PENDING_NONE; 331 } 332 333 /* write a SPILL record */ 334 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 335 dsp->dsa_drr->drr_type = DRR_SPILL; 336 drrs->drr_object = object; 337 drrs->drr_length = blksz; 338 drrs->drr_toguid = dsp->dsa_toguid; 339 340 if (dump_record(dsp, data, blksz) != 0) 341 return (SET_ERROR(EINTR)); 342 return (0); 343 } 344 345 static int 346 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 347 { 348 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 349 350 /* See comment in dump_free(). */ 351 if (!dsp->dsa_incremental) 352 return (0); 353 354 /* 355 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 356 * push it out, since free block aggregation can only be done for 357 * blocks of the same type (i.e., DRR_FREE records can only be 358 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 359 * can only be aggregated with other DRR_FREEOBJECTS records. 360 */ 361 if (dsp->dsa_pending_op != PENDING_NONE && 362 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 363 if (dump_record(dsp, NULL, 0) != 0) 364 return (SET_ERROR(EINTR)); 365 dsp->dsa_pending_op = PENDING_NONE; 366 } 367 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 368 /* 369 * See whether this free object array can be aggregated 370 * with pending one 371 */ 372 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 373 drrfo->drr_numobjs += numobjs; 374 return (0); 375 } else { 376 /* can't be aggregated. Push out pending record */ 377 if (dump_record(dsp, NULL, 0) != 0) 378 return (SET_ERROR(EINTR)); 379 dsp->dsa_pending_op = PENDING_NONE; 380 } 381 } 382 383 /* write a FREEOBJECTS record */ 384 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 385 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 386 drrfo->drr_firstobj = firstobj; 387 drrfo->drr_numobjs = numobjs; 388 drrfo->drr_toguid = dsp->dsa_toguid; 389 390 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 391 392 return (0); 393 } 394 395 static int 396 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 397 { 398 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 399 400 if (object < dsp->dsa_resume_object) { 401 /* 402 * Note: when resuming, we will visit all the dnodes in 403 * the block of dnodes that we are resuming from. In 404 * this case it's unnecessary to send the dnodes prior to 405 * the one we are resuming from. We should be at most one 406 * block's worth of dnodes behind the resume point. 407 */ 408 ASSERT3U(dsp->dsa_resume_object - object, <, 409 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 410 return (0); 411 } 412 413 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 414 return (dump_freeobjects(dsp, object, 1)); 415 416 if (dsp->dsa_pending_op != PENDING_NONE) { 417 if (dump_record(dsp, NULL, 0) != 0) 418 return (SET_ERROR(EINTR)); 419 dsp->dsa_pending_op = PENDING_NONE; 420 } 421 422 /* write an OBJECT record */ 423 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 424 dsp->dsa_drr->drr_type = DRR_OBJECT; 425 drro->drr_object = object; 426 drro->drr_type = dnp->dn_type; 427 drro->drr_bonustype = dnp->dn_bonustype; 428 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 429 drro->drr_bonuslen = dnp->dn_bonuslen; 430 drro->drr_checksumtype = dnp->dn_checksum; 431 drro->drr_compress = dnp->dn_compress; 432 drro->drr_toguid = dsp->dsa_toguid; 433 434 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 435 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 436 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 437 438 if (dump_record(dsp, DN_BONUS(dnp), 439 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 440 return (SET_ERROR(EINTR)); 441 } 442 443 /* Free anything past the end of the file. */ 444 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 445 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 446 return (SET_ERROR(EINTR)); 447 if (dsp->dsa_err != 0) 448 return (SET_ERROR(EINTR)); 449 return (0); 450 } 451 452 static boolean_t 453 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 454 { 455 if (!BP_IS_EMBEDDED(bp)) 456 return (B_FALSE); 457 458 /* 459 * Compression function must be legacy, or explicitly enabled. 460 */ 461 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 462 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 463 return (B_FALSE); 464 465 /* 466 * Embed type must be explicitly enabled. 467 */ 468 switch (BPE_GET_ETYPE(bp)) { 469 case BP_EMBEDDED_TYPE_DATA: 470 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 471 return (B_TRUE); 472 break; 473 default: 474 return (B_FALSE); 475 } 476 return (B_FALSE); 477 } 478 479 /* 480 * This is the callback function to traverse_dataset that acts as the worker 481 * thread for dmu_send_impl. 482 */ 483 /*ARGSUSED*/ 484 static int 485 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 486 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 487 { 488 struct send_thread_arg *sta = arg; 489 struct send_block_record *record; 490 uint64_t record_size; 491 int err = 0; 492 493 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 494 zb->zb_object >= sta->resume.zb_object); 495 496 if (sta->cancel) 497 return (SET_ERROR(EINTR)); 498 499 if (bp == NULL) { 500 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 501 return (0); 502 } else if (zb->zb_level < 0) { 503 return (0); 504 } 505 506 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 507 record->eos_marker = B_FALSE; 508 record->bp = *bp; 509 record->zb = *zb; 510 record->indblkshift = dnp->dn_indblkshift; 511 record->datablkszsec = dnp->dn_datablkszsec; 512 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 513 bqueue_enqueue(&sta->q, record, record_size); 514 515 return (err); 516 } 517 518 /* 519 * This function kicks off the traverse_dataset. It also handles setting the 520 * error code of the thread in case something goes wrong, and pushes the End of 521 * Stream record when the traverse_dataset call has finished. If there is no 522 * dataset to traverse, the thread immediately pushes End of Stream marker. 523 */ 524 static void 525 send_traverse_thread(void *arg) 526 { 527 struct send_thread_arg *st_arg = arg; 528 int err; 529 struct send_block_record *data; 530 531 if (st_arg->ds != NULL) { 532 err = traverse_dataset_resume(st_arg->ds, 533 st_arg->fromtxg, &st_arg->resume, 534 st_arg->flags, send_cb, st_arg); 535 536 if (err != EINTR) 537 st_arg->error_code = err; 538 } 539 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 540 data->eos_marker = B_TRUE; 541 bqueue_enqueue(&st_arg->q, data, 1); 542 } 543 544 /* 545 * This function actually handles figuring out what kind of record needs to be 546 * dumped, reading the data (which has hopefully been prefetched), and calling 547 * the appropriate helper function. 548 */ 549 static int 550 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 551 { 552 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 553 const blkptr_t *bp = &data->bp; 554 const zbookmark_phys_t *zb = &data->zb; 555 uint8_t indblkshift = data->indblkshift; 556 uint16_t dblkszsec = data->datablkszsec; 557 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 558 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 559 int err = 0; 560 561 ASSERT3U(zb->zb_level, >=, 0); 562 563 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 564 zb->zb_object >= dsa->dsa_resume_object); 565 566 if (zb->zb_object != DMU_META_DNODE_OBJECT && 567 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 568 return (0); 569 } else if (BP_IS_HOLE(bp) && 570 zb->zb_object == DMU_META_DNODE_OBJECT) { 571 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 572 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 573 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 574 } else if (BP_IS_HOLE(bp)) { 575 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 576 uint64_t offset = zb->zb_blkid * span; 577 err = dump_free(dsa, zb->zb_object, offset, span); 578 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 579 return (0); 580 } else if (type == DMU_OT_DNODE) { 581 int blksz = BP_GET_LSIZE(bp); 582 arc_flags_t aflags = ARC_FLAG_WAIT; 583 arc_buf_t *abuf; 584 585 ASSERT0(zb->zb_level); 586 587 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 588 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 589 &aflags, zb) != 0) 590 return (SET_ERROR(EIO)); 591 592 dnode_phys_t *blk = abuf->b_data; 593 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 594 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 595 err = dump_dnode(dsa, dnobj + i, blk + i); 596 if (err != 0) 597 break; 598 } 599 (void) arc_buf_remove_ref(abuf, &abuf); 600 } else if (type == DMU_OT_SA) { 601 arc_flags_t aflags = ARC_FLAG_WAIT; 602 arc_buf_t *abuf; 603 int blksz = BP_GET_LSIZE(bp); 604 605 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 606 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 607 &aflags, zb) != 0) 608 return (SET_ERROR(EIO)); 609 610 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 611 (void) arc_buf_remove_ref(abuf, &abuf); 612 } else if (backup_do_embed(dsa, bp)) { 613 /* it's an embedded level-0 block of a regular object */ 614 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 615 ASSERT0(zb->zb_level); 616 err = dump_write_embedded(dsa, zb->zb_object, 617 zb->zb_blkid * blksz, blksz, bp); 618 } else { 619 /* it's a level-0 block of a regular object */ 620 arc_flags_t aflags = ARC_FLAG_WAIT; 621 arc_buf_t *abuf; 622 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 623 uint64_t offset; 624 625 ASSERT0(zb->zb_level); 626 ASSERT(zb->zb_object > dsa->dsa_resume_object || 627 (zb->zb_object == dsa->dsa_resume_object && 628 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 629 630 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 631 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 632 &aflags, zb) != 0) { 633 if (zfs_send_corrupt_data) { 634 /* Send a block filled with 0x"zfs badd bloc" */ 635 abuf = arc_buf_alloc(spa, blksz, &abuf, 636 ARC_BUFC_DATA); 637 uint64_t *ptr; 638 for (ptr = abuf->b_data; 639 (char *)ptr < (char *)abuf->b_data + blksz; 640 ptr++) 641 *ptr = 0x2f5baddb10cULL; 642 } else { 643 return (SET_ERROR(EIO)); 644 } 645 } 646 647 offset = zb->zb_blkid * blksz; 648 649 if (!(dsa->dsa_featureflags & 650 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 651 blksz > SPA_OLD_MAXBLOCKSIZE) { 652 char *buf = abuf->b_data; 653 while (blksz > 0 && err == 0) { 654 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 655 err = dump_write(dsa, type, zb->zb_object, 656 offset, n, NULL, buf); 657 offset += n; 658 buf += n; 659 blksz -= n; 660 } 661 } else { 662 err = dump_write(dsa, type, zb->zb_object, 663 offset, blksz, bp, abuf->b_data); 664 } 665 (void) arc_buf_remove_ref(abuf, &abuf); 666 } 667 668 ASSERT(err == 0 || err == EINTR); 669 return (err); 670 } 671 672 /* 673 * Pop the new data off the queue, and free the old data. 674 */ 675 static struct send_block_record * 676 get_next_record(bqueue_t *bq, struct send_block_record *data) 677 { 678 struct send_block_record *tmp = bqueue_dequeue(bq); 679 kmem_free(data, sizeof (*data)); 680 return (tmp); 681 } 682 683 /* 684 * Actually do the bulk of the work in a zfs send. 685 * 686 * Note: Releases dp using the specified tag. 687 */ 688 static int 689 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 690 zfs_bookmark_phys_t *ancestor_zb, 691 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 692 uint64_t resumeobj, uint64_t resumeoff, 693 vnode_t *vp, offset_t *off) 694 { 695 objset_t *os; 696 dmu_replay_record_t *drr; 697 dmu_sendarg_t *dsp; 698 int err; 699 uint64_t fromtxg = 0; 700 uint64_t featureflags = 0; 701 struct send_thread_arg to_arg = { 0 }; 702 703 err = dmu_objset_from_ds(to_ds, &os); 704 if (err != 0) { 705 dsl_pool_rele(dp, tag); 706 return (err); 707 } 708 709 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 710 drr->drr_type = DRR_BEGIN; 711 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 712 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 713 DMU_SUBSTREAM); 714 715 #ifdef _KERNEL 716 if (dmu_objset_type(os) == DMU_OST_ZFS) { 717 uint64_t version; 718 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 719 kmem_free(drr, sizeof (dmu_replay_record_t)); 720 dsl_pool_rele(dp, tag); 721 return (SET_ERROR(EINVAL)); 722 } 723 if (version >= ZPL_VERSION_SA) { 724 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 725 } 726 } 727 #endif 728 729 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 730 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 731 if (embedok && 732 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 733 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 734 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 735 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 736 } 737 738 if (resumeobj != 0 || resumeoff != 0) { 739 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 740 } 741 742 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 743 featureflags); 744 745 drr->drr_u.drr_begin.drr_creation_time = 746 dsl_dataset_phys(to_ds)->ds_creation_time; 747 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 748 if (is_clone) 749 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 750 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 751 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 752 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 753 754 if (ancestor_zb != NULL) { 755 drr->drr_u.drr_begin.drr_fromguid = 756 ancestor_zb->zbm_guid; 757 fromtxg = ancestor_zb->zbm_creation_txg; 758 } 759 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 760 if (!to_ds->ds_is_snapshot) { 761 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 762 sizeof (drr->drr_u.drr_begin.drr_toname)); 763 } 764 765 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 766 767 dsp->dsa_drr = drr; 768 dsp->dsa_vp = vp; 769 dsp->dsa_outfd = outfd; 770 dsp->dsa_proc = curproc; 771 dsp->dsa_os = os; 772 dsp->dsa_off = off; 773 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 774 dsp->dsa_pending_op = PENDING_NONE; 775 dsp->dsa_incremental = (ancestor_zb != NULL); 776 dsp->dsa_featureflags = featureflags; 777 dsp->dsa_resume_object = resumeobj; 778 dsp->dsa_resume_offset = resumeoff; 779 780 mutex_enter(&to_ds->ds_sendstream_lock); 781 list_insert_head(&to_ds->ds_sendstreams, dsp); 782 mutex_exit(&to_ds->ds_sendstream_lock); 783 784 dsl_dataset_long_hold(to_ds, FTAG); 785 dsl_pool_rele(dp, tag); 786 787 void *payload = NULL; 788 size_t payload_len = 0; 789 if (resumeobj != 0 || resumeoff != 0) { 790 dmu_object_info_t to_doi; 791 err = dmu_object_info(os, resumeobj, &to_doi); 792 if (err != 0) 793 goto out; 794 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 795 resumeoff / to_doi.doi_data_block_size); 796 797 nvlist_t *nvl = fnvlist_alloc(); 798 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 799 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 800 payload = fnvlist_pack(nvl, &payload_len); 801 drr->drr_payloadlen = payload_len; 802 fnvlist_free(nvl); 803 } 804 805 err = dump_record(dsp, payload, payload_len); 806 fnvlist_pack_free(payload, payload_len); 807 if (err != 0) { 808 err = dsp->dsa_err; 809 goto out; 810 } 811 812 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 813 offsetof(struct send_block_record, ln)); 814 to_arg.error_code = 0; 815 to_arg.cancel = B_FALSE; 816 to_arg.ds = to_ds; 817 to_arg.fromtxg = fromtxg; 818 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 819 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 820 TS_RUN, minclsyspri); 821 822 struct send_block_record *to_data; 823 to_data = bqueue_dequeue(&to_arg.q); 824 825 while (!to_data->eos_marker && err == 0) { 826 err = do_dump(dsp, to_data); 827 to_data = get_next_record(&to_arg.q, to_data); 828 if (issig(JUSTLOOKING) && issig(FORREAL)) 829 err = EINTR; 830 } 831 832 if (err != 0) { 833 to_arg.cancel = B_TRUE; 834 while (!to_data->eos_marker) { 835 to_data = get_next_record(&to_arg.q, to_data); 836 } 837 } 838 kmem_free(to_data, sizeof (*to_data)); 839 840 bqueue_destroy(&to_arg.q); 841 842 if (err == 0 && to_arg.error_code != 0) 843 err = to_arg.error_code; 844 845 if (err != 0) 846 goto out; 847 848 if (dsp->dsa_pending_op != PENDING_NONE) 849 if (dump_record(dsp, NULL, 0) != 0) 850 err = SET_ERROR(EINTR); 851 852 if (err != 0) { 853 if (err == EINTR && dsp->dsa_err != 0) 854 err = dsp->dsa_err; 855 goto out; 856 } 857 858 bzero(drr, sizeof (dmu_replay_record_t)); 859 drr->drr_type = DRR_END; 860 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 861 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 862 863 if (dump_record(dsp, NULL, 0) != 0) 864 err = dsp->dsa_err; 865 866 out: 867 mutex_enter(&to_ds->ds_sendstream_lock); 868 list_remove(&to_ds->ds_sendstreams, dsp); 869 mutex_exit(&to_ds->ds_sendstream_lock); 870 871 kmem_free(drr, sizeof (dmu_replay_record_t)); 872 kmem_free(dsp, sizeof (dmu_sendarg_t)); 873 874 dsl_dataset_long_rele(to_ds, FTAG); 875 876 return (err); 877 } 878 879 int 880 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 881 boolean_t embedok, boolean_t large_block_ok, 882 int outfd, vnode_t *vp, offset_t *off) 883 { 884 dsl_pool_t *dp; 885 dsl_dataset_t *ds; 886 dsl_dataset_t *fromds = NULL; 887 int err; 888 889 err = dsl_pool_hold(pool, FTAG, &dp); 890 if (err != 0) 891 return (err); 892 893 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 894 if (err != 0) { 895 dsl_pool_rele(dp, FTAG); 896 return (err); 897 } 898 899 if (fromsnap != 0) { 900 zfs_bookmark_phys_t zb; 901 boolean_t is_clone; 902 903 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 904 if (err != 0) { 905 dsl_dataset_rele(ds, FTAG); 906 dsl_pool_rele(dp, FTAG); 907 return (err); 908 } 909 if (!dsl_dataset_is_before(ds, fromds, 0)) 910 err = SET_ERROR(EXDEV); 911 zb.zbm_creation_time = 912 dsl_dataset_phys(fromds)->ds_creation_time; 913 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 914 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 915 is_clone = (fromds->ds_dir != ds->ds_dir); 916 dsl_dataset_rele(fromds, FTAG); 917 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 918 embedok, large_block_ok, outfd, 0, 0, vp, off); 919 } else { 920 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 921 embedok, large_block_ok, outfd, 0, 0, vp, off); 922 } 923 dsl_dataset_rele(ds, FTAG); 924 return (err); 925 } 926 927 int 928 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 929 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 930 vnode_t *vp, offset_t *off) 931 { 932 dsl_pool_t *dp; 933 dsl_dataset_t *ds; 934 int err; 935 boolean_t owned = B_FALSE; 936 937 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 938 return (SET_ERROR(EINVAL)); 939 940 err = dsl_pool_hold(tosnap, FTAG, &dp); 941 if (err != 0) 942 return (err); 943 944 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 945 /* 946 * We are sending a filesystem or volume. Ensure 947 * that it doesn't change by owning the dataset. 948 */ 949 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 950 owned = B_TRUE; 951 } else { 952 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 953 } 954 if (err != 0) { 955 dsl_pool_rele(dp, FTAG); 956 return (err); 957 } 958 959 if (fromsnap != NULL) { 960 zfs_bookmark_phys_t zb; 961 boolean_t is_clone = B_FALSE; 962 int fsnamelen = strchr(tosnap, '@') - tosnap; 963 964 /* 965 * If the fromsnap is in a different filesystem, then 966 * mark the send stream as a clone. 967 */ 968 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 969 (fromsnap[fsnamelen] != '@' && 970 fromsnap[fsnamelen] != '#')) { 971 is_clone = B_TRUE; 972 } 973 974 if (strchr(fromsnap, '@')) { 975 dsl_dataset_t *fromds; 976 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 977 if (err == 0) { 978 if (!dsl_dataset_is_before(ds, fromds, 0)) 979 err = SET_ERROR(EXDEV); 980 zb.zbm_creation_time = 981 dsl_dataset_phys(fromds)->ds_creation_time; 982 zb.zbm_creation_txg = 983 dsl_dataset_phys(fromds)->ds_creation_txg; 984 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 985 is_clone = (ds->ds_dir != fromds->ds_dir); 986 dsl_dataset_rele(fromds, FTAG); 987 } 988 } else { 989 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 990 } 991 if (err != 0) { 992 dsl_dataset_rele(ds, FTAG); 993 dsl_pool_rele(dp, FTAG); 994 return (err); 995 } 996 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 997 embedok, large_block_ok, 998 outfd, resumeobj, resumeoff, vp, off); 999 } else { 1000 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1001 embedok, large_block_ok, 1002 outfd, resumeobj, resumeoff, vp, off); 1003 } 1004 if (owned) 1005 dsl_dataset_disown(ds, FTAG); 1006 else 1007 dsl_dataset_rele(ds, FTAG); 1008 return (err); 1009 } 1010 1011 static int 1012 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1013 uint64_t *sizep) 1014 { 1015 int err; 1016 /* 1017 * Assume that space (both on-disk and in-stream) is dominated by 1018 * data. We will adjust for indirect blocks and the copies property, 1019 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1020 */ 1021 1022 /* 1023 * Subtract out approximate space used by indirect blocks. 1024 * Assume most space is used by data blocks (non-indirect, non-dnode). 1025 * Assume all blocks are recordsize. Assume ditto blocks and 1026 * internal fragmentation counter out compression. 1027 * 1028 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1029 * block, which we observe in practice. 1030 */ 1031 uint64_t recordsize; 1032 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1033 if (err != 0) 1034 return (err); 1035 size -= size / recordsize * sizeof (blkptr_t); 1036 1037 /* Add in the space for the record associated with each block. */ 1038 size += size / recordsize * sizeof (dmu_replay_record_t); 1039 1040 *sizep = size; 1041 1042 return (0); 1043 } 1044 1045 int 1046 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1047 { 1048 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1049 int err; 1050 uint64_t size; 1051 1052 ASSERT(dsl_pool_config_held(dp)); 1053 1054 /* tosnap must be a snapshot */ 1055 if (!ds->ds_is_snapshot) 1056 return (SET_ERROR(EINVAL)); 1057 1058 /* fromsnap, if provided, must be a snapshot */ 1059 if (fromds != NULL && !fromds->ds_is_snapshot) 1060 return (SET_ERROR(EINVAL)); 1061 1062 /* 1063 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1064 * or the origin's fs. 1065 */ 1066 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1067 return (SET_ERROR(EXDEV)); 1068 1069 /* Get uncompressed size estimate of changed data. */ 1070 if (fromds == NULL) { 1071 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1072 } else { 1073 uint64_t used, comp; 1074 err = dsl_dataset_space_written(fromds, ds, 1075 &used, &comp, &size); 1076 if (err != 0) 1077 return (err); 1078 } 1079 1080 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1081 return (err); 1082 } 1083 1084 /* 1085 * Simple callback used to traverse the blocks of a snapshot and sum their 1086 * uncompressed size 1087 */ 1088 /* ARGSUSED */ 1089 static int 1090 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1091 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1092 { 1093 uint64_t *spaceptr = arg; 1094 if (bp != NULL && !BP_IS_HOLE(bp)) { 1095 *spaceptr += BP_GET_UCSIZE(bp); 1096 } 1097 return (0); 1098 } 1099 1100 /* 1101 * Given a desination snapshot and a TXG, calculate the approximate size of a 1102 * send stream sent from that TXG. from_txg may be zero, indicating that the 1103 * whole snapshot will be sent. 1104 */ 1105 int 1106 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1107 uint64_t *sizep) 1108 { 1109 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1110 int err; 1111 uint64_t size = 0; 1112 1113 ASSERT(dsl_pool_config_held(dp)); 1114 1115 /* tosnap must be a snapshot */ 1116 if (!dsl_dataset_is_snapshot(ds)) 1117 return (SET_ERROR(EINVAL)); 1118 1119 /* verify that from_txg is before the provided snapshot was taken */ 1120 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1121 return (SET_ERROR(EXDEV)); 1122 } 1123 1124 /* 1125 * traverse the blocks of the snapshot with birth times after 1126 * from_txg, summing their uncompressed size 1127 */ 1128 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1129 dmu_calculate_send_traversal, &size); 1130 if (err) 1131 return (err); 1132 1133 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1134 return (err); 1135 } 1136 1137 typedef struct dmu_recv_begin_arg { 1138 const char *drba_origin; 1139 dmu_recv_cookie_t *drba_cookie; 1140 cred_t *drba_cred; 1141 uint64_t drba_snapobj; 1142 } dmu_recv_begin_arg_t; 1143 1144 static int 1145 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1146 uint64_t fromguid) 1147 { 1148 uint64_t val; 1149 int error; 1150 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1151 1152 /* temporary clone name must not exist */ 1153 error = zap_lookup(dp->dp_meta_objset, 1154 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1155 8, 1, &val); 1156 if (error != ENOENT) 1157 return (error == 0 ? EBUSY : error); 1158 1159 /* new snapshot name must not exist */ 1160 error = zap_lookup(dp->dp_meta_objset, 1161 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1162 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1163 if (error != ENOENT) 1164 return (error == 0 ? EEXIST : error); 1165 1166 /* 1167 * Check snapshot limit before receiving. We'll recheck again at the 1168 * end, but might as well abort before receiving if we're already over 1169 * the limit. 1170 * 1171 * Note that we do not check the file system limit with 1172 * dsl_dir_fscount_check because the temporary %clones don't count 1173 * against that limit. 1174 */ 1175 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1176 NULL, drba->drba_cred); 1177 if (error != 0) 1178 return (error); 1179 1180 if (fromguid != 0) { 1181 dsl_dataset_t *snap; 1182 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1183 1184 /* Find snapshot in this dir that matches fromguid. */ 1185 while (obj != 0) { 1186 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1187 &snap); 1188 if (error != 0) 1189 return (SET_ERROR(ENODEV)); 1190 if (snap->ds_dir != ds->ds_dir) { 1191 dsl_dataset_rele(snap, FTAG); 1192 return (SET_ERROR(ENODEV)); 1193 } 1194 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1195 break; 1196 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1197 dsl_dataset_rele(snap, FTAG); 1198 } 1199 if (obj == 0) 1200 return (SET_ERROR(ENODEV)); 1201 1202 if (drba->drba_cookie->drc_force) { 1203 drba->drba_snapobj = obj; 1204 } else { 1205 /* 1206 * If we are not forcing, there must be no 1207 * changes since fromsnap. 1208 */ 1209 if (dsl_dataset_modified_since_snap(ds, snap)) { 1210 dsl_dataset_rele(snap, FTAG); 1211 return (SET_ERROR(ETXTBSY)); 1212 } 1213 drba->drba_snapobj = ds->ds_prev->ds_object; 1214 } 1215 1216 dsl_dataset_rele(snap, FTAG); 1217 } else { 1218 /* if full, then must be forced */ 1219 if (!drba->drba_cookie->drc_force) 1220 return (SET_ERROR(EEXIST)); 1221 /* start from $ORIGIN@$ORIGIN, if supported */ 1222 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1223 dp->dp_origin_snap->ds_object : 0; 1224 } 1225 1226 return (0); 1227 1228 } 1229 1230 static int 1231 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1232 { 1233 dmu_recv_begin_arg_t *drba = arg; 1234 dsl_pool_t *dp = dmu_tx_pool(tx); 1235 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1236 uint64_t fromguid = drrb->drr_fromguid; 1237 int flags = drrb->drr_flags; 1238 int error; 1239 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1240 dsl_dataset_t *ds; 1241 const char *tofs = drba->drba_cookie->drc_tofs; 1242 1243 /* already checked */ 1244 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1245 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1246 1247 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1248 DMU_COMPOUNDSTREAM || 1249 drrb->drr_type >= DMU_OST_NUMTYPES || 1250 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1251 return (SET_ERROR(EINVAL)); 1252 1253 /* Verify pool version supports SA if SA_SPILL feature set */ 1254 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1255 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1256 return (SET_ERROR(ENOTSUP)); 1257 1258 if (drba->drba_cookie->drc_resumable && 1259 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1260 return (SET_ERROR(ENOTSUP)); 1261 1262 /* 1263 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1264 * record to a plan WRITE record, so the pool must have the 1265 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1266 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1267 */ 1268 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1269 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1270 return (SET_ERROR(ENOTSUP)); 1271 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1272 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1273 return (SET_ERROR(ENOTSUP)); 1274 1275 /* 1276 * The receiving code doesn't know how to translate large blocks 1277 * to smaller ones, so the pool must have the LARGE_BLOCKS 1278 * feature enabled if the stream has LARGE_BLOCKS. 1279 */ 1280 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1281 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1282 return (SET_ERROR(ENOTSUP)); 1283 1284 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1285 if (error == 0) { 1286 /* target fs already exists; recv into temp clone */ 1287 1288 /* Can't recv a clone into an existing fs */ 1289 if (flags & DRR_FLAG_CLONE) { 1290 dsl_dataset_rele(ds, FTAG); 1291 return (SET_ERROR(EINVAL)); 1292 } 1293 1294 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1295 dsl_dataset_rele(ds, FTAG); 1296 } else if (error == ENOENT) { 1297 /* target fs does not exist; must be a full backup or clone */ 1298 char buf[MAXNAMELEN]; 1299 1300 /* 1301 * If it's a non-clone incremental, we are missing the 1302 * target fs, so fail the recv. 1303 */ 1304 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1305 drba->drba_origin)) 1306 return (SET_ERROR(ENOENT)); 1307 1308 /* Open the parent of tofs */ 1309 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1310 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1311 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1312 if (error != 0) 1313 return (error); 1314 1315 /* 1316 * Check filesystem and snapshot limits before receiving. We'll 1317 * recheck snapshot limits again at the end (we create the 1318 * filesystems and increment those counts during begin_sync). 1319 */ 1320 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1321 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1322 if (error != 0) { 1323 dsl_dataset_rele(ds, FTAG); 1324 return (error); 1325 } 1326 1327 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1328 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1329 if (error != 0) { 1330 dsl_dataset_rele(ds, FTAG); 1331 return (error); 1332 } 1333 1334 if (drba->drba_origin != NULL) { 1335 dsl_dataset_t *origin; 1336 error = dsl_dataset_hold(dp, drba->drba_origin, 1337 FTAG, &origin); 1338 if (error != 0) { 1339 dsl_dataset_rele(ds, FTAG); 1340 return (error); 1341 } 1342 if (!origin->ds_is_snapshot) { 1343 dsl_dataset_rele(origin, FTAG); 1344 dsl_dataset_rele(ds, FTAG); 1345 return (SET_ERROR(EINVAL)); 1346 } 1347 if (dsl_dataset_phys(origin)->ds_guid != fromguid) { 1348 dsl_dataset_rele(origin, FTAG); 1349 dsl_dataset_rele(ds, FTAG); 1350 return (SET_ERROR(ENODEV)); 1351 } 1352 dsl_dataset_rele(origin, FTAG); 1353 } 1354 dsl_dataset_rele(ds, FTAG); 1355 error = 0; 1356 } 1357 return (error); 1358 } 1359 1360 static void 1361 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1362 { 1363 dmu_recv_begin_arg_t *drba = arg; 1364 dsl_pool_t *dp = dmu_tx_pool(tx); 1365 objset_t *mos = dp->dp_meta_objset; 1366 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1367 const char *tofs = drba->drba_cookie->drc_tofs; 1368 dsl_dataset_t *ds, *newds; 1369 uint64_t dsobj; 1370 int error; 1371 uint64_t crflags = 0; 1372 1373 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1374 crflags |= DS_FLAG_CI_DATASET; 1375 1376 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1377 if (error == 0) { 1378 /* create temporary clone */ 1379 dsl_dataset_t *snap = NULL; 1380 if (drba->drba_snapobj != 0) { 1381 VERIFY0(dsl_dataset_hold_obj(dp, 1382 drba->drba_snapobj, FTAG, &snap)); 1383 } 1384 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1385 snap, crflags, drba->drba_cred, tx); 1386 if (drba->drba_snapobj != 0) 1387 dsl_dataset_rele(snap, FTAG); 1388 dsl_dataset_rele(ds, FTAG); 1389 } else { 1390 dsl_dir_t *dd; 1391 const char *tail; 1392 dsl_dataset_t *origin = NULL; 1393 1394 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1395 1396 if (drba->drba_origin != NULL) { 1397 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1398 FTAG, &origin)); 1399 } 1400 1401 /* Create new dataset. */ 1402 dsobj = dsl_dataset_create_sync(dd, 1403 strrchr(tofs, '/') + 1, 1404 origin, crflags, drba->drba_cred, tx); 1405 if (origin != NULL) 1406 dsl_dataset_rele(origin, FTAG); 1407 dsl_dir_rele(dd, FTAG); 1408 drba->drba_cookie->drc_newfs = B_TRUE; 1409 } 1410 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1411 1412 if (drba->drba_cookie->drc_resumable) { 1413 dsl_dataset_zapify(newds, tx); 1414 if (drrb->drr_fromguid != 0) { 1415 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1416 8, 1, &drrb->drr_fromguid, tx)); 1417 } 1418 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1419 8, 1, &drrb->drr_toguid, tx)); 1420 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1421 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1422 uint64_t one = 1; 1423 uint64_t zero = 0; 1424 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1425 8, 1, &one, tx)); 1426 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1427 8, 1, &zero, tx)); 1428 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1429 8, 1, &zero, tx)); 1430 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1431 DMU_BACKUP_FEATURE_EMBED_DATA) { 1432 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1433 8, 1, &one, tx)); 1434 } 1435 } 1436 1437 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1438 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1439 1440 /* 1441 * If we actually created a non-clone, we need to create the 1442 * objset in our new dataset. 1443 */ 1444 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1445 (void) dmu_objset_create_impl(dp->dp_spa, 1446 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1447 } 1448 1449 drba->drba_cookie->drc_ds = newds; 1450 1451 spa_history_log_internal_ds(newds, "receive", tx, ""); 1452 } 1453 1454 static int 1455 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1456 { 1457 dmu_recv_begin_arg_t *drba = arg; 1458 dsl_pool_t *dp = dmu_tx_pool(tx); 1459 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1460 int error; 1461 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1462 dsl_dataset_t *ds; 1463 const char *tofs = drba->drba_cookie->drc_tofs; 1464 1465 /* already checked */ 1466 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1467 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1468 1469 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1470 DMU_COMPOUNDSTREAM || 1471 drrb->drr_type >= DMU_OST_NUMTYPES) 1472 return (SET_ERROR(EINVAL)); 1473 1474 /* Verify pool version supports SA if SA_SPILL feature set */ 1475 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1476 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1477 return (SET_ERROR(ENOTSUP)); 1478 1479 /* 1480 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1481 * record to a plain WRITE record, so the pool must have the 1482 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1483 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1484 */ 1485 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1486 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1487 return (SET_ERROR(ENOTSUP)); 1488 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1489 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1490 return (SET_ERROR(ENOTSUP)); 1491 1492 char recvname[ZFS_MAXNAMELEN]; 1493 1494 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1495 tofs, recv_clone_name); 1496 1497 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1498 /* %recv does not exist; continue in tofs */ 1499 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1500 if (error != 0) 1501 return (error); 1502 } 1503 1504 /* check that ds is marked inconsistent */ 1505 if (!DS_IS_INCONSISTENT(ds)) { 1506 dsl_dataset_rele(ds, FTAG); 1507 return (SET_ERROR(EINVAL)); 1508 } 1509 1510 /* check that there is resuming data, and that the toguid matches */ 1511 if (!dsl_dataset_is_zapified(ds)) { 1512 dsl_dataset_rele(ds, FTAG); 1513 return (SET_ERROR(EINVAL)); 1514 } 1515 uint64_t val; 1516 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1517 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1518 if (error != 0 || drrb->drr_toguid != val) { 1519 dsl_dataset_rele(ds, FTAG); 1520 return (SET_ERROR(EINVAL)); 1521 } 1522 1523 /* 1524 * Check if the receive is still running. If so, it will be owned. 1525 * Note that nothing else can own the dataset (e.g. after the receive 1526 * fails) because it will be marked inconsistent. 1527 */ 1528 if (dsl_dataset_has_owner(ds)) { 1529 dsl_dataset_rele(ds, FTAG); 1530 return (SET_ERROR(EBUSY)); 1531 } 1532 1533 /* There should not be any snapshots of this fs yet. */ 1534 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1535 dsl_dataset_rele(ds, FTAG); 1536 return (SET_ERROR(EINVAL)); 1537 } 1538 1539 /* 1540 * Note: resume point will be checked when we process the first WRITE 1541 * record. 1542 */ 1543 1544 /* check that the origin matches */ 1545 val = 0; 1546 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1547 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1548 if (drrb->drr_fromguid != val) { 1549 dsl_dataset_rele(ds, FTAG); 1550 return (SET_ERROR(EINVAL)); 1551 } 1552 1553 dsl_dataset_rele(ds, FTAG); 1554 return (0); 1555 } 1556 1557 static void 1558 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1559 { 1560 dmu_recv_begin_arg_t *drba = arg; 1561 dsl_pool_t *dp = dmu_tx_pool(tx); 1562 const char *tofs = drba->drba_cookie->drc_tofs; 1563 dsl_dataset_t *ds; 1564 uint64_t dsobj; 1565 char recvname[ZFS_MAXNAMELEN]; 1566 1567 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1568 tofs, recv_clone_name); 1569 1570 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1571 /* %recv does not exist; continue in tofs */ 1572 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1573 drba->drba_cookie->drc_newfs = B_TRUE; 1574 } 1575 1576 /* clear the inconsistent flag so that we can own it */ 1577 ASSERT(DS_IS_INCONSISTENT(ds)); 1578 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1579 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1580 dsobj = ds->ds_object; 1581 dsl_dataset_rele(ds, FTAG); 1582 1583 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1584 1585 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1586 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1587 1588 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1589 1590 drba->drba_cookie->drc_ds = ds; 1591 1592 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1593 } 1594 1595 /* 1596 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1597 * succeeds; otherwise we will leak the holds on the datasets. 1598 */ 1599 int 1600 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1601 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1602 { 1603 dmu_recv_begin_arg_t drba = { 0 }; 1604 1605 bzero(drc, sizeof (dmu_recv_cookie_t)); 1606 drc->drc_drr_begin = drr_begin; 1607 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1608 drc->drc_tosnap = tosnap; 1609 drc->drc_tofs = tofs; 1610 drc->drc_force = force; 1611 drc->drc_resumable = resumable; 1612 drc->drc_cred = CRED(); 1613 1614 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1615 drc->drc_byteswap = B_TRUE; 1616 fletcher_4_incremental_byteswap(drr_begin, 1617 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1618 byteswap_record(drr_begin); 1619 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1620 fletcher_4_incremental_native(drr_begin, 1621 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1622 } else { 1623 return (SET_ERROR(EINVAL)); 1624 } 1625 1626 drba.drba_origin = origin; 1627 drba.drba_cookie = drc; 1628 drba.drba_cred = CRED(); 1629 1630 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1631 DMU_BACKUP_FEATURE_RESUMING) { 1632 return (dsl_sync_task(tofs, 1633 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1634 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1635 } else { 1636 return (dsl_sync_task(tofs, 1637 dmu_recv_begin_check, dmu_recv_begin_sync, 1638 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1639 } 1640 } 1641 1642 struct receive_record_arg { 1643 dmu_replay_record_t header; 1644 void *payload; /* Pointer to a buffer containing the payload */ 1645 /* 1646 * If the record is a write, pointer to the arc_buf_t containing the 1647 * payload. 1648 */ 1649 arc_buf_t *write_buf; 1650 int payload_size; 1651 uint64_t bytes_read; /* bytes read from stream when record created */ 1652 boolean_t eos_marker; /* Marks the end of the stream */ 1653 bqueue_node_t node; 1654 }; 1655 1656 struct receive_writer_arg { 1657 objset_t *os; 1658 boolean_t byteswap; 1659 bqueue_t q; 1660 1661 /* 1662 * These three args are used to signal to the main thread that we're 1663 * done. 1664 */ 1665 kmutex_t mutex; 1666 kcondvar_t cv; 1667 boolean_t done; 1668 1669 int err; 1670 /* A map from guid to dataset to help handle dedup'd streams. */ 1671 avl_tree_t *guid_to_ds_map; 1672 boolean_t resumable; 1673 uint64_t last_object, last_offset; 1674 uint64_t bytes_read; /* bytes read when current record created */ 1675 }; 1676 1677 struct receive_arg { 1678 objset_t *os; 1679 vnode_t *vp; /* The vnode to read the stream from */ 1680 uint64_t voff; /* The current offset in the stream */ 1681 uint64_t bytes_read; 1682 /* 1683 * A record that has had its payload read in, but hasn't yet been handed 1684 * off to the worker thread. 1685 */ 1686 struct receive_record_arg *rrd; 1687 /* A record that has had its header read in, but not its payload. */ 1688 struct receive_record_arg *next_rrd; 1689 zio_cksum_t cksum; 1690 zio_cksum_t prev_cksum; 1691 int err; 1692 boolean_t byteswap; 1693 /* Sorted list of objects not to issue prefetches for. */ 1694 list_t ignore_obj_list; 1695 }; 1696 1697 struct receive_ign_obj_node { 1698 list_node_t node; 1699 uint64_t object; 1700 }; 1701 1702 typedef struct guid_map_entry { 1703 uint64_t guid; 1704 dsl_dataset_t *gme_ds; 1705 avl_node_t avlnode; 1706 } guid_map_entry_t; 1707 1708 static int 1709 guid_compare(const void *arg1, const void *arg2) 1710 { 1711 const guid_map_entry_t *gmep1 = arg1; 1712 const guid_map_entry_t *gmep2 = arg2; 1713 1714 if (gmep1->guid < gmep2->guid) 1715 return (-1); 1716 else if (gmep1->guid > gmep2->guid) 1717 return (1); 1718 return (0); 1719 } 1720 1721 static void 1722 free_guid_map_onexit(void *arg) 1723 { 1724 avl_tree_t *ca = arg; 1725 void *cookie = NULL; 1726 guid_map_entry_t *gmep; 1727 1728 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1729 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1730 dsl_dataset_rele(gmep->gme_ds, gmep); 1731 kmem_free(gmep, sizeof (guid_map_entry_t)); 1732 } 1733 avl_destroy(ca); 1734 kmem_free(ca, sizeof (avl_tree_t)); 1735 } 1736 1737 static int 1738 receive_read(struct receive_arg *ra, int len, void *buf) 1739 { 1740 int done = 0; 1741 1742 /* some things will require 8-byte alignment, so everything must */ 1743 ASSERT0(len % 8); 1744 1745 while (done < len) { 1746 ssize_t resid; 1747 1748 ra->err = vn_rdwr(UIO_READ, ra->vp, 1749 (char *)buf + done, len - done, 1750 ra->voff, UIO_SYSSPACE, FAPPEND, 1751 RLIM64_INFINITY, CRED(), &resid); 1752 1753 if (resid == len - done) { 1754 /* 1755 * Note: ECKSUM indicates that the receive 1756 * was interrupted and can potentially be resumed. 1757 */ 1758 ra->err = SET_ERROR(ECKSUM); 1759 } 1760 ra->voff += len - done - resid; 1761 done = len - resid; 1762 if (ra->err != 0) 1763 return (ra->err); 1764 } 1765 1766 ra->bytes_read += len; 1767 1768 ASSERT3U(done, ==, len); 1769 return (0); 1770 } 1771 1772 static void 1773 byteswap_record(dmu_replay_record_t *drr) 1774 { 1775 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1776 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1777 drr->drr_type = BSWAP_32(drr->drr_type); 1778 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1779 1780 switch (drr->drr_type) { 1781 case DRR_BEGIN: 1782 DO64(drr_begin.drr_magic); 1783 DO64(drr_begin.drr_versioninfo); 1784 DO64(drr_begin.drr_creation_time); 1785 DO32(drr_begin.drr_type); 1786 DO32(drr_begin.drr_flags); 1787 DO64(drr_begin.drr_toguid); 1788 DO64(drr_begin.drr_fromguid); 1789 break; 1790 case DRR_OBJECT: 1791 DO64(drr_object.drr_object); 1792 DO32(drr_object.drr_type); 1793 DO32(drr_object.drr_bonustype); 1794 DO32(drr_object.drr_blksz); 1795 DO32(drr_object.drr_bonuslen); 1796 DO64(drr_object.drr_toguid); 1797 break; 1798 case DRR_FREEOBJECTS: 1799 DO64(drr_freeobjects.drr_firstobj); 1800 DO64(drr_freeobjects.drr_numobjs); 1801 DO64(drr_freeobjects.drr_toguid); 1802 break; 1803 case DRR_WRITE: 1804 DO64(drr_write.drr_object); 1805 DO32(drr_write.drr_type); 1806 DO64(drr_write.drr_offset); 1807 DO64(drr_write.drr_length); 1808 DO64(drr_write.drr_toguid); 1809 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1810 DO64(drr_write.drr_key.ddk_prop); 1811 break; 1812 case DRR_WRITE_BYREF: 1813 DO64(drr_write_byref.drr_object); 1814 DO64(drr_write_byref.drr_offset); 1815 DO64(drr_write_byref.drr_length); 1816 DO64(drr_write_byref.drr_toguid); 1817 DO64(drr_write_byref.drr_refguid); 1818 DO64(drr_write_byref.drr_refobject); 1819 DO64(drr_write_byref.drr_refoffset); 1820 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1821 drr_key.ddk_cksum); 1822 DO64(drr_write_byref.drr_key.ddk_prop); 1823 break; 1824 case DRR_WRITE_EMBEDDED: 1825 DO64(drr_write_embedded.drr_object); 1826 DO64(drr_write_embedded.drr_offset); 1827 DO64(drr_write_embedded.drr_length); 1828 DO64(drr_write_embedded.drr_toguid); 1829 DO32(drr_write_embedded.drr_lsize); 1830 DO32(drr_write_embedded.drr_psize); 1831 break; 1832 case DRR_FREE: 1833 DO64(drr_free.drr_object); 1834 DO64(drr_free.drr_offset); 1835 DO64(drr_free.drr_length); 1836 DO64(drr_free.drr_toguid); 1837 break; 1838 case DRR_SPILL: 1839 DO64(drr_spill.drr_object); 1840 DO64(drr_spill.drr_length); 1841 DO64(drr_spill.drr_toguid); 1842 break; 1843 case DRR_END: 1844 DO64(drr_end.drr_toguid); 1845 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1846 break; 1847 } 1848 1849 if (drr->drr_type != DRR_BEGIN) { 1850 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1851 } 1852 1853 #undef DO64 1854 #undef DO32 1855 } 1856 1857 static inline uint8_t 1858 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1859 { 1860 if (bonus_type == DMU_OT_SA) { 1861 return (1); 1862 } else { 1863 return (1 + 1864 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1865 } 1866 } 1867 1868 static void 1869 save_resume_state(struct receive_writer_arg *rwa, 1870 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1871 { 1872 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1873 1874 if (!rwa->resumable) 1875 return; 1876 1877 /* 1878 * We use ds_resume_bytes[] != 0 to indicate that we need to 1879 * update this on disk, so it must not be 0. 1880 */ 1881 ASSERT(rwa->bytes_read != 0); 1882 1883 /* 1884 * We only resume from write records, which have a valid 1885 * (non-meta-dnode) object number. 1886 */ 1887 ASSERT(object != 0); 1888 1889 /* 1890 * For resuming to work correctly, we must receive records in order, 1891 * sorted by object,offset. This is checked by the callers, but 1892 * assert it here for good measure. 1893 */ 1894 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1895 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1896 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1897 ASSERT3U(rwa->bytes_read, >=, 1898 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1899 1900 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1901 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1902 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1903 } 1904 1905 static int 1906 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1907 void *data) 1908 { 1909 dmu_object_info_t doi; 1910 dmu_tx_t *tx; 1911 uint64_t object; 1912 int err; 1913 1914 if (drro->drr_type == DMU_OT_NONE || 1915 !DMU_OT_IS_VALID(drro->drr_type) || 1916 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1917 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1918 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1919 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1920 drro->drr_blksz < SPA_MINBLOCKSIZE || 1921 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1922 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1923 return (SET_ERROR(EINVAL)); 1924 } 1925 1926 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1927 1928 if (err != 0 && err != ENOENT) 1929 return (SET_ERROR(EINVAL)); 1930 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1931 1932 /* 1933 * If we are losing blkptrs or changing the block size this must 1934 * be a new file instance. We must clear out the previous file 1935 * contents before we can change this type of metadata in the dnode. 1936 */ 1937 if (err == 0) { 1938 int nblkptr; 1939 1940 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1941 drro->drr_bonuslen); 1942 1943 if (drro->drr_blksz != doi.doi_data_block_size || 1944 nblkptr < doi.doi_nblkptr) { 1945 err = dmu_free_long_range(rwa->os, drro->drr_object, 1946 0, DMU_OBJECT_END); 1947 if (err != 0) 1948 return (SET_ERROR(EINVAL)); 1949 } 1950 } 1951 1952 tx = dmu_tx_create(rwa->os); 1953 dmu_tx_hold_bonus(tx, object); 1954 err = dmu_tx_assign(tx, TXG_WAIT); 1955 if (err != 0) { 1956 dmu_tx_abort(tx); 1957 return (err); 1958 } 1959 1960 if (object == DMU_NEW_OBJECT) { 1961 /* currently free, want to be allocated */ 1962 err = dmu_object_claim(rwa->os, drro->drr_object, 1963 drro->drr_type, drro->drr_blksz, 1964 drro->drr_bonustype, drro->drr_bonuslen, tx); 1965 } else if (drro->drr_type != doi.doi_type || 1966 drro->drr_blksz != doi.doi_data_block_size || 1967 drro->drr_bonustype != doi.doi_bonus_type || 1968 drro->drr_bonuslen != doi.doi_bonus_size) { 1969 /* currently allocated, but with different properties */ 1970 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1971 drro->drr_type, drro->drr_blksz, 1972 drro->drr_bonustype, drro->drr_bonuslen, tx); 1973 } 1974 if (err != 0) { 1975 dmu_tx_commit(tx); 1976 return (SET_ERROR(EINVAL)); 1977 } 1978 1979 dmu_object_set_checksum(rwa->os, drro->drr_object, 1980 drro->drr_checksumtype, tx); 1981 dmu_object_set_compress(rwa->os, drro->drr_object, 1982 drro->drr_compress, tx); 1983 1984 if (data != NULL) { 1985 dmu_buf_t *db; 1986 1987 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 1988 dmu_buf_will_dirty(db, tx); 1989 1990 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1991 bcopy(data, db->db_data, drro->drr_bonuslen); 1992 if (rwa->byteswap) { 1993 dmu_object_byteswap_t byteswap = 1994 DMU_OT_BYTESWAP(drro->drr_bonustype); 1995 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1996 drro->drr_bonuslen); 1997 } 1998 dmu_buf_rele(db, FTAG); 1999 } 2000 dmu_tx_commit(tx); 2001 2002 return (0); 2003 } 2004 2005 /* ARGSUSED */ 2006 static int 2007 receive_freeobjects(struct receive_writer_arg *rwa, 2008 struct drr_freeobjects *drrfo) 2009 { 2010 uint64_t obj; 2011 2012 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2013 return (SET_ERROR(EINVAL)); 2014 2015 for (obj = drrfo->drr_firstobj; 2016 obj < drrfo->drr_firstobj + drrfo->drr_numobjs; 2017 (void) dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2018 int err; 2019 2020 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2021 continue; 2022 2023 err = dmu_free_long_object(rwa->os, obj); 2024 if (err != 0) 2025 return (err); 2026 } 2027 2028 return (0); 2029 } 2030 2031 static int 2032 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2033 arc_buf_t *abuf) 2034 { 2035 dmu_tx_t *tx; 2036 int err; 2037 2038 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2039 !DMU_OT_IS_VALID(drrw->drr_type)) 2040 return (SET_ERROR(EINVAL)); 2041 2042 /* 2043 * For resuming to work, records must be in increasing order 2044 * by (object, offset). 2045 */ 2046 if (drrw->drr_object < rwa->last_object || 2047 (drrw->drr_object == rwa->last_object && 2048 drrw->drr_offset < rwa->last_offset)) { 2049 return (SET_ERROR(EINVAL)); 2050 } 2051 rwa->last_object = drrw->drr_object; 2052 rwa->last_offset = drrw->drr_offset; 2053 2054 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2055 return (SET_ERROR(EINVAL)); 2056 2057 tx = dmu_tx_create(rwa->os); 2058 2059 dmu_tx_hold_write(tx, drrw->drr_object, 2060 drrw->drr_offset, drrw->drr_length); 2061 err = dmu_tx_assign(tx, TXG_WAIT); 2062 if (err != 0) { 2063 dmu_tx_abort(tx); 2064 return (err); 2065 } 2066 if (rwa->byteswap) { 2067 dmu_object_byteswap_t byteswap = 2068 DMU_OT_BYTESWAP(drrw->drr_type); 2069 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2070 drrw->drr_length); 2071 } 2072 2073 dmu_buf_t *bonus; 2074 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2075 return (SET_ERROR(EINVAL)); 2076 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2077 2078 /* 2079 * Note: If the receive fails, we want the resume stream to start 2080 * with the same record that we last successfully received (as opposed 2081 * to the next record), so that we can verify that we are 2082 * resuming from the correct location. 2083 */ 2084 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2085 dmu_tx_commit(tx); 2086 dmu_buf_rele(bonus, FTAG); 2087 2088 return (0); 2089 } 2090 2091 /* 2092 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2093 * streams to refer to a copy of the data that is already on the 2094 * system because it came in earlier in the stream. This function 2095 * finds the earlier copy of the data, and uses that copy instead of 2096 * data from the stream to fulfill this write. 2097 */ 2098 static int 2099 receive_write_byref(struct receive_writer_arg *rwa, 2100 struct drr_write_byref *drrwbr) 2101 { 2102 dmu_tx_t *tx; 2103 int err; 2104 guid_map_entry_t gmesrch; 2105 guid_map_entry_t *gmep; 2106 avl_index_t where; 2107 objset_t *ref_os = NULL; 2108 dmu_buf_t *dbp; 2109 2110 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2111 return (SET_ERROR(EINVAL)); 2112 2113 /* 2114 * If the GUID of the referenced dataset is different from the 2115 * GUID of the target dataset, find the referenced dataset. 2116 */ 2117 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2118 gmesrch.guid = drrwbr->drr_refguid; 2119 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2120 &where)) == NULL) { 2121 return (SET_ERROR(EINVAL)); 2122 } 2123 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2124 return (SET_ERROR(EINVAL)); 2125 } else { 2126 ref_os = rwa->os; 2127 } 2128 2129 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2130 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2131 if (err != 0) 2132 return (err); 2133 2134 tx = dmu_tx_create(rwa->os); 2135 2136 dmu_tx_hold_write(tx, drrwbr->drr_object, 2137 drrwbr->drr_offset, drrwbr->drr_length); 2138 err = dmu_tx_assign(tx, TXG_WAIT); 2139 if (err != 0) { 2140 dmu_tx_abort(tx); 2141 return (err); 2142 } 2143 dmu_write(rwa->os, drrwbr->drr_object, 2144 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2145 dmu_buf_rele(dbp, FTAG); 2146 2147 /* See comment in restore_write. */ 2148 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2149 dmu_tx_commit(tx); 2150 return (0); 2151 } 2152 2153 static int 2154 receive_write_embedded(struct receive_writer_arg *rwa, 2155 struct drr_write_embedded *drrwe, void *data) 2156 { 2157 dmu_tx_t *tx; 2158 int err; 2159 2160 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2161 return (EINVAL); 2162 2163 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2164 return (EINVAL); 2165 2166 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2167 return (EINVAL); 2168 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2169 return (EINVAL); 2170 2171 tx = dmu_tx_create(rwa->os); 2172 2173 dmu_tx_hold_write(tx, drrwe->drr_object, 2174 drrwe->drr_offset, drrwe->drr_length); 2175 err = dmu_tx_assign(tx, TXG_WAIT); 2176 if (err != 0) { 2177 dmu_tx_abort(tx); 2178 return (err); 2179 } 2180 2181 dmu_write_embedded(rwa->os, drrwe->drr_object, 2182 drrwe->drr_offset, data, drrwe->drr_etype, 2183 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2184 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2185 2186 /* See comment in restore_write. */ 2187 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2188 dmu_tx_commit(tx); 2189 return (0); 2190 } 2191 2192 static int 2193 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2194 void *data) 2195 { 2196 dmu_tx_t *tx; 2197 dmu_buf_t *db, *db_spill; 2198 int err; 2199 2200 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2201 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2202 return (SET_ERROR(EINVAL)); 2203 2204 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2205 return (SET_ERROR(EINVAL)); 2206 2207 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2208 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2209 dmu_buf_rele(db, FTAG); 2210 return (err); 2211 } 2212 2213 tx = dmu_tx_create(rwa->os); 2214 2215 dmu_tx_hold_spill(tx, db->db_object); 2216 2217 err = dmu_tx_assign(tx, TXG_WAIT); 2218 if (err != 0) { 2219 dmu_buf_rele(db, FTAG); 2220 dmu_buf_rele(db_spill, FTAG); 2221 dmu_tx_abort(tx); 2222 return (err); 2223 } 2224 dmu_buf_will_dirty(db_spill, tx); 2225 2226 if (db_spill->db_size < drrs->drr_length) 2227 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2228 drrs->drr_length, tx)); 2229 bcopy(data, db_spill->db_data, drrs->drr_length); 2230 2231 dmu_buf_rele(db, FTAG); 2232 dmu_buf_rele(db_spill, FTAG); 2233 2234 dmu_tx_commit(tx); 2235 return (0); 2236 } 2237 2238 /* ARGSUSED */ 2239 static int 2240 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2241 { 2242 int err; 2243 2244 if (drrf->drr_length != -1ULL && 2245 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2246 return (SET_ERROR(EINVAL)); 2247 2248 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2249 return (SET_ERROR(EINVAL)); 2250 2251 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2252 drrf->drr_offset, drrf->drr_length); 2253 2254 return (err); 2255 } 2256 2257 /* used to destroy the drc_ds on error */ 2258 static void 2259 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2260 { 2261 if (drc->drc_resumable) { 2262 /* wait for our resume state to be written to disk */ 2263 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2264 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2265 } else { 2266 char name[MAXNAMELEN]; 2267 dsl_dataset_name(drc->drc_ds, name); 2268 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2269 (void) dsl_destroy_head(name); 2270 } 2271 } 2272 2273 static void 2274 receive_cksum(struct receive_arg *ra, int len, void *buf) 2275 { 2276 if (ra->byteswap) { 2277 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2278 } else { 2279 fletcher_4_incremental_native(buf, len, &ra->cksum); 2280 } 2281 } 2282 2283 /* 2284 * Read the payload into a buffer of size len, and update the current record's 2285 * payload field. 2286 * Allocate ra->next_rrd and read the next record's header into 2287 * ra->next_rrd->header. 2288 * Verify checksum of payload and next record. 2289 */ 2290 static int 2291 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2292 { 2293 int err; 2294 2295 if (len != 0) { 2296 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2297 err = receive_read(ra, len, buf); 2298 if (err != 0) 2299 return (err); 2300 receive_cksum(ra, len, buf); 2301 2302 /* note: rrd is NULL when reading the begin record's payload */ 2303 if (ra->rrd != NULL) { 2304 ra->rrd->payload = buf; 2305 ra->rrd->payload_size = len; 2306 ra->rrd->bytes_read = ra->bytes_read; 2307 } 2308 } 2309 2310 ra->prev_cksum = ra->cksum; 2311 2312 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2313 err = receive_read(ra, sizeof (ra->next_rrd->header), 2314 &ra->next_rrd->header); 2315 ra->next_rrd->bytes_read = ra->bytes_read; 2316 if (err != 0) { 2317 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2318 ra->next_rrd = NULL; 2319 return (err); 2320 } 2321 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2322 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2323 ra->next_rrd = NULL; 2324 return (SET_ERROR(EINVAL)); 2325 } 2326 2327 /* 2328 * Note: checksum is of everything up to but not including the 2329 * checksum itself. 2330 */ 2331 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2332 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2333 receive_cksum(ra, 2334 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2335 &ra->next_rrd->header); 2336 2337 zio_cksum_t cksum_orig = 2338 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2339 zio_cksum_t *cksump = 2340 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2341 2342 if (ra->byteswap) 2343 byteswap_record(&ra->next_rrd->header); 2344 2345 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2346 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2347 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2348 ra->next_rrd = NULL; 2349 return (SET_ERROR(ECKSUM)); 2350 } 2351 2352 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2353 2354 return (0); 2355 } 2356 2357 /* 2358 * Issue the prefetch reads for any necessary indirect blocks. 2359 * 2360 * We use the object ignore list to tell us whether or not to issue prefetches 2361 * for a given object. We do this for both correctness (in case the blocksize 2362 * of an object has changed) and performance (if the object doesn't exist, don't 2363 * needlessly try to issue prefetches). We also trim the list as we go through 2364 * the stream to prevent it from growing to an unbounded size. 2365 * 2366 * The object numbers within will always be in sorted order, and any write 2367 * records we see will also be in sorted order, but they're not sorted with 2368 * respect to each other (i.e. we can get several object records before 2369 * receiving each object's write records). As a result, once we've reached a 2370 * given object number, we can safely remove any reference to lower object 2371 * numbers in the ignore list. In practice, we receive up to 32 object records 2372 * before receiving write records, so the list can have up to 32 nodes in it. 2373 */ 2374 /* ARGSUSED */ 2375 static void 2376 receive_read_prefetch(struct receive_arg *ra, 2377 uint64_t object, uint64_t offset, uint64_t length) 2378 { 2379 struct receive_ign_obj_node *node = list_head(&ra->ignore_obj_list); 2380 while (node != NULL && node->object < object) { 2381 VERIFY3P(node, ==, list_remove_head(&ra->ignore_obj_list)); 2382 kmem_free(node, sizeof (*node)); 2383 node = list_head(&ra->ignore_obj_list); 2384 } 2385 if (node == NULL || node->object > object) { 2386 dmu_prefetch(ra->os, object, 1, offset, length, 2387 ZIO_PRIORITY_SYNC_READ); 2388 } 2389 } 2390 2391 /* 2392 * Read records off the stream, issuing any necessary prefetches. 2393 */ 2394 static int 2395 receive_read_record(struct receive_arg *ra) 2396 { 2397 int err; 2398 2399 switch (ra->rrd->header.drr_type) { 2400 case DRR_OBJECT: 2401 { 2402 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2403 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2404 void *buf = kmem_zalloc(size, KM_SLEEP); 2405 dmu_object_info_t doi; 2406 err = receive_read_payload_and_next_header(ra, size, buf); 2407 if (err != 0) { 2408 kmem_free(buf, size); 2409 return (err); 2410 } 2411 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2412 /* 2413 * See receive_read_prefetch for an explanation why we're 2414 * storing this object in the ignore_obj_list. 2415 */ 2416 if (err == ENOENT || 2417 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2418 struct receive_ign_obj_node *node = 2419 kmem_zalloc(sizeof (*node), 2420 KM_SLEEP); 2421 node->object = drro->drr_object; 2422 #ifdef ZFS_DEBUG 2423 struct receive_ign_obj_node *last_object = 2424 list_tail(&ra->ignore_obj_list); 2425 uint64_t last_objnum = (last_object != NULL ? 2426 last_object->object : 0); 2427 ASSERT3U(node->object, >, last_objnum); 2428 #endif 2429 list_insert_tail(&ra->ignore_obj_list, node); 2430 err = 0; 2431 } 2432 return (err); 2433 } 2434 case DRR_FREEOBJECTS: 2435 { 2436 err = receive_read_payload_and_next_header(ra, 0, NULL); 2437 return (err); 2438 } 2439 case DRR_WRITE: 2440 { 2441 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2442 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2443 drrw->drr_length); 2444 2445 err = receive_read_payload_and_next_header(ra, 2446 drrw->drr_length, abuf->b_data); 2447 if (err != 0) { 2448 dmu_return_arcbuf(abuf); 2449 return (err); 2450 } 2451 ra->rrd->write_buf = abuf; 2452 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2453 drrw->drr_length); 2454 return (err); 2455 } 2456 case DRR_WRITE_BYREF: 2457 { 2458 struct drr_write_byref *drrwb = 2459 &ra->rrd->header.drr_u.drr_write_byref; 2460 err = receive_read_payload_and_next_header(ra, 0, NULL); 2461 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2462 drrwb->drr_length); 2463 return (err); 2464 } 2465 case DRR_WRITE_EMBEDDED: 2466 { 2467 struct drr_write_embedded *drrwe = 2468 &ra->rrd->header.drr_u.drr_write_embedded; 2469 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2470 void *buf = kmem_zalloc(size, KM_SLEEP); 2471 2472 err = receive_read_payload_and_next_header(ra, size, buf); 2473 if (err != 0) { 2474 kmem_free(buf, size); 2475 return (err); 2476 } 2477 2478 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2479 drrwe->drr_length); 2480 return (err); 2481 } 2482 case DRR_FREE: 2483 { 2484 /* 2485 * It might be beneficial to prefetch indirect blocks here, but 2486 * we don't really have the data to decide for sure. 2487 */ 2488 err = receive_read_payload_and_next_header(ra, 0, NULL); 2489 return (err); 2490 } 2491 case DRR_END: 2492 { 2493 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2494 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2495 return (SET_ERROR(ECKSUM)); 2496 return (0); 2497 } 2498 case DRR_SPILL: 2499 { 2500 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2501 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2502 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2503 buf); 2504 if (err != 0) 2505 kmem_free(buf, drrs->drr_length); 2506 return (err); 2507 } 2508 default: 2509 return (SET_ERROR(EINVAL)); 2510 } 2511 } 2512 2513 /* 2514 * Commit the records to the pool. 2515 */ 2516 static int 2517 receive_process_record(struct receive_writer_arg *rwa, 2518 struct receive_record_arg *rrd) 2519 { 2520 int err; 2521 2522 /* Processing in order, therefore bytes_read should be increasing. */ 2523 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2524 rwa->bytes_read = rrd->bytes_read; 2525 2526 switch (rrd->header.drr_type) { 2527 case DRR_OBJECT: 2528 { 2529 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2530 err = receive_object(rwa, drro, rrd->payload); 2531 kmem_free(rrd->payload, rrd->payload_size); 2532 rrd->payload = NULL; 2533 return (err); 2534 } 2535 case DRR_FREEOBJECTS: 2536 { 2537 struct drr_freeobjects *drrfo = 2538 &rrd->header.drr_u.drr_freeobjects; 2539 return (receive_freeobjects(rwa, drrfo)); 2540 } 2541 case DRR_WRITE: 2542 { 2543 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2544 err = receive_write(rwa, drrw, rrd->write_buf); 2545 /* if receive_write() is successful, it consumes the arc_buf */ 2546 if (err != 0) 2547 dmu_return_arcbuf(rrd->write_buf); 2548 rrd->write_buf = NULL; 2549 rrd->payload = NULL; 2550 return (err); 2551 } 2552 case DRR_WRITE_BYREF: 2553 { 2554 struct drr_write_byref *drrwbr = 2555 &rrd->header.drr_u.drr_write_byref; 2556 return (receive_write_byref(rwa, drrwbr)); 2557 } 2558 case DRR_WRITE_EMBEDDED: 2559 { 2560 struct drr_write_embedded *drrwe = 2561 &rrd->header.drr_u.drr_write_embedded; 2562 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2563 kmem_free(rrd->payload, rrd->payload_size); 2564 rrd->payload = NULL; 2565 return (err); 2566 } 2567 case DRR_FREE: 2568 { 2569 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2570 return (receive_free(rwa, drrf)); 2571 } 2572 case DRR_SPILL: 2573 { 2574 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2575 err = receive_spill(rwa, drrs, rrd->payload); 2576 kmem_free(rrd->payload, rrd->payload_size); 2577 rrd->payload = NULL; 2578 return (err); 2579 } 2580 default: 2581 return (SET_ERROR(EINVAL)); 2582 } 2583 } 2584 2585 /* 2586 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2587 * receive_process_record When we're done, signal the main thread and exit. 2588 */ 2589 static void 2590 receive_writer_thread(void *arg) 2591 { 2592 struct receive_writer_arg *rwa = arg; 2593 struct receive_record_arg *rrd; 2594 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2595 rrd = bqueue_dequeue(&rwa->q)) { 2596 /* 2597 * If there's an error, the main thread will stop putting things 2598 * on the queue, but we need to clear everything in it before we 2599 * can exit. 2600 */ 2601 if (rwa->err == 0) { 2602 rwa->err = receive_process_record(rwa, rrd); 2603 } else if (rrd->write_buf != NULL) { 2604 dmu_return_arcbuf(rrd->write_buf); 2605 rrd->write_buf = NULL; 2606 rrd->payload = NULL; 2607 } else if (rrd->payload != NULL) { 2608 kmem_free(rrd->payload, rrd->payload_size); 2609 rrd->payload = NULL; 2610 } 2611 kmem_free(rrd, sizeof (*rrd)); 2612 } 2613 kmem_free(rrd, sizeof (*rrd)); 2614 mutex_enter(&rwa->mutex); 2615 rwa->done = B_TRUE; 2616 cv_signal(&rwa->cv); 2617 mutex_exit(&rwa->mutex); 2618 } 2619 2620 static int 2621 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2622 { 2623 uint64_t val; 2624 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2625 uint64_t dsobj = dmu_objset_id(ra->os); 2626 uint64_t resume_obj, resume_off; 2627 2628 if (nvlist_lookup_uint64(begin_nvl, 2629 "resume_object", &resume_obj) != 0 || 2630 nvlist_lookup_uint64(begin_nvl, 2631 "resume_offset", &resume_off) != 0) { 2632 return (SET_ERROR(EINVAL)); 2633 } 2634 VERIFY0(zap_lookup(mos, dsobj, 2635 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2636 if (resume_obj != val) 2637 return (SET_ERROR(EINVAL)); 2638 VERIFY0(zap_lookup(mos, dsobj, 2639 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2640 if (resume_off != val) 2641 return (SET_ERROR(EINVAL)); 2642 2643 return (0); 2644 } 2645 2646 2647 /* 2648 * Read in the stream's records, one by one, and apply them to the pool. There 2649 * are two threads involved; the thread that calls this function will spin up a 2650 * worker thread, read the records off the stream one by one, and issue 2651 * prefetches for any necessary indirect blocks. It will then push the records 2652 * onto an internal blocking queue. The worker thread will pull the records off 2653 * the queue, and actually write the data into the DMU. This way, the worker 2654 * thread doesn't have to wait for reads to complete, since everything it needs 2655 * (the indirect blocks) will be prefetched. 2656 * 2657 * NB: callers *must* call dmu_recv_end() if this succeeds. 2658 */ 2659 int 2660 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2661 int cleanup_fd, uint64_t *action_handlep) 2662 { 2663 int err = 0; 2664 struct receive_arg ra = { 0 }; 2665 struct receive_writer_arg rwa = { 0 }; 2666 int featureflags; 2667 nvlist_t *begin_nvl = NULL; 2668 2669 ra.byteswap = drc->drc_byteswap; 2670 ra.cksum = drc->drc_cksum; 2671 ra.vp = vp; 2672 ra.voff = *voffp; 2673 2674 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2675 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2676 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2677 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2678 } 2679 2680 list_create(&ra.ignore_obj_list, sizeof (struct receive_ign_obj_node), 2681 offsetof(struct receive_ign_obj_node, node)); 2682 2683 /* these were verified in dmu_recv_begin */ 2684 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2685 DMU_SUBSTREAM); 2686 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2687 2688 /* 2689 * Open the objset we are modifying. 2690 */ 2691 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2692 2693 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2694 2695 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2696 2697 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2698 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2699 minor_t minor; 2700 2701 if (cleanup_fd == -1) { 2702 ra.err = SET_ERROR(EBADF); 2703 goto out; 2704 } 2705 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2706 if (ra.err != 0) { 2707 cleanup_fd = -1; 2708 goto out; 2709 } 2710 2711 if (*action_handlep == 0) { 2712 rwa.guid_to_ds_map = 2713 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2714 avl_create(rwa.guid_to_ds_map, guid_compare, 2715 sizeof (guid_map_entry_t), 2716 offsetof(guid_map_entry_t, avlnode)); 2717 err = zfs_onexit_add_cb(minor, 2718 free_guid_map_onexit, rwa.guid_to_ds_map, 2719 action_handlep); 2720 if (ra.err != 0) 2721 goto out; 2722 } else { 2723 err = zfs_onexit_cb_data(minor, *action_handlep, 2724 (void **)&rwa.guid_to_ds_map); 2725 if (ra.err != 0) 2726 goto out; 2727 } 2728 2729 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2730 } 2731 2732 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2733 void *payload = NULL; 2734 if (payloadlen != 0) 2735 payload = kmem_alloc(payloadlen, KM_SLEEP); 2736 2737 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2738 if (err != 0) { 2739 if (payloadlen != 0) 2740 kmem_free(payload, payloadlen); 2741 goto out; 2742 } 2743 if (payloadlen != 0) { 2744 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2745 kmem_free(payload, payloadlen); 2746 if (err != 0) 2747 goto out; 2748 } 2749 2750 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2751 err = resume_check(&ra, begin_nvl); 2752 if (err != 0) 2753 goto out; 2754 } 2755 2756 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2757 offsetof(struct receive_record_arg, node)); 2758 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2759 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2760 rwa.os = ra.os; 2761 rwa.byteswap = drc->drc_byteswap; 2762 rwa.resumable = drc->drc_resumable; 2763 2764 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2765 TS_RUN, minclsyspri); 2766 /* 2767 * We're reading rwa.err without locks, which is safe since we are the 2768 * only reader, and the worker thread is the only writer. It's ok if we 2769 * miss a write for an iteration or two of the loop, since the writer 2770 * thread will keep freeing records we send it until we send it an eos 2771 * marker. 2772 * 2773 * We can leave this loop in 3 ways: First, if rwa.err is 2774 * non-zero. In that case, the writer thread will free the rrd we just 2775 * pushed. Second, if we're interrupted; in that case, either it's the 2776 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2777 * has been handed off to the writer thread who will free it. Finally, 2778 * if receive_read_record fails or we're at the end of the stream, then 2779 * we free ra.rrd and exit. 2780 */ 2781 while (rwa.err == 0) { 2782 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2783 err = SET_ERROR(EINTR); 2784 break; 2785 } 2786 2787 ASSERT3P(ra.rrd, ==, NULL); 2788 ra.rrd = ra.next_rrd; 2789 ra.next_rrd = NULL; 2790 /* Allocates and loads header into ra.next_rrd */ 2791 err = receive_read_record(&ra); 2792 2793 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2794 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2795 ra.rrd = NULL; 2796 break; 2797 } 2798 2799 bqueue_enqueue(&rwa.q, ra.rrd, 2800 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2801 ra.rrd = NULL; 2802 } 2803 if (ra.next_rrd == NULL) 2804 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2805 ra.next_rrd->eos_marker = B_TRUE; 2806 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2807 2808 mutex_enter(&rwa.mutex); 2809 while (!rwa.done) { 2810 cv_wait(&rwa.cv, &rwa.mutex); 2811 } 2812 mutex_exit(&rwa.mutex); 2813 2814 cv_destroy(&rwa.cv); 2815 mutex_destroy(&rwa.mutex); 2816 bqueue_destroy(&rwa.q); 2817 if (err == 0) 2818 err = rwa.err; 2819 2820 out: 2821 nvlist_free(begin_nvl); 2822 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2823 zfs_onexit_fd_rele(cleanup_fd); 2824 2825 if (err != 0) { 2826 /* 2827 * Clean up references. If receive is not resumable, 2828 * destroy what we created, so we don't leave it in 2829 * the inconsistent state. 2830 */ 2831 dmu_recv_cleanup_ds(drc); 2832 } 2833 2834 *voffp = ra.voff; 2835 for (struct receive_ign_obj_node *n = 2836 list_remove_head(&ra.ignore_obj_list); n != NULL; 2837 n = list_remove_head(&ra.ignore_obj_list)) { 2838 kmem_free(n, sizeof (*n)); 2839 } 2840 list_destroy(&ra.ignore_obj_list); 2841 return (err); 2842 } 2843 2844 static int 2845 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2846 { 2847 dmu_recv_cookie_t *drc = arg; 2848 dsl_pool_t *dp = dmu_tx_pool(tx); 2849 int error; 2850 2851 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2852 2853 if (!drc->drc_newfs) { 2854 dsl_dataset_t *origin_head; 2855 2856 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2857 if (error != 0) 2858 return (error); 2859 if (drc->drc_force) { 2860 /* 2861 * We will destroy any snapshots in tofs (i.e. before 2862 * origin_head) that are after the origin (which is 2863 * the snap before drc_ds, because drc_ds can not 2864 * have any snaps of its own). 2865 */ 2866 uint64_t obj; 2867 2868 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2869 while (obj != 2870 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2871 dsl_dataset_t *snap; 2872 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2873 &snap); 2874 if (error != 0) 2875 break; 2876 if (snap->ds_dir != origin_head->ds_dir) 2877 error = SET_ERROR(EINVAL); 2878 if (error == 0) { 2879 error = dsl_destroy_snapshot_check_impl( 2880 snap, B_FALSE); 2881 } 2882 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2883 dsl_dataset_rele(snap, FTAG); 2884 if (error != 0) 2885 break; 2886 } 2887 if (error != 0) { 2888 dsl_dataset_rele(origin_head, FTAG); 2889 return (error); 2890 } 2891 } 2892 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2893 origin_head, drc->drc_force, drc->drc_owner, tx); 2894 if (error != 0) { 2895 dsl_dataset_rele(origin_head, FTAG); 2896 return (error); 2897 } 2898 error = dsl_dataset_snapshot_check_impl(origin_head, 2899 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2900 dsl_dataset_rele(origin_head, FTAG); 2901 if (error != 0) 2902 return (error); 2903 2904 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2905 } else { 2906 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2907 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2908 } 2909 return (error); 2910 } 2911 2912 static void 2913 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2914 { 2915 dmu_recv_cookie_t *drc = arg; 2916 dsl_pool_t *dp = dmu_tx_pool(tx); 2917 2918 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2919 tx, "snap=%s", drc->drc_tosnap); 2920 2921 if (!drc->drc_newfs) { 2922 dsl_dataset_t *origin_head; 2923 2924 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2925 &origin_head)); 2926 2927 if (drc->drc_force) { 2928 /* 2929 * Destroy any snapshots of drc_tofs (origin_head) 2930 * after the origin (the snap before drc_ds). 2931 */ 2932 uint64_t obj; 2933 2934 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2935 while (obj != 2936 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2937 dsl_dataset_t *snap; 2938 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2939 &snap)); 2940 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2941 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2942 dsl_destroy_snapshot_sync_impl(snap, 2943 B_FALSE, tx); 2944 dsl_dataset_rele(snap, FTAG); 2945 } 2946 } 2947 VERIFY3P(drc->drc_ds->ds_prev, ==, 2948 origin_head->ds_prev); 2949 2950 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2951 origin_head, tx); 2952 dsl_dataset_snapshot_sync_impl(origin_head, 2953 drc->drc_tosnap, tx); 2954 2955 /* set snapshot's creation time and guid */ 2956 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2957 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2958 drc->drc_drrb->drr_creation_time; 2959 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2960 drc->drc_drrb->drr_toguid; 2961 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2962 ~DS_FLAG_INCONSISTENT; 2963 2964 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2965 dsl_dataset_phys(origin_head)->ds_flags &= 2966 ~DS_FLAG_INCONSISTENT; 2967 2968 dsl_dataset_rele(origin_head, FTAG); 2969 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2970 2971 if (drc->drc_owner != NULL) 2972 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2973 } else { 2974 dsl_dataset_t *ds = drc->drc_ds; 2975 2976 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2977 2978 /* set snapshot's creation time and guid */ 2979 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2980 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2981 drc->drc_drrb->drr_creation_time; 2982 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2983 drc->drc_drrb->drr_toguid; 2984 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2985 ~DS_FLAG_INCONSISTENT; 2986 2987 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2988 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2989 if (dsl_dataset_has_resume_receive_state(ds)) { 2990 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2991 DS_FIELD_RESUME_FROMGUID, tx); 2992 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2993 DS_FIELD_RESUME_OBJECT, tx); 2994 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2995 DS_FIELD_RESUME_OFFSET, tx); 2996 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2997 DS_FIELD_RESUME_BYTES, tx); 2998 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2999 DS_FIELD_RESUME_TOGUID, tx); 3000 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3001 DS_FIELD_RESUME_TONAME, tx); 3002 } 3003 } 3004 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3005 /* 3006 * Release the hold from dmu_recv_begin. This must be done before 3007 * we return to open context, so that when we free the dataset's dnode, 3008 * we can evict its bonus buffer. 3009 */ 3010 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3011 drc->drc_ds = NULL; 3012 } 3013 3014 static int 3015 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3016 { 3017 dsl_pool_t *dp; 3018 dsl_dataset_t *snapds; 3019 guid_map_entry_t *gmep; 3020 int err; 3021 3022 ASSERT(guid_map != NULL); 3023 3024 err = dsl_pool_hold(name, FTAG, &dp); 3025 if (err != 0) 3026 return (err); 3027 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3028 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3029 if (err == 0) { 3030 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3031 gmep->gme_ds = snapds; 3032 avl_add(guid_map, gmep); 3033 dsl_dataset_long_hold(snapds, gmep); 3034 } else { 3035 kmem_free(gmep, sizeof (*gmep)); 3036 } 3037 3038 dsl_pool_rele(dp, FTAG); 3039 return (err); 3040 } 3041 3042 static int dmu_recv_end_modified_blocks = 3; 3043 3044 static int 3045 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3046 { 3047 int error; 3048 char name[MAXNAMELEN]; 3049 3050 #ifdef _KERNEL 3051 /* 3052 * We will be destroying the ds; make sure its origin is unmounted if 3053 * necessary. 3054 */ 3055 dsl_dataset_name(drc->drc_ds, name); 3056 zfs_destroy_unmount_origin(name); 3057 #endif 3058 3059 error = dsl_sync_task(drc->drc_tofs, 3060 dmu_recv_end_check, dmu_recv_end_sync, drc, 3061 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3062 3063 if (error != 0) 3064 dmu_recv_cleanup_ds(drc); 3065 return (error); 3066 } 3067 3068 static int 3069 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3070 { 3071 int error; 3072 3073 error = dsl_sync_task(drc->drc_tofs, 3074 dmu_recv_end_check, dmu_recv_end_sync, drc, 3075 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3076 3077 if (error != 0) { 3078 dmu_recv_cleanup_ds(drc); 3079 } else if (drc->drc_guid_to_ds_map != NULL) { 3080 (void) add_ds_to_guidmap(drc->drc_tofs, 3081 drc->drc_guid_to_ds_map, 3082 drc->drc_newsnapobj); 3083 } 3084 return (error); 3085 } 3086 3087 int 3088 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3089 { 3090 drc->drc_owner = owner; 3091 3092 if (drc->drc_newfs) 3093 return (dmu_recv_new_end(drc)); 3094 else 3095 return (dmu_recv_existing_end(drc)); 3096 } 3097 3098 /* 3099 * Return TRUE if this objset is currently being received into. 3100 */ 3101 boolean_t 3102 dmu_objset_is_receiving(objset_t *os) 3103 { 3104 return (os->os_dsl_dataset != NULL && 3105 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3106 } 3107